]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/target/target_core_transport.c
target: remove TF_TIMER_STOP
[linux-2.6.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
58
59 static int sub_api_initialized;
60
61 static struct kmem_cache *se_cmd_cache;
62 static struct kmem_cache *se_sess_cache;
63 struct kmem_cache *se_tmr_req_cache;
64 struct kmem_cache *se_ua_cache;
65 struct kmem_cache *t10_pr_reg_cache;
66 struct kmem_cache *t10_alua_lu_gp_cache;
67 struct kmem_cache *t10_alua_lu_gp_mem_cache;
68 struct kmem_cache *t10_alua_tg_pt_gp_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
70
71 static int transport_generic_write_pending(struct se_cmd *);
72 static int transport_processing_thread(void *param);
73 static int __transport_execute_tasks(struct se_device *dev);
74 static void transport_complete_task_attr(struct se_cmd *cmd);
75 static void transport_handle_queue_full(struct se_cmd *cmd,
76                 struct se_device *dev);
77 static void transport_direct_request_timeout(struct se_cmd *cmd);
78 static void transport_free_dev_tasks(struct se_cmd *cmd);
79 static u32 transport_allocate_tasks(struct se_cmd *cmd,
80                 unsigned long long starting_lba,
81                 enum dma_data_direction data_direction,
82                 struct scatterlist *sgl, unsigned int nents);
83 static int transport_generic_get_mem(struct se_cmd *cmd);
84 static void transport_put_cmd(struct se_cmd *cmd);
85 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
86 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
87 static void transport_stop_all_task_timers(struct se_cmd *cmd);
88
89 int init_se_kmem_caches(void)
90 {
91         se_cmd_cache = kmem_cache_create("se_cmd_cache",
92                         sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
93         if (!se_cmd_cache) {
94                 pr_err("kmem_cache_create for struct se_cmd failed\n");
95                 goto out;
96         }
97         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
98                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
99                         0, NULL);
100         if (!se_tmr_req_cache) {
101                 pr_err("kmem_cache_create() for struct se_tmr_req"
102                                 " failed\n");
103                 goto out;
104         }
105         se_sess_cache = kmem_cache_create("se_sess_cache",
106                         sizeof(struct se_session), __alignof__(struct se_session),
107                         0, NULL);
108         if (!se_sess_cache) {
109                 pr_err("kmem_cache_create() for struct se_session"
110                                 " failed\n");
111                 goto out;
112         }
113         se_ua_cache = kmem_cache_create("se_ua_cache",
114                         sizeof(struct se_ua), __alignof__(struct se_ua),
115                         0, NULL);
116         if (!se_ua_cache) {
117                 pr_err("kmem_cache_create() for struct se_ua failed\n");
118                 goto out;
119         }
120         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
121                         sizeof(struct t10_pr_registration),
122                         __alignof__(struct t10_pr_registration), 0, NULL);
123         if (!t10_pr_reg_cache) {
124                 pr_err("kmem_cache_create() for struct t10_pr_registration"
125                                 " failed\n");
126                 goto out;
127         }
128         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
129                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
130                         0, NULL);
131         if (!t10_alua_lu_gp_cache) {
132                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
133                                 " failed\n");
134                 goto out;
135         }
136         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
137                         sizeof(struct t10_alua_lu_gp_member),
138                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
139         if (!t10_alua_lu_gp_mem_cache) {
140                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
141                                 "cache failed\n");
142                 goto out;
143         }
144         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
145                         sizeof(struct t10_alua_tg_pt_gp),
146                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
147         if (!t10_alua_tg_pt_gp_cache) {
148                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
149                                 "cache failed\n");
150                 goto out;
151         }
152         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
153                         "t10_alua_tg_pt_gp_mem_cache",
154                         sizeof(struct t10_alua_tg_pt_gp_member),
155                         __alignof__(struct t10_alua_tg_pt_gp_member),
156                         0, NULL);
157         if (!t10_alua_tg_pt_gp_mem_cache) {
158                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
159                                 "mem_t failed\n");
160                 goto out;
161         }
162
163         return 0;
164 out:
165         if (se_cmd_cache)
166                 kmem_cache_destroy(se_cmd_cache);
167         if (se_tmr_req_cache)
168                 kmem_cache_destroy(se_tmr_req_cache);
169         if (se_sess_cache)
170                 kmem_cache_destroy(se_sess_cache);
171         if (se_ua_cache)
172                 kmem_cache_destroy(se_ua_cache);
173         if (t10_pr_reg_cache)
174                 kmem_cache_destroy(t10_pr_reg_cache);
175         if (t10_alua_lu_gp_cache)
176                 kmem_cache_destroy(t10_alua_lu_gp_cache);
177         if (t10_alua_lu_gp_mem_cache)
178                 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
179         if (t10_alua_tg_pt_gp_cache)
180                 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
181         if (t10_alua_tg_pt_gp_mem_cache)
182                 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
183         return -ENOMEM;
184 }
185
186 void release_se_kmem_caches(void)
187 {
188         kmem_cache_destroy(se_cmd_cache);
189         kmem_cache_destroy(se_tmr_req_cache);
190         kmem_cache_destroy(se_sess_cache);
191         kmem_cache_destroy(se_ua_cache);
192         kmem_cache_destroy(t10_pr_reg_cache);
193         kmem_cache_destroy(t10_alua_lu_gp_cache);
194         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
195         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
196         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
197 }
198
199 /* This code ensures unique mib indexes are handed out. */
200 static DEFINE_SPINLOCK(scsi_mib_index_lock);
201 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
202
203 /*
204  * Allocate a new row index for the entry type specified
205  */
206 u32 scsi_get_new_index(scsi_index_t type)
207 {
208         u32 new_index;
209
210         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
211
212         spin_lock(&scsi_mib_index_lock);
213         new_index = ++scsi_mib_index[type];
214         spin_unlock(&scsi_mib_index_lock);
215
216         return new_index;
217 }
218
219 void transport_init_queue_obj(struct se_queue_obj *qobj)
220 {
221         atomic_set(&qobj->queue_cnt, 0);
222         INIT_LIST_HEAD(&qobj->qobj_list);
223         init_waitqueue_head(&qobj->thread_wq);
224         spin_lock_init(&qobj->cmd_queue_lock);
225 }
226 EXPORT_SYMBOL(transport_init_queue_obj);
227
228 static int transport_subsystem_reqmods(void)
229 {
230         int ret;
231
232         ret = request_module("target_core_iblock");
233         if (ret != 0)
234                 pr_err("Unable to load target_core_iblock\n");
235
236         ret = request_module("target_core_file");
237         if (ret != 0)
238                 pr_err("Unable to load target_core_file\n");
239
240         ret = request_module("target_core_pscsi");
241         if (ret != 0)
242                 pr_err("Unable to load target_core_pscsi\n");
243
244         ret = request_module("target_core_stgt");
245         if (ret != 0)
246                 pr_err("Unable to load target_core_stgt\n");
247
248         return 0;
249 }
250
251 int transport_subsystem_check_init(void)
252 {
253         int ret;
254
255         if (sub_api_initialized)
256                 return 0;
257         /*
258          * Request the loading of known TCM subsystem plugins..
259          */
260         ret = transport_subsystem_reqmods();
261         if (ret < 0)
262                 return ret;
263
264         sub_api_initialized = 1;
265         return 0;
266 }
267
268 struct se_session *transport_init_session(void)
269 {
270         struct se_session *se_sess;
271
272         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
273         if (!se_sess) {
274                 pr_err("Unable to allocate struct se_session from"
275                                 " se_sess_cache\n");
276                 return ERR_PTR(-ENOMEM);
277         }
278         INIT_LIST_HEAD(&se_sess->sess_list);
279         INIT_LIST_HEAD(&se_sess->sess_acl_list);
280
281         return se_sess;
282 }
283 EXPORT_SYMBOL(transport_init_session);
284
285 /*
286  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
287  */
288 void __transport_register_session(
289         struct se_portal_group *se_tpg,
290         struct se_node_acl *se_nacl,
291         struct se_session *se_sess,
292         void *fabric_sess_ptr)
293 {
294         unsigned char buf[PR_REG_ISID_LEN];
295
296         se_sess->se_tpg = se_tpg;
297         se_sess->fabric_sess_ptr = fabric_sess_ptr;
298         /*
299          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
300          *
301          * Only set for struct se_session's that will actually be moving I/O.
302          * eg: *NOT* discovery sessions.
303          */
304         if (se_nacl) {
305                 /*
306                  * If the fabric module supports an ISID based TransportID,
307                  * save this value in binary from the fabric I_T Nexus now.
308                  */
309                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
310                         memset(&buf[0], 0, PR_REG_ISID_LEN);
311                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
312                                         &buf[0], PR_REG_ISID_LEN);
313                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
314                 }
315                 spin_lock_irq(&se_nacl->nacl_sess_lock);
316                 /*
317                  * The se_nacl->nacl_sess pointer will be set to the
318                  * last active I_T Nexus for each struct se_node_acl.
319                  */
320                 se_nacl->nacl_sess = se_sess;
321
322                 list_add_tail(&se_sess->sess_acl_list,
323                               &se_nacl->acl_sess_list);
324                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
325         }
326         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
327
328         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
329                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
330 }
331 EXPORT_SYMBOL(__transport_register_session);
332
333 void transport_register_session(
334         struct se_portal_group *se_tpg,
335         struct se_node_acl *se_nacl,
336         struct se_session *se_sess,
337         void *fabric_sess_ptr)
338 {
339         spin_lock_bh(&se_tpg->session_lock);
340         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
341         spin_unlock_bh(&se_tpg->session_lock);
342 }
343 EXPORT_SYMBOL(transport_register_session);
344
345 void transport_deregister_session_configfs(struct se_session *se_sess)
346 {
347         struct se_node_acl *se_nacl;
348         unsigned long flags;
349         /*
350          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
351          */
352         se_nacl = se_sess->se_node_acl;
353         if (se_nacl) {
354                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
355                 list_del(&se_sess->sess_acl_list);
356                 /*
357                  * If the session list is empty, then clear the pointer.
358                  * Otherwise, set the struct se_session pointer from the tail
359                  * element of the per struct se_node_acl active session list.
360                  */
361                 if (list_empty(&se_nacl->acl_sess_list))
362                         se_nacl->nacl_sess = NULL;
363                 else {
364                         se_nacl->nacl_sess = container_of(
365                                         se_nacl->acl_sess_list.prev,
366                                         struct se_session, sess_acl_list);
367                 }
368                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
369         }
370 }
371 EXPORT_SYMBOL(transport_deregister_session_configfs);
372
373 void transport_free_session(struct se_session *se_sess)
374 {
375         kmem_cache_free(se_sess_cache, se_sess);
376 }
377 EXPORT_SYMBOL(transport_free_session);
378
379 void transport_deregister_session(struct se_session *se_sess)
380 {
381         struct se_portal_group *se_tpg = se_sess->se_tpg;
382         struct se_node_acl *se_nacl;
383         unsigned long flags;
384
385         if (!se_tpg) {
386                 transport_free_session(se_sess);
387                 return;
388         }
389
390         spin_lock_irqsave(&se_tpg->session_lock, flags);
391         list_del(&se_sess->sess_list);
392         se_sess->se_tpg = NULL;
393         se_sess->fabric_sess_ptr = NULL;
394         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
395
396         /*
397          * Determine if we need to do extra work for this initiator node's
398          * struct se_node_acl if it had been previously dynamically generated.
399          */
400         se_nacl = se_sess->se_node_acl;
401         if (se_nacl) {
402                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
403                 if (se_nacl->dynamic_node_acl) {
404                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
405                                         se_tpg)) {
406                                 list_del(&se_nacl->acl_list);
407                                 se_tpg->num_node_acls--;
408                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
409
410                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
411                                 core_free_device_list_for_node(se_nacl, se_tpg);
412                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
413                                                 se_nacl);
414                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
415                         }
416                 }
417                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
418         }
419
420         transport_free_session(se_sess);
421
422         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
423                 se_tpg->se_tpg_tfo->get_fabric_name());
424 }
425 EXPORT_SYMBOL(transport_deregister_session);
426
427 /*
428  * Called with cmd->t_state_lock held.
429  */
430 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
431 {
432         struct se_device *dev = cmd->se_dev;
433         struct se_task *task;
434         unsigned long flags;
435
436         if (!dev)
437                 return;
438
439         list_for_each_entry(task, &cmd->t_task_list, t_list) {
440                 if (task->task_flags & TF_ACTIVE)
441                         continue;
442
443                 if (!atomic_read(&task->task_state_active))
444                         continue;
445
446                 spin_lock_irqsave(&dev->execute_task_lock, flags);
447                 list_del(&task->t_state_list);
448                 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
449                         cmd->se_tfo->get_task_tag(cmd), dev, task);
450                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
451
452                 atomic_set(&task->task_state_active, 0);
453                 atomic_dec(&cmd->t_task_cdbs_ex_left);
454         }
455 }
456
457 /*      transport_cmd_check_stop():
458  *
459  *      'transport_off = 1' determines if t_transport_active should be cleared.
460  *      'transport_off = 2' determines if task_dev_state should be removed.
461  *
462  *      A non-zero u8 t_state sets cmd->t_state.
463  *      Returns 1 when command is stopped, else 0.
464  */
465 static int transport_cmd_check_stop(
466         struct se_cmd *cmd,
467         int transport_off,
468         u8 t_state)
469 {
470         unsigned long flags;
471
472         spin_lock_irqsave(&cmd->t_state_lock, flags);
473         /*
474          * Determine if IOCTL context caller in requesting the stopping of this
475          * command for LUN shutdown purposes.
476          */
477         if (atomic_read(&cmd->transport_lun_stop)) {
478                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
479                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
480                         cmd->se_tfo->get_task_tag(cmd));
481
482                 cmd->deferred_t_state = cmd->t_state;
483                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
484                 atomic_set(&cmd->t_transport_active, 0);
485                 if (transport_off == 2)
486                         transport_all_task_dev_remove_state(cmd);
487                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
488
489                 complete(&cmd->transport_lun_stop_comp);
490                 return 1;
491         }
492         /*
493          * Determine if frontend context caller is requesting the stopping of
494          * this command for frontend exceptions.
495          */
496         if (atomic_read(&cmd->t_transport_stop)) {
497                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
498                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
499                         cmd->se_tfo->get_task_tag(cmd));
500
501                 cmd->deferred_t_state = cmd->t_state;
502                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
503                 if (transport_off == 2)
504                         transport_all_task_dev_remove_state(cmd);
505
506                 /*
507                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
508                  * to FE.
509                  */
510                 if (transport_off == 2)
511                         cmd->se_lun = NULL;
512                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
513
514                 complete(&cmd->t_transport_stop_comp);
515                 return 1;
516         }
517         if (transport_off) {
518                 atomic_set(&cmd->t_transport_active, 0);
519                 if (transport_off == 2) {
520                         transport_all_task_dev_remove_state(cmd);
521                         /*
522                          * Clear struct se_cmd->se_lun before the transport_off == 2
523                          * handoff to fabric module.
524                          */
525                         cmd->se_lun = NULL;
526                         /*
527                          * Some fabric modules like tcm_loop can release
528                          * their internally allocated I/O reference now and
529                          * struct se_cmd now.
530                          */
531                         if (cmd->se_tfo->check_stop_free != NULL) {
532                                 spin_unlock_irqrestore(
533                                         &cmd->t_state_lock, flags);
534
535                                 cmd->se_tfo->check_stop_free(cmd);
536                                 return 1;
537                         }
538                 }
539                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
540
541                 return 0;
542         } else if (t_state)
543                 cmd->t_state = t_state;
544         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545
546         return 0;
547 }
548
549 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
550 {
551         return transport_cmd_check_stop(cmd, 2, 0);
552 }
553
554 static void transport_lun_remove_cmd(struct se_cmd *cmd)
555 {
556         struct se_lun *lun = cmd->se_lun;
557         unsigned long flags;
558
559         if (!lun)
560                 return;
561
562         spin_lock_irqsave(&cmd->t_state_lock, flags);
563         if (!atomic_read(&cmd->transport_dev_active)) {
564                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
565                 goto check_lun;
566         }
567         atomic_set(&cmd->transport_dev_active, 0);
568         transport_all_task_dev_remove_state(cmd);
569         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
570
571
572 check_lun:
573         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
574         if (atomic_read(&cmd->transport_lun_active)) {
575                 list_del(&cmd->se_lun_node);
576                 atomic_set(&cmd->transport_lun_active, 0);
577 #if 0
578                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
579                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
580 #endif
581         }
582         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
583 }
584
585 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
586 {
587         if (!cmd->se_tmr_req)
588                 transport_lun_remove_cmd(cmd);
589
590         if (transport_cmd_check_stop_to_fabric(cmd))
591                 return;
592         if (remove) {
593                 transport_remove_cmd_from_queue(cmd);
594                 transport_put_cmd(cmd);
595         }
596 }
597
598 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
599                 bool at_head)
600 {
601         struct se_device *dev = cmd->se_dev;
602         struct se_queue_obj *qobj = &dev->dev_queue_obj;
603         unsigned long flags;
604
605         if (t_state) {
606                 spin_lock_irqsave(&cmd->t_state_lock, flags);
607                 cmd->t_state = t_state;
608                 atomic_set(&cmd->t_transport_active, 1);
609                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
610         }
611
612         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
613
614         /* If the cmd is already on the list, remove it before we add it */
615         if (!list_empty(&cmd->se_queue_node))
616                 list_del(&cmd->se_queue_node);
617         else
618                 atomic_inc(&qobj->queue_cnt);
619
620         if (at_head)
621                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
622         else
623                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
624         atomic_set(&cmd->t_transport_queue_active, 1);
625         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
626
627         wake_up_interruptible(&qobj->thread_wq);
628 }
629
630 static struct se_cmd *
631 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
632 {
633         struct se_cmd *cmd;
634         unsigned long flags;
635
636         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
637         if (list_empty(&qobj->qobj_list)) {
638                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
639                 return NULL;
640         }
641         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
642
643         atomic_set(&cmd->t_transport_queue_active, 0);
644
645         list_del_init(&cmd->se_queue_node);
646         atomic_dec(&qobj->queue_cnt);
647         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
648
649         return cmd;
650 }
651
652 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
653 {
654         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
655         unsigned long flags;
656
657         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
658         if (!atomic_read(&cmd->t_transport_queue_active)) {
659                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
660                 return;
661         }
662         atomic_set(&cmd->t_transport_queue_active, 0);
663         atomic_dec(&qobj->queue_cnt);
664         list_del_init(&cmd->se_queue_node);
665         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
666
667         if (atomic_read(&cmd->t_transport_queue_active)) {
668                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
669                         cmd->se_tfo->get_task_tag(cmd),
670                         atomic_read(&cmd->t_transport_queue_active));
671         }
672 }
673
674 /*
675  * Completion function used by TCM subsystem plugins (such as FILEIO)
676  * for queueing up response from struct se_subsystem_api->do_task()
677  */
678 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
679 {
680         struct se_task *task = list_entry(cmd->t_task_list.next,
681                                 struct se_task, t_list);
682
683         if (good) {
684                 cmd->scsi_status = SAM_STAT_GOOD;
685                 task->task_scsi_status = GOOD;
686         } else {
687                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
688                 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
689                 task->task_se_cmd->transport_error_status =
690                                         PYX_TRANSPORT_ILLEGAL_REQUEST;
691         }
692
693         transport_complete_task(task, good);
694 }
695 EXPORT_SYMBOL(transport_complete_sync_cache);
696
697 /*      transport_complete_task():
698  *
699  *      Called from interrupt and non interrupt context depending
700  *      on the transport plugin.
