Merge branch 'pm-runtime' into pm-for-linus
[linux-2.6.git] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  * 
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43 #include <linux/usb/hcd.h>
44
45 #include "usb.h"
46
47
48 /*-------------------------------------------------------------------------*/
49
50 /*
51  * USB Host Controller Driver framework
52  *
53  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54  * HCD-specific behaviors/bugs.
55  *
56  * This does error checks, tracks devices and urbs, and delegates to a
57  * "hc_driver" only for code (and data) that really needs to know about
58  * hardware differences.  That includes root hub registers, i/o queues,
59  * and so on ... but as little else as possible.
60  *
61  * Shared code includes most of the "root hub" code (these are emulated,
62  * though each HC's hardware works differently) and PCI glue, plus request
63  * tracking overhead.  The HCD code should only block on spinlocks or on
64  * hardware handshaking; blocking on software events (such as other kernel
65  * threads releasing resources, or completing actions) is all generic.
66  *
67  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69  * only by the hub driver ... and that neither should be seen or used by
70  * usb client device drivers.
71  *
72  * Contributors of ideas or unattributed patches include: David Brownell,
73  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74  *
75  * HISTORY:
76  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
77  *              associated cleanup.  "usb_hcd" still != "usb_bus".
78  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
79  */
80
81 /*-------------------------------------------------------------------------*/
82
83 /* Keep track of which host controller drivers are loaded */
84 unsigned long usb_hcds_loaded;
85 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86
87 /* host controllers we manage */
88 LIST_HEAD (usb_bus_list);
89 EXPORT_SYMBOL_GPL (usb_bus_list);
90
91 /* used when allocating bus numbers */
92 #define USB_MAXBUS              64
93 struct usb_busmap {
94         unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95 };
96 static struct usb_busmap busmap;
97
98 /* used when updating list of hcds */
99 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
100 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101
102 /* used for controlling access to virtual root hubs */
103 static DEFINE_SPINLOCK(hcd_root_hub_lock);
104
105 /* used when updating an endpoint's URB list */
106 static DEFINE_SPINLOCK(hcd_urb_list_lock);
107
108 /* used to protect against unlinking URBs after the device is gone */
109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110
111 /* wait queue for synchronous unlinks */
112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113
114 static inline int is_root_hub(struct usb_device *udev)
115 {
116         return (udev->parent == NULL);
117 }
118
119 /*-------------------------------------------------------------------------*/
120
121 /*
122  * Sharable chunks of root hub code.
123  */
124
125 /*-------------------------------------------------------------------------*/
126
127 #define KERNEL_REL      ((LINUX_VERSION_CODE >> 16) & 0x0ff)
128 #define KERNEL_VER      ((LINUX_VERSION_CODE >> 8) & 0x0ff)
129
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132         0x12,       /*  __u8  bLength; */
133         0x01,       /*  __u8  bDescriptorType; Device */
134         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
135
136         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
137         0x00,       /*  __u8  bDeviceSubClass; */
138         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
139         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140
141         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
142         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144
145         0x03,       /*  __u8  iManufacturer; */
146         0x02,       /*  __u8  iProduct; */
147         0x01,       /*  __u8  iSerialNumber; */
148         0x01        /*  __u8  bNumConfigurations; */
149 };
150
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor [18] = {
153         0x12,       /*  __u8  bLength; */
154         0x01,       /*  __u8  bDescriptorType; Device */
155         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
156
157         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
158         0x00,       /*  __u8  bDeviceSubClass; */
159         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
160         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
161
162         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
163         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
164         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165
166         0x03,       /*  __u8  iManufacturer; */
167         0x02,       /*  __u8  iProduct; */
168         0x01,       /*  __u8  iSerialNumber; */
169         0x01        /*  __u8  bNumConfigurations; */
170 };
171
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor [18] = {
176         0x12,       /*  __u8  bLength; */
177         0x01,       /*  __u8  bDescriptorType; Device */
178         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
179
180         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
181         0x00,       /*  __u8  bDeviceSubClass; */
182         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
183         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
184
185         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
186         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
187         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
188
189         0x03,       /*  __u8  iManufacturer; */
190         0x02,       /*  __u8  iProduct; */
191         0x01,       /*  __u8  iSerialNumber; */
192         0x01        /*  __u8  bNumConfigurations; */
193 };
194
195
196 /*-------------------------------------------------------------------------*/
197
198 /* Configuration descriptors for our root hubs */
199
200 static const u8 fs_rh_config_descriptor [] = {
201
202         /* one configuration */
203         0x09,       /*  __u8  bLength; */
204         0x02,       /*  __u8  bDescriptorType; Configuration */
205         0x19, 0x00, /*  __le16 wTotalLength; */
206         0x01,       /*  __u8  bNumInterfaces; (1) */
207         0x01,       /*  __u8  bConfigurationValue; */
208         0x00,       /*  __u8  iConfiguration; */
209         0xc0,       /*  __u8  bmAttributes; 
210                                  Bit 7: must be set,
211                                      6: Self-powered,
212                                      5: Remote wakeup,
213                                      4..0: resvd */
214         0x00,       /*  __u8  MaxPower; */
215       
216         /* USB 1.1:
217          * USB 2.0, single TT organization (mandatory):
218          *      one interface, protocol 0
219          *
220          * USB 2.0, multiple TT organization (optional):
221          *      two interfaces, protocols 1 (like single TT)
222          *      and 2 (multiple TT mode) ... config is
223          *      sometimes settable
224          *      NOT IMPLEMENTED
225          */
226
227         /* one interface */
228         0x09,       /*  __u8  if_bLength; */
229         0x04,       /*  __u8  if_bDescriptorType; Interface */
230         0x00,       /*  __u8  if_bInterfaceNumber; */
231         0x00,       /*  __u8  if_bAlternateSetting; */
232         0x01,       /*  __u8  if_bNumEndpoints; */
233         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
234         0x00,       /*  __u8  if_bInterfaceSubClass; */
235         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
236         0x00,       /*  __u8  if_iInterface; */
237      
238         /* one endpoint (status change endpoint) */
239         0x07,       /*  __u8  ep_bLength; */
240         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
241         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
242         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
243         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
245 };
246
247 static const u8 hs_rh_config_descriptor [] = {
248
249         /* one configuration */
250         0x09,       /*  __u8  bLength; */
251         0x02,       /*  __u8  bDescriptorType; Configuration */
252         0x19, 0x00, /*  __le16 wTotalLength; */
253         0x01,       /*  __u8  bNumInterfaces; (1) */
254         0x01,       /*  __u8  bConfigurationValue; */
255         0x00,       /*  __u8  iConfiguration; */
256         0xc0,       /*  __u8  bmAttributes; 
257                                  Bit 7: must be set,
258                                      6: Self-powered,
259                                      5: Remote wakeup,
260                                      4..0: resvd */
261         0x00,       /*  __u8  MaxPower; */
262       
263         /* USB 1.1:
264          * USB 2.0, single TT organization (mandatory):
265          *      one interface, protocol 0
266          *
267          * USB 2.0, multiple TT organization (optional):
268          *      two interfaces, protocols 1 (like single TT)
269          *      and 2 (multiple TT mode) ... config is
270          *      sometimes settable
271          *      NOT IMPLEMENTED
272          */
273
274         /* one interface */
275         0x09,       /*  __u8  if_bLength; */
276         0x04,       /*  __u8  if_bDescriptorType; Interface */
277         0x00,       /*  __u8  if_bInterfaceNumber; */
278         0x00,       /*  __u8  if_bAlternateSetting; */
279         0x01,       /*  __u8  if_bNumEndpoints; */
280         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
281         0x00,       /*  __u8  if_bInterfaceSubClass; */
282         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
283         0x00,       /*  __u8  if_iInterface; */
284      
285         /* one endpoint (status change endpoint) */
286         0x07,       /*  __u8  ep_bLength; */
287         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
288         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
289         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
290                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291                      * see hub.c:hub_configure() for details. */
292         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
294 };
295
296 static const u8 ss_rh_config_descriptor[] = {
297         /* one configuration */
298         0x09,       /*  __u8  bLength; */
299         0x02,       /*  __u8  bDescriptorType; Configuration */
300         0x1f, 0x00, /*  __le16 wTotalLength; */
301         0x01,       /*  __u8  bNumInterfaces; (1) */
302         0x01,       /*  __u8  bConfigurationValue; */
303         0x00,       /*  __u8  iConfiguration; */
304         0xc0,       /*  __u8  bmAttributes;
305                                  Bit 7: must be set,
306                                      6: Self-powered,
307                                      5: Remote wakeup,
308                                      4..0: resvd */
309         0x00,       /*  __u8  MaxPower; */
310
311         /* one interface */
312         0x09,       /*  __u8  if_bLength; */
313         0x04,       /*  __u8  if_bDescriptorType; Interface */
314         0x00,       /*  __u8  if_bInterfaceNumber; */
315         0x00,       /*  __u8  if_bAlternateSetting; */
316         0x01,       /*  __u8  if_bNumEndpoints; */
317         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
318         0x00,       /*  __u8  if_bInterfaceSubClass; */
319         0x00,       /*  __u8  if_bInterfaceProtocol; */
320         0x00,       /*  __u8  if_iInterface; */
321
322         /* one endpoint (status change endpoint) */
323         0x07,       /*  __u8  ep_bLength; */
324         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
325         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
326         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
327                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328                      * see hub.c:hub_configure() for details. */
329         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
331
332         /* one SuperSpeed endpoint companion descriptor */
333         0x06,        /* __u8 ss_bLength */
334         0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
337         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338 };
339
340 /* authorized_default behaviour:
341  * -1 is authorized for all devices except wireless (old behaviour)
342  * 0 is unauthorized for all devices
343  * 1 is authorized for all devices
344  */
345 static int authorized_default = -1;
346 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
347 MODULE_PARM_DESC(authorized_default,
348                 "Default USB device authorization: 0 is not authorized, 1 is "
349                 "authorized, -1 is authorized except for wireless USB (default, "
350                 "old behaviour");
351 /*-------------------------------------------------------------------------*/
352
353 /**
354  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
355  * @s: Null-terminated ASCII (actually ISO-8859-1) string
356  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
357  * @len: Length (in bytes; may be odd) of descriptor buffer.
358  *
359  * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
360  * buflen, whichever is less.
361  *
362  * USB String descriptors can contain at most 126 characters; input
363  * strings longer than that are truncated.
