target: Drop se_device TCQ queue_depth usage from I/O path
[linux-2.6.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_backend.h>
49 #include <target/target_core_fabric.h>
50 #include <target/target_core_configfs.h>
51
52 #include "target_core_internal.h"
53 #include "target_core_alua.h"
54 #include "target_core_pr.h"
55 #include "target_core_ua.h"
56
57 static int sub_api_initialized;
58
59 static struct workqueue_struct *target_completion_wq;
60 static struct kmem_cache *se_sess_cache;
61 struct kmem_cache *se_tmr_req_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74                 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void transport_generic_request_failure(struct se_cmd *);
81 static void target_complete_ok_work(struct work_struct *work);
82
83 int init_se_kmem_caches(void)
84 {
85         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
86                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
87                         0, NULL);
88         if (!se_tmr_req_cache) {
89                 pr_err("kmem_cache_create() for struct se_tmr_req"
90                                 " failed\n");
91                 goto out;
92         }
93         se_sess_cache = kmem_cache_create("se_sess_cache",
94                         sizeof(struct se_session), __alignof__(struct se_session),
95                         0, NULL);
96         if (!se_sess_cache) {
97                 pr_err("kmem_cache_create() for struct se_session"
98                                 " failed\n");
99                 goto out_free_tmr_req_cache;
100         }
101         se_ua_cache = kmem_cache_create("se_ua_cache",
102                         sizeof(struct se_ua), __alignof__(struct se_ua),
103                         0, NULL);
104         if (!se_ua_cache) {
105                 pr_err("kmem_cache_create() for struct se_ua failed\n");
106                 goto out_free_sess_cache;
107         }
108         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
109                         sizeof(struct t10_pr_registration),
110                         __alignof__(struct t10_pr_registration), 0, NULL);
111         if (!t10_pr_reg_cache) {
112                 pr_err("kmem_cache_create() for struct t10_pr_registration"
113                                 " failed\n");
114                 goto out_free_ua_cache;
115         }
116         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
117                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
118                         0, NULL);
119         if (!t10_alua_lu_gp_cache) {
120                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
121                                 " failed\n");
122                 goto out_free_pr_reg_cache;
123         }
124         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
125                         sizeof(struct t10_alua_lu_gp_member),
126                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
127         if (!t10_alua_lu_gp_mem_cache) {
128                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
129                                 "cache failed\n");
130                 goto out_free_lu_gp_cache;
131         }
132         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
133                         sizeof(struct t10_alua_tg_pt_gp),
134                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
135         if (!t10_alua_tg_pt_gp_cache) {
136                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137                                 "cache failed\n");
138                 goto out_free_lu_gp_mem_cache;
139         }
140         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
141                         "t10_alua_tg_pt_gp_mem_cache",
142                         sizeof(struct t10_alua_tg_pt_gp_member),
143                         __alignof__(struct t10_alua_tg_pt_gp_member),
144                         0, NULL);
145         if (!t10_alua_tg_pt_gp_mem_cache) {
146                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147                                 "mem_t failed\n");
148                 goto out_free_tg_pt_gp_cache;
149         }
150
151         target_completion_wq = alloc_workqueue("target_completion",
152                                                WQ_MEM_RECLAIM, 0);
153         if (!target_completion_wq)
154                 goto out_free_tg_pt_gp_mem_cache;
155
156         return 0;
157
158 out_free_tg_pt_gp_mem_cache:
159         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
160 out_free_tg_pt_gp_cache:
161         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
162 out_free_lu_gp_mem_cache:
163         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 out_free_lu_gp_cache:
165         kmem_cache_destroy(t10_alua_lu_gp_cache);
166 out_free_pr_reg_cache:
167         kmem_cache_destroy(t10_pr_reg_cache);
168 out_free_ua_cache:
169         kmem_cache_destroy(se_ua_cache);
170 out_free_sess_cache:
171         kmem_cache_destroy(se_sess_cache);
172 out_free_tmr_req_cache:
173         kmem_cache_destroy(se_tmr_req_cache);
174 out:
175         return -ENOMEM;
176 }
177
178 void release_se_kmem_caches(void)
179 {
180         destroy_workqueue(target_completion_wq);
181         kmem_cache_destroy(se_tmr_req_cache);
182         kmem_cache_destroy(se_sess_cache);
183         kmem_cache_destroy(se_ua_cache);
184         kmem_cache_destroy(t10_pr_reg_cache);
185         kmem_cache_destroy(t10_alua_lu_gp_cache);
186         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
187         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
188         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
189 }
190
191 /* This code ensures unique mib indexes are handed out. */
192 static DEFINE_SPINLOCK(scsi_mib_index_lock);
193 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
194
195 /*
196  * Allocate a new row index for the entry type specified
197  */
198 u32 scsi_get_new_index(scsi_index_t type)
199 {
200         u32 new_index;
201
202         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
203
204         spin_lock(&scsi_mib_index_lock);
205         new_index = ++scsi_mib_index[type];
206         spin_unlock(&scsi_mib_index_lock);
207
208         return new_index;
209 }
210
211 static void transport_init_queue_obj(struct se_queue_obj *qobj)
212 {
213         atomic_set(&qobj->queue_cnt, 0);
214         INIT_LIST_HEAD(&qobj->qobj_list);
215         init_waitqueue_head(&qobj->thread_wq);
216         spin_lock_init(&qobj->cmd_queue_lock);
217 }
218
219 void transport_subsystem_check_init(void)
220 {
221         int ret;
222
223         if (sub_api_initialized)
224                 return;
225
226         ret = request_module("target_core_iblock");
227         if (ret != 0)
228                 pr_err("Unable to load target_core_iblock\n");
229
230         ret = request_module("target_core_file");
231         if (ret != 0)
232                 pr_err("Unable to load target_core_file\n");
233
234         ret = request_module("target_core_pscsi");
235         if (ret != 0)
236                 pr_err("Unable to load target_core_pscsi\n");
237
238         ret = request_module("target_core_stgt");
239         if (ret != 0)
240                 pr_err("Unable to load target_core_stgt\n");
241
242         sub_api_initialized = 1;
243         return;
244 }
245
246 struct se_session *transport_init_session(void)
247 {
248         struct se_session *se_sess;
249
250         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
251         if (!se_sess) {
252                 pr_err("Unable to allocate struct se_session from"
253                                 " se_sess_cache\n");
254                 return ERR_PTR(-ENOMEM);
255         }
256         INIT_LIST_HEAD(&se_sess->sess_list);
257         INIT_LIST_HEAD(&se_sess->sess_acl_list);
258         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
259         INIT_LIST_HEAD(&se_sess->sess_wait_list);
260         spin_lock_init(&se_sess->sess_cmd_lock);
261
262         return se_sess;
263 }
264 EXPORT_SYMBOL(transport_init_session);
265
266 /*
267  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
268  */
269 void __transport_register_session(
270         struct se_portal_group *se_tpg,
271         struct se_node_acl *se_nacl,
272         struct se_session *se_sess,
273         void *fabric_sess_ptr)
274 {
275         unsigned char buf[PR_REG_ISID_LEN];
276
277         se_sess->se_tpg = se_tpg;
278         se_sess->fabric_sess_ptr = fabric_sess_ptr;
279         /*
280          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
281          *
282          * Only set for struct se_session's that will actually be moving I/O.
283          * eg: *NOT* discovery sessions.
284          */
285         if (se_nacl) {
286                 /*
287                  * If the fabric module supports an ISID based TransportID,
288                  * save this value in binary from the fabric I_T Nexus now.
289                  */
290                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
291                         memset(&buf[0], 0, PR_REG_ISID_LEN);
292                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
293                                         &buf[0], PR_REG_ISID_LEN);
294                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
295                 }
296                 spin_lock_irq(&se_nacl->nacl_sess_lock);
297                 /*
298                  * The se_nacl->nacl_sess pointer will be set to the
299                  * last active I_T Nexus for each struct se_node_acl.
300                  */
301                 se_nacl->nacl_sess = se_sess;
302
303                 list_add_tail(&se_sess->sess_acl_list,
304                               &se_nacl->acl_sess_list);
305                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
306         }
307         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
308
309         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
310                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
311 }
312 EXPORT_SYMBOL(__transport_register_session);
313
314 void transport_register_session(
315         struct se_portal_group *se_tpg,
316         struct se_node_acl *se_nacl,
317         struct se_session *se_sess,
318         void *fabric_sess_ptr)
319 {
320         spin_lock_bh(&se_tpg->session_lock);
321         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
322         spin_unlock_bh(&se_tpg->session_lock);
323 }
324 EXPORT_SYMBOL(transport_register_session);
325
326 void transport_deregister_session_configfs(struct se_session *se_sess)
327 {
328         struct se_node_acl *se_nacl;
329         unsigned long flags;
330         /*
331          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
332          */
333         se_nacl = se_sess->se_node_acl;
334         if (se_nacl) {
335                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
336                 list_del(&se_sess->sess_acl_list);
337                 /*
338                  * If the session list is empty, then clear the pointer.
339                  * Otherwise, set the struct se_session pointer from the tail
340                  * element of the per struct se_node_acl active session list.
341                  */
342                 if (list_empty(&se_nacl->acl_sess_list))
343                         se_nacl->nacl_sess = NULL;
344                 else {
345                         se_nacl->nacl_sess = container_of(
346                                         se_nacl->acl_sess_list.prev,
347                                         struct se_session, sess_acl_list);
348                 }
349                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
350         }
351 }
352 EXPORT_SYMBOL(transport_deregister_session_configfs);
353
354 void transport_free_session(struct se_session *se_sess)
355 {
356         kmem_cache_free(se_sess_cache, se_sess);
357 }
358 EXPORT_SYMBOL(transport_free_session);
359
360 void transport_deregister_session(struct se_session *se_sess)
361 {
362         struct se_portal_group *se_tpg = se_sess->se_tpg;
363         struct se_node_acl *se_nacl;
364         unsigned long flags;
365
366         if (!se_tpg) {
367                 transport_free_session(se_sess);
368                 return;
369         }
370
371         spin_lock_irqsave(&se_tpg->session_lock, flags);
372         list_del(&se_sess->sess_list);
373         se_sess->se_tpg = NULL;
374         se_sess->fabric_sess_ptr = NULL;
375         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
376
377         /*
378          * Determine if we need to do extra work for this initiator node's
379          * struct se_node_acl if it had been previously dynamically generated.
380          */
381         se_nacl = se_sess->se_node_acl;
382         if (se_nacl) {
383                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384                 if (se_nacl->dynamic_node_acl) {
385                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
386                                         se_tpg)) {
387                                 list_del(&se_nacl->acl_list);
388                                 se_tpg->num_node_acls--;
389                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
390
391                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
392                                 core_free_device_list_for_node(se_nacl, se_tpg);
393                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
394                                                 se_nacl);
395                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
396                         }
397                 }
398                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
399         }
400
401         transport_free_session(se_sess);
402
403         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
404                 se_tpg->se_tpg_tfo->get_fabric_name());
405 }
406 EXPORT_SYMBOL(transport_deregister_session);
407
408 /*
409  * Called with cmd->t_state_lock held.
410  */
411 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
412 {
413         struct se_device *dev = cmd->se_dev;
414         struct se_task *task;
415         unsigned long flags;
416
417         if (!dev)
418                 return;
419
420         list_for_each_entry(task, &cmd->t_task_list, t_list) {
421                 if (task->task_flags & TF_ACTIVE)
422                         continue;
423
424                 spin_lock_irqsave(&dev->execute_task_lock, flags);
425                 if (task->t_state_active) {
426                         pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
427                                 cmd->se_tfo->get_task_tag(cmd), dev, task);
428
429                         list_del(&task->t_state_list);
430                         atomic_dec(&cmd->t_task_cdbs_ex_left);
431                         task->t_state_active = false;
432                 }
433                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
434         }
435
436 }
437
438 /*      transport_cmd_check_stop():
439  *
440  *      'transport_off = 1' determines if t_transport_active should be cleared.
441  *      'transport_off = 2' determines if task_dev_state should be removed.
442  *
443  *      A non-zero u8 t_state sets cmd->t_state.
444  *      Returns 1 when command is stopped, else 0.
445  */
446 static int transport_cmd_check_stop(
447         struct se_cmd *cmd,
448         int transport_off,
449         u8 t_state)
450 {
451         unsigned long flags;
452
453         spin_lock_irqsave(&cmd->t_state_lock, flags);
454         /*
455          * Determine if IOCTL context caller in requesting the stopping of this
456          * command for LUN shutdown purposes.
457          */
458         if (atomic_read(&cmd->transport_lun_stop)) {
459                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
460                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
461                         cmd->se_tfo->get_task_tag(cmd));
462
463                 atomic_set(&cmd->t_transport_active, 0);
464                 if (transport_off == 2)
465                         transport_all_task_dev_remove_state(cmd);
466                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
467
468                 complete(&cmd->transport_lun_stop_comp);
469                 return 1;
470         }
471         /*
472          * Determine if frontend context caller is requesting the stopping of
473          * this command for frontend exceptions.
474          */
475         if (atomic_read(&cmd->t_transport_stop)) {
476                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
477                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
478                         cmd->se_tfo->get_task_tag(cmd));
479
480                 if (transport_off == 2)
481                         transport_all_task_dev_remove_state(cmd);
482
483                 /*
484                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
485                  * to FE.
486                  */
487                 if (transport_off == 2)
488                         cmd->se_lun = NULL;
489                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
490
491                 complete(&cmd->t_transport_stop_comp);
492                 return 1;
493         }
494         if (transport_off) {
495                 atomic_set(&cmd->t_transport_active, 0);
496                 if (transport_off == 2) {
497                         transport_all_task_dev_remove_state(cmd);
498                         /*
499                          * Clear struct se_cmd->se_lun before the transport_off == 2
500                          * handoff to fabric module.
501                          */
502                         cmd->se_lun = NULL;
503                         /*
504                          * Some fabric modules like tcm_loop can release
505                          * their internally allocated I/O reference now and
506                          * struct se_cmd now.
507                          *
508                          * Fabric modules are expected to return '1' here if the
509                          * se_cmd being passed is released at this point,
510                          * or zero if not being released.
511                          */
512                         if (cmd->se_tfo->check_stop_free != NULL) {
513                                 spin_unlock_irqrestore(
514                                         &cmd->t_state_lock, flags);
515
516                                 return cmd->se_tfo->check_stop_free(cmd);
517                         }
518                 }
519                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520
521                 return 0;
522         } else if (t_state)
523                 cmd->t_state = t_state;
524         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525
526         return 0;
527 }
528
529 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
530 {
531         return transport_cmd_check_stop(cmd, 2, 0);
532 }
533
534 static void transport_lun_remove_cmd(struct se_cmd *cmd)
535 {
536         struct se_lun *lun = cmd->se_lun;
537         unsigned long flags;
538
539         if (!lun)
540                 return;
541
542         spin_lock_irqsave(&cmd->t_state_lock, flags);
543         if (!atomic_read(&cmd->transport_dev_active)) {
544                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545                 goto check_lun;
546         }
547         atomic_set(&cmd->transport_dev_active, 0);
548         transport_all_task_dev_remove_state(cmd);
549         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550
551
552 check_lun:
553         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
554         if (atomic_read(&cmd->transport_lun_active)) {
555                 list_del(&cmd->se_lun_node);
556                 atomic_set(&cmd->transport_lun_active, 0);
557 #if 0
558                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
559                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
560 #endif
561         }
562         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
563 }
564
565 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
566 {
567         if (!cmd->se_tmr_req)
568                 transport_lun_remove_cmd(cmd);
569
570         if (transport_cmd_check_stop_to_fabric(cmd))
571                 return;
572         if (remove) {
573                 transport_remove_cmd_from_queue(cmd);
574                 transport_put_cmd(cmd);
575         }
576 }
577
578 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
579                 bool at_head)
580 {
581         struct se_device *dev = cmd->se_dev;
582         struct se_queue_obj *qobj = &dev->dev_queue_obj;
583         unsigned long flags;
584
585         if (t_state) {
586                 spin_lock_irqsave(&cmd->t_state_lock, flags);
587                 cmd->t_state = t_state;
588                 atomic_set(&cmd->t_transport_active, 1);
589                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
590         }
591
592         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
593
594         /* If the cmd is already on the list, remove it before we add it */
595         if (!list_empty(&cmd->se_queue_node))
596                 list_del(&cmd->se_queue_node);
597         else
598                 atomic_inc(&qobj->queue_cnt);
599
600         if (at_head)
601                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
602         else
603                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
604         atomic_set(&cmd->t_transport_queue_active, 1);
605         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
606
607         wake_up_interruptible(&qobj->thread_wq);
608 }
609
610 static struct se_cmd *
611 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
612 {
613         struct se_cmd *cmd;
614         unsigned long flags;
615
616         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
617         if (list_empty(&qobj->qobj_list)) {
618                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619                 return NULL;
620         }
621         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
622
623         atomic_set(&cmd->t_transport_queue_active, 0);
624
625         list_del_init(&cmd->se_queue_node);
626         atomic_dec(&qobj->queue_cnt);
627         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
628
629         return cmd;
630 }
631
632 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
633 {
634         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
635         unsigned long flags;
636
637         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
638         if (!atomic_read(&cmd->t_transport_queue_active)) {
639                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640                 return;
641         }
642         atomic_set(&cmd->t_transport_queue_active, 0);
643         atomic_dec(&qobj->queue_cnt);
644         list_del_init(&cmd->se_queue_node);
645         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
646
647         if (atomic_read(&cmd->t_transport_queue_active)) {
648                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
649                         cmd->se_tfo->get_task_tag(cmd),
650                         atomic_read(&cmd->t_transport_queue_active));
651         }
652 }
653
654 /*
655  * Completion function used by TCM subsystem plugins (such as FILEIO)
656  * for queueing up response from struct se_subsystem_api->do_task()
657  */
658 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
659 {
660         struct se_task *task = list_entry(cmd->t_task_list.next,
661                                 struct se_task, t_list);
662
663         if (good) {
664                 cmd->scsi_status = SAM_STAT_GOOD;
665                 task->task_scsi_status = GOOD;
666         } else {
667                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
668                 task->task_se_cmd->scsi_sense_reason =
669                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
670
671         }
672
673         transport_complete_task(task, good);
674 }
675 EXPORT_SYMBOL(transport_complete_sync_cache);
676
677 static void target_complete_failure_work(struct work_struct *work)
678 {
679         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
680
681         transport_generic_request_failure(cmd);
682 }
683
684 /*      transport_complete_task():
685  *
686  *      Called from interrupt and non interrupt context depending
687  *      on the transport plugin.