701  */
702 void transport_complete_task(struct se_task *task, int success)
703 {
704         struct se_cmd *cmd = task->task_se_cmd;
705         struct se_device *dev = cmd->se_dev;
706         int t_state;
707         unsigned long flags;
708 #if 0
709         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
710                         cmd->t_task_cdb[0], dev);
711 #endif
712         if (dev)
713                 atomic_inc(&dev->depth_left);
714
715         spin_lock_irqsave(&cmd->t_state_lock, flags);
716         task->task_flags &= ~TF_ACTIVE;
717
718         /*
719          * See if any sense data exists, if so set the TASK_SENSE flag.
720          * Also check for any other post completion work that needs to be
721          * done by the plugins.
722          */
723         if (dev && dev->transport->transport_complete) {
724                 if (dev->transport->transport_complete(task) != 0) {
725                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
726                         task->task_sense = 1;
727                         success = 1;
728                 }
729         }
730
731         /*
732          * See if we are waiting for outstanding struct se_task
733          * to complete for an exception condition
734          */
735         if (task->task_flags & TF_REQUEST_STOP) {
736                 /*
737                  * Decrement cmd->t_se_count if this task had
738                  * previously thrown its timeout exception handler.
739                  */
740                 if (task->task_flags & TF_TIMEOUT) {
741                         atomic_dec(&cmd->t_se_count);
742                         task->task_flags &= ~TF_TIMEOUT;
743                 }
744                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
745
746                 complete(&task->task_stop_comp);
747                 return;
748         }
749         /*
750          * If the task's timeout handler has fired, use the t_task_cdbs_timeout
751          * left counter to determine when the struct se_cmd is ready to be queued to
752          * the processing thread.
753          */
754         if (task->task_flags & TF_TIMEOUT) {
755                 if (!atomic_dec_and_test(
756                                 &cmd->t_task_cdbs_timeout_left)) {
757                         spin_unlock_irqrestore(&cmd->t_state_lock,
758                                 flags);
759                         return;
760                 }
761                 t_state = TRANSPORT_COMPLETE_TIMEOUT;
762                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
763
764                 transport_add_cmd_to_queue(cmd, t_state, false);
765                 return;
766         }
767         atomic_dec(&cmd->t_task_cdbs_timeout_left);
768
769         /*
770          * Decrement the outstanding t_task_cdbs_left count.  The last
771          * struct se_task from struct se_cmd will complete itself into the
772          * device queue depending upon int success.
773          */
774         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
775                 if (!success)
776                         cmd->t_tasks_failed = 1;
777
778                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
779                 return;
780         }
781
782         if (!success || cmd->t_tasks_failed) {
783                 t_state = TRANSPORT_COMPLETE_FAILURE;
784                 if (!task->task_error_status) {
785                         task->task_error_status =
786                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
787                         cmd->transport_error_status =
788                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
789                 }
790         } else {
791                 atomic_set(&cmd->t_transport_complete, 1);
792                 t_state = TRANSPORT_COMPLETE_OK;
793         }
794         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
795
796         transport_add_cmd_to_queue(cmd, t_state, false);
797 }
798 EXPORT_SYMBOL(transport_complete_task);
799
800 /*
801  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
802  * struct se_task list are ready to be added to the active execution list
803  * struct se_device
804
805  * Called with se_dev_t->execute_task_lock called.
806  */
807 static inline int transport_add_task_check_sam_attr(
808         struct se_task *task,
809         struct se_task *task_prev,
810         struct se_device *dev)
811 {
812         /*
813          * No SAM Task attribute emulation enabled, add to tail of
814          * execution queue
815          */
816         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
817                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
818                 return 0;
819         }
820         /*
821          * HEAD_OF_QUEUE attribute for received CDB, which means
822          * the first task that is associated with a struct se_cmd goes to
823          * head of the struct se_device->execute_task_list, and task_prev
824          * after that for each subsequent task
825          */
826         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
827                 list_add(&task->t_execute_list,
828                                 (task_prev != NULL) ?
829                                 &task_prev->t_execute_list :
830                                 &dev->execute_task_list);
831
832                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
833                                 " in execution queue\n",
834                                 task->task_se_cmd->t_task_cdb[0]);
835                 return 1;
836         }
837         /*
838          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
839          * transitioned from Dermant -> Active state, and are added to the end
840          * of the struct se_device->execute_task_list
841          */
842         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
843         return 0;
844 }
845
846 /*      __transport_add_task_to_execute_queue():
847  *
848  *      Called with se_dev_t->execute_task_lock called.
849  */
850 static void __transport_add_task_to_execute_queue(
851         struct se_task *task,
852         struct se_task *task_prev,
853         struct se_device *dev)
854 {
855         int head_of_queue;
856
857         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
858         atomic_inc(&dev->execute_tasks);
859
860         if (atomic_read(&task->task_state_active))
861                 return;
862         /*
863          * Determine if this task needs to go to HEAD_OF_QUEUE for the
864          * state list as well.  Running with SAM Task Attribute emulation
865          * will always return head_of_queue == 0 here
866          */
867         if (head_of_queue)
868                 list_add(&task->t_state_list, (task_prev) ?
869                                 &task_prev->t_state_list :
870                                 &dev->state_task_list);
871         else
872                 list_add_tail(&task->t_state_list, &dev->state_task_list);
873
874         atomic_set(&task->task_state_active, 1);
875
876         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
877                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
878                 task, dev);
879 }
880
881 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
882 {
883         struct se_device *dev = cmd->se_dev;
884         struct se_task *task;
885         unsigned long flags;
886
887         spin_lock_irqsave(&cmd->t_state_lock, flags);
888         list_for_each_entry(task, &cmd->t_task_list, t_list) {
889                 if (atomic_read(&task->task_state_active))
890                         continue;
891
892                 spin_lock(&dev->execute_task_lock);
893                 list_add_tail(&task->t_state_list, &dev->state_task_list);
894                 atomic_set(&task->task_state_active, 1);
895
896                 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
897                         task->task_se_cmd->se_tfo->get_task_tag(
898                         task->task_se_cmd), task, dev);
899
900                 spin_unlock(&dev->execute_task_lock);
901         }
902         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
903 }
904
905 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
906 {
907         struct se_device *dev = cmd->se_dev;
908         struct se_task *task, *task_prev = NULL;
909         unsigned long flags;
910
911         spin_lock_irqsave(&dev->execute_task_lock, flags);
912         list_for_each_entry(task, &cmd->t_task_list, t_list) {
913                 if (!list_empty(&task->t_execute_list))
914                         continue;
915                 /*
916                  * __transport_add_task_to_execute_queue() handles the
917                  * SAM Task Attribute emulation if enabled
918                  */
919                 __transport_add_task_to_execute_queue(task, task_prev, dev);
920                 task_prev = task;
921         }
922         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
923 }
924
925 void __transport_remove_task_from_execute_queue(struct se_task *task,
926                 struct se_device *dev)
927 {
928         list_del_init(&task->t_execute_list);
929         atomic_dec(&dev->execute_tasks);
930 }
931
932 void transport_remove_task_from_execute_queue(
933         struct se_task *task,
934         struct se_device *dev)
935 {
936         unsigned long flags;
937
938         if (WARN_ON(list_empty(&task->t_execute_list)))
939                 return;
940
941         spin_lock_irqsave(&dev->execute_task_lock, flags);
942         __transport_remove_task_from_execute_queue(task, dev);
943         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
944 }
945
946 /*
947  * Handle QUEUE_FULL / -EAGAIN status
948  */
949
950 static void target_qf_do_work(struct work_struct *work)
951 {
952         struct se_device *dev = container_of(work, struct se_device,
953                                         qf_work_queue);
954         LIST_HEAD(qf_cmd_list);
955         struct se_cmd *cmd, *cmd_tmp;
956
957         spin_lock_irq(&dev->qf_cmd_lock);
958         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
959         spin_unlock_irq(&dev->qf_cmd_lock);
960
961         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
962                 list_del(&cmd->se_qf_node);
963                 atomic_dec(&dev->dev_qf_count);
964                 smp_mb__after_atomic_dec();
965
966                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
967                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
968                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
969                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
970                         : "UNKNOWN");
971
972                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
973         }
974 }
975
976 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
977 {
978         switch (cmd->data_direction) {
979         case DMA_NONE:
980                 return "NONE";
981         case DMA_FROM_DEVICE:
982                 return "READ";
983         case DMA_TO_DEVICE:
984                 return "WRITE";
985         case DMA_BIDIRECTIONAL:
986                 return "BIDI";
987         default:
988                 break;
989         }
990
991         return "UNKNOWN";
992 }
993
994 void transport_dump_dev_state(
995         struct se_device *dev,
996         char *b,
997         int *bl)
998 {
999         *bl += sprintf(b + *bl, "Status: ");
1000         switch (dev->dev_status) {
1001         case TRANSPORT_DEVICE_ACTIVATED:
1002                 *bl += sprintf(b + *bl, "ACTIVATED");
1003                 break;
1004         case TRANSPORT_DEVICE_DEACTIVATED:
1005                 *bl += sprintf(b + *bl, "DEACTIVATED");
1006                 break;
1007         case TRANSPORT_DEVICE_SHUTDOWN:
1008                 *bl += sprintf(b + *bl, "SHUTDOWN");
1009                 break;
1010         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1011         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1012                 *bl += sprintf(b + *bl, "OFFLINE");
1013                 break;
1014         default:
1015                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1016                 break;
1017         }
1018
1019         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
1020                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1021                 dev->queue_depth);
1022         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1023                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1024         *bl += sprintf(b + *bl, "        ");
1025 }
1026
1027 void transport_dump_vpd_proto_id(
1028         struct t10_vpd *vpd,
1029         unsigned char *p_buf,
1030         int p_buf_len)
1031 {
1032         unsigned char buf[VPD_TMP_BUF_SIZE];
1033         int len;
1034
1035         memset(buf, 0, VPD_TMP_BUF_SIZE);
1036         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1037
1038         switch (vpd->protocol_identifier) {
1039         case 0x00:
1040                 sprintf(buf+len, "Fibre Channel\n");
1041                 break;
1042         case 0x10:
1043                 sprintf(buf+len, "Parallel SCSI\n");
1044                 break;
1045         case 0x20:
1046                 sprintf(buf+len, "SSA\n");
1047                 break;
1048         case 0x30:
1049                 sprintf(buf+len, "IEEE 1394\n");
1050                 break;
1051         case 0x40:
1052                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1053                                 " Protocol\n");
1054                 break;
1055         case 0x50:
1056                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1057                 break;
1058         case 0x60:
1059                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1060                 break;
1061         case 0x70:
1062                 sprintf(buf+len, "Automation/Drive Interface Transport"
1063                                 " Protocol\n");
1064                 break;
1065         case 0x80:
1066                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1067                 break;
1068         default:
1069                 sprintf(buf+len, "Unknown 0x%02x\n",
1070                                 vpd->protocol_identifier);
1071                 break;
1072         }
1073
1074         if (p_buf)
1075                 strncpy(p_buf, buf, p_buf_len);
1076         else
1077                 pr_debug("%s", buf);
1078 }
1079
1080 void
1081 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1082 {
1083         /*
1084          * Check if the Protocol Identifier Valid (PIV) bit is set..
1085          *
1086          * from spc3r23.pdf section 7.5.1
1087          */
1088          if (page_83[1] & 0x80) {
1089                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1090                 vpd->protocol_identifier_set = 1;
1091                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1092         }
1093 }
1094 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1095
1096 int transport_dump_vpd_assoc(
1097         struct t10_vpd *vpd,
1098         unsigned char *p_buf,
1099         int p_buf_len)
1100 {
1101         unsigned char buf[VPD_TMP_BUF_SIZE];
1102         int ret = 0;
1103         int len;
1104
1105         memset(buf, 0, VPD_TMP_BUF_SIZE);
1106         len = sprintf(buf, "T10 VPD Identifier Association: ");
1107
1108         switch (vpd->association) {
1109         case 0x00:
1110                 sprintf(buf+len, "addressed logical unit\n");
1111                 break;
1112         case 0x10:
1113                 sprintf(buf+len, "target port\n");
1114                 break;
1115         case 0x20:
1116                 sprintf(buf+len, "SCSI target device\n");
1117                 break;
1118         default:
1119                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1120                 ret = -EINVAL;
1121                 break;
1122         }
1123
1124         if (p_buf)
1125                 strncpy(p_buf, buf, p_buf_len);
1126         else
1127                 pr_debug("%s", buf);
1128
1129         return ret;
1130 }
1131
1132 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1133 {
1134         /*
1135          * The VPD identification association..
1136          *
1137          * from spc3r23.pdf Section 7.6.3.1 Table 297
1138          */
1139         vpd->association = (page_83[1] & 0x30);
1140         return transport_dump_vpd_assoc(vpd, NULL, 0);
1141 }
1142 EXPORT_SYMBOL(transport_set_vpd_assoc);
1143
1144 int transport_dump_vpd_ident_type(
1145         struct t10_vpd *vpd,
1146         unsigned char *p_buf,
1147         int p_buf_len)
1148 {
1149         unsigned char buf[VPD_TMP_BUF_SIZE];
1150         int ret = 0;
1151         int len;
1152
1153         memset(buf, 0, VPD_TMP_BUF_SIZE);
1154         len = sprintf(buf, "T10 VPD Identifier Type: ");
1155
1156         switch (vpd->device_identifier_type) {
1157         case 0x00:
1158                 sprintf(buf+len, "Vendor specific\n");
1159                 break;
1160         case 0x01:
1161                 sprintf(buf+len, "T10 Vendor ID based\n");
1162                 break;
1163         case 0x02:
1164                 sprintf(buf+len, "EUI-64 based\n");
1165                 break;
1166         case 0x03:
1167                 sprintf(buf+len, "NAA\n");
1168                 break;
1169         case 0x04:
1170                 sprintf(buf+len, "Relative target port identifier\n");
1171                 break;
1172         case 0x08:
1173                 sprintf(buf+len, "SCSI name string\n");
1174                 break;
1175         default:
1176                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1177                                 vpd->device_identifier_type);
1178                 ret = -EINVAL;
1179                 break;
1180         }
1181
1182         if (p_buf) {
1183                 if (p_buf_len < strlen(buf)+1)
1184                         return -EINVAL;
1185                 strncpy(p_buf, buf, p_buf_len);
1186         } else {
1187                 pr_debug("%s", buf);
1188         }
1189
1190         return ret;
1191 }
1192
1193 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1194 {
1195         /*
1196          * The VPD identifier type..
1197          *
1198          * from spc3r23.pdf Section 7.6.3.1 Table 298
1199          */
1200         vpd->device_identifier_type = (page_83[1] & 0x0f);
1201         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1202 }
1203 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1204
1205 int transport_dump_vpd_ident(
1206         struct t10_vpd *vpd,
1207         unsigned char *p_buf,
1208         int p_buf_len)
1209 {
1210         unsigned char buf[VPD_TMP_BUF_SIZE];
1211         int ret = 0;
1212
1213         memset(buf, 0, VPD_TMP_BUF_SIZE);
1214
1215         switch (vpd->device_identifier_code_set) {
1216         case 0x01: /* Binary */
1217                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1218                         &vpd->device_identifier[0]);
1219                 break;
1220         case 0x02: /* ASCII */
1221                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1222                         &vpd->device_identifier[0]);
1223                 break;
1224         case 0x03: /* UTF-8 */
1225                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1226                         &vpd->device_identifier[0]);
1227                 break;
1228         default:
1229                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1230                         " 0x%02x", vpd->device_identifier_code_set);
1231                 ret = -EINVAL;
1232                 break;
1233         }
1234
1235         if (p_buf)
1236                 strncpy(p_buf, buf, p_buf_len);
1237         else
1238                 pr_debug("%s", buf);
1239
1240         return ret;
1241 }
1242
1243 int
1244 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1245 {
1246         static const char hex_str[] = "0123456789abcdef";
1247         int j = 0, i = 4; /* offset to start of the identifer */
1248
1249         /*
1250          * The VPD Code Set (encoding)
1251          *
1252          * from spc3r23.pdf Section 7.6.3.1 Table 296
1253          */
1254         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1255         switch (vpd->device_identifier_code_set) {
1256         case 0x01: /* Binary */
1257                 vpd->device_identifier[j++] =
1258                                 hex_str[vpd->device_identifier_type];
1259                 while (i < (4 + page_83[3])) {
1260                         vpd->device_identifier[j++] =
1261                                 hex_str[(page_83[i] & 0xf0) >> 4];
1262                         vpd->device_identifier[j++] =
1263                                 hex_str[page_83[i] & 0x0f];
1264                         i++;
1265                 }
1266                 break;
1267         case 0x02: /* ASCII */
1268         case 0x03: /* UTF-8 */
1269                 while (i < (4 + page_83[3]))
1270                         vpd->device_identifier[j++] = page_83[i++];
1271                 break;
1272         default:
1273                 break;
1274         }
1275
1276         return transport_dump_vpd_ident(vpd, NULL, 0);
1277 }
1278 EXPORT_SYMBOL(transport_set_vpd_ident);
1279
1280 static void core_setup_task_attr_emulation(struct se_device *dev)
1281 {
1282         /*
1283          * If this device is from Target_Core_Mod/pSCSI, disable the
1284          * SAM Task Attribute emulation.
