[SCSI] target: Fix task->task_execute_queue=1 clear bug + LUN_RESET OOPs
[linux-2.6.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
38 #include <linux/in.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/libsas.h> /* For TASK_ATTR_* */
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
54
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
60
61 /* #define DEBUG_CDB_HANDLER */
62 #ifdef DEBUG_CDB_HANDLER
63 #define DEBUG_CDB_H(x...) printk(KERN_INFO x)
64 #else
65 #define DEBUG_CDB_H(x...)
66 #endif
67
68 /* #define DEBUG_CMD_MAP */
69 #ifdef DEBUG_CMD_MAP
70 #define DEBUG_CMD_M(x...) printk(KERN_INFO x)
71 #else
72 #define DEBUG_CMD_M(x...)
73 #endif
74
75 /* #define DEBUG_MEM_ALLOC */
76 #ifdef DEBUG_MEM_ALLOC
77 #define DEBUG_MEM(x...) printk(KERN_INFO x)
78 #else
79 #define DEBUG_MEM(x...)
80 #endif
81
82 /* #define DEBUG_MEM2_ALLOC */
83 #ifdef DEBUG_MEM2_ALLOC
84 #define DEBUG_MEM2(x...) printk(KERN_INFO x)
85 #else
86 #define DEBUG_MEM2(x...)
87 #endif
88
89 /* #define DEBUG_SG_CALC */
90 #ifdef DEBUG_SG_CALC
91 #define DEBUG_SC(x...) printk(KERN_INFO x)
92 #else
93 #define DEBUG_SC(x...)
94 #endif
95
96 /* #define DEBUG_SE_OBJ */
97 #ifdef DEBUG_SE_OBJ
98 #define DEBUG_SO(x...) printk(KERN_INFO x)
99 #else
100 #define DEBUG_SO(x...)
101 #endif
102
103 /* #define DEBUG_CMD_VOL */
104 #ifdef DEBUG_CMD_VOL
105 #define DEBUG_VOL(x...) printk(KERN_INFO x)
106 #else
107 #define DEBUG_VOL(x...)
108 #endif
109
110 /* #define DEBUG_CMD_STOP */
111 #ifdef DEBUG_CMD_STOP
112 #define DEBUG_CS(x...) printk(KERN_INFO x)
113 #else
114 #define DEBUG_CS(x...)
115 #endif
116
117 /* #define DEBUG_PASSTHROUGH */
118 #ifdef DEBUG_PASSTHROUGH
119 #define DEBUG_PT(x...) printk(KERN_INFO x)
120 #else
121 #define DEBUG_PT(x...)
122 #endif
123
124 /* #define DEBUG_TASK_STOP */
125 #ifdef DEBUG_TASK_STOP
126 #define DEBUG_TS(x...) printk(KERN_INFO x)
127 #else
128 #define DEBUG_TS(x...)
129 #endif
130
131 /* #define DEBUG_TRANSPORT_STOP */
132 #ifdef DEBUG_TRANSPORT_STOP
133 #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x)
134 #else
135 #define DEBUG_TRANSPORT_S(x...)
136 #endif
137
138 /* #define DEBUG_TASK_FAILURE */
139 #ifdef DEBUG_TASK_FAILURE
140 #define DEBUG_TF(x...) printk(KERN_INFO x)
141 #else
142 #define DEBUG_TF(x...)
143 #endif
144
145 /* #define DEBUG_DEV_OFFLINE */
146 #ifdef DEBUG_DEV_OFFLINE
147 #define DEBUG_DO(x...) printk(KERN_INFO x)
148 #else
149 #define DEBUG_DO(x...)
150 #endif
151
152 /* #define DEBUG_TASK_STATE */
153 #ifdef DEBUG_TASK_STATE
154 #define DEBUG_TSTATE(x...) printk(KERN_INFO x)
155 #else
156 #define DEBUG_TSTATE(x...)
157 #endif
158
159 /* #define DEBUG_STATUS_THR */
160 #ifdef DEBUG_STATUS_THR
161 #define DEBUG_ST(x...) printk(KERN_INFO x)
162 #else
163 #define DEBUG_ST(x...)
164 #endif
165
166 /* #define DEBUG_TASK_TIMEOUT */
167 #ifdef DEBUG_TASK_TIMEOUT
168 #define DEBUG_TT(x...) printk(KERN_INFO x)
169 #else
170 #define DEBUG_TT(x...)
171 #endif
172
173 /* #define DEBUG_GENERIC_REQUEST_FAILURE */
174 #ifdef DEBUG_GENERIC_REQUEST_FAILURE
175 #define DEBUG_GRF(x...) printk(KERN_INFO x)
176 #else
177 #define DEBUG_GRF(x...)
178 #endif
179
180 /* #define DEBUG_SAM_TASK_ATTRS */
181 #ifdef DEBUG_SAM_TASK_ATTRS
182 #define DEBUG_STA(x...) printk(KERN_INFO x)
183 #else
184 #define DEBUG_STA(x...)
185 #endif
186
187 struct se_global *se_global;
188
189 static struct kmem_cache *se_cmd_cache;
190 static struct kmem_cache *se_sess_cache;
191 struct kmem_cache *se_tmr_req_cache;
192 struct kmem_cache *se_ua_cache;
193 struct kmem_cache *se_mem_cache;
194 struct kmem_cache *t10_pr_reg_cache;
195 struct kmem_cache *t10_alua_lu_gp_cache;
196 struct kmem_cache *t10_alua_lu_gp_mem_cache;
197 struct kmem_cache *t10_alua_tg_pt_gp_cache;
198 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
199
200 /* Used for transport_dev_get_map_*() */
201 typedef int (*map_func_t)(struct se_task *, u32);
202
203 static int transport_generic_write_pending(struct se_cmd *);
204 static int transport_processing_thread(void *);
205 static int __transport_execute_tasks(struct se_device *dev);
206 static void transport_complete_task_attr(struct se_cmd *cmd);
207 static void transport_direct_request_timeout(struct se_cmd *cmd);
208 static void transport_free_dev_tasks(struct se_cmd *cmd);
209 static u32 transport_generic_get_cdb_count(struct se_cmd *cmd,
210                 unsigned long long starting_lba, u32 sectors,
211                 enum dma_data_direction data_direction,
212                 struct list_head *mem_list, int set_counts);
213 static int transport_generic_get_mem(struct se_cmd *cmd, u32 length,
214                 u32 dma_size);
215 static int transport_generic_remove(struct se_cmd *cmd,
216                 int release_to_pool, int session_reinstatement);
217 static int transport_get_sectors(struct se_cmd *cmd);
218 static struct list_head *transport_init_se_mem_list(void);
219 static int transport_map_sg_to_mem(struct se_cmd *cmd,
220                 struct list_head *se_mem_list, void *in_mem,
221                 u32 *se_mem_cnt);
222 static void transport_memcpy_se_mem_read_contig(struct se_cmd *cmd,
223                 unsigned char *dst, struct list_head *se_mem_list);
224 static void transport_release_fe_cmd(struct se_cmd *cmd);
225 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
226                 struct se_queue_obj *qobj);
227 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
228 static void transport_stop_all_task_timers(struct se_cmd *cmd);
229
230 int init_se_global(void)
231 {
232         struct se_global *global;
233
234         global = kzalloc(sizeof(struct se_global), GFP_KERNEL);
235         if (!(global)) {
236                 printk(KERN_ERR "Unable to allocate memory for struct se_global\n");
237                 return -1;
238         }
239
240         INIT_LIST_HEAD(&global->g_lu_gps_list);
241         INIT_LIST_HEAD(&global->g_se_tpg_list);
242         INIT_LIST_HEAD(&global->g_hba_list);
243         INIT_LIST_HEAD(&global->g_se_dev_list);
244         spin_lock_init(&global->g_device_lock);
245         spin_lock_init(&global->hba_lock);
246         spin_lock_init(&global->se_tpg_lock);
247         spin_lock_init(&global->lu_gps_lock);
248         spin_lock_init(&global->plugin_class_lock);
249
250         se_cmd_cache = kmem_cache_create("se_cmd_cache",
251                         sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
252         if (!(se_cmd_cache)) {
253                 printk(KERN_ERR "kmem_cache_create for struct se_cmd failed\n");
254                 goto out;
255         }
256         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
257                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
258                         0, NULL);
259         if (!(se_tmr_req_cache)) {
260                 printk(KERN_ERR "kmem_cache_create() for struct se_tmr_req"
261                                 " failed\n");
262                 goto out;
263         }
264         se_sess_cache = kmem_cache_create("se_sess_cache",
265                         sizeof(struct se_session), __alignof__(struct se_session),
266                         0, NULL);
267         if (!(se_sess_cache)) {
268                 printk(KERN_ERR "kmem_cache_create() for struct se_session"
269                                 " failed\n");
270                 goto out;
271         }
272         se_ua_cache = kmem_cache_create("se_ua_cache",
273                         sizeof(struct se_ua), __alignof__(struct se_ua),
274                         0, NULL);
275         if (!(se_ua_cache)) {
276                 printk(KERN_ERR "kmem_cache_create() for struct se_ua failed\n");
277                 goto out;
278         }
279         se_mem_cache = kmem_cache_create("se_mem_cache",
280                         sizeof(struct se_mem), __alignof__(struct se_mem), 0, NULL);
281         if (!(se_mem_cache)) {
282                 printk(KERN_ERR "kmem_cache_create() for struct se_mem failed\n");
283                 goto out;
284         }
285         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
286                         sizeof(struct t10_pr_registration),
287                         __alignof__(struct t10_pr_registration), 0, NULL);
288         if (!(t10_pr_reg_cache)) {
289                 printk(KERN_ERR "kmem_cache_create() for struct t10_pr_registration"
290                                 " failed\n");
291                 goto out;
292         }
293         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
294                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
295                         0, NULL);
296         if (!(t10_alua_lu_gp_cache)) {
297                 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_cache"
298                                 " failed\n");
299                 goto out;
300         }
301         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
302                         sizeof(struct t10_alua_lu_gp_member),
303                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
304         if (!(t10_alua_lu_gp_mem_cache)) {
305                 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_mem_"
306                                 "cache failed\n");
307                 goto out;
308         }
309         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
310                         sizeof(struct t10_alua_tg_pt_gp),
311                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
312         if (!(t10_alua_tg_pt_gp_cache)) {
313                 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
314                                 "cache failed\n");
315                 goto out;
316         }
317         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
318                         "t10_alua_tg_pt_gp_mem_cache",
319                         sizeof(struct t10_alua_tg_pt_gp_member),
320                         __alignof__(struct t10_alua_tg_pt_gp_member),
321                         0, NULL);
322         if (!(t10_alua_tg_pt_gp_mem_cache)) {
323                 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
324                                 "mem_t failed\n");
325                 goto out;
326         }
327
328         se_global = global;
329
330         return 0;
331 out:
332         if (se_cmd_cache)
333                 kmem_cache_destroy(se_cmd_cache);
334         if (se_tmr_req_cache)
335                 kmem_cache_destroy(se_tmr_req_cache);
336         if (se_sess_cache)
337                 kmem_cache_destroy(se_sess_cache);
338         if (se_ua_cache)
339                 kmem_cache_destroy(se_ua_cache);
340         if (se_mem_cache)
341                 kmem_cache_destroy(se_mem_cache);
342         if (t10_pr_reg_cache)
343                 kmem_cache_destroy(t10_pr_reg_cache);
344         if (t10_alua_lu_gp_cache)
345                 kmem_cache_destroy(t10_alua_lu_gp_cache);
346         if (t10_alua_lu_gp_mem_cache)
347                 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
348         if (t10_alua_tg_pt_gp_cache)
349                 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
350         if (t10_alua_tg_pt_gp_mem_cache)
351                 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
352         kfree(global);
353         return -1;
354 }
355
356 void release_se_global(void)
357 {
358         struct se_global *global;
359
360         global = se_global;
361         if (!(global))
362                 return;
363
364         kmem_cache_destroy(se_cmd_cache);
365         kmem_cache_destroy(se_tmr_req_cache);
366         kmem_cache_destroy(se_sess_cache);
367         kmem_cache_destroy(se_ua_cache);
368         kmem_cache_destroy(se_mem_cache);
369         kmem_cache_destroy(t10_pr_reg_cache);
370         kmem_cache_destroy(t10_alua_lu_gp_cache);
371         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
372         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
373         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
374         kfree(global);
375
376         se_global = NULL;
377 }
378
379 /* SCSI statistics table index */
380 static struct scsi_index_table scsi_index_table;
381
382 /*
383  * Initialize the index table for allocating unique row indexes to various mib
384  * tables.
385  */
386 void init_scsi_index_table(void)
387 {
388         memset(&scsi_index_table, 0, sizeof(struct scsi_index_table));
389         spin_lock_init(&scsi_index_table.lock);
390 }
391
392 /*
393  * Allocate a new row index for the entry type specified
394  */
395 u32 scsi_get_new_index(scsi_index_t type)
396 {
397         u32 new_index;
398
399         if ((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)) {
400                 printk(KERN_ERR "Invalid index type %d\n", type);
401                 return -EINVAL;
402         }
403
404         spin_lock(&scsi_index_table.lock);
405         new_index = ++scsi_index_table.scsi_mib_index[type];
406         if (new_index == 0)
407                 new_index = ++scsi_index_table.scsi_mib_index[type];
408         spin_unlock(&scsi_index_table.lock);
409
410         return new_index;
411 }
412
413 void transport_init_queue_obj(struct se_queue_obj *qobj)
414 {
415         atomic_set(&qobj->queue_cnt, 0);
416         INIT_LIST_HEAD(&qobj->qobj_list);
417         init_waitqueue_head(&qobj->thread_wq);
418         spin_lock_init(&qobj->cmd_queue_lock);
419 }
420 EXPORT_SYMBOL(transport_init_queue_obj);
421
422 static int transport_subsystem_reqmods(void)
423 {
424         int ret;
425
426         ret = request_module("target_core_iblock");
427         if (ret != 0)
428                 printk(KERN_ERR "Unable to load target_core_iblock\n");
429
430         ret = request_module("target_core_file");
431         if (ret != 0)
432                 printk(KERN_ERR "Unable to load target_core_file\n");
433
434         ret = request_module("target_core_pscsi");
435         if (ret != 0)
436                 printk(KERN_ERR "Unable to load target_core_pscsi\n");
437
438         ret = request_module("target_core_stgt");
439         if (ret != 0)
440                 printk(KERN_ERR "Unable to load target_core_stgt\n");
441
442         return 0;
443 }
444
445 int transport_subsystem_check_init(void)
446 {
447         if (se_global->g_sub_api_initialized)
448                 return 0;
449         /*
450          * Request the loading of known TCM subsystem plugins..
451          */
452         if (transport_subsystem_reqmods() < 0)
453                 return -1;
454
455         se_global->g_sub_api_initialized = 1;
456         return 0;
457 }
458
459 struct se_session *transport_init_session(void)
460 {
461         struct se_session *se_sess;
462
463         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
464         if (!(se_sess)) {
465                 printk(KERN_ERR "Unable to allocate struct se_session from"
466                                 " se_sess_cache\n");
467                 return ERR_PTR(-ENOMEM);
468         }
469         INIT_LIST_HEAD(&se_sess->sess_list);
470         INIT_LIST_HEAD(&se_sess->sess_acl_list);
471
472         return se_sess;
473 }
474 EXPORT_SYMBOL(transport_init_session);
475
476 /*
477  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
478  */
479 void __transport_register_session(
480         struct se_portal_group *se_tpg,
481         struct se_node_acl *se_nacl,
482         struct se_session *se_sess,
483         void *fabric_sess_ptr)
484 {
485         unsigned char buf[PR_REG_ISID_LEN];
486
487         se_sess->se_tpg = se_tpg;
488         se_sess->fabric_sess_ptr = fabric_sess_ptr;
489         /*
490          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
491          *
492          * Only set for struct se_session's that will actually be moving I/O.
493          * eg: *NOT* discovery sessions.
494          */
495         if (se_nacl) {
496                 /*
497                  * If the fabric module supports an ISID based TransportID,
498                  * save this value in binary from the fabric I_T Nexus now.
499                  */
500                 if (TPG_TFO(se_tpg)->sess_get_initiator_sid != NULL) {
501                         memset(&buf[0], 0, PR_REG_ISID_LEN);
502                         TPG_TFO(se_tpg)->sess_get_initiator_sid(se_sess,
503                                         &buf[0], PR_REG_ISID_LEN);
504                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
505                 }
506                 spin_lock_irq(&se_nacl->nacl_sess_lock);
507                 /*
508                  * The se_nacl->nacl_sess pointer will be set to the
509                  * last active I_T Nexus for each struct se_node_acl.
510                  */
511                 se_nacl->nacl_sess = se_sess;
512
513                 list_add_tail(&se_sess->sess_acl_list,
514                               &se_nacl->acl_sess_list);
515                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
516         }
517         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
518
519         printk(KERN_INFO "TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
520                 TPG_TFO(se_tpg)->get_fabric_name(), se_sess->fabric_sess_ptr);
521 }
522 EXPORT_SYMBOL(__transport_register_session);
523
524 void transport_register_session(
525         struct se_portal_group *se_tpg,
526         struct se_node_acl *se_nacl,
527         struct se_session *se_sess,
528         void *fabric_sess_ptr)
529 {
530         spin_lock_bh(&se_tpg->session_lock);
531         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
532         spin_unlock_bh(&se_tpg->session_lock);
533 }
534 EXPORT_SYMBOL(transport_register_session);
535
536 void transport_deregister_session_configfs(struct se_session *se_sess)
537 {
538         struct se_node_acl *se_nacl;
539
540         /*
541          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
542          */
543         se_nacl = se_sess->se_node_acl;
544         if ((se_nacl)) {
545                 spin_lock_irq(&se_nacl->nacl_sess_lock);
546                 list_del(&se_sess->sess_acl_list);
547                 /*
548                  * If the session list is empty, then clear the pointer.
549                  * Otherwise, set the struct se_session pointer from the tail
550                  * element of the per struct se_node_acl active session list.
551                  */
552                 if (list_empty(&se_nacl->acl_sess_list))
553                         se_nacl->nacl_sess = NULL;
554                 else {
555                         se_nacl->nacl_sess = container_of(
556                                         se_nacl->acl_sess_list.prev,
557                                         struct se_session, sess_acl_list);
558                 }
559                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
560         }
561 }
562 EXPORT_SYMBOL(transport_deregister_session_configfs);
563
564 void transport_free_session(struct se_session *se_sess)
565 {
566         kmem_cache_free(se_sess_cache, se_sess);
567 }
568 EXPORT_SYMBOL(transport_free_session);
569
570 void transport_deregister_session(struct se_session *se_sess)
571 {
572         struct se_portal_group *se_tpg = se_sess->se_tpg;
573         struct se_node_acl *se_nacl;
574
575         if (!(se_tpg)) {
576                 transport_free_session(se_sess);
577                 return;
578         }
579
580         spin_lock_bh(&se_tpg->session_lock);
581         list_del(&se_sess->sess_list);
582         se_sess->se_tpg = NULL;
583         se_sess->fabric_sess_ptr = NULL;
584         spin_unlock_bh(&se_tpg->session_lock);
585
586         /*
587          * Determine if we need to do extra work for this initiator node's
588          * struct se_node_acl if it had been previously dynamically generated.
589          */
590         se_nacl = se_sess->se_node_acl;
591         if ((se_nacl)) {
592                 spin_lock_bh(&se_tpg->acl_node_lock);
593                 if (se_nacl->dynamic_node_acl) {
594                         if (!(TPG_TFO(se_tpg)->tpg_check_demo_mode_cache(
595                                         se_tpg))) {
596                                 list_del(&se_nacl->acl_list);
597                                 se_tpg->num_node_acls--;
598                                 spin_unlock_bh(&se_tpg->acl_node_lock);
599
600                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
601                                 core_free_device_list_for_node(se_nacl, se_tpg);
602                                 TPG_TFO(se_tpg)->tpg_release_fabric_acl(se_tpg,
603                                                 se_nacl);
604                                 spin_lock_bh(&se_tpg->acl_node_lock);
605                         }
606                 }
607                 spin_unlock_bh(&se_tpg->acl_node_lock);
608         }
609
610         transport_free_session(se_sess);
611
612         printk(KERN_INFO "TARGET_CORE[%s]: Deregistered fabric_sess\n",
613                 TPG_TFO(se_tpg)->get_fabric_name());
614 }
615 EXPORT_SYMBOL(transport_deregister_session);
616
617 /*
618  * Called with T_TASK(cmd)->t_state_lock held.
619  */
620 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
621 {
622         struct se_device *dev;
623         struct se_task *task;
624         unsigned long flags;
625
626         if (!T_TASK(cmd))
627                 return;
628
629         list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
630                 dev = task->se_dev;
631                 if (!(dev))
632                         continue;
633
634                 if (atomic_read(&task->task_active))
635                         continue;
636
637                 if (!(atomic_read(&task->task_state_active)))
638                         continue;
639
640                 spin_lock_irqsave(&dev->execute_task_lock, flags);
641                 list_del(&task->t_state_list);
642                 DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n",
643                         CMD_TFO(cmd)->tfo_get_task_tag(cmd), dev, task);
644                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
645
646                 atomic_set(&task->task_state_active, 0);
647                 atomic_dec(&T_TASK(cmd)->t_task_cdbs_ex_left);
648         }
649 }
650
651 /*      transport_cmd_check_stop():
652  *
653  *      'transport_off = 1' determines if t_transport_active should be cleared.
654  *      'transport_off = 2' determines if task_dev_state should be removed.
655  *
656  *      A non-zero u8 t_state sets cmd->t_state.
657  *      Returns 1 when command is stopped, else 0.
658  */
659 static int transport_cmd_check_stop(
660         struct se_cmd *cmd,
661         int transport_off,
662         u8 t_state)
663 {
664         unsigned long flags;
665
666         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
667         /*
668          * Determine if IOCTL context caller in requesting the stopping of this
669          * command for LUN shutdown purposes.
670          */
671         if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
672                 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->transport_lun_stop)"
673                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
674                         CMD_TFO(cmd)->get_task_tag(cmd));
675
676                 cmd->deferred_t_state = cmd->t_state;
677                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
678                 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
679                 if (transport_off == 2)
680                         transport_all_task_dev_remove_state(cmd);
681                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
682
683                 complete(&T_TASK(cmd)->transport_lun_stop_comp);
684                 return 1;
685         }
686         /*
687          * Determine if frontend context caller is requesting the stopping of
688          * this command for frontend excpections.
689          */
690         if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
691                 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->t_transport_stop) =="
692                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
693                         CMD_TFO(cmd)->get_task_tag(cmd));
694
695                 cmd->deferred_t_state = cmd->t_state;
696                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
697                 if (transport_off == 2)
698                         transport_all_task_dev_remove_state(cmd);
699
700                 /*
701                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
702                  * to FE.
703                  */
704                 if (transport_off == 2)
705                         cmd->se_lun = NULL;
706                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
707
708                 complete(&T_TASK(cmd)->t_transport_stop_comp);
709                 return 1;
710         }
711         if (transport_off) {
712                 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
713                 if (transport_off == 2) {
714                         transport_all_task_dev_remove_state(cmd);
715                         /*
716                          * Clear struct se_cmd->se_lun before the transport_off == 2
717                          * handoff to fabric module.
718                          */
719                         cmd->se_lun = NULL;
720                         /*
721                          * Some fabric modules like tcm_loop can release
722                          * their internally allocated I/O reference now and
723                          * struct se_cmd now.