688  */
689 void transport_complete_task(struct se_task *task, int success)
690 {
691         struct se_cmd *cmd = task->task_se_cmd;
692         struct se_device *dev = cmd->se_dev;
693         unsigned long flags;
694
695         spin_lock_irqsave(&cmd->t_state_lock, flags);
696         task->task_flags &= ~TF_ACTIVE;
697
698         /*
699          * See if any sense data exists, if so set the TASK_SENSE flag.
700          * Also check for any other post completion work that needs to be
701          * done by the plugins.
702          */
703         if (dev && dev->transport->transport_complete) {
704                 if (dev->transport->transport_complete(task) != 0) {
705                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
706                         task->task_flags |= TF_HAS_SENSE;
707                         success = 1;
708                 }
709         }
710
711         /*
712          * See if we are waiting for outstanding struct se_task
713          * to complete for an exception condition
714          */
715         if (task->task_flags & TF_REQUEST_STOP) {
716                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
717                 complete(&task->task_stop_comp);
718                 return;
719         }
720
721         if (!success)
722                 cmd->t_tasks_failed = 1;
723
724         /*
725          * Decrement the outstanding t_task_cdbs_left count.  The last
726          * struct se_task from struct se_cmd will complete itself into the
727          * device queue depending upon int success.
728          */
729         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
730                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
731                 return;
732         }
733
734         if (cmd->t_tasks_failed) {
735                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
736                 INIT_WORK(&cmd->work, target_complete_failure_work);
737         } else {
738                 atomic_set(&cmd->t_transport_complete, 1);
739                 INIT_WORK(&cmd->work, target_complete_ok_work);
740         }
741
742         cmd->t_state = TRANSPORT_COMPLETE;
743         atomic_set(&cmd->t_transport_active, 1);
744         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
745
746         queue_work(target_completion_wq, &cmd->work);
747 }
748 EXPORT_SYMBOL(transport_complete_task);
749
750 /*
751  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
752  * struct se_task list are ready to be added to the active execution list
753  * struct se_device
754
755  * Called with se_dev_t->execute_task_lock called.
756  */
757 static inline int transport_add_task_check_sam_attr(
758         struct se_task *task,
759         struct se_task *task_prev,
760         struct se_device *dev)
761 {
762         /*
763          * No SAM Task attribute emulation enabled, add to tail of
764          * execution queue
765          */
766         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
767                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
768                 return 0;
769         }
770         /*
771          * HEAD_OF_QUEUE attribute for received CDB, which means
772          * the first task that is associated with a struct se_cmd goes to
773          * head of the struct se_device->execute_task_list, and task_prev
774          * after that for each subsequent task
775          */
776         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
777                 list_add(&task->t_execute_list,
778                                 (task_prev != NULL) ?
779                                 &task_prev->t_execute_list :
780                                 &dev->execute_task_list);
781
782                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
783                                 " in execution queue\n",
784                                 task->task_se_cmd->t_task_cdb[0]);
785                 return 1;
786         }
787         /*
788          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
789          * transitioned from Dermant -> Active state, and are added to the end
790          * of the struct se_device->execute_task_list
791          */
792         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793         return 0;
794 }
795
796 /*      __transport_add_task_to_execute_queue():
797  *
798  *      Called with se_dev_t->execute_task_lock called.
799  */
800 static void __transport_add_task_to_execute_queue(
801         struct se_task *task,
802         struct se_task *task_prev,
803         struct se_device *dev)
804 {
805         int head_of_queue;
806
807         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
808         atomic_inc(&dev->execute_tasks);
809
810         if (task->t_state_active)
811                 return;
812         /*
813          * Determine if this task needs to go to HEAD_OF_QUEUE for the
814          * state list as well.  Running with SAM Task Attribute emulation
815          * will always return head_of_queue == 0 here
816          */
817         if (head_of_queue)
818                 list_add(&task->t_state_list, (task_prev) ?
819                                 &task_prev->t_state_list :
820                                 &dev->state_task_list);
821         else
822                 list_add_tail(&task->t_state_list, &dev->state_task_list);
823
824         task->t_state_active = true;
825
826         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
827                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
828                 task, dev);
829 }
830
831 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
832 {
833         struct se_device *dev = cmd->se_dev;
834         struct se_task *task;
835         unsigned long flags;
836
837         spin_lock_irqsave(&cmd->t_state_lock, flags);
838         list_for_each_entry(task, &cmd->t_task_list, t_list) {
839                 spin_lock(&dev->execute_task_lock);
840                 if (!task->t_state_active) {
841                         list_add_tail(&task->t_state_list,
842                                       &dev->state_task_list);
843                         task->t_state_active = true;
844
845                         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
846                                 task->task_se_cmd->se_tfo->get_task_tag(
847                                 task->task_se_cmd), task, dev);
848                 }
849                 spin_unlock(&dev->execute_task_lock);
850         }
851         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
852 }
853
854 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
855 {
856         struct se_device *dev = cmd->se_dev;
857         struct se_task *task, *task_prev = NULL;
858         unsigned long flags;
859
860         spin_lock_irqsave(&dev->execute_task_lock, flags);
861         list_for_each_entry(task, &cmd->t_task_list, t_list) {
862                 if (!list_empty(&task->t_execute_list))
863                         continue;
864                 /*
865                  * __transport_add_task_to_execute_queue() handles the
866                  * SAM Task Attribute emulation if enabled
867                  */
868                 __transport_add_task_to_execute_queue(task, task_prev, dev);
869                 task_prev = task;
870         }
871         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
872 }
873
874 void __transport_remove_task_from_execute_queue(struct se_task *task,
875                 struct se_device *dev)
876 {
877         list_del_init(&task->t_execute_list);
878         atomic_dec(&dev->execute_tasks);
879 }
880
881 static void transport_remove_task_from_execute_queue(
882         struct se_task *task,
883         struct se_device *dev)
884 {
885         unsigned long flags;
886
887         if (WARN_ON(list_empty(&task->t_execute_list)))
888                 return;
889
890         spin_lock_irqsave(&dev->execute_task_lock, flags);
891         __transport_remove_task_from_execute_queue(task, dev);
892         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
893 }
894
895 /*
896  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
897  */
898
899 static void target_qf_do_work(struct work_struct *work)
900 {
901         struct se_device *dev = container_of(work, struct se_device,
902                                         qf_work_queue);
903         LIST_HEAD(qf_cmd_list);
904         struct se_cmd *cmd, *cmd_tmp;
905
906         spin_lock_irq(&dev->qf_cmd_lock);
907         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
908         spin_unlock_irq(&dev->qf_cmd_lock);
909
910         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
911                 list_del(&cmd->se_qf_node);
912                 atomic_dec(&dev->dev_qf_count);
913                 smp_mb__after_atomic_dec();
914
915                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
916                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
917                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
918                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
919                         : "UNKNOWN");
920
921                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
922         }
923 }
924
925 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
926 {
927         switch (cmd->data_direction) {
928         case DMA_NONE:
929                 return "NONE";
930         case DMA_FROM_DEVICE:
931                 return "READ";
932         case DMA_TO_DEVICE:
933                 return "WRITE";
934         case DMA_BIDIRECTIONAL:
935                 return "BIDI";
936         default:
937                 break;
938         }
939
940         return "UNKNOWN";
941 }
942
943 void transport_dump_dev_state(
944         struct se_device *dev,
945         char *b,
946         int *bl)
947 {
948         *bl += sprintf(b + *bl, "Status: ");
949         switch (dev->dev_status) {
950         case TRANSPORT_DEVICE_ACTIVATED:
951                 *bl += sprintf(b + *bl, "ACTIVATED");
952                 break;
953         case TRANSPORT_DEVICE_DEACTIVATED:
954                 *bl += sprintf(b + *bl, "DEACTIVATED");
955                 break;
956         case TRANSPORT_DEVICE_SHUTDOWN:
957                 *bl += sprintf(b + *bl, "SHUTDOWN");
958                 break;
959         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
960         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
961                 *bl += sprintf(b + *bl, "OFFLINE");
962                 break;
963         default:
964                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
965                 break;
966         }
967
968         *bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
969                 atomic_read(&dev->execute_tasks), dev->queue_depth);
970         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
971                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
972         *bl += sprintf(b + *bl, "        ");
973 }
974
975 void transport_dump_vpd_proto_id(
976         struct t10_vpd *vpd,
977         unsigned char *p_buf,
978         int p_buf_len)
979 {
980         unsigned char buf[VPD_TMP_BUF_SIZE];
981         int len;
982
983         memset(buf, 0, VPD_TMP_BUF_SIZE);
984         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
985
986         switch (vpd->protocol_identifier) {
987         case 0x00:
988                 sprintf(buf+len, "Fibre Channel\n");
989                 break;
990         case 0x10:
991                 sprintf(buf+len, "Parallel SCSI\n");
992                 break;
993         case 0x20:
994                 sprintf(buf+len, "SSA\n");
995                 break;
996         case 0x30:
997                 sprintf(buf+len, "IEEE 1394\n");
998                 break;
999         case 0x40:
1000                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1001                                 " Protocol\n");
1002                 break;
1003         case 0x50:
1004                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1005                 break;
1006         case 0x60:
1007                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1008                 break;
1009         case 0x70:
1010                 sprintf(buf+len, "Automation/Drive Interface Transport"
1011                                 " Protocol\n");
1012                 break;
1013         case 0x80:
1014                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1015                 break;
1016         default:
1017                 sprintf(buf+len, "Unknown 0x%02x\n",
1018                                 vpd->protocol_identifier);
1019                 break;
1020         }
1021
1022         if (p_buf)
1023                 strncpy(p_buf, buf, p_buf_len);
1024         else
1025                 pr_debug("%s", buf);
1026 }
1027
1028 void
1029 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1030 {
1031         /*
1032          * Check if the Protocol Identifier Valid (PIV) bit is set..
1033          *
1034          * from spc3r23.pdf section 7.5.1
1035          */
1036          if (page_83[1] & 0x80) {
1037                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1038                 vpd->protocol_identifier_set = 1;
1039                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1040         }
1041 }
1042 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1043
1044 int transport_dump_vpd_assoc(
1045         struct t10_vpd *vpd,
1046         unsigned char *p_buf,
1047         int p_buf_len)
1048 {
1049         unsigned char buf[VPD_TMP_BUF_SIZE];
1050         int ret = 0;
1051         int len;
1052
1053         memset(buf, 0, VPD_TMP_BUF_SIZE);
1054         len = sprintf(buf, "T10 VPD Identifier Association: ");
1055
1056         switch (vpd->association) {
1057         case 0x00:
1058                 sprintf(buf+len, "addressed logical unit\n");
1059                 break;
1060         case 0x10:
1061                 sprintf(buf+len, "target port\n");
1062                 break;
1063         case 0x20:
1064                 sprintf(buf+len, "SCSI target device\n");
1065                 break;
1066         default:
1067                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1068                 ret = -EINVAL;
1069                 break;
1070         }
1071
1072         if (p_buf)
1073                 strncpy(p_buf, buf, p_buf_len);
1074         else
1075                 pr_debug("%s", buf);
1076
1077         return ret;
1078 }
1079
1080 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1081 {
1082         /*
1083          * The VPD identification association..
1084          *
1085          * from spc3r23.pdf Section 7.6.3.1 Table 297
1086          */
1087         vpd->association = (page_83[1] & 0x30);
1088         return transport_dump_vpd_assoc(vpd, NULL, 0);
1089 }
1090 EXPORT_SYMBOL(transport_set_vpd_assoc);
1091
1092 int transport_dump_vpd_ident_type(
1093         struct t10_vpd *vpd,
1094         unsigned char *p_buf,
1095         int p_buf_len)
1096 {
1097         unsigned char buf[VPD_TMP_BUF_SIZE];
1098         int ret = 0;
1099         int len;
1100
1101         memset(buf, 0, VPD_TMP_BUF_SIZE);
1102         len = sprintf(buf, "T10 VPD Identifier Type: ");
1103
1104         switch (vpd->device_identifier_type) {
1105         case 0x00:
1106                 sprintf(buf+len, "Vendor specific\n");
1107                 break;
1108         case 0x01:
1109                 sprintf(buf+len, "T10 Vendor ID based\n");
1110                 break;
1111         case 0x02:
1112                 sprintf(buf+len, "EUI-64 based\n");
1113                 break;
1114         case 0x03:
1115                 sprintf(buf+len, "NAA\n");
1116                 break;
1117         case 0x04:
1118                 sprintf(buf+len, "Relative target port identifier\n");
1119                 break;
1120         case 0x08:
1121                 sprintf(buf+len, "SCSI name string\n");
1122                 break;
1123         default:
1124                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1125                                 vpd->device_identifier_type);
1126                 ret = -EINVAL;
1127                 break;
1128         }
1129
1130         if (p_buf) {
1131                 if (p_buf_len < strlen(buf)+1)
1132                         return -EINVAL;
1133                 strncpy(p_buf, buf, p_buf_len);
1134         } else {
1135                 pr_debug("%s", buf);
1136         }
1137
1138         return ret;
1139 }
1140
1141 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1142 {
1143         /*
1144          * The VPD identifier type..
1145          *
1146          * from spc3r23.pdf Section 7.6.3.1 Table 298
1147          */
1148         vpd->device_identifier_type = (page_83[1] & 0x0f);
1149         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1150 }
1151 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1152
1153 int transport_dump_vpd_ident(
1154         struct t10_vpd *vpd,
1155         unsigned char *p_buf,
1156         int p_buf_len)
1157 {
1158         unsigned char buf[VPD_TMP_BUF_SIZE];
1159         int ret = 0;
1160
1161         memset(buf, 0, VPD_TMP_BUF_SIZE);
1162
1163         switch (vpd->device_identifier_code_set) {
1164         case 0x01: /* Binary */
1165                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1166                         &vpd->device_identifier[0]);
1167                 break;
1168         case 0x02: /* ASCII */
1169                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1170                         &vpd->device_identifier[0]);
1171                 break;
1172         case 0x03: /* UTF-8 */
1173                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1174                         &vpd->device_identifier[0]);
1175                 break;
1176         default:
1177                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1178                         " 0x%02x", vpd->device_identifier_code_set);
1179                 ret = -EINVAL;
1180                 break;
1181         }
1182
1183         if (p_buf)
1184                 strncpy(p_buf, buf, p_buf_len);
1185         else
1186                 pr_debug("%s", buf);
1187
1188         return ret;
1189 }
1190
1191 int
1192 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1193 {
1194         static const char hex_str[] = "0123456789abcdef";
1195         int j = 0, i = 4; /* offset to start of the identifer */
1196
1197         /*
1198          * The VPD Code Set (encoding)
1199          *
1200          * from spc3r23.pdf Section 7.6.3.1 Table 296
1201          */
1202         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1203         switch (vpd->device_identifier_code_set) {
1204         case 0x01: /* Binary */
1205                 vpd->device_identifier[j++] =
1206                                 hex_str[vpd->device_identifier_type];
1207                 while (i < (4 + page_83[3])) {
1208                         vpd->device_identifier[j++] =
1209                                 hex_str[(page_83[i] & 0xf0) >> 4];
1210                         vpd->device_identifier[j++] =
1211                                 hex_str[page_83[i] & 0x0f];
1212                         i++;
1213                 }
1214                 break;
1215         case 0x02: /* ASCII */
1216         case 0x03: /* UTF-8 */
1217                 while (i < (4 + page_83[3]))
1218                         vpd->device_identifier[j++] = page_83[i++];
1219                 break;
1220         default:
1221                 break;
1222         }
1223
1224         return transport_dump_vpd_ident(vpd, NULL, 0);
1225 }
1226 EXPORT_SYMBOL(transport_set_vpd_ident);
1227
1228 static void core_setup_task_attr_emulation(struct se_device *dev)
1229 {
1230         /*
1231          * If this device is from Target_Core_Mod/pSCSI, disable the
1232          * SAM Task Attribute emulation.