1285          *
1286          * This is currently not available in upsream Linux/SCSI Target
1287          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1288          */
1289         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1290                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1291                 return;
1292         }
1293
1294         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1295         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1296                 " device\n", dev->transport->name,
1297                 dev->transport->get_device_rev(dev));
1298 }
1299
1300 static void scsi_dump_inquiry(struct se_device *dev)
1301 {
1302         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1303         int i, device_type;
1304         /*
1305          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1306          */
1307         pr_debug("  Vendor: ");
1308         for (i = 0; i < 8; i++)
1309                 if (wwn->vendor[i] >= 0x20)
1310                         pr_debug("%c", wwn->vendor[i]);
1311                 else
1312                         pr_debug(" ");
1313
1314         pr_debug("  Model: ");
1315         for (i = 0; i < 16; i++)
1316                 if (wwn->model[i] >= 0x20)
1317                         pr_debug("%c", wwn->model[i]);
1318                 else
1319                         pr_debug(" ");
1320
1321         pr_debug("  Revision: ");
1322         for (i = 0; i < 4; i++)
1323                 if (wwn->revision[i] >= 0x20)
1324                         pr_debug("%c", wwn->revision[i]);
1325                 else
1326                         pr_debug(" ");
1327
1328         pr_debug("\n");
1329
1330         device_type = dev->transport->get_device_type(dev);
1331         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1332         pr_debug("                 ANSI SCSI revision: %02x\n",
1333                                 dev->transport->get_device_rev(dev));
1334 }
1335
1336 struct se_device *transport_add_device_to_core_hba(
1337         struct se_hba *hba,
1338         struct se_subsystem_api *transport,
1339         struct se_subsystem_dev *se_dev,
1340         u32 device_flags,
1341         void *transport_dev,
1342         struct se_dev_limits *dev_limits,
1343         const char *inquiry_prod,
1344         const char *inquiry_rev)
1345 {
1346         int force_pt;
1347         struct se_device  *dev;
1348
1349         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1350         if (!dev) {
1351                 pr_err("Unable to allocate memory for se_dev_t\n");
1352                 return NULL;
1353         }
1354
1355         transport_init_queue_obj(&dev->dev_queue_obj);
1356         dev->dev_flags          = device_flags;
1357         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1358         dev->dev_ptr            = transport_dev;
1359         dev->se_hba             = hba;
1360         dev->se_sub_dev         = se_dev;
1361         dev->transport          = transport;
1362         atomic_set(&dev->active_cmds, 0);
1363         INIT_LIST_HEAD(&dev->dev_list);
1364         INIT_LIST_HEAD(&dev->dev_sep_list);
1365         INIT_LIST_HEAD(&dev->dev_tmr_list);
1366         INIT_LIST_HEAD(&dev->execute_task_list);
1367         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1368         INIT_LIST_HEAD(&dev->ordered_cmd_list);
1369         INIT_LIST_HEAD(&dev->state_task_list);
1370         INIT_LIST_HEAD(&dev->qf_cmd_list);
1371         spin_lock_init(&dev->execute_task_lock);
1372         spin_lock_init(&dev->delayed_cmd_lock);
1373         spin_lock_init(&dev->ordered_cmd_lock);
1374         spin_lock_init(&dev->state_task_lock);
1375         spin_lock_init(&dev->dev_alua_lock);
1376         spin_lock_init(&dev->dev_reservation_lock);
1377         spin_lock_init(&dev->dev_status_lock);
1378         spin_lock_init(&dev->dev_status_thr_lock);
1379         spin_lock_init(&dev->se_port_lock);
1380         spin_lock_init(&dev->se_tmr_lock);
1381         spin_lock_init(&dev->qf_cmd_lock);
1382
1383         dev->queue_depth        = dev_limits->queue_depth;
1384         atomic_set(&dev->depth_left, dev->queue_depth);
1385         atomic_set(&dev->dev_ordered_id, 0);
1386
1387         se_dev_set_default_attribs(dev, dev_limits);
1388
1389         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1390         dev->creation_time = get_jiffies_64();
1391         spin_lock_init(&dev->stats_lock);
1392
1393         spin_lock(&hba->device_lock);
1394         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1395         hba->dev_count++;
1396         spin_unlock(&hba->device_lock);
1397         /*
1398          * Setup the SAM Task Attribute emulation for struct se_device
1399          */
1400         core_setup_task_attr_emulation(dev);
1401         /*
1402          * Force PR and ALUA passthrough emulation with internal object use.
1403          */
1404         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1405         /*
1406          * Setup the Reservations infrastructure for struct se_device
1407          */
1408         core_setup_reservations(dev, force_pt);
1409         /*
1410          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1411          */
1412         if (core_setup_alua(dev, force_pt) < 0)
1413                 goto out;
1414
1415         /*
1416          * Startup the struct se_device processing thread
1417          */
1418         dev->process_thread = kthread_run(transport_processing_thread, dev,
1419                                           "LIO_%s", dev->transport->name);
1420         if (IS_ERR(dev->process_thread)) {
1421                 pr_err("Unable to create kthread: LIO_%s\n",
1422                         dev->transport->name);
1423                 goto out;
1424         }
1425         /*
1426          * Setup work_queue for QUEUE_FULL
1427          */
1428         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1429         /*
1430          * Preload the initial INQUIRY const values if we are doing
1431          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1432          * passthrough because this is being provided by the backend LLD.
1433          * This is required so that transport_get_inquiry() copies these
1434          * originals once back into DEV_T10_WWN(dev) for the virtual device
1435          * setup.
1436          */
1437         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1438                 if (!inquiry_prod || !inquiry_rev) {
1439                         pr_err("All non TCM/pSCSI plugins require"
1440                                 " INQUIRY consts\n");
1441                         goto out;
1442                 }
1443
1444                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1445                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1446                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1447         }
1448         scsi_dump_inquiry(dev);
1449
1450         return dev;
1451 out:
1452         kthread_stop(dev->process_thread);
1453
1454         spin_lock(&hba->device_lock);
1455         list_del(&dev->dev_list);
1456         hba->dev_count--;
1457         spin_unlock(&hba->device_lock);
1458
1459         se_release_vpd_for_dev(dev);
1460
1461         kfree(dev);
1462
1463         return NULL;
1464 }
1465 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1466
1467 /*      transport_generic_prepare_cdb():
1468  *
1469  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1470  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1471  *      The point of this is since we are mapping iSCSI LUNs to
1472  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1473  *      devices and HBAs for a loop.
1474  */
1475 static inline void transport_generic_prepare_cdb(
1476         unsigned char *cdb)
1477 {
1478         switch (cdb[0]) {
1479         case READ_10: /* SBC - RDProtect */
1480         case READ_12: /* SBC - RDProtect */
1481         case READ_16: /* SBC - RDProtect */
1482         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1483         case VERIFY: /* SBC - VRProtect */
1484         case VERIFY_16: /* SBC - VRProtect */
1485         case WRITE_VERIFY: /* SBC - VRProtect */
1486         case WRITE_VERIFY_12: /* SBC - VRProtect */
1487                 break;
1488         default:
1489                 cdb[1] &= 0x1f; /* clear logical unit number */
1490                 break;
1491         }
1492 }
1493
1494 static struct se_task *
1495 transport_generic_get_task(struct se_cmd *cmd,
1496                 enum dma_data_direction data_direction)
1497 {
1498         struct se_task *task;
1499         struct se_device *dev = cmd->se_dev;
1500
1501         task = dev->transport->alloc_task(cmd->t_task_cdb);
1502         if (!task) {
1503                 pr_err("Unable to allocate struct se_task\n");
1504                 return NULL;
1505         }
1506
1507         INIT_LIST_HEAD(&task->t_list);
1508         INIT_LIST_HEAD(&task->t_execute_list);
1509         INIT_LIST_HEAD(&task->t_state_list);
1510         init_completion(&task->task_stop_comp);
1511         task->task_se_cmd = cmd;
1512         task->task_data_direction = data_direction;
1513
1514         return task;
1515 }
1516
1517 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1518
1519 /*
1520  * Used by fabric modules containing a local struct se_cmd within their
1521  * fabric dependent per I/O descriptor.
1522  */
1523 void transport_init_se_cmd(
1524         struct se_cmd *cmd,
1525         struct target_core_fabric_ops *tfo,
1526         struct se_session *se_sess,
1527         u32 data_length,
1528         int data_direction,
1529         int task_attr,
1530         unsigned char *sense_buffer)
1531 {
1532         INIT_LIST_HEAD(&cmd->se_lun_node);
1533         INIT_LIST_HEAD(&cmd->se_delayed_node);
1534         INIT_LIST_HEAD(&cmd->se_ordered_node);
1535         INIT_LIST_HEAD(&cmd->se_qf_node);
1536         INIT_LIST_HEAD(&cmd->se_queue_node);
1537
1538         INIT_LIST_HEAD(&cmd->t_task_list);
1539         init_completion(&cmd->transport_lun_fe_stop_comp);
1540         init_completion(&cmd->transport_lun_stop_comp);
1541         init_completion(&cmd->t_transport_stop_comp);
1542         spin_lock_init(&cmd->t_state_lock);
1543         atomic_set(&cmd->transport_dev_active, 1);
1544
1545         cmd->se_tfo = tfo;
1546         cmd->se_sess = se_sess;
1547         cmd->data_length = data_length;
1548         cmd->data_direction = data_direction;
1549         cmd->sam_task_attr = task_attr;
1550         cmd->sense_buffer = sense_buffer;
1551 }
1552 EXPORT_SYMBOL(transport_init_se_cmd);
1553
1554 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1555 {
1556         /*
1557          * Check if SAM Task Attribute emulation is enabled for this
1558          * struct se_device storage object
1559          */
1560         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1561                 return 0;
1562
1563         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1564                 pr_debug("SAM Task Attribute ACA"
1565                         " emulation is not supported\n");
1566                 return -EINVAL;
1567         }
1568         /*
1569          * Used to determine when ORDERED commands should go from
1570          * Dormant to Active status.
1571          */
1572         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1573         smp_mb__after_atomic_inc();
1574         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1575                         cmd->se_ordered_id, cmd->sam_task_attr,
1576                         cmd->se_dev->transport->name);
1577         return 0;
1578 }
1579
1580 /*      transport_generic_allocate_tasks():
1581  *
1582  *      Called from fabric RX Thread.
1583  */
1584 int transport_generic_allocate_tasks(
1585         struct se_cmd *cmd,
1586         unsigned char *cdb)
1587 {
1588         int ret;
1589
1590         transport_generic_prepare_cdb(cdb);
1591         /*
1592          * Ensure that the received CDB is less than the max (252 + 8) bytes
1593          * for VARIABLE_LENGTH_CMD
1594          */
1595         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1596                 pr_err("Received SCSI CDB with command_size: %d that"
1597                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1598                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1599                 return -EINVAL;
1600         }
1601         /*
1602          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1603          * allocate the additional extended CDB buffer now..  Otherwise
1604          * setup the pointer from __t_task_cdb to t_task_cdb.
1605          */
1606         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1607                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1608                                                 GFP_KERNEL);
1609                 if (!cmd->t_task_cdb) {
1610                         pr_err("Unable to allocate cmd->t_task_cdb"
1611                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1612                                 scsi_command_size(cdb),
1613                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1614                         return -ENOMEM;
1615                 }
1616         } else
1617                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1618         /*
1619          * Copy the original CDB into cmd->
1620          */
1621         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1622         /*
1623          * Setup the received CDB based on SCSI defined opcodes and
1624          * perform unit attention, persistent reservations and ALUA
1625          * checks for virtual device backends.  The cmd->t_task_cdb
1626          * pointer is expected to be setup before we reach this point.
1627          */
1628         ret = transport_generic_cmd_sequencer(cmd, cdb);
1629         if (ret < 0)
1630                 return ret;
1631         /*
1632          * Check for SAM Task Attribute Emulation
1633          */
1634         if (transport_check_alloc_task_attr(cmd) < 0) {
1635                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1636                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1637                 return -EINVAL;
1638         }
1639         spin_lock(&cmd->se_lun->lun_sep_lock);
1640         if (cmd->se_lun->lun_sep)
1641                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1642         spin_unlock(&cmd->se_lun->lun_sep_lock);
1643         return 0;
1644 }
1645 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1646
1647 static void transport_generic_request_failure(struct se_cmd *,
1648                         struct se_device *, int, int);
1649 /*
1650  * Used by fabric module frontends to queue tasks directly.
1651  * Many only be used from process context only
1652  */
1653 int transport_handle_cdb_direct(
1654         struct se_cmd *cmd)
1655 {
1656         int ret;
1657
1658         if (!cmd->se_lun) {
1659                 dump_stack();
1660                 pr_err("cmd->se_lun is NULL\n");
1661                 return -EINVAL;
1662         }
1663         if (in_interrupt()) {
1664                 dump_stack();
1665                 pr_err("transport_generic_handle_cdb cannot be called"
1666                                 " from interrupt context\n");
1667                 return -EINVAL;
1668         }
1669         /*
1670          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1671          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1672          * in existing usage to ensure that outstanding descriptors are handled
1673          * correctly during shutdown via transport_wait_for_tasks()
1674          *
1675          * Also, we don't take cmd->t_state_lock here as we only expect
1676          * this to be called for initial descriptor submission.
1677          */
1678         cmd->t_state = TRANSPORT_NEW_CMD;
1679         atomic_set(&cmd->t_transport_active, 1);
1680         /*
1681          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1682          * so follow TRANSPORT_NEW_CMD processing thread context usage
1683          * and call transport_generic_request_failure() if necessary..
1684          */
1685         ret = transport_generic_new_cmd(cmd);
1686         if (ret == -EAGAIN)
1687                 return 0;
1688         else if (ret < 0) {
1689                 cmd->transport_error_status = ret;
1690                 transport_generic_request_failure(cmd, NULL, 0,
1691                                 (cmd->data_direction != DMA_TO_DEVICE));
1692         }
1693         return 0;
1694 }
1695 EXPORT_SYMBOL(transport_handle_cdb_direct);
1696
1697 /*
1698  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1699  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1700  * complete setup in TCM process context w/ TFO->new_cmd_map().
1701  */
1702 int transport_generic_handle_cdb_map(
1703         struct se_cmd *cmd)
1704 {
1705         if (!cmd->se_lun) {
1706                 dump_stack();
1707                 pr_err("cmd->se_lun is NULL\n");
1708                 return -EINVAL;
1709         }
1710
1711         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1712         return 0;
1713 }
1714 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1715
1716 /*      transport_generic_handle_data():
1717  *
1718  *
1719  */
1720 int transport_generic_handle_data(
1721         struct se_cmd *cmd)
1722 {
1723         /*
1724          * For the software fabric case, then we assume the nexus is being
1725          * failed/shutdown when signals are pending from the kthread context
1726          * caller, so we return a failure.  For the HW target mode case running
1727          * in interrupt code, the signal_pending() check is skipped.
1728          */
1729         if (!in_interrupt() && signal_pending(current))
1730                 return -EPERM;
1731         /*
1732          * If the received CDB has aleady been ABORTED by the generic
1733          * target engine, we now call transport_check_aborted_status()
1734          * to queue any delated TASK_ABORTED status for the received CDB to the
1735          * fabric module as we are expecting no further incoming DATA OUT
1736          * sequences at this point.
1737          */
1738         if (transport_check_aborted_status(cmd, 1) != 0)
1739                 return 0;
1740
1741         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1742         return 0;
1743 }
1744 EXPORT_SYMBOL(transport_generic_handle_data);
1745
1746 /*      transport_generic_handle_tmr():
1747  *
1748  *
1749  */
1750 int transport_generic_handle_tmr(
1751         struct se_cmd *cmd)
1752 {
1753         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1754         return 0;
1755 }
1756 EXPORT_SYMBOL(transport_generic_handle_tmr);
1757
1758 void transport_generic_free_cmd_intr(
1759         struct se_cmd *cmd)
1760 {
1761         transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR, false);
1762 }
1763 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1764
1765 /*
1766  * If the task is active, request it to be stopped and sleep until it
1767  * has completed.
1768  */
1769 bool target_stop_task(struct se_task *task, unsigned long *flags)
1770 {
1771         struct se_cmd *cmd = task->task_se_cmd;
1772         bool was_active = false;
1773
1774         if (task->task_flags & TF_ACTIVE) {
1775                 task->task_flags |= TF_REQUEST_STOP;
1776                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1777
1778                 pr_debug("Task %p waiting to complete\n", task);
1779                 wait_for_completion(&task->task_stop_comp);
1780                 pr_debug("Task %p stopped successfully\n", task);
1781
1782                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1783                 atomic_dec(&cmd->t_task_cdbs_left);
1784                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1785                 was_active = true;
1786         }
1787
1788         __transport_stop_task_timer(task, flags);
1789         return was_active;
1790 }
1791
1792 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1793 {
1794         struct se_task *task, *task_tmp;
1795         unsigned long flags;
1796         int ret = 0;
1797
1798         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1799                 cmd->se_tfo->get_task_tag(cmd));
1800
1801         /*
1802          * No tasks remain in the execution queue
1803          */
1804         spin_lock_irqsave(&cmd->t_state_lock, flags);
1805         list_for_each_entry_safe(task, task_tmp,
1806                                 &cmd->t_task_list, t_list) {
1807                 pr_debug("Processing task %p\n", task);
1808                 /*
1809                  * If the struct se_task has not been sent and is not active,
1810                  * remove the struct se_task from the execution queue.
1811                  */
1812                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1813                         spin_unlock_irqrestore(&cmd->t_state_lock,
1814                                         flags);
1815                         transport_remove_task_from_execute_queue(task,
1816                                         cmd->se_dev);
1817
1818                         pr_debug("Task %p removed from execute queue\n", task);
1819                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1820                         continue;
1821                 }
1822
1823                 if (!target_stop_task(task, &flags)) {
1824                         pr_debug("Task %p - did nothing\n", task);
1825                         ret++;
1826                 }
1827         }
1828         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1829
1830         return ret;
1831 }
1832
1833 /*
1834  * Handle SAM-esque emulation for generic transport request failures.
1835  */
1836 static void transport_generic_request_failure(
1837         struct se_cmd *cmd,
1838         struct se_device *dev,
1839         int complete,
1840         int sc)
1841 {
1842         int ret = 0;
1843
1844         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1845                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1846                 cmd->t_task_cdb[0]);
1847         pr_debug("-----[ i_state: %d t_state/def_t_state:"
1848                 " %d/%d transport_error_status: %d\n",
1849                 cmd->se_tfo->get_cmd_state(cmd),
1850                 cmd->t_state, cmd->deferred_t_state,
1851                 cmd->transport_error_status);
1852         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1853                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1854                 " t_transport_active: %d t_transport_stop: %d"
1855                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1856                 atomic_read(&cmd->t_task_cdbs_left),
1857                 atomic_read(&cmd->t_task_cdbs_sent),
1858                 atomic_read(&cmd->t_task_cdbs_ex_left),
1859                 atomic_read(&cmd->t_transport_active),
1860                 atomic_read(&cmd->t_transport_stop),
1861                 atomic_read(&cmd->t_transport_sent));
1862
1863         transport_stop_all_task_timers(cmd);
1864
1865         if (dev)
1866                 atomic_inc(&dev->depth_left);
1867         /*
1868          * For SAM Task Attribute emulation for failed struct se_cmd
1869          */
1870         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1871                 transport_complete_task_attr(cmd);
1872
1873         if (complete) {
1874                 transport_direct_request_timeout(cmd);
1875                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1876         }
1877
1878         switch (cmd->transport_error_status) {
1879         case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1880                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1881                 break;
1882         case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1883                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1884                 break;
1885         case PYX_TRANSPORT_INVALID_CDB_FIELD:
1886                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1887                 break;
1888         case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1889                 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1890                 break;
1891         case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1892                 if (!sc)
1893                         transport_new_cmd_failure(cmd);
1894                 /*
1895                  * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1896                  * we force this session to fall back to session
1897                  * recovery.
1898                  */
1899                 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1900                 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1901
1902                 goto check_stop;
1903         case PYX_TRANSPORT_LU_COMM_FAILURE:
1904         case PYX_TRANSPORT_ILLEGAL_REQUEST:
1905                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1906                 break;
1907         case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1908                 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1909                 break;
1910         case PYX_TRANSPORT_WRITE_PROTECTED:
1911                 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1912                 break;
1913         case PYX_TRANSPORT_RESERVATION_CONFLICT:
1914                 /*
1915                  * No SENSE Data payload for this case, set SCSI Status
1916                  * and queue the response to $FABRIC_MOD.
1917                  *
1918                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1919                  */
1920                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1921                 /*
1922                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1923                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1924                  * CONFLICT STATUS.
1925                  *
1926                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1927                  */
1928                 if (cmd->se_sess &&
1929                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1930                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1931                                 cmd->orig_fe_lun, 0x2C,
1932                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1933
1934                 ret = cmd->se_tfo->queue_status(cmd);
1935                 if (ret == -EAGAIN)
1936                         goto queue_full;
1937                 goto check_stop;
1938         case PYX_TRANSPORT_USE_SENSE_REASON:
1939                 /*
1940                  * struct se_cmd->scsi_sense_reason already set
1941                  */
1942                 break;
1943         default:
1944                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1945                         cmd->t_task_cdb[0],
1946                         cmd->transport_error_status);
1947                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1948                 break;
1949         }
1950         /*
1951          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1952          * make the call to transport_send_check_condition_and_sense()
1953          * directly.  Otherwise expect the fabric to make the call to
1954          * transport_send_check_condition_and_sense() after handling
1955          * possible unsoliticied write data payloads.
1956          */
1957         if (!sc && !cmd->se_tfo->new_cmd_map)
1958                 transport_new_cmd_failure(cmd);
1959         else {
1960                 ret = transport_send_check_condition_and_sense(cmd,
1961                                 cmd->scsi_sense_reason, 0);
1962                 if (ret == -EAGAIN)
1963                         goto queue_full;
1964         }
1965
1966 check_stop:
1967         transport_lun_remove_cmd(cmd);
1968         if (!transport_cmd_check_stop_to_fabric(cmd))
1969                 ;
1970         return;
1971
1972 queue_full:
1973         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1974         transport_handle_queue_full(cmd, cmd->se_dev);
1975 }
1976
1977 static void transport_direct_request_timeout(struct se_cmd *cmd)
1978 {
1979         unsigned long flags;
1980
1981         spin_lock_irqsave(&cmd->t_state_lock, flags);
1982         if (!atomic_read(&cmd->t_transport_timeout)) {
1983                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1984                 return;
1985         }
1986         if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
1987                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1988                 return;
1989         }
1990
1991         atomic_sub(atomic_read(&cmd->t_transport_timeout),
1992                    &cmd->t_se_count);
1993         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1994 }
1995
1996 static void transport_generic_request_timeout(struct se_cmd *cmd)
1997 {
1998         unsigned long flags;
1999
2000         /*
2001          * Reset cmd->t_se_count to allow transport_put_cmd()
2002          * to allow last call to free memory resources.
2003          */
2004         spin_lock_irqsave(&cmd->t_state_lock, flags);
2005         if (atomic_read(&cmd->t_transport_timeout) > 1) {
2006                 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2007
2008                 atomic_sub(tmp, &cmd->t_se_count);
2009         }
2010         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2011
2012         transport_put_cmd(cmd);
2013 }
2014
2015 static inline u32 transport_lba_21(unsigned char *cdb)
2016 {
2017         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2018 }
2019
2020 static inline u32 transport_lba_32(unsigned char *cdb)
2021 {
2022         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2023 }
2024
2025 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2026 {
2027         unsigned int __v1, __v2;
2028
2029         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2030         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2031
2032         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2033 }
2034
2035 /*
2036  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2037  */
2038 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2039 {
2040         unsigned int __v1, __v2;
2041
2042         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2043         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2044
2045         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2046 }
2047
2048 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2049 {
2050         unsigned long flags;
2051
2052         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2053         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2054         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2055 }
2056
2057 /*
2058  * Called from interrupt context.
2059  */
2060 static void transport_task_timeout_handler(unsigned long data)
2061 {
2062         struct se_task *task = (struct se_task *)data;
2063         struct se_cmd *cmd = task->task_se_cmd;
2064         unsigned long flags;
2065
2066         pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2067
2068         spin_lock_irqsave(&cmd->t_state_lock, flags);
2069         task->task_flags &= ~TF_TIMER_RUNNING;
2070
2071         /*
2072          * Determine if transport_complete_task() has already been called.
2073          */
2074         if (!(task->task_flags & TF_ACTIVE)) {
2075                 pr_debug("transport task: %p cmd: %p timeout !TF_ACTIVE\n",
2076                          task, cmd);
2077                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2078                 return;
2079         }
2080
2081         atomic_inc(&cmd->t_se_count);
2082         atomic_inc(&cmd->t_transport_timeout);
2083         cmd->t_tasks_failed = 1;
2084
2085         task->task_flags |= TF_TIMEOUT;
2086         task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2087         task->task_scsi_status = 1;
2088
2089         if (task->task_flags & TF_REQUEST_STOP) {
2090                 pr_debug("transport task: %p cmd: %p timeout TF_REQUEST_STOP"
2091                                 " == 1\n", task, cmd);
2092                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2093                 complete(&task->task_stop_comp);
2094                 return;
2095         }
2096
2097         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2098                 pr_debug("transport task: %p cmd: %p timeout non zero"
2099                                 " t_task_cdbs_left\n", task, cmd);
2100                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2101                 return;
2102         }
2103         pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2104                         task, cmd);
2105
2106         cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2107         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2108
2109         transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE, false);
2110 }
2111
2112 /*
2113  * Called with cmd->t_state_lock held.
2114  */
2115 static void transport_start_task_timer(struct se_task *task)
2116 {
2117         struct se_device *dev = task->task_se_cmd->se_dev;
2118         int timeout;
2119
2120         if (task->task_flags & TF_TIMER_RUNNING)
2121                 return;
2122         /*
2123          * If the task_timeout is disabled, exit now.
2124          */
2125         timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2126         if (!timeout)
2127                 return;
2128
2129         init_timer(&task->task_timer);
2130         task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2131         task->task_timer.data = (unsigned long) task;
2132         task->task_timer.function = transport_task_timeout_handler;
2133
2134         task->task_flags |= TF_TIMER_RUNNING;
2135         add_timer(&task->task_timer);
2136 #if 0
2137         pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2138                 " %d\n", task->task_se_cmd, task, timeout);
2139 #endif
2140 }
2141
2142 /*
2143  * Called with spin_lock_irq(&cmd->t_state_lock) held.
2144  */
2145 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2146 {
2147         struct se_cmd *cmd = task->task_se_cmd;
2148
2149         if (!(task->task_flags & TF_TIMER_RUNNING))
2150                 return;
2151
2152         spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2153
2154         del_timer_sync(&task->task_timer);
2155
2156         spin_lock_irqsave(&cmd->t_state_lock, *flags);
2157         task->task_flags &= ~TF_TIMER_RUNNING;
2158 }
2159
2160 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2161 {
2162         struct se_task *task = NULL, *task_tmp;
2163         unsigned long flags;
2164
2165         spin_lock_irqsave(&cmd->t_state_lock, flags);
2166         list_for_each_entry_safe(task, task_tmp,
2167                                 &cmd->t_task_list, t_list)
2168                 __transport_stop_task_timer(task, &flags);
2169         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2170 }
2171
2172 static inline int transport_tcq_window_closed(struct se_device *dev)
2173 {
2174         if (dev->dev_tcq_window_closed++ <
2175                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2176                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2177         } else
2178                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2179
2180         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2181         return 0;
2182 }
2183
2184 /*
2185  * Called from Fabric Module context from transport_execute_tasks()
2186  *
2187  * The return of this function determins if the tasks from struct se_cmd
2188  * get added to the execution queue in transport_execute_tasks(),
2189  * or are added to the delayed or ordered lists here.
2190  */
2191 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2192 {
2193         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2194                 return 1;
2195         /*
2196          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2197          * to allow the passed struct se_cmd list of tasks to the front of the list.
2198          */
2199          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2200                 atomic_inc(&cmd->se_dev->dev_hoq_count);
2201                 smp_mb__after_atomic_inc();
2202                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2203                         " 0x%02x, se_ordered_id: %u\n",
2204                         cmd->t_task_cdb[0],
2205                         cmd->se_ordered_id);
2206                 return 1;
2207         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2208                 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2209                 list_add_tail(&cmd->se_ordered_node,
2210                                 &cmd->se_dev->ordered_cmd_list);
2211                 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2212
2213                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2214                 smp_mb__after_atomic_inc();
2215
2216                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2217                                 " list, se_ordered_id: %u\n",
2218                                 cmd->t_task_cdb[0],
2219                                 cmd->se_ordered_id);
2220                 /*
2221                  * Add ORDERED command to tail of execution queue if
2222                  * no other older commands exist that need to be
2223                  * completed first.
2224                  */
2225                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2226                         return 1;
2227         } else {
2228                 /*
2229                  * For SIMPLE and UNTAGGED Task Attribute commands
2230                  */
2231                 atomic_inc(&cmd->se_dev->simple_cmds);
2232                 smp_mb__after_atomic_inc();
2233         }
2234         /*
2235          * Otherwise if one or more outstanding ORDERED task attribute exist,
2236          * add the dormant task(s) built for the passed struct se_cmd to the
2237          * execution queue and become in Active state for this struct se_device.
2238          */
2239         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2240                 /*
2241                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2242                  * will be drained upon completion of HEAD_OF_QUEUE task.
2243                  */
2244                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2245                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2246                 list_add_tail(&cmd->se_delayed_node,
2247                                 &cmd->se_dev->delayed_cmd_list);
2248                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2249
2250                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2251                         " delayed CMD list, se_ordered_id: %u\n",
2252                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2253                         cmd->se_ordered_id);
2254                 /*
2255                  * Return zero to let transport_execute_tasks() know
2256                  * not to add the delayed tasks to the execution list.
2257                  */
2258                 return 0;
2259         }
2260         /*
2261          * Otherwise, no ORDERED task attributes exist..
2262          */
2263         return 1;
2264 }
2265
2266 /*
2267  * Called from fabric module context in transport_generic_new_cmd() and
2268  * transport_generic_process_write()
2269  */
2270 static int transport_execute_tasks(struct se_cmd *cmd)
2271 {
2272         int add_tasks;
2273
2274         if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2275                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2276                 transport_generic_request_failure(cmd, NULL, 0, 1);
2277                 return 0;
2278         }
2279
2280         /*
2281          * Call transport_cmd_check_stop() to see if a fabric exception
2282          * has occurred that prevents execution.
2283          */
2284         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2285                 /*
2286                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2287                  * attribute for the tasks of the received struct se_cmd CDB
2288                  */
2289                 add_tasks = transport_execute_task_attr(cmd);
2290                 if (!add_tasks)
2291                         goto execute_tasks;
2292                 /*
2293                  * This calls transport_add_tasks_from_cmd() to handle
2294                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2295                  * (if enabled) in __transport_add_task_to_execute_queue() and
2296                  * transport_add_task_check_sam_attr().
2297                  */
2298                 transport_add_tasks_from_cmd(cmd);
2299         }
2300         /*
2301          * Kick the execution queue for the cmd associated struct se_device
2302          * storage object.
2303          */
2304 execute_tasks:
2305         __transport_execute_tasks(cmd->se_dev);
2306         return 0;
2307 }
2308
2309 /*
2310  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2311  * from struct se_device->execute_task_list and
2312  *
2313  * Called from transport_processing_thread()
2314  */
2315 static int __transport_execute_tasks(struct se_device *dev)
2316 {
2317         int error;
2318         struct se_cmd *cmd = NULL;
2319         struct se_task *task = NULL;
2320         unsigned long flags;
2321
2322         /*
2323          * Check if there is enough room in the device and HBA queue to send
2324          * struct se_tasks to the selected transport.
2325          */
2326 check_depth:
2327         if (!atomic_read(&dev->depth_left))
2328                 return transport_tcq_window_closed(dev);
2329
2330         dev->dev_tcq_window_closed = 0;
2331
2332         spin_lock_irq(&dev->execute_task_lock);
2333         if (list_empty(&dev->execute_task_list)) {
2334                 spin_unlock_irq(&dev->execute_task_lock);
2335                 return 0;
2336         }
2337         task = list_first_entry(&dev->execute_task_list,
2338                                 struct se_task, t_execute_list);
2339         __transport_remove_task_from_execute_queue(task, dev);
2340         spin_unlock_irq(&dev->execute_task_lock);
2341
2342         atomic_dec(&dev->depth_left);
2343
2344         cmd = task->task_se_cmd;
2345
2346         spin_lock_irqsave(&cmd->t_state_lock, flags);
2347         task->task_flags |= (TF_ACTIVE | TF_SENT);
2348         atomic_inc(&cmd->t_task_cdbs_sent);
2349
2350         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2351             cmd->t_task_list_num)
2352                 atomic_set(&cmd->transport_sent, 1);
2353
2354         transport_start_task_timer(task);
2355         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2356         /*
2357          * The struct se_cmd->transport_emulate_cdb() function pointer is used
2358          * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2359          * struct se_subsystem_api->do_task() caller below.
2360          */
2361         if (cmd->transport_emulate_cdb) {
2362                 error = cmd->transport_emulate_cdb(cmd);
2363                 if (error != 0) {
2364                         cmd->transport_error_status = error;
2365                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2366                         task->task_flags &= ~TF_ACTIVE;
2367                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2368                         atomic_set(&cmd->transport_sent, 0);
2369                         transport_stop_tasks_for_cmd(cmd);
2370                         transport_generic_request_failure(cmd, dev, 0, 1);
2371                         goto check_depth;
2372                 }
2373                 /*
2374                  * Handle the successful completion for transport_emulate_cdb()
2375                  * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2376                  * Otherwise the caller is expected to complete the task with
2377                  * proper status.
2378                  */
2379                 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2380                         cmd->scsi_status = SAM_STAT_GOOD;
2381                         task->task_scsi_status = GOOD;
2382                         transport_complete_task(task, 1);
2383                 }
2384         } else {
2385                 /*
2386                  * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2387                  * RAMDISK we use the internal transport_emulate_control_cdb() logic
2388                  * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2389                  * LUN emulation code.
2390                  *
2391                  * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2392                  * call ->do_task() directly and let the underlying TCM subsystem plugin
2393                  * code handle the CDB emulation.
2394                  */
2395                 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2396                     (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2397                         error = transport_emulate_control_cdb(task);
2398                 else
2399                         error = dev->transport->do_task(task);
2400
2401                 if (error != 0) {
2402                         cmd->transport_error_status = error;
2403                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2404                         task->task_flags &= ~TF_ACTIVE;
2405                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2406                         atomic_set(&cmd->transport_sent, 0);
2407                         transport_stop_tasks_for_cmd(cmd);
2408                         transport_generic_request_failure(cmd, dev, 0, 1);
2409                 }
2410         }
2411
2412         goto check_depth;
2413
2414         return 0;
2415 }
2416
2417 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2418 {
2419         unsigned long flags;
2420         /*
2421          * Any unsolicited data will get dumped for failed command inside of
2422          * the fabric plugin
2423          */
2424         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2425         se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2426         se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2427         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2428 }
2429
2430 static inline u32 transport_get_sectors_6(
2431         unsigned char *cdb,
2432         struct se_cmd *cmd,
2433         int *ret)
2434 {
2435         struct se_device *dev = cmd->se_dev;
2436
2437         /*
2438          * Assume TYPE_DISK for non struct se_device objects.
2439          * Use 8-bit sector value.
2440          */
2441         if (!dev)
2442                 goto type_disk;
2443
2444         /*
2445          * Use 24-bit allocation length for TYPE_TAPE.
2446          */
2447         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2448                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2449
2450         /*
2451          * Everything else assume TYPE_DISK Sector CDB location.
2452          * Use 8-bit sector value.
2453          */
2454 type_disk:
2455         return (u32)cdb[4];
2456 }
2457
2458 static inline u32 transport_get_sectors_10(
2459         unsigned char *cdb,
2460         struct se_cmd *cmd,
2461         int *ret)
2462 {
2463         struct se_device *dev = cmd->se_dev;
2464
2465         /*
2466          * Assume TYPE_DISK for non struct se_device objects.
2467          * Use 16-bit sector value.
2468          */
2469         if (!dev)
2470                 goto type_disk;
2471
2472         /*
2473          * XXX_10 is not defined in SSC, throw an exception
2474          */
2475         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2476                 *ret = -EINVAL;
2477                 return 0;
2478         }
2479
2480         /*
2481          * Everything else assume TYPE_DISK Sector CDB location.
2482          * Use 16-bit sector value.
2483          */
2484 type_disk:
2485         return (u32)(cdb[7] << 8) + cdb[8];
2486 }
2487
2488 static inline u32 transport_get_sectors_12(
2489         unsigned char *cdb,
2490         struct se_cmd *cmd,
2491         int *ret)
2492 {
2493         struct se_device *dev = cmd->se_dev;
2494
2495         /*
2496          * Assume TYPE_DISK for non struct se_device objects.
2497          * Use 32-bit sector value.
2498          */
2499         if (!dev)
2500                 goto type_disk;
2501
2502         /*
2503          * XXX_12 is not defined in SSC, throw an exception
2504          */
2505         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2506                 *ret = -EINVAL;
2507                 return 0;
2508         }
2509
2510         /*
2511          * Everything else assume TYPE_DISK Sector CDB location.
2512          * Use 32-bit sector value.
2513          */
2514 type_disk:
2515         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2516 }
2517
2518 static inline u32 transport_get_sectors_16(
2519         unsigned char *cdb,
2520         struct se_cmd *cmd,
2521         int *ret)
2522 {
2523         struct se_device *dev = cmd->se_dev;
2524
2525         /*
2526          * Assume TYPE_DISK for non struct se_device objects.
2527          * Use 32-bit sector value.
2528          */
2529         if (!dev)
2530                 goto type_disk;
2531
2532         /*
2533          * Use 24-bit allocation length for TYPE_TAPE.
2534          */
2535         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2536                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2537
2538 type_disk:
2539         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2540                     (cdb[12] << 8) + cdb[13];
2541 }
2542
2543 /*
2544  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2545  */
2546 static inline u32 transport_get_sectors_32(
2547         unsigned char *cdb,
2548         struct se_cmd *cmd,
2549         int *ret)
2550 {
2551         /*
2552          * Assume TYPE_DISK for non struct se_device objects.
2553          * Use 32-bit sector value.
2554          */
2555         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2556                     (cdb[30] << 8) + cdb[31];
2557
2558 }
2559
2560 static inline u32 transport_get_size(
2561         u32 sectors,
2562         unsigned char *cdb,
2563         struct se_cmd *cmd)
2564 {
2565         struct se_device *dev = cmd->se_dev;
2566
2567         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2568                 if (cdb[1] & 1) { /* sectors */
2569                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2570                 } else /* bytes */
2571                         return sectors;
2572         }
2573 #if 0
2574         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2575                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2576                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2577                         dev->transport->name);
2578 #endif
2579         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2580 }
2581
2582 static void transport_xor_callback(struct se_cmd *cmd)
2583 {
2584         unsigned char *buf, *addr;
2585         struct scatterlist *sg;
2586         unsigned int offset;
2587         int i;
2588         int count;
2589         /*
2590          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2591          *
2592          * 1) read the specified logical block(s);
2593          * 2) transfer logical blocks from the data-out buffer;
2594          * 3) XOR the logical blocks transferred from the data-out buffer with
2595          *    the logical blocks read, storing the resulting XOR data in a buffer;
2596          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2597          *    blocks transferred from the data-out buffer; and
2598          * 5) transfer the resulting XOR data to the data-in buffer.
2599          */
2600         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2601         if (!buf) {
2602                 pr_err("Unable to allocate xor_callback buf\n");
2603                 return;
2604         }
2605         /*
2606          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2607          * into the locally allocated *buf
2608          */
2609         sg_copy_to_buffer(cmd->t_data_sg,
2610                           cmd->t_data_nents,
2611                           buf,
2612                           cmd->data_length);
2613
2614         /*
2615          * Now perform the XOR against the BIDI read memory located at
2616          * cmd->t_mem_bidi_list
2617          */
2618
2619         offset = 0;
2620         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2621                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2622                 if (!addr)
2623                         goto out;
2624
2625                 for (i = 0; i < sg->length; i++)
2626                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2627
2628                 offset += sg->length;
2629                 kunmap_atomic(addr, KM_USER0);
2630         }
2631
2632 out:
2633         kfree(buf);
2634 }
2635
2636 /*
2637  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2638  */
2639 static int transport_get_sense_data(struct se_cmd *cmd)
2640 {
2641         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2642         struct se_device *dev = cmd->se_dev;
2643         struct se_task *task = NULL, *task_tmp;
2644         unsigned long flags;
2645         u32 offset = 0;
2646
2647         WARN_ON(!cmd->se_lun);
2648
2649         if (!dev)
2650                 return 0;
2651
2652         spin_lock_irqsave(&cmd->t_state_lock, flags);
2653         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2654                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2655                 return 0;
2656         }
2657
2658         list_for_each_entry_safe(task, task_tmp,
2659                                 &cmd->t_task_list, t_list) {
2660                 if (!task->task_sense)
2661                         continue;
2662
2663                 if (!dev->transport->get_sense_buffer) {
2664                         pr_err("dev->transport->get_sense_buffer"
2665                                         " is NULL\n");
2666                         continue;
2667                 }
2668
2669                 sense_buffer = dev->transport->get_sense_buffer(task);
2670                 if (!sense_buffer) {
2671                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2672                                 " sense buffer for task with sense\n",
2673                                 cmd->se_tfo->get_task_tag(cmd), task);
2674                         continue;
2675                 }
2676                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2677
2678                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2679                                 TRANSPORT_SENSE_BUFFER);
2680
2681                 memcpy(&buffer[offset], sense_buffer,
2682                                 TRANSPORT_SENSE_BUFFER);
2683                 cmd->scsi_status = task->task_scsi_status;
2684                 /* Automatically padded */
2685                 cmd->scsi_sense_length =
2686                                 (TRANSPORT_SENSE_BUFFER + offset);
2687
2688                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2689                                 " and sense\n",
2690                         dev->se_hba->hba_id, dev->transport->name,
2691                                 cmd->scsi_status);
2692                 return 0;
2693         }
2694         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2695
2696         return -1;
2697 }
2698
2699 static int
2700 transport_handle_reservation_conflict(struct se_cmd *cmd)
2701 {
2702         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2703         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2704         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2705         /*
2706          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2707          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2708          * CONFLICT STATUS.
2709          *
2710          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2711          */
2712         if (cmd->se_sess &&
2713             cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2714                 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2715                         cmd->orig_fe_lun, 0x2C,
2716                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2717         return -EINVAL;
2718 }
2719
2720 static inline long long transport_dev_end_lba(struct se_device *dev)
2721 {
2722         return dev->transport->get_blocks(dev) + 1;
2723 }
2724
2725 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2726 {
2727         struct se_device *dev = cmd->se_dev;
2728         u32 sectors;
2729
2730         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2731                 return 0;
2732
2733         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2734
2735         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2736                 pr_err("LBA: %llu Sectors: %u exceeds"
2737                         " transport_dev_end_lba(): %llu\n",
2738                         cmd->t_task_lba, sectors,
2739                         transport_dev_end_lba(dev));
2740                 return -EINVAL;
2741         }
2742
2743         return 0;
2744 }
2745
2746 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2747 {
2748         /*
2749          * Determine if the received WRITE_SAME is used to for direct
2750          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2751          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2752          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2753          */
2754         int passthrough = (dev->transport->transport_type ==
2755                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2756
2757         if (!passthrough) {
2758                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2759                         pr_err("WRITE_SAME PBDATA and LBDATA"
2760                                 " bits not supported for Block Discard"
2761                                 " Emulation\n");
2762                         return -ENOSYS;
2763                 }
2764                 /*
2765                  * Currently for the emulated case we only accept
2766                  * tpws with the UNMAP=1 bit set.
2767                  */
2768                 if (!(flags[0] & 0x08)) {
2769                         pr_err("WRITE_SAME w/o UNMAP bit not"
2770                                 " supported for Block Discard Emulation\n");
2771                         return -ENOSYS;
2772                 }
2773         }
2774
2775         return 0;
2776 }
2777
2778 /*      transport_generic_cmd_sequencer():
2779  *
2780  *      Generic Command Sequencer that should work for most DAS transport
2781  *      drivers.
2782  *
2783  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2784  *      RX Thread.
2785  *
2786  *      FIXME: Need to support other SCSI OPCODES where as well.
2787  */
2788 static int transport_generic_cmd_sequencer(
2789         struct se_cmd *cmd,
2790         unsigned char *cdb)
2791 {
2792         struct se_device *dev = cmd->se_dev;
2793         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2794         int ret = 0, sector_ret = 0, passthrough;
2795         u32 sectors = 0, size = 0, pr_reg_type = 0;
2796         u16 service_action;
2797         u8 alua_ascq = 0;
2798         /*
2799          * Check for an existing UNIT ATTENTION condition
2800          */
2801         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2802                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2803                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2804                 return -EINVAL;
2805         }
2806         /*
2807          * Check status of Asymmetric Logical Unit Assignment port
2808          */
2809         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2810         if (ret != 0) {
2811                 /*
2812                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2813                  * The ALUA additional sense code qualifier (ASCQ) is determined
2814                  * by the ALUA primary or secondary access state..
2815                  */
2816                 if (ret > 0) {
2817 #if 0
2818                         pr_debug("[%s]: ALUA TG Port not available,"
2819                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2820                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2821 #endif
2822                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2823                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2824                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2825                         return -EINVAL;
2826                 }
2827                 goto out_invalid_cdb_field;
2828         }
2829         /*
2830          * Check status for SPC-3 Persistent Reservations
2831          */
2832         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2833                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2834                                         cmd, cdb, pr_reg_type) != 0)
2835                         return transport_handle_reservation_conflict(cmd);
2836                 /*
2837                  * This means the CDB is allowed for the SCSI Initiator port
2838                  * when said port is *NOT* holding the legacy SPC-2 or
2839                  * SPC-3 Persistent Reservation.
2840                  */
2841         }
2842
2843         switch (cdb[0]) {
2844         case READ_6:
2845                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2846                 if (sector_ret)
2847                         goto out_unsupported_cdb;
2848                 size = transport_get_size(sectors, cdb, cmd);
2849                 cmd->t_task_lba = transport_lba_21(cdb);
2850                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2851                 break;
2852         case READ_10:
2853                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2854                 if (sector_ret)
2855                         goto out_unsupported_cdb;
2856                 size = transport_get_size(sectors, cdb, cmd);
2857                 cmd->t_task_lba = transport_lba_32(cdb);
2858                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2859                 break;
2860         case READ_12:
2861                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2862                 if (sector_ret)
2863                         goto out_unsupported_cdb;
2864                 size = transport_get_size(sectors, cdb, cmd);
2865                 cmd->t_task_lba = transport_lba_32(cdb);
2866                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2867                 break;
2868         case READ_16:
2869                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2870                 if (sector_ret)
2871                         goto out_unsupported_cdb;
2872                 size = transport_get_size(sectors, cdb, cmd);
2873                 cmd->t_task_lba = transport_lba_64(cdb);
2874                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2875                 break;
2876         case WRITE_6:
2877                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2878                 if (sector_ret)
2879                         goto out_unsupported_cdb;
2880                 size = transport_get_size(sectors, cdb, cmd);
2881                 cmd->t_task_lba = transport_lba_21(cdb);
2882                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2883                 break;
2884         case WRITE_10:
2885                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2886                 if (sector_ret)
2887                         goto out_unsupported_cdb;
2888                 size = transport_get_size(sectors, cdb, cmd);
2889                 cmd->t_task_lba = transport_lba_32(cdb);
2890                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2891                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2892                 break;
2893         case WRITE_12:
2894                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2895                 if (sector_ret)
2896                         goto out_unsupported_cdb;
2897                 size = transport_get_size(sectors, cdb, cmd);
2898                 cmd->t_task_lba = transport_lba_32(cdb);
2899                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2900                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2901                 break;
2902         case WRITE_16:
2903                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2904                 if (sector_ret)
2905                         goto out_unsupported_cdb;
2906                 size = transport_get_size(sectors, cdb, cmd);
2907                 cmd->t_task_lba = transport_lba_64(cdb);
2908                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2909                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2910                 break;
2911         case XDWRITEREAD_10:
2912                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2913                     !(cmd->t_tasks_bidi))
2914                         goto out_invalid_cdb_field;
2915                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2916                 if (sector_ret)
2917                         goto out_unsupported_cdb;
2918                 size = transport_get_size(sectors, cdb, cmd);
2919                 cmd->t_task_lba = transport_lba_32(cdb);
2920                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2921                 passthrough = (dev->transport->transport_type ==
2922                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2923                 /*
2924                  * Skip the remaining assignments for TCM/PSCSI passthrough
2925                  */
2926                 if (passthrough)
2927                         break;
2928                 /*
2929                  * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
2930                  */
2931                 cmd->transport_complete_callback = &transport_xor_callback;
2932                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2933                 break;
2934         case VARIABLE_LENGTH_CMD:
2935                 service_action = get_unaligned_be16(&cdb[8]);
2936                 /*
2937                  * Determine if this is TCM/PSCSI device and we should disable
2938                  * internal emulation for this CDB.
2939                  */
2940                 passthrough = (dev->transport->transport_type ==
2941                                         TRANSPORT_PLUGIN_PHBA_PDEV);
2942
2943                 switch (service_action) {
2944                 case XDWRITEREAD_32:
2945                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2946                         if (sector_ret)
2947                                 goto out_unsupported_cdb;
2948                         size = transport_get_size(sectors, cdb, cmd);
2949                         /*
2950                          * Use WRITE_32 and READ_32 opcodes for the emulated
2951                          * XDWRITE_READ_32 logic.
2952                          */
2953                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2954                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2955
2956                         /*
2957                          * Skip the remaining assignments for TCM/PSCSI passthrough
2958                          */
2959                         if (passthrough)
2960                                 break;
2961
2962                         /*
2963                          * Setup BIDI XOR callback to be run during
2964                          * transport_generic_complete_ok()
2965                          */
2966                         cmd->transport_complete_callback = &transport_xor_callback;
2967                         cmd->t_tasks_fua = (cdb[10] & 0x8);
2968                         break;
2969                 case WRITE_SAME_32:
2970                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2971                         if (sector_ret)
2972                                 goto out_unsupported_cdb;
2973
2974                         if (sectors)
2975                                 size = transport_get_size(1, cdb, cmd);
2976                         else {
2977                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2978                                        " supported\n");
2979                                 goto out_invalid_cdb_field;
2980                         }
2981
2982                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2983                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2984
2985                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2986                                 goto out_invalid_cdb_field;
2987
2988                         break;
2989                 default:
2990                         pr_err("VARIABLE_LENGTH_CMD service action"
2991                                 " 0x%04x not supported\n", service_action);
2992                         goto out_unsupported_cdb;
2993                 }
2994                 break;
2995         case MAINTENANCE_IN:
2996                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2997                         /* MAINTENANCE_IN from SCC-2 */
2998                         /*
2999                          * Check for emulated MI_REPORT_TARGET_PGS.
3000                          */
3001                         if (cdb[1] == MI_REPORT_TARGET_PGS) {
3002                                 cmd->transport_emulate_cdb =
3003                                 (su_dev->t10_alua.alua_type ==
3004                                  SPC3_ALUA_EMULATED) ?
3005                                 core_emulate_report_target_port_groups :
3006                                 NULL;
3007                         }
3008                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3009                                (cdb[8] << 8) | cdb[9];
3010                 } else {
3011                         /* GPCMD_SEND_KEY from multi media commands */
3012                         size = (cdb[8] << 8) + cdb[9];
3013                 }
3014                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3015                 break;
3016         case MODE_SELECT:
3017                 size = cdb[4];
3018                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3019                 break;
3020         case MODE_SELECT_10:
3021                 size = (cdb[7] << 8) + cdb[8];
3022                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3023                 break;
3024         case MODE_SENSE:
3025                 size = cdb[4];
3026                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3027                 break;
3028         case MODE_SENSE_10:
3029         case GPCMD_READ_BUFFER_CAPACITY:
3030         case GPCMD_SEND_OPC:
3031         case LOG_SELECT:
3032         case LOG_SENSE:
3033                 size = (cdb[7] << 8) + cdb[8];
3034                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3035                 break;
3036         case READ_BLOCK_LIMITS:
3037                 size = READ_BLOCK_LEN;
3038                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3039                 break;
3040         case GPCMD_GET_CONFIGURATION:
3041         case GPCMD_READ_FORMAT_CAPACITIES:
3042         case GPCMD_READ_DISC_INFO:
3043         case GPCMD_READ_TRACK_RZONE_INFO:
3044                 size = (cdb[7] << 8) + cdb[8];
3045                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3046                 break;
3047         case PERSISTENT_RESERVE_IN:
3048         case PERSISTENT_RESERVE_OUT:
3049                 cmd->transport_emulate_cdb =
3050                         (su_dev->t10_pr.res_type ==
3051                          SPC3_PERSISTENT_RESERVATIONS) ?
3052                         core_scsi3_emulate_pr : NULL;
3053                 size = (cdb[7] << 8) + cdb[8];
3054                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3055                 break;
3056         case GPCMD_MECHANISM_STATUS:
3057         case GPCMD_READ_DVD_STRUCTURE:
3058                 size = (cdb[8] << 8) + cdb[9];
3059                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3060                 break;
3061         case READ_POSITION:
3062                 size = READ_POSITION_LEN;
3063                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3064                 break;
3065         case MAINTENANCE_OUT:
3066                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3067                         /* MAINTENANCE_OUT from SCC-2
3068                          *
3069                          * Check for emulated MO_SET_TARGET_PGS.
3070                          */
3071                         if (cdb[1] == MO_SET_TARGET_PGS) {
3072                                 cmd->transport_emulate_cdb =
3073                                 (su_dev->t10_alua.alua_type ==
3074                                         SPC3_ALUA_EMULATED) ?
3075                                 core_emulate_set_target_port_groups :
3076                                 NULL;
3077                         }
3078
3079                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3080                                (cdb[8] << 8) | cdb[9];
3081                 } else  {
3082                         /* GPCMD_REPORT_KEY from multi media commands */
3083                         size = (cdb[8] << 8) + cdb[9];
3084                 }
3085                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3086                 break;
3087         case INQUIRY:
3088                 size = (cdb[3] << 8) + cdb[4];
3089                 /*
3090                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3091                  * See spc4r17 section 5.3
3092                  */
3093                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3094                         cmd->sam_task_attr = MSG_HEAD_TAG;
3095                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3096                 break;
3097         case READ_BUFFER:
3098                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3099                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3100                 break;
3101         case READ_CAPACITY:
3102                 size = READ_CAP_LEN;
3103                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3104                 break;
3105         case READ_MEDIA_SERIAL_NUMBER:
3106         case SECURITY_PROTOCOL_IN:
3107         case SECURITY_PROTOCOL_OUT:
3108                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3109                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3110                 break;
3111         case SERVICE_ACTION_IN:
3112         case ACCESS_CONTROL_IN:
3113         case ACCESS_CONTROL_OUT:
3114         case EXTENDED_COPY:
3115         case READ_ATTRIBUTE:
3116         case RECEIVE_COPY_RESULTS:
3117         case WRITE_ATTRIBUTE:
3118                 size = (cdb[10] << 24) | (cdb[11] << 16) |
3119                        (cdb[12] << 8) | cdb[13];
3120                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3121                 break;
3122         case RECEIVE_DIAGNOSTIC:
3123         case SEND_DIAGNOSTIC:
3124                 size = (cdb[3] << 8) | cdb[4];
3125                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3126                 break;
3127 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3128 #if 0
3129         case GPCMD_READ_CD:
3130                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3131                 size = (2336 * sectors);
3132                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3133                 break;
3134 #endif
3135         case READ_TOC:
3136                 size = cdb[8];
3137                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3138                 break;
3139         case REQUEST_SENSE:
3140                 size = cdb[4];
3141                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3142                 break;
3143         case READ_ELEMENT_STATUS:
3144                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3145                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3146                 break;
3147         case WRITE_BUFFER:
3148                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3149                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3150                 break;
3151         case RESERVE:
3152         case RESERVE_10:
3153                 /*
3154                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3155                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3156                  */
3157                 if (cdb[0] == RESERVE_10)
3158                         size = (cdb[7] << 8) | cdb[8];
3159                 else
3160                         size = cmd->data_length;
3161
3162                 /*
3163                  * Setup the legacy emulated handler for SPC-2 and
3164                  * >= SPC-3 compatible reservation handling (CRH=1)
3165                  * Otherwise, we assume the underlying SCSI logic is
3166                  * is running in SPC_PASSTHROUGH, and wants reservations
3167                  * emulation disabled.
3168                  */
3169                 cmd->transport_emulate_cdb =
3170                                 (su_dev->t10_pr.res_type !=
3171                                  SPC_PASSTHROUGH) ?
3172                                 core_scsi2_emulate_crh : NULL;
3173                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3174                 break;
3175         case RELEASE:
3176         case RELEASE_10:
3177                 /*
3178                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3179                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3180                 */
3181                 if (cdb[0] == RELEASE_10)
3182                         size = (cdb[7] << 8) | cdb[8];
3183                 else
3184                         size = cmd->data_length;
3185
3186                 cmd->transport_emulate_cdb =
3187                                 (su_dev->t10_pr.res_type !=
3188                                  SPC_PASSTHROUGH) ?
3189                                 core_scsi2_emulate_crh : NULL;
3190                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3191                 break;
3192         case SYNCHRONIZE_CACHE:
3193         case 0x91: /* SYNCHRONIZE_CACHE_16: */
3194                 /*
3195                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3196                  */
3197                 if (cdb[0] == SYNCHRONIZE_CACHE) {
3198                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3199                         cmd->t_task_lba = transport_lba_32(cdb);
3200                 } else {
3201                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3202                         cmd->t_task_lba = transport_lba_64(cdb);
3203                 }
3204                 if (sector_ret)
3205                         goto out_unsupported_cdb;
3206
3207                 size = transport_get_size(sectors, cdb, cmd);
3208                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3209
3210                 /*
3211                  * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3212                  */
3213                 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3214                         break;
3215                 /*
3216                  * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3217                  * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3218                  */
3219                 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3220                 /*
3221                  * Check to ensure that LBA + Range does not exceed past end of
3222                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3223                  */
3224                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3225                         if (transport_cmd_get_valid_sectors(cmd) < 0)
3226                                 goto out_invalid_cdb_field;
3227                 }
3228                 break;
3229         case UNMAP:
3230                 size = get_unaligned_be16(&cdb[7]);
3231                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3232                 break;
3233         case WRITE_SAME_16:
3234                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3235                 if (sector_ret)
3236                         goto out_unsupported_cdb;
3237
3238                 if (sectors)
3239                         size = transport_get_size(1, cdb, cmd);
3240                 else {
3241                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3242                         goto out_invalid_cdb_field;
3243                 }
3244
3245                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3246                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3247
3248                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3249                         goto out_invalid_cdb_field;
3250                 break;
3251         case WRITE_SAME:
3252                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3253                 if (sector_ret)
3254                         goto out_unsupported_cdb;
3255
3256                 if (sectors)
3257                         size = transport_get_size(1, cdb, cmd);
3258                 else {
3259                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3260                         goto out_invalid_cdb_field;
3261                 }
3262
3263                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3264                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3265                 /*
3266                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3267                  * of byte 1 bit 3 UNMAP instead of original reserved field
3268                  */
3269                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3270                         goto out_invalid_cdb_field;
3271                 break;
3272         case ALLOW_MEDIUM_REMOVAL:
3273         case GPCMD_CLOSE_TRACK:
3274         case ERASE:
3275         case INITIALIZE_ELEMENT_STATUS:
3276         case GPCMD_LOAD_UNLOAD:
3277         case REZERO_UNIT:
3278         case SEEK_10:
3279         case GPCMD_SET_SPEED:
3280         case SPACE:
3281         case START_STOP:
3282         case TEST_UNIT_READY:
3283         case VERIFY:
3284         case WRITE_FILEMARKS:
3285         case MOVE_MEDIUM:
3286                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3287                 break;
3288         case REPORT_LUNS:
3289                 cmd->transport_emulate_cdb =
3290                                 transport_core_report_lun_response;
3291                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3292                 /*
3293                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3294                  * See spc4r17 section 5.3
3295                  */
3296                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3297                         cmd->sam_task_attr = MSG_HEAD_TAG;
3298                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3299                 break;
3300         default:
3301                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3302                         " 0x%02x, sending CHECK_CONDITION.\n",
3303                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3304                 goto out_unsupported_cdb;
3305         }
3306
3307         if (size != cmd->data_length) {
3308                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3309                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3310                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3311                                 cmd->data_length, size, cdb[0]);
3312
3313                 cmd->cmd_spdtl = size;
3314
3315                 if (cmd->data_direction == DMA_TO_DEVICE) {
3316                         pr_err("Rejecting underflow/overflow"
3317                                         " WRITE data\n");
3318                         goto out_invalid_cdb_field;
3319                 }
3320                 /*
3321                  * Reject READ_* or WRITE_* with overflow/underflow for
3322                  * type SCF_SCSI_DATA_SG_IO_CDB.
3323                  */
3324                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3325                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3326                                 " CDB on non 512-byte sector setup subsystem"
3327                                 " plugin: %s\n", dev->transport->name);
3328                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3329                         goto out_invalid_cdb_field;
3330                 }
3331
3332                 if (size > cmd->data_length) {
3333                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3334                         cmd->residual_count = (size - cmd->data_length);
3335                 } else {
3336                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3337                         cmd->residual_count = (cmd->data_length - size);
3338                 }
3339                 cmd->data_length = size;
3340         }
3341
3342         /* Let's limit control cdbs to a page, for simplicity's sake. */
3343         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3344             size > PAGE_SIZE)
3345                 goto out_invalid_cdb_field;
3346
3347         transport_set_supported_SAM_opcode(cmd);
3348         return ret;
3349
3350 out_unsupported_cdb:
3351         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3352         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3353         return -EINVAL;
3354 out_invalid_cdb_field:
3355         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3356         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3357         return -EINVAL;
3358 }
3359
3360 /*
3361  * Called from transport_generic_complete_ok() and
3362  * transport_generic_request_failure() to determine which dormant/delayed
3363  * and ordered cmds need to have their tasks added to the execution queue.
3364  */
3365 static void transport_complete_task_attr(struct se_cmd *cmd)
3366 {
3367         struct se_device *dev = cmd->se_dev;
3368         struct se_cmd *cmd_p, *cmd_tmp;
3369         int new_active_tasks = 0;
3370
3371         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3372                 atomic_dec(&dev->simple_cmds);
3373                 smp_mb__after_atomic_dec();
3374                 dev->dev_cur_ordered_id++;
3375                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3376                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3377                         cmd->se_ordered_id);
3378         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3379                 atomic_dec(&dev->dev_hoq_count);
3380                 smp_mb__after_atomic_dec();
3381                 dev->dev_cur_ordered_id++;
3382                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3383                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3384                         cmd->se_ordered_id);
3385         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3386                 spin_lock(&dev->ordered_cmd_lock);
3387                 list_del(&cmd->se_ordered_node);
3388                 atomic_dec(&dev->dev_ordered_sync);
3389                 smp_mb__after_atomic_dec();
3390                 spin_unlock(&dev->ordered_cmd_lock);
3391
3392                 dev->dev_cur_ordered_id++;
3393                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3394                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3395         }
3396         /*
3397          * Process all commands up to the last received
3398          * ORDERED task attribute which requires another blocking
3399          * boundary
3400          */
3401         spin_lock(&dev->delayed_cmd_lock);
3402         list_for_each_entry_safe(cmd_p, cmd_tmp,
3403                         &dev->delayed_cmd_list, se_delayed_node) {
3404
3405                 list_del(&cmd_p->se_delayed_node);
3406                 spin_unlock(&dev->delayed_cmd_lock);
3407
3408                 pr_debug("Calling add_tasks() for"
3409                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3410                         " Dormant -> Active, se_ordered_id: %u\n",
3411                         cmd_p->t_task_cdb[0],
3412                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3413
3414                 transport_add_tasks_from_cmd(cmd_p);
3415                 new_active_tasks++;
3416
3417                 spin_lock(&dev->delayed_cmd_lock);
3418                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3419                         break;
3420         }
3421         spin_unlock(&dev->delayed_cmd_lock);
3422         /*
3423          * If new tasks have become active, wake up the transport thread
3424          * to do the processing of the Active tasks.
3425          */
3426         if (new_active_tasks != 0)
3427                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3428 }
3429
3430 static void transport_complete_qf(struct se_cmd *cmd)
3431 {
3432         int ret = 0;
3433
3434         transport_stop_all_task_timers(cmd);
3435         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3436                 transport_complete_task_attr(cmd);
3437
3438         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3439                 ret = cmd->se_tfo->queue_status(cmd);
3440                 if (ret)
3441                         goto out;
3442         }
3443
3444         switch (cmd->data_direction) {
3445         case DMA_FROM_DEVICE:
3446                 ret = cmd->se_tfo->queue_data_in(cmd);
3447                 break;
3448         case DMA_TO_DEVICE:
3449                 if (cmd->t_bidi_data_sg) {
3450                         ret = cmd->se_tfo->queue_data_in(cmd);
3451                         if (ret < 0)
3452                                 break;
3453                 }
3454                 /* Fall through for DMA_TO_DEVICE */
3455         case DMA_NONE:
3456                 ret = cmd->se_tfo->queue_status(cmd);
3457                 break;
3458         default:
3459                 break;
3460         }
3461
3462 out:
3463         if (ret < 0) {
3464                 transport_handle_queue_full(cmd, cmd->se_dev);
3465                 return;
3466         }
3467         transport_lun_remove_cmd(cmd);
3468         transport_cmd_check_stop_to_fabric(cmd);
3469 }
3470
3471 static void transport_handle_queue_full(
3472         struct se_cmd *cmd,
3473         struct se_device *dev)
3474 {
3475         spin_lock_irq(&dev->qf_cmd_lock);
3476         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3477         atomic_inc(&dev->dev_qf_count);
3478         smp_mb__after_atomic_inc();
3479         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3480
3481         schedule_work(&cmd->se_dev->qf_work_queue);
3482 }
3483
3484 static void transport_generic_complete_ok(struct se_cmd *cmd)
3485 {
3486         int reason = 0, ret;
3487         /*
3488          * Check if we need to move delayed/dormant tasks from cmds on the
3489          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3490          * Attribute.
3491          */
3492         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3493                 transport_complete_task_attr(cmd);
3494         /*
3495          * Check to schedule QUEUE_FULL work, or execute an existing
3496          * cmd->transport_qf_callback()
3497          */
3498         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3499                 schedule_work(&cmd->se_dev->qf_work_queue);
3500
3501         /*
3502          * Check if we need to retrieve a sense buffer from
3503          * the struct se_cmd in question.
3504          */
3505         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3506                 if (transport_get_sense_data(cmd) < 0)
3507                         reason = TCM_NON_EXISTENT_LUN;
3508
3509                 /*
3510                  * Only set when an struct se_task->task_scsi_status returned
3511                  * a non GOOD status.
3512                  */
3513                 if (cmd->scsi_status) {
3514                         ret = transport_send_check_condition_and_sense(
3515                                         cmd, reason, 1);
3516                         if (ret == -EAGAIN)
3517                                 goto queue_full;
3518
3519                         transport_lun_remove_cmd(cmd);
3520                         transport_cmd_check_stop_to_fabric(cmd);
3521                         return;
3522                 }
3523         }
3524         /*
3525          * Check for a callback, used by amongst other things
3526          * XDWRITE_READ_10 emulation.
3527          */
3528         if (cmd->transport_complete_callback)
3529                 cmd->transport_complete_callback(cmd);
3530
3531         switch (cmd->data_direction) {
3532         case DMA_FROM_DEVICE:
3533                 spin_lock(&cmd->se_lun->lun_sep_lock);
3534                 if (cmd->se_lun->lun_sep) {
3535                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3536                                         cmd->data_length;
3537                 }
3538                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3539
3540                 ret = cmd->se_tfo->queue_data_in(cmd);
3541                 if (ret == -EAGAIN)
3542                         goto queue_full;
3543                 break;
3544         case DMA_TO_DEVICE:
3545                 spin_lock(&cmd->se_lun->lun_sep_lock);
3546                 if (cmd->se_lun->lun_sep) {
3547                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3548                                 cmd->data_length;
3549                 }
3550                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3551                 /*
3552                  * Check if we need to send READ payload for BIDI-COMMAND
3553                  */
3554                 if (cmd->t_bidi_data_sg) {
3555                         spin_lock(&cmd->se_lun->lun_sep_lock);
3556                         if (cmd->se_lun->lun_sep) {
3557                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3558                                         cmd->data_length;
3559                         }
3560                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3561                         ret = cmd->se_tfo->queue_data_in(cmd);
3562                         if (ret == -EAGAIN)
3563                                 goto queue_full;
3564                         break;
3565                 }
3566                 /* Fall through for DMA_TO_DEVICE */
3567         case DMA_NONE:
3568                 ret = cmd->se_tfo->queue_status(cmd);
3569                 if (ret == -EAGAIN)
3570                         goto queue_full;
3571                 break;
3572         default:
3573                 break;
3574         }
3575
3576         transport_lun_remove_cmd(cmd);
3577         transport_cmd_check_stop_to_fabric(cmd);
3578         return;
3579
3580 queue_full:
3581         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3582                 " data_direction: %d\n", cmd, cmd->data_direction);
3583         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3584         transport_handle_queue_full(cmd, cmd->se_dev);
3585 }
3586
3587 static void transport_free_dev_tasks(struct se_cmd *cmd)
3588 {
3589         struct se_task *task, *task_tmp;
3590         unsigned long flags;
3591         LIST_HEAD(dispose_list);
3592
3593         spin_lock_irqsave(&cmd->t_state_lock, flags);
3594         list_for_each_entry_safe(task, task_tmp,
3595                                 &cmd->t_task_list, t_list) {
3596                 if (!(task->task_flags & TF_ACTIVE))
3597                         list_move_tail(&task->t_list, &dispose_list);
3598         }
3599         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3600
3601         while (!list_empty(&dispose_list)) {
3602                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3603
3604                 kfree(task->task_sg_bidi);
3605                 kfree(task->task_sg);
3606
3607                 list_del(&task->t_list);
3608
3609                 cmd->se_dev->transport->free_task(task);
3610         }
3611 }
3612
3613 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3614 {
3615         struct scatterlist *sg;
3616         int count;
3617
3618         for_each_sg(sgl, sg, nents, count)
3619                 __free_page(sg_page(sg));
3620
3621         kfree(sgl);
3622 }
3623
3624 static inline void transport_free_pages(struct se_cmd *cmd)
3625 {
3626         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3627                 return;
3628
3629         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3630         cmd->t_data_sg = NULL;
3631         cmd->t_data_nents = 0;
3632
3633         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3634         cmd->t_bidi_data_sg = NULL;
3635         cmd->t_bidi_data_nents = 0;
3636 }
3637
3638 /**
3639  * transport_put_cmd - release a reference to a command
3640  * @cmd:       command to release
3641  *
3642  * This routine releases our reference to the command and frees it if possible.
3643  */
3644 static void transport_put_cmd(struct se_cmd *cmd)
3645 {
3646         unsigned long flags;
3647         int free_tasks = 0;
3648
3649         spin_lock_irqsave(&cmd->t_state_lock, flags);
3650         if (atomic_read(&cmd->t_fe_count)) {
3651                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3652                         goto out_busy;
3653         }
3654
3655         if (atomic_read(&cmd->t_se_count)) {
3656                 if (!atomic_dec_and_test(&cmd->t_se_count))
3657                         goto out_busy;
3658         }
3659
3660         if (atomic_read(&cmd->transport_dev_active)) {
3661                 atomic_set(&cmd->transport_dev_active, 0);
3662                 transport_all_task_dev_remove_state(cmd);
3663                 free_tasks = 1;
3664         }
3665         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3666
3667         if (free_tasks != 0)
3668                 transport_free_dev_tasks(cmd);
3669
3670         transport_free_pages(cmd);
3671         transport_release_cmd(cmd);
3672         return;
3673 out_busy:
3674         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3675 }
3676
3677 /*
3678  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3679  * allocating in the core.
3680  * @cmd:  Associated se_cmd descriptor
3681  * @mem:  SGL style memory for TCM WRITE / READ
3682  * @sg_mem_num: Number of SGL elements
3683  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3684  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3685  *
3686  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3687  * of parameters.
3688  */
3689 int transport_generic_map_mem_to_cmd(
3690         struct se_cmd *cmd,
3691         struct scatterlist *sgl,
3692         u32 sgl_count,
3693         struct scatterlist *sgl_bidi,
3694         u32 sgl_bidi_count)
3695 {
3696         if (!sgl || !sgl_count)
3697                 return 0;
3698
3699         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3700             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3701
3702                 cmd->t_data_sg = sgl;
3703                 cmd->t_data_nents = sgl_count;
3704
3705                 if (sgl_bidi && sgl_bidi_count) {
3706                         cmd->t_bidi_data_sg = sgl_bidi;
3707                         cmd->t_bidi_data_nents = sgl_bidi_count;
3708                 }
3709                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3710         }
3711
3712         return 0;
3713 }
3714 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3715
3716 static int transport_new_cmd_obj(struct se_cmd *cmd)
3717 {
3718         struct se_device *dev = cmd->se_dev;
3719         int set_counts = 1, rc, task_cdbs;
3720
3721         /*
3722          * Setup any BIDI READ tasks and memory from
3723          * cmd->t_mem_bidi_list so the READ struct se_tasks
3724          * are queued first for the non pSCSI passthrough case.
3725          */
3726         if (cmd->t_bidi_data_sg &&
3727             (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3728                 rc = transport_allocate_tasks(cmd,
3729                                               cmd->t_task_lba,
3730                                               DMA_FROM_DEVICE,
3731                                               cmd->t_bidi_data_sg,
3732                                               cmd->t_bidi_data_nents);
3733                 if (rc <= 0) {
3734                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3735                         cmd->scsi_sense_reason =
3736                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3737                         return -EINVAL;
3738                 }
3739                 atomic_inc(&cmd->t_fe_count);
3740                 atomic_inc(&cmd->t_se_count);
3741                 set_counts = 0;
3742         }
3743         /*
3744          * Setup the tasks and memory from cmd->t_mem_list
3745          * Note for BIDI transfers this will contain the WRITE payload
3746          */
3747         task_cdbs = transport_allocate_tasks(cmd,
3748                                              cmd->t_task_lba,
3749                                              cmd->data_direction,
3750                                              cmd->t_data_sg,
3751                                              cmd->t_data_nents);
3752         if (task_cdbs <= 0) {
3753                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3754                 cmd->scsi_sense_reason =
3755                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3756                 return -EINVAL;
3757         }
3758
3759         if (set_counts) {
3760                 atomic_inc(&cmd->t_fe_count);
3761                 atomic_inc(&cmd->t_se_count);
3762         }
3763
3764         cmd->t_task_list_num = task_cdbs;
3765
3766         atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3767         atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3768         atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3769         return 0;
3770 }
3771
3772 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3773 {
3774         struct scatterlist *sg = cmd->t_data_sg;
3775
3776         BUG_ON(!sg);
3777         /*
3778          * We need to take into account a possible offset here for fabrics like
3779          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3780          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3781          */
3782         return kmap(sg_page(sg)) + sg->offset;
3783 }
3784 EXPORT_SYMBOL(transport_kmap_first_data_page);
3785
3786 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3787 {
3788         kunmap(sg_page(cmd->t_data_sg));
3789 }
3790 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3791
3792 static int
3793 transport_generic_get_mem(struct se_cmd *cmd)
3794 {
3795         u32 length = cmd->data_length;
3796         unsigned int nents;
3797         struct page *page;
3798         int i = 0;
3799
3800         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3801         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3802         if (!cmd->t_data_sg)
3803                 return -ENOMEM;
3804
3805         cmd->t_data_nents = nents;
3806         sg_init_table(cmd->t_data_sg, nents);
3807
3808         while (length) {
3809                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3810                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3811                 if (!page)
3812                         goto out;
3813
3814                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3815                 length -= page_len;
3816                 i++;
3817         }
3818         return 0;
3819
3820 out:
3821         while (i >= 0) {
3822                 __free_page(sg_page(&cmd->t_data_sg[i]));
3823                 i--;
3824         }
3825         kfree(cmd->t_data_sg);
3826         cmd->t_data_sg = NULL;
3827         return -ENOMEM;
3828 }
3829
3830 /* Reduce sectors if they are too long for the device */
3831 static inline sector_t transport_limit_task_sectors(
3832         struct se_device *dev,
3833         unsigned long long lba,
3834         sector_t sectors)
3835 {
3836         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3837
3838         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3839                 if ((lba + sectors) > transport_dev_end_lba(dev))
3840                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3841
3842         return sectors;
3843 }
3844
3845
3846 /*
3847  * This function can be used by HW target mode drivers to create a linked
3848  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3849  * This is intended to be called during the completion path by TCM Core
3850  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3851  */
3852 void transport_do_task_sg_chain(struct se_cmd *cmd)
3853 {
3854         struct scatterlist *sg_first = NULL;
3855         struct scatterlist *sg_prev = NULL;
3856         int sg_prev_nents = 0;
3857         struct scatterlist *sg;
3858         struct se_task *task;
3859         u32 chained_nents = 0;
3860         int i;
3861
3862         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3863
3864         /*
3865          * Walk the struct se_task list and setup scatterlist chains
3866          * for each contiguously allocated struct se_task->task_sg[].
3867          */
3868         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3869                 if (!task->task_sg)
3870                         continue;
3871
3872                 if (!sg_first) {
3873                         sg_first = task->task_sg;
3874                         chained_nents = task->task_sg_nents;
3875                 } else {
3876                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3877                         chained_nents += task->task_sg_nents;
3878                 }
3879                 /*
3880                  * For the padded tasks, use the extra SGL vector allocated
3881                  * in transport_allocate_data_tasks() for the sg_prev_nents
3882                  * offset into sg_chain() above.
3883                  *
3884                  * We do not need the padding for the last task (or a single
3885                  * task), but in that case we will never use the sg_prev_nents
3886                  * value below which would be incorrect.
3887                  */
3888                 sg_prev_nents = (task->task_sg_nents + 1);
3889                 sg_prev = task->task_sg;
3890         }
3891         /*
3892          * Setup the starting pointer and total t_tasks_sg_linked_no including
3893          * padding SGs for linking and to mark the end.
3894          */
3895         cmd->t_tasks_sg_chained = sg_first;
3896         cmd->t_tasks_sg_chained_no = chained_nents;
3897
3898         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3899                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3900                 cmd->t_tasks_sg_chained_no);
3901
3902         for_each_sg(cmd->t_tasks_sg_chained, sg,
3903                         cmd->t_tasks_sg_chained_no, i) {
3904
3905                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3906                         i, sg, sg_page(sg), sg->length, sg->offset);
3907                 if (sg_is_chain(sg))
3908                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3909                 if (sg_is_last(sg))
3910                         pr_debug("SG: %p sg_is_last=1\n", sg);
3911         }
3912 }
3913 EXPORT_SYMBOL(transport_do_task_sg_chain);
3914
3915 /*
3916  * Break up cmd into chunks transport can handle
3917  */
3918 static int transport_allocate_data_tasks(
3919         struct se_cmd *cmd,
3920         unsigned long long lba,
3921         enum dma_data_direction data_direction,
3922         struct scatterlist *sgl,
3923         unsigned int sgl_nents)
3924 {
3925         struct se_task *task;
3926         struct se_device *dev = cmd->se_dev;
3927         unsigned long flags;
3928         int task_count, i;
3929         sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3930         u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3931         struct scatterlist *sg;
3932         struct scatterlist *cmd_sg;
3933
3934         WARN_ON(cmd->data_length % sector_size);
3935         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3936         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3937         
3938         cmd_sg = sgl;
3939         for (i = 0; i < task_count; i++) {
3940                 unsigned int task_size, task_sg_nents_padded;
3941                 int count;
3942
3943                 task = transport_generic_get_task(cmd, data_direction);
3944                 if (!task)
3945                         return -ENOMEM;
3946
3947                 task->task_lba = lba;
3948                 task->task_sectors = min(sectors, dev_max_sectors);
3949                 task->task_size = task->task_sectors * sector_size;
3950
3951                 /*
3952                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3953                  * in order to calculate the number per task SGL entries
3954                  */
3955                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3956                 /*
3957                  * Check if the fabric module driver is requesting that all
3958                  * struct se_task->task_sg[] be chained together..  If so,
3959                  * then allocate an extra padding SG entry for linking and
3960                  * marking the end of the chained SGL for every task except
3961                  * the last one for (task_count > 1) operation, or skipping
3962                  * the extra padding for the (task_count == 1) case.
3963                  */
3964                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3965                         task_sg_nents_padded = (task->task_sg_nents + 1);
3966                 } else
3967                         task_sg_nents_padded = task->task_sg_nents;
3968
3969                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3970                                         task_sg_nents_padded, GFP_KERNEL);
3971                 if (!task->task_sg) {
3972                         cmd->se_dev->transport->free_task(task);
3973                         return -ENOMEM;
3974                 }
3975
3976                 sg_init_table(task->task_sg, task_sg_nents_padded);
3977
3978                 task_size = task->task_size;
3979
3980                 /* Build new sgl, only up to task_size */
3981                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3982                         if (cmd_sg->length > task_size)
3983                                 break;
3984
3985                         *sg = *cmd_sg;
3986                         task_size -= cmd_sg->length;
3987                         cmd_sg = sg_next(cmd_sg);
3988                 }
3989
3990                 lba += task->task_sectors;
3991                 sectors -= task->task_sectors;
3992
3993                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3994                 list_add_tail(&task->t_list, &cmd->t_task_list);
3995                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3996         }
3997
3998         return task_count;
3999 }
4000
4001 static int
4002 transport_allocate_control_task(struct se_cmd *cmd)
4003 {
4004         struct se_task *task;
4005         unsigned long flags;
4006
4007         task = transport_generic_get_task(cmd, cmd->data_direction);
4008         if (!task)
4009                 return -ENOMEM;
4010
4011         task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4012                                 GFP_KERNEL);
4013         if (!task->task_sg) {
4014                 cmd->se_dev->transport->free_task(task);
4015                 return -ENOMEM;
4016         }
4017
4018         memcpy(task->task_sg, cmd->t_data_sg,
4019                sizeof(struct scatterlist) * cmd->t_data_nents);
4020         task->task_size = cmd->data_length;
4021         task->task_sg_nents = cmd->t_data_nents;
4022
4023         spin_lock_irqsave(&cmd->t_state_lock, flags);
4024         list_add_tail(&task->t_list, &cmd->t_task_list);
4025         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4026
4027         /* Success! Return number of tasks allocated */
4028         return 1;
4029 }
4030
4031 static u32 transport_allocate_tasks(
4032         struct se_cmd *cmd,
4033         unsigned long long lba,
4034         enum dma_data_direction data_direction,
4035         struct scatterlist *sgl,
4036         unsigned int sgl_nents)
4037 {
4038         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4039                 if (transport_cmd_get_valid_sectors(cmd) < 0)
4040                         return -EINVAL;
4041
4042                 return transport_allocate_data_tasks(cmd, lba, data_direction,
4043                                                      sgl, sgl_nents);
4044         } else
4045                 return transport_allocate_control_task(cmd);
4046
4047 }
4048
4049
4050 /*       transport_generic_new_cmd(): Called from transport_processing_thread()
4051  *
4052  *       Allocate storage transport resources from a set of values predefined
4053  *       by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4054  *       Any non zero return here is treated as an "out of resource' op here.
4055  */
4056         /*
4057          * Generate struct se_task(s) and/or their payloads for this CDB.
4058          */
4059 int transport_generic_new_cmd(struct se_cmd *cmd)
4060 {
4061         int ret = 0;
4062
4063         /*
4064          * Determine is the TCM fabric module has already allocated physical
4065          * memory, and is directly calling transport_generic_map_mem_to_cmd()
4066          * beforehand.
4067          */
4068         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4069             cmd->data_length) {
4070                 ret = transport_generic_get_mem(cmd);
4071                 if (ret < 0)
4072                         return ret;
4073         }
4074         /*
4075          * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4076          * control or data CDB types, and perform the map to backend subsystem
4077          * code from SGL memory allocated here by transport_generic_get_mem(), or
4078          * via pre-existing SGL memory setup explictly by fabric module code with
4079          * transport_generic_map_mem_to_cmd().
4080          */
4081         ret = transport_new_cmd_obj(cmd);
4082         if (ret < 0)
4083                 return ret;
4084         /*
4085          * For WRITEs, let the fabric know its buffer is ready..
4086          * This WRITE struct se_cmd (and all of its associated struct se_task's)
4087          * will be added to the struct se_device execution queue after its WRITE
4088          * data has arrived. (ie: It gets handled by the transport processing
4089          * thread a second time)
4090          */
4091         if (cmd->data_direction == DMA_TO_DEVICE) {
4092                 transport_add_tasks_to_state_queue(cmd);
4093                 return transport_generic_write_pending(cmd);
4094         }
4095         /*
4096          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4097          * to the execution queue.
4098          */
4099         transport_execute_tasks(cmd);
4100         return 0;
4101 }
4102 EXPORT_SYMBOL(transport_generic_new_cmd);
4103
4104 /*      transport_generic_process_write():
4105  *
4106  *
4107  */
4108 void transport_generic_process_write(struct se_cmd *cmd)
4109 {
4110         transport_execute_tasks(cmd);
4111 }
4112 EXPORT_SYMBOL(transport_generic_process_write);
4113
4114 static void transport_write_pending_qf(struct se_cmd *cmd)
4115 {
4116         if (cmd->se_tfo->write_pending(cmd) == -EAGAIN) {
4117                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4118                          cmd);
4119                 transport_handle_queue_full(cmd, cmd->se_dev);
4120         }
4121 }
4122
4123 static int transport_generic_write_pending(struct se_cmd *cmd)
4124 {
4125         unsigned long flags;
4126         int ret;
4127
4128         spin_lock_irqsave(&cmd->t_state_lock, flags);
4129         cmd->t_state = TRANSPORT_WRITE_PENDING;
4130         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4131
4132         /*
4133          * Clear the se_cmd for WRITE_PENDING status in order to set
4134          * cmd->t_transport_active=0 so that transport_generic_handle_data
4135          * can be called from HW target mode interrupt code.  This is safe
4136          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4137          * because the se_cmd->se_lun pointer is not being cleared.
4138          */
4139         transport_cmd_check_stop(cmd, 1, 0);
4140
4141         /*
4142          * Call the fabric write_pending function here to let the
4143          * frontend know that WRITE buffers are ready.
4144          */
4145         ret = cmd->se_tfo->write_pending(cmd);
4146         if (ret == -EAGAIN)
4147                 goto queue_full;
4148         else if (ret < 0)
4149                 return ret;
4150
4151         return PYX_TRANSPORT_WRITE_PENDING;
4152
4153 queue_full:
4154         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4155         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4156         transport_handle_queue_full(cmd, cmd->se_dev);
4157         return ret;
4158 }
4159
4160 /**
4161  * transport_release_cmd - free a command
4162  * @cmd:       command to free
4163  *
4164  * This routine unconditionally frees a command, and reference counting
4165  * or list removal must be done in the caller.
4166  */
4167 void transport_release_cmd(struct se_cmd *cmd)
4168 {
4169         BUG_ON(!cmd->se_tfo);
4170
4171         if (cmd->se_tmr_req)
4172                 core_tmr_release_req(cmd->se_tmr_req);
4173         if (cmd->t_task_cdb != cmd->__t_task_cdb)
4174                 kfree(cmd->t_task_cdb);
4175         cmd->se_tfo->release_cmd(cmd);
4176 }
4177 EXPORT_SYMBOL(transport_release_cmd);
4178
4179 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4180 {
4181         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4182                 if (wait_for_tasks && cmd->se_tmr_req)
4183                          transport_wait_for_tasks(cmd);
4184
4185                 transport_release_cmd(cmd);
4186         } else {
4187                 if (wait_for_tasks)
4188                         transport_wait_for_tasks(cmd);
4189
4190                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4191
4192                 if (cmd->se_lun)
4193                         transport_lun_remove_cmd(cmd);
4194
4195                 transport_free_dev_tasks(cmd);
4196
4197                 transport_put_cmd(cmd);
4198         }
4199 }
4200 EXPORT_SYMBOL(transport_generic_free_cmd);
4201
4202 /*      transport_lun_wait_for_tasks():
4203  *
4204  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4205  *      an struct se_lun to be successfully shutdown.
4206  */
4207 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4208 {
4209         unsigned long flags;
4210         int ret;
4211         /*
4212          * If the frontend has already requested this struct se_cmd to
4213          * be stopped, we can safely ignore this struct se_cmd.
4214          */
4215         spin_lock_irqsave(&cmd->t_state_lock, flags);
4216         if (atomic_read(&cmd->t_transport_stop)) {
4217                 atomic_set(&cmd->transport_lun_stop, 0);
4218                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4219                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4220                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4221                 transport_cmd_check_stop(cmd, 1, 0);
4222                 return -EPERM;
4223         }
4224         atomic_set(&cmd->transport_lun_fe_stop, 1);
4225         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4226
4227         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4228
4229         ret = transport_stop_tasks_for_cmd(cmd);
4230
4231         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4232                         " %d\n", cmd, cmd->t_task_list_num, ret);
4233         if (!ret) {
4234                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4235                                 cmd->se_tfo->get_task_tag(cmd));
4236                 wait_for_completion(&cmd->transport_lun_stop_comp);
4237                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4238                                 cmd->se_tfo->get_task_tag(cmd));
4239         }
4240         transport_remove_cmd_from_queue(cmd);
4241
4242         return 0;
4243 }
4244
4245 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4246 {
4247         struct se_cmd *cmd = NULL;
4248         unsigned long lun_flags, cmd_flags;
4249         /*
4250          * Do exception processing and return CHECK_CONDITION status to the
4251          * Initiator Port.
4252          */
4253         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4254         while (!list_empty(&lun->lun_cmd_list)) {
4255                 cmd = list_first_entry(&lun->lun_cmd_list,
4256                        struct se_cmd, se_lun_node);
4257                 list_del(&cmd->se_lun_node);
4258
4259                 atomic_set(&cmd->transport_lun_active, 0);
4260                 /*
4261                  * This will notify iscsi_target_transport.c:
4262                  * transport_cmd_check_stop() that a LUN shutdown is in
4263                  * progress for the iscsi_cmd_t.
4264                  */
4265                 spin_lock(&cmd->t_state_lock);
4266                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4267                         "_lun_stop for  ITT: 0x%08x\n",
4268                         cmd->se_lun->unpacked_lun,
4269                         cmd->se_tfo->get_task_tag(cmd));
4270                 atomic_set(&cmd->transport_lun_stop, 1);
4271                 spin_unlock(&cmd->t_state_lock);
4272
4273                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4274
4275                 if (!cmd->se_lun) {
4276                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4277                                 cmd->se_tfo->get_task_tag(cmd),
4278                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4279                         BUG();
4280                 }
4281                 /*
4282                  * If the Storage engine still owns the iscsi_cmd_t, determine
4283                  * and/or stop its context.
4284                  */
4285                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4286                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4287                         cmd->se_tfo->get_task_tag(cmd));
4288
4289                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4290                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4291                         continue;
4292                 }
4293
4294                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4295                         "_wait_for_tasks(): SUCCESS\n",
4296                         cmd->se_lun->unpacked_lun,
4297                         cmd->se_tfo->get_task_tag(cmd));
4298
4299                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4300                 if (!atomic_read(&cmd->transport_dev_active)) {
4301                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4302                         goto check_cond;
4303                 }
4304                 atomic_set(&cmd->transport_dev_active, 0);
4305                 transport_all_task_dev_remove_state(cmd);
4306                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4307
4308                 transport_free_dev_tasks(cmd);
4309                 /*
4310                  * The Storage engine stopped this struct se_cmd before it was
4311                  * send to the fabric frontend for delivery back to the
4312                  * Initiator Node.  Return this SCSI CDB back with an
4313                  * CHECK_CONDITION status.
4314                  */
4315 check_cond:
4316                 transport_send_check_condition_and_sense(cmd,
4317                                 TCM_NON_EXISTENT_LUN, 0);
4318                 /*
4319                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4320                  * be released, notify the waiting thread now that LU has
4321                  * finished accessing it.
4322                  */
4323                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4324                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4325                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4326                                 " struct se_cmd: %p ITT: 0x%08x\n",
4327                                 lun->unpacked_lun,
4328                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4329
4330                         spin_unlock_irqrestore(&cmd->t_state_lock,
4331                                         cmd_flags);
4332                         transport_cmd_check_stop(cmd, 1, 0);
4333                         complete(&cmd->transport_lun_fe_stop_comp);
4334                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4335                         continue;
4336                 }
4337                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4338                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4339
4340                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4341                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4342         }
4343         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4344 }
4345
4346 static int transport_clear_lun_thread(void *p)
4347 {
4348         struct se_lun *lun = (struct se_lun *)p;
4349
4350         __transport_clear_lun_from_sessions(lun);
4351         complete(&lun->lun_shutdown_comp);
4352
4353         return 0;
4354 }
4355
4356 int transport_clear_lun_from_sessions(struct se_lun *lun)
4357 {
4358         struct task_struct *kt;
4359
4360         kt = kthread_run(transport_clear_lun_thread, lun,
4361                         "tcm_cl_%u", lun->unpacked_lun);
4362         if (IS_ERR(kt)) {
4363                 pr_err("Unable to start clear_lun thread\n");
4364                 return PTR_ERR(kt);
4365         }
4366         wait_for_completion(&lun->lun_shutdown_comp);
4367
4368         return 0;
4369 }
4370
4371 /**
4372  * transport_wait_for_tasks - wait for completion to occur
4373  * @cmd:        command to wait
4374  *
4375  * Called from frontend fabric context to wait for storage engine
4376  * to pause and/or release frontend generated struct se_cmd.
4377  */
4378 void transport_wait_for_tasks(struct se_cmd *cmd)
4379 {
4380         unsigned long flags;
4381
4382         spin_lock_irqsave(&cmd->t_state_lock, flags);
4383         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4384                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4385                 return;
4386         }
4387         /*
4388          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4389          * has been set in transport_set_supported_SAM_opcode().
4390          */
4391         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4392                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4393                 return;
4394         }
4395         /*
4396          * If we are already stopped due to an external event (ie: LUN shutdown)
4397          * sleep until the connection can have the passed struct se_cmd back.
4398          * The cmd->transport_lun_stopped_sem will be upped by
4399          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4400          * has completed its operation on the struct se_cmd.
4401          */
4402         if (atomic_read(&cmd->transport_lun_stop)) {
4403
4404                 pr_debug("wait_for_tasks: Stopping"
4405                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4406                         "_stop_comp); for ITT: 0x%08x\n",
4407                         cmd->se_tfo->get_task_tag(cmd));
4408                 /*
4409                  * There is a special case for WRITES where a FE exception +
4410                  * LUN shutdown means ConfigFS context is still sleeping on
4411                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4412                  * We go ahead and up transport_lun_stop_comp just to be sure
4413                  * here.
4414                  */
4415                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4416                 complete(&cmd->transport_lun_stop_comp);
4417                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4418                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4419
4420                 transport_all_task_dev_remove_state(cmd);
4421                 /*
4422                  * At this point, the frontend who was the originator of this
4423                  * struct se_cmd, now owns the structure and can be released through
4424                  * normal means below.
4425                  */
4426                 pr_debug("wait_for_tasks: Stopped"
4427                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4428                         "stop_comp); for ITT: 0x%08x\n",
4429                         cmd->se_tfo->get_task_tag(cmd));
4430
4431                 atomic_set(&cmd->transport_lun_stop, 0);
4432         }
4433         if (!atomic_read(&cmd->t_transport_active) ||
4434              atomic_read(&cmd->t_transport_aborted)) {
4435                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4436                 return;
4437         }
4438
4439         atomic_set(&cmd->t_transport_stop, 1);
4440
4441         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4442                 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4443                 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4444                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4445                 cmd->deferred_t_state);
4446
4447         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4448
4449         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4450
4451         wait_for_completion(&cmd->t_transport_stop_comp);
4452
4453         spin_lock_irqsave(&cmd->t_state_lock, flags);
4454         atomic_set(&cmd->t_transport_active, 0);
4455         atomic_set(&cmd->t_transport_stop, 0);
4456
4457         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4458                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4459                 cmd->se_tfo->get_task_tag(cmd));
4460
4461         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4462 }
4463 EXPORT_SYMBOL(transport_wait_for_tasks);
4464
4465 static int transport_get_sense_codes(
4466         struct se_cmd *cmd,
4467         u8 *asc,
4468         u8 *ascq)
4469 {
4470         *asc = cmd->scsi_asc;
4471         *ascq = cmd->scsi_ascq;
4472
4473         return 0;
4474 }
4475
4476 static int transport_set_sense_codes(
4477         struct se_cmd *cmd,
4478         u8 asc,
4479         u8 ascq)
4480 {
4481         cmd->scsi_asc = asc;
4482         cmd->scsi_ascq = ascq;
4483
4484         return 0;
4485 }
4486
4487 int transport_send_check_condition_and_sense(
4488         struct se_cmd *cmd,
4489         u8 reason,
4490         int from_transport)
4491 {
4492         unsigned char *buffer = cmd->sense_buffer;
4493         unsigned long flags;
4494         int offset;
4495         u8 asc = 0, ascq = 0;
4496
4497         spin_lock_irqsave(&cmd->t_state_lock, flags);
4498         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4499                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4500                 return 0;
4501         }
4502         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4503         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4504
4505         if (!reason && from_transport)
4506                 goto after_reason;
4507
4508         if (!from_transport)
4509                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4510         /*
4511          * Data Segment and SenseLength of the fabric response PDU.
4512          *
4513          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4514          * from include/scsi/scsi_cmnd.h
4515          */
4516         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4517                                 TRANSPORT_SENSE_BUFFER);
4518         /*
4519          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4520          * SENSE KEY values from include/scsi/scsi.h
4521          */
4522         switch (reason) {
4523         case TCM_NON_EXISTENT_LUN:
4524                 /* CURRENT ERROR */
4525                 buffer[offset] = 0x70;
4526                 /* ILLEGAL REQUEST */
4527                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4528                 /* LOGICAL UNIT NOT SUPPORTED */
4529                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4530                 break;
4531         case TCM_UNSUPPORTED_SCSI_OPCODE:
4532         case TCM_SECTOR_COUNT_TOO_MANY:
4533                 /* CURRENT ERROR */
4534                 buffer[offset] = 0x70;
4535                 /* ILLEGAL REQUEST */
4536                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4537                 /* INVALID COMMAND OPERATION CODE */
4538                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4539                 break;
4540         case TCM_UNKNOWN_MODE_PAGE:
4541                 /* CURRENT ERROR */
4542                 buffer[offset] = 0x70;
4543                 /* ILLEGAL REQUEST */
4544                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4545                 /* INVALID FIELD IN CDB */
4546                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4547                 break;
4548         case TCM_CHECK_CONDITION_ABORT_CMD:
4549                 /* CURRENT ERROR */
4550                 buffer[offset] = 0x70;
4551                 /* ABORTED COMMAND */
4552                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4553                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4554                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4555                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4556                 break;
4557         case TCM_INCORRECT_AMOUNT_OF_DATA:
4558                 /* CURRENT ERROR */
4559                 buffer[offset] = 0x70;
4560                 /* ABORTED COMMAND */
4561                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4562                 /* WRITE ERROR */
4563                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4564                 /* NOT ENOUGH UNSOLICITED DATA */
4565                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4566                 break;
4567         case TCM_INVALID_CDB_FIELD:
4568                 /* CURRENT ERROR */
4569                 buffer[offset] = 0x70;
4570                 /* ABORTED COMMAND */
4571                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4572                 /* INVALID FIELD IN CDB */
4573                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4574                 break;
4575         case TCM_INVALID_PARAMETER_LIST:
4576                 /* CURRENT ERROR */
4577                 buffer[offset] = 0x70;
4578                 /* ABORTED COMMAND */
4579                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4580                 /* INVALID FIELD IN PARAMETER LIST */
4581                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4582                 break;
4583         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4584                 /* CURRENT ERROR */
4585                 buffer[offset] = 0x70;
4586                 /* ABORTED COMMAND */
4587                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4588                 /* WRITE ERROR */
4589                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4590                 /* UNEXPECTED_UNSOLICITED_DATA */
4591                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4592                 break;
4593         case TCM_SERVICE_CRC_ERROR:
4594                 /* CURRENT ERROR */
4595                 buffer[offset] = 0x70;
4596                 /* ABORTED COMMAND */
4597                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4598                 /* PROTOCOL SERVICE CRC ERROR */
4599                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4600                 /* N/A */
4601                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4602                 break;
4603         case TCM_SNACK_REJECTED:
4604                 /* CURRENT ERROR */
4605                 buffer[offset] = 0x70;
4606                 /* ABORTED COMMAND */
4607                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4608                 /* READ ERROR */
4609                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4610                 /* FAILED RETRANSMISSION REQUEST */
4611                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4612                 break;
4613         case TCM_WRITE_PROTECTED:
4614                 /* CURRENT ERROR */
4615                 buffer[offset] = 0x70;
4616                 /* DATA PROTECT */
4617                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4618                 /* WRITE PROTECTED */
4619                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4620                 break;
4621         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4622                 /* CURRENT ERROR */
4623                 buffer[offset] = 0x70;
4624                 /* UNIT ATTENTION */
4625                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4626                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4627                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4628                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4629                 break;
4630         case TCM_CHECK_CONDITION_NOT_READY:
4631                 /* CURRENT ERROR */
4632                 buffer[offset] = 0x70;
4633                 /* Not Ready */
4634                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4635                 transport_get_sense_codes(cmd, &asc, &ascq);
4636                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4637                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4638                 break;
4639         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4640         default:
4641                 /* CURRENT ERROR */
4642                 buffer[offset] = 0x70;
4643                 /* ILLEGAL REQUEST */
4644                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4645                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4646                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4647                 break;
4648         }
4649         /*
4650          * This code uses linux/include/scsi/scsi.h SAM status codes!
4651          */
4652         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4653         /*
4654          * Automatically padded, this value is encoded in the fabric's
4655          * data_length response PDU containing the SCSI defined sense data.
4656          */
4657         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4658
4659 after_reason:
4660         return cmd->se_tfo->queue_status(cmd);
4661 }
4662 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4663
4664 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4665 {
4666         int ret = 0;
4667
4668         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4669                 if (!send_status ||
4670                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4671                         return 1;
4672 #if 0
4673                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4674                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4675                         cmd->t_task_cdb[0],
4676                         cmd->se_tfo->get_task_tag(cmd));
4677 #endif
4678                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4679                 cmd->se_tfo->queue_status(cmd);
4680                 ret = 1;
4681         }
4682         return ret;
4683 }
4684 EXPORT_SYMBOL(transport_check_aborted_status);
4685
4686 void transport_send_task_abort(struct se_cmd *cmd)
4687 {
4688         unsigned long flags;
4689
4690         spin_lock_irqsave(&cmd->t_state_lock, flags);
4691         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4692                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4693                 return;
4694         }
4695         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4696
4697         /*
4698          * If there are still expected incoming fabric WRITEs, we wait
4699          * until until they have completed before sending a TASK_ABORTED
4700          * response.  This response with TASK_ABORTED status will be
4701          * queued back to fabric module by transport_check_aborted_status().
4702          */
4703         if (cmd->data_direction == DMA_TO_DEVICE) {
4704                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4705                         atomic_inc(&cmd->t_transport_aborted);
4706                         smp_mb__after_atomic_inc();
4707                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4708                         transport_new_cmd_failure(cmd);
4709                         return;
4710                 }
4711         }
4712         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4713 #if 0
4714         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4715                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4716                 cmd->se_tfo->get_task_tag(cmd));
4717 #endif
4718         cmd->se_tfo->queue_status(cmd);
4719 }
4720
4721 /*      transport_generic_do_tmr():
4722  *
4723  *
4724  */
4725 int transport_generic_do_tmr(struct se_cmd *cmd)
4726 {
4727         struct se_device *dev = cmd->se_dev;
4728         struct se_tmr_req *tmr = cmd->se_tmr_req;
4729         int ret;
4730
4731         switch (tmr->function) {
4732         case TMR_ABORT_TASK:
4733                 tmr->response = TMR_FUNCTION_REJECTED;
4734                 break;
4735         case TMR_ABORT_TASK_SET:
4736         case TMR_CLEAR_ACA:
4737         case TMR_CLEAR_TASK_SET:
4738                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4739                 break;
4740         case TMR_LUN_RESET:
4741                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4742                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4743                                          TMR_FUNCTION_REJECTED;
4744                 break;
4745         case TMR_TARGET_WARM_RESET:
4746                 tmr->response = TMR_FUNCTION_REJECTED;
4747                 break;
4748         case TMR_TARGET_COLD_RESET:
4749                 tmr->response = TMR_FUNCTION_REJECTED;
4750                 break;
4751         default:
4752                 pr_err("Uknown TMR function: 0x%02x.\n",
4753                                 tmr->function);
4754                 tmr->response = TMR_FUNCTION_REJECTED;
4755                 break;
4756         }
4757
4758         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4759         cmd->se_tfo->queue_tm_rsp(cmd);
4760
4761         transport_cmd_check_stop_to_fabric(cmd);
4762         return 0;
4763 }
4764
4765 /*      transport_processing_thread():
4766  *
4767  *
4768  */
4769 static int transport_processing_thread(void *param)
4770 {
4771         int ret;
4772         struct se_cmd *cmd;
4773         struct se_device *dev = (struct se_device *) param;
4774
4775         set_user_nice(current, -20);
4776
4777         while (!kthread_should_stop()) {
4778                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4779                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4780                                 kthread_should_stop());
4781                 if (ret < 0)
4782                         goto out;
4783
4784 get_cmd:
4785                 __transport_execute_tasks(dev);
4786
4787                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4788                 if (!cmd)
4789                         continue;
4790
4791                 switch (cmd->t_state) {
4792                 case TRANSPORT_NEW_CMD:
4793                         BUG();
4794                         break;
4795                 case TRANSPORT_NEW_CMD_MAP:
4796                         if (!cmd->se_tfo->new_cmd_map) {
4797                                 pr_err("cmd->se_tfo->new_cmd_map is"
4798                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4799                                 BUG();
4800                         }
4801                         ret = cmd->se_tfo->new_cmd_map(cmd);
4802                         if (ret < 0) {
4803                                 cmd->transport_error_status = ret;
4804                                 transport_generic_request_failure(cmd, NULL,
4805                                                 0, (cmd->data_direction !=
4806                                                     DMA_TO_DEVICE));
4807                                 break;
4808                         }
4809                         ret = transport_generic_new_cmd(cmd);
4810                         if (ret == -EAGAIN)
4811                                 break;
4812                         else if (ret < 0) {
4813                                 cmd->transport_error_status = ret;
4814                                 transport_generic_request_failure(cmd, NULL,
4815                                         0, (cmd->data_direction !=
4816                                          DMA_TO_DEVICE));
4817                         }
4818                         break;
4819                 case TRANSPORT_PROCESS_WRITE:
4820                         transport_generic_process_write(cmd);
4821                         break;
4822                 case TRANSPORT_COMPLETE_OK:
4823                         transport_stop_all_task_timers(cmd);
4824                         transport_generic_complete_ok(cmd);
4825                         break;
4826                 case TRANSPORT_REMOVE:
4827                         transport_put_cmd(cmd);
4828                         break;
4829                 case TRANSPORT_FREE_CMD_INTR:
4830                         transport_generic_free_cmd(cmd, 0);
4831                         break;
4832                 case TRANSPORT_PROCESS_TMR:
4833                         transport_generic_do_tmr(cmd);
4834                         break;
4835                 case TRANSPORT_COMPLETE_FAILURE:
4836                         transport_generic_request_failure(cmd, NULL, 1, 1);
4837                         break;
4838                 case TRANSPORT_COMPLETE_TIMEOUT:
4839                         transport_stop_all_task_timers(cmd);
4840                         transport_generic_request_timeout(cmd);
4841                         break;
4842                 case TRANSPORT_COMPLETE_QF_WP:
4843                         transport_write_pending_qf(cmd);
4844                         break;
4845                 case TRANSPORT_COMPLETE_QF_OK:
4846                         transport_complete_qf(cmd);
4847                         break;
4848                 default:
4849                         pr_err("Unknown t_state: %d deferred_t_state:"
4850                                 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
4851                                 " %u\n", cmd->t_state, cmd->deferred_t_state,
4852                                 cmd->se_tfo->get_task_tag(cmd),
4853                                 cmd->se_tfo->get_cmd_state(cmd),
4854                                 cmd->se_lun->unpacked_lun);
4855                         BUG();
4856                 }
4857
4858                 goto get_cmd;
4859         }
4860
4861 out:
4862         WARN_ON(!list_empty(&dev->state_task_list));
4863         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4864         dev->process_thread = NULL;
4865         return 0;
4866 }