724                          */
725                         if (CMD_TFO(cmd)->check_stop_free != NULL) {
726                                 spin_unlock_irqrestore(
727                                         &T_TASK(cmd)->t_state_lock, flags);
728
729                                 CMD_TFO(cmd)->check_stop_free(cmd);
730                                 return 1;
731                         }
732                 }
733                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
734
735                 return 0;
736         } else if (t_state)
737                 cmd->t_state = t_state;
738         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
739
740         return 0;
741 }
742
743 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
744 {
745         return transport_cmd_check_stop(cmd, 2, 0);
746 }
747
748 static void transport_lun_remove_cmd(struct se_cmd *cmd)
749 {
750         struct se_lun *lun = SE_LUN(cmd);
751         unsigned long flags;
752
753         if (!lun)
754                 return;
755
756         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
757         if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
758                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
759                 goto check_lun;
760         }
761         atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
762         transport_all_task_dev_remove_state(cmd);
763         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
764
765
766 check_lun:
767         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
768         if (atomic_read(&T_TASK(cmd)->transport_lun_active)) {
769                 list_del(&cmd->se_lun_list);
770                 atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
771 #if 0
772                 printk(KERN_INFO "Removed ITT: 0x%08x from LUN LIST[%d]\n"
773                         CMD_TFO(cmd)->get_task_tag(cmd), lun->unpacked_lun);
774 #endif
775         }
776         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
777 }
778
779 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
780 {
781         transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
782         transport_lun_remove_cmd(cmd);
783
784         if (transport_cmd_check_stop_to_fabric(cmd))
785                 return;
786         if (remove)
787                 transport_generic_remove(cmd, 0, 0);
788 }
789
790 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
791 {
792         transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
793
794         if (transport_cmd_check_stop_to_fabric(cmd))
795                 return;
796
797         transport_generic_remove(cmd, 0, 0);
798 }
799
800 static int transport_add_cmd_to_queue(
801         struct se_cmd *cmd,
802         int t_state)
803 {
804         struct se_device *dev = cmd->se_dev;
805         struct se_queue_obj *qobj = dev->dev_queue_obj;
806         struct se_queue_req *qr;
807         unsigned long flags;
808
809         qr = kzalloc(sizeof(struct se_queue_req), GFP_ATOMIC);
810         if (!(qr)) {
811                 printk(KERN_ERR "Unable to allocate memory for"
812                                 " struct se_queue_req\n");
813                 return -1;
814         }
815         INIT_LIST_HEAD(&qr->qr_list);
816
817         qr->cmd = (void *)cmd;
818         qr->state = t_state;
819
820         if (t_state) {
821                 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
822                 cmd->t_state = t_state;
823                 atomic_set(&T_TASK(cmd)->t_transport_active, 1);
824                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
825         }
826
827         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
828         list_add_tail(&qr->qr_list, &qobj->qobj_list);
829         atomic_inc(&T_TASK(cmd)->t_transport_queue_active);
830         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
831
832         atomic_inc(&qobj->queue_cnt);
833         wake_up_interruptible(&qobj->thread_wq);
834         return 0;
835 }
836
837 /*
838  * Called with struct se_queue_obj->cmd_queue_lock held.
839  */
840 static struct se_queue_req *
841 __transport_get_qr_from_queue(struct se_queue_obj *qobj)
842 {
843         struct se_cmd *cmd;
844         struct se_queue_req *qr = NULL;
845
846         if (list_empty(&qobj->qobj_list))
847                 return NULL;
848
849         list_for_each_entry(qr, &qobj->qobj_list, qr_list)
850                 break;
851
852         if (qr->cmd) {
853                 cmd = (struct se_cmd *)qr->cmd;
854                 atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
855         }
856         list_del(&qr->qr_list);
857         atomic_dec(&qobj->queue_cnt);
858
859         return qr;
860 }
861
862 static struct se_queue_req *
863 transport_get_qr_from_queue(struct se_queue_obj *qobj)
864 {
865         struct se_cmd *cmd;
866         struct se_queue_req *qr;
867         unsigned long flags;
868
869         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
870         if (list_empty(&qobj->qobj_list)) {
871                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
872                 return NULL;
873         }
874
875         list_for_each_entry(qr, &qobj->qobj_list, qr_list)
876                 break;
877
878         if (qr->cmd) {
879                 cmd = (struct se_cmd *)qr->cmd;
880                 atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
881         }
882         list_del(&qr->qr_list);
883         atomic_dec(&qobj->queue_cnt);
884         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
885
886         return qr;
887 }
888
889 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
890                 struct se_queue_obj *qobj)
891 {
892         struct se_cmd *q_cmd;
893         struct se_queue_req *qr = NULL, *qr_p = NULL;
894         unsigned long flags;
895
896         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
897         if (!(atomic_read(&T_TASK(cmd)->t_transport_queue_active))) {
898                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
899                 return;
900         }
901
902         list_for_each_entry_safe(qr, qr_p, &qobj->qobj_list, qr_list) {
903                 q_cmd = (struct se_cmd *)qr->cmd;
904                 if (q_cmd != cmd)
905                         continue;
906
907                 atomic_dec(&T_TASK(q_cmd)->t_transport_queue_active);
908                 atomic_dec(&qobj->queue_cnt);
909                 list_del(&qr->qr_list);
910                 kfree(qr);
911         }
912         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
913
914         if (atomic_read(&T_TASK(cmd)->t_transport_queue_active)) {
915                 printk(KERN_ERR "ITT: 0x%08x t_transport_queue_active: %d\n",
916                         CMD_TFO(cmd)->get_task_tag(cmd),
917                         atomic_read(&T_TASK(cmd)->t_transport_queue_active));
918         }
919 }
920
921 /*
922  * Completion function used by TCM subsystem plugins (such as FILEIO)
923  * for queueing up response from struct se_subsystem_api->do_task()
924  */
925 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
926 {
927         struct se_task *task = list_entry(T_TASK(cmd)->t_task_list.next,
928                                 struct se_task, t_list);
929
930         if (good) {
931                 cmd->scsi_status = SAM_STAT_GOOD;
932                 task->task_scsi_status = GOOD;
933         } else {
934                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
935                 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
936                 TASK_CMD(task)->transport_error_status =
937                                         PYX_TRANSPORT_ILLEGAL_REQUEST;
938         }
939
940         transport_complete_task(task, good);
941 }
942 EXPORT_SYMBOL(transport_complete_sync_cache);
943
944 /*      transport_complete_task():
945  *
946  *      Called from interrupt and non interrupt context depending
947  *      on the transport plugin.
948  */
949 void transport_complete_task(struct se_task *task, int success)
950 {
951         struct se_cmd *cmd = TASK_CMD(task);
952         struct se_device *dev = task->se_dev;
953         int t_state;
954         unsigned long flags;
955 #if 0
956         printk(KERN_INFO "task: %p CDB: 0x%02x obj_ptr: %p\n", task,
957                         T_TASK(cmd)->t_task_cdb[0], dev);
958 #endif
959         if (dev) {
960                 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
961                 atomic_inc(&dev->depth_left);
962                 atomic_inc(&SE_HBA(dev)->left_queue_depth);
963                 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
964         }
965
966         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
967         atomic_set(&task->task_active, 0);
968
969         /*
970          * See if any sense data exists, if so set the TASK_SENSE flag.
971          * Also check for any other post completion work that needs to be
972          * done by the plugins.
973          */
974         if (dev && dev->transport->transport_complete) {
975                 if (dev->transport->transport_complete(task) != 0) {
976                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
977                         task->task_sense = 1;
978                         success = 1;
979                 }
980         }
981
982         /*
983          * See if we are waiting for outstanding struct se_task
984          * to complete for an exception condition
985          */
986         if (atomic_read(&task->task_stop)) {
987                 /*
988                  * Decrement T_TASK(cmd)->t_se_count if this task had
989                  * previously thrown its timeout exception handler.
990                  */
991                 if (atomic_read(&task->task_timeout)) {
992                         atomic_dec(&T_TASK(cmd)->t_se_count);
993                         atomic_set(&task->task_timeout, 0);
994                 }
995                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
996
997                 complete(&task->task_stop_comp);
998                 return;
999         }
1000         /*
1001          * If the task's timeout handler has fired, use the t_task_cdbs_timeout
1002          * left counter to determine when the struct se_cmd is ready to be queued to
1003          * the processing thread.
1004          */
1005         if (atomic_read(&task->task_timeout)) {
1006                 if (!(atomic_dec_and_test(
1007                                 &T_TASK(cmd)->t_task_cdbs_timeout_left))) {
1008                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
1009                                 flags);
1010                         return;
1011                 }
1012                 t_state = TRANSPORT_COMPLETE_TIMEOUT;
1013                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1014
1015                 transport_add_cmd_to_queue(cmd, t_state);
1016                 return;
1017         }
1018         atomic_dec(&T_TASK(cmd)->t_task_cdbs_timeout_left);
1019
1020         /*
1021          * Decrement the outstanding t_task_cdbs_left count.  The last
1022          * struct se_task from struct se_cmd will complete itself into the
1023          * device queue depending upon int success.
1024          */
1025         if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
1026                 if (!success)
1027                         T_TASK(cmd)->t_tasks_failed = 1;
1028
1029                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1030                 return;
1031         }
1032
1033         if (!success || T_TASK(cmd)->t_tasks_failed) {
1034                 t_state = TRANSPORT_COMPLETE_FAILURE;
1035                 if (!task->task_error_status) {
1036                         task->task_error_status =
1037                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
1038                         cmd->transport_error_status =
1039                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
1040                 }
1041         } else {
1042                 atomic_set(&T_TASK(cmd)->t_transport_complete, 1);
1043                 t_state = TRANSPORT_COMPLETE_OK;
1044         }
1045         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1046
1047         transport_add_cmd_to_queue(cmd, t_state);
1048 }
1049 EXPORT_SYMBOL(transport_complete_task);
1050
1051 /*
1052  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
1053  * struct se_task list are ready to be added to the active execution list
1054  * struct se_device
1055
1056  * Called with se_dev_t->execute_task_lock called.
1057  */
1058 static inline int transport_add_task_check_sam_attr(
1059         struct se_task *task,
1060         struct se_task *task_prev,
1061         struct se_device *dev)
1062 {
1063         /*
1064          * No SAM Task attribute emulation enabled, add to tail of
1065          * execution queue
1066          */
1067         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
1068                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1069                 return 0;
1070         }
1071         /*
1072          * HEAD_OF_QUEUE attribute for received CDB, which means
1073          * the first task that is associated with a struct se_cmd goes to
1074          * head of the struct se_device->execute_task_list, and task_prev
1075          * after that for each subsequent task
1076          */
1077         if (task->task_se_cmd->sam_task_attr == TASK_ATTR_HOQ) {
1078                 list_add(&task->t_execute_list,
1079                                 (task_prev != NULL) ?
1080                                 &task_prev->t_execute_list :
1081                                 &dev->execute_task_list);
1082
1083                 DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
1084                                 " in execution queue\n",
1085                                 T_TASK(task->task_se_cmd)->t_task_cdb[0]);
1086                 return 1;
1087         }
1088         /*
1089          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
1090          * transitioned from Dermant -> Active state, and are added to the end
1091          * of the struct se_device->execute_task_list
1092          */
1093         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1094         return 0;
1095 }
1096
1097 /*      __transport_add_task_to_execute_queue():
1098  *
1099  *      Called with se_dev_t->execute_task_lock called.
1100  */
1101 static void __transport_add_task_to_execute_queue(
1102         struct se_task *task,
1103         struct se_task *task_prev,
1104         struct se_device *dev)
1105 {
1106         int head_of_queue;
1107
1108         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
1109         atomic_inc(&dev->execute_tasks);
1110
1111         if (atomic_read(&task->task_state_active))
1112                 return;
1113         /*
1114          * Determine if this task needs to go to HEAD_OF_QUEUE for the
1115          * state list as well.  Running with SAM Task Attribute emulation
1116          * will always return head_of_queue == 0 here
1117          */
1118         if (head_of_queue)
1119                 list_add(&task->t_state_list, (task_prev) ?
1120                                 &task_prev->t_state_list :
1121                                 &dev->state_task_list);
1122         else
1123                 list_add_tail(&task->t_state_list, &dev->state_task_list);
1124
1125         atomic_set(&task->task_state_active, 1);
1126
1127         DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1128                 CMD_TFO(task->task_se_cmd)->get_task_tag(task->task_se_cmd),
1129                 task, dev);
1130 }
1131
1132 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
1133 {
1134         struct se_device *dev;
1135         struct se_task *task;
1136         unsigned long flags;
1137
1138         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
1139         list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
1140                 dev = task->se_dev;
1141
1142                 if (atomic_read(&task->task_state_active))
1143                         continue;
1144
1145                 spin_lock(&dev->execute_task_lock);
1146                 list_add_tail(&task->t_state_list, &dev->state_task_list);
1147                 atomic_set(&task->task_state_active, 1);
1148
1149                 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1150                         CMD_TFO(task->task_se_cmd)->get_task_tag(
1151                         task->task_se_cmd), task, dev);
1152
1153                 spin_unlock(&dev->execute_task_lock);
1154         }
1155         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1156 }
1157
1158 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
1159 {
1160         struct se_device *dev = SE_DEV(cmd);
1161         struct se_task *task, *task_prev = NULL;
1162         unsigned long flags;
1163
1164         spin_lock_irqsave(&dev->execute_task_lock, flags);
1165         list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
1166                 if (atomic_read(&task->task_execute_queue))
1167                         continue;
1168                 /*
1169                  * __transport_add_task_to_execute_queue() handles the
1170                  * SAM Task Attribute emulation if enabled
1171                  */
1172                 __transport_add_task_to_execute_queue(task, task_prev, dev);
1173                 atomic_set(&task->task_execute_queue, 1);
1174                 task_prev = task;
1175         }
1176         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1177
1178         return;
1179 }
1180
1181 /*      transport_get_task_from_execute_queue():
1182  *
1183  *      Called with dev->execute_task_lock held.
1184  */
1185 static struct se_task *
1186 transport_get_task_from_execute_queue(struct se_device *dev)
1187 {
1188         struct se_task *task;
1189
1190         if (list_empty(&dev->execute_task_list))
1191                 return NULL;
1192
1193         list_for_each_entry(task, &dev->execute_task_list, t_execute_list)
1194                 break;
1195
1196         list_del(&task->t_execute_list);
1197         atomic_set(&task->task_execute_queue, 0);
1198         atomic_dec(&dev->execute_tasks);
1199
1200         return task;
1201 }
1202
1203 /*      transport_remove_task_from_execute_queue():
1204  *
1205  *
1206  */
1207 void transport_remove_task_from_execute_queue(
1208         struct se_task *task,
1209         struct se_device *dev)
1210 {
1211         unsigned long flags;
1212
1213         if (atomic_read(&task->task_execute_queue) == 0) {
1214                 dump_stack();
1215                 return;
1216         }
1217
1218         spin_lock_irqsave(&dev->execute_task_lock, flags);
1219         list_del(&task->t_execute_list);
1220         atomic_set(&task->task_execute_queue, 0);
1221         atomic_dec(&dev->execute_tasks);
1222         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1223 }
1224
1225 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1226 {
1227         switch (cmd->data_direction) {
1228         case DMA_NONE:
1229                 return "NONE";
1230         case DMA_FROM_DEVICE:
1231                 return "READ";
1232         case DMA_TO_DEVICE:
1233                 return "WRITE";
1234         case DMA_BIDIRECTIONAL:
1235                 return "BIDI";
1236         default:
1237                 break;
1238         }
1239
1240         return "UNKNOWN";
1241 }
1242
1243 void transport_dump_dev_state(
1244         struct se_device *dev,
1245         char *b,
1246         int *bl)
1247 {
1248         *bl += sprintf(b + *bl, "Status: ");
1249         switch (dev->dev_status) {
1250         case TRANSPORT_DEVICE_ACTIVATED:
1251                 *bl += sprintf(b + *bl, "ACTIVATED");
1252                 break;
1253         case TRANSPORT_DEVICE_DEACTIVATED:
1254                 *bl += sprintf(b + *bl, "DEACTIVATED");
1255                 break;
1256         case TRANSPORT_DEVICE_SHUTDOWN:
1257                 *bl += sprintf(b + *bl, "SHUTDOWN");
1258                 break;
1259         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1260         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1261                 *bl += sprintf(b + *bl, "OFFLINE");
1262                 break;
1263         default:
1264                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1265                 break;
1266         }
1267
1268         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
1269                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1270                 dev->queue_depth);
1271         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1272                 DEV_ATTRIB(dev)->block_size, DEV_ATTRIB(dev)->max_sectors);
1273         *bl += sprintf(b + *bl, "        ");
1274 }
1275
1276 /*      transport_release_all_cmds():
1277  *
1278  *
1279  */
1280 static void transport_release_all_cmds(struct se_device *dev)
1281 {
1282         struct se_cmd *cmd = NULL;
1283         struct se_queue_req *qr = NULL, *qr_p = NULL;
1284         int bug_out = 0, t_state;
1285         unsigned long flags;
1286
1287         spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
1288         list_for_each_entry_safe(qr, qr_p, &dev->dev_queue_obj->qobj_list,
1289                                 qr_list) {
1290
1291                 cmd = (struct se_cmd *)qr->cmd;
1292                 t_state = qr->state;
1293                 list_del(&qr->qr_list);
1294                 kfree(qr);
1295                 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock,
1296                                 flags);
1297
1298                 printk(KERN_ERR "Releasing ITT: 0x%08x, i_state: %u,"
1299                         " t_state: %u directly\n",
1300                         CMD_TFO(cmd)->get_task_tag(cmd),
1301                         CMD_TFO(cmd)->get_cmd_state(cmd), t_state);
1302
1303                 transport_release_fe_cmd(cmd);
1304                 bug_out = 1;
1305
1306                 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
1307         }
1308         spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags);
1309 #if 0
1310         if (bug_out)
1311                 BUG();
1312 #endif
1313 }
1314
1315 void transport_dump_vpd_proto_id(
1316         struct t10_vpd *vpd,
1317         unsigned char *p_buf,
1318         int p_buf_len)
1319 {
1320         unsigned char buf[VPD_TMP_BUF_SIZE];
1321         int len;
1322
1323         memset(buf, 0, VPD_TMP_BUF_SIZE);
1324         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1325
1326         switch (vpd->protocol_identifier) {
1327         case 0x00:
1328                 sprintf(buf+len, "Fibre Channel\n");
1329                 break;
1330         case 0x10:
1331                 sprintf(buf+len, "Parallel SCSI\n");
1332                 break;
1333         case 0x20:
1334                 sprintf(buf+len, "SSA\n");
1335                 break;
1336         case 0x30:
1337                 sprintf(buf+len, "IEEE 1394\n");
1338                 break;
1339         case 0x40:
1340                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1341                                 " Protocol\n");
1342                 break;
1343         case 0x50:
1344                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1345                 break;
1346         case 0x60:
1347                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1348                 break;
1349         case 0x70:
1350                 sprintf(buf+len, "Automation/Drive Interface Transport"
1351                                 " Protocol\n");
1352                 break;
1353         case 0x80:
1354                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1355                 break;
1356         default:
1357                 sprintf(buf+len, "Unknown 0x%02x\n",
1358                                 vpd->protocol_identifier);
1359                 break;
1360         }
1361
1362         if (p_buf)
1363                 strncpy(p_buf, buf, p_buf_len);
1364         else
1365                 printk(KERN_INFO "%s", buf);
1366 }
1367
1368 void
1369 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1370 {
1371         /*
1372          * Check if the Protocol Identifier Valid (PIV) bit is set..
1373          *
1374          * from spc3r23.pdf section 7.5.1
1375          */
1376          if (page_83[1] & 0x80) {
1377                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1378                 vpd->protocol_identifier_set = 1;
1379                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1380         }
1381 }
1382 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1383
1384 int transport_dump_vpd_assoc(
1385         struct t10_vpd *vpd,
1386         unsigned char *p_buf,
1387         int p_buf_len)
1388 {
1389         unsigned char buf[VPD_TMP_BUF_SIZE];
1390         int ret = 0, len;
1391
1392         memset(buf, 0, VPD_TMP_BUF_SIZE);
1393         len = sprintf(buf, "T10 VPD Identifier Association: ");
1394
1395         switch (vpd->association) {
1396         case 0x00:
1397                 sprintf(buf+len, "addressed logical unit\n");
1398                 break;
1399         case 0x10:
1400                 sprintf(buf+len, "target port\n");
1401                 break;
1402         case 0x20:
1403                 sprintf(buf+len, "SCSI target device\n");
1404                 break;
1405         default:
1406                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1407                 ret = -1;
1408                 break;
1409         }
1410
1411         if (p_buf)
1412                 strncpy(p_buf, buf, p_buf_len);
1413         else
1414                 printk("%s", buf);
1415
1416         return ret;
1417 }
1418
1419 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1420 {
1421         /*
1422          * The VPD identification association..
1423          *
1424          * from spc3r23.pdf Section 7.6.3.1 Table 297
1425          */
1426         vpd->association = (page_83[1] & 0x30);
1427         return transport_dump_vpd_assoc(vpd, NULL, 0);
1428 }
1429 EXPORT_SYMBOL(transport_set_vpd_assoc);
1430
1431 int transport_dump_vpd_ident_type(
1432         struct t10_vpd *vpd,
1433         unsigned char *p_buf,
1434         int p_buf_len)
1435 {
1436         unsigned char buf[VPD_TMP_BUF_SIZE];
1437         int ret = 0, len;
1438
1439         memset(buf, 0, VPD_TMP_BUF_SIZE);
1440         len = sprintf(buf, "T10 VPD Identifier Type: ");
1441
1442         switch (vpd->device_identifier_type) {
1443         case 0x00:
1444                 sprintf(buf+len, "Vendor specific\n");
1445                 break;
1446         case 0x01:
1447                 sprintf(buf+len, "T10 Vendor ID based\n");
1448                 break;
1449         case 0x02:
1450                 sprintf(buf+len, "EUI-64 based\n");
1451                 break;
1452         case 0x03:
1453                 sprintf(buf+len, "NAA\n");
1454                 break;
1455         case 0x04:
1456                 sprintf(buf+len, "Relative target port identifier\n");
1457                 break;
1458         case 0x08:
1459                 sprintf(buf+len, "SCSI name string\n");
1460                 break;
1461         default:
1462                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1463                                 vpd->device_identifier_type);
1464                 ret = -1;
1465                 break;
1466         }
1467
1468         if (p_buf)
1469                 strncpy(p_buf, buf, p_buf_len);
1470         else
1471                 printk("%s", buf);
1472
1473         return ret;
1474 }
1475
1476 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1477 {
1478         /*
1479          * The VPD identifier type..
1480          *
1481          * from spc3r23.pdf Section 7.6.3.1 Table 298
1482          */
1483         vpd->device_identifier_type = (page_83[1] & 0x0f);
1484         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1485 }
1486 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1487
1488 int transport_dump_vpd_ident(
1489         struct t10_vpd *vpd,
1490         unsigned char *p_buf,
1491         int p_buf_len)
1492 {
1493         unsigned char buf[VPD_TMP_BUF_SIZE];
1494         int ret = 0;
1495
1496         memset(buf, 0, VPD_TMP_BUF_SIZE);
1497
1498         switch (vpd->device_identifier_code_set) {
1499         case 0x01: /* Binary */
1500                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1501                         &vpd->device_identifier[0]);
1502                 break;
1503         case 0x02: /* ASCII */
1504                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1505                         &vpd->device_identifier[0]);
1506                 break;
1507         case 0x03: /* UTF-8 */
1508                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1509                         &vpd->device_identifier[0]);
1510                 break;
1511         default:
1512                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1513                         " 0x%02x", vpd->device_identifier_code_set);
1514                 ret = -1;
1515                 break;
1516         }
1517
1518         if (p_buf)
1519                 strncpy(p_buf, buf, p_buf_len);
1520         else
1521                 printk("%s", buf);
1522
1523         return ret;
1524 }
1525
1526 int
1527 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1528 {
1529         static const char hex_str[] = "0123456789abcdef";
1530         int j = 0, i = 4; /* offset to start of the identifer */
1531
1532         /*
1533          * The VPD Code Set (encoding)
1534          *
1535          * from spc3r23.pdf Section 7.6.3.1 Table 296
1536          */
1537         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1538         switch (vpd->device_identifier_code_set) {
1539         case 0x01: /* Binary */
1540                 vpd->device_identifier[j++] =
1541                                 hex_str[vpd->device_identifier_type];
1542                 while (i < (4 + page_83[3])) {
1543                         vpd->device_identifier[j++] =
1544                                 hex_str[(page_83[i] & 0xf0) >> 4];
1545                         vpd->device_identifier[j++] =
1546                                 hex_str[page_83[i] & 0x0f];
1547                         i++;
1548                 }
1549                 break;
1550         case 0x02: /* ASCII */
1551         case 0x03: /* UTF-8 */
1552                 while (i < (4 + page_83[3]))
1553                         vpd->device_identifier[j++] = page_83[i++];
1554                 break;
1555         default:
1556                 break;
1557         }
1558
1559         return transport_dump_vpd_ident(vpd, NULL, 0);
1560 }
1561 EXPORT_SYMBOL(transport_set_vpd_ident);
1562
1563 static void core_setup_task_attr_emulation(struct se_device *dev)
1564 {
1565         /*
1566          * If this device is from Target_Core_Mod/pSCSI, disable the
1567          * SAM Task Attribute emulation.