1233          *
1234          * This is currently not available in upsream Linux/SCSI Target
1235          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1236          */
1237         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1238                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1239                 return;
1240         }
1241
1242         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1243         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1244                 " device\n", dev->transport->name,
1245                 dev->transport->get_device_rev(dev));
1246 }
1247
1248 static void scsi_dump_inquiry(struct se_device *dev)
1249 {
1250         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1251         int i, device_type;
1252         /*
1253          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1254          */
1255         pr_debug("  Vendor: ");
1256         for (i = 0; i < 8; i++)
1257                 if (wwn->vendor[i] >= 0x20)
1258                         pr_debug("%c", wwn->vendor[i]);
1259                 else
1260                         pr_debug(" ");
1261
1262         pr_debug("  Model: ");
1263         for (i = 0; i < 16; i++)
1264                 if (wwn->model[i] >= 0x20)
1265                         pr_debug("%c", wwn->model[i]);
1266                 else
1267                         pr_debug(" ");
1268
1269         pr_debug("  Revision: ");
1270         for (i = 0; i < 4; i++)
1271                 if (wwn->revision[i] >= 0x20)
1272                         pr_debug("%c", wwn->revision[i]);
1273                 else
1274                         pr_debug(" ");
1275
1276         pr_debug("\n");
1277
1278         device_type = dev->transport->get_device_type(dev);
1279         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1280         pr_debug("                 ANSI SCSI revision: %02x\n",
1281                                 dev->transport->get_device_rev(dev));
1282 }
1283
1284 struct se_device *transport_add_device_to_core_hba(
1285         struct se_hba *hba,
1286         struct se_subsystem_api *transport,
1287         struct se_subsystem_dev *se_dev,
1288         u32 device_flags,
1289         void *transport_dev,
1290         struct se_dev_limits *dev_limits,
1291         const char *inquiry_prod,
1292         const char *inquiry_rev)
1293 {
1294         int force_pt;
1295         struct se_device  *dev;
1296
1297         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1298         if (!dev) {
1299                 pr_err("Unable to allocate memory for se_dev_t\n");
1300                 return NULL;
1301         }
1302
1303         transport_init_queue_obj(&dev->dev_queue_obj);
1304         dev->dev_flags          = device_flags;
1305         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1306         dev->dev_ptr            = transport_dev;
1307         dev->se_hba             = hba;
1308         dev->se_sub_dev         = se_dev;
1309         dev->transport          = transport;
1310         INIT_LIST_HEAD(&dev->dev_list);
1311         INIT_LIST_HEAD(&dev->dev_sep_list);
1312         INIT_LIST_HEAD(&dev->dev_tmr_list);
1313         INIT_LIST_HEAD(&dev->execute_task_list);
1314         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1315         INIT_LIST_HEAD(&dev->state_task_list);
1316         INIT_LIST_HEAD(&dev->qf_cmd_list);
1317         spin_lock_init(&dev->execute_task_lock);
1318         spin_lock_init(&dev->delayed_cmd_lock);
1319         spin_lock_init(&dev->dev_reservation_lock);
1320         spin_lock_init(&dev->dev_status_lock);
1321         spin_lock_init(&dev->se_port_lock);
1322         spin_lock_init(&dev->se_tmr_lock);
1323         spin_lock_init(&dev->qf_cmd_lock);
1324         atomic_set(&dev->dev_ordered_id, 0);
1325
1326         se_dev_set_default_attribs(dev, dev_limits);
1327
1328         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1329         dev->creation_time = get_jiffies_64();
1330         spin_lock_init(&dev->stats_lock);
1331
1332         spin_lock(&hba->device_lock);
1333         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1334         hba->dev_count++;
1335         spin_unlock(&hba->device_lock);
1336         /*
1337          * Setup the SAM Task Attribute emulation for struct se_device
1338          */
1339         core_setup_task_attr_emulation(dev);
1340         /*
1341          * Force PR and ALUA passthrough emulation with internal object use.
1342          */
1343         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1344         /*
1345          * Setup the Reservations infrastructure for struct se_device
1346          */
1347         core_setup_reservations(dev, force_pt);
1348         /*
1349          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1350          */
1351         if (core_setup_alua(dev, force_pt) < 0)
1352                 goto out;
1353
1354         /*
1355          * Startup the struct se_device processing thread
1356          */
1357         dev->process_thread = kthread_run(transport_processing_thread, dev,
1358                                           "LIO_%s", dev->transport->name);
1359         if (IS_ERR(dev->process_thread)) {
1360                 pr_err("Unable to create kthread: LIO_%s\n",
1361                         dev->transport->name);
1362                 goto out;
1363         }
1364         /*
1365          * Setup work_queue for QUEUE_FULL
1366          */
1367         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1368         /*
1369          * Preload the initial INQUIRY const values if we are doing
1370          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1371          * passthrough because this is being provided by the backend LLD.
1372          * This is required so that transport_get_inquiry() copies these
1373          * originals once back into DEV_T10_WWN(dev) for the virtual device
1374          * setup.
1375          */
1376         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1377                 if (!inquiry_prod || !inquiry_rev) {
1378                         pr_err("All non TCM/pSCSI plugins require"
1379                                 " INQUIRY consts\n");
1380                         goto out;
1381                 }
1382
1383                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1384                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1385                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1386         }
1387         scsi_dump_inquiry(dev);
1388
1389         return dev;
1390 out:
1391         kthread_stop(dev->process_thread);
1392
1393         spin_lock(&hba->device_lock);
1394         list_del(&dev->dev_list);
1395         hba->dev_count--;
1396         spin_unlock(&hba->device_lock);
1397
1398         se_release_vpd_for_dev(dev);
1399
1400         kfree(dev);
1401
1402         return NULL;
1403 }
1404 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1405
1406 /*      transport_generic_prepare_cdb():
1407  *
1408  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1409  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1410  *      The point of this is since we are mapping iSCSI LUNs to
1411  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1412  *      devices and HBAs for a loop.
1413  */
1414 static inline void transport_generic_prepare_cdb(
1415         unsigned char *cdb)
1416 {
1417         switch (cdb[0]) {
1418         case READ_10: /* SBC - RDProtect */
1419         case READ_12: /* SBC - RDProtect */
1420         case READ_16: /* SBC - RDProtect */
1421         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1422         case VERIFY: /* SBC - VRProtect */
1423         case VERIFY_16: /* SBC - VRProtect */
1424         case WRITE_VERIFY: /* SBC - VRProtect */
1425         case WRITE_VERIFY_12: /* SBC - VRProtect */
1426                 break;
1427         default:
1428                 cdb[1] &= 0x1f; /* clear logical unit number */
1429                 break;
1430         }
1431 }
1432
1433 static struct se_task *
1434 transport_generic_get_task(struct se_cmd *cmd,
1435                 enum dma_data_direction data_direction)
1436 {
1437         struct se_task *task;
1438         struct se_device *dev = cmd->se_dev;
1439
1440         task = dev->transport->alloc_task(cmd->t_task_cdb);
1441         if (!task) {
1442                 pr_err("Unable to allocate struct se_task\n");
1443                 return NULL;
1444         }
1445
1446         INIT_LIST_HEAD(&task->t_list);
1447         INIT_LIST_HEAD(&task->t_execute_list);
1448         INIT_LIST_HEAD(&task->t_state_list);
1449         init_completion(&task->task_stop_comp);
1450         task->task_se_cmd = cmd;
1451         task->task_data_direction = data_direction;
1452
1453         return task;
1454 }
1455
1456 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1457
1458 /*
1459  * Used by fabric modules containing a local struct se_cmd within their
1460  * fabric dependent per I/O descriptor.
1461  */
1462 void transport_init_se_cmd(
1463         struct se_cmd *cmd,
1464         struct target_core_fabric_ops *tfo,
1465         struct se_session *se_sess,
1466         u32 data_length,
1467         int data_direction,
1468         int task_attr,
1469         unsigned char *sense_buffer)
1470 {
1471         INIT_LIST_HEAD(&cmd->se_lun_node);
1472         INIT_LIST_HEAD(&cmd->se_delayed_node);
1473         INIT_LIST_HEAD(&cmd->se_qf_node);
1474         INIT_LIST_HEAD(&cmd->se_queue_node);
1475         INIT_LIST_HEAD(&cmd->se_cmd_list);
1476         INIT_LIST_HEAD(&cmd->t_task_list);
1477         init_completion(&cmd->transport_lun_fe_stop_comp);
1478         init_completion(&cmd->transport_lun_stop_comp);
1479         init_completion(&cmd->t_transport_stop_comp);
1480         init_completion(&cmd->cmd_wait_comp);
1481         spin_lock_init(&cmd->t_state_lock);
1482         atomic_set(&cmd->transport_dev_active, 1);
1483
1484         cmd->se_tfo = tfo;
1485         cmd->se_sess = se_sess;
1486         cmd->data_length = data_length;
1487         cmd->data_direction = data_direction;
1488         cmd->sam_task_attr = task_attr;
1489         cmd->sense_buffer = sense_buffer;
1490 }
1491 EXPORT_SYMBOL(transport_init_se_cmd);
1492
1493 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1494 {
1495         /*
1496          * Check if SAM Task Attribute emulation is enabled for this
1497          * struct se_device storage object
1498          */
1499         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1500                 return 0;
1501
1502         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1503                 pr_debug("SAM Task Attribute ACA"
1504                         " emulation is not supported\n");
1505                 return -EINVAL;
1506         }
1507         /*
1508          * Used to determine when ORDERED commands should go from
1509          * Dormant to Active status.
1510          */
1511         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1512         smp_mb__after_atomic_inc();
1513         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1514                         cmd->se_ordered_id, cmd->sam_task_attr,
1515                         cmd->se_dev->transport->name);
1516         return 0;
1517 }
1518
1519 /*      transport_generic_allocate_tasks():
1520  *
1521  *      Called from fabric RX Thread.
1522  */
1523 int transport_generic_allocate_tasks(
1524         struct se_cmd *cmd,
1525         unsigned char *cdb)
1526 {
1527         int ret;
1528
1529         transport_generic_prepare_cdb(cdb);
1530         /*
1531          * Ensure that the received CDB is less than the max (252 + 8) bytes
1532          * for VARIABLE_LENGTH_CMD
1533          */
1534         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1535                 pr_err("Received SCSI CDB with command_size: %d that"
1536                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1537                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1538                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1539                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1540                 return -EINVAL;
1541         }
1542         /*
1543          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1544          * allocate the additional extended CDB buffer now..  Otherwise
1545          * setup the pointer from __t_task_cdb to t_task_cdb.
1546          */
1547         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1548                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1549                                                 GFP_KERNEL);
1550                 if (!cmd->t_task_cdb) {
1551                         pr_err("Unable to allocate cmd->t_task_cdb"
1552                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1553                                 scsi_command_size(cdb),
1554                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1555                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1556                         cmd->scsi_sense_reason =
1557                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1558                         return -ENOMEM;
1559                 }
1560         } else
1561                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1562         /*
1563          * Copy the original CDB into cmd->
1564          */
1565         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1566         /*
1567          * Setup the received CDB based on SCSI defined opcodes and
1568          * perform unit attention, persistent reservations and ALUA
1569          * checks for virtual device backends.  The cmd->t_task_cdb
1570          * pointer is expected to be setup before we reach this point.
1571          */
1572         ret = transport_generic_cmd_sequencer(cmd, cdb);
1573         if (ret < 0)
1574                 return ret;
1575         /*
1576          * Check for SAM Task Attribute Emulation
1577          */
1578         if (transport_check_alloc_task_attr(cmd) < 0) {
1579                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1580                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1581                 return -EINVAL;
1582         }
1583         spin_lock(&cmd->se_lun->lun_sep_lock);
1584         if (cmd->se_lun->lun_sep)
1585                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1586         spin_unlock(&cmd->se_lun->lun_sep_lock);
1587         return 0;
1588 }
1589 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1590
1591 /*
1592  * Used by fabric module frontends to queue tasks directly.
1593  * Many only be used from process context only
1594  */
1595 int transport_handle_cdb_direct(
1596         struct se_cmd *cmd)
1597 {
1598         int ret;
1599
1600         if (!cmd->se_lun) {
1601                 dump_stack();
1602                 pr_err("cmd->se_lun is NULL\n");
1603                 return -EINVAL;
1604         }
1605         if (in_interrupt()) {
1606                 dump_stack();
1607                 pr_err("transport_generic_handle_cdb cannot be called"
1608                                 " from interrupt context\n");
1609                 return -EINVAL;
1610         }
1611         /*
1612          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1613          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1614          * in existing usage to ensure that outstanding descriptors are handled
1615          * correctly during shutdown via transport_wait_for_tasks()
1616          *
1617          * Also, we don't take cmd->t_state_lock here as we only expect
1618          * this to be called for initial descriptor submission.
1619          */
1620         cmd->t_state = TRANSPORT_NEW_CMD;
1621         atomic_set(&cmd->t_transport_active, 1);
1622         /*
1623          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1624          * so follow TRANSPORT_NEW_CMD processing thread context usage
1625          * and call transport_generic_request_failure() if necessary..
1626          */
1627         ret = transport_generic_new_cmd(cmd);
1628         if (ret < 0)
1629                 transport_generic_request_failure(cmd);
1630
1631         return 0;
1632 }
1633 EXPORT_SYMBOL(transport_handle_cdb_direct);
1634
1635 /**
1636  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1637  *
1638  * @se_cmd: command descriptor to submit
1639  * @se_sess: associated se_sess for endpoint
1640  * @cdb: pointer to SCSI CDB
1641  * @sense: pointer to SCSI sense buffer
1642  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1643  * @data_length: fabric expected data transfer length
1644  * @task_addr: SAM task attribute
1645  * @data_dir: DMA data direction
1646  * @flags: flags for command submission from target_sc_flags_tables
1647  *
1648  * This may only be called from process context, and also currently
1649  * assumes internal allocation of fabric payload buffer by target-core.
1650  **/
1651 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1652                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1653                 u32 data_length, int task_attr, int data_dir, int flags)
1654 {
1655         struct se_portal_group *se_tpg;
1656         int rc;
1657
1658         se_tpg = se_sess->se_tpg;
1659         BUG_ON(!se_tpg);
1660         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1661         BUG_ON(in_interrupt());
1662         /*
1663          * Initialize se_cmd for target operation.  From this point
1664          * exceptions are handled by sending exception status via
1665          * target_core_fabric_ops->queue_status() callback
1666          */
1667         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1668                                 data_length, data_dir, task_attr, sense);
1669         /*
1670          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1671          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1672          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1673          * kref_put() to happen during fabric packet acknowledgement.
1674          */
1675         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1676         /*
1677          * Signal bidirectional data payloads to target-core
1678          */
1679         if (flags & TARGET_SCF_BIDI_OP)
1680                 se_cmd->se_cmd_flags |= SCF_BIDI;
1681         /*
1682          * Locate se_lun pointer and attach it to struct se_cmd
1683          */
1684         if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0)
1685                 goto out_check_cond;
1686         /*
1687          * Sanitize CDBs via transport_generic_cmd_sequencer() and
1688          * allocate the necessary tasks to complete the received CDB+data
1689          */
1690         rc = transport_generic_allocate_tasks(se_cmd, cdb);
1691         if (rc != 0)
1692                 goto out_check_cond;
1693         /*
1694          * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1695          * for immediate execution of READs, otherwise wait for
1696          * transport_generic_handle_data() to be called for WRITEs
1697          * when fabric has filled the incoming buffer.
1698          */
1699         transport_handle_cdb_direct(se_cmd);
1700         return 0;
1701
1702 out_check_cond:
1703         transport_send_check_condition_and_sense(se_cmd,
1704                                 se_cmd->scsi_sense_reason, 0);
1705         return 0;
1706 }
1707 EXPORT_SYMBOL(target_submit_cmd);
1708
1709 /*
1710  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1711  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1712  * complete setup in TCM process context w/ TFO->new_cmd_map().
1713  */
1714 int transport_generic_handle_cdb_map(
1715         struct se_cmd *cmd)
1716 {
1717         if (!cmd->se_lun) {
1718                 dump_stack();
1719                 pr_err("cmd->se_lun is NULL\n");
1720                 return -EINVAL;
1721         }
1722
1723         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1724         return 0;
1725 }
1726 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1727
1728 /*      transport_generic_handle_data():
1729  *
1730  *
1731  */
1732 int transport_generic_handle_data(
1733         struct se_cmd *cmd)
1734 {
1735         /*
1736          * For the software fabric case, then we assume the nexus is being
1737          * failed/shutdown when signals are pending from the kthread context
1738          * caller, so we return a failure.  For the HW target mode case running
1739          * in interrupt code, the signal_pending() check is skipped.
1740          */
1741         if (!in_interrupt() && signal_pending(current))
1742                 return -EPERM;
1743         /*
1744          * If the received CDB has aleady been ABORTED by the generic
1745          * target engine, we now call transport_check_aborted_status()
1746          * to queue any delated TASK_ABORTED status for the received CDB to the
1747          * fabric module as we are expecting no further incoming DATA OUT
1748          * sequences at this point.
1749          */
1750         if (transport_check_aborted_status(cmd, 1) != 0)
1751                 return 0;
1752
1753         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1754         return 0;
1755 }
1756 EXPORT_SYMBOL(transport_generic_handle_data);
1757
1758 /*      transport_generic_handle_tmr():
1759  *
1760  *
1761  */
1762 int transport_generic_handle_tmr(
1763         struct se_cmd *cmd)
1764 {
1765         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1766         return 0;
1767 }
1768 EXPORT_SYMBOL(transport_generic_handle_tmr);
1769
1770 /*
1771  * If the task is active, request it to be stopped and sleep until it
1772  * has completed.