364  */
365 static unsigned
366 ascii2desc(char const *s, u8 *buf, unsigned len)
367 {
368         unsigned n, t = 2 + 2*strlen(s);
369
370         if (t > 254)
371                 t = 254;        /* Longest possible UTF string descriptor */
372         if (len > t)
373                 len = t;
374
375         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
376
377         n = len;
378         while (n--) {
379                 *buf++ = t;
380                 if (!n--)
381                         break;
382                 *buf++ = t >> 8;
383                 t = (unsigned char)*s++;
384         }
385         return len;
386 }
387
388 /**
389  * rh_string() - provides string descriptors for root hub
390  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
391  * @hcd: the host controller for this root hub
392  * @data: buffer for output packet
393  * @len: length of the provided buffer
394  *
395  * Produces either a manufacturer, product or serial number string for the
396  * virtual root hub device.
397  * Returns the number of bytes filled in: the length of the descriptor or
398  * of the provided buffer, whichever is less.
399  */
400 static unsigned
401 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
402 {
403         char buf[100];
404         char const *s;
405         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
406
407         // language ids
408         switch (id) {
409         case 0:
410                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
411                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
412                 if (len > 4)
413                         len = 4;
414                 memcpy(data, langids, len);
415                 return len;
416         case 1:
417                 /* Serial number */
418                 s = hcd->self.bus_name;
419                 break;
420         case 2:
421                 /* Product name */
422                 s = hcd->product_desc;
423                 break;
424         case 3:
425                 /* Manufacturer */
426                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
427                         init_utsname()->release, hcd->driver->description);
428                 s = buf;
429                 break;
430         default:
431                 /* Can't happen; caller guarantees it */
432                 return 0;
433         }
434
435         return ascii2desc(s, data, len);
436 }
437
438
439 /* Root hub control transfers execute synchronously */
440 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
441 {
442         struct usb_ctrlrequest *cmd;
443         u16             typeReq, wValue, wIndex, wLength;
444         u8              *ubuf = urb->transfer_buffer;
445         u8              tbuf [sizeof (struct usb_hub_descriptor)]
446                 __attribute__((aligned(4)));
447         const u8        *bufp = tbuf;
448         unsigned        len = 0;
449         int             status;
450         u8              patch_wakeup = 0;
451         u8              patch_protocol = 0;
452
453         might_sleep();
454
455         spin_lock_irq(&hcd_root_hub_lock);
456         status = usb_hcd_link_urb_to_ep(hcd, urb);
457         spin_unlock_irq(&hcd_root_hub_lock);
458         if (status)
459                 return status;
460         urb->hcpriv = hcd;      /* Indicate it's queued */
461
462         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
463         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
464         wValue   = le16_to_cpu (cmd->wValue);
465         wIndex   = le16_to_cpu (cmd->wIndex);
466         wLength  = le16_to_cpu (cmd->wLength);
467
468         if (wLength > urb->transfer_buffer_length)
469                 goto error;
470
471         urb->actual_length = 0;
472         switch (typeReq) {
473
474         /* DEVICE REQUESTS */
475
476         /* The root hub's remote wakeup enable bit is implemented using
477          * driver model wakeup flags.  If this system supports wakeup
478          * through USB, userspace may change the default "allow wakeup"
479          * policy through sysfs or these calls.
480          *
481          * Most root hubs support wakeup from downstream devices, for
482          * runtime power management (disabling USB clocks and reducing
483          * VBUS power usage).  However, not all of them do so; silicon,
484          * board, and BIOS bugs here are not uncommon, so these can't
485          * be treated quite like external hubs.
486          *
487          * Likewise, not all root hubs will pass wakeup events upstream,
488          * to wake up the whole system.  So don't assume root hub and
489          * controller capabilities are identical.
490          */
491
492         case DeviceRequest | USB_REQ_GET_STATUS:
493                 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
494                                         << USB_DEVICE_REMOTE_WAKEUP)
495                                 | (1 << USB_DEVICE_SELF_POWERED);
496                 tbuf [1] = 0;
497                 len = 2;
498                 break;
499         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
500                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
501                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
502                 else
503                         goto error;
504                 break;
505         case DeviceOutRequest | USB_REQ_SET_FEATURE:
506                 if (device_can_wakeup(&hcd->self.root_hub->dev)
507                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
508                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
509                 else
510                         goto error;
511                 break;
512         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
513                 tbuf [0] = 1;
514                 len = 1;
515                         /* FALLTHROUGH */
516         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
517                 break;
518         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
519                 switch (wValue & 0xff00) {
520                 case USB_DT_DEVICE << 8:
521                         switch (hcd->speed) {
522                         case HCD_USB3:
523                                 bufp = usb3_rh_dev_descriptor;
524                                 break;
525                         case HCD_USB2:
526                                 bufp = usb2_rh_dev_descriptor;
527                                 break;
528                         case HCD_USB11:
529                                 bufp = usb11_rh_dev_descriptor;
530                                 break;
531                         default:
532                                 goto error;
533                         }
534                         len = 18;
535                         if (hcd->has_tt)
536                                 patch_protocol = 1;
537                         break;
538                 case USB_DT_CONFIG << 8:
539                         switch (hcd->speed) {
540                         case HCD_USB3:
541                                 bufp = ss_rh_config_descriptor;
542                                 len = sizeof ss_rh_config_descriptor;
543                                 break;
544                         case HCD_USB2:
545                                 bufp = hs_rh_config_descriptor;
546                                 len = sizeof hs_rh_config_descriptor;
547                                 break;
548                         case HCD_USB11:
549                                 bufp = fs_rh_config_descriptor;
550                                 len = sizeof fs_rh_config_descriptor;
551                                 break;
552                         default:
553                                 goto error;
554                         }
555                         if (device_can_wakeup(&hcd->self.root_hub->dev))
556                                 patch_wakeup = 1;
557                         break;
558                 case USB_DT_STRING << 8:
559                         if ((wValue & 0xff) < 4)
560                                 urb->actual_length = rh_string(wValue & 0xff,
561                                                 hcd, ubuf, wLength);
562                         else /* unsupported IDs --> "protocol stall" */
563                                 goto error;
564                         break;
565                 default:
566                         goto error;
567                 }
568                 break;
569         case DeviceRequest | USB_REQ_GET_INTERFACE:
570                 tbuf [0] = 0;
571                 len = 1;
572                         /* FALLTHROUGH */
573         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
574                 break;
575         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
576                 // wValue == urb->dev->devaddr
577                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
578                         wValue);
579                 break;
580
581         /* INTERFACE REQUESTS (no defined feature/status flags) */
582
583         /* ENDPOINT REQUESTS */
584
585         case EndpointRequest | USB_REQ_GET_STATUS:
586                 // ENDPOINT_HALT flag
587                 tbuf [0] = 0;
588                 tbuf [1] = 0;
589                 len = 2;
590                         /* FALLTHROUGH */
591         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
592         case EndpointOutRequest | USB_REQ_SET_FEATURE:
593                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
594                 break;
595
596         /* CLASS REQUESTS (and errors) */
597
598         default:
599                 /* non-generic request */
600                 switch (typeReq) {
601                 case GetHubStatus:
602                 case GetPortStatus:
603                         len = 4;
604                         break;
605                 case GetHubDescriptor:
606                         len = sizeof (struct usb_hub_descriptor);
607                         break;
608                 }
609                 status = hcd->driver->hub_control (hcd,
610                         typeReq, wValue, wIndex,
611                         tbuf, wLength);
612                 break;
613 error:
614                 /* "protocol stall" on error */
615                 status = -EPIPE;
616         }
617
618         if (status) {
619                 len = 0;
620                 if (status != -EPIPE) {
621                         dev_dbg (hcd->self.controller,
622                                 "CTRL: TypeReq=0x%x val=0x%x "
623                                 "idx=0x%x len=%d ==> %d\n",
624                                 typeReq, wValue, wIndex,
625                                 wLength, status);
626                 }
627         }
628         if (len) {
629                 if (urb->transfer_buffer_length < len)
630                         len = urb->transfer_buffer_length;
631                 urb->actual_length = len;
632                 // always USB_DIR_IN, toward host
633                 memcpy (ubuf, bufp, len);
634
635                 /* report whether RH hardware supports remote wakeup */
636                 if (patch_wakeup &&
637                                 len > offsetof (struct usb_config_descriptor,
638                                                 bmAttributes))
639                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
640                                 |= USB_CONFIG_ATT_WAKEUP;
641
642                 /* report whether RH hardware has an integrated TT */
643                 if (patch_protocol &&
644                                 len > offsetof(struct usb_device_descriptor,
645                                                 bDeviceProtocol))
646                         ((struct usb_device_descriptor *) ubuf)->
647                                         bDeviceProtocol = 1;
648         }
649
650         /* any errors get returned through the urb completion */
651         spin_lock_irq(&hcd_root_hub_lock);
652         usb_hcd_unlink_urb_from_ep(hcd, urb);
653
654         /* This peculiar use of spinlocks echoes what real HC drivers do.
655          * Avoiding calls to local_irq_disable/enable makes the code
656          * RT-friendly.
657          */
658         spin_unlock(&hcd_root_hub_lock);
659         usb_hcd_giveback_urb(hcd, urb, status);
660         spin_lock(&hcd_root_hub_lock);
661
662         spin_unlock_irq(&hcd_root_hub_lock);
663         return 0;
664 }
665
666 /*-------------------------------------------------------------------------*/
667
668 /*
669  * Root Hub interrupt transfers are polled using a timer if the
670  * driver requests it; otherwise the driver is responsible for
671  * calling usb_hcd_poll_rh_status() when an event occurs.
672  *
673  * Completions are called in_interrupt(), but they may or may not
674  * be in_irq().