1568          *
1569          * This is currently not available in upsream Linux/SCSI Target
1570          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1571          */
1572         if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1573                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1574                 return;
1575         }
1576
1577         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1578         DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1579                 " device\n", TRANSPORT(dev)->name,
1580                 TRANSPORT(dev)->get_device_rev(dev));
1581 }
1582
1583 static void scsi_dump_inquiry(struct se_device *dev)
1584 {
1585         struct t10_wwn *wwn = DEV_T10_WWN(dev);
1586         int i, device_type;
1587         /*
1588          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1589          */
1590         printk("  Vendor: ");
1591         for (i = 0; i < 8; i++)
1592                 if (wwn->vendor[i] >= 0x20)
1593                         printk("%c", wwn->vendor[i]);
1594                 else
1595                         printk(" ");
1596
1597         printk("  Model: ");
1598         for (i = 0; i < 16; i++)
1599                 if (wwn->model[i] >= 0x20)
1600                         printk("%c", wwn->model[i]);
1601                 else
1602                         printk(" ");
1603
1604         printk("  Revision: ");
1605         for (i = 0; i < 4; i++)
1606                 if (wwn->revision[i] >= 0x20)
1607                         printk("%c", wwn->revision[i]);
1608                 else
1609                         printk(" ");
1610
1611         printk("\n");
1612
1613         device_type = TRANSPORT(dev)->get_device_type(dev);
1614         printk("  Type:   %s ", scsi_device_type(device_type));
1615         printk("                 ANSI SCSI revision: %02x\n",
1616                                 TRANSPORT(dev)->get_device_rev(dev));
1617 }
1618
1619 struct se_device *transport_add_device_to_core_hba(
1620         struct se_hba *hba,
1621         struct se_subsystem_api *transport,
1622         struct se_subsystem_dev *se_dev,
1623         u32 device_flags,
1624         void *transport_dev,
1625         struct se_dev_limits *dev_limits,
1626         const char *inquiry_prod,
1627         const char *inquiry_rev)
1628 {
1629         int force_pt;
1630         struct se_device  *dev;
1631
1632         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1633         if (!(dev)) {
1634                 printk(KERN_ERR "Unable to allocate memory for se_dev_t\n");
1635                 return NULL;
1636         }
1637         dev->dev_queue_obj = kzalloc(sizeof(struct se_queue_obj), GFP_KERNEL);
1638         if (!(dev->dev_queue_obj)) {
1639                 printk(KERN_ERR "Unable to allocate memory for"
1640                                 " dev->dev_queue_obj\n");
1641                 kfree(dev);
1642                 return NULL;
1643         }
1644         transport_init_queue_obj(dev->dev_queue_obj);
1645
1646         dev->dev_status_queue_obj = kzalloc(sizeof(struct se_queue_obj),
1647                                         GFP_KERNEL);
1648         if (!(dev->dev_status_queue_obj)) {
1649                 printk(KERN_ERR "Unable to allocate memory for"
1650                                 " dev->dev_status_queue_obj\n");
1651                 kfree(dev->dev_queue_obj);
1652                 kfree(dev);
1653                 return NULL;
1654         }
1655         transport_init_queue_obj(dev->dev_status_queue_obj);
1656
1657         dev->dev_flags          = device_flags;
1658         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1659         dev->dev_ptr            = (void *) transport_dev;
1660         dev->se_hba             = hba;
1661         dev->se_sub_dev         = se_dev;
1662         dev->transport          = transport;
1663         atomic_set(&dev->active_cmds, 0);
1664         INIT_LIST_HEAD(&dev->dev_list);
1665         INIT_LIST_HEAD(&dev->dev_sep_list);
1666         INIT_LIST_HEAD(&dev->dev_tmr_list);
1667         INIT_LIST_HEAD(&dev->execute_task_list);
1668         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1669         INIT_LIST_HEAD(&dev->ordered_cmd_list);
1670         INIT_LIST_HEAD(&dev->state_task_list);
1671         spin_lock_init(&dev->execute_task_lock);
1672         spin_lock_init(&dev->delayed_cmd_lock);
1673         spin_lock_init(&dev->ordered_cmd_lock);
1674         spin_lock_init(&dev->state_task_lock);
1675         spin_lock_init(&dev->dev_alua_lock);
1676         spin_lock_init(&dev->dev_reservation_lock);
1677         spin_lock_init(&dev->dev_status_lock);
1678         spin_lock_init(&dev->dev_status_thr_lock);
1679         spin_lock_init(&dev->se_port_lock);
1680         spin_lock_init(&dev->se_tmr_lock);
1681
1682         dev->queue_depth        = dev_limits->queue_depth;
1683         atomic_set(&dev->depth_left, dev->queue_depth);
1684         atomic_set(&dev->dev_ordered_id, 0);
1685
1686         se_dev_set_default_attribs(dev, dev_limits);
1687
1688         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1689         dev->creation_time = get_jiffies_64();
1690         spin_lock_init(&dev->stats_lock);
1691
1692         spin_lock(&hba->device_lock);
1693         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1694         hba->dev_count++;
1695         spin_unlock(&hba->device_lock);
1696         /*
1697          * Setup the SAM Task Attribute emulation for struct se_device
1698          */
1699         core_setup_task_attr_emulation(dev);
1700         /*
1701          * Force PR and ALUA passthrough emulation with internal object use.
1702          */
1703         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1704         /*
1705          * Setup the Reservations infrastructure for struct se_device
1706          */
1707         core_setup_reservations(dev, force_pt);
1708         /*
1709          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1710          */
1711         if (core_setup_alua(dev, force_pt) < 0)
1712                 goto out;
1713
1714         /*
1715          * Startup the struct se_device processing thread
1716          */
1717         dev->process_thread = kthread_run(transport_processing_thread, dev,
1718                                           "LIO_%s", TRANSPORT(dev)->name);
1719         if (IS_ERR(dev->process_thread)) {
1720                 printk(KERN_ERR "Unable to create kthread: LIO_%s\n",
1721                         TRANSPORT(dev)->name);
1722                 goto out;
1723         }
1724
1725         /*
1726          * Preload the initial INQUIRY const values if we are doing
1727          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1728          * passthrough because this is being provided by the backend LLD.
1729          * This is required so that transport_get_inquiry() copies these
1730          * originals once back into DEV_T10_WWN(dev) for the virtual device
1731          * setup.
1732          */
1733         if (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1734                 if (!(inquiry_prod) || !(inquiry_prod)) {
1735                         printk(KERN_ERR "All non TCM/pSCSI plugins require"
1736                                 " INQUIRY consts\n");
1737                         goto out;
1738                 }
1739
1740                 strncpy(&DEV_T10_WWN(dev)->vendor[0], "LIO-ORG", 8);
1741                 strncpy(&DEV_T10_WWN(dev)->model[0], inquiry_prod, 16);
1742                 strncpy(&DEV_T10_WWN(dev)->revision[0], inquiry_rev, 4);
1743         }
1744         scsi_dump_inquiry(dev);
1745
1746         return dev;
1747 out:
1748         kthread_stop(dev->process_thread);
1749
1750         spin_lock(&hba->device_lock);
1751         list_del(&dev->dev_list);
1752         hba->dev_count--;
1753         spin_unlock(&hba->device_lock);
1754
1755         se_release_vpd_for_dev(dev);
1756
1757         kfree(dev->dev_status_queue_obj);
1758         kfree(dev->dev_queue_obj);
1759         kfree(dev);
1760
1761         return NULL;
1762 }
1763 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1764
1765 /*      transport_generic_prepare_cdb():
1766  *
1767  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1768  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1769  *      The point of this is since we are mapping iSCSI LUNs to
1770  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1771  *      devices and HBAs for a loop.
1772  */
1773 static inline void transport_generic_prepare_cdb(
1774         unsigned char *cdb)
1775 {
1776         switch (cdb[0]) {
1777         case READ_10: /* SBC - RDProtect */
1778         case READ_12: /* SBC - RDProtect */
1779         case READ_16: /* SBC - RDProtect */
1780         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1781         case VERIFY: /* SBC - VRProtect */
1782         case VERIFY_16: /* SBC - VRProtect */
1783         case WRITE_VERIFY: /* SBC - VRProtect */
1784         case WRITE_VERIFY_12: /* SBC - VRProtect */
1785                 break;
1786         default:
1787                 cdb[1] &= 0x1f; /* clear logical unit number */
1788                 break;
1789         }
1790 }
1791
1792 static struct se_task *
1793 transport_generic_get_task(struct se_cmd *cmd,
1794                 enum dma_data_direction data_direction)
1795 {
1796         struct se_task *task;
1797         struct se_device *dev = SE_DEV(cmd);
1798         unsigned long flags;
1799
1800         task = dev->transport->alloc_task(cmd);
1801         if (!task) {
1802                 printk(KERN_ERR "Unable to allocate struct se_task\n");
1803                 return NULL;
1804         }
1805
1806         INIT_LIST_HEAD(&task->t_list);
1807         INIT_LIST_HEAD(&task->t_execute_list);
1808         INIT_LIST_HEAD(&task->t_state_list);
1809         init_completion(&task->task_stop_comp);
1810         task->task_no = T_TASK(cmd)->t_tasks_no++;
1811         task->task_se_cmd = cmd;
1812         task->se_dev = dev;
1813         task->task_data_direction = data_direction;
1814
1815         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
1816         list_add_tail(&task->t_list, &T_TASK(cmd)->t_task_list);
1817         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1818
1819         return task;
1820 }
1821
1822 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1823
1824 void transport_device_setup_cmd(struct se_cmd *cmd)
1825 {
1826         cmd->se_dev = SE_LUN(cmd)->lun_se_dev;
1827 }
1828 EXPORT_SYMBOL(transport_device_setup_cmd);
1829
1830 /*
1831  * Used by fabric modules containing a local struct se_cmd within their
1832  * fabric dependent per I/O descriptor.
1833  */
1834 void transport_init_se_cmd(
1835         struct se_cmd *cmd,
1836         struct target_core_fabric_ops *tfo,
1837         struct se_session *se_sess,
1838         u32 data_length,
1839         int data_direction,
1840         int task_attr,
1841         unsigned char *sense_buffer)
1842 {
1843         INIT_LIST_HEAD(&cmd->se_lun_list);
1844         INIT_LIST_HEAD(&cmd->se_delayed_list);
1845         INIT_LIST_HEAD(&cmd->se_ordered_list);
1846         /*
1847          * Setup t_task pointer to t_task_backstore
1848          */
1849         cmd->t_task = &cmd->t_task_backstore;
1850
1851         INIT_LIST_HEAD(&T_TASK(cmd)->t_task_list);
1852         init_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
1853         init_completion(&T_TASK(cmd)->transport_lun_stop_comp);
1854         init_completion(&T_TASK(cmd)->t_transport_stop_comp);
1855         spin_lock_init(&T_TASK(cmd)->t_state_lock);
1856         atomic_set(&T_TASK(cmd)->transport_dev_active, 1);
1857
1858         cmd->se_tfo = tfo;
1859         cmd->se_sess = se_sess;
1860         cmd->data_length = data_length;
1861         cmd->data_direction = data_direction;
1862         cmd->sam_task_attr = task_attr;
1863         cmd->sense_buffer = sense_buffer;
1864 }
1865 EXPORT_SYMBOL(transport_init_se_cmd);
1866
1867 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1868 {
1869         /*
1870          * Check if SAM Task Attribute emulation is enabled for this
1871          * struct se_device storage object
1872          */
1873         if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1874                 return 0;
1875
1876         if (cmd->sam_task_attr == TASK_ATTR_ACA) {
1877                 DEBUG_STA("SAM Task Attribute ACA"
1878                         " emulation is not supported\n");
1879                 return -1;
1880         }
1881         /*
1882          * Used to determine when ORDERED commands should go from
1883          * Dormant to Active status.
1884          */
1885         cmd->se_ordered_id = atomic_inc_return(&SE_DEV(cmd)->dev_ordered_id);
1886         smp_mb__after_atomic_inc();
1887         DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1888                         cmd->se_ordered_id, cmd->sam_task_attr,
1889                         TRANSPORT(cmd->se_dev)->name);
1890         return 0;
1891 }
1892
1893 void transport_free_se_cmd(
1894         struct se_cmd *se_cmd)
1895 {
1896         if (se_cmd->se_tmr_req)
1897                 core_tmr_release_req(se_cmd->se_tmr_req);
1898         /*
1899          * Check and free any extended CDB buffer that was allocated
1900          */
1901         if (T_TASK(se_cmd)->t_task_cdb != T_TASK(se_cmd)->__t_task_cdb)
1902                 kfree(T_TASK(se_cmd)->t_task_cdb);
1903 }
1904 EXPORT_SYMBOL(transport_free_se_cmd);
1905
1906 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1907
1908 /*      transport_generic_allocate_tasks():
1909  *
1910  *      Called from fabric RX Thread.
1911  */
1912 int transport_generic_allocate_tasks(
1913         struct se_cmd *cmd,
1914         unsigned char *cdb)
1915 {
1916         int ret;
1917
1918         transport_generic_prepare_cdb(cdb);
1919
1920         /*
1921          * This is needed for early exceptions.
1922          */
1923         cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1924
1925         transport_device_setup_cmd(cmd);
1926         /*
1927          * Ensure that the received CDB is less than the max (252 + 8) bytes
1928          * for VARIABLE_LENGTH_CMD
1929          */
1930         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1931                 printk(KERN_ERR "Received SCSI CDB with command_size: %d that"
1932                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1933                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1934                 return -1;
1935         }
1936         /*
1937          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1938          * allocate the additional extended CDB buffer now..  Otherwise
1939          * setup the pointer from __t_task_cdb to t_task_cdb.
1940          */
1941         if (scsi_command_size(cdb) > sizeof(T_TASK(cmd)->__t_task_cdb)) {
1942                 T_TASK(cmd)->t_task_cdb = kzalloc(scsi_command_size(cdb),
1943                                                 GFP_KERNEL);
1944                 if (!(T_TASK(cmd)->t_task_cdb)) {
1945                         printk(KERN_ERR "Unable to allocate T_TASK(cmd)->t_task_cdb"
1946                                 " %u > sizeof(T_TASK(cmd)->__t_task_cdb): %lu ops\n",
1947                                 scsi_command_size(cdb),
1948                                 (unsigned long)sizeof(T_TASK(cmd)->__t_task_cdb));
1949                         return -1;
1950                 }
1951         } else
1952                 T_TASK(cmd)->t_task_cdb = &T_TASK(cmd)->__t_task_cdb[0];
1953         /*
1954          * Copy the original CDB into T_TASK(cmd).
1955          */
1956         memcpy(T_TASK(cmd)->t_task_cdb, cdb, scsi_command_size(cdb));
1957         /*
1958          * Setup the received CDB based on SCSI defined opcodes and
1959          * perform unit attention, persistent reservations and ALUA
1960          * checks for virtual device backends.  The T_TASK(cmd)->t_task_cdb
1961          * pointer is expected to be setup before we reach this point.
1962          */
1963         ret = transport_generic_cmd_sequencer(cmd, cdb);
1964         if (ret < 0)
1965                 return ret;
1966         /*
1967          * Check for SAM Task Attribute Emulation
1968          */
1969         if (transport_check_alloc_task_attr(cmd) < 0) {
1970                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1971                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1972                 return -2;
1973         }
1974         spin_lock(&cmd->se_lun->lun_sep_lock);
1975         if (cmd->se_lun->lun_sep)
1976                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1977         spin_unlock(&cmd->se_lun->lun_sep_lock);
1978         return 0;
1979 }
1980 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1981
1982 /*
1983  * Used by fabric module frontends not defining a TFO->new_cmd_map()
1984  * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1985  */
1986 int transport_generic_handle_cdb(
1987         struct se_cmd *cmd)
1988 {
1989         if (!SE_LUN(cmd)) {
1990                 dump_stack();
1991                 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
1992                 return -1;
1993         }
1994
1995         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
1996         return 0;
1997 }
1998 EXPORT_SYMBOL(transport_generic_handle_cdb);
1999
2000 /*
2001  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
2002  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
2003  * complete setup in TCM process context w/ TFO->new_cmd_map().
2004  */
2005 int transport_generic_handle_cdb_map(
2006         struct se_cmd *cmd)
2007 {
2008         if (!SE_LUN(cmd)) {
2009                 dump_stack();
2010                 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
2011                 return -1;
2012         }
2013
2014         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
2015         return 0;
2016 }
2017 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
2018
2019 /*      transport_generic_handle_data():
2020  *
2021  *
2022  */
2023 int transport_generic_handle_data(
2024         struct se_cmd *cmd)
2025 {
2026         /*
2027          * For the software fabric case, then we assume the nexus is being
2028          * failed/shutdown when signals are pending from the kthread context
2029          * caller, so we return a failure.  For the HW target mode case running
2030          * in interrupt code, the signal_pending() check is skipped.
2031          */
2032         if (!in_interrupt() && signal_pending(current))
2033                 return -1;
2034         /*
2035          * If the received CDB has aleady been ABORTED by the generic
2036          * target engine, we now call transport_check_aborted_status()
2037          * to queue any delated TASK_ABORTED status for the received CDB to the
2038          * fabric module as we are expecting no further incoming DATA OUT
2039          * sequences at this point.
2040          */
2041         if (transport_check_aborted_status(cmd, 1) != 0)
2042                 return 0;
2043
2044         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
2045         return 0;
2046 }
2047 EXPORT_SYMBOL(transport_generic_handle_data);
2048
2049 /*      transport_generic_handle_tmr():
2050  *
2051  *
2052  */
2053 int transport_generic_handle_tmr(
2054         struct se_cmd *cmd)
2055 {
2056         /*
2057          * This is needed for early exceptions.
2058          */
2059         cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
2060         transport_device_setup_cmd(cmd);
2061
2062         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
2063         return 0;
2064 }
2065 EXPORT_SYMBOL(transport_generic_handle_tmr);
2066
2067 void transport_generic_free_cmd_intr(
2068         struct se_cmd *cmd)
2069 {
2070         transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
2071 }
2072 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
2073
2074 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
2075 {
2076         struct se_task *task, *task_tmp;
2077         unsigned long flags;
2078         int ret = 0;
2079
2080         DEBUG_TS("ITT[0x%08x] - Stopping tasks\n",
2081                 CMD_TFO(cmd)->get_task_tag(cmd));
2082
2083         /*
2084          * No tasks remain in the execution queue
2085          */
2086         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2087         list_for_each_entry_safe(task, task_tmp,
2088                                 &T_TASK(cmd)->t_task_list, t_list) {
2089                 DEBUG_TS("task_no[%d] - Processing task %p\n",
2090                                 task->task_no, task);
2091                 /*
2092                  * If the struct se_task has not been sent and is not active,
2093                  * remove the struct se_task from the execution queue.
2094                  */
2095                 if (!atomic_read(&task->task_sent) &&
2096                     !atomic_read(&task->task_active)) {
2097                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
2098                                         flags);
2099                         transport_remove_task_from_execute_queue(task,
2100                                         task->se_dev);
2101
2102                         DEBUG_TS("task_no[%d] - Removed from execute queue\n",
2103                                 task->task_no);
2104                         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2105                         continue;
2106                 }
2107
2108                 /*
2109                  * If the struct se_task is active, sleep until it is returned
2110                  * from the plugin.
2111                  */
2112                 if (atomic_read(&task->task_active)) {
2113                         atomic_set(&task->task_stop, 1);
2114                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
2115                                         flags);
2116
2117                         DEBUG_TS("task_no[%d] - Waiting to complete\n",
2118                                 task->task_no);
2119                         wait_for_completion(&task->task_stop_comp);
2120                         DEBUG_TS("task_no[%d] - Stopped successfully\n",
2121                                 task->task_no);
2122
2123                         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2124                         atomic_dec(&T_TASK(cmd)->t_task_cdbs_left);
2125
2126                         atomic_set(&task->task_active, 0);
2127                         atomic_set(&task->task_stop, 0);
2128                 } else {
2129                         DEBUG_TS("task_no[%d] - Did nothing\n", task->task_no);
2130                         ret++;
2131                 }
2132
2133                 __transport_stop_task_timer(task, &flags);
2134         }
2135         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2136
2137         return ret;
2138 }
2139
2140 static void transport_failure_reset_queue_depth(struct se_device *dev)
2141 {
2142         unsigned long flags;
2143
2144         spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
2145         atomic_inc(&dev->depth_left);
2146         atomic_inc(&SE_HBA(dev)->left_queue_depth);
2147         spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2148 }
2149
2150 /*
2151  * Handle SAM-esque emulation for generic transport request failures.
2152  */
2153 static void transport_generic_request_failure(
2154         struct se_cmd *cmd,
2155         struct se_device *dev,
2156         int complete,
2157         int sc)
2158 {
2159         DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
2160                 " CDB: 0x%02x\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
2161                 T_TASK(cmd)->t_task_cdb[0]);
2162         DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:"
2163                 " %d/%d transport_error_status: %d\n",
2164                 CMD_TFO(cmd)->get_cmd_state(cmd),
2165                 cmd->t_state, cmd->deferred_t_state,
2166                 cmd->transport_error_status);
2167         DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d"
2168                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
2169                 " t_transport_active: %d t_transport_stop: %d"
2170                 " t_transport_sent: %d\n", T_TASK(cmd)->t_task_cdbs,
2171                 atomic_read(&T_TASK(cmd)->t_task_cdbs_left),
2172                 atomic_read(&T_TASK(cmd)->t_task_cdbs_sent),
2173                 atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left),
2174                 atomic_read(&T_TASK(cmd)->t_transport_active),
2175                 atomic_read(&T_TASK(cmd)->t_transport_stop),
2176                 atomic_read(&T_TASK(cmd)->t_transport_sent));
2177
2178         transport_stop_all_task_timers(cmd);
2179
2180         if (dev)
2181                 transport_failure_reset_queue_depth(dev);
2182         /*
2183          * For SAM Task Attribute emulation for failed struct se_cmd
2184          */
2185         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2186                 transport_complete_task_attr(cmd);
2187
2188         if (complete) {
2189                 transport_direct_request_timeout(cmd);
2190                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2191         }
2192
2193         switch (cmd->transport_error_status) {
2194         case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
2195                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2196                 break;
2197         case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
2198                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
2199                 break;
2200         case PYX_TRANSPORT_INVALID_CDB_FIELD:
2201                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2202                 break;
2203         case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
2204                 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
2205                 break;
2206         case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
2207                 if (!sc)
2208                         transport_new_cmd_failure(cmd);
2209                 /*
2210                  * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2211                  * we force this session to fall back to session
2212                  * recovery.
2213                  */
2214                 CMD_TFO(cmd)->fall_back_to_erl0(cmd->se_sess);
2215                 CMD_TFO(cmd)->stop_session(cmd->se_sess, 0, 0);
2216
2217                 goto check_stop;
2218         case PYX_TRANSPORT_LU_COMM_FAILURE:
2219         case PYX_TRANSPORT_ILLEGAL_REQUEST:
2220                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2221                 break;
2222         case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2223                 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2224                 break;
2225         case PYX_TRANSPORT_WRITE_PROTECTED:
2226                 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2227                 break;
2228         case PYX_TRANSPORT_RESERVATION_CONFLICT:
2229                 /*
2230                  * No SENSE Data payload for this case, set SCSI Status
2231                  * and queue the response to $FABRIC_MOD.
2232                  *
2233                  * Uses linux/include/scsi/scsi.h SAM status codes defs
2234                  */
2235                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2236                 /*
2237                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2238                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2239                  * CONFLICT STATUS.
2240                  *
2241                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2242                  */
2243                 if (SE_SESS(cmd) &&
2244                     DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
2245                         core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
2246                                 cmd->orig_fe_lun, 0x2C,
2247                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2248
2249                 CMD_TFO(cmd)->queue_status(cmd);
2250                 goto check_stop;
2251         case PYX_TRANSPORT_USE_SENSE_REASON:
2252                 /*
2253                  * struct se_cmd->scsi_sense_reason already set
2254                  */
2255                 break;
2256         default:
2257                 printk(KERN_ERR "Unknown transport error for CDB 0x%02x: %d\n",
2258                         T_TASK(cmd)->t_task_cdb[0],
2259                         cmd->transport_error_status);
2260                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2261                 break;
2262         }
2263
2264         if (!sc)
2265                 transport_new_cmd_failure(cmd);
2266         else
2267                 transport_send_check_condition_and_sense(cmd,
2268                         cmd->scsi_sense_reason, 0);
2269 check_stop:
2270         transport_lun_remove_cmd(cmd);
2271         if (!(transport_cmd_check_stop_to_fabric(cmd)))
2272                 ;
2273 }
2274
2275 static void transport_direct_request_timeout(struct se_cmd *cmd)
2276 {
2277         unsigned long flags;
2278
2279         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2280         if (!(atomic_read(&T_TASK(cmd)->t_transport_timeout))) {
2281                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2282                 return;
2283         }
2284         if (atomic_read(&T_TASK(cmd)->t_task_cdbs_timeout_left)) {
2285                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2286                 return;
2287         }
2288
2289         atomic_sub(atomic_read(&T_TASK(cmd)->t_transport_timeout),
2290                    &T_TASK(cmd)->t_se_count);
2291         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2292 }
2293
2294 static void transport_generic_request_timeout(struct se_cmd *cmd)
2295 {
2296         unsigned long flags;
2297
2298         /*
2299          * Reset T_TASK(cmd)->t_se_count to allow transport_generic_remove()
2300          * to allow last call to free memory resources.