1773  */
1774 bool target_stop_task(struct se_task *task, unsigned long *flags)
1775 {
1776         struct se_cmd *cmd = task->task_se_cmd;
1777         bool was_active = false;
1778
1779         if (task->task_flags & TF_ACTIVE) {
1780                 task->task_flags |= TF_REQUEST_STOP;
1781                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1782
1783                 pr_debug("Task %p waiting to complete\n", task);
1784                 wait_for_completion(&task->task_stop_comp);
1785                 pr_debug("Task %p stopped successfully\n", task);
1786
1787                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1788                 atomic_dec(&cmd->t_task_cdbs_left);
1789                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1790                 was_active = true;
1791         }
1792
1793         return was_active;
1794 }
1795
1796 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1797 {
1798         struct se_task *task, *task_tmp;
1799         unsigned long flags;
1800         int ret = 0;
1801
1802         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1803                 cmd->se_tfo->get_task_tag(cmd));
1804
1805         /*
1806          * No tasks remain in the execution queue
1807          */
1808         spin_lock_irqsave(&cmd->t_state_lock, flags);
1809         list_for_each_entry_safe(task, task_tmp,
1810                                 &cmd->t_task_list, t_list) {
1811                 pr_debug("Processing task %p\n", task);
1812                 /*
1813                  * If the struct se_task has not been sent and is not active,
1814                  * remove the struct se_task from the execution queue.
1815                  */
1816                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1817                         spin_unlock_irqrestore(&cmd->t_state_lock,
1818                                         flags);
1819                         transport_remove_task_from_execute_queue(task,
1820                                         cmd->se_dev);
1821
1822                         pr_debug("Task %p removed from execute queue\n", task);
1823                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1824                         continue;
1825                 }
1826
1827                 if (!target_stop_task(task, &flags)) {
1828                         pr_debug("Task %p - did nothing\n", task);
1829                         ret++;
1830                 }
1831         }
1832         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1833
1834         return ret;
1835 }
1836
1837 /*
1838  * Handle SAM-esque emulation for generic transport request failures.
1839  */
1840 static void transport_generic_request_failure(struct se_cmd *cmd)
1841 {
1842         int ret = 0;
1843
1844         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1845                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1846                 cmd->t_task_cdb[0]);
1847         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1848                 cmd->se_tfo->get_cmd_state(cmd),
1849                 cmd->t_state, cmd->scsi_sense_reason);
1850         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1851                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1852                 " t_transport_active: %d t_transport_stop: %d"
1853                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1854                 atomic_read(&cmd->t_task_cdbs_left),
1855                 atomic_read(&cmd->t_task_cdbs_sent),
1856                 atomic_read(&cmd->t_task_cdbs_ex_left),
1857                 atomic_read(&cmd->t_transport_active),
1858                 atomic_read(&cmd->t_transport_stop),
1859                 atomic_read(&cmd->t_transport_sent));
1860
1861         /*
1862          * For SAM Task Attribute emulation for failed struct se_cmd
1863          */
1864         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1865                 transport_complete_task_attr(cmd);
1866
1867         switch (cmd->scsi_sense_reason) {
1868         case TCM_NON_EXISTENT_LUN:
1869         case TCM_UNSUPPORTED_SCSI_OPCODE:
1870         case TCM_INVALID_CDB_FIELD:
1871         case TCM_INVALID_PARAMETER_LIST:
1872         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1873         case TCM_UNKNOWN_MODE_PAGE:
1874         case TCM_WRITE_PROTECTED:
1875         case TCM_CHECK_CONDITION_ABORT_CMD:
1876         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1877         case TCM_CHECK_CONDITION_NOT_READY:
1878                 break;
1879         case TCM_RESERVATION_CONFLICT:
1880                 /*
1881                  * No SENSE Data payload for this case, set SCSI Status
1882                  * and queue the response to $FABRIC_MOD.
1883                  *
1884                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1885                  */
1886                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1887                 /*
1888                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1889                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1890                  * CONFLICT STATUS.
1891                  *
1892                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1893                  */
1894                 if (cmd->se_sess &&
1895                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1896                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1897                                 cmd->orig_fe_lun, 0x2C,
1898                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1899
1900                 ret = cmd->se_tfo->queue_status(cmd);
1901                 if (ret == -EAGAIN || ret == -ENOMEM)
1902                         goto queue_full;
1903                 goto check_stop;
1904         default:
1905                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1906                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1907                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1908                 break;
1909         }
1910         /*
1911          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1912          * make the call to transport_send_check_condition_and_sense()
1913          * directly.  Otherwise expect the fabric to make the call to
1914          * transport_send_check_condition_and_sense() after handling
1915          * possible unsoliticied write data payloads.
1916          */
1917         ret = transport_send_check_condition_and_sense(cmd,
1918                         cmd->scsi_sense_reason, 0);
1919         if (ret == -EAGAIN || ret == -ENOMEM)
1920                 goto queue_full;
1921
1922 check_stop:
1923         transport_lun_remove_cmd(cmd);
1924         if (!transport_cmd_check_stop_to_fabric(cmd))
1925                 ;
1926         return;
1927
1928 queue_full:
1929         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1930         transport_handle_queue_full(cmd, cmd->se_dev);
1931 }
1932
1933 static inline u32 transport_lba_21(unsigned char *cdb)
1934 {
1935         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1936 }
1937
1938 static inline u32 transport_lba_32(unsigned char *cdb)
1939 {
1940         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1941 }
1942
1943 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1944 {
1945         unsigned int __v1, __v2;
1946
1947         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1948         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1949
1950         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1951 }
1952
1953 /*
1954  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1955  */
1956 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1957 {
1958         unsigned int __v1, __v2;
1959
1960         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1961         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1962
1963         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1964 }
1965
1966 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1967 {
1968         unsigned long flags;
1969
1970         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1971         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1972         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1973 }
1974
1975 /*
1976  * Called from Fabric Module context from transport_execute_tasks()
1977  *
1978  * The return of this function determins if the tasks from struct se_cmd
1979  * get added to the execution queue in transport_execute_tasks(),
1980  * or are added to the delayed or ordered lists here.
1981  */
1982 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1983 {
1984         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1985                 return 1;
1986         /*
1987          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1988          * to allow the passed struct se_cmd list of tasks to the front of the list.
1989          */
1990          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1991                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
1992                         " 0x%02x, se_ordered_id: %u\n",
1993                         cmd->t_task_cdb[0],
1994                         cmd->se_ordered_id);
1995                 return 1;
1996         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1997                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
1998                 smp_mb__after_atomic_inc();
1999
2000                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2001                                 " list, se_ordered_id: %u\n",
2002                                 cmd->t_task_cdb[0],
2003                                 cmd->se_ordered_id);
2004                 /*
2005                  * Add ORDERED command to tail of execution queue if
2006                  * no other older commands exist that need to be
2007                  * completed first.
2008                  */
2009                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2010                         return 1;
2011         } else {
2012                 /*
2013                  * For SIMPLE and UNTAGGED Task Attribute commands
2014                  */
2015                 atomic_inc(&cmd->se_dev->simple_cmds);
2016                 smp_mb__after_atomic_inc();
2017         }
2018         /*
2019          * Otherwise if one or more outstanding ORDERED task attribute exist,
2020          * add the dormant task(s) built for the passed struct se_cmd to the
2021          * execution queue and become in Active state for this struct se_device.
2022          */
2023         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2024                 /*
2025                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2026                  * will be drained upon completion of HEAD_OF_QUEUE task.
2027                  */
2028                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2029                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2030                 list_add_tail(&cmd->se_delayed_node,
2031                                 &cmd->se_dev->delayed_cmd_list);
2032                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2033
2034                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2035                         " delayed CMD list, se_ordered_id: %u\n",
2036                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2037                         cmd->se_ordered_id);
2038                 /*
2039                  * Return zero to let transport_execute_tasks() know
2040                  * not to add the delayed tasks to the execution list.
2041                  */
2042                 return 0;
2043         }
2044         /*
2045          * Otherwise, no ORDERED task attributes exist..
2046          */
2047         return 1;
2048 }
2049
2050 /*
2051  * Called from fabric module context in transport_generic_new_cmd() and
2052  * transport_generic_process_write()
2053  */
2054 static int transport_execute_tasks(struct se_cmd *cmd)
2055 {
2056         int add_tasks;
2057         struct se_device *se_dev = cmd->se_dev;
2058
2059         if (se_dev_check_online(cmd->se_dev) != 0) {
2060                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2061                 transport_generic_request_failure(cmd);
2062                 return 0;
2063         }
2064
2065         /*
2066          * Call transport_cmd_check_stop() to see if a fabric exception
2067          * has occurred that prevents execution.
2068          */
2069         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2070                 /*
2071                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2072                  * attribute for the tasks of the received struct se_cmd CDB
2073                  */
2074                 add_tasks = transport_execute_task_attr(cmd);
2075                 if (!add_tasks)
2076                         goto execute_tasks;
2077                 /*
2078                  * This calls transport_add_tasks_from_cmd() to handle
2079                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2080                  * (if enabled) in __transport_add_task_to_execute_queue() and
2081                  * transport_add_task_check_sam_attr().
2082                  */
2083                 transport_add_tasks_from_cmd(cmd);
2084         }
2085         /*
2086          * Kick the execution queue for the cmd associated struct se_device
2087          * storage object.
2088          */
2089 execute_tasks:
2090         __transport_execute_tasks(se_dev);
2091         return 0;
2092 }
2093
2094 /*
2095  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2096  * from struct se_device->execute_task_list and
2097  *
2098  * Called from transport_processing_thread()
2099  */
2100 static int __transport_execute_tasks(struct se_device *dev)
2101 {
2102         int error;
2103         struct se_cmd *cmd = NULL;
2104         struct se_task *task = NULL;
2105         unsigned long flags;
2106
2107 check_depth:
2108         spin_lock_irq(&dev->execute_task_lock);
2109         if (list_empty(&dev->execute_task_list)) {
2110                 spin_unlock_irq(&dev->execute_task_lock);
2111                 return 0;
2112         }
2113         task = list_first_entry(&dev->execute_task_list,
2114                                 struct se_task, t_execute_list);
2115         __transport_remove_task_from_execute_queue(task, dev);
2116         spin_unlock_irq(&dev->execute_task_lock);
2117
2118         cmd = task->task_se_cmd;
2119         spin_lock_irqsave(&cmd->t_state_lock, flags);
2120         task->task_flags |= (TF_ACTIVE | TF_SENT);
2121         atomic_inc(&cmd->t_task_cdbs_sent);
2122
2123         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2124             cmd->t_task_list_num)
2125                 atomic_set(&cmd->t_transport_sent, 1);
2126
2127         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2128
2129         if (cmd->execute_task)
2130                 error = cmd->execute_task(task);
2131         else
2132                 error = dev->transport->do_task(task);
2133         if (error != 0) {
2134                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2135                 task->task_flags &= ~TF_ACTIVE;
2136                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2137                 atomic_set(&cmd->t_transport_sent, 0);
2138                 transport_stop_tasks_for_cmd(cmd);
2139                 transport_generic_request_failure(cmd);
2140         }
2141
2142         goto check_depth;
2143
2144         return 0;
2145 }
2146
2147 static inline u32 transport_get_sectors_6(
2148         unsigned char *cdb,
2149         struct se_cmd *cmd,
2150         int *ret)
2151 {
2152         struct se_device *dev = cmd->se_dev;
2153
2154         /*
2155          * Assume TYPE_DISK for non struct se_device objects.
2156          * Use 8-bit sector value.
2157          */
2158         if (!dev)
2159                 goto type_disk;
2160
2161         /*
2162          * Use 24-bit allocation length for TYPE_TAPE.
2163          */
2164         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2165                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2166
2167         /*
2168          * Everything else assume TYPE_DISK Sector CDB location.
2169          * Use 8-bit sector value.  SBC-3 says:
2170          *
2171          *   A TRANSFER LENGTH field set to zero specifies that 256
2172          *   logical blocks shall be written.  Any other value
2173          *   specifies the number of logical blocks that shall be
2174          *   written.
2175          */
2176 type_disk:
2177         return cdb[4] ? : 256;
2178 }
2179
2180 static inline u32 transport_get_sectors_10(
2181         unsigned char *cdb,
2182         struct se_cmd *cmd,
2183         int *ret)
2184 {
2185         struct se_device *dev = cmd->se_dev;
2186
2187         /*
2188          * Assume TYPE_DISK for non struct se_device objects.
2189          * Use 16-bit sector value.
2190          */
2191         if (!dev)
2192                 goto type_disk;
2193
2194         /*
2195          * XXX_10 is not defined in SSC, throw an exception
2196          */
2197         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2198                 *ret = -EINVAL;
2199                 return 0;
2200         }
2201
2202         /*
2203          * Everything else assume TYPE_DISK Sector CDB location.
2204          * Use 16-bit sector value.
2205          */
2206 type_disk:
2207         return (u32)(cdb[7] << 8) + cdb[8];
2208 }
2209
2210 static inline u32 transport_get_sectors_12(
2211         unsigned char *cdb,
2212         struct se_cmd *cmd,
2213         int *ret)
2214 {
2215         struct se_device *dev = cmd->se_dev;
2216
2217         /*
2218          * Assume TYPE_DISK for non struct se_device objects.
2219          * Use 32-bit sector value.
2220          */
2221         if (!dev)
2222                 goto type_disk;
2223
2224         /*
2225          * XXX_12 is not defined in SSC, throw an exception
2226          */
2227         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2228                 *ret = -EINVAL;
2229                 return 0;
2230         }
2231
2232         /*
2233          * Everything else assume TYPE_DISK Sector CDB location.
2234          * Use 32-bit sector value.
2235          */
2236 type_disk:
2237         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2238 }
2239
2240 static inline u32 transport_get_sectors_16(
2241         unsigned char *cdb,
2242         struct se_cmd *cmd,
2243         int *ret)
2244 {
2245         struct se_device *dev = cmd->se_dev;
2246
2247         /*
2248          * Assume TYPE_DISK for non struct se_device objects.
2249          * Use 32-bit sector value.
2250          */
2251         if (!dev)
2252                 goto type_disk;
2253
2254         /*
2255          * Use 24-bit allocation length for TYPE_TAPE.
2256          */
2257         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2258                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2259
2260 type_disk:
2261         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2262                     (cdb[12] << 8) + cdb[13];
2263 }
2264
2265 /*
2266  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2267  */
2268 static inline u32 transport_get_sectors_32(
2269         unsigned char *cdb,
2270         struct se_cmd *cmd,
2271         int *ret)
2272 {
2273         /*
2274          * Assume TYPE_DISK for non struct se_device objects.
2275          * Use 32-bit sector value.
2276          */
2277         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2278                     (cdb[30] << 8) + cdb[31];
2279
2280 }
2281
2282 static inline u32 transport_get_size(
2283         u32 sectors,
2284         unsigned char *cdb,
2285         struct se_cmd *cmd)
2286 {
2287         struct se_device *dev = cmd->se_dev;
2288
2289         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2290                 if (cdb[1] & 1) { /* sectors */
2291                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2292                 } else /* bytes */
2293                         return sectors;
2294         }
2295 #if 0
2296         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2297                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2298                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2299                         dev->transport->name);
2300 #endif
2301         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2302 }
2303
2304 static void transport_xor_callback(struct se_cmd *cmd)
2305 {
2306         unsigned char *buf, *addr;
2307         struct scatterlist *sg;
2308         unsigned int offset;
2309         int i;
2310         int count;
2311         /*
2312          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2313          *
2314          * 1) read the specified logical block(s);
2315          * 2) transfer logical blocks from the data-out buffer;
2316          * 3) XOR the logical blocks transferred from the data-out buffer with
2317          *    the logical blocks read, storing the resulting XOR data in a buffer;
2318          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2319          *    blocks transferred from the data-out buffer; and
2320          * 5) transfer the resulting XOR data to the data-in buffer.
2321          */
2322         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2323         if (!buf) {
2324                 pr_err("Unable to allocate xor_callback buf\n");
2325                 return;
2326         }
2327         /*
2328          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2329          * into the locally allocated *buf
2330          */
2331         sg_copy_to_buffer(cmd->t_data_sg,
2332                           cmd->t_data_nents,
2333                           buf,
2334                           cmd->data_length);
2335
2336         /*
2337          * Now perform the XOR against the BIDI read memory located at
2338          * cmd->t_mem_bidi_list
2339          */
2340
2341         offset = 0;
2342         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2343                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2344                 if (!addr)
2345                         goto out;
2346
2347                 for (i = 0; i < sg->length; i++)
2348                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2349
2350                 offset += sg->length;
2351                 kunmap_atomic(addr, KM_USER0);
2352         }
2353
2354 out:
2355         kfree(buf);
2356 }
2357
2358 /*
2359  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2360  */
2361 static int transport_get_sense_data(struct se_cmd *cmd)
2362 {
2363         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2364         struct se_device *dev = cmd->se_dev;
2365         struct se_task *task = NULL, *task_tmp;
2366         unsigned long flags;
2367         u32 offset = 0;
2368
2369         WARN_ON(!cmd->se_lun);
2370
2371         if (!dev)
2372                 return 0;
2373
2374         spin_lock_irqsave(&cmd->t_state_lock, flags);
2375         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2376                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2377                 return 0;
2378         }
2379
2380         list_for_each_entry_safe(task, task_tmp,
2381                                 &cmd->t_task_list, t_list) {
2382                 if (!(task->task_flags & TF_HAS_SENSE))
2383                         continue;
2384
2385                 if (!dev->transport->get_sense_buffer) {
2386                         pr_err("dev->transport->get_sense_buffer"
2387                                         " is NULL\n");
2388                         continue;
2389                 }
2390
2391                 sense_buffer = dev->transport->get_sense_buffer(task);
2392                 if (!sense_buffer) {
2393                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2394                                 " sense buffer for task with sense\n",
2395                                 cmd->se_tfo->get_task_tag(cmd), task);
2396                         continue;
2397                 }
2398                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2399
2400                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2401                                 TRANSPORT_SENSE_BUFFER);
2402
2403                 memcpy(&buffer[offset], sense_buffer,
2404                                 TRANSPORT_SENSE_BUFFER);
2405                 cmd->scsi_status = task->task_scsi_status;
2406                 /* Automatically padded */
2407                 cmd->scsi_sense_length =
2408                                 (TRANSPORT_SENSE_BUFFER + offset);
2409
2410                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2411                                 " and sense\n",
2412                         dev->se_hba->hba_id, dev->transport->name,
2413                                 cmd->scsi_status);
2414                 return 0;
2415         }
2416         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2417
2418         return -1;
2419 }
2420
2421 static inline long long transport_dev_end_lba(struct se_device *dev)
2422 {
2423         return dev->transport->get_blocks(dev) + 1;
2424 }
2425
2426 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2427 {
2428         struct se_device *dev = cmd->se_dev;
2429         u32 sectors;
2430
2431         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2432                 return 0;
2433
2434         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2435
2436         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2437                 pr_err("LBA: %llu Sectors: %u exceeds"
2438                         " transport_dev_end_lba(): %llu\n",
2439                         cmd->t_task_lba, sectors,
2440                         transport_dev_end_lba(dev));
2441                 return -EINVAL;
2442         }
2443
2444         return 0;
2445 }
2446
2447 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2448 {
2449         /*
2450          * Determine if the received WRITE_SAME is used to for direct
2451          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2452          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2453          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2454          */
2455         int passthrough = (dev->transport->transport_type ==
2456                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2457
2458         if (!passthrough) {
2459                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2460                         pr_err("WRITE_SAME PBDATA and LBDATA"
2461                                 " bits not supported for Block Discard"
2462                                 " Emulation\n");
2463                         return -ENOSYS;
2464                 }
2465                 /*
2466                  * Currently for the emulated case we only accept
2467                  * tpws with the UNMAP=1 bit set.