675  */
676 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
677 {
678         struct urb      *urb;
679         int             length;
680         unsigned long   flags;
681         char            buffer[6];      /* Any root hubs with > 31 ports? */
682
683         if (unlikely(!hcd->rh_pollable))
684                 return;
685         if (!hcd->uses_new_polling && !hcd->status_urb)
686                 return;
687
688         length = hcd->driver->hub_status_data(hcd, buffer);
689         if (length > 0) {
690
691                 /* try to complete the status urb */
692                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
693                 urb = hcd->status_urb;
694                 if (urb) {
695                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
696                         hcd->status_urb = NULL;
697                         urb->actual_length = length;
698                         memcpy(urb->transfer_buffer, buffer, length);
699
700                         usb_hcd_unlink_urb_from_ep(hcd, urb);
701                         spin_unlock(&hcd_root_hub_lock);
702                         usb_hcd_giveback_urb(hcd, urb, 0);
703                         spin_lock(&hcd_root_hub_lock);
704                 } else {
705                         length = 0;
706                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
707                 }
708                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
709         }
710
711         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
712          * exceed that limit if HZ is 100. The math is more clunky than
713          * maybe expected, this is to make sure that all timers for USB devices
714          * fire at the same time to give the CPU a break in between */
715         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
716                         (length == 0 && hcd->status_urb != NULL))
717                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
718 }
719 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
720
721 /* timer callback */
722 static void rh_timer_func (unsigned long _hcd)
723 {
724         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
725 }
726
727 /*-------------------------------------------------------------------------*/
728
729 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
730 {
731         int             retval;
732         unsigned long   flags;
733         unsigned        len = 1 + (urb->dev->maxchild / 8);
734
735         spin_lock_irqsave (&hcd_root_hub_lock, flags);
736         if (hcd->status_urb || urb->transfer_buffer_length < len) {
737                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
738                 retval = -EINVAL;
739                 goto done;
740         }
741
742         retval = usb_hcd_link_urb_to_ep(hcd, urb);
743         if (retval)
744                 goto done;
745
746         hcd->status_urb = urb;
747         urb->hcpriv = hcd;      /* indicate it's queued */
748         if (!hcd->uses_new_polling)
749                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
750
751         /* If a status change has already occurred, report it ASAP */
752         else if (HCD_POLL_PENDING(hcd))
753                 mod_timer(&hcd->rh_timer, jiffies);
754         retval = 0;
755  done:
756         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
757         return retval;
758 }
759
760 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
761 {
762         if (usb_endpoint_xfer_int(&urb->ep->desc))
763                 return rh_queue_status (hcd, urb);
764         if (usb_endpoint_xfer_control(&urb->ep->desc))
765                 return rh_call_control (hcd, urb);
766         return -EINVAL;
767 }
768
769 /*-------------------------------------------------------------------------*/
770
771 /* Unlinks of root-hub control URBs are legal, but they don't do anything
772  * since these URBs always execute synchronously.
773  */
774 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
775 {
776         unsigned long   flags;
777         int             rc;
778
779         spin_lock_irqsave(&hcd_root_hub_lock, flags);
780         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
781         if (rc)
782                 goto done;
783
784         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
785                 ;       /* Do nothing */
786
787         } else {                                /* Status URB */
788                 if (!hcd->uses_new_polling)
789                         del_timer (&hcd->rh_timer);
790                 if (urb == hcd->status_urb) {
791                         hcd->status_urb = NULL;
792                         usb_hcd_unlink_urb_from_ep(hcd, urb);
793
794                         spin_unlock(&hcd_root_hub_lock);
795                         usb_hcd_giveback_urb(hcd, urb, status);
796                         spin_lock(&hcd_root_hub_lock);
797                 }
798         }
799  done:
800         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
801         return rc;
802 }
803
804
805
806 /*
807  * Show & store the current value of authorized_default
808  */
809 static ssize_t usb_host_authorized_default_show(struct device *dev,
810                                                 struct device_attribute *attr,
811                                                 char *buf)
812 {
813         struct usb_device *rh_usb_dev = to_usb_device(dev);
814         struct usb_bus *usb_bus = rh_usb_dev->bus;
815         struct usb_hcd *usb_hcd;
816
817         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
818                 return -ENODEV;
819         usb_hcd = bus_to_hcd(usb_bus);
820         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
821 }
822
823 static ssize_t usb_host_authorized_default_store(struct device *dev,
824                                                  struct device_attribute *attr,
825                                                  const char *buf, size_t size)
826 {
827         ssize_t result;
828         unsigned val;
829         struct usb_device *rh_usb_dev = to_usb_device(dev);
830         struct usb_bus *usb_bus = rh_usb_dev->bus;
831         struct usb_hcd *usb_hcd;
832
833         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
834                 return -ENODEV;
835         usb_hcd = bus_to_hcd(usb_bus);
836         result = sscanf(buf, "%u\n", &val);
837         if (result == 1) {
838                 usb_hcd->authorized_default = val? 1 : 0;
839                 result = size;
840         }
841         else
842                 result = -EINVAL;
843         return result;
844 }
845
846 static DEVICE_ATTR(authorized_default, 0644,
847             usb_host_authorized_default_show,
848             usb_host_authorized_default_store);
849
850
851 /* Group all the USB bus attributes */
852 static struct attribute *usb_bus_attrs[] = {
853                 &dev_attr_authorized_default.attr,
854                 NULL,
855 };
856
857 static struct attribute_group usb_bus_attr_group = {
858         .name = NULL,   /* we want them in the same directory */
859         .attrs = usb_bus_attrs,
860 };
861
862
863
864 /*-------------------------------------------------------------------------*/
865
866 /**
867  * usb_bus_init - shared initialization code
868  * @bus: the bus structure being initialized
869  *
870  * This code is used to initialize a usb_bus structure, memory for which is
871  * separately managed.
872  */
873 static void usb_bus_init (struct usb_bus *bus)
874 {
875         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
876
877         bus->devnum_next = 1;
878
879         bus->root_hub = NULL;
880         bus->busnum = -1;
881         bus->bandwidth_allocated = 0;
882         bus->bandwidth_int_reqs  = 0;
883         bus->bandwidth_isoc_reqs = 0;
884
885         INIT_LIST_HEAD (&bus->bus_list);
886 }
887
888 /*-------------------------------------------------------------------------*/
889
890 /**
891  * usb_register_bus - registers the USB host controller with the usb core
892  * @bus: pointer to the bus to register
893  * Context: !in_interrupt()
894  *
895  * Assigns a bus number, and links the controller into usbcore data
896  * structures so that it can be seen by scanning the bus list.
897  */
898 static int usb_register_bus(struct usb_bus *bus)
899 {
900         int result = -E2BIG;
901         int busnum;
902
903         mutex_lock(&usb_bus_list_lock);
904         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
905         if (busnum >= USB_MAXBUS) {
906                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
907                 goto error_find_busnum;
908         }
909         set_bit (busnum, busmap.busmap);
910         bus->busnum = busnum;
911
912         /* Add it to the local list of buses */
913         list_add (&bus->bus_list, &usb_bus_list);
914         mutex_unlock(&usb_bus_list_lock);
915
916         usb_notify_add_bus(bus);
917
918         dev_info (bus->controller, "new USB bus registered, assigned bus "
919                   "number %d\n", bus->busnum);
920         return 0;
921
922 error_find_busnum:
923         mutex_unlock(&usb_bus_list_lock);
924         return result;
925 }
926
927 /**
928  * usb_deregister_bus - deregisters the USB host controller
929  * @bus: pointer to the bus to deregister
930  * Context: !in_interrupt()
931  *
932  * Recycles the bus number, and unlinks the controller from usbcore data
933  * structures so that it won't be seen by scanning the bus list.
934  */
935 static void usb_deregister_bus (struct usb_bus *bus)
936 {
937         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
938
939         /*
940          * NOTE: make sure that all the devices are removed by the
941          * controller code, as well as having it call this when cleaning
942          * itself up
943          */
944         mutex_lock(&usb_bus_list_lock);
945         list_del (&bus->bus_list);
946         mutex_unlock(&usb_bus_list_lock);
947
948         usb_notify_remove_bus(bus);
949
950         clear_bit (bus->busnum, busmap.busmap);
951 }
952
953 /**
954  * register_root_hub - called by usb_add_hcd() to register a root hub
955  * @hcd: host controller for this root hub
956  *
957  * This function registers the root hub with the USB subsystem.  It sets up
958  * the device properly in the device tree and then calls usb_new_device()
959  * to register the usb device.  It also assigns the root hub's USB address
960  * (always 1).
961  */
962 static int register_root_hub(struct usb_hcd *hcd)
963 {
964         struct device *parent_dev = hcd->self.controller;
965         struct usb_device *usb_dev = hcd->self.root_hub;
966         const int devnum = 1;
967         int retval;
968
969         usb_dev->devnum = devnum;
970         usb_dev->bus->devnum_next = devnum + 1;
971         memset (&usb_dev->bus->devmap.devicemap, 0,
972                         sizeof usb_dev->bus->devmap.devicemap);
973         set_bit (devnum, usb_dev->bus->devmap.devicemap);
974         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
975
976         mutex_lock(&usb_bus_list_lock);
977
978         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
979         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
980         if (retval != sizeof usb_dev->descriptor) {
981                 mutex_unlock(&usb_bus_list_lock);
982                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
983                                 dev_name(&usb_dev->dev), retval);
984                 return (retval < 0) ? retval : -EMSGSIZE;
985         }
986
987         retval = usb_new_device (usb_dev);
988         if (retval) {
989                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
990                                 dev_name(&usb_dev->dev), retval);
991         }
992         mutex_unlock(&usb_bus_list_lock);
993
994         if (retval == 0) {
995                 spin_lock_irq (&hcd_root_hub_lock);
996                 hcd->rh_registered = 1;
997                 spin_unlock_irq (&hcd_root_hub_lock);
998
999                 /* Did the HC die before the root hub was registered? */
1000                 if (HCD_DEAD(hcd))
1001                         usb_hc_died (hcd);      /* This time clean up */
1002         }
1003
1004         return retval;
1005 }
1006
1007
1008 /*-------------------------------------------------------------------------*/
1009
1010 /**
1011  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1012  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1013  * @is_input: true iff the transaction sends data to the host
1014  * @isoc: true for isochronous transactions, false for interrupt ones
1015  * @bytecount: how many bytes in the transaction.
1016  *
1017  * Returns approximate bus time in nanoseconds for a periodic transaction.
1018  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1019  * scheduled in software, this function is only used for such scheduling.
1020  */
1021 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1022 {
1023         unsigned long   tmp;
1024
1025         switch (speed) {
1026         case USB_SPEED_LOW:     /* INTR only */
1027                 if (is_input) {
1028                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1029                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1030                 } else {
1031                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1032                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1033                 }
1034         case USB_SPEED_FULL:    /* ISOC or INTR */
1035                 if (isoc) {
1036                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1037                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1038                 } else {
1039                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1040                         return (9107L + BW_HOST_DELAY + tmp);
1041                 }
1042         case USB_SPEED_HIGH:    /* ISOC or INTR */
1043                 // FIXME adjust for input vs output
1044                 if (isoc)
1045                         tmp = HS_NSECS_ISO (bytecount);
1046                 else
1047                         tmp = HS_NSECS (bytecount);
1048                 return tmp;
1049         default:
1050                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1051                 return -1;
1052         }
1053 }
1054 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1055
1056
1057 /*-------------------------------------------------------------------------*/
1058
1059 /*
1060  * Generic HC operations.