2301          */
2302         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2303         if (atomic_read(&T_TASK(cmd)->t_transport_timeout) > 1) {
2304                 int tmp = (atomic_read(&T_TASK(cmd)->t_transport_timeout) - 1);
2305
2306                 atomic_sub(tmp, &T_TASK(cmd)->t_se_count);
2307         }
2308         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2309
2310         transport_generic_remove(cmd, 0, 0);
2311 }
2312
2313 static int
2314 transport_generic_allocate_buf(struct se_cmd *cmd, u32 data_length)
2315 {
2316         unsigned char *buf;
2317
2318         buf = kzalloc(data_length, GFP_KERNEL);
2319         if (!(buf)) {
2320                 printk(KERN_ERR "Unable to allocate memory for buffer\n");
2321                 return -1;
2322         }
2323
2324         T_TASK(cmd)->t_tasks_se_num = 0;
2325         T_TASK(cmd)->t_task_buf = buf;
2326
2327         return 0;
2328 }
2329
2330 static inline u32 transport_lba_21(unsigned char *cdb)
2331 {
2332         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2333 }
2334
2335 static inline u32 transport_lba_32(unsigned char *cdb)
2336 {
2337         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2338 }
2339
2340 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2341 {
2342         unsigned int __v1, __v2;
2343
2344         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2345         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2346
2347         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2348 }
2349
2350 /*
2351  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2352  */
2353 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2354 {
2355         unsigned int __v1, __v2;
2356
2357         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2358         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2359
2360         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2361 }
2362
2363 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2364 {
2365         unsigned long flags;
2366
2367         spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
2368         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2369         spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
2370 }
2371
2372 /*
2373  * Called from interrupt context.
2374  */
2375 static void transport_task_timeout_handler(unsigned long data)
2376 {
2377         struct se_task *task = (struct se_task *)data;
2378         struct se_cmd *cmd = TASK_CMD(task);
2379         unsigned long flags;
2380
2381         DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2382
2383         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2384         if (task->task_flags & TF_STOP) {
2385                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2386                 return;
2387         }
2388         task->task_flags &= ~TF_RUNNING;
2389
2390         /*
2391          * Determine if transport_complete_task() has already been called.
2392          */
2393         if (!(atomic_read(&task->task_active))) {
2394                 DEBUG_TT("transport task: %p cmd: %p timeout task_active"
2395                                 " == 0\n", task, cmd);
2396                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2397                 return;
2398         }
2399
2400         atomic_inc(&T_TASK(cmd)->t_se_count);
2401         atomic_inc(&T_TASK(cmd)->t_transport_timeout);
2402         T_TASK(cmd)->t_tasks_failed = 1;
2403
2404         atomic_set(&task->task_timeout, 1);
2405         task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2406         task->task_scsi_status = 1;
2407
2408         if (atomic_read(&task->task_stop)) {
2409                 DEBUG_TT("transport task: %p cmd: %p timeout task_stop"
2410                                 " == 1\n", task, cmd);
2411                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2412                 complete(&task->task_stop_comp);
2413                 return;
2414         }
2415
2416         if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
2417                 DEBUG_TT("transport task: %p cmd: %p timeout non zero"
2418                                 " t_task_cdbs_left\n", task, cmd);
2419                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2420                 return;
2421         }
2422         DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2423                         task, cmd);
2424
2425         cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2426         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2427
2428         transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2429 }
2430
2431 /*
2432  * Called with T_TASK(cmd)->t_state_lock held.
2433  */
2434 static void transport_start_task_timer(struct se_task *task)
2435 {
2436         struct se_device *dev = task->se_dev;
2437         int timeout;
2438
2439         if (task->task_flags & TF_RUNNING)
2440                 return;
2441         /*
2442          * If the task_timeout is disabled, exit now.
2443          */
2444         timeout = DEV_ATTRIB(dev)->task_timeout;
2445         if (!(timeout))
2446                 return;
2447
2448         init_timer(&task->task_timer);
2449         task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2450         task->task_timer.data = (unsigned long) task;
2451         task->task_timer.function = transport_task_timeout_handler;
2452
2453         task->task_flags |= TF_RUNNING;
2454         add_timer(&task->task_timer);
2455 #if 0
2456         printk(KERN_INFO "Starting task timer for cmd: %p task: %p seconds:"
2457                 " %d\n", task->task_se_cmd, task, timeout);
2458 #endif
2459 }
2460
2461 /*
2462  * Called with spin_lock_irq(&T_TASK(cmd)->t_state_lock) held.
2463  */
2464 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2465 {
2466         struct se_cmd *cmd = TASK_CMD(task);
2467
2468         if (!(task->task_flags & TF_RUNNING))
2469                 return;
2470
2471         task->task_flags |= TF_STOP;
2472         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, *flags);
2473
2474         del_timer_sync(&task->task_timer);
2475
2476         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, *flags);
2477         task->task_flags &= ~TF_RUNNING;
2478         task->task_flags &= ~TF_STOP;
2479 }
2480
2481 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2482 {
2483         struct se_task *task = NULL, *task_tmp;
2484         unsigned long flags;
2485
2486         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2487         list_for_each_entry_safe(task, task_tmp,
2488                                 &T_TASK(cmd)->t_task_list, t_list)
2489                 __transport_stop_task_timer(task, &flags);
2490         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2491 }
2492
2493 static inline int transport_tcq_window_closed(struct se_device *dev)
2494 {
2495         if (dev->dev_tcq_window_closed++ <
2496                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2497                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2498         } else
2499                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2500
2501         wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
2502         return 0;
2503 }
2504
2505 /*
2506  * Called from Fabric Module context from transport_execute_tasks()
2507  *
2508  * The return of this function determins if the tasks from struct se_cmd
2509  * get added to the execution queue in transport_execute_tasks(),
2510  * or are added to the delayed or ordered lists here.
2511  */
2512 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2513 {
2514         if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2515                 return 1;
2516         /*
2517          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2518          * to allow the passed struct se_cmd list of tasks to the front of the list.
2519          */
2520          if (cmd->sam_task_attr == TASK_ATTR_HOQ) {
2521                 atomic_inc(&SE_DEV(cmd)->dev_hoq_count);
2522                 smp_mb__after_atomic_inc();
2523                 DEBUG_STA("Added HEAD_OF_QUEUE for CDB:"
2524                         " 0x%02x, se_ordered_id: %u\n",
2525                         T_TASK(cmd)->t_task_cdb[0],
2526                         cmd->se_ordered_id);
2527                 return 1;
2528         } else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) {
2529                 spin_lock(&SE_DEV(cmd)->ordered_cmd_lock);
2530                 list_add_tail(&cmd->se_ordered_list,
2531                                 &SE_DEV(cmd)->ordered_cmd_list);
2532                 spin_unlock(&SE_DEV(cmd)->ordered_cmd_lock);
2533
2534                 atomic_inc(&SE_DEV(cmd)->dev_ordered_sync);
2535                 smp_mb__after_atomic_inc();
2536
2537                 DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered"
2538                                 " list, se_ordered_id: %u\n",
2539                                 T_TASK(cmd)->t_task_cdb[0],
2540                                 cmd->se_ordered_id);
2541                 /*
2542                  * Add ORDERED command to tail of execution queue if
2543                  * no other older commands exist that need to be
2544                  * completed first.
2545                  */
2546                 if (!(atomic_read(&SE_DEV(cmd)->simple_cmds)))
2547                         return 1;
2548         } else {
2549                 /*
2550                  * For SIMPLE and UNTAGGED Task Attribute commands
2551                  */
2552                 atomic_inc(&SE_DEV(cmd)->simple_cmds);
2553                 smp_mb__after_atomic_inc();
2554         }
2555         /*
2556          * Otherwise if one or more outstanding ORDERED task attribute exist,
2557          * add the dormant task(s) built for the passed struct se_cmd to the
2558          * execution queue and become in Active state for this struct se_device.
2559          */
2560         if (atomic_read(&SE_DEV(cmd)->dev_ordered_sync) != 0) {
2561                 /*
2562                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2563                  * will be drained upon completion of HEAD_OF_QUEUE task.
2564                  */
2565                 spin_lock(&SE_DEV(cmd)->delayed_cmd_lock);
2566                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2567                 list_add_tail(&cmd->se_delayed_list,
2568                                 &SE_DEV(cmd)->delayed_cmd_list);
2569                 spin_unlock(&SE_DEV(cmd)->delayed_cmd_lock);
2570
2571                 DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to"
2572                         " delayed CMD list, se_ordered_id: %u\n",
2573                         T_TASK(cmd)->t_task_cdb[0], cmd->sam_task_attr,
2574                         cmd->se_ordered_id);
2575                 /*
2576                  * Return zero to let transport_execute_tasks() know
2577                  * not to add the delayed tasks to the execution list.
2578                  */
2579                 return 0;
2580         }
2581         /*
2582          * Otherwise, no ORDERED task attributes exist..
2583          */
2584         return 1;
2585 }
2586
2587 /*
2588  * Called from fabric module context in transport_generic_new_cmd() and
2589  * transport_generic_process_write()
2590  */
2591 static int transport_execute_tasks(struct se_cmd *cmd)
2592 {
2593         int add_tasks;
2594
2595         if (!(cmd->se_cmd_flags & SCF_SE_DISABLE_ONLINE_CHECK)) {
2596                 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2597                         cmd->transport_error_status =
2598                                 PYX_TRANSPORT_LU_COMM_FAILURE;
2599                         transport_generic_request_failure(cmd, NULL, 0, 1);
2600                         return 0;
2601                 }
2602         }
2603         /*
2604          * Call transport_cmd_check_stop() to see if a fabric exception
2605          * has occurred that prevents execution.
2606          */
2607         if (!(transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING))) {
2608                 /*
2609                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2610                  * attribute for the tasks of the received struct se_cmd CDB
2611                  */
2612                 add_tasks = transport_execute_task_attr(cmd);
2613                 if (add_tasks == 0)
2614                         goto execute_tasks;
2615                 /*
2616                  * This calls transport_add_tasks_from_cmd() to handle
2617                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2618                  * (if enabled) in __transport_add_task_to_execute_queue() and
2619                  * transport_add_task_check_sam_attr().
2620                  */
2621                 transport_add_tasks_from_cmd(cmd);
2622         }
2623         /*
2624          * Kick the execution queue for the cmd associated struct se_device
2625          * storage object.
2626          */
2627 execute_tasks:
2628         __transport_execute_tasks(SE_DEV(cmd));
2629         return 0;
2630 }
2631
2632 /*
2633  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2634  * from struct se_device->execute_task_list and
2635  *
2636  * Called from transport_processing_thread()
2637  */
2638 static int __transport_execute_tasks(struct se_device *dev)
2639 {
2640         int error;
2641         struct se_cmd *cmd = NULL;
2642         struct se_task *task;
2643         unsigned long flags;
2644
2645         /*
2646          * Check if there is enough room in the device and HBA queue to send
2647          * struct se_transport_task's to the selected transport.
2648          */
2649 check_depth:
2650         spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
2651         if (!(atomic_read(&dev->depth_left)) ||
2652             !(atomic_read(&SE_HBA(dev)->left_queue_depth))) {
2653                 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2654                 return transport_tcq_window_closed(dev);
2655         }
2656         dev->dev_tcq_window_closed = 0;
2657
2658         spin_lock(&dev->execute_task_lock);
2659         task = transport_get_task_from_execute_queue(dev);
2660         spin_unlock(&dev->execute_task_lock);
2661
2662         if (!task) {
2663                 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2664                 return 0;
2665         }
2666
2667         atomic_dec(&dev->depth_left);
2668         atomic_dec(&SE_HBA(dev)->left_queue_depth);
2669         spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2670
2671         cmd = TASK_CMD(task);
2672
2673         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2674         atomic_set(&task->task_active, 1);
2675         atomic_set(&task->task_sent, 1);
2676         atomic_inc(&T_TASK(cmd)->t_task_cdbs_sent);
2677
2678         if (atomic_read(&T_TASK(cmd)->t_task_cdbs_sent) ==
2679             T_TASK(cmd)->t_task_cdbs)
2680                 atomic_set(&cmd->transport_sent, 1);
2681
2682         transport_start_task_timer(task);
2683         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2684         /*
2685          * The struct se_cmd->transport_emulate_cdb() function pointer is used
2686          * to grab REPORT_LUNS CDBs before they hit the
2687          * struct se_subsystem_api->do_task() caller below.
2688          */
2689         if (cmd->transport_emulate_cdb) {
2690                 error = cmd->transport_emulate_cdb(cmd);
2691                 if (error != 0) {
2692                         cmd->transport_error_status = error;
2693                         atomic_set(&task->task_active, 0);
2694                         atomic_set(&cmd->transport_sent, 0);
2695                         transport_stop_tasks_for_cmd(cmd);
2696                         transport_generic_request_failure(cmd, dev, 0, 1);
2697                         goto check_depth;
2698                 }
2699                 /*
2700                  * Handle the successful completion for transport_emulate_cdb()
2701                  * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2702                  * Otherwise the caller is expected to complete the task with
2703                  * proper status.
2704                  */
2705                 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2706                         cmd->scsi_status = SAM_STAT_GOOD;
2707                         task->task_scsi_status = GOOD;
2708                         transport_complete_task(task, 1);
2709                 }
2710         } else {
2711                 /*
2712                  * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2713                  * RAMDISK we use the internal transport_emulate_control_cdb() logic
2714                  * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2715                  * LUN emulation code.
2716                  *
2717                  * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2718                  * call ->do_task() directly and let the underlying TCM subsystem plugin
2719                  * code handle the CDB emulation.
2720                  */
2721                 if ((TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2722                     (!(TASK_CMD(task)->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2723                         error = transport_emulate_control_cdb(task);
2724                 else
2725                         error = TRANSPORT(dev)->do_task(task);
2726
2727                 if (error != 0) {
2728                         cmd->transport_error_status = error;
2729                         atomic_set(&task->task_active, 0);
2730                         atomic_set(&cmd->transport_sent, 0);
2731                         transport_stop_tasks_for_cmd(cmd);
2732                         transport_generic_request_failure(cmd, dev, 0, 1);
2733                 }
2734         }
2735
2736         goto check_depth;
2737
2738         return 0;
2739 }
2740
2741 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2742 {
2743         unsigned long flags;
2744         /*
2745          * Any unsolicited data will get dumped for failed command inside of
2746          * the fabric plugin
2747          */
2748         spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
2749         se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2750         se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2751         spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
2752
2753         CMD_TFO(se_cmd)->new_cmd_failure(se_cmd);
2754 }
2755
2756 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2757
2758 static inline u32 transport_get_sectors_6(
2759         unsigned char *cdb,
2760         struct se_cmd *cmd,
2761         int *ret)
2762 {
2763         struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2764
2765         /*
2766          * Assume TYPE_DISK for non struct se_device objects.
2767          * Use 8-bit sector value.
2768          */
2769         if (!dev)
2770                 goto type_disk;
2771
2772         /*
2773          * Use 24-bit allocation length for TYPE_TAPE.
2774          */
2775         if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
2776                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2777
2778         /*
2779          * Everything else assume TYPE_DISK Sector CDB location.
2780          * Use 8-bit sector value.
2781          */
2782 type_disk:
2783         return (u32)cdb[4];
2784 }
2785
2786 static inline u32 transport_get_sectors_10(
2787         unsigned char *cdb,
2788         struct se_cmd *cmd,
2789         int *ret)
2790 {
2791         struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2792
2793         /*
2794          * Assume TYPE_DISK for non struct se_device objects.
2795          * Use 16-bit sector value.
2796          */
2797         if (!dev)
2798                 goto type_disk;
2799
2800         /*
2801          * XXX_10 is not defined in SSC, throw an exception
2802          */
2803         if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2804                 *ret = -1;
2805                 return 0;
2806         }
2807
2808         /*
2809          * Everything else assume TYPE_DISK Sector CDB location.
2810          * Use 16-bit sector value.
2811          */
2812 type_disk:
2813         return (u32)(cdb[7] << 8) + cdb[8];
2814 }
2815
2816 static inline u32 transport_get_sectors_12(
2817         unsigned char *cdb,
2818         struct se_cmd *cmd,
2819         int *ret)
2820 {
2821         struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2822
2823         /*
2824          * Assume TYPE_DISK for non struct se_device objects.
2825          * Use 32-bit sector value.
2826          */
2827         if (!dev)
2828                 goto type_disk;
2829
2830         /*
2831          * XXX_12 is not defined in SSC, throw an exception
2832          */
2833         if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2834                 *ret = -1;
2835                 return 0;
2836         }
2837
2838         /*
2839          * Everything else assume TYPE_DISK Sector CDB location.
2840          * Use 32-bit sector value.
2841          */
2842 type_disk:
2843         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2844 }
2845
2846 static inline u32 transport_get_sectors_16(
2847         unsigned char *cdb,
2848         struct se_cmd *cmd,
2849         int *ret)
2850 {
2851         struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2852
2853         /*
2854          * Assume TYPE_DISK for non struct se_device objects.
2855          * Use 32-bit sector value.
2856          */
2857         if (!dev)
2858                 goto type_disk;
2859
2860         /*
2861          * Use 24-bit allocation length for TYPE_TAPE.
2862          */
2863         if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
2864                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2865
2866 type_disk:
2867         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2868                     (cdb[12] << 8) + cdb[13];
2869 }
2870
2871 /*
2872  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2873  */
2874 static inline u32 transport_get_sectors_32(
2875         unsigned char *cdb,
2876         struct se_cmd *cmd,
2877         int *ret)
2878 {
2879         /*
2880          * Assume TYPE_DISK for non struct se_device objects.
2881          * Use 32-bit sector value.
2882          */
2883         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2884                     (cdb[30] << 8) + cdb[31];
2885
2886 }
2887
2888 static inline u32 transport_get_size(
2889         u32 sectors,
2890         unsigned char *cdb,
2891         struct se_cmd *cmd)
2892 {
2893         struct se_device *dev = SE_DEV(cmd);
2894
2895         if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2896                 if (cdb[1] & 1) { /* sectors */
2897                         return DEV_ATTRIB(dev)->block_size * sectors;
2898                 } else /* bytes */
2899                         return sectors;
2900         }
2901 #if 0
2902         printk(KERN_INFO "Returning block_size: %u, sectors: %u == %u for"
2903                         " %s object\n", DEV_ATTRIB(dev)->block_size, sectors,
2904                         DEV_ATTRIB(dev)->block_size * sectors,
2905                         TRANSPORT(dev)->name);
2906 #endif
2907         return DEV_ATTRIB(dev)->block_size * sectors;
2908 }
2909
2910 unsigned char transport_asciihex_to_binaryhex(unsigned char val[2])
2911 {
2912         unsigned char result = 0;
2913         /*
2914          * MSB
2915          */
2916         if ((val[0] >= 'a') && (val[0] <= 'f'))
2917                 result = ((val[0] - 'a' + 10) & 0xf) << 4;
2918         else
2919                 if ((val[0] >= 'A') && (val[0] <= 'F'))
2920                         result = ((val[0] - 'A' + 10) & 0xf) << 4;
2921                 else /* digit */
2922                         result = ((val[0] - '0') & 0xf) << 4;
2923         /*
2924          * LSB
2925          */
2926         if ((val[1] >= 'a') && (val[1] <= 'f'))
2927                 result |= ((val[1] - 'a' + 10) & 0xf);
2928         else
2929                 if ((val[1] >= 'A') && (val[1] <= 'F'))
2930                         result |= ((val[1] - 'A' + 10) & 0xf);
2931                 else /* digit */
2932                         result |= ((val[1] - '0') & 0xf);
2933
2934         return result;
2935 }
2936 EXPORT_SYMBOL(transport_asciihex_to_binaryhex);
2937
2938 static void transport_xor_callback(struct se_cmd *cmd)
2939 {
2940         unsigned char *buf, *addr;
2941         struct se_mem *se_mem;
2942         unsigned int offset;
2943         int i;
2944         /*
2945          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2946          *
2947          * 1) read the specified logical block(s);
2948          * 2) transfer logical blocks from the data-out buffer;
2949          * 3) XOR the logical blocks transferred from the data-out buffer with
2950          *    the logical blocks read, storing the resulting XOR data in a buffer;
2951          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2952          *    blocks transferred from the data-out buffer; and
2953          * 5) transfer the resulting XOR data to the data-in buffer.
2954          */
2955         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2956         if (!(buf)) {
2957                 printk(KERN_ERR "Unable to allocate xor_callback buf\n");
2958                 return;
2959         }
2960         /*
2961          * Copy the scatterlist WRITE buffer located at T_TASK(cmd)->t_mem_list
2962          * into the locally allocated *buf
2963          */
2964         transport_memcpy_se_mem_read_contig(cmd, buf, T_TASK(cmd)->t_mem_list);
2965         /*
2966          * Now perform the XOR against the BIDI read memory located at
2967          * T_TASK(cmd)->t_mem_bidi_list
2968          */
2969
2970         offset = 0;
2971         list_for_each_entry(se_mem, T_TASK(cmd)->t_mem_bidi_list, se_list) {
2972                 addr = (unsigned char *)kmap_atomic(se_mem->se_page, KM_USER0);
2973                 if (!(addr))
2974                         goto out;
2975
2976                 for (i = 0; i < se_mem->se_len; i++)
2977                         *(addr + se_mem->se_off + i) ^= *(buf + offset + i);
2978
2979                 offset += se_mem->se_len;
2980                 kunmap_atomic(addr, KM_USER0);
2981         }
2982 out:
2983         kfree(buf);
2984 }
2985
2986 /*
2987  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2988  */
2989 static int transport_get_sense_data(struct se_cmd *cmd)
2990 {
2991         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2992         struct se_device *dev;
2993         struct se_task *task = NULL, *task_tmp;
2994         unsigned long flags;
2995         u32 offset = 0;
2996
2997         if (!SE_LUN(cmd)) {
2998                 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
2999                 return -1;
3000         }
3001         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3002         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3003                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3004                 return 0;
3005         }
3006
3007         list_for_each_entry_safe(task, task_tmp,
3008                                 &T_TASK(cmd)->t_task_list, t_list) {
3009
3010                 if (!task->task_sense)
3011                         continue;
3012
3013                 dev = task->se_dev;
3014                 if (!(dev))
3015                         continue;
3016
3017                 if (!TRANSPORT(dev)->get_sense_buffer) {
3018                         printk(KERN_ERR "TRANSPORT(dev)->get_sense_buffer"
3019                                         " is NULL\n");
3020                         continue;
3021                 }
3022
3023                 sense_buffer = TRANSPORT(dev)->get_sense_buffer(task);
3024                 if (!(sense_buffer)) {
3025                         printk(KERN_ERR "ITT[0x%08x]_TASK[%d]: Unable to locate"
3026                                 " sense buffer for task with sense\n",
3027                                 CMD_TFO(cmd)->get_task_tag(cmd), task->task_no);
3028                         continue;
3029                 }
3030                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3031
3032                 offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
3033                                 TRANSPORT_SENSE_BUFFER);
3034
3035                 memcpy((void *)&buffer[offset], (void *)sense_buffer,
3036                                 TRANSPORT_SENSE_BUFFER);
3037                 cmd->scsi_status = task->task_scsi_status;
3038                 /* Automatically padded */
3039                 cmd->scsi_sense_length =
3040                                 (TRANSPORT_SENSE_BUFFER + offset);
3041
3042                 printk(KERN_INFO "HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
3043                                 " and sense\n",
3044                         dev->se_hba->hba_id, TRANSPORT(dev)->name,
3045                                 cmd->scsi_status);
3046                 return 0;
3047         }
3048         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3049
3050         return -1;
3051 }
3052
3053 static int transport_allocate_resources(struct se_cmd *cmd)
3054 {
3055         u32 length = cmd->data_length;
3056
3057         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3058             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB))
3059                 return transport_generic_get_mem(cmd, length, PAGE_SIZE);
3060         else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB)
3061                 return transport_generic_allocate_buf(cmd, length);
3062         else
3063                 return 0;
3064 }
3065
3066 static int
3067 transport_handle_reservation_conflict(struct se_cmd *cmd)
3068 {
3069         cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3070         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3071         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
3072         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
3073         /*
3074          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
3075          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
3076          * CONFLICT STATUS.
3077          *
3078          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
3079          */
3080         if (SE_SESS(cmd) &&
3081             DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
3082                 core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
3083                         cmd->orig_fe_lun, 0x2C,
3084                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
3085         return -2;
3086 }
3087
3088 /*      transport_generic_cmd_sequencer():
3089  *
3090  *      Generic Command Sequencer that should work for most DAS transport
3091  *      drivers.