2468                  */
2469                 if (!(flags[0] & 0x08)) {
2470                         pr_err("WRITE_SAME w/o UNMAP bit not"
2471                                 " supported for Block Discard Emulation\n");
2472                         return -ENOSYS;
2473                 }
2474         }
2475
2476         return 0;
2477 }
2478
2479 /*      transport_generic_cmd_sequencer():
2480  *
2481  *      Generic Command Sequencer that should work for most DAS transport
2482  *      drivers.
2483  *
2484  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2485  *      RX Thread.
2486  *
2487  *      FIXME: Need to support other SCSI OPCODES where as well.
2488  */
2489 static int transport_generic_cmd_sequencer(
2490         struct se_cmd *cmd,
2491         unsigned char *cdb)
2492 {
2493         struct se_device *dev = cmd->se_dev;
2494         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2495         int ret = 0, sector_ret = 0, passthrough;
2496         u32 sectors = 0, size = 0, pr_reg_type = 0;
2497         u16 service_action;
2498         u8 alua_ascq = 0;
2499         /*
2500          * Check for an existing UNIT ATTENTION condition
2501          */
2502         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2503                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2504                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2505                 return -EINVAL;
2506         }
2507         /*
2508          * Check status of Asymmetric Logical Unit Assignment port
2509          */
2510         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2511         if (ret != 0) {
2512                 /*
2513                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2514                  * The ALUA additional sense code qualifier (ASCQ) is determined
2515                  * by the ALUA primary or secondary access state..
2516                  */
2517                 if (ret > 0) {
2518 #if 0
2519                         pr_debug("[%s]: ALUA TG Port not available,"
2520                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2521                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2522 #endif
2523                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2524                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2525                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2526                         return -EINVAL;
2527                 }
2528                 goto out_invalid_cdb_field;
2529         }
2530         /*
2531          * Check status for SPC-3 Persistent Reservations
2532          */
2533         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2534                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2535                                         cmd, cdb, pr_reg_type) != 0) {
2536                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2537                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2538                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2539                         return -EBUSY;
2540                 }
2541                 /*
2542                  * This means the CDB is allowed for the SCSI Initiator port
2543                  * when said port is *NOT* holding the legacy SPC-2 or
2544                  * SPC-3 Persistent Reservation.
2545                  */
2546         }
2547
2548         /*
2549          * If we operate in passthrough mode we skip most CDB emulation and
2550          * instead hand the commands down to the physical SCSI device.
2551          */
2552         passthrough =
2553                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2554
2555         switch (cdb[0]) {
2556         case READ_6:
2557                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2558                 if (sector_ret)
2559                         goto out_unsupported_cdb;
2560                 size = transport_get_size(sectors, cdb, cmd);
2561                 cmd->t_task_lba = transport_lba_21(cdb);
2562                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2563                 break;
2564         case READ_10:
2565                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2566                 if (sector_ret)
2567                         goto out_unsupported_cdb;
2568                 size = transport_get_size(sectors, cdb, cmd);
2569                 cmd->t_task_lba = transport_lba_32(cdb);
2570                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2571                 break;
2572         case READ_12:
2573                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2574                 if (sector_ret)
2575                         goto out_unsupported_cdb;
2576                 size = transport_get_size(sectors, cdb, cmd);
2577                 cmd->t_task_lba = transport_lba_32(cdb);
2578                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2579                 break;
2580         case READ_16:
2581                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2582                 if (sector_ret)
2583                         goto out_unsupported_cdb;
2584                 size = transport_get_size(sectors, cdb, cmd);
2585                 cmd->t_task_lba = transport_lba_64(cdb);
2586                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2587                 break;
2588         case WRITE_6:
2589                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2590                 if (sector_ret)
2591                         goto out_unsupported_cdb;
2592                 size = transport_get_size(sectors, cdb, cmd);
2593                 cmd->t_task_lba = transport_lba_21(cdb);
2594                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2595                 break;
2596         case WRITE_10:
2597                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2598                 if (sector_ret)
2599                         goto out_unsupported_cdb;
2600                 size = transport_get_size(sectors, cdb, cmd);
2601                 cmd->t_task_lba = transport_lba_32(cdb);
2602                 if (cdb[1] & 0x8)
2603                         cmd->se_cmd_flags |= SCF_FUA;
2604                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2605                 break;
2606         case WRITE_12:
2607                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2608                 if (sector_ret)
2609                         goto out_unsupported_cdb;
2610                 size = transport_get_size(sectors, cdb, cmd);
2611                 cmd->t_task_lba = transport_lba_32(cdb);
2612                 if (cdb[1] & 0x8)
2613                         cmd->se_cmd_flags |= SCF_FUA;
2614                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2615                 break;
2616         case WRITE_16:
2617                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2618                 if (sector_ret)
2619                         goto out_unsupported_cdb;
2620                 size = transport_get_size(sectors, cdb, cmd);
2621                 cmd->t_task_lba = transport_lba_64(cdb);
2622                 if (cdb[1] & 0x8)
2623                         cmd->se_cmd_flags |= SCF_FUA;
2624                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2625                 break;
2626         case XDWRITEREAD_10:
2627                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2628                     !(cmd->se_cmd_flags & SCF_BIDI))
2629                         goto out_invalid_cdb_field;
2630                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2631                 if (sector_ret)
2632                         goto out_unsupported_cdb;
2633                 size = transport_get_size(sectors, cdb, cmd);
2634                 cmd->t_task_lba = transport_lba_32(cdb);
2635                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2636
2637                 /*
2638                  * Do now allow BIDI commands for passthrough mode.
2639                  */
2640                 if (passthrough)
2641                         goto out_unsupported_cdb;
2642
2643                 /*
2644                  * Setup BIDI XOR callback to be run after I/O completion.
2645                  */
2646                 cmd->transport_complete_callback = &transport_xor_callback;
2647                 if (cdb[1] & 0x8)
2648                         cmd->se_cmd_flags |= SCF_FUA;
2649                 break;
2650         case VARIABLE_LENGTH_CMD:
2651                 service_action = get_unaligned_be16(&cdb[8]);
2652                 switch (service_action) {
2653                 case XDWRITEREAD_32:
2654                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2655                         if (sector_ret)
2656                                 goto out_unsupported_cdb;
2657                         size = transport_get_size(sectors, cdb, cmd);
2658                         /*
2659                          * Use WRITE_32 and READ_32 opcodes for the emulated
2660                          * XDWRITE_READ_32 logic.
2661                          */
2662                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2663                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2664
2665                         /*
2666                          * Do now allow BIDI commands for passthrough mode.
2667                          */
2668                         if (passthrough)
2669                                 goto out_unsupported_cdb;
2670
2671                         /*
2672                          * Setup BIDI XOR callback to be run during after I/O
2673                          * completion.
2674                          */
2675                         cmd->transport_complete_callback = &transport_xor_callback;
2676                         if (cdb[1] & 0x8)
2677                                 cmd->se_cmd_flags |= SCF_FUA;
2678                         break;
2679                 case WRITE_SAME_32:
2680                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2681                         if (sector_ret)
2682                                 goto out_unsupported_cdb;
2683
2684                         if (sectors)
2685                                 size = transport_get_size(1, cdb, cmd);
2686                         else {
2687                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2688                                        " supported\n");
2689                                 goto out_invalid_cdb_field;
2690                         }
2691
2692                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2693                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2694
2695                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2696                                 goto out_invalid_cdb_field;
2697                         if (!passthrough)
2698                                 cmd->execute_task = target_emulate_write_same;
2699                         break;
2700                 default:
2701                         pr_err("VARIABLE_LENGTH_CMD service action"
2702                                 " 0x%04x not supported\n", service_action);
2703                         goto out_unsupported_cdb;
2704                 }
2705                 break;
2706         case MAINTENANCE_IN:
2707                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2708                         /* MAINTENANCE_IN from SCC-2 */
2709                         /*
2710                          * Check for emulated MI_REPORT_TARGET_PGS.
2711                          */
2712                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2713                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2714                                 cmd->execute_task =
2715                                         target_emulate_report_target_port_groups;
2716                         }
2717                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2718                                (cdb[8] << 8) | cdb[9];
2719                 } else {
2720                         /* GPCMD_SEND_KEY from multi media commands */
2721                         size = (cdb[8] << 8) + cdb[9];
2722                 }
2723                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2724                 break;
2725         case MODE_SELECT:
2726                 size = cdb[4];
2727                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2728                 break;
2729         case MODE_SELECT_10:
2730                 size = (cdb[7] << 8) + cdb[8];
2731                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2732                 break;
2733         case MODE_SENSE:
2734                 size = cdb[4];
2735                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2736                 if (!passthrough)
2737                         cmd->execute_task = target_emulate_modesense;
2738                 break;
2739         case MODE_SENSE_10:
2740                 size = (cdb[7] << 8) + cdb[8];
2741                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2742                 if (!passthrough)
2743                         cmd->execute_task = target_emulate_modesense;
2744                 break;
2745         case GPCMD_READ_BUFFER_CAPACITY:
2746         case GPCMD_SEND_OPC:
2747         case LOG_SELECT:
2748         case LOG_SENSE:
2749                 size = (cdb[7] << 8) + cdb[8];
2750                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2751                 break;
2752         case READ_BLOCK_LIMITS:
2753                 size = READ_BLOCK_LEN;
2754                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2755                 break;
2756         case GPCMD_GET_CONFIGURATION:
2757         case GPCMD_READ_FORMAT_CAPACITIES:
2758         case GPCMD_READ_DISC_INFO:
2759         case GPCMD_READ_TRACK_RZONE_INFO:
2760                 size = (cdb[7] << 8) + cdb[8];
2761                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2762                 break;
2763         case PERSISTENT_RESERVE_IN:
2764                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2765                         cmd->execute_task = target_scsi3_emulate_pr_in;
2766                 size = (cdb[7] << 8) + cdb[8];
2767                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2768                 break;
2769         case PERSISTENT_RESERVE_OUT:
2770                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2771                         cmd->execute_task = target_scsi3_emulate_pr_out;
2772                 size = (cdb[7] << 8) + cdb[8];
2773                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2774                 break;
2775         case GPCMD_MECHANISM_STATUS:
2776         case GPCMD_READ_DVD_STRUCTURE:
2777                 size = (cdb[8] << 8) + cdb[9];
2778                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2779                 break;
2780         case READ_POSITION:
2781                 size = READ_POSITION_LEN;
2782                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2783                 break;
2784         case MAINTENANCE_OUT:
2785                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2786                         /* MAINTENANCE_OUT from SCC-2
2787                          *
2788                          * Check for emulated MO_SET_TARGET_PGS.
2789                          */
2790                         if (cdb[1] == MO_SET_TARGET_PGS &&
2791                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2792                                 cmd->execute_task =
2793                                         target_emulate_set_target_port_groups;
2794                         }
2795
2796                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2797                                (cdb[8] << 8) | cdb[9];
2798                 } else  {
2799                         /* GPCMD_REPORT_KEY from multi media commands */
2800                         size = (cdb[8] << 8) + cdb[9];
2801                 }
2802                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2803                 break;
2804         case INQUIRY:
2805                 size = (cdb[3] << 8) + cdb[4];
2806                 /*
2807                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2808                  * See spc4r17 section 5.3
2809                  */
2810                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2811                         cmd->sam_task_attr = MSG_HEAD_TAG;
2812                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2813                 if (!passthrough)
2814                         cmd->execute_task = target_emulate_inquiry;
2815                 break;
2816         case READ_BUFFER:
2817                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2818                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2819                 break;
2820         case READ_CAPACITY:
2821                 size = READ_CAP_LEN;
2822                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2823                 if (!passthrough)
2824                         cmd->execute_task = target_emulate_readcapacity;
2825                 break;
2826         case READ_MEDIA_SERIAL_NUMBER:
2827         case SECURITY_PROTOCOL_IN:
2828         case SECURITY_PROTOCOL_OUT:
2829                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2830                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2831                 break;
2832         case SERVICE_ACTION_IN:
2833                 switch (cmd->t_task_cdb[1] & 0x1f) {
2834                 case SAI_READ_CAPACITY_16:
2835                         if (!passthrough)
2836                                 cmd->execute_task =
2837                                         target_emulate_readcapacity_16;
2838                         break;
2839                 default:
2840                         if (passthrough)
2841                                 break;
2842
2843                         pr_err("Unsupported SA: 0x%02x\n",
2844                                 cmd->t_task_cdb[1] & 0x1f);
2845                         goto out_unsupported_cdb;
2846                 }
2847                 /*FALLTHROUGH*/
2848         case ACCESS_CONTROL_IN:
2849         case ACCESS_CONTROL_OUT:
2850         case EXTENDED_COPY:
2851         case READ_ATTRIBUTE:
2852         case RECEIVE_COPY_RESULTS:
2853         case WRITE_ATTRIBUTE:
2854                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2855                        (cdb[12] << 8) | cdb[13];
2856                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2857                 break;
2858         case RECEIVE_DIAGNOSTIC:
2859         case SEND_DIAGNOSTIC:
2860                 size = (cdb[3] << 8) | cdb[4];
2861                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2862                 break;
2863 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2864 #if 0
2865         case GPCMD_READ_CD:
2866                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2867                 size = (2336 * sectors);
2868                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2869                 break;
2870 #endif
2871         case READ_TOC:
2872                 size = cdb[8];
2873                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2874                 break;
2875         case REQUEST_SENSE:
2876                 size = cdb[4];
2877                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2878                 if (!passthrough)
2879                         cmd->execute_task = target_emulate_request_sense;
2880                 break;
2881         case READ_ELEMENT_STATUS:
2882                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2883                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2884                 break;
2885         case WRITE_BUFFER:
2886                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2887                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2888                 break;
2889         case RESERVE:
2890         case RESERVE_10:
2891                 /*
2892                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2893                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2894                  */
2895                 if (cdb[0] == RESERVE_10)
2896                         size = (cdb[7] << 8) | cdb[8];
2897                 else
2898                         size = cmd->data_length;
2899
2900                 /*
2901                  * Setup the legacy emulated handler for SPC-2 and
2902                  * >= SPC-3 compatible reservation handling (CRH=1)
2903                  * Otherwise, we assume the underlying SCSI logic is
2904                  * is running in SPC_PASSTHROUGH, and wants reservations
2905                  * emulation disabled.
2906                  */
2907                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2908                         cmd->execute_task = target_scsi2_reservation_reserve;
2909                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2910                 break;
2911         case RELEASE:
2912         case RELEASE_10:
2913                 /*
2914                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2915                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2916                 */
2917                 if (cdb[0] == RELEASE_10)
2918                         size = (cdb[7] << 8) | cdb[8];
2919                 else
2920                         size = cmd->data_length;
2921
2922                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2923                         cmd->execute_task = target_scsi2_reservation_release;
2924                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2925                 break;
2926         case SYNCHRONIZE_CACHE:
2927         case 0x91: /* SYNCHRONIZE_CACHE_16: */
2928                 /*
2929                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2930                  */
2931                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2932                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2933                         cmd->t_task_lba = transport_lba_32(cdb);
2934                 } else {
2935                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2936                         cmd->t_task_lba = transport_lba_64(cdb);
2937                 }
2938                 if (sector_ret)
2939                         goto out_unsupported_cdb;
2940
2941                 size = transport_get_size(sectors, cdb, cmd);
2942                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2943
2944                 if (passthrough)
2945                         break;
2946
2947                 /*
2948                  * Check to ensure that LBA + Range does not exceed past end of
2949                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2950                  */
2951                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2952                         if (transport_cmd_get_valid_sectors(cmd) < 0)
2953                                 goto out_invalid_cdb_field;
2954                 }
2955                 cmd->execute_task = target_emulate_synchronize_cache;
2956                 break;
2957         case UNMAP:
2958                 size = get_unaligned_be16(&cdb[7]);
2959                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2960                 if (!passthrough)
2961                         cmd->execute_task = target_emulate_unmap;
2962                 break;
2963         case WRITE_SAME_16:
2964                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2965                 if (sector_ret)
2966                         goto out_unsupported_cdb;
2967
2968                 if (sectors)
2969                         size = transport_get_size(1, cdb, cmd);
2970                 else {
2971                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2972                         goto out_invalid_cdb_field;
2973                 }
2974
2975                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2976                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2977
2978                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2979                         goto out_invalid_cdb_field;
2980                 if (!passthrough)
2981                         cmd->execute_task = target_emulate_write_same;
2982                 break;
2983         case WRITE_SAME:
2984                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2985                 if (sector_ret)
2986                         goto out_unsupported_cdb;
2987
2988                 if (sectors)
2989                         size = transport_get_size(1, cdb, cmd);
2990                 else {
2991                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2992                         goto out_invalid_cdb_field;
2993                 }
2994
2995                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2996                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2997                 /*
2998                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
2999                  * of byte 1 bit 3 UNMAP instead of original reserved field
3000                  */
3001                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3002                         goto out_invalid_cdb_field;
3003                 if (!passthrough)
3004                         cmd->execute_task = target_emulate_write_same;
3005                 break;
3006         case ALLOW_MEDIUM_REMOVAL:
3007         case ERASE:
3008         case REZERO_UNIT:
3009         case SEEK_10:
3010         case SPACE:
3011         case START_STOP:
3012         case TEST_UNIT_READY:
3013         case VERIFY:
3014         case WRITE_FILEMARKS:
3015                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3016                 if (!passthrough)
3017                         cmd->execute_task = target_emulate_noop;
3018                 break;
3019         case GPCMD_CLOSE_TRACK:
3020         case INITIALIZE_ELEMENT_STATUS:
3021         case GPCMD_LOAD_UNLOAD:
3022         case GPCMD_SET_SPEED:
3023         case MOVE_MEDIUM:
3024                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3025                 break;
3026         case REPORT_LUNS:
3027                 cmd->execute_task = target_report_luns;
3028                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3029                 /*
3030                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3031                  * See spc4r17 section 5.3
3032                  */
3033                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3034                         cmd->sam_task_attr = MSG_HEAD_TAG;
3035                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3036                 break;
3037         default:
3038                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3039                         " 0x%02x, sending CHECK_CONDITION.\n",
3040                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3041                 goto out_unsupported_cdb;
3042         }
3043
3044         if (size != cmd->data_length) {
3045                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3046                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3047                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3048                                 cmd->data_length, size, cdb[0]);
3049
3050                 cmd->cmd_spdtl = size;
3051
3052                 if (cmd->data_direction == DMA_TO_DEVICE) {
3053                         pr_err("Rejecting underflow/overflow"
3054                                         " WRITE data\n");
3055                         goto out_invalid_cdb_field;
3056                 }
3057                 /*
3058                  * Reject READ_* or WRITE_* with overflow/underflow for
3059                  * type SCF_SCSI_DATA_SG_IO_CDB.
3060                  */
3061                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3062                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3063                                 " CDB on non 512-byte sector setup subsystem"
3064                                 " plugin: %s\n", dev->transport->name);
3065                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3066                         goto out_invalid_cdb_field;
3067                 }
3068
3069                 if (size > cmd->data_length) {
3070                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3071                         cmd->residual_count = (size - cmd->data_length);
3072                 } else {
3073                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3074                         cmd->residual_count = (cmd->data_length - size);
3075                 }
3076                 cmd->data_length = size;
3077         }
3078
3079         /* reject any command that we don't have a handler for */
3080         if (!(passthrough || cmd->execute_task ||
3081              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3082                 goto out_unsupported_cdb;
3083
3084         /* Let's limit control cdbs to a page, for simplicity's sake. */
3085         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3086             size > PAGE_SIZE)
3087                 goto out_invalid_cdb_field;
3088
3089         transport_set_supported_SAM_opcode(cmd);
3090         return ret;
3091
3092 out_unsupported_cdb:
3093         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3094         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3095         return -EINVAL;
3096 out_invalid_cdb_field:
3097         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3098         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3099         return -EINVAL;
3100 }
3101
3102 /*
3103  * Called from I/O completion to determine which dormant/delayed
3104  * and ordered cmds need to have their tasks added to the execution queue.
3105  */
3106 static void transport_complete_task_attr(struct se_cmd *cmd)
3107 {
3108         struct se_device *dev = cmd->se_dev;
3109         struct se_cmd *cmd_p, *cmd_tmp;
3110         int new_active_tasks = 0;
3111
3112         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3113                 atomic_dec(&dev->simple_cmds);
3114                 smp_mb__after_atomic_dec();
3115                 dev->dev_cur_ordered_id++;
3116                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3117                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3118                         cmd->se_ordered_id);
3119         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3120                 dev->dev_cur_ordered_id++;
3121                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3122                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3123                         cmd->se_ordered_id);
3124         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3125                 atomic_dec(&dev->dev_ordered_sync);
3126                 smp_mb__after_atomic_dec();
3127
3128                 dev->dev_cur_ordered_id++;
3129                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3130                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3131         }
3132         /*
3133          * Process all commands up to the last received
3134          * ORDERED task attribute which requires another blocking
3135          * boundary
3136          */
3137         spin_lock(&dev->delayed_cmd_lock);
3138         list_for_each_entry_safe(cmd_p, cmd_tmp,
3139                         &dev->delayed_cmd_list, se_delayed_node) {
3140
3141                 list_del(&cmd_p->se_delayed_node);
3142                 spin_unlock(&dev->delayed_cmd_lock);
3143
3144                 pr_debug("Calling add_tasks() for"
3145                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3146                         " Dormant -> Active, se_ordered_id: %u\n",
3147                         cmd_p->t_task_cdb[0],
3148                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3149
3150                 transport_add_tasks_from_cmd(cmd_p);
3151                 new_active_tasks++;
3152
3153                 spin_lock(&dev->delayed_cmd_lock);
3154                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3155                         break;
3156         }
3157         spin_unlock(&dev->delayed_cmd_lock);
3158         /*
3159          * If new tasks have become active, wake up the transport thread
3160          * to do the processing of the Active tasks.
3161          */
3162         if (new_active_tasks != 0)
3163                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3164 }
3165
3166 static void transport_complete_qf(struct se_cmd *cmd)
3167 {
3168         int ret = 0;
3169
3170         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3171                 transport_complete_task_attr(cmd);
3172
3173         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3174                 ret = cmd->se_tfo->queue_status(cmd);
3175                 if (ret)
3176                         goto out;
3177         }
3178
3179         switch (cmd->data_direction) {
3180         case DMA_FROM_DEVICE:
3181                 ret = cmd->se_tfo->queue_data_in(cmd);
3182                 break;
3183         case DMA_TO_DEVICE:
3184                 if (cmd->t_bidi_data_sg) {
3185                         ret = cmd->se_tfo->queue_data_in(cmd);
3186                         if (ret < 0)
3187                                 break;
3188                 }
3189                 /* Fall through for DMA_TO_DEVICE */
3190         case DMA_NONE:
3191                 ret = cmd->se_tfo->queue_status(cmd);
3192                 break;
3193         default:
3194                 break;
3195         }
3196
3197 out:
3198         if (ret < 0) {
3199                 transport_handle_queue_full(cmd, cmd->se_dev);
3200                 return;
3201         }
3202         transport_lun_remove_cmd(cmd);
3203         transport_cmd_check_stop_to_fabric(cmd);
3204 }
3205
3206 static void transport_handle_queue_full(
3207         struct se_cmd *cmd,
3208         struct se_device *dev)
3209 {
3210         spin_lock_irq(&dev->qf_cmd_lock);
3211         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3212         atomic_inc(&dev->dev_qf_count);
3213         smp_mb__after_atomic_inc();
3214         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3215
3216         schedule_work(&cmd->se_dev->qf_work_queue);
3217 }
3218
3219 static void target_complete_ok_work(struct work_struct *work)
3220 {
3221         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3222         int reason = 0, ret;
3223
3224         /*
3225          * Check if we need to move delayed/dormant tasks from cmds on the
3226          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3227          * Attribute.
3228          */
3229         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3230                 transport_complete_task_attr(cmd);
3231         /*
3232          * Check to schedule QUEUE_FULL work, or execute an existing
3233          * cmd->transport_qf_callback()
3234          */
3235         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3236                 schedule_work(&cmd->se_dev->qf_work_queue);
3237
3238         /*
3239          * Check if we need to retrieve a sense buffer from
3240          * the struct se_cmd in question.
3241          */
3242         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3243                 if (transport_get_sense_data(cmd) < 0)
3244                         reason = TCM_NON_EXISTENT_LUN;
3245
3246                 /*
3247                  * Only set when an struct se_task->task_scsi_status returned
3248                  * a non GOOD status.
3249                  */
3250                 if (cmd->scsi_status) {
3251                         ret = transport_send_check_condition_and_sense(
3252                                         cmd, reason, 1);
3253                         if (ret == -EAGAIN || ret == -ENOMEM)
3254                                 goto queue_full;
3255
3256                         transport_lun_remove_cmd(cmd);
3257                         transport_cmd_check_stop_to_fabric(cmd);
3258                         return;
3259                 }
3260         }
3261         /*
3262          * Check for a callback, used by amongst other things
3263          * XDWRITE_READ_10 emulation.
3264          */
3265         if (cmd->transport_complete_callback)
3266                 cmd->transport_complete_callback(cmd);
3267
3268         switch (cmd->data_direction) {
3269         case DMA_FROM_DEVICE:
3270                 spin_lock(&cmd->se_lun->lun_sep_lock);
3271                 if (cmd->se_lun->lun_sep) {
3272                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3273                                         cmd->data_length;
3274                 }
3275                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3276
3277                 ret = cmd->se_tfo->queue_data_in(cmd);
3278                 if (ret == -EAGAIN || ret == -ENOMEM)
3279                         goto queue_full;
3280                 break;
3281         case DMA_TO_DEVICE:
3282                 spin_lock(&cmd->se_lun->lun_sep_lock);
3283                 if (cmd->se_lun->lun_sep) {
3284                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3285                                 cmd->data_length;
3286                 }
3287                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3288                 /*
3289                  * Check if we need to send READ payload for BIDI-COMMAND
3290                  */
3291                 if (cmd->t_bidi_data_sg) {
3292                         spin_lock(&cmd->se_lun->lun_sep_lock);
3293                         if (cmd->se_lun->lun_sep) {
3294                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3295                                         cmd->data_length;
3296                         }
3297                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3298                         ret = cmd->se_tfo->queue_data_in(cmd);
3299                         if (ret == -EAGAIN || ret == -ENOMEM)
3300                                 goto queue_full;
3301                         break;
3302                 }
3303                 /* Fall through for DMA_TO_DEVICE */
3304         case DMA_NONE:
3305                 ret = cmd->se_tfo->queue_status(cmd);
3306                 if (ret == -EAGAIN || ret == -ENOMEM)
3307                         goto queue_full;
3308                 break;
3309         default:
3310                 break;
3311         }
3312
3313         transport_lun_remove_cmd(cmd);
3314         transport_cmd_check_stop_to_fabric(cmd);
3315         return;
3316
3317 queue_full:
3318         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3319                 " data_direction: %d\n", cmd, cmd->data_direction);
3320         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3321         transport_handle_queue_full(cmd, cmd->se_dev);
3322 }
3323
3324 static void transport_free_dev_tasks(struct se_cmd *cmd)
3325 {
3326         struct se_task *task, *task_tmp;
3327         unsigned long flags;
3328         LIST_HEAD(dispose_list);
3329
3330         spin_lock_irqsave(&cmd->t_state_lock, flags);
3331         list_for_each_entry_safe(task, task_tmp,
3332                                 &cmd->t_task_list, t_list) {
3333                 if (!(task->task_flags & TF_ACTIVE))
3334                         list_move_tail(&task->t_list, &dispose_list);
3335         }
3336         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3337
3338         while (!list_empty(&dispose_list)) {
3339                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3340
3341                 if (task->task_sg != cmd->t_data_sg &&
3342                     task->task_sg != cmd->t_bidi_data_sg)
3343                         kfree(task->task_sg);
3344
3345                 list_del(&task->t_list);
3346
3347                 cmd->se_dev->transport->free_task(task);
3348         }
3349 }
3350
3351 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3352 {
3353         struct scatterlist *sg;
3354         int count;
3355
3356         for_each_sg(sgl, sg, nents, count)
3357                 __free_page(sg_page(sg));
3358
3359         kfree(sgl);
3360 }
3361
3362 static inline void transport_free_pages(struct se_cmd *cmd)
3363 {
3364         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3365                 return;
3366
3367         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3368         cmd->t_data_sg = NULL;
3369         cmd->t_data_nents = 0;
3370
3371         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3372         cmd->t_bidi_data_sg = NULL;
3373         cmd->t_bidi_data_nents = 0;
3374 }
3375
3376 /**
3377  * transport_release_cmd - free a command
3378  * @cmd:       command to free
3379  *
3380  * This routine unconditionally frees a command, and reference counting
3381  * or list removal must be done in the caller.
3382  */
3383 static void transport_release_cmd(struct se_cmd *cmd)
3384 {
3385         BUG_ON(!cmd->se_tfo);
3386
3387         if (cmd->se_tmr_req)
3388                 core_tmr_release_req(cmd->se_tmr_req);
3389         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3390                 kfree(cmd->t_task_cdb);
3391         /*
3392          * If this cmd has been setup with target_get_sess_cmd(), drop
3393          * the kref and call ->release_cmd() in kref callback.
3394          */
3395          if (cmd->check_release != 0) {
3396                 target_put_sess_cmd(cmd->se_sess, cmd);
3397                 return;
3398         }
3399         cmd->se_tfo->release_cmd(cmd);
3400 }
3401
3402 /**
3403  * transport_put_cmd - release a reference to a command
3404  * @cmd:       command to release
3405  *
3406  * This routine releases our reference to the command and frees it if possible.
3407  */
3408 static void transport_put_cmd(struct se_cmd *cmd)
3409 {
3410         unsigned long flags;
3411         int free_tasks = 0;
3412
3413         spin_lock_irqsave(&cmd->t_state_lock, flags);
3414         if (atomic_read(&cmd->t_fe_count)) {
3415                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3416                         goto out_busy;
3417         }
3418
3419         if (atomic_read(&cmd->t_se_count)) {
3420                 if (!atomic_dec_and_test(&cmd->t_se_count))
3421                         goto out_busy;
3422         }
3423
3424         if (atomic_read(&cmd->transport_dev_active)) {
3425                 atomic_set(&cmd->transport_dev_active, 0);
3426                 transport_all_task_dev_remove_state(cmd);
3427                 free_tasks = 1;
3428         }
3429         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3430
3431         if (free_tasks != 0)
3432                 transport_free_dev_tasks(cmd);
3433
3434         transport_free_pages(cmd);
3435         transport_release_cmd(cmd);
3436         return;
3437 out_busy:
3438         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3439 }
3440
3441 /*
3442  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3443  * allocating in the core.
3444  * @cmd:  Associated se_cmd descriptor
3445  * @mem:  SGL style memory for TCM WRITE / READ
3446  * @sg_mem_num: Number of SGL elements
3447  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3448  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3449  *
3450  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3451  * of parameters.
3452  */
3453 int transport_generic_map_mem_to_cmd(
3454         struct se_cmd *cmd,
3455         struct scatterlist *sgl,
3456         u32 sgl_count,
3457         struct scatterlist *sgl_bidi,
3458         u32 sgl_bidi_count)
3459 {
3460         if (!sgl || !sgl_count)
3461                 return 0;
3462
3463         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3464             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3465                 /*
3466                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3467                  * scatterlists already have been set to follow what the fabric
3468                  * passes for the original expected data transfer length.
3469                  */
3470                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3471                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3472                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3473                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3474                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3475                         return -EINVAL;
3476                 }
3477
3478                 cmd->t_data_sg = sgl;
3479                 cmd->t_data_nents = sgl_count;
3480
3481                 if (sgl_bidi && sgl_bidi_count) {
3482                         cmd->t_bidi_data_sg = sgl_bidi;
3483                         cmd->t_bidi_data_nents = sgl_bidi_count;
3484                 }
3485                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3486         }
3487
3488         return 0;
3489 }
3490 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3491
3492 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3493 {
3494         struct scatterlist *sg = cmd->t_data_sg;
3495
3496         BUG_ON(!sg);
3497         /*
3498          * We need to take into account a possible offset here for fabrics like
3499          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3500          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3501          */
3502         return kmap(sg_page(sg)) + sg->offset;
3503 }
3504 EXPORT_SYMBOL(transport_kmap_first_data_page);
3505
3506 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3507 {
3508         kunmap(sg_page(cmd->t_data_sg));
3509 }
3510 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3511
3512 static int
3513 transport_generic_get_mem(struct se_cmd *cmd)
3514 {
3515         u32 length = cmd->data_length;
3516         unsigned int nents;
3517         struct page *page;
3518         int i = 0;
3519
3520         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3521         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3522         if (!cmd->t_data_sg)
3523                 return -ENOMEM;
3524
3525         cmd->t_data_nents = nents;
3526         sg_init_table(cmd->t_data_sg, nents);
3527
3528         while (length) {
3529                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3530                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3531                 if (!page)
3532                         goto out;
3533
3534                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3535                 length -= page_len;
3536                 i++;
3537         }
3538         return 0;
3539
3540 out:
3541         while (i >= 0) {
3542                 __free_page(sg_page(&cmd->t_data_sg[i]));
3543                 i--;
3544         }
3545         kfree(cmd->t_data_sg);
3546         cmd->t_data_sg = NULL;
3547         return -ENOMEM;
3548 }
3549
3550 /* Reduce sectors if they are too long for the device */
3551 static inline sector_t transport_limit_task_sectors(
3552         struct se_device *dev,
3553         unsigned long long lba,
3554         sector_t sectors)
3555 {
3556         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3557
3558         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3559                 if ((lba + sectors) > transport_dev_end_lba(dev))
3560                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3561
3562         return sectors;
3563 }
3564
3565
3566 /*
3567  * This function can be used by HW target mode drivers to create a linked
3568  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3569  * This is intended to be called during the completion path by TCM Core
3570  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3571  */
3572 void transport_do_task_sg_chain(struct se_cmd *cmd)
3573 {
3574         struct scatterlist *sg_first = NULL;
3575         struct scatterlist *sg_prev = NULL;
3576         int sg_prev_nents = 0;
3577         struct scatterlist *sg;
3578         struct se_task *task;
3579         u32 chained_nents = 0;
3580         int i;
3581
3582         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3583
3584         /*
3585          * Walk the struct se_task list and setup scatterlist chains
3586          * for each contiguously allocated struct se_task->task_sg[].
3587          */
3588         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3589                 if (!task->task_sg)
3590                         continue;
3591
3592                 if (!sg_first) {
3593                         sg_first = task->task_sg;
3594                         chained_nents = task->task_sg_nents;
3595                 } else {
3596                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3597                         chained_nents += task->task_sg_nents;
3598                 }
3599                 /*
3600                  * For the padded tasks, use the extra SGL vector allocated
3601                  * in transport_allocate_data_tasks() for the sg_prev_nents
3602                  * offset into sg_chain() above.
3603                  *
3604                  * We do not need the padding for the last task (or a single
3605                  * task), but in that case we will never use the sg_prev_nents
3606                  * value below which would be incorrect.
3607                  */
3608                 sg_prev_nents = (task->task_sg_nents + 1);
3609                 sg_prev = task->task_sg;
3610         }
3611         /*
3612          * Setup the starting pointer and total t_tasks_sg_linked_no including
3613          * padding SGs for linking and to mark the end.
3614          */
3615         cmd->t_tasks_sg_chained = sg_first;
3616         cmd->t_tasks_sg_chained_no = chained_nents;
3617
3618         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3619                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3620                 cmd->t_tasks_sg_chained_no);
3621
3622         for_each_sg(cmd->t_tasks_sg_chained, sg,
3623                         cmd->t_tasks_sg_chained_no, i) {
3624
3625                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3626                         i, sg, sg_page(sg), sg->length, sg->offset);
3627                 if (sg_is_chain(sg))
3628                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3629                 if (sg_is_last(sg))
3630                         pr_debug("SG: %p sg_is_last=1\n", sg);
3631         }
3632 }
3633 EXPORT_SYMBOL(transport_do_task_sg_chain);
3634
3635 /*
3636  * Break up cmd into chunks transport can handle
3637  */
3638 static int
3639 transport_allocate_data_tasks(struct se_cmd *cmd,
3640         enum dma_data_direction data_direction,
3641         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3642 {
3643         struct se_device *dev = cmd->se_dev;
3644         int task_count, i;
3645         unsigned long long lba;
3646         sector_t sectors, dev_max_sectors;
3647         u32 sector_size;
3648
3649         if (transport_cmd_get_valid_sectors(cmd) < 0)
3650                 return -EINVAL;
3651
3652         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3653         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3654
3655         WARN_ON(cmd->data_length % sector_size);
3656
3657         lba = cmd->t_task_lba;
3658         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3659         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3660
3661         /*
3662          * If we need just a single task reuse the SG list in the command
3663          * and avoid a lot of work.
3664          */
3665         if (task_count == 1) {
3666                 struct se_task *task;
3667                 unsigned long flags;
3668
3669                 task = transport_generic_get_task(cmd, data_direction);
3670                 if (!task)
3671                         return -ENOMEM;
3672
3673                 task->task_sg = cmd_sg;
3674                 task->task_sg_nents = sgl_nents;
3675
3676                 task->task_lba = lba;
3677                 task->task_sectors = sectors;
3678                 task->task_size = task->task_sectors * sector_size;
3679
3680                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3681                 list_add_tail(&task->t_list, &cmd->t_task_list);
3682                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3683
3684                 return task_count;
3685         }
3686
3687         for (i = 0; i < task_count; i++) {
3688                 struct se_task *task;
3689                 unsigned int task_size, task_sg_nents_padded;
3690                 struct scatterlist *sg;
3691                 unsigned long flags;
3692                 int count;
3693
3694                 task = transport_generic_get_task(cmd, data_direction);
3695                 if (!task)
3696                         return -ENOMEM;
3697
3698                 task->task_lba = lba;
3699                 task->task_sectors = min(sectors, dev_max_sectors);
3700                 task->task_size = task->task_sectors * sector_size;
3701
3702                 /*
3703                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3704                  * in order to calculate the number per task SGL entries
3705                  */
3706                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3707                 /*
3708                  * Check if the fabric module driver is requesting that all
3709                  * struct se_task->task_sg[] be chained together..  If so,
3710                  * then allocate an extra padding SG entry for linking and
3711                  * marking the end of the chained SGL for every task except
3712                  * the last one for (task_count > 1) operation, or skipping
3713                  * the extra padding for the (task_count == 1) case.
3714                  */
3715                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3716                         task_sg_nents_padded = (task->task_sg_nents + 1);
3717                 } else
3718                         task_sg_nents_padded = task->task_sg_nents;
3719
3720                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3721                                         task_sg_nents_padded, GFP_KERNEL);
3722                 if (!task->task_sg) {
3723                         cmd->se_dev->transport->free_task(task);
3724                         return -ENOMEM;
3725                 }
3726
3727                 sg_init_table(task->task_sg, task_sg_nents_padded);
3728
3729                 task_size = task->task_size;
3730
3731                 /* Build new sgl, only up to task_size */
3732                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3733                         if (cmd_sg->length > task_size)
3734                                 break;
3735
3736                         *sg = *cmd_sg;
3737                         task_size -= cmd_sg->length;
3738                         cmd_sg = sg_next(cmd_sg);
3739                 }
3740
3741                 lba += task->task_sectors;
3742                 sectors -= task->task_sectors;
3743
3744                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3745                 list_add_tail(&task->t_list, &cmd->t_task_list);
3746                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3747         }
3748
3749         return task_count;
3750 }
3751
3752 static int
3753 transport_allocate_control_task(struct se_cmd *cmd)
3754 {
3755         struct se_task *task;
3756         unsigned long flags;
3757
3758         task = transport_generic_get_task(cmd, cmd->data_direction);
3759         if (!task)
3760                 return -ENOMEM;
3761
3762         task->task_sg = cmd->t_data_sg;
3763         task->task_size = cmd->data_length;
3764         task->task_sg_nents = cmd->t_data_nents;
3765
3766         spin_lock_irqsave(&cmd->t_state_lock, flags);
3767         list_add_tail(&task->t_list, &cmd->t_task_list);
3768         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3769
3770         /* Success! Return number of tasks allocated */
3771         return 1;
3772 }
3773
3774 /*
3775  * Allocate any required ressources to execute the command, and either place
3776  * it on the execution queue if possible.  For writes we might not have the
3777  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3778  */
3779 int transport_generic_new_cmd(struct se_cmd *cmd)
3780 {
3781         struct se_device *dev = cmd->se_dev;
3782         int task_cdbs, task_cdbs_bidi = 0;
3783         int set_counts = 1;
3784         int ret = 0;
3785
3786         /*
3787          * Determine is the TCM fabric module has already allocated physical
3788          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3789          * beforehand.
3790          */
3791         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3792             cmd->data_length) {
3793                 ret = transport_generic_get_mem(cmd);
3794                 if (ret < 0)
3795                         goto out_fail;
3796         }
3797
3798         /*
3799          * For BIDI command set up the read tasks first.
3800          */
3801         if (cmd->t_bidi_data_sg &&
3802             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3803                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3804
3805                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3806                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3807                                 cmd->t_bidi_data_nents);
3808                 if (task_cdbs_bidi <= 0)
3809                         goto out_fail;
3810
3811                 atomic_inc(&cmd->t_fe_count);
3812                 atomic_inc(&cmd->t_se_count);
3813                 set_counts = 0;
3814         }
3815
3816         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3817                 task_cdbs = transport_allocate_data_tasks(cmd,
3818                                         cmd->data_direction, cmd->t_data_sg,
3819                                         cmd->t_data_nents);
3820         } else {
3821                 task_cdbs = transport_allocate_control_task(cmd);
3822         }
3823
3824         if (task_cdbs < 0)
3825                 goto out_fail;
3826         else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3827                 cmd->t_state = TRANSPORT_COMPLETE;
3828                 atomic_set(&cmd->t_transport_active, 1);
3829                 INIT_WORK(&cmd->work, target_complete_ok_work);
3830                 queue_work(target_completion_wq, &cmd->work);
3831                 return 0;
3832         }
3833
3834         if (set_counts) {
3835                 atomic_inc(&cmd->t_fe_count);
3836                 atomic_inc(&cmd->t_se_count);
3837         }
3838
3839         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3840         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3841         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3842
3843         /*
3844          * For WRITEs, let the fabric know its buffer is ready..
3845          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3846          * will be added to the struct se_device execution queue after its WRITE
3847          * data has arrived. (ie: It gets handled by the transport processing
3848          * thread a second time)
3849          */
3850         if (cmd->data_direction == DMA_TO_DEVICE) {
3851                 transport_add_tasks_to_state_queue(cmd);
3852                 return transport_generic_write_pending(cmd);
3853         }
3854         /*
3855          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3856          * to the execution queue.
3857          */
3858         transport_execute_tasks(cmd);
3859         return 0;
3860
3861 out_fail:
3862         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3863         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3864         return -EINVAL;
3865 }
3866 EXPORT_SYMBOL(transport_generic_new_cmd);
3867
3868 /*      transport_generic_process_write():
3869  *
3870  *
3871  */
3872 void transport_generic_process_write(struct se_cmd *cmd)
3873 {
3874         transport_execute_tasks(cmd);
3875 }
3876 EXPORT_SYMBOL(transport_generic_process_write);
3877
3878 static void transport_write_pending_qf(struct se_cmd *cmd)
3879 {
3880         int ret;
3881
3882         ret = cmd->se_tfo->write_pending(cmd);
3883         if (ret == -EAGAIN || ret == -ENOMEM) {
3884                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3885                          cmd);
3886                 transport_handle_queue_full(cmd, cmd->se_dev);
3887         }
3888 }
3889
3890 static int transport_generic_write_pending(struct se_cmd *cmd)
3891 {
3892         unsigned long flags;
3893         int ret;
3894
3895         spin_lock_irqsave(&cmd->t_state_lock, flags);
3896         cmd->t_state = TRANSPORT_WRITE_PENDING;
3897         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3898
3899         /*
3900          * Clear the se_cmd for WRITE_PENDING status in order to set
3901          * cmd->t_transport_active=0 so that transport_generic_handle_data
3902          * can be called from HW target mode interrupt code.  This is safe
3903          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3904          * because the se_cmd->se_lun pointer is not being cleared.
3905          */
3906         transport_cmd_check_stop(cmd, 1, 0);
3907
3908         /*
3909          * Call the fabric write_pending function here to let the
3910          * frontend know that WRITE buffers are ready.
3911          */
3912         ret = cmd->se_tfo->write_pending(cmd);
3913         if (ret == -EAGAIN || ret == -ENOMEM)
3914                 goto queue_full;
3915         else if (ret < 0)
3916                 return ret;
3917
3918         return 1;
3919
3920 queue_full:
3921         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3922         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3923         transport_handle_queue_full(cmd, cmd->se_dev);
3924         return 0;
3925 }
3926
3927 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3928 {
3929         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3930                 if (wait_for_tasks && cmd->se_tmr_req)
3931                          transport_wait_for_tasks(cmd);
3932
3933                 transport_release_cmd(cmd);
3934         } else {
3935                 if (wait_for_tasks)
3936                         transport_wait_for_tasks(cmd);
3937
3938                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3939
3940                 if (cmd->se_lun)
3941                         transport_lun_remove_cmd(cmd);
3942
3943                 transport_free_dev_tasks(cmd);
3944
3945                 transport_put_cmd(cmd);
3946         }
3947 }
3948 EXPORT_SYMBOL(transport_generic_free_cmd);
3949
3950 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3951  * @se_sess:    session to reference
3952  * @se_cmd:     command descriptor to add
3953  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
3954  */
3955 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
3956                         bool ack_kref)
3957 {
3958         unsigned long flags;
3959
3960         kref_init(&se_cmd->cmd_kref);
3961         /*
3962          * Add a second kref if the fabric caller is expecting to handle
3963          * fabric acknowledgement that requires two target_put_sess_cmd()
3964          * invocations before se_cmd descriptor release.
3965          */
3966         if (ack_kref == true)
3967                 kref_get(&se_cmd->cmd_kref);
3968
3969         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3970         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3971         se_cmd->check_release = 1;
3972         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3973 }
3974 EXPORT_SYMBOL(target_get_sess_cmd);
3975
3976 static void target_release_cmd_kref(struct kref *kref)
3977 {
3978         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
3979         struct se_session *se_sess = se_cmd->se_sess;
3980         unsigned long flags;
3981
3982         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3983         if (list_empty(&se_cmd->se_cmd_list)) {
3984                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3985                 WARN_ON(1);
3986                 return;
3987         }
3988         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
3989                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3990                 complete(&se_cmd->cmd_wait_comp);
3991                 return;
3992         }
3993         list_del(&se_cmd->se_cmd_list);
3994         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3995
3996         se_cmd->se_tfo->release_cmd(se_cmd);
3997 }
3998
3999 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4000  * @se_sess:    session to reference
4001  * @se_cmd:     command descriptor to drop
4002  */
4003 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4004 {
4005         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4006 }
4007 EXPORT_SYMBOL(target_put_sess_cmd);
4008
4009 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4010  * @se_sess:    session to split
4011  */
4012 void target_splice_sess_cmd_list(struct se_session *se_sess)
4013 {
4014         struct se_cmd *se_cmd;
4015         unsigned long flags;
4016
4017         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4018         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4019
4020         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4021         se_sess->sess_tearing_down = 1;
4022
4023         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4024
4025         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4026                 se_cmd->cmd_wait_set = 1;
4027
4028         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4029 }
4030 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4031
4032 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4033  * @se_sess:    session to wait for active I/O
4034  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4035  */
4036 void target_wait_for_sess_cmds(
4037         struct se_session *se_sess,
4038         int wait_for_tasks)
4039 {
4040         struct se_cmd *se_cmd, *tmp_cmd;
4041         bool rc = false;
4042
4043         list_for_each_entry_safe(se_cmd, tmp_cmd,
4044                                 &se_sess->sess_wait_list, se_cmd_list) {
4045                 list_del(&se_cmd->se_cmd_list);
4046
4047                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4048                         " %d\n", se_cmd, se_cmd->t_state,
4049                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4050
4051                 if (wait_for_tasks) {
4052                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4053                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4054                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4055
4056                         rc = transport_wait_for_tasks(se_cmd);
4057
4058                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4059                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4060                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4061                 }
4062
4063                 if (!rc) {
4064                         wait_for_completion(&se_cmd->cmd_wait_comp);
4065                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4066                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4067                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4068                 }
4069
4070                 se_cmd->se_tfo->release_cmd(se_cmd);
4071         }
4072 }
4073 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4074
4075 /*      transport_lun_wait_for_tasks():
4076  *
4077  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4078  *      an struct se_lun to be successfully shutdown.
4079  */
4080 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4081 {
4082         unsigned long flags;
4083         int ret;
4084         /*
4085          * If the frontend has already requested this struct se_cmd to
4086          * be stopped, we can safely ignore this struct se_cmd.
4087          */
4088         spin_lock_irqsave(&cmd->t_state_lock, flags);
4089         if (atomic_read(&cmd->t_transport_stop)) {
4090                 atomic_set(&cmd->transport_lun_stop, 0);
4091                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4092                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4093                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4094                 transport_cmd_check_stop(cmd, 1, 0);
4095                 return -EPERM;
4096         }
4097         atomic_set(&cmd->transport_lun_fe_stop, 1);
4098         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4099
4100         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4101
4102         ret = transport_stop_tasks_for_cmd(cmd);
4103
4104         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4105                         " %d\n", cmd, cmd->t_task_list_num, ret);
4106         if (!ret) {
4107                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4108                                 cmd->se_tfo->get_task_tag(cmd));
4109                 wait_for_completion(&cmd->transport_lun_stop_comp);
4110                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4111                                 cmd->se_tfo->get_task_tag(cmd));
4112         }
4113         transport_remove_cmd_from_queue(cmd);
4114
4115         return 0;
4116 }
4117
4118 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4119 {
4120         struct se_cmd *cmd = NULL;
4121         unsigned long lun_flags, cmd_flags;
4122         /*
4123          * Do exception processing and return CHECK_CONDITION status to the
4124          * Initiator Port.
4125          */
4126         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4127         while (!list_empty(&lun->lun_cmd_list)) {
4128                 cmd = list_first_entry(&lun->lun_cmd_list,
4129                        struct se_cmd, se_lun_node);
4130                 list_del(&cmd->se_lun_node);
4131
4132                 atomic_set(&cmd->transport_lun_active, 0);
4133                 /*
4134                  * This will notify iscsi_target_transport.c:
4135                  * transport_cmd_check_stop() that a LUN shutdown is in
4136                  * progress for the iscsi_cmd_t.
4137                  */
4138                 spin_lock(&cmd->t_state_lock);
4139                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4140                         "_lun_stop for  ITT: 0x%08x\n",
4141                         cmd->se_lun->unpacked_lun,
4142                         cmd->se_tfo->get_task_tag(cmd));
4143                 atomic_set(&cmd->transport_lun_stop, 1);
4144                 spin_unlock(&cmd->t_state_lock);
4145
4146                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4147
4148                 if (!cmd->se_lun) {
4149                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4150                                 cmd->se_tfo->get_task_tag(cmd),
4151                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4152                         BUG();
4153                 }
4154                 /*
4155                  * If the Storage engine still owns the iscsi_cmd_t, determine
4156                  * and/or stop its context.
4157                  */
4158                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4159                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4160                         cmd->se_tfo->get_task_tag(cmd));
4161
4162                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4163                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4164                         continue;
4165                 }
4166
4167                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4168                         "_wait_for_tasks(): SUCCESS\n",
4169                         cmd->se_lun->unpacked_lun,
4170                         cmd->se_tfo->get_task_tag(cmd));
4171
4172                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4173                 if (!atomic_read(&cmd->transport_dev_active)) {
4174                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4175                         goto check_cond;
4176                 }
4177                 atomic_set(&cmd->transport_dev_active, 0);
4178                 transport_all_task_dev_remove_state(cmd);
4179                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4180
4181                 transport_free_dev_tasks(cmd);
4182                 /*
4183                  * The Storage engine stopped this struct se_cmd before it was
4184                  * send to the fabric frontend for delivery back to the
4185                  * Initiator Node.  Return this SCSI CDB back with an
4186                  * CHECK_CONDITION status.
4187                  */
4188 check_cond:
4189                 transport_send_check_condition_and_sense(cmd,
4190                                 TCM_NON_EXISTENT_LUN, 0);
4191                 /*
4192                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4193                  * be released, notify the waiting thread now that LU has
4194                  * finished accessing it.
4195                  */
4196                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4197                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4198                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4199                                 " struct se_cmd: %p ITT: 0x%08x\n",
4200                                 lun->unpacked_lun,
4201                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4202
4203                         spin_unlock_irqrestore(&cmd->t_state_lock,
4204                                         cmd_flags);
4205                         transport_cmd_check_stop(cmd, 1, 0);
4206                         complete(&cmd->transport_lun_fe_stop_comp);
4207                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4208                         continue;
4209                 }
4210                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4211                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4212
4213                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4214                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4215         }
4216         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4217 }
4218
4219 static int transport_clear_lun_thread(void *p)
4220 {
4221         struct se_lun *lun = p;
4222
4223         __transport_clear_lun_from_sessions(lun);
4224         complete(&lun->lun_shutdown_comp);
4225
4226         return 0;
4227 }
4228
4229 int transport_clear_lun_from_sessions(struct se_lun *lun)
4230 {
4231         struct task_struct *kt;
4232
4233         kt = kthread_run(transport_clear_lun_thread, lun,
4234                         "tcm_cl_%u", lun->unpacked_lun);
4235         if (IS_ERR(kt)) {
4236                 pr_err("Unable to start clear_lun thread\n");
4237                 return PTR_ERR(kt);
4238         }
4239         wait_for_completion(&lun->lun_shutdown_comp);
4240
4241         return 0;
4242 }
4243
4244 /**
4245  * transport_wait_for_tasks - wait for completion to occur
4246  * @cmd:        command to wait
4247  *
4248  * Called from frontend fabric context to wait for storage engine
4249  * to pause and/or release frontend generated struct se_cmd.
4250  */
4251 bool transport_wait_for_tasks(struct se_cmd *cmd)
4252 {
4253         unsigned long flags;
4254
4255         spin_lock_irqsave(&cmd->t_state_lock, flags);
4256         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4257                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4258                 return false;
4259         }
4260         /*
4261          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4262          * has been set in transport_set_supported_SAM_opcode().
4263          */
4264         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4265                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4266                 return false;
4267         }
4268         /*
4269          * If we are already stopped due to an external event (ie: LUN shutdown)
4270          * sleep until the connection can have the passed struct se_cmd back.
4271          * The cmd->transport_lun_stopped_sem will be upped by
4272          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4273          * has completed its operation on the struct se_cmd.
4274          */
4275         if (atomic_read(&cmd->transport_lun_stop)) {
4276
4277                 pr_debug("wait_for_tasks: Stopping"
4278                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4279                         "_stop_comp); for ITT: 0x%08x\n",
4280                         cmd->se_tfo->get_task_tag(cmd));
4281                 /*
4282                  * There is a special case for WRITES where a FE exception +
4283                  * LUN shutdown means ConfigFS context is still sleeping on
4284                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4285                  * We go ahead and up transport_lun_stop_comp just to be sure
4286                  * here.
4287                  */
4288                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4289                 complete(&cmd->transport_lun_stop_comp);
4290                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4291                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4292
4293                 transport_all_task_dev_remove_state(cmd);
4294                 /*
4295                  * At this point, the frontend who was the originator of this
4296                  * struct se_cmd, now owns the structure and can be released through
4297                  * normal means below.
4298                  */
4299                 pr_debug("wait_for_tasks: Stopped"
4300                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4301                         "stop_comp); for ITT: 0x%08x\n",
4302                         cmd->se_tfo->get_task_tag(cmd));
4303
4304                 atomic_set(&cmd->transport_lun_stop, 0);
4305         }
4306         if (!atomic_read(&cmd->t_transport_active) ||
4307              atomic_read(&cmd->t_transport_aborted)) {
4308                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4309                 return false;
4310         }
4311
4312         atomic_set(&cmd->t_transport_stop, 1);
4313
4314         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4315                 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4316                 cmd, cmd->se_tfo->get_task_tag(cmd),
4317                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4318
4319         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4320
4321         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4322
4323         wait_for_completion(&cmd->t_transport_stop_comp);
4324
4325         spin_lock_irqsave(&cmd->t_state_lock, flags);
4326         atomic_set(&cmd->t_transport_active, 0);
4327         atomic_set(&cmd->t_transport_stop, 0);
4328
4329         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4330                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4331                 cmd->se_tfo->get_task_tag(cmd));
4332
4333         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4334
4335         return true;
4336 }
4337 EXPORT_SYMBOL(transport_wait_for_tasks);
4338
4339 static int transport_get_sense_codes(
4340         struct se_cmd *cmd,
4341         u8 *asc,
4342         u8 *ascq)
4343 {
4344         *asc = cmd->scsi_asc;
4345         *ascq = cmd->scsi_ascq;
4346
4347         return 0;
4348 }
4349
4350 static int transport_set_sense_codes(
4351         struct se_cmd *cmd,
4352         u8 asc,
4353         u8 ascq)
4354 {
4355         cmd->scsi_asc = asc;
4356         cmd->scsi_ascq = ascq;
4357
4358         return 0;
4359 }
4360
4361 int transport_send_check_condition_and_sense(
4362         struct se_cmd *cmd,
4363         u8 reason,
4364         int from_transport)
4365 {
4366         unsigned char *buffer = cmd->sense_buffer;
4367         unsigned long flags;
4368         int offset;
4369         u8 asc = 0, ascq = 0;
4370
4371         spin_lock_irqsave(&cmd->t_state_lock, flags);
4372         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4373                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4374                 return 0;
4375         }
4376         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4377         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4378
4379         if (!reason && from_transport)
4380                 goto after_reason;
4381
4382         if (!from_transport)
4383                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4384         /*
4385          * Data Segment and SenseLength of the fabric response PDU.
4386          *
4387          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4388          * from include/scsi/scsi_cmnd.h
4389          */
4390         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4391                                 TRANSPORT_SENSE_BUFFER);
4392         /*
4393          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4394          * SENSE KEY values from include/scsi/scsi.h
4395          */
4396         switch (reason) {
4397         case TCM_NON_EXISTENT_LUN:
4398                 /* CURRENT ERROR */
4399                 buffer[offset] = 0x70;
4400                 /* ILLEGAL REQUEST */
4401                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4402                 /* LOGICAL UNIT NOT SUPPORTED */
4403                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4404                 break;
4405         case TCM_UNSUPPORTED_SCSI_OPCODE:
4406         case TCM_SECTOR_COUNT_TOO_MANY:
4407                 /* CURRENT ERROR */
4408                 buffer[offset] = 0x70;
4409                 /* ILLEGAL REQUEST */
4410                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4411                 /* INVALID COMMAND OPERATION CODE */
4412                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4413                 break;
4414         case TCM_UNKNOWN_MODE_PAGE:
4415                 /* CURRENT ERROR */
4416                 buffer[offset] = 0x70;
4417                 /* ILLEGAL REQUEST */
4418                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4419                 /* INVALID FIELD IN CDB */
4420                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4421                 break;
4422         case TCM_CHECK_CONDITION_ABORT_CMD:
4423                 /* CURRENT ERROR */
4424                 buffer[offset] = 0x70;
4425                 /* ABORTED COMMAND */
4426                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4427                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4428                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4429                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4430                 break;
4431         case TCM_INCORRECT_AMOUNT_OF_DATA:
4432                 /* CURRENT ERROR */
4433                 buffer[offset] = 0x70;
4434                 /* ABORTED COMMAND */
4435                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4436                 /* WRITE ERROR */
4437                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4438                 /* NOT ENOUGH UNSOLICITED DATA */
4439                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4440                 break;
4441         case TCM_INVALID_CDB_FIELD:
4442                 /* CURRENT ERROR */
4443                 buffer[offset] = 0x70;
4444                 /* ABORTED COMMAND */
4445                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4446                 /* INVALID FIELD IN CDB */
4447                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4448                 break;
4449         case TCM_INVALID_PARAMETER_LIST:
4450                 /* CURRENT ERROR */
4451                 buffer[offset] = 0x70;
4452                 /* ABORTED COMMAND */
4453                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4454                 /* INVALID FIELD IN PARAMETER LIST */
4455                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4456                 break;
4457         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4458                 /* CURRENT ERROR */
4459                 buffer[offset] = 0x70;
4460                 /* ABORTED COMMAND */
4461                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4462                 /* WRITE ERROR */
4463                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4464                 /* UNEXPECTED_UNSOLICITED_DATA */
4465                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4466                 break;
4467         case TCM_SERVICE_CRC_ERROR:
4468                 /* CURRENT ERROR */
4469                 buffer[offset] = 0x70;
4470                 /* ABORTED COMMAND */
4471                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4472                 /* PROTOCOL SERVICE CRC ERROR */
4473                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4474                 /* N/A */
4475                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4476                 break;
4477         case TCM_SNACK_REJECTED:
4478                 /* CURRENT ERROR */
4479                 buffer[offset] = 0x70;
4480                 /* ABORTED COMMAND */
4481                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4482                 /* READ ERROR */
4483                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4484                 /* FAILED RETRANSMISSION REQUEST */
4485                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4486                 break;
4487         case TCM_WRITE_PROTECTED:
4488                 /* CURRENT ERROR */
4489                 buffer[offset] = 0x70;
4490                 /* DATA PROTECT */
4491                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4492                 /* WRITE PROTECTED */
4493                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4494                 break;
4495         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4496                 /* CURRENT ERROR */
4497                 buffer[offset] = 0x70;
4498                 /* UNIT ATTENTION */
4499                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4500                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4501                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4502                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4503                 break;
4504         case TCM_CHECK_CONDITION_NOT_READY:
4505                 /* CURRENT ERROR */
4506                 buffer[offset] = 0x70;
4507                 /* Not Ready */
4508                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4509                 transport_get_sense_codes(cmd, &asc, &ascq);
4510                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4511                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4512                 break;
4513         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4514         default:
4515                 /* CURRENT ERROR */
4516                 buffer[offset] = 0x70;
4517                 /* ILLEGAL REQUEST */
4518                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4519                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4520                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4521                 break;
4522         }
4523         /*
4524          * This code uses linux/include/scsi/scsi.h SAM status codes!
4525          */
4526         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4527         /*
4528          * Automatically padded, this value is encoded in the fabric's
4529          * data_length response PDU containing the SCSI defined sense data.
4530          */
4531         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4532
4533 after_reason:
4534         return cmd->se_tfo->queue_status(cmd);
4535 }
4536 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4537
4538 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4539 {
4540         int ret = 0;
4541
4542         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4543                 if (!send_status ||
4544                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4545                         return 1;
4546 #if 0
4547                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4548                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4549                         cmd->t_task_cdb[0],
4550                         cmd->se_tfo->get_task_tag(cmd));
4551 #endif
4552                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4553                 cmd->se_tfo->queue_status(cmd);
4554                 ret = 1;
4555         }
4556         return ret;
4557 }
4558 EXPORT_SYMBOL(transport_check_aborted_status);
4559
4560 void transport_send_task_abort(struct se_cmd *cmd)
4561 {
4562         unsigned long flags;
4563
4564         spin_lock_irqsave(&cmd->t_state_lock, flags);
4565         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4566                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4567                 return;
4568         }
4569         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4570
4571         /*
4572          * If there are still expected incoming fabric WRITEs, we wait
4573          * until until they have completed before sending a TASK_ABORTED
4574          * response.  This response with TASK_ABORTED status will be
4575          * queued back to fabric module by transport_check_aborted_status().
4576          */
4577         if (cmd->data_direction == DMA_TO_DEVICE) {
4578                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4579                         atomic_inc(&cmd->t_transport_aborted);
4580                         smp_mb__after_atomic_inc();
4581                 }
4582         }
4583         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4584 #if 0
4585         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4586                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4587                 cmd->se_tfo->get_task_tag(cmd));
4588 #endif
4589         cmd->se_tfo->queue_status(cmd);
4590 }
4591
4592 static int transport_generic_do_tmr(struct se_cmd *cmd)
4593 {
4594         struct se_device *dev = cmd->se_dev;
4595         struct se_tmr_req *tmr = cmd->se_tmr_req;
4596         int ret;
4597
4598         switch (tmr->function) {
4599         case TMR_ABORT_TASK:
4600                 tmr->response = TMR_FUNCTION_REJECTED;
4601                 break;
4602         case TMR_ABORT_TASK_SET:
4603         case TMR_CLEAR_ACA:
4604         case TMR_CLEAR_TASK_SET:
4605                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4606                 break;
4607         case TMR_LUN_RESET:
4608                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4609                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4610                                          TMR_FUNCTION_REJECTED;
4611                 break;
4612         case TMR_TARGET_WARM_RESET:
4613                 tmr->response = TMR_FUNCTION_REJECTED;
4614                 break;
4615         case TMR_TARGET_COLD_RESET:
4616                 tmr->response = TMR_FUNCTION_REJECTED;
4617                 break;
4618         default:
4619                 pr_err("Uknown TMR function: 0x%02x.\n",
4620                                 tmr->function);
4621                 tmr->response = TMR_FUNCTION_REJECTED;
4622                 break;
4623         }
4624
4625         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4626         cmd->se_tfo->queue_tm_rsp(cmd);
4627
4628         transport_cmd_check_stop_to_fabric(cmd);
4629         return 0;
4630 }
4631
4632 /*      transport_processing_thread():
4633  *
4634  *
4635  */
4636 static int transport_processing_thread(void *param)
4637 {
4638         int ret;
4639         struct se_cmd *cmd;
4640         struct se_device *dev = param;
4641
4642         while (!kthread_should_stop()) {
4643                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4644                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4645                                 kthread_should_stop());
4646                 if (ret < 0)
4647                         goto out;
4648
4649 get_cmd:
4650                 __transport_execute_tasks(dev);
4651
4652                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4653                 if (!cmd)
4654                         continue;
4655
4656                 switch (cmd->t_state) {
4657                 case TRANSPORT_NEW_CMD:
4658                         BUG();
4659                         break;
4660                 case TRANSPORT_NEW_CMD_MAP:
4661                         if (!cmd->se_tfo->new_cmd_map) {
4662                                 pr_err("cmd->se_tfo->new_cmd_map is"
4663                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4664                                 BUG();
4665                         }
4666                         ret = cmd->se_tfo->new_cmd_map(cmd);
4667                         if (ret < 0) {
4668                                 transport_generic_request_failure(cmd);
4669                                 break;
4670                         }
4671                         ret = transport_generic_new_cmd(cmd);
4672                         if (ret < 0) {
4673                                 transport_generic_request_failure(cmd);
4674                                 break;
4675                         }
4676                         break;
4677                 case TRANSPORT_PROCESS_WRITE:
4678                         transport_generic_process_write(cmd);
4679                         break;
4680                 case TRANSPORT_PROCESS_TMR:
4681                         transport_generic_do_tmr(cmd);
4682                         break;
4683                 case TRANSPORT_COMPLETE_QF_WP:
4684                         transport_write_pending_qf(cmd);
4685                         break;
4686                 case TRANSPORT_COMPLETE_QF_OK:
4687                         transport_complete_qf(cmd);
4688                         break;
4689                 default:
4690                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4691                                 "i_state: %d on SE LUN: %u\n",
4692                                 cmd->t_state,
4693                                 cmd->se_tfo->get_task_tag(cmd),
4694                                 cmd->se_tfo->get_cmd_state(cmd),
4695                                 cmd->se_lun->unpacked_lun);
4696                         BUG();
4697                 }
4698
4699                 goto get_cmd;
4700         }
4701
4702 out:
4703         WARN_ON(!list_empty(&dev->state_task_list));
4704         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4705         dev->process_thread = NULL;
4706         return 0;
4707 }