1061  */
1062
1063 /*-------------------------------------------------------------------------*/
1064
1065 /**
1066  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1067  * @hcd: host controller to which @urb was submitted
1068  * @urb: URB being submitted
1069  *
1070  * Host controller drivers should call this routine in their enqueue()
1071  * method.  The HCD's private spinlock must be held and interrupts must
1072  * be disabled.  The actions carried out here are required for URB
1073  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1074  *
1075  * Returns 0 for no error, otherwise a negative error code (in which case
1076  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1077  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1078  * the private spinlock and returning.
1079  */
1080 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1081 {
1082         int             rc = 0;
1083
1084         spin_lock(&hcd_urb_list_lock);
1085
1086         /* Check that the URB isn't being killed */
1087         if (unlikely(atomic_read(&urb->reject))) {
1088                 rc = -EPERM;
1089                 goto done;
1090         }
1091
1092         if (unlikely(!urb->ep->enabled)) {
1093                 rc = -ENOENT;
1094                 goto done;
1095         }
1096
1097         if (unlikely(!urb->dev->can_submit)) {
1098                 rc = -EHOSTUNREACH;
1099                 goto done;
1100         }
1101
1102         /*
1103          * Check the host controller's state and add the URB to the
1104          * endpoint's queue.
1105          */
1106         if (HCD_RH_RUNNING(hcd)) {
1107                 urb->unlinked = 0;
1108                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1109         } else {
1110                 rc = -ESHUTDOWN;
1111                 goto done;
1112         }
1113  done:
1114         spin_unlock(&hcd_urb_list_lock);
1115         return rc;
1116 }
1117 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1118
1119 /**
1120  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1121  * @hcd: host controller to which @urb was submitted
1122  * @urb: URB being checked for unlinkability
1123  * @status: error code to store in @urb if the unlink succeeds
1124  *
1125  * Host controller drivers should call this routine in their dequeue()
1126  * method.  The HCD's private spinlock must be held and interrupts must
1127  * be disabled.  The actions carried out here are required for making
1128  * sure than an unlink is valid.
1129  *
1130  * Returns 0 for no error, otherwise a negative error code (in which case
1131  * the dequeue() method must fail).  The possible error codes are:
1132  *
1133  *      -EIDRM: @urb was not submitted or has already completed.
1134  *              The completion function may not have been called yet.
1135  *
1136  *      -EBUSY: @urb has already been unlinked.
1137  */
1138 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1139                 int status)
1140 {
1141         struct list_head        *tmp;
1142
1143         /* insist the urb is still queued */
1144         list_for_each(tmp, &urb->ep->urb_list) {
1145                 if (tmp == &urb->urb_list)
1146                         break;
1147         }
1148         if (tmp != &urb->urb_list)
1149                 return -EIDRM;
1150
1151         /* Any status except -EINPROGRESS means something already started to
1152          * unlink this URB from the hardware.  So there's no more work to do.
1153          */
1154         if (urb->unlinked)
1155                 return -EBUSY;
1156         urb->unlinked = status;
1157
1158         /* IRQ setup can easily be broken so that USB controllers
1159          * never get completion IRQs ... maybe even the ones we need to
1160          * finish unlinking the initial failed usb_set_address()
1161          * or device descriptor fetch.
1162          */
1163         if (!HCD_SAW_IRQ(hcd) && !is_root_hub(urb->dev)) {
1164                 dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1165                         "Controller is probably using the wrong IRQ.\n");
1166                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1167                 if (hcd->shared_hcd)
1168                         set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
1169         }
1170
1171         return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1174
1175 /**
1176  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1177  * @hcd: host controller to which @urb was submitted
1178  * @urb: URB being unlinked
1179  *
1180  * Host controller drivers should call this routine before calling
1181  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1182  * interrupts must be disabled.  The actions carried out here are required
1183  * for URB completion.
1184  */
1185 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1186 {
1187         /* clear all state linking urb to this dev (and hcd) */
1188         spin_lock(&hcd_urb_list_lock);
1189         list_del_init(&urb->urb_list);
1190         spin_unlock(&hcd_urb_list_lock);
1191 }
1192 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1193
1194 /*
1195  * Some usb host controllers can only perform dma using a small SRAM area.
1196  * The usb core itself is however optimized for host controllers that can dma
1197  * using regular system memory - like pci devices doing bus mastering.
1198  *
1199  * To support host controllers with limited dma capabilites we provide dma
1200  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1201  * For this to work properly the host controller code must first use the
1202  * function dma_declare_coherent_memory() to point out which memory area
1203  * that should be used for dma allocations.
1204  *
1205  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1206  * dma using dma_alloc_coherent() which in turn allocates from the memory
1207  * area pointed out with dma_declare_coherent_memory().
1208  *
1209  * So, to summarize...
1210  *
1211  * - We need "local" memory, canonical example being
1212  *   a small SRAM on a discrete controller being the
1213  *   only memory that the controller can read ...
1214  *   (a) "normal" kernel memory is no good, and
1215  *   (b) there's not enough to share
1216  *
1217  * - The only *portable* hook for such stuff in the
1218  *   DMA framework is dma_declare_coherent_memory()
1219  *
1220  * - So we use that, even though the primary requirement
1221  *   is that the memory be "local" (hence addressible
1222  *   by that device), not "coherent".
1223  *
1224  */
1225
1226 static int hcd_alloc_coherent(struct usb_bus *bus,
1227                               gfp_t mem_flags, dma_addr_t *dma_handle,
1228                               void **vaddr_handle, size_t size,
1229                               enum dma_data_direction dir)
1230 {
1231         unsigned char *vaddr;
1232
1233         if (*vaddr_handle == NULL) {
1234                 WARN_ON_ONCE(1);
1235                 return -EFAULT;
1236         }
1237
1238         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1239                                  mem_flags, dma_handle);
1240         if (!vaddr)
1241                 return -ENOMEM;
1242
1243         /*
1244          * Store the virtual address of the buffer at the end
1245          * of the allocated dma buffer. The size of the buffer
1246          * may be uneven so use unaligned functions instead
1247          * of just rounding up. It makes sense to optimize for
1248          * memory footprint over access speed since the amount
1249          * of memory available for dma may be limited.
1250          */
1251         put_unaligned((unsigned long)*vaddr_handle,
1252                       (unsigned long *)(vaddr + size));
1253
1254         if (dir == DMA_TO_DEVICE)
1255                 memcpy(vaddr, *vaddr_handle, size);
1256
1257         *vaddr_handle = vaddr;
1258         return 0;
1259 }
1260
1261 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1262                               void **vaddr_handle, size_t size,
1263                               enum dma_data_direction dir)
1264 {
1265         unsigned char *vaddr = *vaddr_handle;
1266
1267         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1268
1269         if (dir == DMA_FROM_DEVICE)
1270                 memcpy(vaddr, *vaddr_handle, size);
1271
1272         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1273
1274         *vaddr_handle = vaddr;
1275         *dma_handle = 0;
1276 }
1277
1278 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1279 {
1280         if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1281                 dma_unmap_single(hcd->self.controller,
1282                                 urb->setup_dma,
1283                                 sizeof(struct usb_ctrlrequest),
1284                                 DMA_TO_DEVICE);
1285         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1286                 hcd_free_coherent(urb->dev->bus,
1287                                 &urb->setup_dma,
1288                                 (void **) &urb->setup_packet,
1289                                 sizeof(struct usb_ctrlrequest),
1290                                 DMA_TO_DEVICE);
1291
1292         /* Make it safe to call this routine more than once */
1293         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1294 }
1295 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1296
1297 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1298 {
1299         if (hcd->driver->unmap_urb_for_dma)
1300                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1301         else
1302                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1303 }
1304
1305 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1306 {
1307         enum dma_data_direction dir;
1308
1309         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1310
1311         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1312         if (urb->transfer_flags & URB_DMA_MAP_SG)
1313                 dma_unmap_sg(hcd->self.controller,
1314                                 urb->sg,
1315                                 urb->num_sgs,
1316                                 dir);
1317         else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1318                 dma_unmap_page(hcd->self.controller,
1319                                 urb->transfer_dma,
1320                                 urb->transfer_buffer_length,
1321                                 dir);
1322         else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1323                 dma_unmap_single(hcd->self.controller,
1324                                 urb->transfer_dma,
1325                                 urb->transfer_buffer_length,
1326                                 dir);
1327         else if (urb->transfer_flags & URB_MAP_LOCAL)
1328                 hcd_free_coherent(urb->dev->bus,
1329                                 &urb->transfer_dma,
1330                                 &urb->transfer_buffer,
1331                                 urb->transfer_buffer_length,
1332                                 dir);
1333
1334         /* Make it safe to call this routine more than once */
1335         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1336                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1337 }
1338 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1339
1340 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1341                            gfp_t mem_flags)
1342 {
1343         if (hcd->driver->map_urb_for_dma)
1344                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1345         else
1346                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1347 }
1348
1349 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1350                             gfp_t mem_flags)
1351 {
1352         enum dma_data_direction dir;
1353         int ret = 0;
1354
1355         /* Map the URB's buffers for DMA access.
1356          * Lower level HCD code should use *_dma exclusively,
1357          * unless it uses pio or talks to another transport,
1358          * or uses the provided scatter gather list for bulk.