3092  *
3093  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
3094  *      RX Thread.
3095  *
3096  *      FIXME: Need to support other SCSI OPCODES where as well.
3097  */
3098 static int transport_generic_cmd_sequencer(
3099         struct se_cmd *cmd,
3100         unsigned char *cdb)
3101 {
3102         struct se_device *dev = SE_DEV(cmd);
3103         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
3104         int ret = 0, sector_ret = 0, passthrough;
3105         u32 sectors = 0, size = 0, pr_reg_type = 0;
3106         u16 service_action;
3107         u8 alua_ascq = 0;
3108         /*
3109          * Check for an existing UNIT ATTENTION condition
3110          */
3111         if (core_scsi3_ua_check(cmd, cdb) < 0) {
3112                 cmd->transport_wait_for_tasks =
3113                                 &transport_nop_wait_for_tasks;
3114                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3115                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
3116                 return -2;
3117         }
3118         /*
3119          * Check status of Asymmetric Logical Unit Assignment port
3120          */
3121         ret = T10_ALUA(su_dev)->alua_state_check(cmd, cdb, &alua_ascq);
3122         if (ret != 0) {
3123                 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3124                 /*
3125                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
3126                  * The ALUA additional sense code qualifier (ASCQ) is determined
3127                  * by the ALUA primary or secondary access state..
3128                  */
3129                 if (ret > 0) {
3130 #if 0
3131                         printk(KERN_INFO "[%s]: ALUA TG Port not available,"
3132                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
3133                                 CMD_TFO(cmd)->get_fabric_name(), alua_ascq);
3134 #endif
3135                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
3136                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3137                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
3138                         return -2;
3139                 }
3140                 goto out_invalid_cdb_field;
3141         }
3142         /*
3143          * Check status for SPC-3 Persistent Reservations
3144          */
3145         if (T10_PR_OPS(su_dev)->t10_reservation_check(cmd, &pr_reg_type) != 0) {
3146                 if (T10_PR_OPS(su_dev)->t10_seq_non_holder(
3147                                         cmd, cdb, pr_reg_type) != 0)
3148                         return transport_handle_reservation_conflict(cmd);
3149                 /*
3150                  * This means the CDB is allowed for the SCSI Initiator port
3151                  * when said port is *NOT* holding the legacy SPC-2 or
3152                  * SPC-3 Persistent Reservation.
3153                  */
3154         }
3155
3156         switch (cdb[0]) {
3157         case READ_6:
3158                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3159                 if (sector_ret)
3160                         goto out_unsupported_cdb;
3161                 size = transport_get_size(sectors, cdb, cmd);
3162                 cmd->transport_split_cdb = &split_cdb_XX_6;
3163                 T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
3164                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3165                 break;
3166         case READ_10:
3167                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3168                 if (sector_ret)
3169                         goto out_unsupported_cdb;
3170                 size = transport_get_size(sectors, cdb, cmd);
3171                 cmd->transport_split_cdb = &split_cdb_XX_10;
3172                 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3173                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3174                 break;
3175         case READ_12:
3176                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3177                 if (sector_ret)
3178                         goto out_unsupported_cdb;
3179                 size = transport_get_size(sectors, cdb, cmd);
3180                 cmd->transport_split_cdb = &split_cdb_XX_12;
3181                 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3182                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3183                 break;
3184         case READ_16:
3185                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3186                 if (sector_ret)
3187                         goto out_unsupported_cdb;
3188                 size = transport_get_size(sectors, cdb, cmd);
3189                 cmd->transport_split_cdb = &split_cdb_XX_16;
3190                 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3191                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3192                 break;
3193         case WRITE_6:
3194                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3195                 if (sector_ret)
3196                         goto out_unsupported_cdb;
3197                 size = transport_get_size(sectors, cdb, cmd);
3198                 cmd->transport_split_cdb = &split_cdb_XX_6;
3199                 T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
3200                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3201                 break;
3202         case WRITE_10:
3203                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3204                 if (sector_ret)
3205                         goto out_unsupported_cdb;
3206                 size = transport_get_size(sectors, cdb, cmd);
3207                 cmd->transport_split_cdb = &split_cdb_XX_10;
3208                 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3209                 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3210                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3211                 break;
3212         case WRITE_12:
3213                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3214                 if (sector_ret)
3215                         goto out_unsupported_cdb;
3216                 size = transport_get_size(sectors, cdb, cmd);
3217                 cmd->transport_split_cdb = &split_cdb_XX_12;
3218                 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3219                 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3220                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3221                 break;
3222         case WRITE_16:
3223                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3224                 if (sector_ret)
3225                         goto out_unsupported_cdb;
3226                 size = transport_get_size(sectors, cdb, cmd);
3227                 cmd->transport_split_cdb = &split_cdb_XX_16;
3228                 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3229                 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3230                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3231                 break;
3232         case XDWRITEREAD_10:
3233                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
3234                     !(T_TASK(cmd)->t_tasks_bidi))
3235                         goto out_invalid_cdb_field;
3236                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3237                 if (sector_ret)
3238                         goto out_unsupported_cdb;
3239                 size = transport_get_size(sectors, cdb, cmd);
3240                 cmd->transport_split_cdb = &split_cdb_XX_10;
3241                 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3242                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3243                 passthrough = (TRANSPORT(dev)->transport_type ==
3244                                 TRANSPORT_PLUGIN_PHBA_PDEV);
3245                 /*
3246                  * Skip the remaining assignments for TCM/PSCSI passthrough
3247                  */
3248                 if (passthrough)
3249                         break;
3250                 /*
3251                  * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3252                  */
3253                 cmd->transport_complete_callback = &transport_xor_callback;
3254                 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3255                 break;
3256         case VARIABLE_LENGTH_CMD:
3257                 service_action = get_unaligned_be16(&cdb[8]);
3258                 /*
3259                  * Determine if this is TCM/PSCSI device and we should disable
3260                  * internal emulation for this CDB.
3261                  */
3262                 passthrough = (TRANSPORT(dev)->transport_type ==
3263                                         TRANSPORT_PLUGIN_PHBA_PDEV);
3264
3265                 switch (service_action) {
3266                 case XDWRITEREAD_32:
3267                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3268                         if (sector_ret)
3269                                 goto out_unsupported_cdb;
3270                         size = transport_get_size(sectors, cdb, cmd);
3271                         /*
3272                          * Use WRITE_32 and READ_32 opcodes for the emulated
3273                          * XDWRITE_READ_32 logic.
3274                          */
3275                         cmd->transport_split_cdb = &split_cdb_XX_32;
3276                         T_TASK(cmd)->t_task_lba = transport_lba_64_ext(cdb);
3277                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3278
3279                         /*
3280                          * Skip the remaining assignments for TCM/PSCSI passthrough
3281                          */
3282                         if (passthrough)
3283                                 break;
3284
3285                         /*
3286                          * Setup BIDI XOR callback to be run during
3287                          * transport_generic_complete_ok()
3288                          */
3289                         cmd->transport_complete_callback = &transport_xor_callback;
3290                         T_TASK(cmd)->t_tasks_fua = (cdb[10] & 0x8);
3291                         break;
3292                 case WRITE_SAME_32:
3293                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3294                         if (sector_ret)
3295                                 goto out_unsupported_cdb;
3296                         size = transport_get_size(sectors, cdb, cmd);
3297                         T_TASK(cmd)->t_task_lba = get_unaligned_be64(&cdb[12]);
3298                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3299
3300                         /*
3301                          * Skip the remaining assignments for TCM/PSCSI passthrough
3302                          */
3303                         if (passthrough)
3304                                 break;
3305
3306                         if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) {
3307                                 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3308                                         " bits not supported for Block Discard"
3309                                         " Emulation\n");
3310                                 goto out_invalid_cdb_field;
3311                         }
3312                         /*
3313                          * Currently for the emulated case we only accept
3314                          * tpws with the UNMAP=1 bit set.
3315                          */
3316                         if (!(cdb[10] & 0x08)) {
3317                                 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not"
3318                                         " supported for Block Discard Emulation\n");
3319                                 goto out_invalid_cdb_field;
3320                         }
3321                         break;
3322                 default:
3323                         printk(KERN_ERR "VARIABLE_LENGTH_CMD service action"
3324                                 " 0x%04x not supported\n", service_action);
3325                         goto out_unsupported_cdb;
3326                 }
3327                 break;
3328         case 0xa3:
3329                 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
3330                         /* MAINTENANCE_IN from SCC-2 */
3331                         /*
3332                          * Check for emulated MI_REPORT_TARGET_PGS.
3333                          */
3334                         if (cdb[1] == MI_REPORT_TARGET_PGS) {
3335                                 cmd->transport_emulate_cdb =
3336                                 (T10_ALUA(su_dev)->alua_type ==
3337                                  SPC3_ALUA_EMULATED) ?
3338                                 &core_emulate_report_target_port_groups :
3339                                 NULL;
3340                         }
3341                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3342                                (cdb[8] << 8) | cdb[9];
3343                 } else {
3344                         /* GPCMD_SEND_KEY from multi media commands */
3345                         size = (cdb[8] << 8) + cdb[9];
3346                 }
3347                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3348                 break;
3349         case MODE_SELECT:
3350                 size = cdb[4];
3351                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3352                 break;
3353         case MODE_SELECT_10:
3354                 size = (cdb[7] << 8) + cdb[8];
3355                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3356                 break;
3357         case MODE_SENSE:
3358                 size = cdb[4];
3359                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3360                 break;
3361         case MODE_SENSE_10:
3362         case GPCMD_READ_BUFFER_CAPACITY:
3363         case GPCMD_SEND_OPC:
3364         case LOG_SELECT:
3365         case LOG_SENSE:
3366                 size = (cdb[7] << 8) + cdb[8];
3367                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3368                 break;
3369         case READ_BLOCK_LIMITS:
3370                 size = READ_BLOCK_LEN;
3371                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3372                 break;
3373         case GPCMD_GET_CONFIGURATION:
3374         case GPCMD_READ_FORMAT_CAPACITIES:
3375         case GPCMD_READ_DISC_INFO:
3376         case GPCMD_READ_TRACK_RZONE_INFO:
3377                 size = (cdb[7] << 8) + cdb[8];
3378                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3379                 break;
3380         case PERSISTENT_RESERVE_IN:
3381         case PERSISTENT_RESERVE_OUT:
3382                 cmd->transport_emulate_cdb =
3383                         (T10_RES(su_dev)->res_type ==
3384                          SPC3_PERSISTENT_RESERVATIONS) ?
3385                         &core_scsi3_emulate_pr : NULL;
3386                 size = (cdb[7] << 8) + cdb[8];
3387                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3388                 break;
3389         case GPCMD_MECHANISM_STATUS:
3390         case GPCMD_READ_DVD_STRUCTURE:
3391                 size = (cdb[8] << 8) + cdb[9];
3392                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3393                 break;
3394         case READ_POSITION:
3395                 size = READ_POSITION_LEN;
3396                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3397                 break;
3398         case 0xa4:
3399                 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
3400                         /* MAINTENANCE_OUT from SCC-2
3401                          *
3402                          * Check for emulated MO_SET_TARGET_PGS.
3403                          */
3404                         if (cdb[1] == MO_SET_TARGET_PGS) {
3405                                 cmd->transport_emulate_cdb =
3406                                 (T10_ALUA(su_dev)->alua_type ==
3407                                         SPC3_ALUA_EMULATED) ?
3408                                 &core_emulate_set_target_port_groups :
3409                                 NULL;
3410                         }
3411
3412                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3413                                (cdb[8] << 8) | cdb[9];
3414                 } else  {
3415                         /* GPCMD_REPORT_KEY from multi media commands */
3416                         size = (cdb[8] << 8) + cdb[9];
3417                 }
3418                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3419                 break;
3420         case INQUIRY:
3421                 size = (cdb[3] << 8) + cdb[4];
3422                 /*
3423                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3424                  * See spc4r17 section 5.3
3425                  */
3426                 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3427                         cmd->sam_task_attr = TASK_ATTR_HOQ;
3428                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3429                 break;
3430         case READ_BUFFER:
3431                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3432                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3433                 break;
3434         case READ_CAPACITY:
3435                 size = READ_CAP_LEN;
3436                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3437                 break;
3438         case READ_MEDIA_SERIAL_NUMBER:
3439         case SECURITY_PROTOCOL_IN:
3440         case SECURITY_PROTOCOL_OUT:
3441                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3442                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3443                 break;
3444         case SERVICE_ACTION_IN:
3445         case ACCESS_CONTROL_IN:
3446         case ACCESS_CONTROL_OUT:
3447         case EXTENDED_COPY:
3448         case READ_ATTRIBUTE:
3449         case RECEIVE_COPY_RESULTS:
3450         case WRITE_ATTRIBUTE:
3451                 size = (cdb[10] << 24) | (cdb[11] << 16) |
3452                        (cdb[12] << 8) | cdb[13];
3453                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3454                 break;
3455         case RECEIVE_DIAGNOSTIC:
3456         case SEND_DIAGNOSTIC:
3457                 size = (cdb[3] << 8) | cdb[4];
3458                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3459                 break;
3460 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3461 #if 0
3462         case GPCMD_READ_CD:
3463                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3464                 size = (2336 * sectors);
3465                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3466                 break;
3467 #endif
3468         case READ_TOC:
3469                 size = cdb[8];
3470                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3471                 break;
3472         case REQUEST_SENSE:
3473                 size = cdb[4];
3474                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3475                 break;
3476         case READ_ELEMENT_STATUS:
3477                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3478                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3479                 break;
3480         case WRITE_BUFFER:
3481                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3482                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3483                 break;
3484         case RESERVE:
3485         case RESERVE_10:
3486                 /*
3487                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3488                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3489                  */
3490                 if (cdb[0] == RESERVE_10)
3491                         size = (cdb[7] << 8) | cdb[8];
3492                 else
3493                         size = cmd->data_length;
3494
3495                 /*
3496                  * Setup the legacy emulated handler for SPC-2 and
3497                  * >= SPC-3 compatible reservation handling (CRH=1)
3498                  * Otherwise, we assume the underlying SCSI logic is
3499                  * is running in SPC_PASSTHROUGH, and wants reservations
3500                  * emulation disabled.
3501                  */
3502                 cmd->transport_emulate_cdb =
3503                                 (T10_RES(su_dev)->res_type !=
3504                                  SPC_PASSTHROUGH) ?
3505                                 &core_scsi2_emulate_crh : NULL;
3506                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3507                 break;
3508         case RELEASE:
3509         case RELEASE_10:
3510                 /*
3511                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3512                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3513                 */
3514                 if (cdb[0] == RELEASE_10)
3515                         size = (cdb[7] << 8) | cdb[8];
3516                 else
3517                         size = cmd->data_length;
3518
3519                 cmd->transport_emulate_cdb =
3520                                 (T10_RES(su_dev)->res_type !=
3521                                  SPC_PASSTHROUGH) ?
3522                                 &core_scsi2_emulate_crh : NULL;
3523                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3524                 break;
3525         case SYNCHRONIZE_CACHE:
3526         case 0x91: /* SYNCHRONIZE_CACHE_16: */
3527                 /*
3528                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3529                  */
3530                 if (cdb[0] == SYNCHRONIZE_CACHE) {
3531                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3532                         T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3533                 } else {
3534                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3535                         T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3536                 }
3537                 if (sector_ret)
3538                         goto out_unsupported_cdb;
3539
3540                 size = transport_get_size(sectors, cdb, cmd);
3541                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3542
3543                 /*
3544                  * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3545                  */
3546                 if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3547                         break;
3548                 /*
3549                  * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3550                  * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3551                  */
3552                 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3553                 /*
3554                  * Check to ensure that LBA + Range does not exceed past end of
3555                  * device.
3556                  */
3557                 if (transport_get_sectors(cmd) < 0)
3558                         goto out_invalid_cdb_field;
3559                 break;
3560         case UNMAP:
3561                 size = get_unaligned_be16(&cdb[7]);
3562                 passthrough = (TRANSPORT(dev)->transport_type ==
3563                                 TRANSPORT_PLUGIN_PHBA_PDEV);
3564                 /*
3565                  * Determine if the received UNMAP used to for direct passthrough
3566                  * into Linux/SCSI with struct request via TCM/pSCSI or we are
3567                  * signaling the use of internal transport_generic_unmap() emulation
3568                  * for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO
3569                  * subsystem plugin backstores.
3570                  */
3571                 if (!(passthrough))
3572                         cmd->se_cmd_flags |= SCF_EMULATE_SYNC_UNMAP;
3573
3574                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3575                 break;
3576         case WRITE_SAME_16:
3577                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3578                 if (sector_ret)
3579                         goto out_unsupported_cdb;
3580                 size = transport_get_size(sectors, cdb, cmd);
3581                 T_TASK(cmd)->t_task_lba = get_unaligned_be16(&cdb[2]);
3582                 passthrough = (TRANSPORT(dev)->transport_type ==
3583                                 TRANSPORT_PLUGIN_PHBA_PDEV);
3584                 /*
3585                  * Determine if the received WRITE_SAME_16 is used to for direct
3586                  * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3587                  * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3588                  * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3589                  * TCM/FILEIO subsystem plugin backstores.
3590                  */
3591                 if (!(passthrough)) {
3592                         if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) {
3593                                 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3594                                         " bits not supported for Block Discard"
3595                                         " Emulation\n");
3596                                 goto out_invalid_cdb_field;
3597                         }
3598                         /*
3599                          * Currently for the emulated case we only accept
3600                          * tpws with the UNMAP=1 bit set.
3601                          */
3602                         if (!(cdb[1] & 0x08)) {
3603                                 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not "
3604                                         " supported for Block Discard Emulation\n");
3605                                 goto out_invalid_cdb_field;
3606                         }
3607                 }
3608                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3609                 break;
3610         case ALLOW_MEDIUM_REMOVAL:
3611         case GPCMD_CLOSE_TRACK:
3612         case ERASE:
3613         case INITIALIZE_ELEMENT_STATUS:
3614         case GPCMD_LOAD_UNLOAD:
3615         case REZERO_UNIT:
3616         case SEEK_10:
3617         case GPCMD_SET_SPEED:
3618         case SPACE:
3619         case START_STOP:
3620         case TEST_UNIT_READY:
3621         case VERIFY:
3622         case WRITE_FILEMARKS:
3623         case MOVE_MEDIUM:
3624                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3625                 break;
3626         case REPORT_LUNS:
3627                 cmd->transport_emulate_cdb =
3628                                 &transport_core_report_lun_response;
3629                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3630                 /*
3631                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3632                  * See spc4r17 section 5.3
3633                  */
3634                 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3635                         cmd->sam_task_attr = TASK_ATTR_HOQ;
3636                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3637                 break;
3638         default:
3639                 printk(KERN_WARNING "TARGET_CORE[%s]: Unsupported SCSI Opcode"
3640                         " 0x%02x, sending CHECK_CONDITION.\n",
3641                         CMD_TFO(cmd)->get_fabric_name(), cdb[0]);
3642                 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3643                 goto out_unsupported_cdb;
3644         }
3645
3646         if (size != cmd->data_length) {
3647                 printk(KERN_WARNING "TARGET_CORE[%s]: Expected Transfer Length:"
3648                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3649                         " 0x%02x\n", CMD_TFO(cmd)->get_fabric_name(),
3650                                 cmd->data_length, size, cdb[0]);
3651
3652                 cmd->cmd_spdtl = size;
3653
3654                 if (cmd->data_direction == DMA_TO_DEVICE) {
3655                         printk(KERN_ERR "Rejecting underflow/overflow"
3656                                         " WRITE data\n");
3657                         goto out_invalid_cdb_field;
3658                 }
3659                 /*
3660                  * Reject READ_* or WRITE_* with overflow/underflow for
3661                  * type SCF_SCSI_DATA_SG_IO_CDB.
3662                  */
3663                 if (!(ret) && (DEV_ATTRIB(dev)->block_size != 512))  {
3664                         printk(KERN_ERR "Failing OVERFLOW/UNDERFLOW for LBA op"
3665                                 " CDB on non 512-byte sector setup subsystem"
3666                                 " plugin: %s\n", TRANSPORT(dev)->name);
3667                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3668                         goto out_invalid_cdb_field;
3669                 }
3670
3671                 if (size > cmd->data_length) {
3672                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3673                         cmd->residual_count = (size - cmd->data_length);
3674                 } else {
3675                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3676                         cmd->residual_count = (cmd->data_length - size);
3677                 }
3678                 cmd->data_length = size;
3679         }
3680
3681         transport_set_supported_SAM_opcode(cmd);
3682         return ret;
3683
3684 out_unsupported_cdb:
3685         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3686         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3687         return -2;
3688 out_invalid_cdb_field:
3689         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3690         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3691         return -2;
3692 }
3693
3694 static inline void transport_release_tasks(struct se_cmd *);
3695
3696 /*
3697  * This function will copy a contiguous *src buffer into a destination
3698  * struct scatterlist array.
3699  */
3700 static void transport_memcpy_write_contig(
3701         struct se_cmd *cmd,
3702         struct scatterlist *sg_d,
3703         unsigned char *src)
3704 {
3705         u32 i = 0, length = 0, total_length = cmd->data_length;
3706         void *dst;
3707
3708         while (total_length) {
3709                 length = sg_d[i].length;
3710
3711                 if (length > total_length)
3712                         length = total_length;
3713
3714                 dst = sg_virt(&sg_d[i]);
3715
3716                 memcpy(dst, src, length);
3717
3718                 if (!(total_length -= length))
3719                         return;
3720
3721                 src += length;
3722                 i++;
3723         }
3724 }
3725
3726 /*
3727  * This function will copy a struct scatterlist array *sg_s into a destination
3728  * contiguous *dst buffer.
3729  */
3730 static void transport_memcpy_read_contig(
3731         struct se_cmd *cmd,
3732         unsigned char *dst,
3733         struct scatterlist *sg_s)
3734 {
3735         u32 i = 0, length = 0, total_length = cmd->data_length;
3736         void *src;
3737
3738         while (total_length) {
3739                 length = sg_s[i].length;
3740
3741                 if (length > total_length)
3742                         length = total_length;
3743
3744                 src = sg_virt(&sg_s[i]);
3745
3746                 memcpy(dst, src, length);
3747
3748                 if (!(total_length -= length))
3749                         return;
3750
3751                 dst += length;
3752                 i++;
3753         }
3754 }
3755
3756 static void transport_memcpy_se_mem_read_contig(
3757         struct se_cmd *cmd,
3758         unsigned char *dst,
3759         struct list_head *se_mem_list)
3760 {
3761         struct se_mem *se_mem;
3762         void *src;
3763         u32 length = 0, total_length = cmd->data_length;
3764
3765         list_for_each_entry(se_mem, se_mem_list, se_list) {
3766                 length = se_mem->se_len;
3767
3768                 if (length > total_length)
3769                         length = total_length;
3770
3771                 src = page_address(se_mem->se_page) + se_mem->se_off;
3772
3773                 memcpy(dst, src, length);
3774
3775                 if (!(total_length -= length))
3776                         return;
3777
3778                 dst += length;
3779         }
3780 }
3781
3782 /*
3783  * Called from transport_generic_complete_ok() and
3784  * transport_generic_request_failure() to determine which dormant/delayed
3785  * and ordered cmds need to have their tasks added to the execution queue.
3786  */
3787 static void transport_complete_task_attr(struct se_cmd *cmd)
3788 {
3789         struct se_device *dev = SE_DEV(cmd);
3790         struct se_cmd *cmd_p, *cmd_tmp;
3791         int new_active_tasks = 0;
3792
3793         if (cmd->sam_task_attr == TASK_ATTR_SIMPLE) {
3794                 atomic_dec(&dev->simple_cmds);
3795                 smp_mb__after_atomic_dec();
3796                 dev->dev_cur_ordered_id++;
3797                 DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for"
3798                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3799                         cmd->se_ordered_id);
3800         } else if (cmd->sam_task_attr == TASK_ATTR_HOQ) {
3801                 atomic_dec(&dev->dev_hoq_count);
3802                 smp_mb__after_atomic_dec();
3803                 dev->dev_cur_ordered_id++;
3804                 DEBUG_STA("Incremented dev_cur_ordered_id: %u for"
3805                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3806                         cmd->se_ordered_id);
3807         } else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) {
3808                 spin_lock(&dev->ordered_cmd_lock);
3809                 list_del(&cmd->se_ordered_list);
3810                 atomic_dec(&dev->dev_ordered_sync);
3811                 smp_mb__after_atomic_dec();
3812                 spin_unlock(&dev->ordered_cmd_lock);
3813
3814                 dev->dev_cur_ordered_id++;
3815                 DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:"
3816                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3817         }
3818         /*
3819          * Process all commands up to the last received
3820          * ORDERED task attribute which requires another blocking
3821          * boundary
3822          */
3823         spin_lock(&dev->delayed_cmd_lock);
3824         list_for_each_entry_safe(cmd_p, cmd_tmp,
3825                         &dev->delayed_cmd_list, se_delayed_list) {
3826
3827                 list_del(&cmd_p->se_delayed_list);
3828                 spin_unlock(&dev->delayed_cmd_lock);
3829
3830                 DEBUG_STA("Calling add_tasks() for"
3831                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3832                         " Dormant -> Active, se_ordered_id: %u\n",
3833                         T_TASK(cmd_p)->t_task_cdb[0],
3834                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3835
3836                 transport_add_tasks_from_cmd(cmd_p);
3837                 new_active_tasks++;
3838
3839                 spin_lock(&dev->delayed_cmd_lock);
3840                 if (cmd_p->sam_task_attr == TASK_ATTR_ORDERED)
3841                         break;
3842         }
3843         spin_unlock(&dev->delayed_cmd_lock);
3844         /*
3845          * If new tasks have become active, wake up the transport thread
3846          * to do the processing of the Active tasks.
3847          */
3848         if (new_active_tasks != 0)
3849                 wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
3850 }
3851
3852 static void transport_generic_complete_ok(struct se_cmd *cmd)
3853 {
3854         int reason = 0;
3855         /*
3856          * Check if we need to move delayed/dormant tasks from cmds on the
3857          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3858          * Attribute.
3859          */
3860         if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3861                 transport_complete_task_attr(cmd);
3862         /*
3863          * Check if we need to retrieve a sense buffer from
3864          * the struct se_cmd in question.
3865          */
3866         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3867                 if (transport_get_sense_data(cmd) < 0)
3868                         reason = TCM_NON_EXISTENT_LUN;
3869
3870                 /*
3871                  * Only set when an struct se_task->task_scsi_status returned
3872                  * a non GOOD status.
3873                  */
3874                 if (cmd->scsi_status) {
3875                         transport_send_check_condition_and_sense(
3876                                         cmd, reason, 1);
3877                         transport_lun_remove_cmd(cmd);
3878                         transport_cmd_check_stop_to_fabric(cmd);
3879                         return;
3880                 }
3881         }
3882         /*
3883          * Check for a callback, used by amongst other things
3884          * XDWRITE_READ_10 emulation.
3885          */
3886         if (cmd->transport_complete_callback)
3887                 cmd->transport_complete_callback(cmd);
3888
3889         switch (cmd->data_direction) {
3890         case DMA_FROM_DEVICE:
3891                 spin_lock(&cmd->se_lun->lun_sep_lock);
3892                 if (SE_LUN(cmd)->lun_sep) {
3893                         SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
3894                                         cmd->data_length;
3895                 }
3896                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3897                 /*
3898                  * If enabled by TCM fabirc module pre-registered SGL
3899                  * memory, perform the memcpy() from the TCM internal
3900                  * contigious buffer back to the original SGL.
3901                  */
3902                 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
3903                         transport_memcpy_write_contig(cmd,
3904                                  T_TASK(cmd)->t_task_pt_sgl,
3905                                  T_TASK(cmd)->t_task_buf);
3906
3907                 CMD_TFO(cmd)->queue_data_in(cmd);
3908                 break;
3909         case DMA_TO_DEVICE:
3910                 spin_lock(&cmd->se_lun->lun_sep_lock);
3911                 if (SE_LUN(cmd)->lun_sep) {
3912                         SE_LUN(cmd)->lun_sep->sep_stats.rx_data_octets +=
3913                                 cmd->data_length;
3914                 }
3915                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3916                 /*
3917                  * Check if we need to send READ payload for BIDI-COMMAND
3918                  */
3919                 if (T_TASK(cmd)->t_mem_bidi_list != NULL) {
3920                         spin_lock(&cmd->se_lun->lun_sep_lock);
3921                         if (SE_LUN(cmd)->lun_sep) {
3922                                 SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
3923                                         cmd->data_length;
3924                         }
3925                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3926                         CMD_TFO(cmd)->queue_data_in(cmd);
3927                         break;
3928                 }
3929                 /* Fall through for DMA_TO_DEVICE */
3930         case DMA_NONE:
3931                 CMD_TFO(cmd)->queue_status(cmd);
3932                 break;
3933         default:
3934                 break;
3935         }
3936
3937         transport_lun_remove_cmd(cmd);
3938         transport_cmd_check_stop_to_fabric(cmd);
3939 }
3940
3941 static void transport_free_dev_tasks(struct se_cmd *cmd)
3942 {
3943         struct se_task *task, *task_tmp;
3944         unsigned long flags;
3945
3946         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3947         list_for_each_entry_safe(task, task_tmp,
3948                                 &T_TASK(cmd)->t_task_list, t_list) {
3949                 if (atomic_read(&task->task_active))
3950                         continue;
3951
3952                 kfree(task->task_sg_bidi);
3953                 kfree(task->task_sg);
3954
3955                 list_del(&task->t_list);
3956
3957                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3958                 if (task->se_dev)
3959                         TRANSPORT(task->se_dev)->free_task(task);
3960                 else
3961                         printk(KERN_ERR "task[%u] - task->se_dev is NULL\n",
3962                                 task->task_no);
3963                 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3964         }
3965         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3966 }
3967
3968 static inline void transport_free_pages(struct se_cmd *cmd)
3969 {
3970         struct se_mem *se_mem, *se_mem_tmp;
3971         int free_page = 1;
3972
3973         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3974                 free_page = 0;
3975         if (cmd->se_dev->transport->do_se_mem_map)
3976                 free_page = 0;
3977
3978         if (T_TASK(cmd)->t_task_buf) {
3979                 kfree(T_TASK(cmd)->t_task_buf);
3980                 T_TASK(cmd)->t_task_buf = NULL;
3981                 return;
3982         }
3983
3984         /*
3985          * Caller will handle releasing of struct se_mem.
3986          */
3987         if (cmd->se_cmd_flags & SCF_CMD_PASSTHROUGH_NOALLOC)
3988                 return;
3989
3990         if (!(T_TASK(cmd)->t_tasks_se_num))
3991                 return;
3992
3993         list_for_each_entry_safe(se_mem, se_mem_tmp,
3994                         T_TASK(cmd)->t_mem_list, se_list) {
3995                 /*
3996                  * We only release call __free_page(struct se_mem->se_page) when
3997                  * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3998                  */
3999                 if (free_page)
4000                         __free_page(se_mem->se_page);
4001
4002                 list_del(&se_mem->se_list);
4003                 kmem_cache_free(se_mem_cache, se_mem);
4004         }
4005
4006         if (T_TASK(cmd)->t_mem_bidi_list && T_TASK(cmd)->t_tasks_se_bidi_num) {
4007                 list_for_each_entry_safe(se_mem, se_mem_tmp,
4008                                 T_TASK(cmd)->t_mem_bidi_list, se_list) {
4009                         /*
4010                          * We only release call __free_page(struct se_mem->se_page) when
4011                          * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
4012                          */
4013                         if (free_page)
4014                                 __free_page(se_mem->se_page);
4015
4016                         list_del(&se_mem->se_list);
4017                         kmem_cache_free(se_mem_cache, se_mem);
4018                 }
4019         }
4020
4021         kfree(T_TASK(cmd)->t_mem_bidi_list);
4022         T_TASK(cmd)->t_mem_bidi_list = NULL;
4023         kfree(T_TASK(cmd)->t_mem_list);
4024         T_TASK(cmd)->t_mem_list = NULL;
4025         T_TASK(cmd)->t_tasks_se_num = 0;
4026 }
4027
4028 static inline void transport_release_tasks(struct se_cmd *cmd)
4029 {
4030         transport_free_dev_tasks(cmd);
4031 }
4032
4033 static inline int transport_dec_and_check(struct se_cmd *cmd)
4034 {
4035         unsigned long flags;
4036
4037         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4038         if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
4039                 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_fe_count))) {
4040                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4041                                         flags);
4042                         return 1;
4043                 }
4044         }
4045
4046         if (atomic_read(&T_TASK(cmd)->t_se_count)) {
4047                 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_se_count))) {
4048                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4049                                         flags);
4050                         return 1;
4051                 }
4052         }
4053         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4054
4055         return 0;
4056 }
4057
4058 static void transport_release_fe_cmd(struct se_cmd *cmd)
4059 {
4060         unsigned long flags;
4061
4062         if (transport_dec_and_check(cmd))
4063                 return;
4064
4065         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4066         if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
4067                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4068                 goto free_pages;
4069         }
4070         atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
4071         transport_all_task_dev_remove_state(cmd);
4072         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4073
4074         transport_release_tasks(cmd);
4075 free_pages:
4076         transport_free_pages(cmd);
4077         transport_free_se_cmd(cmd);
4078         CMD_TFO(cmd)->release_cmd_direct(cmd);
4079 }
4080
4081 static int transport_generic_remove(
4082         struct se_cmd *cmd,
4083         int release_to_pool,
4084         int session_reinstatement)
4085 {
4086         unsigned long flags;
4087
4088         if (!(T_TASK(cmd)))
4089                 goto release_cmd;
4090
4091         if (transport_dec_and_check(cmd)) {
4092                 if (session_reinstatement) {
4093                         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4094                         transport_all_task_dev_remove_state(cmd);
4095                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4096                                         flags);
4097                 }
4098                 return 1;
4099         }
4100
4101         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4102         if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
4103                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4104                 goto free_pages;
4105         }
4106         atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
4107         transport_all_task_dev_remove_state(cmd);
4108         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4109
4110         transport_release_tasks(cmd);
4111 free_pages:
4112         transport_free_pages(cmd);
4113
4114 release_cmd:
4115         if (release_to_pool) {
4116                 transport_release_cmd_to_pool(cmd);
4117         } else {
4118                 transport_free_se_cmd(cmd);
4119                 CMD_TFO(cmd)->release_cmd_direct(cmd);
4120         }
4121
4122         return 0;
4123 }
4124
4125 /*
4126  * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map
4127  * @cmd:  Associated se_cmd descriptor
4128  * @mem:  SGL style memory for TCM WRITE / READ
4129  * @sg_mem_num: Number of SGL elements
4130  * @mem_bidi_in: SGL style memory for TCM BIDI READ
4131  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
4132  *
4133  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
4134  * of parameters.
4135  */
4136 int transport_generic_map_mem_to_cmd(
4137         struct se_cmd *cmd,
4138         struct scatterlist *mem,
4139         u32 sg_mem_num,
4140         struct scatterlist *mem_bidi_in,
4141         u32 sg_mem_bidi_num)
4142 {
4143         u32 se_mem_cnt_out = 0;
4144         int ret;
4145
4146         if (!(mem) || !(sg_mem_num))
4147                 return 0;
4148         /*
4149          * Passed *mem will contain a list_head containing preformatted
4150          * struct se_mem elements...
4151          */
4152         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM)) {
4153                 if ((mem_bidi_in) || (sg_mem_bidi_num)) {
4154                         printk(KERN_ERR "SCF_CMD_PASSTHROUGH_NOALLOC not supported"
4155                                 " with BIDI-COMMAND\n");
4156                         return -ENOSYS;
4157                 }
4158
4159                 T_TASK(cmd)->t_mem_list = (struct list_head *)mem;
4160                 T_TASK(cmd)->t_tasks_se_num = sg_mem_num;
4161                 cmd->se_cmd_flags |= SCF_CMD_PASSTHROUGH_NOALLOC;
4162                 return 0;
4163         }
4164         /*
4165          * Otherwise, assume the caller is passing a struct scatterlist
4166          * array from include/linux/scatterlist.h
4167          */
4168         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
4169             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
4170                 /*
4171                  * For CDB using TCM struct se_mem linked list scatterlist memory
4172                  * processed into a TCM struct se_subsystem_dev, we do the mapping
4173                  * from the passed physical memory to struct se_mem->se_page here.
4174                  */
4175                 T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
4176                 if (!(T_TASK(cmd)->t_mem_list))
4177                         return -ENOMEM;
4178
4179                 ret = transport_map_sg_to_mem(cmd,
4180                         T_TASK(cmd)->t_mem_list, mem, &se_mem_cnt_out);
4181                 if (ret < 0)
4182                         return -ENOMEM;
4183
4184                 T_TASK(cmd)->t_tasks_se_num = se_mem_cnt_out;
4185                 /*
4186                  * Setup BIDI READ list of struct se_mem elements
4187                  */
4188                 if ((mem_bidi_in) && (sg_mem_bidi_num)) {
4189                         T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
4190                         if (!(T_TASK(cmd)->t_mem_bidi_list)) {
4191                                 kfree(T_TASK(cmd)->t_mem_list);
4192                                 return -ENOMEM;
4193                         }
4194                         se_mem_cnt_out = 0;
4195
4196                         ret = transport_map_sg_to_mem(cmd,
4197                                 T_TASK(cmd)->t_mem_bidi_list, mem_bidi_in,
4198                                 &se_mem_cnt_out);
4199                         if (ret < 0) {
4200                                 kfree(T_TASK(cmd)->t_mem_list);
4201                                 return -ENOMEM;
4202                         }
4203
4204                         T_TASK(cmd)->t_tasks_se_bidi_num = se_mem_cnt_out;
4205                 }
4206                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
4207
4208         } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
4209                 if (mem_bidi_in || sg_mem_bidi_num) {
4210                         printk(KERN_ERR "BIDI-Commands not supported using "
4211                                 "SCF_SCSI_CONTROL_NONSG_IO_CDB\n");
4212                         return -ENOSYS;
4213                 }
4214                 /*
4215                  * For incoming CDBs using a contiguous buffer internall with TCM,
4216                  * save the passed struct scatterlist memory.  After TCM storage object
4217                  * processing has completed for this struct se_cmd, TCM core will call
4218                  * transport_memcpy_[write,read]_contig() as necessary from
4219                  * transport_generic_complete_ok() and transport_write_pending() in order
4220                  * to copy the TCM buffer to/from the original passed *mem in SGL ->
4221                  * struct scatterlist format.
4222                  */
4223                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_CONTIG_TO_SG;
4224                 T_TASK(cmd)->t_task_pt_sgl = mem;
4225         }
4226
4227         return 0;
4228 }
4229 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
4230
4231
4232 static inline long long transport_dev_end_lba(struct se_device *dev)
4233 {
4234         return dev->transport->get_blocks(dev) + 1;
4235 }
4236
4237 static int transport_get_sectors(struct se_cmd *cmd)
4238 {
4239         struct se_device *dev = SE_DEV(cmd);
4240
4241         T_TASK(cmd)->t_tasks_sectors =
4242                 (cmd->data_length / DEV_ATTRIB(dev)->block_size);
4243         if (!(T_TASK(cmd)->t_tasks_sectors))
4244                 T_TASK(cmd)->t_tasks_sectors = 1;
4245
4246         if (TRANSPORT(dev)->get_device_type(dev) != TYPE_DISK)
4247                 return 0;
4248
4249         if ((T_TASK(cmd)->t_task_lba + T_TASK(cmd)->t_tasks_sectors) >
4250              transport_dev_end_lba(dev)) {
4251                 printk(KERN_ERR "LBA: %llu Sectors: %u exceeds"
4252                         " transport_dev_end_lba(): %llu\n",
4253                         T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
4254                         transport_dev_end_lba(dev));
4255                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4256                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
4257                 return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS;
4258         }
4259
4260         return 0;
4261 }
4262
4263 static int transport_new_cmd_obj(struct se_cmd *cmd)
4264 {
4265         struct se_device *dev = SE_DEV(cmd);
4266         u32 task_cdbs = 0, rc;
4267
4268         if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
4269                 task_cdbs++;
4270                 T_TASK(cmd)->t_task_cdbs++;
4271         } else {
4272                 int set_counts = 1;
4273
4274                 /*
4275                  * Setup any BIDI READ tasks and memory from
4276                  * T_TASK(cmd)->t_mem_bidi_list so the READ struct se_tasks
4277                  * are queued first for the non pSCSI passthrough case.
4278                  */
4279                 if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
4280                     (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
4281                         rc = transport_generic_get_cdb_count(cmd,
4282                                 T_TASK(cmd)->t_task_lba,
4283                                 T_TASK(cmd)->t_tasks_sectors,
4284                                 DMA_FROM_DEVICE, T_TASK(cmd)->t_mem_bidi_list,
4285                                 set_counts);
4286                         if (!(rc)) {
4287                                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4288                                 cmd->scsi_sense_reason =
4289                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4290                                 return PYX_TRANSPORT_LU_COMM_FAILURE;
4291                         }
4292                         set_counts = 0;
4293                 }
4294                 /*
4295                  * Setup the tasks and memory from T_TASK(cmd)->t_mem_list
4296                  * Note for BIDI transfers this will contain the WRITE payload
4297                  */
4298                 task_cdbs = transport_generic_get_cdb_count(cmd,
4299                                 T_TASK(cmd)->t_task_lba,
4300                                 T_TASK(cmd)->t_tasks_sectors,
4301                                 cmd->data_direction, T_TASK(cmd)->t_mem_list,
4302                                 set_counts);
4303                 if (!(task_cdbs)) {
4304                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4305                         cmd->scsi_sense_reason =
4306                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4307                         return PYX_TRANSPORT_LU_COMM_FAILURE;
4308                 }
4309                 T_TASK(cmd)->t_task_cdbs += task_cdbs;
4310
4311 #if 0
4312                 printk(KERN_INFO "data_length: %u, LBA: %llu t_tasks_sectors:"
4313                         " %u, t_task_cdbs: %u\n", obj_ptr, cmd->data_length,
4314                         T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
4315                         T_TASK(cmd)->t_task_cdbs);
4316 #endif
4317         }
4318
4319         atomic_set(&T_TASK(cmd)->t_task_cdbs_left, task_cdbs);
4320         atomic_set(&T_TASK(cmd)->t_task_cdbs_ex_left, task_cdbs);
4321         atomic_set(&T_TASK(cmd)->t_task_cdbs_timeout_left, task_cdbs);
4322         return 0;
4323 }
4324
4325 static struct list_head *transport_init_se_mem_list(void)
4326 {
4327         struct list_head *se_mem_list;
4328
4329         se_mem_list = kzalloc(sizeof(struct list_head), GFP_KERNEL);
4330         if (!(se_mem_list)) {
4331                 printk(KERN_ERR "Unable to allocate memory for se_mem_list\n");
4332                 return NULL;
4333         }
4334         INIT_LIST_HEAD(se_mem_list);
4335
4336         return se_mem_list;
4337 }
4338
4339 static int
4340 transport_generic_get_mem(struct se_cmd *cmd, u32 length, u32 dma_size)
4341 {
4342         unsigned char *buf;
4343         struct se_mem *se_mem;
4344
4345         T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
4346         if (!(T_TASK(cmd)->t_mem_list))
4347                 return -ENOMEM;
4348
4349         /*
4350          * If the device uses memory mapping this is enough.
4351          */
4352         if (cmd->se_dev->transport->do_se_mem_map)
4353                 return 0;
4354
4355         /*
4356          * Setup BIDI-COMMAND READ list of struct se_mem elements
4357          */
4358         if (T_TASK(cmd)->t_tasks_bidi) {
4359                 T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
4360                 if (!(T_TASK(cmd)->t_mem_bidi_list)) {
4361                         kfree(T_TASK(cmd)->t_mem_list);
4362                         return -ENOMEM;
4363                 }
4364         }
4365
4366         while (length) {
4367                 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4368                 if (!(se_mem)) {
4369                         printk(KERN_ERR "Unable to allocate struct se_mem\n");
4370                         goto out;
4371                 }
4372
4373 /* #warning FIXME Allocate contigous pages for struct se_mem elements */
4374                 se_mem->se_page = alloc_pages(GFP_KERNEL, 0);
4375                 if (!(se_mem->se_page)) {
4376                         printk(KERN_ERR "alloc_pages() failed\n");
4377                         goto out;
4378                 }
4379
4380                 buf = kmap_atomic(se_mem->se_page, KM_IRQ0);
4381                 if (!(buf)) {
4382                         printk(KERN_ERR "kmap_atomic() failed\n");
4383                         goto out;
4384                 }
4385                 INIT_LIST_HEAD(&se_mem->se_list);
4386                 se_mem->se_len = (length > dma_size) ? dma_size : length;
4387                 memset(buf, 0, se_mem->se_len);
4388                 kunmap_atomic(buf, KM_IRQ0);
4389
4390                 list_add_tail(&se_mem->se_list, T_TASK(cmd)->t_mem_list);
4391                 T_TASK(cmd)->t_tasks_se_num++;
4392
4393                 DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)"
4394                         " Offset(%u)\n", se_mem->se_page, se_mem->se_len,
4395                         se_mem->se_off);
4396
4397                 length -= se_mem->se_len;
4398         }
4399
4400         DEBUG_MEM("Allocated total struct se_mem elements(%u)\n",
4401                         T_TASK(cmd)->t_tasks_se_num);
4402
4403         return 0;
4404 out:
4405         if (se_mem)
4406                 __free_pages(se_mem->se_page, 0);
4407         kmem_cache_free(se_mem_cache, se_mem);
4408         return -1;
4409 }
4410
4411 u32 transport_calc_sg_num(
4412         struct se_task *task,
4413         struct se_mem *in_se_mem,
4414         u32 task_offset)
4415 {
4416         struct se_cmd *se_cmd = task->task_se_cmd;
4417         struct se_device *se_dev = SE_DEV(se_cmd);
4418         struct se_mem *se_mem = in_se_mem;
4419         struct target_core_fabric_ops *tfo = CMD_TFO(se_cmd);
4420         u32 sg_length, task_size = task->task_size, task_sg_num_padded;
4421
4422         while (task_size != 0) {
4423                 DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)"
4424                         " se_mem->se_off(%u) task_offset(%u)\n",
4425                         se_mem->se_page, se_mem->se_len,
4426                         se_mem->se_off, task_offset);
4427
4428                 if (task_offset == 0) {
4429                         if (task_size >= se_mem->se_len) {
4430                                 sg_length = se_mem->se_len;
4431
4432                                 if (!(list_is_last(&se_mem->se_list,
4433                                                 T_TASK(se_cmd)->t_mem_list)))
4434                                         se_mem = list_entry(se_mem->se_list.next,
4435                                                         struct se_mem, se_list);
4436                         } else {
4437                                 sg_length = task_size;
4438                                 task_size -= sg_length;
4439                                 goto next;
4440                         }
4441
4442                         DEBUG_SC("sg_length(%u) task_size(%u)\n",
4443                                         sg_length, task_size);
4444                 } else {
4445                         if ((se_mem->se_len - task_offset) > task_size) {
4446                                 sg_length = task_size;
4447                                 task_size -= sg_length;
4448                                 goto next;
4449                          } else {
4450                                 sg_length = (se_mem->se_len - task_offset);
4451
4452                                 if (!(list_is_last(&se_mem->se_list,
4453                                                 T_TASK(se_cmd)->t_mem_list)))
4454                                         se_mem = list_entry(se_mem->se_list.next,
4455                                                         struct se_mem, se_list);
4456                         }
4457
4458                         DEBUG_SC("sg_length(%u) task_size(%u)\n",
4459                                         sg_length, task_size);
4460
4461                         task_offset = 0;
4462                 }
4463                 task_size -= sg_length;
4464 next:
4465                 DEBUG_SC("task[%u] - Reducing task_size to(%u)\n",
4466                         task->task_no, task_size);
4467
4468                 task->task_sg_num++;
4469         }
4470         /*
4471          * Check if the fabric module driver is requesting that all
4472          * struct se_task->task_sg[] be chained together..  If so,
4473          * then allocate an extra padding SG entry for linking and
4474          * marking the end of the chained SGL.
4475          */
4476         if (tfo->task_sg_chaining) {
4477                 task_sg_num_padded = (task->task_sg_num + 1);
4478                 task->task_padded_sg = 1;
4479         } else
4480                 task_sg_num_padded = task->task_sg_num;
4481
4482         task->task_sg = kzalloc(task_sg_num_padded *
4483                         sizeof(struct scatterlist), GFP_KERNEL);
4484         if (!(task->task_sg)) {
4485                 printk(KERN_ERR "Unable to allocate memory for"
4486                                 " task->task_sg\n");
4487                 return 0;
4488         }
4489         sg_init_table(&task->task_sg[0], task_sg_num_padded);
4490         /*
4491          * Setup task->task_sg_bidi for SCSI READ payload for
4492          * TCM/pSCSI passthrough if present for BIDI-COMMAND
4493          */
4494         if ((T_TASK(se_cmd)->t_mem_bidi_list != NULL) &&
4495             (TRANSPORT(se_dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) {
4496                 task->task_sg_bidi = kzalloc(task_sg_num_padded *
4497                                 sizeof(struct scatterlist), GFP_KERNEL);
4498                 if (!(task->task_sg_bidi)) {
4499                         printk(KERN_ERR "Unable to allocate memory for"
4500                                 " task->task_sg_bidi\n");
4501                         return 0;
4502                 }
4503                 sg_init_table(&task->task_sg_bidi[0], task_sg_num_padded);
4504         }
4505         /*
4506          * For the chaining case, setup the proper end of SGL for the
4507          * initial submission struct task into struct se_subsystem_api.
4508          * This will be cleared later by transport_do_task_sg_chain()
4509          */
4510         if (task->task_padded_sg) {
4511                 sg_mark_end(&task->task_sg[task->task_sg_num - 1]);
4512                 /*
4513                  * Added the 'if' check before marking end of bi-directional
4514                  * scatterlist (which gets created only in case of request
4515                  * (RD + WR).
4516                  */
4517                 if (task->task_sg_bidi)
4518                         sg_mark_end(&task->task_sg_bidi[task->task_sg_num - 1]);
4519         }
4520
4521         DEBUG_SC("Successfully allocated task->task_sg_num(%u),"
4522                 " task_sg_num_padded(%u)\n", task->task_sg_num,
4523                 task_sg_num_padded);
4524
4525         return task->task_sg_num;
4526 }
4527
4528 static inline int transport_set_tasks_sectors_disk(
4529         struct se_task *task,
4530         struct se_device *dev,
4531         unsigned long long lba,
4532         u32 sectors,
4533         int *max_sectors_set)
4534 {
4535         if ((lba + sectors) > transport_dev_end_lba(dev)) {
4536                 task->task_sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4537
4538                 if (task->task_sectors > DEV_ATTRIB(dev)->max_sectors) {
4539                         task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4540                         *max_sectors_set = 1;
4541                 }
4542         } else {
4543                 if (sectors > DEV_ATTRIB(dev)->max_sectors) {
4544                         task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4545                         *max_sectors_set = 1;
4546                 } else
4547                         task->task_sectors = sectors;
4548         }
4549
4550         return 0;
4551 }
4552
4553 static inline int transport_set_tasks_sectors_non_disk(
4554         struct se_task *task,
4555         struct se_device *dev,
4556         unsigned long long lba,
4557         u32 sectors,
4558         int *max_sectors_set)
4559 {
4560         if (sectors > DEV_ATTRIB(dev)->max_sectors) {
4561                 task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4562                 *max_sectors_set = 1;
4563         } else
4564                 task->task_sectors = sectors;
4565
4566         return 0;
4567 }
4568
4569 static inline int transport_set_tasks_sectors(
4570         struct se_task *task,
4571         struct se_device *dev,
4572         unsigned long long lba,
4573         u32 sectors,
4574         int *max_sectors_set)
4575 {
4576         return (TRANSPORT(dev)->get_device_type(dev) == TYPE_DISK) ?
4577                 transport_set_tasks_sectors_disk(task, dev, lba, sectors,
4578                                 max_sectors_set) :
4579                 transport_set_tasks_sectors_non_disk(task, dev, lba, sectors,
4580                                 max_sectors_set);
4581 }
4582
4583 static int transport_map_sg_to_mem(
4584         struct se_cmd *cmd,
4585         struct list_head *se_mem_list,
4586         void *in_mem,
4587         u32 *se_mem_cnt)
4588 {
4589         struct se_mem *se_mem;
4590         struct scatterlist *sg;
4591         u32 sg_count = 1, cmd_size = cmd->data_length;
4592
4593         if (!in_mem) {
4594                 printk(KERN_ERR "No source scatterlist\n");
4595                 return -1;
4596         }
4597         sg = (struct scatterlist *)in_mem;
4598
4599         while (cmd_size) {
4600                 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4601                 if (!(se_mem)) {
4602                         printk(KERN_ERR "Unable to allocate struct se_mem\n");
4603                         return -1;
4604                 }
4605                 INIT_LIST_HEAD(&se_mem->se_list);
4606                 DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u"
4607                         " sg_page: %p offset: %d length: %d\n", cmd_size,
4608                         sg_page(sg), sg->offset, sg->length);
4609
4610                 se_mem->se_page = sg_page(sg);
4611                 se_mem->se_off = sg->offset;
4612
4613                 if (cmd_size > sg->length) {
4614                         se_mem->se_len = sg->length;
4615                         sg = sg_next(sg);
4616                         sg_count++;
4617                 } else
4618                         se_mem->se_len = cmd_size;
4619
4620                 cmd_size -= se_mem->se_len;
4621
4622                 DEBUG_MEM("sg_to_mem: *se_mem_cnt: %u cmd_size: %u\n",
4623                                 *se_mem_cnt, cmd_size);
4624                 DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n",
4625                                 se_mem->se_page, se_mem->se_off, se_mem->se_len);
4626
4627                 list_add_tail(&se_mem->se_list, se_mem_list);
4628                 (*se_mem_cnt)++;
4629         }
4630
4631         DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments to(%u)"
4632                 " struct se_mem\n", sg_count, *se_mem_cnt);
4633
4634         if (sg_count != *se_mem_cnt)
4635                 BUG();
4636
4637         return 0;
4638 }
4639
4640 /*      transport_map_mem_to_sg():
4641  *
4642  *
4643  */
4644 int transport_map_mem_to_sg(
4645         struct se_task *task,
4646         struct list_head *se_mem_list,
4647         void *in_mem,
4648         struct se_mem *in_se_mem,
4649         struct se_mem **out_se_mem,
4650         u32 *se_mem_cnt,
4651         u32 *task_offset)
4652 {
4653         struct se_cmd *se_cmd = task->task_se_cmd;
4654         struct se_mem *se_mem = in_se_mem;
4655         struct scatterlist *sg = (struct scatterlist *)in_mem;
4656         u32 task_size = task->task_size, sg_no = 0;
4657
4658         if (!sg) {
4659                 printk(KERN_ERR "Unable to locate valid struct"
4660                                 " scatterlist pointer\n");
4661                 return -1;
4662         }
4663
4664         while (task_size != 0) {
4665                 /*
4666                  * Setup the contigious array of scatterlists for
4667                  * this struct se_task.
4668                  */
4669                 sg_assign_page(sg, se_mem->se_page);
4670
4671                 if (*task_offset == 0) {
4672                         sg->offset = se_mem->se_off;
4673
4674                         if (task_size >= se_mem->se_len) {
4675                                 sg->length = se_mem->se_len;
4676
4677                                 if (!(list_is_last(&se_mem->se_list,
4678                                                 T_TASK(se_cmd)->t_mem_list))) {
4679                                         se_mem = list_entry(se_mem->se_list.next,
4680                                                         struct se_mem, se_list);
4681                                         (*se_mem_cnt)++;
4682                                 }
4683                         } else {
4684                                 sg->length = task_size;
4685                                 /*
4686                                  * Determine if we need to calculate an offset
4687                                  * into the struct se_mem on the next go around..
4688                                  */
4689                                 task_size -= sg->length;
4690                                 if (!(task_size))
4691                                         *task_offset = sg->length;
4692
4693                                 goto next;
4694                         }
4695
4696                 } else {
4697                         sg->offset = (*task_offset + se_mem->se_off);
4698
4699                         if ((se_mem->se_len - *task_offset) > task_size) {
4700                                 sg->length = task_size;
4701                                 /*
4702                                  * Determine if we need to calculate an offset
4703                                  * into the struct se_mem on the next go around..
4704                                  */
4705                                 task_size -= sg->length;
4706                                 if (!(task_size))
4707                                         *task_offset += sg->length;
4708
4709                                 goto next;
4710                         } else {
4711                                 sg->length = (se_mem->se_len - *task_offset);
4712
4713                                 if (!(list_is_last(&se_mem->se_list,
4714                                                 T_TASK(se_cmd)->t_mem_list))) {
4715                                         se_mem = list_entry(se_mem->se_list.next,
4716                                                         struct se_mem, se_list);
4717                                         (*se_mem_cnt)++;
4718                                 }
4719                         }
4720
4721                         *task_offset = 0;
4722                 }
4723                 task_size -= sg->length;
4724 next:
4725                 DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing"
4726                         " task_size to(%u), task_offset: %u\n", task->task_no, sg_no,
4727                         sg_page(sg), sg->length, sg->offset, task_size, *task_offset);
4728
4729                 sg_no++;
4730                 if (!(task_size))
4731                         break;
4732
4733                 sg = sg_next(sg);
4734
4735                 if (task_size > se_cmd->data_length)
4736                         BUG();
4737         }
4738         *out_se_mem = se_mem;
4739
4740         DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)"
4741                 " SGs\n", task->task_no, *se_mem_cnt, sg_no);
4742
4743         return 0;
4744 }
4745
4746 /*
4747  * This function can be used by HW target mode drivers to create a linked
4748  * scatterlist from all contiguously allocated struct se_task->task_sg[].
4749  * This is intended to be called during the completion path by TCM Core
4750  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4751  */
4752 void transport_do_task_sg_chain(struct se_cmd *cmd)
4753 {
4754         struct scatterlist *sg_head = NULL, *sg_link = NULL, *sg_first = NULL;
4755         struct scatterlist *sg_head_cur = NULL, *sg_link_cur = NULL;
4756         struct scatterlist *sg, *sg_end = NULL, *sg_end_cur = NULL;
4757         struct se_task *task;
4758         struct target_core_fabric_ops *tfo = CMD_TFO(cmd);
4759         u32 task_sg_num = 0, sg_count = 0;
4760         int i;
4761
4762         if (tfo->task_sg_chaining == 0) {
4763                 printk(KERN_ERR "task_sg_chaining is diabled for fabric module:"
4764                                 " %s\n", tfo->get_fabric_name());
4765                 dump_stack();
4766                 return;
4767         }
4768         /*
4769          * Walk the struct se_task list and setup scatterlist chains
4770          * for each contiguosly allocated struct se_task->task_sg[].
4771          */
4772         list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
4773                 if (!(task->task_sg) || !(task->task_padded_sg))
4774                         continue;
4775
4776                 if (sg_head && sg_link) {
4777                         sg_head_cur = &task->task_sg[0];
4778                         sg_link_cur = &task->task_sg[task->task_sg_num];
4779                         /*
4780                          * Either add chain or mark end of scatterlist
4781                          */
4782                         if (!(list_is_last(&task->t_list,
4783                                         &T_TASK(cmd)->t_task_list))) {
4784                                 /*
4785                                  * Clear existing SGL termination bit set in
4786                                  * transport_calc_sg_num(), see sg_mark_end()
4787                                  */
4788                                 sg_end_cur = &task->task_sg[task->task_sg_num - 1];
4789                                 sg_end_cur->page_link &= ~0x02;
4790
4791                                 sg_chain(sg_head, task_sg_num, sg_head_cur);
4792                                 sg_count += task->task_sg_num;
4793                                 task_sg_num = (task->task_sg_num + 1);
4794                         } else {
4795                                 sg_chain(sg_head, task_sg_num, sg_head_cur);
4796                                 sg_count += task->task_sg_num;
4797                                 task_sg_num = task->task_sg_num;
4798                         }
4799
4800                         sg_head = sg_head_cur;
4801                         sg_link = sg_link_cur;
4802                         continue;
4803                 }
4804                 sg_head = sg_first = &task->task_sg[0];
4805                 sg_link = &task->task_sg[task->task_sg_num];
4806                 /*
4807                  * Check for single task..
4808                  */
4809                 if (!(list_is_last(&task->t_list, &T_TASK(cmd)->t_task_list))) {
4810                         /*
4811                          * Clear existing SGL termination bit set in
4812                          * transport_calc_sg_num(), see sg_mark_end()
4813                          */
4814                         sg_end = &task->task_sg[task->task_sg_num - 1];
4815                         sg_end->page_link &= ~0x02;
4816                         sg_count += task->task_sg_num;
4817                         task_sg_num = (task->task_sg_num + 1);
4818                 } else {
4819                         sg_count += task->task_sg_num;
4820                         task_sg_num = task->task_sg_num;
4821                 }
4822         }
4823         /*
4824          * Setup the starting pointer and total t_tasks_sg_linked_no including
4825          * padding SGs for linking and to mark the end.
4826          */
4827         T_TASK(cmd)->t_tasks_sg_chained = sg_first;
4828         T_TASK(cmd)->t_tasks_sg_chained_no = sg_count;
4829
4830         DEBUG_CMD_M("Setup cmd: %p T_TASK(cmd)->t_tasks_sg_chained: %p and"
4831                 " t_tasks_sg_chained_no: %u\n", cmd, T_TASK(cmd)->t_tasks_sg_chained,
4832                 T_TASK(cmd)->t_tasks_sg_chained_no);
4833
4834         for_each_sg(T_TASK(cmd)->t_tasks_sg_chained, sg,
4835                         T_TASK(cmd)->t_tasks_sg_chained_no, i) {
4836
4837                 DEBUG_CMD_M("SG[%d]: %p page: %p length: %d offset: %d, magic: 0x%08x\n",
4838                         i, sg, sg_page(sg), sg->length, sg->offset, sg->sg_magic);
4839                 if (sg_is_chain(sg))
4840                         DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg);
4841                 if (sg_is_last(sg))
4842                         DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg);
4843         }
4844 }
4845 EXPORT_SYMBOL(transport_do_task_sg_chain);
4846
4847 static int transport_do_se_mem_map(
4848         struct se_device *dev,
4849         struct se_task *task,
4850         struct list_head *se_mem_list,
4851         void *in_mem,
4852         struct se_mem *in_se_mem,
4853         struct se_mem **out_se_mem,
4854         u32 *se_mem_cnt,
4855         u32 *task_offset_in)
4856 {
4857         u32 task_offset = *task_offset_in;
4858         int ret = 0;
4859         /*
4860          * se_subsystem_api_t->do_se_mem_map is used when internal allocation
4861          * has been done by the transport plugin.
4862          */
4863         if (TRANSPORT(dev)->do_se_mem_map) {
4864                 ret = TRANSPORT(dev)->do_se_mem_map(task, se_mem_list,
4865                                 in_mem, in_se_mem, out_se_mem, se_mem_cnt,
4866                                 task_offset_in);
4867                 if (ret == 0)
4868                         T_TASK(task->task_se_cmd)->t_tasks_se_num += *se_mem_cnt;
4869
4870                 return ret;
4871         }
4872
4873         BUG_ON(list_empty(se_mem_list));
4874         /*
4875          * This is the normal path for all normal non BIDI and BIDI-COMMAND
4876          * WRITE payloads..  If we need to do BIDI READ passthrough for
4877          * TCM/pSCSI the first call to transport_do_se_mem_map ->
4878          * transport_calc_sg_num() -> transport_map_mem_to_sg() will do the
4879          * allocation for task->task_sg_bidi, and the subsequent call to
4880          * transport_do_se_mem_map() from transport_generic_get_cdb_count()
4881          */
4882         if (!(task->task_sg_bidi)) {
4883                 /*
4884                  * Assume default that transport plugin speaks preallocated
4885                  * scatterlists.
4886                  */
4887                 if (!(transport_calc_sg_num(task, in_se_mem, task_offset)))
4888                         return -1;
4889                 /*
4890                  * struct se_task->task_sg now contains the struct scatterlist array.
4891                  */
4892                 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg,
4893                                         in_se_mem, out_se_mem, se_mem_cnt,
4894                                         task_offset_in);
4895         }
4896         /*
4897          * Handle the se_mem_list -> struct task->task_sg_bidi
4898          * memory map for the extra BIDI READ payload
4899          */
4900         return transport_map_mem_to_sg(task, se_mem_list, task->task_sg_bidi,
4901                                 in_se_mem, out_se_mem, se_mem_cnt,
4902                                 task_offset_in);
4903 }
4904
4905 static u32 transport_generic_get_cdb_count(
4906         struct se_cmd *cmd,
4907         unsigned long long lba,
4908         u32 sectors,
4909         enum dma_data_direction data_direction,
4910         struct list_head *mem_list,
4911         int set_counts)
4912 {
4913         unsigned char *cdb = NULL;
4914         struct se_task *task;
4915         struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
4916         struct se_mem *se_mem_bidi = NULL, *se_mem_bidi_lout = NULL;
4917         struct se_device *dev = SE_DEV(cmd);
4918         int max_sectors_set = 0, ret;
4919         u32 task_offset_in = 0, se_mem_cnt = 0, se_mem_bidi_cnt = 0, task_cdbs = 0;
4920
4921         if (!mem_list) {
4922                 printk(KERN_ERR "mem_list is NULL in transport_generic_get"
4923                                 "_cdb_count()\n");
4924                 return 0;
4925         }
4926         /*
4927          * While using RAMDISK_DR backstores is the only case where
4928          * mem_list will ever be empty at this point.
4929          */
4930         if (!(list_empty(mem_list)))
4931                 se_mem = list_entry(mem_list->next, struct se_mem, se_list);
4932         /*
4933          * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to
4934          * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation
4935          */
4936         if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
4937             !(list_empty(T_TASK(cmd)->t_mem_bidi_list)) &&
4938             (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV))
4939                 se_mem_bidi = list_entry(T_TASK(cmd)->t_mem_bidi_list->next,
4940                                         struct se_mem, se_list);
4941
4942         while (sectors) {
4943                 DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n",
4944                         CMD_TFO(cmd)->get_task_tag(cmd), lba, sectors,
4945                         transport_dev_end_lba(dev));
4946
4947                 task = transport_generic_get_task(cmd, data_direction);
4948                 if (!(task))
4949                         goto out;
4950
4951                 transport_set_tasks_sectors(task, dev, lba, sectors,
4952                                 &max_sectors_set);
4953
4954                 task->task_lba = lba;
4955                 lba += task->task_sectors;
4956                 sectors -= task->task_sectors;
4957                 task->task_size = (task->task_sectors *
4958                                    DEV_ATTRIB(dev)->block_size);
4959
4960                 cdb = TRANSPORT(dev)->get_cdb(task);
4961                 if ((cdb)) {
4962                         memcpy(cdb, T_TASK(cmd)->t_task_cdb,
4963                                 scsi_command_size(T_TASK(cmd)->t_task_cdb));
4964                         cmd->transport_split_cdb(task->task_lba,
4965                                         &task->task_sectors, cdb);
4966                 }
4967
4968                 /*
4969                  * Perform the SE OBJ plugin and/or Transport plugin specific
4970                  * mapping for T_TASK(cmd)->t_mem_list. And setup the
4971                  * task->task_sg and if necessary task->task_sg_bidi
4972                  */
4973                 ret = transport_do_se_mem_map(dev, task, mem_list,
4974                                 NULL, se_mem, &se_mem_lout, &se_mem_cnt,
4975                                 &task_offset_in);
4976                 if (ret < 0)
4977                         goto out;
4978
4979                 se_mem = se_mem_lout;
4980                 /*
4981                  * Setup the T_TASK(cmd)->t_mem_bidi_list -> task->task_sg_bidi
4982                  * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI
4983                  *
4984                  * Note that the first call to transport_do_se_mem_map() above will
4985                  * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map()
4986                  * -> transport_calc_sg_num(), and the second here will do the
4987                  * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI.
4988                  */
4989                 if (task->task_sg_bidi != NULL) {
4990                         ret = transport_do_se_mem_map(dev, task,
4991                                 T_TASK(cmd)->t_mem_bidi_list, NULL,
4992                                 se_mem_bidi, &se_mem_bidi_lout, &se_mem_bidi_cnt,
4993                                 &task_offset_in);
4994                         if (ret < 0)
4995                                 goto out;
4996
4997                         se_mem_bidi = se_mem_bidi_lout;
4998                 }
4999                 task_cdbs++;
5000
5001                 DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n",
5002                                 task_cdbs, task->task_sg_num);
5003
5004                 if (max_sectors_set) {
5005                         max_sectors_set = 0;
5006                         continue;
5007                 }
5008
5009                 if (!sectors)
5010                         break;
5011         }
5012
5013         if (set_counts) {
5014                 atomic_inc(&T_TASK(cmd)->t_fe_count);
5015                 atomic_inc(&T_TASK(cmd)->t_se_count);
5016         }
5017
5018         DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n",
5019                 CMD_TFO(cmd)->get_task_tag(cmd), (data_direction == DMA_TO_DEVICE)
5020                 ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs);
5021
5022         return task_cdbs;
5023 out:
5024         return 0;
5025 }
5026
5027 static int
5028 transport_map_control_cmd_to_task(struct se_cmd *cmd)
5029 {
5030         struct se_device *dev = SE_DEV(cmd);
5031         unsigned char *cdb;
5032         struct se_task *task;
5033         int ret;
5034
5035         task = transport_generic_get_task(cmd, cmd->data_direction);
5036         if (!task)
5037                 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5038
5039         cdb = TRANSPORT(dev)->get_cdb(task);
5040         if (cdb)
5041                 memcpy(cdb, cmd->t_task->t_task_cdb,
5042                         scsi_command_size(cmd->t_task->t_task_cdb));
5043
5044         task->task_size = cmd->data_length;
5045         task->task_sg_num =
5046                 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) ? 1 : 0;
5047
5048         atomic_inc(&cmd->t_task->t_fe_count);
5049         atomic_inc(&cmd->t_task->t_se_count);
5050
5051         if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
5052                 struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
5053                 u32 se_mem_cnt = 0, task_offset = 0;
5054
5055                 if (!list_empty(T_TASK(cmd)->t_mem_list))
5056                         se_mem = list_entry(T_TASK(cmd)->t_mem_list->next,
5057                                         struct se_mem, se_list);
5058
5059                 ret = transport_do_se_mem_map(dev, task,
5060                                 cmd->t_task->t_mem_list, NULL, se_mem,
5061                                 &se_mem_lout, &se_mem_cnt, &task_offset);
5062                 if (ret < 0)
5063                         return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5064
5065                 if (dev->transport->map_task_SG)
5066                         return dev->transport->map_task_SG(task);
5067                 return 0;
5068         } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
5069                 if (dev->transport->map_task_non_SG)
5070                         return dev->transport->map_task_non_SG(task);
5071                 return 0;
5072         } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
5073                 if (dev->transport->cdb_none)
5074                         return dev->transport->cdb_none(task);
5075                 return 0;
5076         } else {
5077                 BUG();
5078                 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5079         }
5080 }
5081
5082 /*       transport_generic_new_cmd(): Called from transport_processing_thread()
5083  *
5084  *       Allocate storage transport resources from a set of values predefined
5085  *       by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
5086  *       Any non zero return here is treated as an "out of resource' op here.
5087  */
5088         /*
5089          * Generate struct se_task(s) and/or their payloads for this CDB.
5090          */
5091 static int transport_generic_new_cmd(struct se_cmd *cmd)
5092 {
5093         struct se_portal_group *se_tpg;
5094         struct se_task *task;
5095         struct se_device *dev = SE_DEV(cmd);
5096         int ret = 0;
5097
5098         /*
5099          * Determine is the TCM fabric module has already allocated physical
5100          * memory, and is directly calling transport_generic_map_mem_to_cmd()
5101          * to setup beforehand the linked list of physical memory at
5102          * T_TASK(cmd)->t_mem_list of struct se_mem->se_page
5103          */
5104         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)) {
5105                 ret = transport_allocate_resources(cmd);
5106                 if (ret < 0)
5107                         return ret;
5108         }
5109
5110         ret = transport_get_sectors(cmd);
5111         if (ret < 0)
5112                 return ret;
5113
5114         ret = transport_new_cmd_obj(cmd);
5115         if (ret < 0)
5116                 return ret;
5117
5118         /*
5119          * Determine if the calling TCM fabric module is talking to
5120          * Linux/NET via kernel sockets and needs to allocate a
5121          * struct iovec array to complete the struct se_cmd
5122          */
5123         se_tpg = SE_LUN(cmd)->lun_sep->sep_tpg;
5124         if (TPG_TFO(se_tpg)->alloc_cmd_iovecs != NULL) {
5125                 ret = TPG_TFO(se_tpg)->alloc_cmd_iovecs(cmd);
5126                 if (ret < 0)
5127                         return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5128         }
5129
5130         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
5131                 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
5132                         if (atomic_read(&task->task_sent))
5133                                 continue;
5134                         if (!dev->transport->map_task_SG)
5135                                 continue;
5136
5137                         ret = dev->transport->map_task_SG(task);
5138                         if (ret < 0)
5139                                 return ret;
5140                 }
5141         } else {
5142                 ret = transport_map_control_cmd_to_task(cmd);
5143                 if (ret < 0)
5144                         return ret;
5145         }
5146
5147         /*
5148          * For WRITEs, let the iSCSI Target RX Thread know its buffer is ready..
5149          * This WRITE struct se_cmd (and all of its associated struct se_task's)
5150          * will be added to the struct se_device execution queue after its WRITE
5151          * data has arrived. (ie: It gets handled by the transport processing
5152          * thread a second time)
5153          */
5154         if (cmd->data_direction == DMA_TO_DEVICE) {
5155                 transport_add_tasks_to_state_queue(cmd);
5156                 return transport_generic_write_pending(cmd);
5157         }
5158         /*
5159          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
5160          * to the execution queue.
5161          */
5162         transport_execute_tasks(cmd);
5163         return 0;
5164 }
5165
5166 /*      transport_generic_process_write():
5167  *
5168  *
5169  */
5170 void transport_generic_process_write(struct se_cmd *cmd)
5171 {
5172 #if 0
5173         /*
5174          * Copy SCSI Presented DTL sector(s) from received buffers allocated to
5175          * original EDTL
5176          */
5177         if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
5178                 if (!T_TASK(cmd)->t_tasks_se_num) {
5179                         unsigned char *dst, *buf =
5180                                 (unsigned char *)T_TASK(cmd)->t_task_buf;
5181
5182                         dst = kzalloc(cmd->cmd_spdtl), GFP_KERNEL);
5183                         if (!(dst)) {
5184                                 printk(KERN_ERR "Unable to allocate memory for"
5185                                                 " WRITE underflow\n");
5186                                 transport_generic_request_failure(cmd, NULL,
5187                                         PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5188                                 return;
5189                         }
5190                         memcpy(dst, buf, cmd->cmd_spdtl);
5191
5192                         kfree(T_TASK(cmd)->t_task_buf);
5193                         T_TASK(cmd)->t_task_buf = dst;
5194                 } else {
5195                         struct scatterlist *sg =
5196                                 (struct scatterlist *sg)T_TASK(cmd)->t_task_buf;
5197                         struct scatterlist *orig_sg;
5198
5199                         orig_sg = kzalloc(sizeof(struct scatterlist) *
5200                                         T_TASK(cmd)->t_tasks_se_num,
5201                                         GFP_KERNEL))) {
5202                         if (!(orig_sg)) {
5203                                 printk(KERN_ERR "Unable to allocate memory"
5204                                                 " for WRITE underflow\n");
5205                                 transport_generic_request_failure(cmd, NULL,
5206                                         PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5207                                 return;
5208                         }
5209
5210                         memcpy(orig_sg, T_TASK(cmd)->t_task_buf,
5211                                         sizeof(struct scatterlist) *
5212                                         T_TASK(cmd)->t_tasks_se_num);
5213
5214                         cmd->data_length = cmd->cmd_spdtl;
5215                         /*
5216                          * FIXME, clear out original struct se_task and state
5217                          * information.
5218                          */
5219                         if (transport_generic_new_cmd(cmd) < 0) {
5220                                 transport_generic_request_failure(cmd, NULL,
5221                                         PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5222                                 kfree(orig_sg);
5223                                 return;
5224                         }
5225
5226                         transport_memcpy_write_sg(cmd, orig_sg);
5227                 }
5228         }
5229 #endif
5230         transport_execute_tasks(cmd);
5231 }
5232 EXPORT_SYMBOL(transport_generic_process_write);
5233
5234 /*      transport_generic_write_pending():
5235  *
5236  *
5237  */
5238 static int transport_generic_write_pending(struct se_cmd *cmd)
5239 {
5240         unsigned long flags;
5241         int ret;
5242
5243         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5244         cmd->t_state = TRANSPORT_WRITE_PENDING;
5245         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5246         /*
5247          * For the TCM control CDBs using a contiguous buffer, do the memcpy
5248          * from the passed Linux/SCSI struct scatterlist located at
5249          * T_TASK(se_cmd)->t_task_pt_buf to the contiguous buffer at
5250          * T_TASK(se_cmd)->t_task_buf.
5251          */
5252         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
5253                 transport_memcpy_read_contig(cmd,
5254                                 T_TASK(cmd)->t_task_buf,
5255                                 T_TASK(cmd)->t_task_pt_sgl);
5256         /*
5257          * Clear the se_cmd for WRITE_PENDING status in order to set
5258          * T_TASK(cmd)->t_transport_active=0 so that transport_generic_handle_data
5259          * can be called from HW target mode interrupt code.  This is safe
5260          * to be called with transport_off=1 before the CMD_TFO(cmd)->write_pending
5261          * because the se_cmd->se_lun pointer is not being cleared.
5262          */
5263         transport_cmd_check_stop(cmd, 1, 0);
5264
5265         /*
5266          * Call the fabric write_pending function here to let the
5267          * frontend know that WRITE buffers are ready.
5268          */
5269         ret = CMD_TFO(cmd)->write_pending(cmd);
5270         if (ret < 0)
5271                 return ret;
5272
5273         return PYX_TRANSPORT_WRITE_PENDING;
5274 }
5275
5276 /*      transport_release_cmd_to_pool():
5277  *
5278  *
5279  */
5280 void transport_release_cmd_to_pool(struct se_cmd *cmd)
5281 {
5282         BUG_ON(!T_TASK(cmd));
5283         BUG_ON(!CMD_TFO(cmd));
5284
5285         transport_free_se_cmd(cmd);
5286         CMD_TFO(cmd)->release_cmd_to_pool(cmd);
5287 }
5288 EXPORT_SYMBOL(transport_release_cmd_to_pool);
5289
5290 /*      transport_generic_free_cmd():
5291  *
5292  *      Called from processing frontend to release storage engine resources
5293  */
5294 void transport_generic_free_cmd(
5295         struct se_cmd *cmd,
5296         int wait_for_tasks,
5297         int release_to_pool,
5298         int session_reinstatement)
5299 {
5300         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) || !T_TASK(cmd))
5301                 transport_release_cmd_to_pool(cmd);
5302         else {
5303                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
5304
5305                 if (SE_LUN(cmd)) {
5306 #if 0
5307                         printk(KERN_INFO "cmd: %p ITT: 0x%08x contains"
5308                                 " SE_LUN(cmd)\n", cmd,
5309                                 CMD_TFO(cmd)->get_task_tag(cmd));
5310 #endif
5311                         transport_lun_remove_cmd(cmd);
5312                 }
5313
5314                 if (wait_for_tasks && cmd->transport_wait_for_tasks)
5315                         cmd->transport_wait_for_tasks(cmd, 0, 0);
5316
5317                 transport_free_dev_tasks(cmd);
5318
5319                 transport_generic_remove(cmd, release_to_pool,
5320                                 session_reinstatement);
5321         }
5322 }
5323 EXPORT_SYMBOL(transport_generic_free_cmd);
5324
5325 static void transport_nop_wait_for_tasks(
5326         struct se_cmd *cmd,
5327         int remove_cmd,
5328         int session_reinstatement)
5329 {
5330         return;
5331 }
5332
5333 /*      transport_lun_wait_for_tasks():
5334  *
5335  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
5336  *      an struct se_lun to be successfully shutdown.
5337  */
5338 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
5339 {
5340         unsigned long flags;
5341         int ret;
5342         /*
5343          * If the frontend has already requested this struct se_cmd to
5344          * be stopped, we can safely ignore this struct se_cmd.
5345          */
5346         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5347         if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
5348                 atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
5349                 DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop =="
5350                         " TRUE, skipping\n", CMD_TFO(cmd)->get_task_tag(cmd));
5351                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5352                 transport_cmd_check_stop(cmd, 1, 0);
5353                 return -1;
5354         }
5355         atomic_set(&T_TASK(cmd)->transport_lun_fe_stop, 1);
5356         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5357
5358         wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
5359
5360         ret = transport_stop_tasks_for_cmd(cmd);
5361
5362         DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:"
5363                         " %d\n", cmd, T_TASK(cmd)->t_task_cdbs, ret);
5364         if (!ret) {
5365                 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
5366                                 CMD_TFO(cmd)->get_task_tag(cmd));
5367                 wait_for_completion(&T_TASK(cmd)->transport_lun_stop_comp);
5368                 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
5369                                 CMD_TFO(cmd)->get_task_tag(cmd));
5370         }
5371         transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
5372
5373         return 0;
5374 }
5375
5376 /* #define DEBUG_CLEAR_LUN */
5377 #ifdef DEBUG_CLEAR_LUN
5378 #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x)
5379 #else
5380 #define DEBUG_CLEAR_L(x...)
5381 #endif
5382
5383 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
5384 {
5385         struct se_cmd *cmd = NULL;
5386         unsigned long lun_flags, cmd_flags;
5387         /*
5388          * Do exception processing and return CHECK_CONDITION status to the
5389          * Initiator Port.
5390          */
5391         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5392         while (!list_empty_careful(&lun->lun_cmd_list)) {
5393                 cmd = list_entry(lun->lun_cmd_list.next,
5394                         struct se_cmd, se_lun_list);
5395                 list_del(&cmd->se_lun_list);
5396
5397                 if (!(T_TASK(cmd))) {
5398                         printk(KERN_ERR "ITT: 0x%08x, T_TASK(cmd) = NULL"
5399                                 "[i,t]_state: %u/%u\n",
5400                                 CMD_TFO(cmd)->get_task_tag(cmd),
5401                                 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
5402                         BUG();
5403                 }
5404                 atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
5405                 /*
5406                  * This will notify iscsi_target_transport.c:
5407                  * transport_cmd_check_stop() that a LUN shutdown is in
5408                  * progress for the iscsi_cmd_t.
5409                  */
5410                 spin_lock(&T_TASK(cmd)->t_state_lock);
5411                 DEBUG_CLEAR_L("SE_LUN[%d] - Setting T_TASK(cmd)->transport"
5412                         "_lun_stop for  ITT: 0x%08x\n",
5413                         SE_LUN(cmd)->unpacked_lun,
5414                         CMD_TFO(cmd)->get_task_tag(cmd));
5415                 atomic_set(&T_TASK(cmd)->transport_lun_stop, 1);
5416                 spin_unlock(&T_TASK(cmd)->t_state_lock);
5417
5418                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5419
5420                 if (!(SE_LUN(cmd))) {
5421                         printk(KERN_ERR "ITT: 0x%08x, [i,t]_state: %u/%u\n",
5422                                 CMD_TFO(cmd)->get_task_tag(cmd),
5423                                 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
5424                         BUG();
5425                 }
5426                 /*
5427                  * If the Storage engine still owns the iscsi_cmd_t, determine
5428                  * and/or stop its context.
5429                  */
5430                 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport"
5431                         "_lun_wait_for_tasks()\n", SE_LUN(cmd)->unpacked_lun,
5432                         CMD_TFO(cmd)->get_task_tag(cmd));
5433
5434                 if (transport_lun_wait_for_tasks(cmd, SE_LUN(cmd)) < 0) {
5435                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5436                         continue;
5437                 }
5438
5439                 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
5440                         "_wait_for_tasks(): SUCCESS\n",
5441                         SE_LUN(cmd)->unpacked_lun,
5442                         CMD_TFO(cmd)->get_task_tag(cmd));
5443
5444                 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
5445                 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
5446                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5447                         goto check_cond;
5448                 }
5449                 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
5450                 transport_all_task_dev_remove_state(cmd);
5451                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5452
5453                 transport_free_dev_tasks(cmd);
5454                 /*
5455                  * The Storage engine stopped this struct se_cmd before it was
5456                  * send to the fabric frontend for delivery back to the
5457                  * Initiator Node.  Return this SCSI CDB back with an
5458                  * CHECK_CONDITION status.
5459                  */
5460 check_cond:
5461                 transport_send_check_condition_and_sense(cmd,
5462                                 TCM_NON_EXISTENT_LUN, 0);
5463                 /*
5464                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
5465                  * be released, notify the waiting thread now that LU has
5466                  * finished accessing it.
5467                  */
5468                 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
5469                 if (atomic_read(&T_TASK(cmd)->transport_lun_fe_stop)) {
5470                         DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for"
5471                                 " struct se_cmd: %p ITT: 0x%08x\n",
5472                                 lun->unpacked_lun,
5473                                 cmd, CMD_TFO(cmd)->get_task_tag(cmd));
5474
5475                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
5476                                         cmd_flags);
5477                         transport_cmd_check_stop(cmd, 1, 0);
5478                         complete(&T_TASK(cmd)->transport_lun_fe_stop_comp);
5479                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5480                         continue;
5481                 }
5482                 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
5483                         lun->unpacked_lun, CMD_TFO(cmd)->get_task_tag(cmd));
5484
5485                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5486                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5487         }
5488         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5489 }
5490
5491 static int transport_clear_lun_thread(void *p)
5492 {
5493         struct se_lun *lun = (struct se_lun *)p;
5494
5495         __transport_clear_lun_from_sessions(lun);
5496         complete(&lun->lun_shutdown_comp);
5497
5498         return 0;
5499 }
5500
5501 int transport_clear_lun_from_sessions(struct se_lun *lun)
5502 {
5503         struct task_struct *kt;
5504
5505         kt = kthread_run(transport_clear_lun_thread, (void *)lun,
5506                         "tcm_cl_%u", lun->unpacked_lun);
5507         if (IS_ERR(kt)) {
5508                 printk(KERN_ERR "Unable to start clear_lun thread\n");
5509                 return -1;
5510         }
5511         wait_for_completion(&lun->lun_shutdown_comp);
5512
5513         return 0;
5514 }
5515
5516 /*      transport_generic_wait_for_tasks():
5517  *
5518  *      Called from frontend or passthrough context to wait for storage engine
5519  *      to pause and/or release frontend generated struct se_cmd.
5520  */
5521 static void transport_generic_wait_for_tasks(
5522         struct se_cmd *cmd,
5523         int remove_cmd,
5524         int session_reinstatement)
5525 {
5526         unsigned long flags;
5527
5528         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
5529                 return;
5530
5531         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5532         /*
5533          * If we are already stopped due to an external event (ie: LUN shutdown)
5534          * sleep until the connection can have the passed struct se_cmd back.
5535          * The T_TASK(cmd)->transport_lun_stopped_sem will be upped by
5536          * transport_clear_lun_from_sessions() once the ConfigFS context caller
5537          * has completed its operation on the struct se_cmd.
5538          */
5539         if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
5540
5541                 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping"
5542                         " wait_for_completion(&T_TASK(cmd)transport_lun_fe"
5543                         "_stop_comp); for ITT: 0x%08x\n",
5544                         CMD_TFO(cmd)->get_task_tag(cmd));
5545                 /*
5546                  * There is a special case for WRITES where a FE exception +
5547                  * LUN shutdown means ConfigFS context is still sleeping on
5548                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
5549                  * We go ahead and up transport_lun_stop_comp just to be sure
5550                  * here.
5551                  */
5552                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5553                 complete(&T_TASK(cmd)->transport_lun_stop_comp);
5554                 wait_for_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
5555                 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5556
5557                 transport_all_task_dev_remove_state(cmd);
5558                 /*
5559                  * At this point, the frontend who was the originator of this
5560                  * struct se_cmd, now owns the structure and can be released through
5561                  * normal means below.
5562                  */
5563                 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped"
5564                         " wait_for_completion(&T_TASK(cmd)transport_lun_fe_"
5565                         "stop_comp); for ITT: 0x%08x\n",
5566                         CMD_TFO(cmd)->get_task_tag(cmd));
5567
5568                 atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
5569         }
5570         if (!atomic_read(&T_TASK(cmd)->t_transport_active) ||
5571              atomic_read(&T_TASK(cmd)->t_transport_aborted))
5572                 goto remove;
5573
5574         atomic_set(&T_TASK(cmd)->t_transport_stop, 1);
5575
5576         DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x"
5577                 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
5578                 " = TRUE\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
5579                 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state,
5580                 cmd->deferred_t_state);
5581
5582         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5583
5584         wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
5585
5586         wait_for_completion(&T_TASK(cmd)->t_transport_stop_comp);
5587
5588         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5589         atomic_set(&T_TASK(cmd)->t_transport_active, 0);
5590         atomic_set(&T_TASK(cmd)->t_transport_stop, 0);
5591
5592         DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion("
5593                 "&T_TASK(cmd)->t_transport_stop_comp) for ITT: 0x%08x\n",
5594                 CMD_TFO(cmd)->get_task_tag(cmd));
5595 remove:
5596         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5597         if (!remove_cmd)
5598                 return;
5599
5600         transport_generic_free_cmd(cmd, 0, 0, session_reinstatement);
5601 }
5602
5603 static int transport_get_sense_codes(
5604         struct se_cmd *cmd,
5605         u8 *asc,
5606         u8 *ascq)
5607 {
5608         *asc = cmd->scsi_asc;
5609         *ascq = cmd->scsi_ascq;
5610
5611         return 0;
5612 }
5613
5614 static int transport_set_sense_codes(
5615         struct se_cmd *cmd,
5616         u8 asc,
5617         u8 ascq)
5618 {
5619         cmd->scsi_asc = asc;
5620         cmd->scsi_ascq = ascq;
5621
5622         return 0;
5623 }
5624
5625 int transport_send_check_condition_and_sense(
5626         struct se_cmd *cmd,
5627         u8 reason,
5628         int from_transport)
5629 {
5630         unsigned char *buffer = cmd->sense_buffer;
5631         unsigned long flags;
5632         int offset;
5633         u8 asc = 0, ascq = 0;
5634
5635         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5636         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
5637                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5638                 return 0;
5639         }
5640         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
5641         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5642
5643         if (!reason && from_transport)
5644                 goto after_reason;
5645
5646         if (!from_transport)
5647                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
5648         /*
5649          * Data Segment and SenseLength of the fabric response PDU.
5650          *
5651          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
5652          * from include/scsi/scsi_cmnd.h
5653          */
5654         offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
5655                                 TRANSPORT_SENSE_BUFFER);
5656         /*
5657          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
5658          * SENSE KEY values from include/scsi/scsi.h
5659          */
5660         switch (reason) {
5661         case TCM_NON_EXISTENT_LUN:
5662         case TCM_UNSUPPORTED_SCSI_OPCODE:
5663         case TCM_SECTOR_COUNT_TOO_MANY:
5664                 /* CURRENT ERROR */
5665                 buffer[offset] = 0x70;
5666                 /* ILLEGAL REQUEST */
5667                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5668                 /* INVALID COMMAND OPERATION CODE */
5669                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
5670                 break;
5671         case TCM_UNKNOWN_MODE_PAGE:
5672                 /* CURRENT ERROR */
5673                 buffer[offset] = 0x70;
5674                 /* ILLEGAL REQUEST */
5675                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5676                 /* INVALID FIELD IN CDB */
5677                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5678                 break;
5679         case TCM_CHECK_CONDITION_ABORT_CMD:
5680                 /* CURRENT ERROR */
5681                 buffer[offset] = 0x70;
5682                 /* ABORTED COMMAND */
5683                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5684                 /* BUS DEVICE RESET FUNCTION OCCURRED */
5685                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
5686                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
5687                 break;
5688         case TCM_INCORRECT_AMOUNT_OF_DATA:
5689                 /* CURRENT ERROR */
5690                 buffer[offset] = 0x70;
5691                 /* ABORTED COMMAND */
5692                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5693                 /* WRITE ERROR */
5694                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5695                 /* NOT ENOUGH UNSOLICITED DATA */
5696                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
5697                 break;
5698         case TCM_INVALID_CDB_FIELD:
5699                 /* CURRENT ERROR */
5700                 buffer[offset] = 0x70;
5701                 /* ABORTED COMMAND */
5702                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5703                 /* INVALID FIELD IN CDB */
5704                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5705                 break;
5706         case TCM_INVALID_PARAMETER_LIST:
5707                 /* CURRENT ERROR */
5708                 buffer[offset] = 0x70;
5709                 /* ABORTED COMMAND */
5710                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5711                 /* INVALID FIELD IN PARAMETER LIST */
5712                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
5713                 break;
5714         case TCM_UNEXPECTED_UNSOLICITED_DATA:
5715                 /* CURRENT ERROR */
5716                 buffer[offset] = 0x70;
5717                 /* ABORTED COMMAND */
5718                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5719                 /* WRITE ERROR */
5720                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5721                 /* UNEXPECTED_UNSOLICITED_DATA */
5722                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
5723                 break;
5724         case TCM_SERVICE_CRC_ERROR:
5725                 /* CURRENT ERROR */
5726                 buffer[offset] = 0x70;
5727                 /* ABORTED COMMAND */
5728                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5729                 /* PROTOCOL SERVICE CRC ERROR */
5730                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
5731                 /* N/A */
5732                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
5733                 break;
5734         case TCM_SNACK_REJECTED:
5735                 /* CURRENT ERROR */
5736                 buffer[offset] = 0x70;
5737                 /* ABORTED COMMAND */
5738                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5739                 /* READ ERROR */
5740                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
5741                 /* FAILED RETRANSMISSION REQUEST */
5742                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
5743                 break;
5744         case TCM_WRITE_PROTECTED:
5745                 /* CURRENT ERROR */
5746                 buffer[offset] = 0x70;
5747                 /* DATA PROTECT */
5748                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
5749                 /* WRITE PROTECTED */
5750                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
5751                 break;
5752         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
5753                 /* CURRENT ERROR */
5754                 buffer[offset] = 0x70;
5755                 /* UNIT ATTENTION */
5756                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
5757                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
5758                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5759                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5760                 break;
5761         case TCM_CHECK_CONDITION_NOT_READY:
5762                 /* CURRENT ERROR */
5763                 buffer[offset] = 0x70;
5764                 /* Not Ready */
5765                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
5766                 transport_get_sense_codes(cmd, &asc, &ascq);
5767                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5768                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5769                 break;
5770         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
5771         default:
5772                 /* CURRENT ERROR */
5773                 buffer[offset] = 0x70;
5774                 /* ILLEGAL REQUEST */
5775                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5776                 /* LOGICAL UNIT COMMUNICATION FAILURE */
5777                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
5778                 break;
5779         }
5780         /*
5781          * This code uses linux/include/scsi/scsi.h SAM status codes!
5782          */
5783         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
5784         /*
5785          * Automatically padded, this value is encoded in the fabric's
5786          * data_length response PDU containing the SCSI defined sense data.
5787          */
5788         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
5789
5790 after_reason:
5791         CMD_TFO(cmd)->queue_status(cmd);
5792         return 0;
5793 }
5794 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
5795
5796 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
5797 {
5798         int ret = 0;
5799
5800         if (atomic_read(&T_TASK(cmd)->t_transport_aborted) != 0) {
5801                 if (!(send_status) ||
5802                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
5803                         return 1;
5804 #if 0
5805                 printk(KERN_INFO "Sending delayed SAM_STAT_TASK_ABORTED"
5806                         " status for CDB: 0x%02x ITT: 0x%08x\n",
5807                         T_TASK(cmd)->t_task_cdb[0],
5808                         CMD_TFO(cmd)->get_task_tag(cmd));
5809 #endif
5810                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
5811                 CMD_TFO(cmd)->queue_status(cmd);
5812                 ret = 1;
5813         }
5814         return ret;
5815 }
5816 EXPORT_SYMBOL(transport_check_aborted_status);
5817
5818 void transport_send_task_abort(struct se_cmd *cmd)
5819 {
5820         /*
5821          * If there are still expected incoming fabric WRITEs, we wait
5822          * until until they have completed before sending a TASK_ABORTED
5823          * response.  This response with TASK_ABORTED status will be
5824          * queued back to fabric module by transport_check_aborted_status().
5825          */
5826         if (cmd->data_direction == DMA_TO_DEVICE) {
5827                 if (CMD_TFO(cmd)->write_pending_status(cmd) != 0) {
5828                         atomic_inc(&T_TASK(cmd)->t_transport_aborted);
5829                         smp_mb__after_atomic_inc();
5830                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5831                         transport_new_cmd_failure(cmd);
5832                         return;
5833                 }
5834         }
5835         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5836 #if 0
5837         printk(KERN_INFO "Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
5838                 " ITT: 0x%08x\n", T_TASK(cmd)->t_task_cdb[0],
5839                 CMD_TFO(cmd)->get_task_tag(cmd));
5840 #endif
5841         CMD_TFO(cmd)->queue_status(cmd);
5842 }
5843
5844 /*      transport_generic_do_tmr():
5845  *
5846  *
5847  */
5848 int transport_generic_do_tmr(struct se_cmd *cmd)
5849 {
5850         struct se_cmd *ref_cmd;
5851         struct se_device *dev = SE_DEV(cmd);
5852         struct se_tmr_req *tmr = cmd->se_tmr_req;
5853         int ret;
5854
5855         switch (tmr->function) {
5856         case TMR_ABORT_TASK:
5857                 ref_cmd = tmr->ref_cmd;
5858                 tmr->response = TMR_FUNCTION_REJECTED;
5859                 break;
5860         case TMR_ABORT_TASK_SET:
5861         case TMR_CLEAR_ACA: