USB: fix comments of 2 functions in hcd.c
[linux-2.6.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47
48
49 /*-------------------------------------------------------------------------*/
50
51 /*
52  * USB Host Controller Driver framework
53  *
54  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55  * HCD-specific behaviors/bugs.
56  *
57  * This does error checks, tracks devices and urbs, and delegates to a
58  * "hc_driver" only for code (and data) that really needs to know about
59  * hardware differences.  That includes root hub registers, i/o queues,
60  * and so on ... but as little else as possible.
61  *
62  * Shared code includes most of the "root hub" code (these are emulated,
63  * though each HC's hardware works differently) and PCI glue, plus request
64  * tracking overhead.  The HCD code should only block on spinlocks or on
65  * hardware handshaking; blocking on software events (such as other kernel
66  * threads releasing resources, or completing actions) is all generic.
67  *
68  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70  * only by the hub driver ... and that neither should be seen or used by
71  * usb client device drivers.
72  *
73  * Contributors of ideas or unattributed patches include: David Brownell,
74  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75  *
76  * HISTORY:
77  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
78  *              associated cleanup.  "usb_hcd" still != "usb_bus".
79  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
80  */
81
82 /*-------------------------------------------------------------------------*/
83
84 /* host controllers we manage */
85 LIST_HEAD (usb_bus_list);
86 EXPORT_SYMBOL_GPL (usb_bus_list);
87
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS              64
90 struct usb_busmap {
91         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
92 };
93 static struct usb_busmap busmap;
94
95 /* used when updating list of hcds */
96 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
97 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
98
99 /* used for controlling access to virtual root hubs */
100 static DEFINE_SPINLOCK(hcd_root_hub_lock);
101
102 /* used when updating an endpoint's URB list */
103 static DEFINE_SPINLOCK(hcd_urb_list_lock);
104
105 /* wait queue for synchronous unlinks */
106 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
107
108 static inline int is_root_hub(struct usb_device *udev)
109 {
110         return (udev->parent == NULL);
111 }
112
113 /*-------------------------------------------------------------------------*/
114
115 /*
116  * Sharable chunks of root hub code.
117  */
118
119 /*-------------------------------------------------------------------------*/
120
121 #define KERNEL_REL      ((LINUX_VERSION_CODE >> 16) & 0x0ff)
122 #define KERNEL_VER      ((LINUX_VERSION_CODE >> 8) & 0x0ff)
123
124 /* usb 2.0 root hub device descriptor */
125 static const u8 usb2_rh_dev_descriptor [18] = {
126         0x12,       /*  __u8  bLength; */
127         0x01,       /*  __u8  bDescriptorType; Device */
128         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
129
130         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
131         0x00,       /*  __u8  bDeviceSubClass; */
132         0x01,       /*  __u8  bDeviceProtocol; [ usb 2.0 single TT ]*/
133         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
134
135         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
136         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
137         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
138
139         0x03,       /*  __u8  iManufacturer; */
140         0x02,       /*  __u8  iProduct; */
141         0x01,       /*  __u8  iSerialNumber; */
142         0x01        /*  __u8  bNumConfigurations; */
143 };
144
145 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
146
147 /* usb 1.1 root hub device descriptor */
148 static const u8 usb11_rh_dev_descriptor [18] = {
149         0x12,       /*  __u8  bLength; */
150         0x01,       /*  __u8  bDescriptorType; Device */
151         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
152
153         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
154         0x00,       /*  __u8  bDeviceSubClass; */
155         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
156         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
157
158         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
159         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
160         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
161
162         0x03,       /*  __u8  iManufacturer; */
163         0x02,       /*  __u8  iProduct; */
164         0x01,       /*  __u8  iSerialNumber; */
165         0x01        /*  __u8  bNumConfigurations; */
166 };
167
168
169 /*-------------------------------------------------------------------------*/
170
171 /* Configuration descriptors for our root hubs */
172
173 static const u8 fs_rh_config_descriptor [] = {
174
175         /* one configuration */
176         0x09,       /*  __u8  bLength; */
177         0x02,       /*  __u8  bDescriptorType; Configuration */
178         0x19, 0x00, /*  __le16 wTotalLength; */
179         0x01,       /*  __u8  bNumInterfaces; (1) */
180         0x01,       /*  __u8  bConfigurationValue; */
181         0x00,       /*  __u8  iConfiguration; */
182         0xc0,       /*  __u8  bmAttributes; 
183                                  Bit 7: must be set,
184                                      6: Self-powered,
185                                      5: Remote wakeup,
186                                      4..0: resvd */
187         0x00,       /*  __u8  MaxPower; */
188       
189         /* USB 1.1:
190          * USB 2.0, single TT organization (mandatory):
191          *      one interface, protocol 0
192          *
193          * USB 2.0, multiple TT organization (optional):
194          *      two interfaces, protocols 1 (like single TT)
195          *      and 2 (multiple TT mode) ... config is
196          *      sometimes settable
197          *      NOT IMPLEMENTED
198          */
199
200         /* one interface */
201         0x09,       /*  __u8  if_bLength; */
202         0x04,       /*  __u8  if_bDescriptorType; Interface */
203         0x00,       /*  __u8  if_bInterfaceNumber; */
204         0x00,       /*  __u8  if_bAlternateSetting; */
205         0x01,       /*  __u8  if_bNumEndpoints; */
206         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
207         0x00,       /*  __u8  if_bInterfaceSubClass; */
208         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
209         0x00,       /*  __u8  if_iInterface; */
210      
211         /* one endpoint (status change endpoint) */
212         0x07,       /*  __u8  ep_bLength; */
213         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
214         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
215         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
216         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
217         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
218 };
219
220 static const u8 hs_rh_config_descriptor [] = {
221
222         /* one configuration */
223         0x09,       /*  __u8  bLength; */
224         0x02,       /*  __u8  bDescriptorType; Configuration */
225         0x19, 0x00, /*  __le16 wTotalLength; */
226         0x01,       /*  __u8  bNumInterfaces; (1) */
227         0x01,       /*  __u8  bConfigurationValue; */
228         0x00,       /*  __u8  iConfiguration; */
229         0xc0,       /*  __u8  bmAttributes; 
230                                  Bit 7: must be set,
231                                      6: Self-powered,
232                                      5: Remote wakeup,
233                                      4..0: resvd */
234         0x00,       /*  __u8  MaxPower; */
235       
236         /* USB 1.1:
237          * USB 2.0, single TT organization (mandatory):
238          *      one interface, protocol 0
239          *
240          * USB 2.0, multiple TT organization (optional):
241          *      two interfaces, protocols 1 (like single TT)
242          *      and 2 (multiple TT mode) ... config is
243          *      sometimes settable
244          *      NOT IMPLEMENTED
245          */
246
247         /* one interface */
248         0x09,       /*  __u8  if_bLength; */
249         0x04,       /*  __u8  if_bDescriptorType; Interface */
250         0x00,       /*  __u8  if_bInterfaceNumber; */
251         0x00,       /*  __u8  if_bAlternateSetting; */
252         0x01,       /*  __u8  if_bNumEndpoints; */
253         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
254         0x00,       /*  __u8  if_bInterfaceSubClass; */
255         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
256         0x00,       /*  __u8  if_iInterface; */
257      
258         /* one endpoint (status change endpoint) */
259         0x07,       /*  __u8  ep_bLength; */
260         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
261         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
262         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
263                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
264                      * see hub.c:hub_configure() for details. */
265         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
266         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
267 };
268
269 /*-------------------------------------------------------------------------*/
270
271 /*
272  * helper routine for returning string descriptors in UTF-16LE
273  * input can actually be ISO-8859-1; ASCII is its 7-bit subset
274  */
275 static int ascii2utf (char *s, u8 *utf, int utfmax)
276 {
277         int retval;
278
279         for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
280                 *utf++ = *s++;
281                 *utf++ = 0;
282         }
283         if (utfmax > 0) {
284                 *utf = *s;
285                 ++retval;
286         }
287         return retval;
288 }
289
290 /*
291  * rh_string - provides manufacturer, product and serial strings for root hub
292  * @id: the string ID number (1: serial number, 2: product, 3: vendor)
293  * @hcd: the host controller for this root hub
294  * @data: return packet in UTF-16 LE
295  * @len: length of the return packet
296  *
297  * Produces either a manufacturer, product or serial number string for the
298  * virtual root hub device.
299  */
300 static int rh_string (
301         int             id,
302         struct usb_hcd  *hcd,
303         u8              *data,
304         int             len
305 ) {
306         char buf [100];
307
308         // language ids
309         if (id == 0) {
310                 buf[0] = 4;    buf[1] = 3;      /* 4 bytes string data */
311                 buf[2] = 0x09; buf[3] = 0x04;   /* MSFT-speak for "en-us" */
312                 len = min (len, 4);
313                 memcpy (data, buf, len);
314                 return len;
315
316         // serial number
317         } else if (id == 1) {
318                 strlcpy (buf, hcd->self.bus_name, sizeof buf);
319
320         // product description
321         } else if (id == 2) {
322                 strlcpy (buf, hcd->product_desc, sizeof buf);
323
324         // id 3 == vendor description
325         } else if (id == 3) {
326                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
327                         init_utsname()->release, hcd->driver->description);
328
329         // unsupported IDs --> "protocol stall"
330         } else
331                 return -EPIPE;
332
333         switch (len) {          /* All cases fall through */
334         default:
335                 len = 2 + ascii2utf (buf, data + 2, len - 2);
336         case 2:
337                 data [1] = 3;   /* type == string */
338         case 1:
339                 data [0] = 2 * (strlen (buf) + 1);
340         case 0:
341                 ;               /* Compiler wants a statement here */
342         }
343         return len;
344 }
345
346
347 /* Root hub control transfers execute synchronously */
348 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
349 {
350         struct usb_ctrlrequest *cmd;
351         u16             typeReq, wValue, wIndex, wLength;
352         u8              *ubuf = urb->transfer_buffer;
353         u8              tbuf [sizeof (struct usb_hub_descriptor)]
354                 __attribute__((aligned(4)));
355         const u8        *bufp = tbuf;
356         int             len = 0;
357         int             patch_wakeup = 0;
358         int             status;
359         int             n;
360
361         might_sleep();
362
363         spin_lock_irq(&hcd_root_hub_lock);
364         status = usb_hcd_link_urb_to_ep(hcd, urb);
365         spin_unlock_irq(&hcd_root_hub_lock);
366         if (status)
367                 return status;
368         urb->hcpriv = hcd;      /* Indicate it's queued */
369
370         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
371         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
372         wValue   = le16_to_cpu (cmd->wValue);
373         wIndex   = le16_to_cpu (cmd->wIndex);
374         wLength  = le16_to_cpu (cmd->wLength);
375
376         if (wLength > urb->transfer_buffer_length)
377                 goto error;
378
379         urb->actual_length = 0;
380         switch (typeReq) {
381
382         /* DEVICE REQUESTS */
383
384         /* The root hub's remote wakeup enable bit is implemented using
385          * driver model wakeup flags.  If this system supports wakeup
386          * through USB, userspace may change the default "allow wakeup"
387          * policy through sysfs or these calls.
388          *
389          * Most root hubs support wakeup from downstream devices, for
390          * runtime power management (disabling USB clocks and reducing
391          * VBUS power usage).  However, not all of them do so; silicon,
392          * board, and BIOS bugs here are not uncommon, so these can't
393          * be treated quite like external hubs.
394          *
395          * Likewise, not all root hubs will pass wakeup events upstream,
396          * to wake up the whole system.  So don't assume root hub and
397          * controller capabilities are identical.
398          */
399
400         case DeviceRequest | USB_REQ_GET_STATUS:
401                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
402                                         << USB_DEVICE_REMOTE_WAKEUP)
403                                 | (1 << USB_DEVICE_SELF_POWERED);
404                 tbuf [1] = 0;
405                 len = 2;
406                 break;
407         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
408                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
409                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
410                 else
411                         goto error;
412                 break;
413         case DeviceOutRequest | USB_REQ_SET_FEATURE:
414                 if (device_can_wakeup(&hcd->self.root_hub->dev)
415                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
416                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
417                 else
418                         goto error;
419                 break;
420         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
421                 tbuf [0] = 1;
422                 len = 1;
423                         /* FALLTHROUGH */
424         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
425                 break;
426         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
427                 switch (wValue & 0xff00) {
428                 case USB_DT_DEVICE << 8:
429                         if (hcd->driver->flags & HCD_USB2)
430                                 bufp = usb2_rh_dev_descriptor;
431                         else if (hcd->driver->flags & HCD_USB11)
432                                 bufp = usb11_rh_dev_descriptor;
433                         else
434                                 goto error;
435                         len = 18;
436                         break;
437                 case USB_DT_CONFIG << 8:
438                         if (hcd->driver->flags & HCD_USB2) {
439                                 bufp = hs_rh_config_descriptor;
440                                 len = sizeof hs_rh_config_descriptor;
441                         } else {
442                                 bufp = fs_rh_config_descriptor;
443                                 len = sizeof fs_rh_config_descriptor;
444                         }
445                         if (device_can_wakeup(&hcd->self.root_hub->dev))
446                                 patch_wakeup = 1;
447                         break;
448                 case USB_DT_STRING << 8:
449                         n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
450                         if (n < 0)
451                                 goto error;
452                         urb->actual_length = n;
453                         break;
454                 default:
455                         goto error;
456                 }
457                 break;
458         case DeviceRequest | USB_REQ_GET_INTERFACE:
459                 tbuf [0] = 0;
460                 len = 1;
461                         /* FALLTHROUGH */
462         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
463                 break;
464         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
465                 // wValue == urb->dev->devaddr
466                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
467                         wValue);
468                 break;
469
470         /* INTERFACE REQUESTS (no defined feature/status flags) */
471
472         /* ENDPOINT REQUESTS */
473
474         case EndpointRequest | USB_REQ_GET_STATUS:
475                 // ENDPOINT_HALT flag
476                 tbuf [0] = 0;
477                 tbuf [1] = 0;
478                 len = 2;
479                         /* FALLTHROUGH */
480         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
481         case EndpointOutRequest | USB_REQ_SET_FEATURE:
482                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
483                 break;
484
485         /* CLASS REQUESTS (and errors) */
486
487         default:
488                 /* non-generic request */
489                 switch (typeReq) {
490                 case GetHubStatus:
491                 case GetPortStatus:
492                         len = 4;
493                         break;
494                 case GetHubDescriptor:
495                         len = sizeof (struct usb_hub_descriptor);
496                         break;
497                 }
498                 status = hcd->driver->hub_control (hcd,
499                         typeReq, wValue, wIndex,
500                         tbuf, wLength);
501                 break;
502 error:
503                 /* "protocol stall" on error */
504                 status = -EPIPE;
505         }
506
507         if (status) {
508                 len = 0;
509                 if (status != -EPIPE) {
510                         dev_dbg (hcd->self.controller,
511                                 "CTRL: TypeReq=0x%x val=0x%x "
512                                 "idx=0x%x len=%d ==> %d\n",
513                                 typeReq, wValue, wIndex,
514                                 wLength, status);
515                 }
516         }
517         if (len) {
518                 if (urb->transfer_buffer_length < len)
519                         len = urb->transfer_buffer_length;
520                 urb->actual_length = len;
521                 // always USB_DIR_IN, toward host
522                 memcpy (ubuf, bufp, len);
523
524                 /* report whether RH hardware supports remote wakeup */
525                 if (patch_wakeup &&
526                                 len > offsetof (struct usb_config_descriptor,
527                                                 bmAttributes))
528                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
529                                 |= USB_CONFIG_ATT_WAKEUP;
530         }
531
532         /* any errors get returned through the urb completion */
533         spin_lock_irq(&hcd_root_hub_lock);
534         usb_hcd_unlink_urb_from_ep(hcd, urb);
535
536         /* This peculiar use of spinlocks echoes what real HC drivers do.
537          * Avoiding calls to local_irq_disable/enable makes the code
538          * RT-friendly.
539          */
540         spin_unlock(&hcd_root_hub_lock);
541         usb_hcd_giveback_urb(hcd, urb, status);
542         spin_lock(&hcd_root_hub_lock);
543
544         spin_unlock_irq(&hcd_root_hub_lock);
545         return 0;
546 }
547
548 /*-------------------------------------------------------------------------*/
549
550 /*
551  * Root Hub interrupt transfers are polled using a timer if the
552  * driver requests it; otherwise the driver is responsible for
553  * calling usb_hcd_poll_rh_status() when an event occurs.
554  *
555  * Completions are called in_interrupt(), but they may or may not
556  * be in_irq().
557  */
558 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
559 {
560         struct urb      *urb;
561         int             length;
562         unsigned long   flags;
563         char            buffer[4];      /* Any root hubs with > 31 ports? */
564
565         if (unlikely(!hcd->rh_registered))
566                 return;
567         if (!hcd->uses_new_polling && !hcd->status_urb)
568                 return;
569
570         length = hcd->driver->hub_status_data(hcd, buffer);
571         if (length > 0) {
572
573                 /* try to complete the status urb */
574                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
575                 urb = hcd->status_urb;
576                 if (urb) {
577                         hcd->poll_pending = 0;
578                         hcd->status_urb = NULL;
579                         urb->actual_length = length;
580                         memcpy(urb->transfer_buffer, buffer, length);
581
582                         usb_hcd_unlink_urb_from_ep(hcd, urb);
583                         spin_unlock(&hcd_root_hub_lock);
584                         usb_hcd_giveback_urb(hcd, urb, 0);
585                         spin_lock(&hcd_root_hub_lock);
586                 } else {
587                         length = 0;
588                         hcd->poll_pending = 1;
589                 }
590                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
591         }
592
593         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
594          * exceed that limit if HZ is 100. The math is more clunky than
595          * maybe expected, this is to make sure that all timers for USB devices
596          * fire at the same time to give the CPU a break inbetween */
597         if (hcd->uses_new_polling ? hcd->poll_rh :
598                         (length == 0 && hcd->status_urb != NULL))
599                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
600 }
601 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
602
603 /* timer callback */
604 static void rh_timer_func (unsigned long _hcd)
605 {
606         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
607 }
608
609 /*-------------------------------------------------------------------------*/
610
611 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
612 {
613         int             retval;
614         unsigned long   flags;
615         int             len = 1 + (urb->dev->maxchild / 8);
616
617         spin_lock_irqsave (&hcd_root_hub_lock, flags);
618         if (hcd->status_urb || urb->transfer_buffer_length < len) {
619                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
620                 retval = -EINVAL;
621                 goto done;
622         }
623
624         retval = usb_hcd_link_urb_to_ep(hcd, urb);
625         if (retval)
626                 goto done;
627
628         hcd->status_urb = urb;
629         urb->hcpriv = hcd;      /* indicate it's queued */
630         if (!hcd->uses_new_polling)
631                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
632
633         /* If a status change has already occurred, report it ASAP */
634         else if (hcd->poll_pending)
635                 mod_timer(&hcd->rh_timer, jiffies);
636         retval = 0;
637  done:
638         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
639         return retval;
640 }
641
642 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
643 {
644         if (usb_endpoint_xfer_int(&urb->ep->desc))
645                 return rh_queue_status (hcd, urb);
646         if (usb_endpoint_xfer_control(&urb->ep->desc))
647                 return rh_call_control (hcd, urb);
648         return -EINVAL;
649 }
650
651 /*-------------------------------------------------------------------------*/
652
653 /* Unlinks of root-hub control URBs are legal, but they don't do anything
654  * since these URBs always execute synchronously.
655  */
656 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
657 {
658         unsigned long   flags;
659         int             rc;
660
661         spin_lock_irqsave(&hcd_root_hub_lock, flags);
662         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
663         if (rc)
664                 goto done;
665
666         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
667                 ;       /* Do nothing */
668
669         } else {                                /* Status URB */
670                 if (!hcd->uses_new_polling)
671                         del_timer (&hcd->rh_timer);
672                 if (urb == hcd->status_urb) {
673                         hcd->status_urb = NULL;
674                         usb_hcd_unlink_urb_from_ep(hcd, urb);
675
676                         spin_unlock(&hcd_root_hub_lock);
677                         usb_hcd_giveback_urb(hcd, urb, status);
678                         spin_lock(&hcd_root_hub_lock);
679                 }
680         }
681  done:
682         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
683         return rc;
684 }
685
686
687
688 /*
689  * Show & store the current value of authorized_default
690  */
691 static ssize_t usb_host_authorized_default_show(struct device *dev,
692                                                 struct device_attribute *attr,
693                                                 char *buf)
694 {
695         struct usb_device *rh_usb_dev = to_usb_device(dev);
696         struct usb_bus *usb_bus = rh_usb_dev->bus;
697         struct usb_hcd *usb_hcd;
698
699         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
700                 return -ENODEV;
701         usb_hcd = bus_to_hcd(usb_bus);
702         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
703 }
704
705 static ssize_t usb_host_authorized_default_store(struct device *dev,
706                                                  struct device_attribute *attr,
707                                                  const char *buf, size_t size)
708 {
709         ssize_t result;
710         unsigned val;
711         struct usb_device *rh_usb_dev = to_usb_device(dev);
712         struct usb_bus *usb_bus = rh_usb_dev->bus;
713         struct usb_hcd *usb_hcd;
714
715         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
716                 return -ENODEV;
717         usb_hcd = bus_to_hcd(usb_bus);
718         result = sscanf(buf, "%u\n", &val);
719         if (result == 1) {
720                 usb_hcd->authorized_default = val? 1 : 0;
721                 result = size;
722         }
723         else
724                 result = -EINVAL;
725         return result;
726 }
727
728 static DEVICE_ATTR(authorized_default, 0644,
729             usb_host_authorized_default_show,
730             usb_host_authorized_default_store);
731
732
733 /* Group all the USB bus attributes */
734 static struct attribute *usb_bus_attrs[] = {
735                 &dev_attr_authorized_default.attr,
736                 NULL,
737 };
738
739 static struct attribute_group usb_bus_attr_group = {
740         .name = NULL,   /* we want them in the same directory */
741         .attrs = usb_bus_attrs,
742 };
743
744
745
746 /*-------------------------------------------------------------------------*/
747
748 static struct class *usb_host_class;
749
750 int usb_host_init(void)
751 {
752         int retval = 0;
753
754         usb_host_class = class_create(THIS_MODULE, "usb_host");
755         if (IS_ERR(usb_host_class))
756                 retval = PTR_ERR(usb_host_class);
757         return retval;
758 }
759
760 void usb_host_cleanup(void)
761 {
762         class_destroy(usb_host_class);
763 }
764
765 /**
766  * usb_bus_init - shared initialization code
767  * @bus: the bus structure being initialized
768  *
769  * This code is used to initialize a usb_bus structure, memory for which is
770  * separately managed.
771  */
772 static void usb_bus_init (struct usb_bus *bus)
773 {
774         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
775
776         bus->devnum_next = 1;
777
778         bus->root_hub = NULL;
779         bus->busnum = -1;
780         bus->bandwidth_allocated = 0;
781         bus->bandwidth_int_reqs  = 0;
782         bus->bandwidth_isoc_reqs = 0;
783
784         INIT_LIST_HEAD (&bus->bus_list);
785 }
786
787 /*-------------------------------------------------------------------------*/
788
789 /**
790  * usb_register_bus - registers the USB host controller with the usb core
791  * @bus: pointer to the bus to register
792  * Context: !in_interrupt()
793  *
794  * Assigns a bus number, and links the controller into usbcore data
795  * structures so that it can be seen by scanning the bus list.
796  */
797 static int usb_register_bus(struct usb_bus *bus)
798 {
799         int result = -E2BIG;
800         int busnum;
801
802         mutex_lock(&usb_bus_list_lock);
803         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
804         if (busnum >= USB_MAXBUS) {
805                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
806                 goto error_find_busnum;
807         }
808         set_bit (busnum, busmap.busmap);
809         bus->busnum = busnum;
810
811         bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0),
812                                  "usb_host%d", busnum);
813         result = PTR_ERR(bus->dev);
814         if (IS_ERR(bus->dev))
815                 goto error_create_class_dev;
816         dev_set_drvdata(bus->dev, bus);
817
818         /* Add it to the local list of buses */
819         list_add (&bus->bus_list, &usb_bus_list);
820         mutex_unlock(&usb_bus_list_lock);
821
822         usb_notify_add_bus(bus);
823
824         dev_info (bus->controller, "new USB bus registered, assigned bus "
825                   "number %d\n", bus->busnum);
826         return 0;
827
828 error_create_class_dev:
829         clear_bit(busnum, busmap.busmap);
830 error_find_busnum:
831         mutex_unlock(&usb_bus_list_lock);
832         return result;
833 }
834
835 /**
836  * usb_deregister_bus - deregisters the USB host controller
837  * @bus: pointer to the bus to deregister
838  * Context: !in_interrupt()
839  *
840  * Recycles the bus number, and unlinks the controller from usbcore data
841  * structures so that it won't be seen by scanning the bus list.
842  */
843 static void usb_deregister_bus (struct usb_bus *bus)
844 {
845         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
846
847         /*
848          * NOTE: make sure that all the devices are removed by the
849          * controller code, as well as having it call this when cleaning
850          * itself up
851          */
852         mutex_lock(&usb_bus_list_lock);
853         list_del (&bus->bus_list);
854         mutex_unlock(&usb_bus_list_lock);
855
856         usb_notify_remove_bus(bus);
857
858         clear_bit (bus->busnum, busmap.busmap);
859
860         device_unregister(bus->dev);
861 }
862
863 /**
864  * register_root_hub - called by usb_add_hcd() to register a root hub
865  * @hcd: host controller for this root hub
866  *
867  * This function registers the root hub with the USB subsystem.  It sets up
868  * the device properly in the device tree and then calls usb_new_device()
869  * to register the usb device.  It also assigns the root hub's USB address
870  * (always 1).
871  */
872 static int register_root_hub(struct usb_hcd *hcd)
873 {
874         struct device *parent_dev = hcd->self.controller;
875         struct usb_device *usb_dev = hcd->self.root_hub;
876         const int devnum = 1;
877         int retval;
878
879         usb_dev->devnum = devnum;
880         usb_dev->bus->devnum_next = devnum + 1;
881         memset (&usb_dev->bus->devmap.devicemap, 0,
882                         sizeof usb_dev->bus->devmap.devicemap);
883         set_bit (devnum, usb_dev->bus->devmap.devicemap);
884         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
885
886         mutex_lock(&usb_bus_list_lock);
887
888         usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
889         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
890         if (retval != sizeof usb_dev->descriptor) {
891                 mutex_unlock(&usb_bus_list_lock);
892                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
893                                 usb_dev->dev.bus_id, retval);
894                 return (retval < 0) ? retval : -EMSGSIZE;
895         }
896
897         retval = usb_new_device (usb_dev);
898         if (retval) {
899                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
900                                 usb_dev->dev.bus_id, retval);
901         }
902         mutex_unlock(&usb_bus_list_lock);
903
904         if (retval == 0) {
905                 spin_lock_irq (&hcd_root_hub_lock);
906                 hcd->rh_registered = 1;
907                 spin_unlock_irq (&hcd_root_hub_lock);
908
909                 /* Did the HC die before the root hub was registered? */
910                 if (hcd->state == HC_STATE_HALT)
911                         usb_hc_died (hcd);      /* This time clean up */
912         }
913
914         return retval;
915 }
916
917 void usb_enable_root_hub_irq (struct usb_bus *bus)
918 {
919         struct usb_hcd *hcd;
920
921         hcd = container_of (bus, struct usb_hcd, self);
922         if (hcd->driver->hub_irq_enable && hcd->state != HC_STATE_HALT)
923                 hcd->driver->hub_irq_enable (hcd);
924 }
925
926
927 /*-------------------------------------------------------------------------*/
928
929 /**
930  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
931  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
932  * @is_input: true iff the transaction sends data to the host
933  * @isoc: true for isochronous transactions, false for interrupt ones
934  * @bytecount: how many bytes in the transaction.
935  *
936  * Returns approximate bus time in nanoseconds for a periodic transaction.
937  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
938  * scheduled in software, this function is only used for such scheduling.
939  */
940 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
941 {
942         unsigned long   tmp;
943
944         switch (speed) {
945         case USB_SPEED_LOW:     /* INTR only */
946                 if (is_input) {
947                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
948                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
949                 } else {
950                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
951                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
952                 }
953         case USB_SPEED_FULL:    /* ISOC or INTR */
954                 if (isoc) {
955                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
956                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
957                 } else {
958                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
959                         return (9107L + BW_HOST_DELAY + tmp);
960                 }
961         case USB_SPEED_HIGH:    /* ISOC or INTR */
962                 // FIXME adjust for input vs output
963                 if (isoc)
964                         tmp = HS_NSECS_ISO (bytecount);
965                 else
966                         tmp = HS_NSECS (bytecount);
967                 return tmp;
968         default:
969                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
970                 return -1;
971         }
972 }
973 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
974
975
976 /*-------------------------------------------------------------------------*/
977
978 /*
979  * Generic HC operations.
980  */
981
982 /*-------------------------------------------------------------------------*/
983
984 /**
985  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
986  * @hcd: host controller to which @urb was submitted
987  * @urb: URB being submitted
988  *
989  * Host controller drivers should call this routine in their enqueue()
990  * method.  The HCD's private spinlock must be held and interrupts must
991  * be disabled.  The actions carried out here are required for URB
992  * submission, as well as for endpoint shutdown and for usb_kill_urb.
993  *
994  * Returns 0 for no error, otherwise a negative error code (in which case
995  * the enqueue() method must fail).  If no error occurs but enqueue() fails
996  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
997  * the private spinlock and returning.
998  */
999 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1000 {
1001         int             rc = 0;
1002
1003         spin_lock(&hcd_urb_list_lock);
1004
1005         /* Check that the URB isn't being killed */
1006         if (unlikely(urb->reject)) {
1007                 rc = -EPERM;
1008                 goto done;
1009         }
1010
1011         if (unlikely(!urb->ep->enabled)) {
1012                 rc = -ENOENT;
1013                 goto done;
1014         }
1015
1016         if (unlikely(!urb->dev->can_submit)) {
1017                 rc = -EHOSTUNREACH;
1018                 goto done;
1019         }
1020
1021         /*
1022          * Check the host controller's state and add the URB to the
1023          * endpoint's queue.
1024          */
1025         switch (hcd->state) {
1026         case HC_STATE_RUNNING:
1027         case HC_STATE_RESUMING:
1028                 urb->unlinked = 0;
1029                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1030                 break;
1031         default:
1032                 rc = -ESHUTDOWN;
1033                 goto done;
1034         }
1035  done:
1036         spin_unlock(&hcd_urb_list_lock);
1037         return rc;
1038 }
1039 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1040
1041 /**
1042  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1043  * @hcd: host controller to which @urb was submitted
1044  * @urb: URB being checked for unlinkability
1045  * @status: error code to store in @urb if the unlink succeeds
1046  *
1047  * Host controller drivers should call this routine in their dequeue()
1048  * method.  The HCD's private spinlock must be held and interrupts must
1049  * be disabled.  The actions carried out here are required for making
1050  * sure than an unlink is valid.
1051  *
1052  * Returns 0 for no error, otherwise a negative error code (in which case
1053  * the dequeue() method must fail).  The possible error codes are:
1054  *
1055  *      -EIDRM: @urb was not submitted or has already completed.
1056  *              The completion function may not have been called yet.
1057  *
1058  *      -EBUSY: @urb has already been unlinked.
1059  */
1060 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1061                 int status)
1062 {
1063         struct list_head        *tmp;
1064
1065         /* insist the urb is still queued */
1066         list_for_each(tmp, &urb->ep->urb_list) {
1067                 if (tmp == &urb->urb_list)
1068                         break;
1069         }
1070         if (tmp != &urb->urb_list)
1071                 return -EIDRM;
1072
1073         /* Any status except -EINPROGRESS means something already started to
1074          * unlink this URB from the hardware.  So there's no more work to do.
1075          */
1076         if (urb->unlinked)
1077                 return -EBUSY;
1078         urb->unlinked = status;
1079
1080         /* IRQ setup can easily be broken so that USB controllers
1081          * never get completion IRQs ... maybe even the ones we need to
1082          * finish unlinking the initial failed usb_set_address()
1083          * or device descriptor fetch.
1084          */
1085         if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1086                         !is_root_hub(urb->dev)) {
1087                 dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1088                         "Controller is probably using the wrong IRQ.\n");
1089                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1090         }
1091
1092         return 0;
1093 }
1094 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1095
1096 /**
1097  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1098  * @hcd: host controller to which @urb was submitted
1099  * @urb: URB being unlinked
1100  *
1101  * Host controller drivers should call this routine before calling
1102  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1103  * interrupts must be disabled.  The actions carried out here are required
1104  * for URB completion.
1105  */
1106 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1107 {
1108         /* clear all state linking urb to this dev (and hcd) */
1109         spin_lock(&hcd_urb_list_lock);
1110         list_del_init(&urb->urb_list);
1111         spin_unlock(&hcd_urb_list_lock);
1112 }
1113 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1114
1115 /*
1116  * Some usb host controllers can only perform dma using a small SRAM area.
1117  * The usb core itself is however optimized for host controllers that can dma
1118  * using regular system memory - like pci devices doing bus mastering.
1119  *
1120  * To support host controllers with limited dma capabilites we provide dma
1121  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1122  * For this to work properly the host controller code must first use the
1123  * function dma_declare_coherent_memory() to point out which memory area
1124  * that should be used for dma allocations.
1125  *
1126  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1127  * dma using dma_alloc_coherent() which in turn allocates from the memory
1128  * area pointed out with dma_declare_coherent_memory().
1129  *
1130  * So, to summarize...
1131  *
1132  * - We need "local" memory, canonical example being
1133  *   a small SRAM on a discrete controller being the
1134  *   only memory that the controller can read ...
1135  *   (a) "normal" kernel memory is no good, and
1136  *   (b) there's not enough to share
1137  *
1138  * - The only *portable* hook for such stuff in the
1139  *   DMA framework is dma_declare_coherent_memory()
1140  *
1141  * - So we use that, even though the primary requirement
1142  *   is that the memory be "local" (hence addressible
1143  *   by that device), not "coherent".
1144  *
1145  */
1146
1147 static int hcd_alloc_coherent(struct usb_bus *bus,
1148                               gfp_t mem_flags, dma_addr_t *dma_handle,
1149                               void **vaddr_handle, size_t size,
1150                               enum dma_data_direction dir)
1151 {
1152         unsigned char *vaddr;
1153
1154         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1155                                  mem_flags, dma_handle);
1156         if (!vaddr)
1157                 return -ENOMEM;
1158
1159         /*
1160          * Store the virtual address of the buffer at the end
1161          * of the allocated dma buffer. The size of the buffer
1162          * may be uneven so use unaligned functions instead
1163          * of just rounding up. It makes sense to optimize for
1164          * memory footprint over access speed since the amount
1165          * of memory available for dma may be limited.
1166          */
1167         put_unaligned((unsigned long)*vaddr_handle,
1168                       (unsigned long *)(vaddr + size));
1169
1170         if (dir == DMA_TO_DEVICE)
1171                 memcpy(vaddr, *vaddr_handle, size);
1172
1173         *vaddr_handle = vaddr;
1174         return 0;
1175 }
1176
1177 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1178                               void **vaddr_handle, size_t size,
1179                               enum dma_data_direction dir)
1180 {
1181         unsigned char *vaddr = *vaddr_handle;
1182
1183         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1184
1185         if (dir == DMA_FROM_DEVICE)
1186                 memcpy(vaddr, *vaddr_handle, size);
1187
1188         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1189
1190         *vaddr_handle = vaddr;
1191         *dma_handle = 0;
1192 }
1193
1194 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1195                            gfp_t mem_flags)
1196 {
1197         enum dma_data_direction dir;
1198         int ret = 0;
1199
1200         /* Map the URB's buffers for DMA access.
1201          * Lower level HCD code should use *_dma exclusively,
1202          * unless it uses pio or talks to another transport.
1203          */
1204         if (is_root_hub(urb->dev))
1205                 return 0;
1206
1207         if (usb_endpoint_xfer_control(&urb->ep->desc)
1208             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1209                 if (hcd->self.uses_dma)
1210                         urb->setup_dma = dma_map_single(
1211                                         hcd->self.controller,
1212                                         urb->setup_packet,
1213                                         sizeof(struct usb_ctrlrequest),
1214                                         DMA_TO_DEVICE);
1215                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1216                         ret = hcd_alloc_coherent(
1217                                         urb->dev->bus, mem_flags,
1218                                         &urb->setup_dma,
1219                                         (void **)&urb->setup_packet,
1220                                         sizeof(struct usb_ctrlrequest),
1221                                         DMA_TO_DEVICE);
1222         }
1223
1224         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1225         if (ret == 0 && urb->transfer_buffer_length != 0
1226             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1227                 if (hcd->self.uses_dma)
1228                         urb->transfer_dma = dma_map_single (
1229                                         hcd->self.controller,
1230                                         urb->transfer_buffer,
1231                                         urb->transfer_buffer_length,
1232                                         dir);
1233                 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1234                         ret = hcd_alloc_coherent(
1235                                         urb->dev->bus, mem_flags,
1236                                         &urb->transfer_dma,
1237                                         &urb->transfer_buffer,
1238                                         urb->transfer_buffer_length,
1239                                         dir);
1240
1241                         if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1242                             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1243                                 hcd_free_coherent(urb->dev->bus,
1244                                         &urb->setup_dma,
1245                                         (void **)&urb->setup_packet,
1246                                         sizeof(struct usb_ctrlrequest),
1247                                         DMA_TO_DEVICE);
1248                 }
1249         }
1250         return ret;
1251 }
1252
1253 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1254 {
1255         enum dma_data_direction dir;
1256
1257         if (is_root_hub(urb->dev))
1258                 return;
1259
1260         if (usb_endpoint_xfer_control(&urb->ep->desc)
1261             && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1262                 if (hcd->self.uses_dma)
1263                         dma_unmap_single(hcd->self.controller, urb->setup_dma,
1264                                         sizeof(struct usb_ctrlrequest),
1265                                         DMA_TO_DEVICE);
1266                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1267                         hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1268                                         (void **)&urb->setup_packet,
1269                                         sizeof(struct usb_ctrlrequest),
1270                                         DMA_TO_DEVICE);
1271         }
1272
1273         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1274         if (urb->transfer_buffer_length != 0
1275             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1276                 if (hcd->self.uses_dma)
1277                         dma_unmap_single(hcd->self.controller,
1278                                         urb->transfer_dma,
1279                                         urb->transfer_buffer_length,
1280                                         dir);
1281                 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1282                         hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1283                                         &urb->transfer_buffer,
1284                                         urb->transfer_buffer_length,
1285                                         dir);
1286         }
1287 }
1288
1289 /*-------------------------------------------------------------------------*/
1290
1291 /* may be called in any context with a valid urb->dev usecount
1292  * caller surrenders "ownership" of urb
1293  * expects usb_submit_urb() to have sanity checked and conditioned all
1294  * inputs in the urb
1295  */
1296 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1297 {
1298         int                     status;
1299         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1300
1301         /* increment urb's reference count as part of giving it to the HCD
1302          * (which will control it).  HCD guarantees that it either returns
1303          * an error or calls giveback(), but not both.
1304          */
1305         usb_get_urb(urb);
1306         atomic_inc(&urb->use_count);
1307         atomic_inc(&urb->dev->urbnum);
1308         usbmon_urb_submit(&hcd->self, urb);
1309
1310         /* NOTE requirements on root-hub callers (usbfs and the hub
1311          * driver, for now):  URBs' urb->transfer_buffer must be
1312          * valid and usb_buffer_{sync,unmap}() not be needed, since
1313          * they could clobber root hub response data.  Also, control
1314          * URBs must be submitted in process context with interrupts
1315          * enabled.
1316          */
1317         status = map_urb_for_dma(hcd, urb, mem_flags);
1318         if (unlikely(status)) {
1319                 usbmon_urb_submit_error(&hcd->self, urb, status);
1320                 goto error;
1321         }
1322
1323         if (is_root_hub(urb->dev))
1324                 status = rh_urb_enqueue(hcd, urb);
1325         else
1326                 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1327
1328         if (unlikely(status)) {
1329                 usbmon_urb_submit_error(&hcd->self, urb, status);
1330                 unmap_urb_for_dma(hcd, urb);
1331  error:
1332                 urb->hcpriv = NULL;
1333                 INIT_LIST_HEAD(&urb->urb_list);
1334                 atomic_dec(&urb->use_count);
1335                 atomic_dec(&urb->dev->urbnum);
1336                 if (urb->reject)
1337                         wake_up(&usb_kill_urb_queue);
1338                 usb_put_urb(urb);
1339         }
1340         return status;
1341 }
1342
1343 /*-------------------------------------------------------------------------*/
1344
1345 /* this makes the hcd giveback() the urb more quickly, by kicking it
1346  * off hardware queues (which may take a while) and returning it as
1347  * soon as practical.  we've already set up the urb's return status,
1348  * but we can't know if the callback completed already.
1349  */
1350 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1351 {
1352         int             value;
1353
1354         if (is_root_hub(urb->dev))
1355                 value = usb_rh_urb_dequeue(hcd, urb, status);
1356         else {
1357
1358                 /* The only reason an HCD might fail this call is if
1359                  * it has not yet fully queued the urb to begin with.
1360                  * Such failures should be harmless. */
1361                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1362         }
1363         return value;
1364 }
1365
1366 /*
1367  * called in any context
1368  *
1369  * caller guarantees urb won't be recycled till both unlink()
1370  * and the urb's completion function return
1371  */
1372 int usb_hcd_unlink_urb (struct urb *urb, int status)
1373 {
1374         struct usb_hcd          *hcd;
1375         int                     retval;
1376
1377         hcd = bus_to_hcd(urb->dev->bus);
1378         retval = unlink1(hcd, urb, status);
1379
1380         if (retval == 0)
1381                 retval = -EINPROGRESS;
1382         else if (retval != -EIDRM && retval != -EBUSY)
1383                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1384                                 urb, retval);
1385         return retval;
1386 }
1387
1388 /*-------------------------------------------------------------------------*/
1389
1390 /**
1391  * usb_hcd_giveback_urb - return URB from HCD to device driver
1392  * @hcd: host controller returning the URB
1393  * @urb: urb being returned to the USB device driver.
1394  * @status: completion status code for the URB.
1395  * Context: in_interrupt()
1396  *
1397  * This hands the URB from HCD to its USB device driver, using its
1398  * completion function.  The HCD has freed all per-urb resources
1399  * (and is done using urb->hcpriv).  It also released all HCD locks;
1400  * the device driver won't cause problems if it frees, modifies,
1401  * or resubmits this URB.
1402  *
1403  * If @urb was unlinked, the value of @status will be overridden by
1404  * @urb->unlinked.  Erroneous short transfers are detected in case
1405  * the HCD hasn't checked for them.
1406  */
1407 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1408 {
1409         urb->hcpriv = NULL;
1410         if (unlikely(urb->unlinked))
1411                 status = urb->unlinked;
1412         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1413                         urb->actual_length < urb->transfer_buffer_length &&
1414                         !status))
1415                 status = -EREMOTEIO;
1416
1417         unmap_urb_for_dma(hcd, urb);
1418         usbmon_urb_complete(&hcd->self, urb, status);
1419         usb_unanchor_urb(urb);
1420
1421         /* pass ownership to the completion handler */
1422         urb->status = status;
1423         urb->complete (urb);
1424         atomic_dec (&urb->use_count);
1425         if (unlikely (urb->reject))
1426                 wake_up (&usb_kill_urb_queue);
1427         usb_put_urb (urb);
1428 }
1429 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1430
1431 /*-------------------------------------------------------------------------*/
1432
1433 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1434  * queue to drain completely.  The caller must first insure that no more
1435  * URBs can be submitted for this endpoint.
1436  */
1437 void usb_hcd_flush_endpoint(struct usb_device *udev,
1438                 struct usb_host_endpoint *ep)
1439 {
1440         struct usb_hcd          *hcd;
1441         struct urb              *urb;
1442
1443         if (!ep)
1444                 return;
1445         might_sleep();
1446         hcd = bus_to_hcd(udev->bus);
1447
1448         /* No more submits can occur */
1449         spin_lock_irq(&hcd_urb_list_lock);
1450 rescan:
1451         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1452                 int     is_in;
1453
1454                 if (urb->unlinked)
1455                         continue;
1456                 usb_get_urb (urb);
1457                 is_in = usb_urb_dir_in(urb);
1458                 spin_unlock(&hcd_urb_list_lock);
1459
1460                 /* kick hcd */
1461                 unlink1(hcd, urb, -ESHUTDOWN);
1462                 dev_dbg (hcd->self.controller,
1463                         "shutdown urb %p ep%d%s%s\n",
1464                         urb, usb_endpoint_num(&ep->desc),
1465                         is_in ? "in" : "out",
1466                         ({      char *s;
1467
1468                                  switch (usb_endpoint_type(&ep->desc)) {
1469                                  case USB_ENDPOINT_XFER_CONTROL:
1470                                         s = ""; break;
1471                                  case USB_ENDPOINT_XFER_BULK:
1472                                         s = "-bulk"; break;
1473                                  case USB_ENDPOINT_XFER_INT:
1474                                         s = "-intr"; break;
1475                                  default:
1476                                         s = "-iso"; break;
1477                                 };
1478                                 s;
1479                         }));
1480                 usb_put_urb (urb);
1481
1482                 /* list contents may have changed */
1483                 spin_lock(&hcd_urb_list_lock);
1484                 goto rescan;
1485         }
1486         spin_unlock_irq(&hcd_urb_list_lock);
1487
1488         /* Wait until the endpoint queue is completely empty */
1489         while (!list_empty (&ep->urb_list)) {
1490                 spin_lock_irq(&hcd_urb_list_lock);
1491
1492                 /* The list may have changed while we acquired the spinlock */
1493                 urb = NULL;
1494                 if (!list_empty (&ep->urb_list)) {
1495                         urb = list_entry (ep->urb_list.prev, struct urb,
1496                                         urb_list);
1497                         usb_get_urb (urb);
1498                 }
1499                 spin_unlock_irq(&hcd_urb_list_lock);
1500
1501                 if (urb) {
1502                         usb_kill_urb (urb);
1503                         usb_put_urb (urb);
1504                 }
1505         }
1506 }
1507
1508 /* Disables the endpoint: synchronizes with the hcd to make sure all
1509  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1510  * have been called previously.  Use for set_configuration, set_interface,
1511  * driver removal, physical disconnect.
1512  *
1513  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1514  * type, maxpacket size, toggle, halt status, and scheduling.
1515  */
1516 void usb_hcd_disable_endpoint(struct usb_device *udev,
1517                 struct usb_host_endpoint *ep)
1518 {
1519         struct usb_hcd          *hcd;
1520
1521         might_sleep();
1522         hcd = bus_to_hcd(udev->bus);
1523         if (hcd->driver->endpoint_disable)
1524                 hcd->driver->endpoint_disable(hcd, ep);
1525 }
1526
1527 /*-------------------------------------------------------------------------*/
1528
1529 /* called in any context */
1530 int usb_hcd_get_frame_number (struct usb_device *udev)
1531 {
1532         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
1533
1534         if (!HC_IS_RUNNING (hcd->state))
1535                 return -ESHUTDOWN;
1536         return hcd->driver->get_frame_number (hcd);
1537 }
1538
1539 /*-------------------------------------------------------------------------*/
1540
1541 #ifdef  CONFIG_PM
1542
1543 int hcd_bus_suspend(struct usb_device *rhdev)
1544 {
1545         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1546         int             status;
1547         int             old_state = hcd->state;
1548
1549         dev_dbg(&rhdev->dev, "bus %s%s\n",
1550                         rhdev->auto_pm ? "auto-" : "", "suspend");
1551         if (!hcd->driver->bus_suspend) {
1552                 status = -ENOENT;
1553         } else {
1554                 hcd->state = HC_STATE_QUIESCING;
1555                 status = hcd->driver->bus_suspend(hcd);
1556         }
1557         if (status == 0) {
1558                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1559                 hcd->state = HC_STATE_SUSPENDED;
1560         } else {
1561                 hcd->state = old_state;
1562                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1563                                 "suspend", status);
1564         }
1565         return status;
1566 }
1567
1568 int hcd_bus_resume(struct usb_device *rhdev)
1569 {
1570         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1571         int             status;
1572         int             old_state = hcd->state;
1573
1574         dev_dbg(&rhdev->dev, "usb %s%s\n",
1575                         rhdev->auto_pm ? "auto-" : "", "resume");
1576         if (!hcd->driver->bus_resume)
1577                 return -ENOENT;
1578         if (hcd->state == HC_STATE_RUNNING)
1579                 return 0;
1580
1581         hcd->state = HC_STATE_RESUMING;
1582         status = hcd->driver->bus_resume(hcd);
1583         if (status == 0) {
1584                 /* TRSMRCY = 10 msec */
1585                 msleep(10);
1586                 usb_set_device_state(rhdev, rhdev->actconfig
1587                                 ? USB_STATE_CONFIGURED
1588                                 : USB_STATE_ADDRESS);
1589                 hcd->state = HC_STATE_RUNNING;
1590         } else {
1591                 hcd->state = old_state;
1592                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1593                                 "resume", status);
1594                 if (status != -ESHUTDOWN)
1595                         usb_hc_died(hcd);
1596         }
1597         return status;
1598 }
1599
1600 /* Workqueue routine for root-hub remote wakeup */
1601 static void hcd_resume_work(struct work_struct *work)
1602 {
1603         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1604         struct usb_device *udev = hcd->self.root_hub;
1605
1606         usb_lock_device(udev);
1607         usb_mark_last_busy(udev);
1608         usb_external_resume_device(udev);
1609         usb_unlock_device(udev);
1610 }
1611
1612 /**
1613  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
1614  * @hcd: host controller for this root hub
1615  *
1616  * The USB host controller calls this function when its root hub is
1617  * suspended (with the remote wakeup feature enabled) and a remote
1618  * wakeup request is received.  The routine submits a workqueue request
1619  * to resume the root hub (that is, manage its downstream ports again).
1620  */
1621 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1622 {
1623         unsigned long flags;
1624
1625         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1626         if (hcd->rh_registered)
1627                 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1628         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1629 }
1630 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1631
1632 #endif
1633
1634 /*-------------------------------------------------------------------------*/
1635
1636 #ifdef  CONFIG_USB_OTG
1637
1638 /**
1639  * usb_bus_start_enum - start immediate enumeration (for OTG)
1640  * @bus: the bus (must use hcd framework)
1641  * @port_num: 1-based number of port; usually bus->otg_port
1642  * Context: in_interrupt()
1643  *
1644  * Starts enumeration, with an immediate reset followed later by
1645  * khubd identifying and possibly configuring the device.
1646  * This is needed by OTG controller drivers, where it helps meet
1647  * HNP protocol timing requirements for starting a port reset.
1648  */
1649 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1650 {
1651         struct usb_hcd          *hcd;
1652         int                     status = -EOPNOTSUPP;
1653
1654         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1655          * boards with root hubs hooked up to internal devices (instead of
1656          * just the OTG port) may need more attention to resetting...
1657          */
1658         hcd = container_of (bus, struct usb_hcd, self);
1659         if (port_num && hcd->driver->start_port_reset)
1660                 status = hcd->driver->start_port_reset(hcd, port_num);
1661
1662         /* run khubd shortly after (first) root port reset finishes;
1663          * it may issue others, until at least 50 msecs have passed.
1664          */
1665         if (status == 0)
1666                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1667         return status;
1668 }
1669 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1670
1671 #endif
1672
1673 /*-------------------------------------------------------------------------*/
1674
1675 /**
1676  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1677  * @irq: the IRQ being raised
1678  * @__hcd: pointer to the HCD whose IRQ is being signaled
1679  *
1680  * If the controller isn't HALTed, calls the driver's irq handler.
1681  * Checks whether the controller is now dead.
1682  */
1683 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1684 {
1685         struct usb_hcd          *hcd = __hcd;
1686         int                     start = hcd->state;
1687
1688         if (unlikely(start == HC_STATE_HALT ||
1689             !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)))
1690                 return IRQ_NONE;
1691         if (hcd->driver->irq (hcd) == IRQ_NONE)
1692                 return IRQ_NONE;
1693
1694         set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1695
1696         if (unlikely(hcd->state == HC_STATE_HALT))
1697                 usb_hc_died (hcd);
1698         return IRQ_HANDLED;
1699 }
1700
1701 /*-------------------------------------------------------------------------*/
1702
1703 /**
1704  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1705  * @hcd: pointer to the HCD representing the controller
1706  *
1707  * This is called by bus glue to report a USB host controller that died
1708  * while operations may still have been pending.  It's called automatically
1709  * by the PCI glue, so only glue for non-PCI busses should need to call it. 
1710  */
1711 void usb_hc_died (struct usb_hcd *hcd)
1712 {
1713         unsigned long flags;
1714
1715         dev_err (hcd->self.controller, "HC died; cleaning up\n");
1716
1717         spin_lock_irqsave (&hcd_root_hub_lock, flags);
1718         if (hcd->rh_registered) {
1719                 hcd->poll_rh = 0;
1720
1721                 /* make khubd clean up old urbs and devices */
1722                 usb_set_device_state (hcd->self.root_hub,
1723                                 USB_STATE_NOTATTACHED);
1724                 usb_kick_khubd (hcd->self.root_hub);
1725         }
1726         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1727 }
1728 EXPORT_SYMBOL_GPL (usb_hc_died);
1729
1730 /*-------------------------------------------------------------------------*/
1731
1732 /**
1733  * usb_create_hcd - create and initialize an HCD structure
1734  * @driver: HC driver that will use this hcd
1735  * @dev: device for this HC, stored in hcd->self.controller
1736  * @bus_name: value to store in hcd->self.bus_name
1737  * Context: !in_interrupt()
1738  *
1739  * Allocate a struct usb_hcd, with extra space at the end for the
1740  * HC driver's private data.  Initialize the generic members of the
1741  * hcd structure.
1742  *
1743  * If memory is unavailable, returns NULL.
1744  */
1745 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1746                 struct device *dev, char *bus_name)
1747 {
1748         struct usb_hcd *hcd;
1749
1750         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1751         if (!hcd) {
1752                 dev_dbg (dev, "hcd alloc failed\n");
1753                 return NULL;
1754         }
1755         dev_set_drvdata(dev, hcd);
1756         kref_init(&hcd->kref);
1757
1758         usb_bus_init(&hcd->self);
1759         hcd->self.controller = dev;
1760         hcd->self.bus_name = bus_name;
1761         hcd->self.uses_dma = (dev->dma_mask != NULL);
1762
1763         init_timer(&hcd->rh_timer);
1764         hcd->rh_timer.function = rh_timer_func;
1765         hcd->rh_timer.data = (unsigned long) hcd;
1766 #ifdef CONFIG_PM
1767         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1768 #endif
1769
1770         hcd->driver = driver;
1771         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1772                         "USB Host Controller";
1773         return hcd;
1774 }
1775 EXPORT_SYMBOL_GPL(usb_create_hcd);
1776
1777 static void hcd_release (struct kref *kref)
1778 {
1779         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1780
1781         kfree(hcd);
1782 }
1783
1784 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1785 {
1786         if (hcd)
1787                 kref_get (&hcd->kref);
1788         return hcd;
1789 }
1790 EXPORT_SYMBOL_GPL(usb_get_hcd);
1791
1792 void usb_put_hcd (struct usb_hcd *hcd)
1793 {
1794         if (hcd)
1795                 kref_put (&hcd->kref, hcd_release);
1796 }
1797 EXPORT_SYMBOL_GPL(usb_put_hcd);
1798
1799 /**
1800  * usb_add_hcd - finish generic HCD structure initialization and register
1801  * @hcd: the usb_hcd structure to initialize
1802  * @irqnum: Interrupt line to allocate
1803  * @irqflags: Interrupt type flags
1804  *
1805  * Finish the remaining parts of generic HCD initialization: allocate the
1806  * buffers of consistent memory, register the bus, request the IRQ line,
1807  * and call the driver's reset() and start() routines.
1808  */
1809 int usb_add_hcd(struct usb_hcd *hcd,
1810                 unsigned int irqnum, unsigned long irqflags)
1811 {
1812         int retval;
1813         struct usb_device *rhdev;
1814
1815         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1816
1817         hcd->authorized_default = hcd->wireless? 0 : 1;
1818         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1819
1820         /* HC is in reset state, but accessible.  Now do the one-time init,
1821          * bottom up so that hcds can customize the root hubs before khubd
1822          * starts talking to them.  (Note, bus id is assigned early too.)
1823          */
1824         if ((retval = hcd_buffer_create(hcd)) != 0) {
1825                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1826                 return retval;
1827         }
1828
1829         if ((retval = usb_register_bus(&hcd->self)) < 0)
1830                 goto err_register_bus;
1831
1832         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1833                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1834                 retval = -ENOMEM;
1835                 goto err_allocate_root_hub;
1836         }
1837         rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1838                         USB_SPEED_FULL;
1839         hcd->self.root_hub = rhdev;
1840
1841         /* wakeup flag init defaults to "everything works" for root hubs,
1842          * but drivers can override it in reset() if needed, along with
1843          * recording the overall controller's system wakeup capability.
1844          */
1845         device_init_wakeup(&rhdev->dev, 1);
1846
1847         /* "reset" is misnamed; its role is now one-time init. the controller
1848          * should already have been reset (and boot firmware kicked off etc).
1849          */
1850         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1851                 dev_err(hcd->self.controller, "can't setup\n");
1852                 goto err_hcd_driver_setup;
1853         }
1854
1855         /* NOTE: root hub and controller capabilities may not be the same */
1856         if (device_can_wakeup(hcd->self.controller)
1857                         && device_can_wakeup(&hcd->self.root_hub->dev))
1858                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1859
1860         /* enable irqs just before we start the controller */
1861         if (hcd->driver->irq) {
1862                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1863                                 hcd->driver->description, hcd->self.busnum);
1864                 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1865                                 hcd->irq_descr, hcd)) != 0) {
1866                         dev_err(hcd->self.controller,
1867                                         "request interrupt %d failed\n", irqnum);
1868                         goto err_request_irq;
1869                 }
1870                 hcd->irq = irqnum;
1871                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1872                                 (hcd->driver->flags & HCD_MEMORY) ?
1873                                         "io mem" : "io base",
1874                                         (unsigned long long)hcd->rsrc_start);
1875         } else {
1876                 hcd->irq = -1;
1877                 if (hcd->rsrc_start)
1878                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
1879                                         (hcd->driver->flags & HCD_MEMORY) ?
1880                                         "io mem" : "io base",
1881                                         (unsigned long long)hcd->rsrc_start);
1882         }
1883
1884         if ((retval = hcd->driver->start(hcd)) < 0) {
1885                 dev_err(hcd->self.controller, "startup error %d\n", retval);
1886                 goto err_hcd_driver_start;
1887         }
1888
1889         /* starting here, usbcore will pay attention to this root hub */
1890         rhdev->bus_mA = min(500u, hcd->power_budget);
1891         if ((retval = register_root_hub(hcd)) != 0)
1892                 goto err_register_root_hub;
1893
1894         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1895         if (retval < 0) {
1896                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1897                        retval);
1898                 goto error_create_attr_group;
1899         }
1900         if (hcd->uses_new_polling && hcd->poll_rh)
1901                 usb_hcd_poll_rh_status(hcd);
1902         return retval;
1903
1904 error_create_attr_group:
1905         mutex_lock(&usb_bus_list_lock);
1906         usb_disconnect(&hcd->self.root_hub);
1907         mutex_unlock(&usb_bus_list_lock);
1908 err_register_root_hub:
1909         hcd->driver->stop(hcd);
1910 err_hcd_driver_start:
1911         if (hcd->irq >= 0)
1912                 free_irq(irqnum, hcd);
1913 err_request_irq:
1914 err_hcd_driver_setup:
1915         hcd->self.root_hub = NULL;
1916         usb_put_dev(rhdev);
1917 err_allocate_root_hub:
1918         usb_deregister_bus(&hcd->self);
1919 err_register_bus:
1920         hcd_buffer_destroy(hcd);
1921         return retval;
1922
1923 EXPORT_SYMBOL_GPL(usb_add_hcd);
1924
1925 /**
1926  * usb_remove_hcd - shutdown processing for generic HCDs
1927  * @hcd: the usb_hcd structure to remove
1928  * Context: !in_interrupt()
1929  *
1930  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1931  * invoking the HCD's stop() method.
1932  */
1933 void usb_remove_hcd(struct usb_hcd *hcd)
1934 {
1935         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1936
1937         if (HC_IS_RUNNING (hcd->state))
1938                 hcd->state = HC_STATE_QUIESCING;
1939
1940         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1941         spin_lock_irq (&hcd_root_hub_lock);
1942         hcd->rh_registered = 0;
1943         spin_unlock_irq (&hcd_root_hub_lock);
1944
1945 #ifdef CONFIG_PM
1946         cancel_work_sync(&hcd->wakeup_work);
1947 #endif
1948
1949         sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
1950         mutex_lock(&usb_bus_list_lock);
1951         usb_disconnect(&hcd->self.root_hub);
1952         mutex_unlock(&usb_bus_list_lock);
1953
1954         hcd->driver->stop(hcd);
1955         hcd->state = HC_STATE_HALT;
1956
1957         hcd->poll_rh = 0;
1958         del_timer_sync(&hcd->rh_timer);
1959
1960         if (hcd->irq >= 0)
1961                 free_irq(hcd->irq, hcd);
1962         usb_deregister_bus(&hcd->self);
1963         hcd_buffer_destroy(hcd);
1964 }
1965 EXPORT_SYMBOL_GPL(usb_remove_hcd);
1966
1967 void
1968 usb_hcd_platform_shutdown(struct platform_device* dev)
1969 {
1970         struct usb_hcd *hcd = platform_get_drvdata(dev);
1971
1972         if (hcd->driver->shutdown)
1973                 hcd->driver->shutdown(hcd);
1974 }
1975 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
1976
1977 /*-------------------------------------------------------------------------*/
1978
1979 #if defined(CONFIG_USB_MON)
1980
1981 struct usb_mon_operations *mon_ops;
1982
1983 /*
1984  * The registration is unlocked.
1985  * We do it this way because we do not want to lock in hot paths.
1986  *
1987  * Notice that the code is minimally error-proof. Because usbmon needs
1988  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
1989  */
1990  
1991 int usb_mon_register (struct usb_mon_operations *ops)
1992 {
1993
1994         if (mon_ops)
1995                 return -EBUSY;
1996
1997         mon_ops = ops;
1998         mb();
1999         return 0;
2000 }
2001 EXPORT_SYMBOL_GPL (usb_mon_register);
2002
2003 void usb_mon_deregister (void)
2004 {
2005
2006         if (mon_ops == NULL) {
2007                 printk(KERN_ERR "USB: monitor was not registered\n");
2008                 return;
2009         }
2010         mon_ops = NULL;
2011         mb();
2012 }
2013 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2014
2015 #endif /* CONFIG_USB_MON */