1359          */
1360
1361         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1362                 if (hcd->self.uses_pio_for_control)
1363                         return ret;
1364                 if (hcd->self.uses_dma) {
1365                         urb->setup_dma = dma_map_single(
1366                                         hcd->self.controller,
1367                                         urb->setup_packet,
1368                                         sizeof(struct usb_ctrlrequest),
1369                                         DMA_TO_DEVICE);
1370                         if (dma_mapping_error(hcd->self.controller,
1371                                                 urb->setup_dma))
1372                                 return -EAGAIN;
1373                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1374                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1375                         ret = hcd_alloc_coherent(
1376                                         urb->dev->bus, mem_flags,
1377                                         &urb->setup_dma,
1378                                         (void **)&urb->setup_packet,
1379                                         sizeof(struct usb_ctrlrequest),
1380                                         DMA_TO_DEVICE);
1381                         if (ret)
1382                                 return ret;
1383                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1384                 }
1385         }
1386
1387         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1388         if (urb->transfer_buffer_length != 0
1389             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1390                 if (hcd->self.uses_dma) {
1391                         if (urb->num_sgs) {
1392                                 int n = dma_map_sg(
1393                                                 hcd->self.controller,
1394                                                 urb->sg,
1395                                                 urb->num_sgs,
1396                                                 dir);
1397                                 if (n <= 0)
1398                                         ret = -EAGAIN;
1399                                 else
1400                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1401                                 if (n != urb->num_sgs) {
1402                                         urb->num_sgs = n;
1403                                         urb->transfer_flags |=
1404                                                         URB_DMA_SG_COMBINED;
1405                                 }
1406                         } else if (urb->sg) {
1407                                 struct scatterlist *sg = urb->sg;
1408                                 urb->transfer_dma = dma_map_page(
1409                                                 hcd->self.controller,
1410                                                 sg_page(sg),
1411                                                 sg->offset,
1412                                                 urb->transfer_buffer_length,
1413                                                 dir);
1414                                 if (dma_mapping_error(hcd->self.controller,
1415                                                 urb->transfer_dma))
1416                                         ret = -EAGAIN;
1417                                 else
1418                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1419                         } else {
1420                                 urb->transfer_dma = dma_map_single(
1421                                                 hcd->self.controller,
1422                                                 urb->transfer_buffer,
1423                                                 urb->transfer_buffer_length,
1424                                                 dir);
1425                                 if (dma_mapping_error(hcd->self.controller,
1426                                                 urb->transfer_dma))
1427                                         ret = -EAGAIN;
1428                                 else
1429                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1430                         }
1431                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1432                         ret = hcd_alloc_coherent(
1433                                         urb->dev->bus, mem_flags,
1434                                         &urb->transfer_dma,
1435                                         &urb->transfer_buffer,
1436                                         urb->transfer_buffer_length,
1437                                         dir);
1438                         if (ret == 0)
1439                                 urb->transfer_flags |= URB_MAP_LOCAL;
1440                 }
1441                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1442                                 URB_SETUP_MAP_LOCAL)))
1443                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1444         }
1445         return ret;
1446 }
1447 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1448
1449 /*-------------------------------------------------------------------------*/
1450
1451 /* may be called in any context with a valid urb->dev usecount
1452  * caller surrenders "ownership" of urb
1453  * expects usb_submit_urb() to have sanity checked and conditioned all
1454  * inputs in the urb
1455  */
1456 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1457 {
1458         int                     status;
1459         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1460
1461         /* increment urb's reference count as part of giving it to the HCD
1462          * (which will control it).  HCD guarantees that it either returns
1463          * an error or calls giveback(), but not both.
1464          */
1465         usb_get_urb(urb);
1466         atomic_inc(&urb->use_count);
1467         atomic_inc(&urb->dev->urbnum);
1468         usbmon_urb_submit(&hcd->self, urb);
1469
1470         /* NOTE requirements on root-hub callers (usbfs and the hub
1471          * driver, for now):  URBs' urb->transfer_buffer must be
1472          * valid and usb_buffer_{sync,unmap}() not be needed, since
1473          * they could clobber root hub response data.  Also, control
1474          * URBs must be submitted in process context with interrupts
1475          * enabled.
1476          */
1477
1478         if (is_root_hub(urb->dev)) {
1479                 status = rh_urb_enqueue(hcd, urb);
1480         } else {
1481                 status = map_urb_for_dma(hcd, urb, mem_flags);
1482                 if (likely(status == 0)) {
1483                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1484                         if (unlikely(status))
1485                                 unmap_urb_for_dma(hcd, urb);
1486                 }
1487         }
1488
1489         if (unlikely(status)) {
1490                 usbmon_urb_submit_error(&hcd->self, urb, status);
1491                 urb->hcpriv = NULL;
1492                 INIT_LIST_HEAD(&urb->urb_list);
1493                 atomic_dec(&urb->use_count);
1494                 atomic_dec(&urb->dev->urbnum);
1495                 if (atomic_read(&urb->reject))
1496                         wake_up(&usb_kill_urb_queue);
1497                 usb_put_urb(urb);
1498         }
1499         return status;
1500 }
1501
1502 /*-------------------------------------------------------------------------*/
1503
1504 /* this makes the hcd giveback() the urb more quickly, by kicking it
1505  * off hardware queues (which may take a while) and returning it as
1506  * soon as practical.  we've already set up the urb's return status,
1507  * but we can't know if the callback completed already.
1508  */
1509 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1510 {
1511         int             value;
1512
1513         if (is_root_hub(urb->dev))
1514                 value = usb_rh_urb_dequeue(hcd, urb, status);
1515         else {
1516
1517                 /* The only reason an HCD might fail this call is if
1518                  * it has not yet fully queued the urb to begin with.
1519                  * Such failures should be harmless. */
1520                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1521         }
1522         return value;
1523 }
1524
1525 /*
1526  * called in any context
1527  *
1528  * caller guarantees urb won't be recycled till both unlink()
1529  * and the urb's completion function return
1530  */
1531 int usb_hcd_unlink_urb (struct urb *urb, int status)
1532 {
1533         struct usb_hcd          *hcd;
1534         int                     retval = -EIDRM;
1535         unsigned long           flags;
1536
1537         /* Prevent the device and bus from going away while
1538          * the unlink is carried out.  If they are already gone
1539          * then urb->use_count must be 0, since disconnected
1540          * devices can't have any active URBs.
1541          */
1542         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1543         if (atomic_read(&urb->use_count) > 0) {
1544                 retval = 0;
1545                 usb_get_dev(urb->dev);
1546         }
1547         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1548         if (retval == 0) {
1549                 hcd = bus_to_hcd(urb->dev->bus);
1550                 retval = unlink1(hcd, urb, status);
1551                 usb_put_dev(urb->dev);
1552         }
1553
1554         if (retval == 0)
1555                 retval = -EINPROGRESS;
1556         else if (retval != -EIDRM && retval != -EBUSY)
1557                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1558                                 urb, retval);
1559         return retval;
1560 }
1561
1562 /*-------------------------------------------------------------------------*/
1563
1564 /**
1565  * usb_hcd_giveback_urb - return URB from HCD to device driver
1566  * @hcd: host controller returning the URB
1567  * @urb: urb being returned to the USB device driver.
1568  * @status: completion status code for the URB.
1569  * Context: in_interrupt()
1570  *
1571  * This hands the URB from HCD to its USB device driver, using its
1572  * completion function.  The HCD has freed all per-urb resources
1573  * (and is done using urb->hcpriv).  It also released all HCD locks;
1574  * the device driver won't cause problems if it frees, modifies,
1575  * or resubmits this URB.
1576  *
1577  * If @urb was unlinked, the value of @status will be overridden by
1578  * @urb->unlinked.  Erroneous short transfers are detected in case
1579  * the HCD hasn't checked for them.
1580  */
1581 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1582 {
1583         urb->hcpriv = NULL;
1584         if (unlikely(urb->unlinked))
1585                 status = urb->unlinked;
1586         else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1587                         urb->actual_length < urb->transfer_buffer_length &&
1588                         !status))
1589                 status = -EREMOTEIO;
1590
1591         unmap_urb_for_dma(hcd, urb);
1592         usbmon_urb_complete(&hcd->self, urb, status);
1593         usb_unanchor_urb(urb);
1594
1595         /* pass ownership to the completion handler */
1596         urb->status = status;
1597         urb->complete (urb);
1598         atomic_dec (&urb->use_count);
1599         if (unlikely(atomic_read(&urb->reject)))
1600                 wake_up (&usb_kill_urb_queue);
1601         usb_put_urb (urb);
1602 }
1603 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1604
1605 /*-------------------------------------------------------------------------*/
1606
1607 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1608  * queue to drain completely.  The caller must first insure that no more
1609  * URBs can be submitted for this endpoint.
1610  */
1611 void usb_hcd_flush_endpoint(struct usb_device *udev,
1612                 struct usb_host_endpoint *ep)
1613 {
1614         struct usb_hcd          *hcd;
1615         struct urb              *urb;
1616
1617         if (!ep)
1618                 return;
1619         might_sleep();
1620         hcd = bus_to_hcd(udev->bus);
1621
1622         /* No more submits can occur */
1623         spin_lock_irq(&hcd_urb_list_lock);
1624 rescan:
1625         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1626                 int     is_in;
1627
1628                 if (urb->unlinked)
1629                         continue;
1630                 usb_get_urb (urb);
1631                 is_in = usb_urb_dir_in(urb);
1632                 spin_unlock(&hcd_urb_list_lock);
1633
1634                 /* kick hcd */
1635                 unlink1(hcd, urb, -ESHUTDOWN);
1636                 dev_dbg (hcd->self.controller,
1637                         "shutdown urb %p ep%d%s%s\n",
1638                         urb, usb_endpoint_num(&ep->desc),
1639                         is_in ? "in" : "out",
1640                         ({      char *s;
1641
1642                                  switch (usb_endpoint_type(&ep->desc)) {
1643                                  case USB_ENDPOINT_XFER_CONTROL:
1644                                         s = ""; break;
1645                                  case USB_ENDPOINT_XFER_BULK:
1646                                         s = "-bulk"; break;
1647                                  case USB_ENDPOINT_XFER_INT:
1648                                         s = "-intr"; break;
1649                                  default:
1650                                         s = "-iso"; break;
1651                                 };
1652                                 s;
1653                         }));
1654                 usb_put_urb (urb);
1655
1656                 /* list contents may have changed */
1657                 spin_lock(&hcd_urb_list_lock);
1658                 goto rescan;
1659         }
1660         spin_unlock_irq(&hcd_urb_list_lock);
1661
1662         /* Wait until the endpoint queue is completely empty */
1663         while (!list_empty (&ep->urb_list)) {
1664                 spin_lock_irq(&hcd_urb_list_lock);
1665
1666                 /* The list may have changed while we acquired the spinlock */
1667                 urb = NULL;
1668                 if (!list_empty (&ep->urb_list)) {
1669                         urb = list_entry (ep->urb_list.prev, struct urb,
1670                                         urb_list);
1671                         usb_get_urb (urb);
1672                 }
1673                 spin_unlock_irq(&hcd_urb_list_lock);
1674
1675                 if (urb) {
1676                         usb_kill_urb (urb);
1677                         usb_put_urb (urb);
1678                 }
1679         }
1680 }
1681
1682 /**
1683  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1684  *                              the bus bandwidth
1685  * @udev: target &usb_device
1686  * @new_config: new configuration to install
1687  * @cur_alt: the current alternate interface setting
1688  * @new_alt: alternate interface setting that is being installed
1689  *
1690  * To change configurations, pass in the new configuration in new_config,
1691  * and pass NULL for cur_alt and new_alt.
1692  *
1693  * To reset a device's configuration (put the device in the ADDRESSED state),
1694  * pass in NULL for new_config, cur_alt, and new_alt.
1695  *
1696  * To change alternate interface settings, pass in NULL for new_config,
1697  * pass in the current alternate interface setting in cur_alt,
1698  * and pass in the new alternate interface setting in new_alt.
1699  *
1700  * Returns an error if the requested bandwidth change exceeds the
1701  * bus bandwidth or host controller internal resources.
1702  */
1703 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1704                 struct usb_host_config *new_config,
1705                 struct usb_host_interface *cur_alt,
1706                 struct usb_host_interface *new_alt)
1707 {
1708         int num_intfs, i, j;
1709         struct usb_host_interface *alt = NULL;
1710         int ret = 0;
1711         struct usb_hcd *hcd;
1712         struct usb_host_endpoint *ep;
1713
1714         hcd = bus_to_hcd(udev->bus);
1715         if (!hcd->driver->check_bandwidth)
1716                 return 0;
1717
1718         /* Configuration is being removed - set configuration 0 */
1719         if (!new_config && !cur_alt) {
1720                 for (i = 1; i < 16; ++i) {
1721                         ep = udev->ep_out[i];
1722                         if (ep)
1723                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1724                         ep = udev->ep_in[i];
1725                         if (ep)
1726                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1727                 }
1728                 hcd->driver->check_bandwidth(hcd, udev);
1729                 return 0;
1730         }
1731         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1732          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1733          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1734          * ok to exclude it.
1735          */
1736         if (new_config) {
1737                 num_intfs = new_config->desc.bNumInterfaces;
1738                 /* Remove endpoints (except endpoint 0, which is always on the
1739                  * schedule) from the old config from the schedule
1740                  */
1741                 for (i = 1; i < 16; ++i) {
1742                         ep = udev->ep_out[i];
1743                         if (ep) {
1744                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1745                                 if (ret < 0)
1746                                         goto reset;
1747                         }
1748                         ep = udev->ep_in[i];
1749                         if (ep) {
1750                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1751                                 if (ret < 0)
1752                                         goto reset;
1753                         }
1754                 }
1755                 for (i = 0; i < num_intfs; ++i) {
1756                         struct usb_host_interface *first_alt;
1757                         int iface_num;
1758
1759                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1760                         iface_num = first_alt->desc.bInterfaceNumber;
1761                         /* Set up endpoints for alternate interface setting 0 */
1762                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1763                         if (!alt)
1764                                 /* No alt setting 0? Pick the first setting. */
1765                                 alt = first_alt;
1766
1767                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1768                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1769                                 if (ret < 0)
1770                                         goto reset;
1771                         }
1772                 }
1773         }
1774         if (cur_alt && new_alt) {
1775                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1776                                 cur_alt->desc.bInterfaceNumber);
1777
1778                 if (!iface)
1779                         return -EINVAL;
1780                 if (iface->resetting_device) {
1781                         /*
1782                          * The USB core just reset the device, so the xHCI host
1783                          * and the device will think alt setting 0 is installed.
1784                          * However, the USB core will pass in the alternate
1785                          * setting installed before the reset as cur_alt.  Dig
1786                          * out the alternate setting 0 structure, or the first
1787                          * alternate setting if a broken device doesn't have alt
1788                          * setting 0.
1789                          */
1790                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1791                         if (!cur_alt)
1792                                 cur_alt = &iface->altsetting[0];
1793                 }
1794
1795                 /* Drop all the endpoints in the current alt setting */
1796                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1797                         ret = hcd->driver->drop_endpoint(hcd, udev,
1798                                         &cur_alt->endpoint[i]);
1799                         if (ret < 0)
1800                                 goto reset;
1801                 }
1802                 /* Add all the endpoints in the new alt setting */
1803                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1804                         ret = hcd->driver->add_endpoint(hcd, udev,
1805                                         &new_alt->endpoint[i]);
1806                         if (ret < 0)
1807                                 goto reset;
1808                 }
1809         }
1810         ret = hcd->driver->check_bandwidth(hcd, udev);
1811 reset:
1812         if (ret < 0)
1813                 hcd->driver->reset_bandwidth(hcd, udev);
1814         return ret;
1815 }
1816
1817 /* Disables the endpoint: synchronizes with the hcd to make sure all
1818  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1819  * have been called previously.  Use for set_configuration, set_interface,
1820  * driver removal, physical disconnect.
1821  *
1822  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1823  * type, maxpacket size, toggle, halt status, and scheduling.
1824  */
1825 void usb_hcd_disable_endpoint(struct usb_device *udev,
1826                 struct usb_host_endpoint *ep)
1827 {
1828         struct usb_hcd          *hcd;
1829
1830         might_sleep();
1831         hcd = bus_to_hcd(udev->bus);
1832         if (hcd->driver->endpoint_disable)
1833                 hcd->driver->endpoint_disable(hcd, ep);
1834 }
1835
1836 /**
1837  * usb_hcd_reset_endpoint - reset host endpoint state
1838  * @udev: USB device.
1839  * @ep:   the endpoint to reset.
1840  *
1841  * Resets any host endpoint state such as the toggle bit, sequence
1842  * number and current window.
1843  */
1844 void usb_hcd_reset_endpoint(struct usb_device *udev,
1845                             struct usb_host_endpoint *ep)
1846 {
1847         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1848
1849         if (hcd->driver->endpoint_reset)
1850                 hcd->driver->endpoint_reset(hcd, ep);
1851         else {
1852                 int epnum = usb_endpoint_num(&ep->desc);
1853                 int is_out = usb_endpoint_dir_out(&ep->desc);
1854                 int is_control = usb_endpoint_xfer_control(&ep->desc);
1855
1856                 usb_settoggle(udev, epnum, is_out, 0);
1857                 if (is_control)
1858                         usb_settoggle(udev, epnum, !is_out, 0);
1859         }
1860 }
1861
1862 /**
1863  * usb_alloc_streams - allocate bulk endpoint stream IDs.
1864  * @interface:          alternate setting that includes all endpoints.
1865  * @eps:                array of endpoints that need streams.
1866  * @num_eps:            number of endpoints in the array.
1867  * @num_streams:        number of streams to allocate.
1868  * @mem_flags:          flags hcd should use to allocate memory.
1869  *
1870  * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1871  * Drivers may queue multiple transfers to different stream IDs, which may
1872  * complete in a different order than they were queued.
1873  */
1874 int usb_alloc_streams(struct usb_interface *interface,
1875                 struct usb_host_endpoint **eps, unsigned int num_eps,
1876                 unsigned int num_streams, gfp_t mem_flags)
1877 {
1878         struct usb_hcd *hcd;
1879         struct usb_device *dev;
1880         int i;
1881
1882         dev = interface_to_usbdev(interface);
1883         hcd = bus_to_hcd(dev->bus);
1884         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1885                 return -EINVAL;
1886         if (dev->speed != USB_SPEED_SUPER)
1887                 return -EINVAL;
1888
1889         /* Streams only apply to bulk endpoints. */
1890         for (i = 0; i < num_eps; i++)
1891                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1892                         return -EINVAL;
1893
1894         return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1895                         num_streams, mem_flags);
1896 }
1897 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1898
1899 /**
1900  * usb_free_streams - free bulk endpoint stream IDs.
1901  * @interface:  alternate setting that includes all endpoints.
1902  * @eps:        array of endpoints to remove streams from.
1903  * @num_eps:    number of endpoints in the array.
1904  * @mem_flags:  flags hcd should use to allocate memory.
1905  *
1906  * Reverts a group of bulk endpoints back to not using stream IDs.
1907  * Can fail if we are given bad arguments, or HCD is broken.
1908  */
1909 void usb_free_streams(struct usb_interface *interface,
1910                 struct usb_host_endpoint **eps, unsigned int num_eps,
1911                 gfp_t mem_flags)
1912 {
1913         struct usb_hcd *hcd;
1914         struct usb_device *dev;
1915         int i;
1916
1917         dev = interface_to_usbdev(interface);
1918         hcd = bus_to_hcd(dev->bus);
1919         if (dev->speed != USB_SPEED_SUPER)
1920                 return;
1921
1922         /* Streams only apply to bulk endpoints. */
1923         for (i = 0; i < num_eps; i++)
1924                 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1925                         return;
1926
1927         hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1928 }
1929 EXPORT_SYMBOL_GPL(usb_free_streams);
1930
1931 /* Protect against drivers that try to unlink URBs after the device
1932  * is gone, by waiting until all unlinks for @udev are finished.
1933  * Since we don't currently track URBs by device, simply wait until
1934  * nothing is running in the locked region of usb_hcd_unlink_urb().
1935  */
1936 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1937 {
1938         spin_lock_irq(&hcd_urb_unlink_lock);
1939         spin_unlock_irq(&hcd_urb_unlink_lock);
1940 }
1941
1942 /*-------------------------------------------------------------------------*/
1943
1944 /* called in any context */
1945 int usb_hcd_get_frame_number (struct usb_device *udev)
1946 {
1947         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
1948
1949         if (!HCD_RH_RUNNING(hcd))
1950                 return -ESHUTDOWN;
1951         return hcd->driver->get_frame_number (hcd);
1952 }
1953
1954 /*-------------------------------------------------------------------------*/
1955
1956 #ifdef  CONFIG_PM
1957
1958 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1959 {
1960         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1961         int             status;
1962         int             old_state = hcd->state;
1963
1964         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
1965                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
1966                         rhdev->do_remote_wakeup);
1967         if (HCD_DEAD(hcd)) {
1968                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1969                 return 0;
1970         }
1971
1972         if (!hcd->driver->bus_suspend) {
1973                 status = -ENOENT;
1974         } else {
1975                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1976                 hcd->state = HC_STATE_QUIESCING;
1977                 status = hcd->driver->bus_suspend(hcd);
1978         }
1979         if (status == 0) {
1980                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1981                 hcd->state = HC_STATE_SUSPENDED;
1982         } else {
1983                 spin_lock_irq(&hcd_root_hub_lock);
1984                 if (!HCD_DEAD(hcd)) {
1985                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1986                         hcd->state = old_state;
1987                 }
1988                 spin_unlock_irq(&hcd_root_hub_lock);
1989                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1990                                 "suspend", status);
1991         }
1992         return status;
1993 }
1994
1995 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1996 {
1997         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1998         int             status;
1999         int             old_state = hcd->state;
2000
2001         dev_dbg(&rhdev->dev, "usb %sresume\n",
2002                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2003         if (HCD_DEAD(hcd)) {
2004                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2005                 return 0;
2006         }
2007         if (!hcd->driver->bus_resume)
2008                 return -ENOENT;
2009         if (HCD_RH_RUNNING(hcd))
2010                 return 0;
2011
2012         hcd->state = HC_STATE_RESUMING;
2013         status = hcd->driver->bus_resume(hcd);
2014         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2015         if (status == 0) {
2016                 /* TRSMRCY = 10 msec */
2017                 msleep(10);
2018                 spin_lock_irq(&hcd_root_hub_lock);
2019                 if (!HCD_DEAD(hcd)) {
2020                         usb_set_device_state(rhdev, rhdev->actconfig
2021                                         ? USB_STATE_CONFIGURED
2022                                         : USB_STATE_ADDRESS);
2023                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2024                         hcd->state = HC_STATE_RUNNING;
2025                 }
2026                 spin_unlock_irq(&hcd_root_hub_lock);
2027         } else {
2028                 hcd->state = old_state;
2029                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2030                                 "resume", status);
2031                 if (status != -ESHUTDOWN)
2032                         usb_hc_died(hcd);
2033         }
2034         return status;
2035 }
2036
2037 #endif  /* CONFIG_PM */
2038
2039 #ifdef  CONFIG_USB_SUSPEND
2040
2041 /* Workqueue routine for root-hub remote wakeup */
2042 static void hcd_resume_work(struct work_struct *work)
2043 {
2044         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2045         struct usb_device *udev = hcd->self.root_hub;
2046
2047         usb_lock_device(udev);
2048         usb_remote_wakeup(udev);
2049         usb_unlock_device(udev);
2050 }
2051
2052 /**
2053  * usb_hcd_resume_root_hub - called by HCD to resume its root hub 
2054  * @hcd: host controller for this root hub
2055  *
2056  * The USB host controller calls this function when its root hub is
2057  * suspended (with the remote wakeup feature enabled) and a remote
2058  * wakeup request is received.  The routine submits a workqueue request
2059  * to resume the root hub (that is, manage its downstream ports again).
2060  */
2061 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2062 {
2063         unsigned long flags;
2064
2065         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2066         if (hcd->rh_registered) {
2067                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2068                 queue_work(pm_wq, &hcd->wakeup_work);
2069         }
2070         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2071 }
2072 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2073
2074 #endif  /* CONFIG_USB_SUSPEND */
2075
2076 /*-------------------------------------------------------------------------*/
2077
2078 #ifdef  CONFIG_USB_OTG
2079
2080 /**
2081  * usb_bus_start_enum - start immediate enumeration (for OTG)
2082  * @bus: the bus (must use hcd framework)
2083  * @port_num: 1-based number of port; usually bus->otg_port
2084  * Context: in_interrupt()
2085  *
2086  * Starts enumeration, with an immediate reset followed later by
2087  * khubd identifying and possibly configuring the device.
2088  * This is needed by OTG controller drivers, where it helps meet
2089  * HNP protocol timing requirements for starting a port reset.
2090  */
2091 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2092 {
2093         struct usb_hcd          *hcd;
2094         int                     status = -EOPNOTSUPP;
2095
2096         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2097          * boards with root hubs hooked up to internal devices (instead of
2098          * just the OTG port) may need more attention to resetting...
2099          */
2100         hcd = container_of (bus, struct usb_hcd, self);
2101         if (port_num && hcd->driver->start_port_reset)
2102                 status = hcd->driver->start_port_reset(hcd, port_num);
2103
2104         /* run khubd shortly after (first) root port reset finishes;
2105          * it may issue others, until at least 50 msecs have passed.
2106          */
2107         if (status == 0)
2108                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2109         return status;
2110 }
2111 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2112
2113 #endif
2114
2115 /*-------------------------------------------------------------------------*/
2116
2117 /**
2118  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2119  * @irq: the IRQ being raised
2120  * @__hcd: pointer to the HCD whose IRQ is being signaled
2121  *
2122  * If the controller isn't HALTed, calls the driver's irq handler.
2123  * Checks whether the controller is now dead.
2124  */
2125 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2126 {
2127         struct usb_hcd          *hcd = __hcd;
2128         unsigned long           flags;
2129         irqreturn_t             rc;
2130
2131         /* IRQF_DISABLED doesn't work correctly with shared IRQs
2132          * when the first handler doesn't use it.  So let's just
2133          * assume it's never used.
2134          */
2135         local_irq_save(flags);
2136
2137         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) {
2138                 rc = IRQ_NONE;
2139         } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
2140                 rc = IRQ_NONE;
2141         } else {
2142                 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2143                 if (hcd->shared_hcd)
2144                         set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
2145                 rc = IRQ_HANDLED;
2146         }
2147
2148         local_irq_restore(flags);
2149         return rc;
2150 }
2151 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2152
2153 /*-------------------------------------------------------------------------*/
2154
2155 /**
2156  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2157  * @hcd: pointer to the HCD representing the controller
2158  *
2159  * This is called by bus glue to report a USB host controller that died
2160  * while operations may still have been pending.  It's called automatically
2161  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2162  *
2163  * Only call this function with the primary HCD.
2164  */
2165 void usb_hc_died (struct usb_hcd *hcd)
2166 {
2167         unsigned long flags;
2168
2169         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2170
2171         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2172         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2173         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2174         if (hcd->rh_registered) {
2175                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2176
2177                 /* make khubd clean up old urbs and devices */
2178                 usb_set_device_state (hcd->self.root_hub,
2179                                 USB_STATE_NOTATTACHED);
2180                 usb_kick_khubd (hcd->self.root_hub);
2181         }
2182         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2183                 hcd = hcd->shared_hcd;
2184                 if (hcd->rh_registered) {
2185                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2186
2187                         /* make khubd clean up old urbs and devices */
2188                         usb_set_device_state(hcd->self.root_hub,
2189                                         USB_STATE_NOTATTACHED);
2190                         usb_kick_khubd(hcd->self.root_hub);
2191                 }
2192         }
2193         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2194         /* Make sure that the other roothub is also deallocated. */
2195 }
2196 EXPORT_SYMBOL_GPL (usb_hc_died);
2197
2198 /*-------------------------------------------------------------------------*/
2199
2200 /**
2201  * usb_create_shared_hcd - create and initialize an HCD structure
2202  * @driver: HC driver that will use this hcd
2203  * @dev: device for this HC, stored in hcd->self.controller
2204  * @bus_name: value to store in hcd->self.bus_name
2205  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2206  *              PCI device.  Only allocate certain resources for the primary HCD
2207  * Context: !in_interrupt()
2208  *
2209  * Allocate a struct usb_hcd, with extra space at the end for the
2210  * HC driver's private data.  Initialize the generic members of the
2211  * hcd structure.
2212  *
2213  * If memory is unavailable, returns NULL.
2214  */
2215 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2216                 struct device *dev, const char *bus_name,
2217                 struct usb_hcd *primary_hcd)
2218 {
2219         struct usb_hcd *hcd;
2220
2221         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2222         if (!hcd) {
2223                 dev_dbg (dev, "hcd alloc failed\n");
2224                 return NULL;
2225         }
2226         if (primary_hcd == NULL) {
2227                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2228                                 GFP_KERNEL);
2229                 if (!hcd->bandwidth_mutex) {
2230                         kfree(hcd);
2231                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2232                         return NULL;
2233                 }
2234                 mutex_init(hcd->bandwidth_mutex);
2235                 dev_set_drvdata(dev, hcd);
2236         } else {
2237                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2238                 hcd->primary_hcd = primary_hcd;
2239                 primary_hcd->primary_hcd = primary_hcd;
2240                 hcd->shared_hcd = primary_hcd;
2241                 primary_hcd->shared_hcd = hcd;
2242         }
2243
2244         kref_init(&hcd->kref);
2245
2246         usb_bus_init(&hcd->self);
2247         hcd->self.controller = dev;
2248         hcd->self.bus_name = bus_name;
2249         hcd->self.uses_dma = (dev->dma_mask != NULL);
2250
2251         init_timer(&hcd->rh_timer);
2252         hcd->rh_timer.function = rh_timer_func;
2253         hcd->rh_timer.data = (unsigned long) hcd;
2254 #ifdef CONFIG_USB_SUSPEND
2255         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2256 #endif
2257
2258         hcd->driver = driver;
2259         hcd->speed = driver->flags & HCD_MASK;
2260         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2261                         "USB Host Controller";
2262         return hcd;
2263 }
2264 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2265
2266 /**
2267  * usb_create_hcd - create and initialize an HCD structure
2268  * @driver: HC driver that will use this hcd
2269  * @dev: device for this HC, stored in hcd->self.controller
2270  * @bus_name: value to store in hcd->self.bus_name
2271  * Context: !in_interrupt()
2272  *
2273  * Allocate a struct usb_hcd, with extra space at the end for the
2274  * HC driver's private data.  Initialize the generic members of the
2275  * hcd structure.
2276  *
2277  * If memory is unavailable, returns NULL.
2278  */
2279 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2280                 struct device *dev, const char *bus_name)
2281 {
2282         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2283 }
2284 EXPORT_SYMBOL_GPL(usb_create_hcd);
2285
2286 /*
2287  * Roothubs that share one PCI device must also share the bandwidth mutex.
2288  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2289  * deallocated.
2290  *
2291  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2292  * freed.  When hcd_release() is called for the non-primary HCD, set the
2293  * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2294  * freed shortly).
2295  */
2296 static void hcd_release (struct kref *kref)
2297 {
2298         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2299
2300         if (usb_hcd_is_primary_hcd(hcd))
2301                 kfree(hcd->bandwidth_mutex);
2302         else
2303                 hcd->shared_hcd->shared_hcd = NULL;
2304         kfree(hcd);
2305 }
2306
2307 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2308 {
2309         if (hcd)
2310                 kref_get (&hcd->kref);
2311         return hcd;
2312 }
2313 EXPORT_SYMBOL_GPL(usb_get_hcd);
2314
2315 void usb_put_hcd (struct usb_hcd *hcd)
2316 {
2317         if (hcd)
2318                 kref_put (&hcd->kref, hcd_release);
2319 }
2320 EXPORT_SYMBOL_GPL(usb_put_hcd);
2321
2322 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2323 {
2324         if (!hcd->primary_hcd)
2325                 return 1;
2326         return hcd == hcd->primary_hcd;
2327 }
2328 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2329
2330 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2331                 unsigned int irqnum, unsigned long irqflags)
2332 {
2333         int retval;
2334
2335         if (hcd->driver->irq) {
2336
2337                 /* IRQF_DISABLED doesn't work as advertised when used together
2338                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
2339                  * interrupts we can remove it here.
2340                  */
2341                 if (irqflags & IRQF_SHARED)
2342                         irqflags &= ~IRQF_DISABLED;
2343
2344                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2345                                 hcd->driver->description, hcd->self.busnum);
2346                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2347                                 hcd->irq_descr, hcd);
2348                 if (retval != 0) {
2349                         dev_err(hcd->self.controller,
2350                                         "request interrupt %d failed\n",
2351                                         irqnum);
2352                         return retval;
2353                 }
2354                 hcd->irq = irqnum;
2355                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2356                                 (hcd->driver->flags & HCD_MEMORY) ?
2357                                         "io mem" : "io base",
2358                                         (unsigned long long)hcd->rsrc_start);
2359         } else {
2360                 hcd->irq = -1;
2361                 if (hcd->rsrc_start)
2362                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2363                                         (hcd->driver->flags & HCD_MEMORY) ?
2364                                         "io mem" : "io base",
2365                                         (unsigned long long)hcd->rsrc_start);
2366         }
2367         return 0;
2368 }
2369
2370 /**
2371  * usb_add_hcd - finish generic HCD structure initialization and register
2372  * @hcd: the usb_hcd structure to initialize
2373  * @irqnum: Interrupt line to allocate
2374  * @irqflags: Interrupt type flags
2375  *
2376  * Finish the remaining parts of generic HCD initialization: allocate the
2377  * buffers of consistent memory, register the bus, request the IRQ line,
2378  * and call the driver's reset() and start() routines.
2379  */
2380 int usb_add_hcd(struct usb_hcd *hcd,
2381                 unsigned int irqnum, unsigned long irqflags)
2382 {
2383         int retval;
2384         struct usb_device *rhdev;
2385
2386         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2387
2388         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2389         if (authorized_default < 0 || authorized_default > 1)
2390                 hcd->authorized_default = hcd->wireless? 0 : 1;
2391         else
2392                 hcd->authorized_default = authorized_default;
2393         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2394
2395         /* HC is in reset state, but accessible.  Now do the one-time init,
2396          * bottom up so that hcds can customize the root hubs before khubd
2397          * starts talking to them.  (Note, bus id is assigned early too.)
2398          */
2399         if ((retval = hcd_buffer_create(hcd)) != 0) {
2400                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2401                 return retval;
2402         }
2403
2404         if ((retval = usb_register_bus(&hcd->self)) < 0)
2405                 goto err_register_bus;
2406
2407         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2408                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2409                 retval = -ENOMEM;
2410                 goto err_allocate_root_hub;
2411         }
2412         hcd->self.root_hub = rhdev;
2413
2414         switch (hcd->speed) {
2415         case HCD_USB11:
2416                 rhdev->speed = USB_SPEED_FULL;
2417                 break;
2418         case HCD_USB2:
2419                 rhdev->speed = USB_SPEED_HIGH;
2420                 break;
2421         case HCD_USB3:
2422                 rhdev->speed = USB_SPEED_SUPER;
2423                 break;
2424         default:
2425                 retval = -EINVAL;
2426                 goto err_set_rh_speed;
2427         }
2428
2429         /* wakeup flag init defaults to "everything works" for root hubs,
2430          * but drivers can override it in reset() if needed, along with
2431          * recording the overall controller's system wakeup capability.
2432          */
2433         device_init_wakeup(&rhdev->dev, 1);
2434
2435         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2436          * registered.  But since the controller can die at any time,
2437          * let's initialize the flag before touching the hardware.
2438          */
2439         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2440
2441         /* "reset" is misnamed; its role is now one-time init. the controller
2442          * should already have been reset (and boot firmware kicked off etc).
2443          */
2444         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2445                 dev_err(hcd->self.controller, "can't setup\n");
2446                 goto err_hcd_driver_setup;
2447         }
2448         hcd->rh_pollable = 1;
2449
2450         /* NOTE: root hub and controller capabilities may not be the same */
2451         if (device_can_wakeup(hcd->self.controller)
2452                         && device_can_wakeup(&hcd->self.root_hub->dev))
2453                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2454
2455         /* enable irqs just before we start the controller */
2456         if (usb_hcd_is_primary_hcd(hcd)) {
2457                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2458                 if (retval)
2459                         goto err_request_irq;
2460         }
2461
2462         hcd->state = HC_STATE_RUNNING;
2463         retval = hcd->driver->start(hcd);
2464         if (retval < 0) {
2465                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2466                 goto err_hcd_driver_start;
2467         }
2468
2469         /* starting here, usbcore will pay attention to this root hub */
2470         rhdev->bus_mA = min(500u, hcd->power_budget);
2471         if ((retval = register_root_hub(hcd)) != 0)
2472                 goto err_register_root_hub;
2473
2474         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2475         if (retval < 0) {
2476                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2477                        retval);
2478                 goto error_create_attr_group;
2479         }
2480         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2481                 usb_hcd_poll_rh_status(hcd);
2482         return retval;
2483
2484 error_create_attr_group:
2485         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2486         if (HC_IS_RUNNING(hcd->state))
2487                 hcd->state = HC_STATE_QUIESCING;
2488         spin_lock_irq(&hcd_root_hub_lock);
2489         hcd->rh_registered = 0;
2490         spin_unlock_irq(&hcd_root_hub_lock);
2491
2492 #ifdef CONFIG_USB_SUSPEND
2493         cancel_work_sync(&hcd->wakeup_work);
2494 #endif
2495         mutex_lock(&usb_bus_list_lock);
2496         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2497         mutex_unlock(&usb_bus_list_lock);
2498 err_register_root_hub:
2499         hcd->rh_pollable = 0;
2500         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2501         del_timer_sync(&hcd->rh_timer);
2502         hcd->driver->stop(hcd);
2503         hcd->state = HC_STATE_HALT;
2504         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2505         del_timer_sync(&hcd->rh_timer);
2506 err_hcd_driver_start:
2507         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq >= 0)
2508                 free_irq(irqnum, hcd);
2509 err_request_irq:
2510 err_hcd_driver_setup:
2511 err_set_rh_speed:
2512         usb_put_dev(hcd->self.root_hub);
2513 err_allocate_root_hub:
2514         usb_deregister_bus(&hcd->self);
2515 err_register_bus:
2516         hcd_buffer_destroy(hcd);
2517         return retval;
2518
2519 EXPORT_SYMBOL_GPL(usb_add_hcd);
2520
2521 /**
2522  * usb_remove_hcd - shutdown processing for generic HCDs
2523  * @hcd: the usb_hcd structure to remove
2524  * Context: !in_interrupt()
2525  *
2526  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2527  * invoking the HCD's stop() method.
2528  */
2529 void usb_remove_hcd(struct usb_hcd *hcd)
2530 {
2531         struct usb_device *rhdev = hcd->self.root_hub;
2532
2533         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2534
2535         usb_get_dev(rhdev);
2536         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2537
2538         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2539         if (HC_IS_RUNNING (hcd->state))
2540                 hcd->state = HC_STATE_QUIESCING;
2541
2542         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2543         spin_lock_irq (&hcd_root_hub_lock);
2544         hcd->rh_registered = 0;
2545         spin_unlock_irq (&hcd_root_hub_lock);
2546
2547 #ifdef CONFIG_USB_SUSPEND
2548         cancel_work_sync(&hcd->wakeup_work);
2549 #endif
2550
2551         mutex_lock(&usb_bus_list_lock);
2552         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2553         mutex_unlock(&usb_bus_list_lock);
2554
2555         /* Prevent any more root-hub status calls from the timer.
2556          * The HCD might still restart the timer (if a port status change
2557          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2558          * the hub_status_data() callback.
2559          */
2560         hcd->rh_pollable = 0;
2561         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2562         del_timer_sync(&hcd->rh_timer);
2563
2564         hcd->driver->stop(hcd);
2565         hcd->state = HC_STATE_HALT;
2566
2567         /* In case the HCD restarted the timer, stop it again. */
2568         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2569         del_timer_sync(&hcd->rh_timer);
2570
2571         if (usb_hcd_is_primary_hcd(hcd)) {
2572                 if (hcd->irq >= 0)
2573                         free_irq(hcd->irq, hcd);
2574         }
2575
2576         usb_put_dev(hcd->self.root_hub);
2577         usb_deregister_bus(&hcd->self);
2578         hcd_buffer_destroy(hcd);
2579 }
2580 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2581
2582 void
2583 usb_hcd_platform_shutdown(struct platform_device* dev)
2584 {
2585         struct usb_hcd *hcd = platform_get_drvdata(dev);
2586
2587         if (hcd->driver->shutdown)
2588                 hcd->driver->shutdown(hcd);
2589 }
2590 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2591
2592 /*-------------------------------------------------------------------------*/
2593
2594 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2595
2596 struct usb_mon_operations *mon_ops;
2597
2598 /*
2599  * The registration is unlocked.
2600  * We do it this way because we do not want to lock in hot paths.
2601  *
2602  * Notice that the code is minimally error-proof. Because usbmon needs
2603  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2604  */
2605  
2606 int usb_mon_register (struct usb_mon_operations *ops)
2607 {
2608
2609         if (mon_ops)
2610                 return -EBUSY;
2611
2612         mon_ops = ops;
2613         mb();
2614         return 0;
2615 }
2616 EXPORT_SYMBOL_GPL (usb_mon_register);
2617
2618 void usb_mon_deregister (void)
2619 {
2620
2621         if (mon_ops == NULL) {
2622                 printk(KERN_ERR "USB: monitor was not registered\n");
2623                 return;
2624         }
2625         mon_ops = NULL;
2626         mb();
2627 }
2628 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2629
2630 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */