[SCSI] target: Fix multi task->task_sg[] chaining logic bug
[linux-2.6.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
38 #include <linux/in.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/libsas.h> /* For TASK_ATTR_* */
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
54
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
60
61 /* #define DEBUG_CDB_HANDLER */
62 #ifdef DEBUG_CDB_HANDLER
63 #define DEBUG_CDB_H(x...) printk(KERN_INFO x)
64 #else
65 #define DEBUG_CDB_H(x...)
66 #endif
67
68 /* #define DEBUG_CMD_MAP */
69 #ifdef DEBUG_CMD_MAP
70 #define DEBUG_CMD_M(x...) printk(KERN_INFO x)
71 #else
72 #define DEBUG_CMD_M(x...)
73 #endif
74
75 /* #define DEBUG_MEM_ALLOC */
76 #ifdef DEBUG_MEM_ALLOC
77 #define DEBUG_MEM(x...) printk(KERN_INFO x)
78 #else
79 #define DEBUG_MEM(x...)
80 #endif
81
82 /* #define DEBUG_MEM2_ALLOC */
83 #ifdef DEBUG_MEM2_ALLOC
84 #define DEBUG_MEM2(x...) printk(KERN_INFO x)
85 #else
86 #define DEBUG_MEM2(x...)
87 #endif
88
89 /* #define DEBUG_SG_CALC */
90 #ifdef DEBUG_SG_CALC
91 #define DEBUG_SC(x...) printk(KERN_INFO x)
92 #else
93 #define DEBUG_SC(x...)
94 #endif
95
96 /* #define DEBUG_SE_OBJ */
97 #ifdef DEBUG_SE_OBJ
98 #define DEBUG_SO(x...) printk(KERN_INFO x)
99 #else
100 #define DEBUG_SO(x...)
101 #endif
102
103 /* #define DEBUG_CMD_VOL */
104 #ifdef DEBUG_CMD_VOL
105 #define DEBUG_VOL(x...) printk(KERN_INFO x)
106 #else
107 #define DEBUG_VOL(x...)
108 #endif
109
110 /* #define DEBUG_CMD_STOP */
111 #ifdef DEBUG_CMD_STOP
112 #define DEBUG_CS(x...) printk(KERN_INFO x)
113 #else
114 #define DEBUG_CS(x...)
115 #endif
116
117 /* #define DEBUG_PASSTHROUGH */
118 #ifdef DEBUG_PASSTHROUGH
119 #define DEBUG_PT(x...) printk(KERN_INFO x)
120 #else
121 #define DEBUG_PT(x...)
122 #endif
123
124 /* #define DEBUG_TASK_STOP */
125 #ifdef DEBUG_TASK_STOP
126 #define DEBUG_TS(x...) printk(KERN_INFO x)
127 #else
128 #define DEBUG_TS(x...)
129 #endif
130
131 /* #define DEBUG_TRANSPORT_STOP */
132 #ifdef DEBUG_TRANSPORT_STOP
133 #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x)
134 #else
135 #define DEBUG_TRANSPORT_S(x...)
136 #endif
137
138 /* #define DEBUG_TASK_FAILURE */
139 #ifdef DEBUG_TASK_FAILURE
140 #define DEBUG_TF(x...) printk(KERN_INFO x)
141 #else
142 #define DEBUG_TF(x...)
143 #endif
144
145 /* #define DEBUG_DEV_OFFLINE */
146 #ifdef DEBUG_DEV_OFFLINE
147 #define DEBUG_DO(x...) printk(KERN_INFO x)
148 #else
149 #define DEBUG_DO(x...)
150 #endif
151
152 /* #define DEBUG_TASK_STATE */
153 #ifdef DEBUG_TASK_STATE
154 #define DEBUG_TSTATE(x...) printk(KERN_INFO x)
155 #else
156 #define DEBUG_TSTATE(x...)
157 #endif
158
159 /* #define DEBUG_STATUS_THR */
160 #ifdef DEBUG_STATUS_THR
161 #define DEBUG_ST(x...) printk(KERN_INFO x)
162 #else
163 #define DEBUG_ST(x...)
164 #endif
165
166 /* #define DEBUG_TASK_TIMEOUT */
167 #ifdef DEBUG_TASK_TIMEOUT
168 #define DEBUG_TT(x...) printk(KERN_INFO x)
169 #else
170 #define DEBUG_TT(x...)
171 #endif
172
173 /* #define DEBUG_GENERIC_REQUEST_FAILURE */
174 #ifdef DEBUG_GENERIC_REQUEST_FAILURE
175 #define DEBUG_GRF(x...) printk(KERN_INFO x)
176 #else
177 #define DEBUG_GRF(x...)
178 #endif
179
180 /* #define DEBUG_SAM_TASK_ATTRS */
181 #ifdef DEBUG_SAM_TASK_ATTRS
182 #define DEBUG_STA(x...) printk(KERN_INFO x)
183 #else
184 #define DEBUG_STA(x...)
185 #endif
186
187 struct se_global *se_global;
188
189 static struct kmem_cache *se_cmd_cache;
190 static struct kmem_cache *se_sess_cache;
191 struct kmem_cache *se_tmr_req_cache;
192 struct kmem_cache *se_ua_cache;
193 struct kmem_cache *se_mem_cache;
194 struct kmem_cache *t10_pr_reg_cache;
195 struct kmem_cache *t10_alua_lu_gp_cache;
196 struct kmem_cache *t10_alua_lu_gp_mem_cache;
197 struct kmem_cache *t10_alua_tg_pt_gp_cache;
198 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
199
200 /* Used for transport_dev_get_map_*() */
201 typedef int (*map_func_t)(struct se_task *, u32);
202
203 static int transport_generic_write_pending(struct se_cmd *);
204 static int transport_processing_thread(void *);
205 static int __transport_execute_tasks(struct se_device *dev);
206 static void transport_complete_task_attr(struct se_cmd *cmd);
207 static void transport_direct_request_timeout(struct se_cmd *cmd);
208 static void transport_free_dev_tasks(struct se_cmd *cmd);
209 static u32 transport_generic_get_cdb_count(struct se_cmd *cmd,
210                 unsigned long long starting_lba, u32 sectors,
211                 enum dma_data_direction data_direction,
212                 struct list_head *mem_list, int set_counts);
213 static int transport_generic_get_mem(struct se_cmd *cmd, u32 length,
214                 u32 dma_size);
215 static int transport_generic_remove(struct se_cmd *cmd,
216                 int release_to_pool, int session_reinstatement);
217 static int transport_get_sectors(struct se_cmd *cmd);
218 static struct list_head *transport_init_se_mem_list(void);
219 static int transport_map_sg_to_mem(struct se_cmd *cmd,
220                 struct list_head *se_mem_list, void *in_mem,
221                 u32 *se_mem_cnt);
222 static void transport_memcpy_se_mem_read_contig(struct se_cmd *cmd,
223                 unsigned char *dst, struct list_head *se_mem_list);
224 static void transport_release_fe_cmd(struct se_cmd *cmd);
225 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
226                 struct se_queue_obj *qobj);
227 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
228 static void transport_stop_all_task_timers(struct se_cmd *cmd);
229
230 int init_se_global(void)
231 {
232         struct se_global *global;
233
234         global = kzalloc(sizeof(struct se_global), GFP_KERNEL);
235         if (!(global)) {
236                 printk(KERN_ERR "Unable to allocate memory for struct se_global\n");
237                 return -1;
238         }
239
240         INIT_LIST_HEAD(&global->g_lu_gps_list);
241         INIT_LIST_HEAD(&global->g_se_tpg_list);
242         INIT_LIST_HEAD(&global->g_hba_list);
243         INIT_LIST_HEAD(&global->g_se_dev_list);
244         spin_lock_init(&global->g_device_lock);
245         spin_lock_init(&global->hba_lock);
246         spin_lock_init(&global->se_tpg_lock);
247         spin_lock_init(&global->lu_gps_lock);
248         spin_lock_init(&global->plugin_class_lock);
249
250         se_cmd_cache = kmem_cache_create("se_cmd_cache",
251                         sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
252         if (!(se_cmd_cache)) {
253                 printk(KERN_ERR "kmem_cache_create for struct se_cmd failed\n");
254                 goto out;
255         }
256         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
257                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
258                         0, NULL);
259         if (!(se_tmr_req_cache)) {
260                 printk(KERN_ERR "kmem_cache_create() for struct se_tmr_req"
261                                 " failed\n");
262                 goto out;
263         }
264         se_sess_cache = kmem_cache_create("se_sess_cache",
265                         sizeof(struct se_session), __alignof__(struct se_session),
266                         0, NULL);
267         if (!(se_sess_cache)) {
268                 printk(KERN_ERR "kmem_cache_create() for struct se_session"
269                                 " failed\n");
270                 goto out;
271         }
272         se_ua_cache = kmem_cache_create("se_ua_cache",
273                         sizeof(struct se_ua), __alignof__(struct se_ua),
274                         0, NULL);
275         if (!(se_ua_cache)) {
276                 printk(KERN_ERR "kmem_cache_create() for struct se_ua failed\n");
277                 goto out;
278         }
279         se_mem_cache = kmem_cache_create("se_mem_cache",
280                         sizeof(struct se_mem), __alignof__(struct se_mem), 0, NULL);
281         if (!(se_mem_cache)) {
282                 printk(KERN_ERR "kmem_cache_create() for struct se_mem failed\n");
283                 goto out;
284         }
285         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
286                         sizeof(struct t10_pr_registration),
287                         __alignof__(struct t10_pr_registration), 0, NULL);
288         if (!(t10_pr_reg_cache)) {
289                 printk(KERN_ERR "kmem_cache_create() for struct t10_pr_registration"
290                                 " failed\n");
291                 goto out;
292         }
293         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
294                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
295                         0, NULL);
296         if (!(t10_alua_lu_gp_cache)) {
297                 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_cache"
298                                 " failed\n");
299                 goto out;
300         }
301         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
302                         sizeof(struct t10_alua_lu_gp_member),
303                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
304         if (!(t10_alua_lu_gp_mem_cache)) {
305                 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_mem_"
306                                 "cache failed\n");
307                 goto out;
308         }
309         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
310                         sizeof(struct t10_alua_tg_pt_gp),
311                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
312         if (!(t10_alua_tg_pt_gp_cache)) {
313                 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
314                                 "cache failed\n");
315                 goto out;
316         }
317         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
318                         "t10_alua_tg_pt_gp_mem_cache",
319                         sizeof(struct t10_alua_tg_pt_gp_member),
320                         __alignof__(struct t10_alua_tg_pt_gp_member),
321                         0, NULL);
322         if (!(t10_alua_tg_pt_gp_mem_cache)) {
323                 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
324                                 "mem_t failed\n");
325                 goto out;
326         }
327
328         se_global = global;
329
330         return 0;
331 out:
332         if (se_cmd_cache)
333                 kmem_cache_destroy(se_cmd_cache);
334         if (se_tmr_req_cache)
335                 kmem_cache_destroy(se_tmr_req_cache);
336         if (se_sess_cache)
337                 kmem_cache_destroy(se_sess_cache);
338         if (se_ua_cache)
339                 kmem_cache_destroy(se_ua_cache);
340         if (se_mem_cache)
341                 kmem_cache_destroy(se_mem_cache);
342         if (t10_pr_reg_cache)
343                 kmem_cache_destroy(t10_pr_reg_cache);
344         if (t10_alua_lu_gp_cache)
345                 kmem_cache_destroy(t10_alua_lu_gp_cache);
346         if (t10_alua_lu_gp_mem_cache)
347                 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
348         if (t10_alua_tg_pt_gp_cache)
349                 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
350         if (t10_alua_tg_pt_gp_mem_cache)
351                 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
352         kfree(global);
353         return -1;
354 }
355
356 void release_se_global(void)
357 {
358         struct se_global *global;
359
360         global = se_global;
361         if (!(global))
362                 return;
363
364         kmem_cache_destroy(se_cmd_cache);
365         kmem_cache_destroy(se_tmr_req_cache);
366         kmem_cache_destroy(se_sess_cache);
367         kmem_cache_destroy(se_ua_cache);
368         kmem_cache_destroy(se_mem_cache);
369         kmem_cache_destroy(t10_pr_reg_cache);
370         kmem_cache_destroy(t10_alua_lu_gp_cache);
371         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
372         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
373         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
374         kfree(global);
375
376         se_global = NULL;
377 }
378
379 /* SCSI statistics table index */
380 static struct scsi_index_table scsi_index_table;
381
382 /*
383  * Initialize the index table for allocating unique row indexes to various mib
384  * tables.
385  */
386 void init_scsi_index_table(void)
387 {
388         memset(&scsi_index_table, 0, sizeof(struct scsi_index_table));
389         spin_lock_init(&scsi_index_table.lock);
390 }
391
392 /*
393  * Allocate a new row index for the entry type specified
394  */
395 u32 scsi_get_new_index(scsi_index_t type)
396 {
397         u32 new_index;
398
399         if ((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)) {
400                 printk(KERN_ERR "Invalid index type %d\n", type);
401                 return -EINVAL;
402         }
403
404         spin_lock(&scsi_index_table.lock);
405         new_index = ++scsi_index_table.scsi_mib_index[type];
406         if (new_index == 0)
407                 new_index = ++scsi_index_table.scsi_mib_index[type];
408         spin_unlock(&scsi_index_table.lock);
409
410         return new_index;
411 }
412
413 void transport_init_queue_obj(struct se_queue_obj *qobj)
414 {
415         atomic_set(&qobj->queue_cnt, 0);
416         INIT_LIST_HEAD(&qobj->qobj_list);
417         init_waitqueue_head(&qobj->thread_wq);
418         spin_lock_init(&qobj->cmd_queue_lock);
419 }
420 EXPORT_SYMBOL(transport_init_queue_obj);
421
422 static int transport_subsystem_reqmods(void)
423 {
424         int ret;
425
426         ret = request_module("target_core_iblock");
427         if (ret != 0)
428                 printk(KERN_ERR "Unable to load target_core_iblock\n");
429
430         ret = request_module("target_core_file");
431         if (ret != 0)
432                 printk(KERN_ERR "Unable to load target_core_file\n");
433
434         ret = request_module("target_core_pscsi");
435         if (ret != 0)
436                 printk(KERN_ERR "Unable to load target_core_pscsi\n");
437
438         ret = request_module("target_core_stgt");
439         if (ret != 0)
440                 printk(KERN_ERR "Unable to load target_core_stgt\n");
441
442         return 0;
443 }
444
445 int transport_subsystem_check_init(void)
446 {
447         if (se_global->g_sub_api_initialized)
448                 return 0;
449         /*
450          * Request the loading of known TCM subsystem plugins..
451          */
452         if (transport_subsystem_reqmods() < 0)
453                 return -1;
454
455         se_global->g_sub_api_initialized = 1;
456         return 0;
457 }
458
459 struct se_session *transport_init_session(void)
460 {
461         struct se_session *se_sess;
462
463         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
464         if (!(se_sess)) {
465                 printk(KERN_ERR "Unable to allocate struct se_session from"
466                                 " se_sess_cache\n");
467                 return ERR_PTR(-ENOMEM);
468         }
469         INIT_LIST_HEAD(&se_sess->sess_list);
470         INIT_LIST_HEAD(&se_sess->sess_acl_list);
471
472         return se_sess;
473 }
474 EXPORT_SYMBOL(transport_init_session);
475
476 /*
477  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
478  */
479 void __transport_register_session(
480         struct se_portal_group *se_tpg,
481         struct se_node_acl *se_nacl,
482         struct se_session *se_sess,
483         void *fabric_sess_ptr)
484 {
485         unsigned char buf[PR_REG_ISID_LEN];
486
487         se_sess->se_tpg = se_tpg;
488         se_sess->fabric_sess_ptr = fabric_sess_ptr;
489         /*
490          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
491          *
492          * Only set for struct se_session's that will actually be moving I/O.
493          * eg: *NOT* discovery sessions.
494          */
495         if (se_nacl) {
496                 /*
497                  * If the fabric module supports an ISID based TransportID,
498                  * save this value in binary from the fabric I_T Nexus now.
499                  */
500                 if (TPG_TFO(se_tpg)->sess_get_initiator_sid != NULL) {
501                         memset(&buf[0], 0, PR_REG_ISID_LEN);
502                         TPG_TFO(se_tpg)->sess_get_initiator_sid(se_sess,
503                                         &buf[0], PR_REG_ISID_LEN);
504                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
505                 }
506                 spin_lock_irq(&se_nacl->nacl_sess_lock);
507                 /*
508                  * The se_nacl->nacl_sess pointer will be set to the
509                  * last active I_T Nexus for each struct se_node_acl.
510                  */
511                 se_nacl->nacl_sess = se_sess;
512
513                 list_add_tail(&se_sess->sess_acl_list,
514                               &se_nacl->acl_sess_list);
515                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
516         }
517         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
518
519         printk(KERN_INFO "TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
520                 TPG_TFO(se_tpg)->get_fabric_name(), se_sess->fabric_sess_ptr);
521 }
522 EXPORT_SYMBOL(__transport_register_session);
523
524 void transport_register_session(
525         struct se_portal_group *se_tpg,
526         struct se_node_acl *se_nacl,
527         struct se_session *se_sess,
528         void *fabric_sess_ptr)
529 {
530         spin_lock_bh(&se_tpg->session_lock);
531         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
532         spin_unlock_bh(&se_tpg->session_lock);
533 }
534 EXPORT_SYMBOL(transport_register_session);
535
536 void transport_deregister_session_configfs(struct se_session *se_sess)
537 {
538         struct se_node_acl *se_nacl;
539
540         /*
541          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
542          */
543         se_nacl = se_sess->se_node_acl;
544         if ((se_nacl)) {
545                 spin_lock_irq(&se_nacl->nacl_sess_lock);
546                 list_del(&se_sess->sess_acl_list);
547                 /*
548                  * If the session list is empty, then clear the pointer.
549                  * Otherwise, set the struct se_session pointer from the tail
550                  * element of the per struct se_node_acl active session list.
551                  */
552                 if (list_empty(&se_nacl->acl_sess_list))
553                         se_nacl->nacl_sess = NULL;
554                 else {
555                         se_nacl->nacl_sess = container_of(
556                                         se_nacl->acl_sess_list.prev,
557                                         struct se_session, sess_acl_list);
558                 }
559                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
560         }
561 }
562 EXPORT_SYMBOL(transport_deregister_session_configfs);
563
564 void transport_free_session(struct se_session *se_sess)
565 {
566         kmem_cache_free(se_sess_cache, se_sess);
567 }
568 EXPORT_SYMBOL(transport_free_session);
569
570 void transport_deregister_session(struct se_session *se_sess)
571 {
572         struct se_portal_group *se_tpg = se_sess->se_tpg;
573         struct se_node_acl *se_nacl;
574
575         if (!(se_tpg)) {
576                 transport_free_session(se_sess);
577                 return;
578         }
579
580         spin_lock_bh(&se_tpg->session_lock);
581         list_del(&se_sess->sess_list);
582         se_sess->se_tpg = NULL;
583         se_sess->fabric_sess_ptr = NULL;
584         spin_unlock_bh(&se_tpg->session_lock);
585
586         /*
587          * Determine if we need to do extra work for this initiator node's
588          * struct se_node_acl if it had been previously dynamically generated.
589          */
590         se_nacl = se_sess->se_node_acl;
591         if ((se_nacl)) {
592                 spin_lock_bh(&se_tpg->acl_node_lock);
593                 if (se_nacl->dynamic_node_acl) {
594                         if (!(TPG_TFO(se_tpg)->tpg_check_demo_mode_cache(
595                                         se_tpg))) {
596                                 list_del(&se_nacl->acl_list);
597                                 se_tpg->num_node_acls--;
598                                 spin_unlock_bh(&se_tpg->acl_node_lock);
599
600                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
601                                 core_free_device_list_for_node(se_nacl, se_tpg);
602                                 TPG_TFO(se_tpg)->tpg_release_fabric_acl(se_tpg,
603                                                 se_nacl);
604                                 spin_lock_bh(&se_tpg->acl_node_lock);
605                         }
606                 }
607                 spin_unlock_bh(&se_tpg->acl_node_lock);
608         }
609
610         transport_free_session(se_sess);
611
612         printk(KERN_INFO "TARGET_CORE[%s]: Deregistered fabric_sess\n",
613                 TPG_TFO(se_tpg)->get_fabric_name());
614 }
615 EXPORT_SYMBOL(transport_deregister_session);
616
617 /*
618  * Called with T_TASK(cmd)->t_state_lock held.
619  */
620 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
621 {
622         struct se_device *dev;
623         struct se_task *task;
624         unsigned long flags;
625
626         if (!T_TASK(cmd))
627                 return;
628
629         list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
630                 dev = task->se_dev;
631                 if (!(dev))
632                         continue;
633
634                 if (atomic_read(&task->task_active))
635                         continue;
636
637                 if (!(atomic_read(&task->task_state_active)))
638                         continue;
639
640                 spin_lock_irqsave(&dev->execute_task_lock, flags);
641                 list_del(&task->t_state_list);
642                 DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n",
643                         CMD_TFO(cmd)->tfo_get_task_tag(cmd), dev, task);
644                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
645
646                 atomic_set(&task->task_state_active, 0);
647                 atomic_dec(&T_TASK(cmd)->t_task_cdbs_ex_left);
648         }
649 }
650
651 /*      transport_cmd_check_stop():
652  *
653  *      'transport_off = 1' determines if t_transport_active should be cleared.
654  *      'transport_off = 2' determines if task_dev_state should be removed.
655  *
656  *      A non-zero u8 t_state sets cmd->t_state.
657  *      Returns 1 when command is stopped, else 0.
658  */
659 static int transport_cmd_check_stop(
660         struct se_cmd *cmd,
661         int transport_off,
662         u8 t_state)
663 {
664         unsigned long flags;
665
666         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
667         /*
668          * Determine if IOCTL context caller in requesting the stopping of this
669          * command for LUN shutdown purposes.
670          */
671         if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
672                 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->transport_lun_stop)"
673                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
674                         CMD_TFO(cmd)->get_task_tag(cmd));
675
676                 cmd->deferred_t_state = cmd->t_state;
677                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
678                 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
679                 if (transport_off == 2)
680                         transport_all_task_dev_remove_state(cmd);
681                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
682
683                 complete(&T_TASK(cmd)->transport_lun_stop_comp);
684                 return 1;
685         }
686         /*
687          * Determine if frontend context caller is requesting the stopping of
688          * this command for frontend excpections.
689          */
690         if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
691                 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->t_transport_stop) =="
692                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
693                         CMD_TFO(cmd)->get_task_tag(cmd));
694
695                 cmd->deferred_t_state = cmd->t_state;
696                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
697                 if (transport_off == 2)
698                         transport_all_task_dev_remove_state(cmd);
699
700                 /*
701                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
702                  * to FE.
703                  */
704                 if (transport_off == 2)
705                         cmd->se_lun = NULL;
706                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
707
708                 complete(&T_TASK(cmd)->t_transport_stop_comp);
709                 return 1;
710         }
711         if (transport_off) {
712                 atomic_set(&T_TASK(cmd)->t_transport_active, 0);
713                 if (transport_off == 2) {
714                         transport_all_task_dev_remove_state(cmd);
715                         /*
716                          * Clear struct se_cmd->se_lun before the transport_off == 2
717                          * handoff to fabric module.
718                          */
719                         cmd->se_lun = NULL;
720                         /*
721                          * Some fabric modules like tcm_loop can release
722                          * their internally allocated I/O reference now and
723                          * struct se_cmd now.
724                          */
725                         if (CMD_TFO(cmd)->check_stop_free != NULL) {
726                                 spin_unlock_irqrestore(
727                                         &T_TASK(cmd)->t_state_lock, flags);
728
729                                 CMD_TFO(cmd)->check_stop_free(cmd);
730                                 return 1;
731                         }
732                 }
733                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
734
735                 return 0;
736         } else if (t_state)
737                 cmd->t_state = t_state;
738         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
739
740         return 0;
741 }
742
743 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
744 {
745         return transport_cmd_check_stop(cmd, 2, 0);
746 }
747
748 static void transport_lun_remove_cmd(struct se_cmd *cmd)
749 {
750         struct se_lun *lun = SE_LUN(cmd);
751         unsigned long flags;
752
753         if (!lun)
754                 return;
755
756         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
757         if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
758                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
759                 goto check_lun;
760         }
761         atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
762         transport_all_task_dev_remove_state(cmd);
763         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
764
765         transport_free_dev_tasks(cmd);
766
767 check_lun:
768         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
769         if (atomic_read(&T_TASK(cmd)->transport_lun_active)) {
770                 list_del(&cmd->se_lun_list);
771                 atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
772 #if 0
773                 printk(KERN_INFO "Removed ITT: 0x%08x from LUN LIST[%d]\n"
774                         CMD_TFO(cmd)->get_task_tag(cmd), lun->unpacked_lun);
775 #endif
776         }
777         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
778 }
779
780 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
781 {
782         transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
783         transport_lun_remove_cmd(cmd);
784
785         if (transport_cmd_check_stop_to_fabric(cmd))
786                 return;
787         if (remove)
788                 transport_generic_remove(cmd, 0, 0);
789 }
790
791 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
792 {
793         transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
794
795         if (transport_cmd_check_stop_to_fabric(cmd))
796                 return;
797
798         transport_generic_remove(cmd, 0, 0);
799 }
800
801 static int transport_add_cmd_to_queue(
802         struct se_cmd *cmd,
803         int t_state)
804 {
805         struct se_device *dev = cmd->se_dev;
806         struct se_queue_obj *qobj = dev->dev_queue_obj;
807         struct se_queue_req *qr;
808         unsigned long flags;
809
810         qr = kzalloc(sizeof(struct se_queue_req), GFP_ATOMIC);
811         if (!(qr)) {
812                 printk(KERN_ERR "Unable to allocate memory for"
813                                 " struct se_queue_req\n");
814                 return -1;
815         }
816         INIT_LIST_HEAD(&qr->qr_list);
817
818         qr->cmd = (void *)cmd;
819         qr->state = t_state;
820
821         if (t_state) {
822                 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
823                 cmd->t_state = t_state;
824                 atomic_set(&T_TASK(cmd)->t_transport_active, 1);
825                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
826         }
827
828         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
829         list_add_tail(&qr->qr_list, &qobj->qobj_list);
830         atomic_inc(&T_TASK(cmd)->t_transport_queue_active);
831         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
832
833         atomic_inc(&qobj->queue_cnt);
834         wake_up_interruptible(&qobj->thread_wq);
835         return 0;
836 }
837
838 /*
839  * Called with struct se_queue_obj->cmd_queue_lock held.
840  */
841 static struct se_queue_req *
842 __transport_get_qr_from_queue(struct se_queue_obj *qobj)
843 {
844         struct se_cmd *cmd;
845         struct se_queue_req *qr = NULL;
846
847         if (list_empty(&qobj->qobj_list))
848                 return NULL;
849
850         list_for_each_entry(qr, &qobj->qobj_list, qr_list)
851                 break;
852
853         if (qr->cmd) {
854                 cmd = (struct se_cmd *)qr->cmd;
855                 atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
856         }
857         list_del(&qr->qr_list);
858         atomic_dec(&qobj->queue_cnt);
859
860         return qr;
861 }
862
863 static struct se_queue_req *
864 transport_get_qr_from_queue(struct se_queue_obj *qobj)
865 {
866         struct se_cmd *cmd;
867         struct se_queue_req *qr;
868         unsigned long flags;
869
870         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
871         if (list_empty(&qobj->qobj_list)) {
872                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
873                 return NULL;
874         }
875
876         list_for_each_entry(qr, &qobj->qobj_list, qr_list)
877                 break;
878
879         if (qr->cmd) {
880                 cmd = (struct se_cmd *)qr->cmd;
881                 atomic_dec(&T_TASK(cmd)->t_transport_queue_active);
882         }
883         list_del(&qr->qr_list);
884         atomic_dec(&qobj->queue_cnt);
885         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
886
887         return qr;
888 }
889
890 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
891                 struct se_queue_obj *qobj)
892 {
893         struct se_cmd *q_cmd;
894         struct se_queue_req *qr = NULL, *qr_p = NULL;
895         unsigned long flags;
896
897         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
898         if (!(atomic_read(&T_TASK(cmd)->t_transport_queue_active))) {
899                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
900                 return;
901         }
902
903         list_for_each_entry_safe(qr, qr_p, &qobj->qobj_list, qr_list) {
904                 q_cmd = (struct se_cmd *)qr->cmd;
905                 if (q_cmd != cmd)
906                         continue;
907
908                 atomic_dec(&T_TASK(q_cmd)->t_transport_queue_active);
909                 atomic_dec(&qobj->queue_cnt);
910                 list_del(&qr->qr_list);
911                 kfree(qr);
912         }
913         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
914
915         if (atomic_read(&T_TASK(cmd)->t_transport_queue_active)) {
916                 printk(KERN_ERR "ITT: 0x%08x t_transport_queue_active: %d\n",
917                         CMD_TFO(cmd)->get_task_tag(cmd),
918                         atomic_read(&T_TASK(cmd)->t_transport_queue_active));
919         }
920 }
921
922 /*
923  * Completion function used by TCM subsystem plugins (such as FILEIO)
924  * for queueing up response from struct se_subsystem_api->do_task()
925  */
926 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
927 {
928         struct se_task *task = list_entry(T_TASK(cmd)->t_task_list.next,
929                                 struct se_task, t_list);
930
931         if (good) {
932                 cmd->scsi_status = SAM_STAT_GOOD;
933                 task->task_scsi_status = GOOD;
934         } else {
935                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
936                 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
937                 TASK_CMD(task)->transport_error_status =
938                                         PYX_TRANSPORT_ILLEGAL_REQUEST;
939         }
940
941         transport_complete_task(task, good);
942 }
943 EXPORT_SYMBOL(transport_complete_sync_cache);
944
945 /*      transport_complete_task():
946  *
947  *      Called from interrupt and non interrupt context depending
948  *      on the transport plugin.
949  */
950 void transport_complete_task(struct se_task *task, int success)
951 {
952         struct se_cmd *cmd = TASK_CMD(task);
953         struct se_device *dev = task->se_dev;
954         int t_state;
955         unsigned long flags;
956 #if 0
957         printk(KERN_INFO "task: %p CDB: 0x%02x obj_ptr: %p\n", task,
958                         T_TASK(cmd)->t_task_cdb[0], dev);
959 #endif
960         if (dev) {
961                 spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
962                 atomic_inc(&dev->depth_left);
963                 atomic_inc(&SE_HBA(dev)->left_queue_depth);
964                 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
965         }
966
967         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
968         atomic_set(&task->task_active, 0);
969
970         /*
971          * See if any sense data exists, if so set the TASK_SENSE flag.
972          * Also check for any other post completion work that needs to be
973          * done by the plugins.
974          */
975         if (dev && dev->transport->transport_complete) {
976                 if (dev->transport->transport_complete(task) != 0) {
977                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
978                         task->task_sense = 1;
979                         success = 1;
980                 }
981         }
982
983         /*
984          * See if we are waiting for outstanding struct se_task
985          * to complete for an exception condition
986          */
987         if (atomic_read(&task->task_stop)) {
988                 /*
989                  * Decrement T_TASK(cmd)->t_se_count if this task had
990                  * previously thrown its timeout exception handler.
991                  */
992                 if (atomic_read(&task->task_timeout)) {
993                         atomic_dec(&T_TASK(cmd)->t_se_count);
994                         atomic_set(&task->task_timeout, 0);
995                 }
996                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
997
998                 complete(&task->task_stop_comp);
999                 return;
1000         }
1001         /*
1002          * If the task's timeout handler has fired, use the t_task_cdbs_timeout
1003          * left counter to determine when the struct se_cmd is ready to be queued to
1004          * the processing thread.
1005          */
1006         if (atomic_read(&task->task_timeout)) {
1007                 if (!(atomic_dec_and_test(
1008                                 &T_TASK(cmd)->t_task_cdbs_timeout_left))) {
1009                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
1010                                 flags);
1011                         return;
1012                 }
1013                 t_state = TRANSPORT_COMPLETE_TIMEOUT;
1014                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1015
1016                 transport_add_cmd_to_queue(cmd, t_state);
1017                 return;
1018         }
1019         atomic_dec(&T_TASK(cmd)->t_task_cdbs_timeout_left);
1020
1021         /*
1022          * Decrement the outstanding t_task_cdbs_left count.  The last
1023          * struct se_task from struct se_cmd will complete itself into the
1024          * device queue depending upon int success.
1025          */
1026         if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
1027                 if (!success)
1028                         T_TASK(cmd)->t_tasks_failed = 1;
1029
1030                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1031                 return;
1032         }
1033
1034         if (!success || T_TASK(cmd)->t_tasks_failed) {
1035                 t_state = TRANSPORT_COMPLETE_FAILURE;
1036                 if (!task->task_error_status) {
1037                         task->task_error_status =
1038                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
1039                         cmd->transport_error_status =
1040                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
1041                 }
1042         } else {
1043                 atomic_set(&T_TASK(cmd)->t_transport_complete, 1);
1044                 t_state = TRANSPORT_COMPLETE_OK;
1045         }
1046         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1047
1048         transport_add_cmd_to_queue(cmd, t_state);
1049 }
1050 EXPORT_SYMBOL(transport_complete_task);
1051
1052 /*
1053  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
1054  * struct se_task list are ready to be added to the active execution list
1055  * struct se_device
1056
1057  * Called with se_dev_t->execute_task_lock called.
1058  */
1059 static inline int transport_add_task_check_sam_attr(
1060         struct se_task *task,
1061         struct se_task *task_prev,
1062         struct se_device *dev)
1063 {
1064         /*
1065          * No SAM Task attribute emulation enabled, add to tail of
1066          * execution queue
1067          */
1068         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
1069                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1070                 return 0;
1071         }
1072         /*
1073          * HEAD_OF_QUEUE attribute for received CDB, which means
1074          * the first task that is associated with a struct se_cmd goes to
1075          * head of the struct se_device->execute_task_list, and task_prev
1076          * after that for each subsequent task
1077          */
1078         if (task->task_se_cmd->sam_task_attr == TASK_ATTR_HOQ) {
1079                 list_add(&task->t_execute_list,
1080                                 (task_prev != NULL) ?
1081                                 &task_prev->t_execute_list :
1082                                 &dev->execute_task_list);
1083
1084                 DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
1085                                 " in execution queue\n",
1086                                 T_TASK(task->task_se_cmd)->t_task_cdb[0]);
1087                 return 1;
1088         }
1089         /*
1090          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
1091          * transitioned from Dermant -> Active state, and are added to the end
1092          * of the struct se_device->execute_task_list
1093          */
1094         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1095         return 0;
1096 }
1097
1098 /*      __transport_add_task_to_execute_queue():
1099  *
1100  *      Called with se_dev_t->execute_task_lock called.
1101  */
1102 static void __transport_add_task_to_execute_queue(
1103         struct se_task *task,
1104         struct se_task *task_prev,
1105         struct se_device *dev)
1106 {
1107         int head_of_queue;
1108
1109         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
1110         atomic_inc(&dev->execute_tasks);
1111
1112         if (atomic_read(&task->task_state_active))
1113                 return;
1114         /*
1115          * Determine if this task needs to go to HEAD_OF_QUEUE for the
1116          * state list as well.  Running with SAM Task Attribute emulation
1117          * will always return head_of_queue == 0 here
1118          */
1119         if (head_of_queue)
1120                 list_add(&task->t_state_list, (task_prev) ?
1121                                 &task_prev->t_state_list :
1122                                 &dev->state_task_list);
1123         else
1124                 list_add_tail(&task->t_state_list, &dev->state_task_list);
1125
1126         atomic_set(&task->task_state_active, 1);
1127
1128         DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1129                 CMD_TFO(task->task_se_cmd)->get_task_tag(task->task_se_cmd),
1130                 task, dev);
1131 }
1132
1133 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
1134 {
1135         struct se_device *dev;
1136         struct se_task *task;
1137         unsigned long flags;
1138
1139         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
1140         list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
1141                 dev = task->se_dev;
1142
1143                 if (atomic_read(&task->task_state_active))
1144                         continue;
1145
1146                 spin_lock(&dev->execute_task_lock);
1147                 list_add_tail(&task->t_state_list, &dev->state_task_list);
1148                 atomic_set(&task->task_state_active, 1);
1149
1150                 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1151                         CMD_TFO(task->task_se_cmd)->get_task_tag(
1152                         task->task_se_cmd), task, dev);
1153
1154                 spin_unlock(&dev->execute_task_lock);
1155         }
1156         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1157 }
1158
1159 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
1160 {
1161         struct se_device *dev = SE_DEV(cmd);
1162         struct se_task *task, *task_prev = NULL;
1163         unsigned long flags;
1164
1165         spin_lock_irqsave(&dev->execute_task_lock, flags);
1166         list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
1167                 if (atomic_read(&task->task_execute_queue))
1168                         continue;
1169                 /*
1170                  * __transport_add_task_to_execute_queue() handles the
1171                  * SAM Task Attribute emulation if enabled
1172                  */
1173                 __transport_add_task_to_execute_queue(task, task_prev, dev);
1174                 atomic_set(&task->task_execute_queue, 1);
1175                 task_prev = task;
1176         }
1177         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1178
1179         return;
1180 }
1181
1182 /*      transport_get_task_from_execute_queue():
1183  *
1184  *      Called with dev->execute_task_lock held.
1185  */
1186 static struct se_task *
1187 transport_get_task_from_execute_queue(struct se_device *dev)
1188 {
1189         struct se_task *task;
1190
1191         if (list_empty(&dev->execute_task_list))
1192                 return NULL;
1193
1194         list_for_each_entry(task, &dev->execute_task_list, t_execute_list)
1195                 break;
1196
1197         list_del(&task->t_execute_list);
1198         atomic_dec(&dev->execute_tasks);
1199
1200         return task;
1201 }
1202
1203 /*      transport_remove_task_from_execute_queue():
1204  *
1205  *
1206  */
1207 void transport_remove_task_from_execute_queue(
1208         struct se_task *task,
1209         struct se_device *dev)
1210 {
1211         unsigned long flags;
1212
1213         spin_lock_irqsave(&dev->execute_task_lock, flags);
1214         list_del(&task->t_execute_list);
1215         atomic_dec(&dev->execute_tasks);
1216         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1217 }
1218
1219 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1220 {
1221         switch (cmd->data_direction) {
1222         case DMA_NONE:
1223                 return "NONE";
1224         case DMA_FROM_DEVICE:
1225                 return "READ";
1226         case DMA_TO_DEVICE:
1227                 return "WRITE";
1228         case DMA_BIDIRECTIONAL:
1229                 return "BIDI";
1230         default:
1231                 break;
1232         }
1233
1234         return "UNKNOWN";
1235 }
1236
1237 void transport_dump_dev_state(
1238         struct se_device *dev,
1239         char *b,
1240         int *bl)
1241 {
1242         *bl += sprintf(b + *bl, "Status: ");
1243         switch (dev->dev_status) {
1244         case TRANSPORT_DEVICE_ACTIVATED:
1245                 *bl += sprintf(b + *bl, "ACTIVATED");
1246                 break;
1247         case TRANSPORT_DEVICE_DEACTIVATED:
1248                 *bl += sprintf(b + *bl, "DEACTIVATED");
1249                 break;
1250         case TRANSPORT_DEVICE_SHUTDOWN:
1251                 *bl += sprintf(b + *bl, "SHUTDOWN");
1252                 break;
1253         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1254         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1255                 *bl += sprintf(b + *bl, "OFFLINE");
1256                 break;
1257         default:
1258                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1259                 break;
1260         }
1261
1262         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
1263                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1264                 dev->queue_depth);
1265         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1266                 DEV_ATTRIB(dev)->block_size, DEV_ATTRIB(dev)->max_sectors);
1267         *bl += sprintf(b + *bl, "        ");
1268 }
1269
1270 /*      transport_release_all_cmds():
1271  *
1272  *
1273  */
1274 static void transport_release_all_cmds(struct se_device *dev)
1275 {
1276         struct se_cmd *cmd = NULL;
1277         struct se_queue_req *qr = NULL, *qr_p = NULL;
1278         int bug_out = 0, t_state;
1279         unsigned long flags;
1280
1281         spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
1282         list_for_each_entry_safe(qr, qr_p, &dev->dev_queue_obj->qobj_list,
1283                                 qr_list) {
1284
1285                 cmd = (struct se_cmd *)qr->cmd;
1286                 t_state = qr->state;
1287                 list_del(&qr->qr_list);
1288                 kfree(qr);
1289                 spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock,
1290                                 flags);
1291
1292                 printk(KERN_ERR "Releasing ITT: 0x%08x, i_state: %u,"
1293                         " t_state: %u directly\n",
1294                         CMD_TFO(cmd)->get_task_tag(cmd),
1295                         CMD_TFO(cmd)->get_cmd_state(cmd), t_state);
1296
1297                 transport_release_fe_cmd(cmd);
1298                 bug_out = 1;
1299
1300                 spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags);
1301         }
1302         spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags);
1303 #if 0
1304         if (bug_out)
1305                 BUG();
1306 #endif
1307 }
1308
1309 void transport_dump_vpd_proto_id(
1310         struct t10_vpd *vpd,
1311         unsigned char *p_buf,
1312         int p_buf_len)
1313 {
1314         unsigned char buf[VPD_TMP_BUF_SIZE];
1315         int len;
1316
1317         memset(buf, 0, VPD_TMP_BUF_SIZE);
1318         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1319
1320         switch (vpd->protocol_identifier) {
1321         case 0x00:
1322                 sprintf(buf+len, "Fibre Channel\n");
1323                 break;
1324         case 0x10:
1325                 sprintf(buf+len, "Parallel SCSI\n");
1326                 break;
1327         case 0x20:
1328                 sprintf(buf+len, "SSA\n");
1329                 break;
1330         case 0x30:
1331                 sprintf(buf+len, "IEEE 1394\n");
1332                 break;
1333         case 0x40:
1334                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1335                                 " Protocol\n");
1336                 break;
1337         case 0x50:
1338                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1339                 break;
1340         case 0x60:
1341                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1342                 break;
1343         case 0x70:
1344                 sprintf(buf+len, "Automation/Drive Interface Transport"
1345                                 " Protocol\n");
1346                 break;
1347         case 0x80:
1348                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1349                 break;
1350         default:
1351                 sprintf(buf+len, "Unknown 0x%02x\n",
1352                                 vpd->protocol_identifier);
1353                 break;
1354         }
1355
1356         if (p_buf)
1357                 strncpy(p_buf, buf, p_buf_len);
1358         else
1359                 printk(KERN_INFO "%s", buf);
1360 }
1361
1362 void
1363 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1364 {
1365         /*
1366          * Check if the Protocol Identifier Valid (PIV) bit is set..
1367          *
1368          * from spc3r23.pdf section 7.5.1
1369          */
1370          if (page_83[1] & 0x80) {
1371                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1372                 vpd->protocol_identifier_set = 1;
1373                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1374         }
1375 }
1376 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1377
1378 int transport_dump_vpd_assoc(
1379         struct t10_vpd *vpd,
1380         unsigned char *p_buf,
1381         int p_buf_len)
1382 {
1383         unsigned char buf[VPD_TMP_BUF_SIZE];
1384         int ret = 0, len;
1385
1386         memset(buf, 0, VPD_TMP_BUF_SIZE);
1387         len = sprintf(buf, "T10 VPD Identifier Association: ");
1388
1389         switch (vpd->association) {
1390         case 0x00:
1391                 sprintf(buf+len, "addressed logical unit\n");
1392                 break;
1393         case 0x10:
1394                 sprintf(buf+len, "target port\n");
1395                 break;
1396         case 0x20:
1397                 sprintf(buf+len, "SCSI target device\n");
1398                 break;
1399         default:
1400                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1401                 ret = -1;
1402                 break;
1403         }
1404
1405         if (p_buf)
1406                 strncpy(p_buf, buf, p_buf_len);
1407         else
1408                 printk("%s", buf);
1409
1410         return ret;
1411 }
1412
1413 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1414 {
1415         /*
1416          * The VPD identification association..
1417          *
1418          * from spc3r23.pdf Section 7.6.3.1 Table 297
1419          */
1420         vpd->association = (page_83[1] & 0x30);
1421         return transport_dump_vpd_assoc(vpd, NULL, 0);
1422 }
1423 EXPORT_SYMBOL(transport_set_vpd_assoc);
1424
1425 int transport_dump_vpd_ident_type(
1426         struct t10_vpd *vpd,
1427         unsigned char *p_buf,
1428         int p_buf_len)
1429 {
1430         unsigned char buf[VPD_TMP_BUF_SIZE];
1431         int ret = 0, len;
1432
1433         memset(buf, 0, VPD_TMP_BUF_SIZE);
1434         len = sprintf(buf, "T10 VPD Identifier Type: ");
1435
1436         switch (vpd->device_identifier_type) {
1437         case 0x00:
1438                 sprintf(buf+len, "Vendor specific\n");
1439                 break;
1440         case 0x01:
1441                 sprintf(buf+len, "T10 Vendor ID based\n");
1442                 break;
1443         case 0x02:
1444                 sprintf(buf+len, "EUI-64 based\n");
1445                 break;
1446         case 0x03:
1447                 sprintf(buf+len, "NAA\n");
1448                 break;
1449         case 0x04:
1450                 sprintf(buf+len, "Relative target port identifier\n");
1451                 break;
1452         case 0x08:
1453                 sprintf(buf+len, "SCSI name string\n");
1454                 break;
1455         default:
1456                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1457                                 vpd->device_identifier_type);
1458                 ret = -1;
1459                 break;
1460         }
1461
1462         if (p_buf)
1463                 strncpy(p_buf, buf, p_buf_len);
1464         else
1465                 printk("%s", buf);
1466
1467         return ret;
1468 }
1469
1470 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1471 {
1472         /*
1473          * The VPD identifier type..
1474          *
1475          * from spc3r23.pdf Section 7.6.3.1 Table 298
1476          */
1477         vpd->device_identifier_type = (page_83[1] & 0x0f);
1478         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1479 }
1480 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1481
1482 int transport_dump_vpd_ident(
1483         struct t10_vpd *vpd,
1484         unsigned char *p_buf,
1485         int p_buf_len)
1486 {
1487         unsigned char buf[VPD_TMP_BUF_SIZE];
1488         int ret = 0;
1489
1490         memset(buf, 0, VPD_TMP_BUF_SIZE);
1491
1492         switch (vpd->device_identifier_code_set) {
1493         case 0x01: /* Binary */
1494                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1495                         &vpd->device_identifier[0]);
1496                 break;
1497         case 0x02: /* ASCII */
1498                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1499                         &vpd->device_identifier[0]);
1500                 break;
1501         case 0x03: /* UTF-8 */
1502                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1503                         &vpd->device_identifier[0]);
1504                 break;
1505         default:
1506                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1507                         " 0x%02x", vpd->device_identifier_code_set);
1508                 ret = -1;
1509                 break;
1510         }
1511
1512         if (p_buf)
1513                 strncpy(p_buf, buf, p_buf_len);
1514         else
1515                 printk("%s", buf);
1516
1517         return ret;
1518 }
1519
1520 int
1521 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1522 {
1523         static const char hex_str[] = "0123456789abcdef";
1524         int j = 0, i = 4; /* offset to start of the identifer */
1525
1526         /*
1527          * The VPD Code Set (encoding)
1528          *
1529          * from spc3r23.pdf Section 7.6.3.1 Table 296
1530          */
1531         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1532         switch (vpd->device_identifier_code_set) {
1533         case 0x01: /* Binary */
1534                 vpd->device_identifier[j++] =
1535                                 hex_str[vpd->device_identifier_type];
1536                 while (i < (4 + page_83[3])) {
1537                         vpd->device_identifier[j++] =
1538                                 hex_str[(page_83[i] & 0xf0) >> 4];
1539                         vpd->device_identifier[j++] =
1540                                 hex_str[page_83[i] & 0x0f];
1541                         i++;
1542                 }
1543                 break;
1544         case 0x02: /* ASCII */
1545         case 0x03: /* UTF-8 */
1546                 while (i < (4 + page_83[3]))
1547                         vpd->device_identifier[j++] = page_83[i++];
1548                 break;
1549         default:
1550                 break;
1551         }
1552
1553         return transport_dump_vpd_ident(vpd, NULL, 0);
1554 }
1555 EXPORT_SYMBOL(transport_set_vpd_ident);
1556
1557 static void core_setup_task_attr_emulation(struct se_device *dev)
1558 {
1559         /*
1560          * If this device is from Target_Core_Mod/pSCSI, disable the
1561          * SAM Task Attribute emulation.
1562          *
1563          * This is currently not available in upsream Linux/SCSI Target
1564          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1565          */
1566         if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1567                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1568                 return;
1569         }
1570
1571         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1572         DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1573                 " device\n", TRANSPORT(dev)->name,
1574                 TRANSPORT(dev)->get_device_rev(dev));
1575 }
1576
1577 static void scsi_dump_inquiry(struct se_device *dev)
1578 {
1579         struct t10_wwn *wwn = DEV_T10_WWN(dev);
1580         int i, device_type;
1581         /*
1582          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1583          */
1584         printk("  Vendor: ");
1585         for (i = 0; i < 8; i++)
1586                 if (wwn->vendor[i] >= 0x20)
1587                         printk("%c", wwn->vendor[i]);
1588                 else
1589                         printk(" ");
1590
1591         printk("  Model: ");
1592         for (i = 0; i < 16; i++)
1593                 if (wwn->model[i] >= 0x20)
1594                         printk("%c", wwn->model[i]);
1595                 else
1596                         printk(" ");
1597
1598         printk("  Revision: ");
1599         for (i = 0; i < 4; i++)
1600                 if (wwn->revision[i] >= 0x20)
1601                         printk("%c", wwn->revision[i]);
1602                 else
1603                         printk(" ");
1604
1605         printk("\n");
1606
1607         device_type = TRANSPORT(dev)->get_device_type(dev);
1608         printk("  Type:   %s ", scsi_device_type(device_type));
1609         printk("                 ANSI SCSI revision: %02x\n",
1610                                 TRANSPORT(dev)->get_device_rev(dev));
1611 }
1612
1613 struct se_device *transport_add_device_to_core_hba(
1614         struct se_hba *hba,
1615         struct se_subsystem_api *transport,
1616         struct se_subsystem_dev *se_dev,
1617         u32 device_flags,
1618         void *transport_dev,
1619         struct se_dev_limits *dev_limits,
1620         const char *inquiry_prod,
1621         const char *inquiry_rev)
1622 {
1623         int force_pt;
1624         struct se_device  *dev;
1625
1626         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1627         if (!(dev)) {
1628                 printk(KERN_ERR "Unable to allocate memory for se_dev_t\n");
1629                 return NULL;
1630         }
1631         dev->dev_queue_obj = kzalloc(sizeof(struct se_queue_obj), GFP_KERNEL);
1632         if (!(dev->dev_queue_obj)) {
1633                 printk(KERN_ERR "Unable to allocate memory for"
1634                                 " dev->dev_queue_obj\n");
1635                 kfree(dev);
1636                 return NULL;
1637         }
1638         transport_init_queue_obj(dev->dev_queue_obj);
1639
1640         dev->dev_status_queue_obj = kzalloc(sizeof(struct se_queue_obj),
1641                                         GFP_KERNEL);
1642         if (!(dev->dev_status_queue_obj)) {
1643                 printk(KERN_ERR "Unable to allocate memory for"
1644                                 " dev->dev_status_queue_obj\n");
1645                 kfree(dev->dev_queue_obj);
1646                 kfree(dev);
1647                 return NULL;
1648         }
1649         transport_init_queue_obj(dev->dev_status_queue_obj);
1650
1651         dev->dev_flags          = device_flags;
1652         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1653         dev->dev_ptr            = (void *) transport_dev;
1654         dev->se_hba             = hba;
1655         dev->se_sub_dev         = se_dev;
1656         dev->transport          = transport;
1657         atomic_set(&dev->active_cmds, 0);
1658         INIT_LIST_HEAD(&dev->dev_list);
1659         INIT_LIST_HEAD(&dev->dev_sep_list);
1660         INIT_LIST_HEAD(&dev->dev_tmr_list);
1661         INIT_LIST_HEAD(&dev->execute_task_list);
1662         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1663         INIT_LIST_HEAD(&dev->ordered_cmd_list);
1664         INIT_LIST_HEAD(&dev->state_task_list);
1665         spin_lock_init(&dev->execute_task_lock);
1666         spin_lock_init(&dev->delayed_cmd_lock);
1667         spin_lock_init(&dev->ordered_cmd_lock);
1668         spin_lock_init(&dev->state_task_lock);
1669         spin_lock_init(&dev->dev_alua_lock);
1670         spin_lock_init(&dev->dev_reservation_lock);
1671         spin_lock_init(&dev->dev_status_lock);
1672         spin_lock_init(&dev->dev_status_thr_lock);
1673         spin_lock_init(&dev->se_port_lock);
1674         spin_lock_init(&dev->se_tmr_lock);
1675
1676         dev->queue_depth        = dev_limits->queue_depth;
1677         atomic_set(&dev->depth_left, dev->queue_depth);
1678         atomic_set(&dev->dev_ordered_id, 0);
1679
1680         se_dev_set_default_attribs(dev, dev_limits);
1681
1682         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1683         dev->creation_time = get_jiffies_64();
1684         spin_lock_init(&dev->stats_lock);
1685
1686         spin_lock(&hba->device_lock);
1687         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1688         hba->dev_count++;
1689         spin_unlock(&hba->device_lock);
1690         /*
1691          * Setup the SAM Task Attribute emulation for struct se_device
1692          */
1693         core_setup_task_attr_emulation(dev);
1694         /*
1695          * Force PR and ALUA passthrough emulation with internal object use.
1696          */
1697         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1698         /*
1699          * Setup the Reservations infrastructure for struct se_device
1700          */
1701         core_setup_reservations(dev, force_pt);
1702         /*
1703          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1704          */
1705         if (core_setup_alua(dev, force_pt) < 0)
1706                 goto out;
1707
1708         /*
1709          * Startup the struct se_device processing thread
1710          */
1711         dev->process_thread = kthread_run(transport_processing_thread, dev,
1712                                           "LIO_%s", TRANSPORT(dev)->name);
1713         if (IS_ERR(dev->process_thread)) {
1714                 printk(KERN_ERR "Unable to create kthread: LIO_%s\n",
1715                         TRANSPORT(dev)->name);
1716                 goto out;
1717         }
1718
1719         /*
1720          * Preload the initial INQUIRY const values if we are doing
1721          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1722          * passthrough because this is being provided by the backend LLD.
1723          * This is required so that transport_get_inquiry() copies these
1724          * originals once back into DEV_T10_WWN(dev) for the virtual device
1725          * setup.
1726          */
1727         if (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1728                 if (!(inquiry_prod) || !(inquiry_prod)) {
1729                         printk(KERN_ERR "All non TCM/pSCSI plugins require"
1730                                 " INQUIRY consts\n");
1731                         goto out;
1732                 }
1733
1734                 strncpy(&DEV_T10_WWN(dev)->vendor[0], "LIO-ORG", 8);
1735                 strncpy(&DEV_T10_WWN(dev)->model[0], inquiry_prod, 16);
1736                 strncpy(&DEV_T10_WWN(dev)->revision[0], inquiry_rev, 4);
1737         }
1738         scsi_dump_inquiry(dev);
1739
1740         return dev;
1741 out:
1742         kthread_stop(dev->process_thread);
1743
1744         spin_lock(&hba->device_lock);
1745         list_del(&dev->dev_list);
1746         hba->dev_count--;
1747         spin_unlock(&hba->device_lock);
1748
1749         se_release_vpd_for_dev(dev);
1750
1751         kfree(dev->dev_status_queue_obj);
1752         kfree(dev->dev_queue_obj);
1753         kfree(dev);
1754
1755         return NULL;
1756 }
1757 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1758
1759 /*      transport_generic_prepare_cdb():
1760  *
1761  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1762  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1763  *      The point of this is since we are mapping iSCSI LUNs to
1764  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1765  *      devices and HBAs for a loop.
1766  */
1767 static inline void transport_generic_prepare_cdb(
1768         unsigned char *cdb)
1769 {
1770         switch (cdb[0]) {
1771         case READ_10: /* SBC - RDProtect */
1772         case READ_12: /* SBC - RDProtect */
1773         case READ_16: /* SBC - RDProtect */
1774         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1775         case VERIFY: /* SBC - VRProtect */
1776         case VERIFY_16: /* SBC - VRProtect */
1777         case WRITE_VERIFY: /* SBC - VRProtect */
1778         case WRITE_VERIFY_12: /* SBC - VRProtect */
1779                 break;
1780         default:
1781                 cdb[1] &= 0x1f; /* clear logical unit number */
1782                 break;
1783         }
1784 }
1785
1786 static struct se_task *
1787 transport_generic_get_task(struct se_cmd *cmd,
1788                 enum dma_data_direction data_direction)
1789 {
1790         struct se_task *task;
1791         struct se_device *dev = SE_DEV(cmd);
1792         unsigned long flags;
1793
1794         task = dev->transport->alloc_task(cmd);
1795         if (!task) {
1796                 printk(KERN_ERR "Unable to allocate struct se_task\n");
1797                 return NULL;
1798         }
1799
1800         INIT_LIST_HEAD(&task->t_list);
1801         INIT_LIST_HEAD(&task->t_execute_list);
1802         INIT_LIST_HEAD(&task->t_state_list);
1803         init_completion(&task->task_stop_comp);
1804         task->task_no = T_TASK(cmd)->t_tasks_no++;
1805         task->task_se_cmd = cmd;
1806         task->se_dev = dev;
1807         task->task_data_direction = data_direction;
1808
1809         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
1810         list_add_tail(&task->t_list, &T_TASK(cmd)->t_task_list);
1811         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
1812
1813         return task;
1814 }
1815
1816 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1817
1818 void transport_device_setup_cmd(struct se_cmd *cmd)
1819 {
1820         cmd->se_dev = SE_LUN(cmd)->lun_se_dev;
1821 }
1822 EXPORT_SYMBOL(transport_device_setup_cmd);
1823
1824 /*
1825  * Used by fabric modules containing a local struct se_cmd within their
1826  * fabric dependent per I/O descriptor.
1827  */
1828 void transport_init_se_cmd(
1829         struct se_cmd *cmd,
1830         struct target_core_fabric_ops *tfo,
1831         struct se_session *se_sess,
1832         u32 data_length,
1833         int data_direction,
1834         int task_attr,
1835         unsigned char *sense_buffer)
1836 {
1837         INIT_LIST_HEAD(&cmd->se_lun_list);
1838         INIT_LIST_HEAD(&cmd->se_delayed_list);
1839         INIT_LIST_HEAD(&cmd->se_ordered_list);
1840         /*
1841          * Setup t_task pointer to t_task_backstore
1842          */
1843         cmd->t_task = &cmd->t_task_backstore;
1844
1845         INIT_LIST_HEAD(&T_TASK(cmd)->t_task_list);
1846         init_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
1847         init_completion(&T_TASK(cmd)->transport_lun_stop_comp);
1848         init_completion(&T_TASK(cmd)->t_transport_stop_comp);
1849         spin_lock_init(&T_TASK(cmd)->t_state_lock);
1850         atomic_set(&T_TASK(cmd)->transport_dev_active, 1);
1851
1852         cmd->se_tfo = tfo;
1853         cmd->se_sess = se_sess;
1854         cmd->data_length = data_length;
1855         cmd->data_direction = data_direction;
1856         cmd->sam_task_attr = task_attr;
1857         cmd->sense_buffer = sense_buffer;
1858 }
1859 EXPORT_SYMBOL(transport_init_se_cmd);
1860
1861 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1862 {
1863         /*
1864          * Check if SAM Task Attribute emulation is enabled for this
1865          * struct se_device storage object
1866          */
1867         if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1868                 return 0;
1869
1870         if (cmd->sam_task_attr == TASK_ATTR_ACA) {
1871                 DEBUG_STA("SAM Task Attribute ACA"
1872                         " emulation is not supported\n");
1873                 return -1;
1874         }
1875         /*
1876          * Used to determine when ORDERED commands should go from
1877          * Dormant to Active status.
1878          */
1879         cmd->se_ordered_id = atomic_inc_return(&SE_DEV(cmd)->dev_ordered_id);
1880         smp_mb__after_atomic_inc();
1881         DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1882                         cmd->se_ordered_id, cmd->sam_task_attr,
1883                         TRANSPORT(cmd->se_dev)->name);
1884         return 0;
1885 }
1886
1887 void transport_free_se_cmd(
1888         struct se_cmd *se_cmd)
1889 {
1890         if (se_cmd->se_tmr_req)
1891                 core_tmr_release_req(se_cmd->se_tmr_req);
1892         /*
1893          * Check and free any extended CDB buffer that was allocated
1894          */
1895         if (T_TASK(se_cmd)->t_task_cdb != T_TASK(se_cmd)->__t_task_cdb)
1896                 kfree(T_TASK(se_cmd)->t_task_cdb);
1897 }
1898 EXPORT_SYMBOL(transport_free_se_cmd);
1899
1900 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1901
1902 /*      transport_generic_allocate_tasks():
1903  *
1904  *      Called from fabric RX Thread.
1905  */
1906 int transport_generic_allocate_tasks(
1907         struct se_cmd *cmd,
1908         unsigned char *cdb)
1909 {
1910         int ret;
1911
1912         transport_generic_prepare_cdb(cdb);
1913
1914         /*
1915          * This is needed for early exceptions.
1916          */
1917         cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1918
1919         transport_device_setup_cmd(cmd);
1920         /*
1921          * Ensure that the received CDB is less than the max (252 + 8) bytes
1922          * for VARIABLE_LENGTH_CMD
1923          */
1924         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1925                 printk(KERN_ERR "Received SCSI CDB with command_size: %d that"
1926                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1927                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1928                 return -1;
1929         }
1930         /*
1931          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1932          * allocate the additional extended CDB buffer now..  Otherwise
1933          * setup the pointer from __t_task_cdb to t_task_cdb.
1934          */
1935         if (scsi_command_size(cdb) > sizeof(T_TASK(cmd)->__t_task_cdb)) {
1936                 T_TASK(cmd)->t_task_cdb = kzalloc(scsi_command_size(cdb),
1937                                                 GFP_KERNEL);
1938                 if (!(T_TASK(cmd)->t_task_cdb)) {
1939                         printk(KERN_ERR "Unable to allocate T_TASK(cmd)->t_task_cdb"
1940                                 " %u > sizeof(T_TASK(cmd)->__t_task_cdb): %lu ops\n",
1941                                 scsi_command_size(cdb),
1942                                 (unsigned long)sizeof(T_TASK(cmd)->__t_task_cdb));
1943                         return -1;
1944                 }
1945         } else
1946                 T_TASK(cmd)->t_task_cdb = &T_TASK(cmd)->__t_task_cdb[0];
1947         /*
1948          * Copy the original CDB into T_TASK(cmd).
1949          */
1950         memcpy(T_TASK(cmd)->t_task_cdb, cdb, scsi_command_size(cdb));
1951         /*
1952          * Setup the received CDB based on SCSI defined opcodes and
1953          * perform unit attention, persistent reservations and ALUA
1954          * checks for virtual device backends.  The T_TASK(cmd)->t_task_cdb
1955          * pointer is expected to be setup before we reach this point.
1956          */
1957         ret = transport_generic_cmd_sequencer(cmd, cdb);
1958         if (ret < 0)
1959                 return ret;
1960         /*
1961          * Check for SAM Task Attribute Emulation
1962          */
1963         if (transport_check_alloc_task_attr(cmd) < 0) {
1964                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1965                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1966                 return -2;
1967         }
1968         spin_lock(&cmd->se_lun->lun_sep_lock);
1969         if (cmd->se_lun->lun_sep)
1970                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1971         spin_unlock(&cmd->se_lun->lun_sep_lock);
1972         return 0;
1973 }
1974 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1975
1976 /*
1977  * Used by fabric module frontends not defining a TFO->new_cmd_map()
1978  * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1979  */
1980 int transport_generic_handle_cdb(
1981         struct se_cmd *cmd)
1982 {
1983         if (!SE_LUN(cmd)) {
1984                 dump_stack();
1985                 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
1986                 return -1;
1987         }
1988
1989         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
1990         return 0;
1991 }
1992 EXPORT_SYMBOL(transport_generic_handle_cdb);
1993
1994 /*
1995  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1996  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1997  * complete setup in TCM process context w/ TFO->new_cmd_map().
1998  */
1999 int transport_generic_handle_cdb_map(
2000         struct se_cmd *cmd)
2001 {
2002         if (!SE_LUN(cmd)) {
2003                 dump_stack();
2004                 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
2005                 return -1;
2006         }
2007
2008         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
2009         return 0;
2010 }
2011 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
2012
2013 /*      transport_generic_handle_data():
2014  *
2015  *
2016  */
2017 int transport_generic_handle_data(
2018         struct se_cmd *cmd)
2019 {
2020         /*
2021          * For the software fabric case, then we assume the nexus is being
2022          * failed/shutdown when signals are pending from the kthread context
2023          * caller, so we return a failure.  For the HW target mode case running
2024          * in interrupt code, the signal_pending() check is skipped.
2025          */
2026         if (!in_interrupt() && signal_pending(current))
2027                 return -1;
2028         /*
2029          * If the received CDB has aleady been ABORTED by the generic
2030          * target engine, we now call transport_check_aborted_status()
2031          * to queue any delated TASK_ABORTED status for the received CDB to the
2032          * fabric module as we are expecting no further incoming DATA OUT
2033          * sequences at this point.
2034          */
2035         if (transport_check_aborted_status(cmd, 1) != 0)
2036                 return 0;
2037
2038         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
2039         return 0;
2040 }
2041 EXPORT_SYMBOL(transport_generic_handle_data);
2042
2043 /*      transport_generic_handle_tmr():
2044  *
2045  *
2046  */
2047 int transport_generic_handle_tmr(
2048         struct se_cmd *cmd)
2049 {
2050         /*
2051          * This is needed for early exceptions.
2052          */
2053         cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
2054         transport_device_setup_cmd(cmd);
2055
2056         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
2057         return 0;
2058 }
2059 EXPORT_SYMBOL(transport_generic_handle_tmr);
2060
2061 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
2062 {
2063         struct se_task *task, *task_tmp;
2064         unsigned long flags;
2065         int ret = 0;
2066
2067         DEBUG_TS("ITT[0x%08x] - Stopping tasks\n",
2068                 CMD_TFO(cmd)->get_task_tag(cmd));
2069
2070         /*
2071          * No tasks remain in the execution queue
2072          */
2073         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2074         list_for_each_entry_safe(task, task_tmp,
2075                                 &T_TASK(cmd)->t_task_list, t_list) {
2076                 DEBUG_TS("task_no[%d] - Processing task %p\n",
2077                                 task->task_no, task);
2078                 /*
2079                  * If the struct se_task has not been sent and is not active,
2080                  * remove the struct se_task from the execution queue.
2081                  */
2082                 if (!atomic_read(&task->task_sent) &&
2083                     !atomic_read(&task->task_active)) {
2084                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
2085                                         flags);
2086                         transport_remove_task_from_execute_queue(task,
2087                                         task->se_dev);
2088
2089                         DEBUG_TS("task_no[%d] - Removed from execute queue\n",
2090                                 task->task_no);
2091                         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2092                         continue;
2093                 }
2094
2095                 /*
2096                  * If the struct se_task is active, sleep until it is returned
2097                  * from the plugin.
2098                  */
2099                 if (atomic_read(&task->task_active)) {
2100                         atomic_set(&task->task_stop, 1);
2101                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
2102                                         flags);
2103
2104                         DEBUG_TS("task_no[%d] - Waiting to complete\n",
2105                                 task->task_no);
2106                         wait_for_completion(&task->task_stop_comp);
2107                         DEBUG_TS("task_no[%d] - Stopped successfully\n",
2108                                 task->task_no);
2109
2110                         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2111                         atomic_dec(&T_TASK(cmd)->t_task_cdbs_left);
2112
2113                         atomic_set(&task->task_active, 0);
2114                         atomic_set(&task->task_stop, 0);
2115                 } else {
2116                         DEBUG_TS("task_no[%d] - Did nothing\n", task->task_no);
2117                         ret++;
2118                 }
2119
2120                 __transport_stop_task_timer(task, &flags);
2121         }
2122         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2123
2124         return ret;
2125 }
2126
2127 static void transport_failure_reset_queue_depth(struct se_device *dev)
2128 {
2129         unsigned long flags;
2130
2131         spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);;
2132         atomic_inc(&dev->depth_left);
2133         atomic_inc(&SE_HBA(dev)->left_queue_depth);
2134         spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2135 }
2136
2137 /*
2138  * Handle SAM-esque emulation for generic transport request failures.
2139  */
2140 static void transport_generic_request_failure(
2141         struct se_cmd *cmd,
2142         struct se_device *dev,
2143         int complete,
2144         int sc)
2145 {
2146         DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
2147                 " CDB: 0x%02x\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
2148                 T_TASK(cmd)->t_task_cdb[0]);
2149         DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:"
2150                 " %d/%d transport_error_status: %d\n",
2151                 CMD_TFO(cmd)->get_cmd_state(cmd),
2152                 cmd->t_state, cmd->deferred_t_state,
2153                 cmd->transport_error_status);
2154         DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d"
2155                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
2156                 " t_transport_active: %d t_transport_stop: %d"
2157                 " t_transport_sent: %d\n", T_TASK(cmd)->t_task_cdbs,
2158                 atomic_read(&T_TASK(cmd)->t_task_cdbs_left),
2159                 atomic_read(&T_TASK(cmd)->t_task_cdbs_sent),
2160                 atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left),
2161                 atomic_read(&T_TASK(cmd)->t_transport_active),
2162                 atomic_read(&T_TASK(cmd)->t_transport_stop),
2163                 atomic_read(&T_TASK(cmd)->t_transport_sent));
2164
2165         transport_stop_all_task_timers(cmd);
2166
2167         if (dev)
2168                 transport_failure_reset_queue_depth(dev);
2169         /*
2170          * For SAM Task Attribute emulation for failed struct se_cmd
2171          */
2172         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2173                 transport_complete_task_attr(cmd);
2174
2175         if (complete) {
2176                 transport_direct_request_timeout(cmd);
2177                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2178         }
2179
2180         switch (cmd->transport_error_status) {
2181         case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
2182                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2183                 break;
2184         case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
2185                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
2186                 break;
2187         case PYX_TRANSPORT_INVALID_CDB_FIELD:
2188                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2189                 break;
2190         case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
2191                 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
2192                 break;
2193         case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
2194                 if (!sc)
2195                         transport_new_cmd_failure(cmd);
2196                 /*
2197                  * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2198                  * we force this session to fall back to session
2199                  * recovery.
2200                  */
2201                 CMD_TFO(cmd)->fall_back_to_erl0(cmd->se_sess);
2202                 CMD_TFO(cmd)->stop_session(cmd->se_sess, 0, 0);
2203
2204                 goto check_stop;
2205         case PYX_TRANSPORT_LU_COMM_FAILURE:
2206         case PYX_TRANSPORT_ILLEGAL_REQUEST:
2207                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2208                 break;
2209         case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2210                 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2211                 break;
2212         case PYX_TRANSPORT_WRITE_PROTECTED:
2213                 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2214                 break;
2215         case PYX_TRANSPORT_RESERVATION_CONFLICT:
2216                 /*
2217                  * No SENSE Data payload for this case, set SCSI Status
2218                  * and queue the response to $FABRIC_MOD.
2219                  *
2220                  * Uses linux/include/scsi/scsi.h SAM status codes defs
2221                  */
2222                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2223                 /*
2224                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2225                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2226                  * CONFLICT STATUS.
2227                  *
2228                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2229                  */
2230                 if (SE_SESS(cmd) &&
2231                     DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
2232                         core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
2233                                 cmd->orig_fe_lun, 0x2C,
2234                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2235
2236                 CMD_TFO(cmd)->queue_status(cmd);
2237                 goto check_stop;
2238         case PYX_TRANSPORT_USE_SENSE_REASON:
2239                 /*
2240                  * struct se_cmd->scsi_sense_reason already set
2241                  */
2242                 break;
2243         default:
2244                 printk(KERN_ERR "Unknown transport error for CDB 0x%02x: %d\n",
2245                         T_TASK(cmd)->t_task_cdb[0],
2246                         cmd->transport_error_status);
2247                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2248                 break;
2249         }
2250
2251         if (!sc)
2252                 transport_new_cmd_failure(cmd);
2253         else
2254                 transport_send_check_condition_and_sense(cmd,
2255                         cmd->scsi_sense_reason, 0);
2256 check_stop:
2257         transport_lun_remove_cmd(cmd);
2258         if (!(transport_cmd_check_stop_to_fabric(cmd)))
2259                 ;
2260 }
2261
2262 static void transport_direct_request_timeout(struct se_cmd *cmd)
2263 {
2264         unsigned long flags;
2265
2266         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2267         if (!(atomic_read(&T_TASK(cmd)->t_transport_timeout))) {
2268                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2269                 return;
2270         }
2271         if (atomic_read(&T_TASK(cmd)->t_task_cdbs_timeout_left)) {
2272                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2273                 return;
2274         }
2275
2276         atomic_sub(atomic_read(&T_TASK(cmd)->t_transport_timeout),
2277                    &T_TASK(cmd)->t_se_count);
2278         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2279 }
2280
2281 static void transport_generic_request_timeout(struct se_cmd *cmd)
2282 {
2283         unsigned long flags;
2284
2285         /*
2286          * Reset T_TASK(cmd)->t_se_count to allow transport_generic_remove()
2287          * to allow last call to free memory resources.
2288          */
2289         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2290         if (atomic_read(&T_TASK(cmd)->t_transport_timeout) > 1) {
2291                 int tmp = (atomic_read(&T_TASK(cmd)->t_transport_timeout) - 1);
2292
2293                 atomic_sub(tmp, &T_TASK(cmd)->t_se_count);
2294         }
2295         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2296
2297         transport_generic_remove(cmd, 0, 0);
2298 }
2299
2300 static int
2301 transport_generic_allocate_buf(struct se_cmd *cmd, u32 data_length)
2302 {
2303         unsigned char *buf;
2304
2305         buf = kzalloc(data_length, GFP_KERNEL);
2306         if (!(buf)) {
2307                 printk(KERN_ERR "Unable to allocate memory for buffer\n");
2308                 return -1;
2309         }
2310
2311         T_TASK(cmd)->t_tasks_se_num = 0;
2312         T_TASK(cmd)->t_task_buf = buf;
2313
2314         return 0;
2315 }
2316
2317 static inline u32 transport_lba_21(unsigned char *cdb)
2318 {
2319         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2320 }
2321
2322 static inline u32 transport_lba_32(unsigned char *cdb)
2323 {
2324         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2325 }
2326
2327 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2328 {
2329         unsigned int __v1, __v2;
2330
2331         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2332         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2333
2334         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2335 }
2336
2337 /*
2338  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2339  */
2340 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2341 {
2342         unsigned int __v1, __v2;
2343
2344         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2345         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2346
2347         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2348 }
2349
2350 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2351 {
2352         unsigned long flags;
2353
2354         spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
2355         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2356         spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
2357 }
2358
2359 /*
2360  * Called from interrupt context.
2361  */
2362 static void transport_task_timeout_handler(unsigned long data)
2363 {
2364         struct se_task *task = (struct se_task *)data;
2365         struct se_cmd *cmd = TASK_CMD(task);
2366         unsigned long flags;
2367
2368         DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2369
2370         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2371         if (task->task_flags & TF_STOP) {
2372                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2373                 return;
2374         }
2375         task->task_flags &= ~TF_RUNNING;
2376
2377         /*
2378          * Determine if transport_complete_task() has already been called.
2379          */
2380         if (!(atomic_read(&task->task_active))) {
2381                 DEBUG_TT("transport task: %p cmd: %p timeout task_active"
2382                                 " == 0\n", task, cmd);
2383                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2384                 return;
2385         }
2386
2387         atomic_inc(&T_TASK(cmd)->t_se_count);
2388         atomic_inc(&T_TASK(cmd)->t_transport_timeout);
2389         T_TASK(cmd)->t_tasks_failed = 1;
2390
2391         atomic_set(&task->task_timeout, 1);
2392         task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2393         task->task_scsi_status = 1;
2394
2395         if (atomic_read(&task->task_stop)) {
2396                 DEBUG_TT("transport task: %p cmd: %p timeout task_stop"
2397                                 " == 1\n", task, cmd);
2398                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2399                 complete(&task->task_stop_comp);
2400                 return;
2401         }
2402
2403         if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) {
2404                 DEBUG_TT("transport task: %p cmd: %p timeout non zero"
2405                                 " t_task_cdbs_left\n", task, cmd);
2406                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2407                 return;
2408         }
2409         DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2410                         task, cmd);
2411
2412         cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2413         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2414
2415         transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2416 }
2417
2418 /*
2419  * Called with T_TASK(cmd)->t_state_lock held.
2420  */
2421 static void transport_start_task_timer(struct se_task *task)
2422 {
2423         struct se_device *dev = task->se_dev;
2424         int timeout;
2425
2426         if (task->task_flags & TF_RUNNING)
2427                 return;
2428         /*
2429          * If the task_timeout is disabled, exit now.
2430          */
2431         timeout = DEV_ATTRIB(dev)->task_timeout;
2432         if (!(timeout))
2433                 return;
2434
2435         init_timer(&task->task_timer);
2436         task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2437         task->task_timer.data = (unsigned long) task;
2438         task->task_timer.function = transport_task_timeout_handler;
2439
2440         task->task_flags |= TF_RUNNING;
2441         add_timer(&task->task_timer);
2442 #if 0
2443         printk(KERN_INFO "Starting task timer for cmd: %p task: %p seconds:"
2444                 " %d\n", task->task_se_cmd, task, timeout);
2445 #endif
2446 }
2447
2448 /*
2449  * Called with spin_lock_irq(&T_TASK(cmd)->t_state_lock) held.
2450  */
2451 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2452 {
2453         struct se_cmd *cmd = TASK_CMD(task);
2454
2455         if (!(task->task_flags & TF_RUNNING))
2456                 return;
2457
2458         task->task_flags |= TF_STOP;
2459         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, *flags);
2460
2461         del_timer_sync(&task->task_timer);
2462
2463         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, *flags);
2464         task->task_flags &= ~TF_RUNNING;
2465         task->task_flags &= ~TF_STOP;
2466 }
2467
2468 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2469 {
2470         struct se_task *task = NULL, *task_tmp;
2471         unsigned long flags;
2472
2473         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2474         list_for_each_entry_safe(task, task_tmp,
2475                                 &T_TASK(cmd)->t_task_list, t_list)
2476                 __transport_stop_task_timer(task, &flags);
2477         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2478 }
2479
2480 static inline int transport_tcq_window_closed(struct se_device *dev)
2481 {
2482         if (dev->dev_tcq_window_closed++ <
2483                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2484                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2485         } else
2486                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2487
2488         wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
2489         return 0;
2490 }
2491
2492 /*
2493  * Called from Fabric Module context from transport_execute_tasks()
2494  *
2495  * The return of this function determins if the tasks from struct se_cmd
2496  * get added to the execution queue in transport_execute_tasks(),
2497  * or are added to the delayed or ordered lists here.
2498  */
2499 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2500 {
2501         if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2502                 return 1;
2503         /*
2504          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2505          * to allow the passed struct se_cmd list of tasks to the front of the list.
2506          */
2507          if (cmd->sam_task_attr == TASK_ATTR_HOQ) {
2508                 atomic_inc(&SE_DEV(cmd)->dev_hoq_count);
2509                 smp_mb__after_atomic_inc();
2510                 DEBUG_STA("Added HEAD_OF_QUEUE for CDB:"
2511                         " 0x%02x, se_ordered_id: %u\n",
2512                         T_TASK(cmd)->t_task_cdb[0],
2513                         cmd->se_ordered_id);
2514                 return 1;
2515         } else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) {
2516                 spin_lock(&SE_DEV(cmd)->ordered_cmd_lock);
2517                 list_add_tail(&cmd->se_ordered_list,
2518                                 &SE_DEV(cmd)->ordered_cmd_list);
2519                 spin_unlock(&SE_DEV(cmd)->ordered_cmd_lock);
2520
2521                 atomic_inc(&SE_DEV(cmd)->dev_ordered_sync);
2522                 smp_mb__after_atomic_inc();
2523
2524                 DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered"
2525                                 " list, se_ordered_id: %u\n",
2526                                 T_TASK(cmd)->t_task_cdb[0],
2527                                 cmd->se_ordered_id);
2528                 /*
2529                  * Add ORDERED command to tail of execution queue if
2530                  * no other older commands exist that need to be
2531                  * completed first.
2532                  */
2533                 if (!(atomic_read(&SE_DEV(cmd)->simple_cmds)))
2534                         return 1;
2535         } else {
2536                 /*
2537                  * For SIMPLE and UNTAGGED Task Attribute commands
2538                  */
2539                 atomic_inc(&SE_DEV(cmd)->simple_cmds);
2540                 smp_mb__after_atomic_inc();
2541         }
2542         /*
2543          * Otherwise if one or more outstanding ORDERED task attribute exist,
2544          * add the dormant task(s) built for the passed struct se_cmd to the
2545          * execution queue and become in Active state for this struct se_device.
2546          */
2547         if (atomic_read(&SE_DEV(cmd)->dev_ordered_sync) != 0) {
2548                 /*
2549                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2550                  * will be drained upon completion of HEAD_OF_QUEUE task.
2551                  */
2552                 spin_lock(&SE_DEV(cmd)->delayed_cmd_lock);
2553                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2554                 list_add_tail(&cmd->se_delayed_list,
2555                                 &SE_DEV(cmd)->delayed_cmd_list);
2556                 spin_unlock(&SE_DEV(cmd)->delayed_cmd_lock);
2557
2558                 DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to"
2559                         " delayed CMD list, se_ordered_id: %u\n",
2560                         T_TASK(cmd)->t_task_cdb[0], cmd->sam_task_attr,
2561                         cmd->se_ordered_id);
2562                 /*
2563                  * Return zero to let transport_execute_tasks() know
2564                  * not to add the delayed tasks to the execution list.
2565                  */
2566                 return 0;
2567         }
2568         /*
2569          * Otherwise, no ORDERED task attributes exist..
2570          */
2571         return 1;
2572 }
2573
2574 /*
2575  * Called from fabric module context in transport_generic_new_cmd() and
2576  * transport_generic_process_write()
2577  */
2578 static int transport_execute_tasks(struct se_cmd *cmd)
2579 {
2580         int add_tasks;
2581
2582         if (!(cmd->se_cmd_flags & SCF_SE_DISABLE_ONLINE_CHECK)) {
2583                 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2584                         cmd->transport_error_status =
2585                                 PYX_TRANSPORT_LU_COMM_FAILURE;
2586                         transport_generic_request_failure(cmd, NULL, 0, 1);
2587                         return 0;
2588                 }
2589         }
2590         /*
2591          * Call transport_cmd_check_stop() to see if a fabric exception
2592          * has occurred that prevents execution.
2593          */
2594         if (!(transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING))) {
2595                 /*
2596                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2597                  * attribute for the tasks of the received struct se_cmd CDB
2598                  */
2599                 add_tasks = transport_execute_task_attr(cmd);
2600                 if (add_tasks == 0)
2601                         goto execute_tasks;
2602                 /*
2603                  * This calls transport_add_tasks_from_cmd() to handle
2604                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2605                  * (if enabled) in __transport_add_task_to_execute_queue() and
2606                  * transport_add_task_check_sam_attr().
2607                  */
2608                 transport_add_tasks_from_cmd(cmd);
2609         }
2610         /*
2611          * Kick the execution queue for the cmd associated struct se_device
2612          * storage object.
2613          */
2614 execute_tasks:
2615         __transport_execute_tasks(SE_DEV(cmd));
2616         return 0;
2617 }
2618
2619 /*
2620  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2621  * from struct se_device->execute_task_list and
2622  *
2623  * Called from transport_processing_thread()
2624  */
2625 static int __transport_execute_tasks(struct se_device *dev)
2626 {
2627         int error;
2628         struct se_cmd *cmd = NULL;
2629         struct se_task *task;
2630         unsigned long flags;
2631
2632         /*
2633          * Check if there is enough room in the device and HBA queue to send
2634          * struct se_transport_task's to the selected transport.
2635          */
2636 check_depth:
2637         spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags);
2638         if (!(atomic_read(&dev->depth_left)) ||
2639             !(atomic_read(&SE_HBA(dev)->left_queue_depth))) {
2640                 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2641                 return transport_tcq_window_closed(dev);
2642         }
2643         dev->dev_tcq_window_closed = 0;
2644
2645         spin_lock(&dev->execute_task_lock);
2646         task = transport_get_task_from_execute_queue(dev);
2647         spin_unlock(&dev->execute_task_lock);
2648
2649         if (!task) {
2650                 spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2651                 return 0;
2652         }
2653
2654         atomic_dec(&dev->depth_left);
2655         atomic_dec(&SE_HBA(dev)->left_queue_depth);
2656         spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags);
2657
2658         cmd = TASK_CMD(task);
2659
2660         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2661         atomic_set(&task->task_active, 1);
2662         atomic_set(&task->task_sent, 1);
2663         atomic_inc(&T_TASK(cmd)->t_task_cdbs_sent);
2664
2665         if (atomic_read(&T_TASK(cmd)->t_task_cdbs_sent) ==
2666             T_TASK(cmd)->t_task_cdbs)
2667                 atomic_set(&cmd->transport_sent, 1);
2668
2669         transport_start_task_timer(task);
2670         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2671         /*
2672          * The struct se_cmd->transport_emulate_cdb() function pointer is used
2673          * to grab REPORT_LUNS CDBs before they hit the
2674          * struct se_subsystem_api->do_task() caller below.
2675          */
2676         if (cmd->transport_emulate_cdb) {
2677                 error = cmd->transport_emulate_cdb(cmd);
2678                 if (error != 0) {
2679                         cmd->transport_error_status = error;
2680                         atomic_set(&task->task_active, 0);
2681                         atomic_set(&cmd->transport_sent, 0);
2682                         transport_stop_tasks_for_cmd(cmd);
2683                         transport_generic_request_failure(cmd, dev, 0, 1);
2684                         goto check_depth;
2685                 }
2686                 /*
2687                  * Handle the successful completion for transport_emulate_cdb()
2688                  * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2689                  * Otherwise the caller is expected to complete the task with
2690                  * proper status.
2691                  */
2692                 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2693                         cmd->scsi_status = SAM_STAT_GOOD;
2694                         task->task_scsi_status = GOOD;
2695                         transport_complete_task(task, 1);
2696                 }
2697         } else {
2698                 /*
2699                  * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2700                  * RAMDISK we use the internal transport_emulate_control_cdb() logic
2701                  * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2702                  * LUN emulation code.
2703                  *
2704                  * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2705                  * call ->do_task() directly and let the underlying TCM subsystem plugin
2706                  * code handle the CDB emulation.
2707                  */
2708                 if ((TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2709                     (!(TASK_CMD(task)->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2710                         error = transport_emulate_control_cdb(task);
2711                 else
2712                         error = TRANSPORT(dev)->do_task(task);
2713
2714                 if (error != 0) {
2715                         cmd->transport_error_status = error;
2716                         atomic_set(&task->task_active, 0);
2717                         atomic_set(&cmd->transport_sent, 0);
2718                         transport_stop_tasks_for_cmd(cmd);
2719                         transport_generic_request_failure(cmd, dev, 0, 1);
2720                 }
2721         }
2722
2723         goto check_depth;
2724
2725         return 0;
2726 }
2727
2728 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2729 {
2730         unsigned long flags;
2731         /*
2732          * Any unsolicited data will get dumped for failed command inside of
2733          * the fabric plugin
2734          */
2735         spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags);
2736         se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2737         se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2738         spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags);
2739
2740         CMD_TFO(se_cmd)->new_cmd_failure(se_cmd);
2741 }
2742
2743 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2744
2745 static inline u32 transport_get_sectors_6(
2746         unsigned char *cdb,
2747         struct se_cmd *cmd,
2748         int *ret)
2749 {
2750         struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2751
2752         /*
2753          * Assume TYPE_DISK for non struct se_device objects.
2754          * Use 8-bit sector value.
2755          */
2756         if (!dev)
2757                 goto type_disk;
2758
2759         /*
2760          * Use 24-bit allocation length for TYPE_TAPE.
2761          */
2762         if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
2763                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2764
2765         /*
2766          * Everything else assume TYPE_DISK Sector CDB location.
2767          * Use 8-bit sector value.
2768          */
2769 type_disk:
2770         return (u32)cdb[4];
2771 }
2772
2773 static inline u32 transport_get_sectors_10(
2774         unsigned char *cdb,
2775         struct se_cmd *cmd,
2776         int *ret)
2777 {
2778         struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2779
2780         /*
2781          * Assume TYPE_DISK for non struct se_device objects.
2782          * Use 16-bit sector value.
2783          */
2784         if (!dev)
2785                 goto type_disk;
2786
2787         /*
2788          * XXX_10 is not defined in SSC, throw an exception
2789          */
2790         if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2791                 *ret = -1;
2792                 return 0;
2793         }
2794
2795         /*
2796          * Everything else assume TYPE_DISK Sector CDB location.
2797          * Use 16-bit sector value.
2798          */
2799 type_disk:
2800         return (u32)(cdb[7] << 8) + cdb[8];
2801 }
2802
2803 static inline u32 transport_get_sectors_12(
2804         unsigned char *cdb,
2805         struct se_cmd *cmd,
2806         int *ret)
2807 {
2808         struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2809
2810         /*
2811          * Assume TYPE_DISK for non struct se_device objects.
2812          * Use 32-bit sector value.
2813          */
2814         if (!dev)
2815                 goto type_disk;
2816
2817         /*
2818          * XXX_12 is not defined in SSC, throw an exception
2819          */
2820         if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2821                 *ret = -1;
2822                 return 0;
2823         }
2824
2825         /*
2826          * Everything else assume TYPE_DISK Sector CDB location.
2827          * Use 32-bit sector value.
2828          */
2829 type_disk:
2830         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2831 }
2832
2833 static inline u32 transport_get_sectors_16(
2834         unsigned char *cdb,
2835         struct se_cmd *cmd,
2836         int *ret)
2837 {
2838         struct se_device *dev = SE_LUN(cmd)->lun_se_dev;
2839
2840         /*
2841          * Assume TYPE_DISK for non struct se_device objects.
2842          * Use 32-bit sector value.
2843          */
2844         if (!dev)
2845                 goto type_disk;
2846
2847         /*
2848          * Use 24-bit allocation length for TYPE_TAPE.
2849          */
2850         if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE)
2851                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2852
2853 type_disk:
2854         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2855                     (cdb[12] << 8) + cdb[13];
2856 }
2857
2858 /*
2859  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2860  */
2861 static inline u32 transport_get_sectors_32(
2862         unsigned char *cdb,
2863         struct se_cmd *cmd,
2864         int *ret)
2865 {
2866         /*
2867          * Assume TYPE_DISK for non struct se_device objects.
2868          * Use 32-bit sector value.
2869          */
2870         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2871                     (cdb[30] << 8) + cdb[31];
2872
2873 }
2874
2875 static inline u32 transport_get_size(
2876         u32 sectors,
2877         unsigned char *cdb,
2878         struct se_cmd *cmd)
2879 {
2880         struct se_device *dev = SE_DEV(cmd);
2881
2882         if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) {
2883                 if (cdb[1] & 1) { /* sectors */
2884                         return DEV_ATTRIB(dev)->block_size * sectors;
2885                 } else /* bytes */
2886                         return sectors;
2887         }
2888 #if 0
2889         printk(KERN_INFO "Returning block_size: %u, sectors: %u == %u for"
2890                         " %s object\n", DEV_ATTRIB(dev)->block_size, sectors,
2891                         DEV_ATTRIB(dev)->block_size * sectors,
2892                         TRANSPORT(dev)->name);
2893 #endif
2894         return DEV_ATTRIB(dev)->block_size * sectors;
2895 }
2896
2897 unsigned char transport_asciihex_to_binaryhex(unsigned char val[2])
2898 {
2899         unsigned char result = 0;
2900         /*
2901          * MSB
2902          */
2903         if ((val[0] >= 'a') && (val[0] <= 'f'))
2904                 result = ((val[0] - 'a' + 10) & 0xf) << 4;
2905         else
2906                 if ((val[0] >= 'A') && (val[0] <= 'F'))
2907                         result = ((val[0] - 'A' + 10) & 0xf) << 4;
2908                 else /* digit */
2909                         result = ((val[0] - '0') & 0xf) << 4;
2910         /*
2911          * LSB
2912          */
2913         if ((val[1] >= 'a') && (val[1] <= 'f'))
2914                 result |= ((val[1] - 'a' + 10) & 0xf);
2915         else
2916                 if ((val[1] >= 'A') && (val[1] <= 'F'))
2917                         result |= ((val[1] - 'A' + 10) & 0xf);
2918                 else /* digit */
2919                         result |= ((val[1] - '0') & 0xf);
2920
2921         return result;
2922 }
2923 EXPORT_SYMBOL(transport_asciihex_to_binaryhex);
2924
2925 static void transport_xor_callback(struct se_cmd *cmd)
2926 {
2927         unsigned char *buf, *addr;
2928         struct se_mem *se_mem;
2929         unsigned int offset;
2930         int i;
2931         /*
2932          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2933          *
2934          * 1) read the specified logical block(s);
2935          * 2) transfer logical blocks from the data-out buffer;
2936          * 3) XOR the logical blocks transferred from the data-out buffer with
2937          *    the logical blocks read, storing the resulting XOR data in a buffer;
2938          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2939          *    blocks transferred from the data-out buffer; and
2940          * 5) transfer the resulting XOR data to the data-in buffer.
2941          */
2942         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2943         if (!(buf)) {
2944                 printk(KERN_ERR "Unable to allocate xor_callback buf\n");
2945                 return;
2946         }
2947         /*
2948          * Copy the scatterlist WRITE buffer located at T_TASK(cmd)->t_mem_list
2949          * into the locally allocated *buf
2950          */
2951         transport_memcpy_se_mem_read_contig(cmd, buf, T_TASK(cmd)->t_mem_list);
2952         /*
2953          * Now perform the XOR against the BIDI read memory located at
2954          * T_TASK(cmd)->t_mem_bidi_list
2955          */
2956
2957         offset = 0;
2958         list_for_each_entry(se_mem, T_TASK(cmd)->t_mem_bidi_list, se_list) {
2959                 addr = (unsigned char *)kmap_atomic(se_mem->se_page, KM_USER0);
2960                 if (!(addr))
2961                         goto out;
2962
2963                 for (i = 0; i < se_mem->se_len; i++)
2964                         *(addr + se_mem->se_off + i) ^= *(buf + offset + i);
2965
2966                 offset += se_mem->se_len;
2967                 kunmap_atomic(addr, KM_USER0);
2968         }
2969 out:
2970         kfree(buf);
2971 }
2972
2973 /*
2974  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2975  */
2976 static int transport_get_sense_data(struct se_cmd *cmd)
2977 {
2978         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2979         struct se_device *dev;
2980         struct se_task *task = NULL, *task_tmp;
2981         unsigned long flags;
2982         u32 offset = 0;
2983
2984         if (!SE_LUN(cmd)) {
2985                 printk(KERN_ERR "SE_LUN(cmd) is NULL\n");
2986                 return -1;
2987         }
2988         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
2989         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2990                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
2991                 return 0;
2992         }
2993
2994         list_for_each_entry_safe(task, task_tmp,
2995                                 &T_TASK(cmd)->t_task_list, t_list) {
2996
2997                 if (!task->task_sense)
2998                         continue;
2999
3000                 dev = task->se_dev;
3001                 if (!(dev))
3002                         continue;
3003
3004                 if (!TRANSPORT(dev)->get_sense_buffer) {
3005                         printk(KERN_ERR "TRANSPORT(dev)->get_sense_buffer"
3006                                         " is NULL\n");
3007                         continue;
3008                 }
3009
3010                 sense_buffer = TRANSPORT(dev)->get_sense_buffer(task);
3011                 if (!(sense_buffer)) {
3012                         printk(KERN_ERR "ITT[0x%08x]_TASK[%d]: Unable to locate"
3013                                 " sense buffer for task with sense\n",
3014                                 CMD_TFO(cmd)->get_task_tag(cmd), task->task_no);
3015                         continue;
3016                 }
3017                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3018
3019                 offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
3020                                 TRANSPORT_SENSE_BUFFER);
3021
3022                 memcpy((void *)&buffer[offset], (void *)sense_buffer,
3023                                 TRANSPORT_SENSE_BUFFER);
3024                 cmd->scsi_status = task->task_scsi_status;
3025                 /* Automatically padded */
3026                 cmd->scsi_sense_length =
3027                                 (TRANSPORT_SENSE_BUFFER + offset);
3028
3029                 printk(KERN_INFO "HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
3030                                 " and sense\n",
3031                         dev->se_hba->hba_id, TRANSPORT(dev)->name,
3032                                 cmd->scsi_status);
3033                 return 0;
3034         }
3035         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3036
3037         return -1;
3038 }
3039
3040 static int transport_allocate_resources(struct se_cmd *cmd)
3041 {
3042         u32 length = cmd->data_length;
3043
3044         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3045             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB))
3046                 return transport_generic_get_mem(cmd, length, PAGE_SIZE);
3047         else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB)
3048                 return transport_generic_allocate_buf(cmd, length);
3049         else
3050                 return 0;
3051 }
3052
3053 static int
3054 transport_handle_reservation_conflict(struct se_cmd *cmd)
3055 {
3056         cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3057         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3058         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
3059         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
3060         /*
3061          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
3062          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
3063          * CONFLICT STATUS.
3064          *
3065          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
3066          */
3067         if (SE_SESS(cmd) &&
3068             DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2)
3069                 core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl,
3070                         cmd->orig_fe_lun, 0x2C,
3071                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
3072         return -2;
3073 }
3074
3075 /*      transport_generic_cmd_sequencer():
3076  *
3077  *      Generic Command Sequencer that should work for most DAS transport
3078  *      drivers.
3079  *
3080  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
3081  *      RX Thread.
3082  *
3083  *      FIXME: Need to support other SCSI OPCODES where as well.
3084  */
3085 static int transport_generic_cmd_sequencer(
3086         struct se_cmd *cmd,
3087         unsigned char *cdb)
3088 {
3089         struct se_device *dev = SE_DEV(cmd);
3090         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
3091         int ret = 0, sector_ret = 0, passthrough;
3092         u32 sectors = 0, size = 0, pr_reg_type = 0;
3093         u16 service_action;
3094         u8 alua_ascq = 0;
3095         /*
3096          * Check for an existing UNIT ATTENTION condition
3097          */
3098         if (core_scsi3_ua_check(cmd, cdb) < 0) {
3099                 cmd->transport_wait_for_tasks =
3100                                 &transport_nop_wait_for_tasks;
3101                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3102                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
3103                 return -2;
3104         }
3105         /*
3106          * Check status of Asymmetric Logical Unit Assignment port
3107          */
3108         ret = T10_ALUA(su_dev)->alua_state_check(cmd, cdb, &alua_ascq);
3109         if (ret != 0) {
3110                 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3111                 /*
3112                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
3113                  * The ALUA additional sense code qualifier (ASCQ) is determined
3114                  * by the ALUA primary or secondary access state..
3115                  */
3116                 if (ret > 0) {
3117 #if 0
3118                         printk(KERN_INFO "[%s]: ALUA TG Port not available,"
3119                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
3120                                 CMD_TFO(cmd)->get_fabric_name(), alua_ascq);
3121 #endif
3122                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
3123                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3124                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
3125                         return -2;
3126                 }
3127                 goto out_invalid_cdb_field;
3128         }
3129         /*
3130          * Check status for SPC-3 Persistent Reservations
3131          */
3132         if (T10_PR_OPS(su_dev)->t10_reservation_check(cmd, &pr_reg_type) != 0) {
3133                 if (T10_PR_OPS(su_dev)->t10_seq_non_holder(
3134                                         cmd, cdb, pr_reg_type) != 0)
3135                         return transport_handle_reservation_conflict(cmd);
3136                 /*
3137                  * This means the CDB is allowed for the SCSI Initiator port
3138                  * when said port is *NOT* holding the legacy SPC-2 or
3139                  * SPC-3 Persistent Reservation.
3140                  */
3141         }
3142
3143         switch (cdb[0]) {
3144         case READ_6:
3145                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3146                 if (sector_ret)
3147                         goto out_unsupported_cdb;
3148                 size = transport_get_size(sectors, cdb, cmd);
3149                 cmd->transport_split_cdb = &split_cdb_XX_6;
3150                 T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
3151                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3152                 break;
3153         case READ_10:
3154                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3155                 if (sector_ret)
3156                         goto out_unsupported_cdb;
3157                 size = transport_get_size(sectors, cdb, cmd);
3158                 cmd->transport_split_cdb = &split_cdb_XX_10;
3159                 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3160                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3161                 break;
3162         case READ_12:
3163                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3164                 if (sector_ret)
3165                         goto out_unsupported_cdb;
3166                 size = transport_get_size(sectors, cdb, cmd);
3167                 cmd->transport_split_cdb = &split_cdb_XX_12;
3168                 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3169                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3170                 break;
3171         case READ_16:
3172                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3173                 if (sector_ret)
3174                         goto out_unsupported_cdb;
3175                 size = transport_get_size(sectors, cdb, cmd);
3176                 cmd->transport_split_cdb = &split_cdb_XX_16;
3177                 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3178                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3179                 break;
3180         case WRITE_6:
3181                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3182                 if (sector_ret)
3183                         goto out_unsupported_cdb;
3184                 size = transport_get_size(sectors, cdb, cmd);
3185                 cmd->transport_split_cdb = &split_cdb_XX_6;
3186                 T_TASK(cmd)->t_task_lba = transport_lba_21(cdb);
3187                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3188                 break;
3189         case WRITE_10:
3190                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3191                 if (sector_ret)
3192                         goto out_unsupported_cdb;
3193                 size = transport_get_size(sectors, cdb, cmd);
3194                 cmd->transport_split_cdb = &split_cdb_XX_10;
3195                 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3196                 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3197                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3198                 break;
3199         case WRITE_12:
3200                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3201                 if (sector_ret)
3202                         goto out_unsupported_cdb;
3203                 size = transport_get_size(sectors, cdb, cmd);
3204                 cmd->transport_split_cdb = &split_cdb_XX_12;
3205                 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3206                 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3207                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3208                 break;
3209         case WRITE_16:
3210                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3211                 if (sector_ret)
3212                         goto out_unsupported_cdb;
3213                 size = transport_get_size(sectors, cdb, cmd);
3214                 cmd->transport_split_cdb = &split_cdb_XX_16;
3215                 T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3216                 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3217                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3218                 break;
3219         case XDWRITEREAD_10:
3220                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
3221                     !(T_TASK(cmd)->t_tasks_bidi))
3222                         goto out_invalid_cdb_field;
3223                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3224                 if (sector_ret)
3225                         goto out_unsupported_cdb;
3226                 size = transport_get_size(sectors, cdb, cmd);
3227                 cmd->transport_split_cdb = &split_cdb_XX_10;
3228                 T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3229                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3230                 passthrough = (TRANSPORT(dev)->transport_type ==
3231                                 TRANSPORT_PLUGIN_PHBA_PDEV);
3232                 /*
3233                  * Skip the remaining assignments for TCM/PSCSI passthrough
3234                  */
3235                 if (passthrough)
3236                         break;
3237                 /*
3238                  * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3239                  */
3240                 cmd->transport_complete_callback = &transport_xor_callback;
3241                 T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8);
3242                 break;
3243         case VARIABLE_LENGTH_CMD:
3244                 service_action = get_unaligned_be16(&cdb[8]);
3245                 /*
3246                  * Determine if this is TCM/PSCSI device and we should disable
3247                  * internal emulation for this CDB.
3248                  */
3249                 passthrough = (TRANSPORT(dev)->transport_type ==
3250                                         TRANSPORT_PLUGIN_PHBA_PDEV);
3251
3252                 switch (service_action) {
3253                 case XDWRITEREAD_32:
3254                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3255                         if (sector_ret)
3256                                 goto out_unsupported_cdb;
3257                         size = transport_get_size(sectors, cdb, cmd);
3258                         /*
3259                          * Use WRITE_32 and READ_32 opcodes for the emulated
3260                          * XDWRITE_READ_32 logic.
3261                          */
3262                         cmd->transport_split_cdb = &split_cdb_XX_32;
3263                         T_TASK(cmd)->t_task_lba = transport_lba_64_ext(cdb);
3264                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3265
3266                         /*
3267                          * Skip the remaining assignments for TCM/PSCSI passthrough
3268                          */
3269                         if (passthrough)
3270                                 break;
3271
3272                         /*
3273                          * Setup BIDI XOR callback to be run during
3274                          * transport_generic_complete_ok()
3275                          */
3276                         cmd->transport_complete_callback = &transport_xor_callback;
3277                         T_TASK(cmd)->t_tasks_fua = (cdb[10] & 0x8);
3278                         break;
3279                 case WRITE_SAME_32:
3280                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3281                         if (sector_ret)
3282                                 goto out_unsupported_cdb;
3283                         size = transport_get_size(sectors, cdb, cmd);
3284                         T_TASK(cmd)->t_task_lba = get_unaligned_be64(&cdb[12]);
3285                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3286
3287                         /*
3288                          * Skip the remaining assignments for TCM/PSCSI passthrough
3289                          */
3290                         if (passthrough)
3291                                 break;
3292
3293                         if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) {
3294                                 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3295                                         " bits not supported for Block Discard"
3296                                         " Emulation\n");
3297                                 goto out_invalid_cdb_field;
3298                         }
3299                         /*
3300                          * Currently for the emulated case we only accept
3301                          * tpws with the UNMAP=1 bit set.
3302                          */
3303                         if (!(cdb[10] & 0x08)) {
3304                                 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not"
3305                                         " supported for Block Discard Emulation\n");
3306                                 goto out_invalid_cdb_field;
3307                         }
3308                         break;
3309                 default:
3310                         printk(KERN_ERR "VARIABLE_LENGTH_CMD service action"
3311                                 " 0x%04x not supported\n", service_action);
3312                         goto out_unsupported_cdb;
3313                 }
3314                 break;
3315         case 0xa3:
3316                 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
3317                         /* MAINTENANCE_IN from SCC-2 */
3318                         /*
3319                          * Check for emulated MI_REPORT_TARGET_PGS.
3320                          */
3321                         if (cdb[1] == MI_REPORT_TARGET_PGS) {
3322                                 cmd->transport_emulate_cdb =
3323                                 (T10_ALUA(su_dev)->alua_type ==
3324                                  SPC3_ALUA_EMULATED) ?
3325                                 &core_emulate_report_target_port_groups :
3326                                 NULL;
3327                         }
3328                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3329                                (cdb[8] << 8) | cdb[9];
3330                 } else {
3331                         /* GPCMD_SEND_KEY from multi media commands */
3332                         size = (cdb[8] << 8) + cdb[9];
3333                 }
3334                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3335                 break;
3336         case MODE_SELECT:
3337                 size = cdb[4];
3338                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3339                 break;
3340         case MODE_SELECT_10:
3341                 size = (cdb[7] << 8) + cdb[8];
3342                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3343                 break;
3344         case MODE_SENSE:
3345                 size = cdb[4];
3346                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3347                 break;
3348         case MODE_SENSE_10:
3349         case GPCMD_READ_BUFFER_CAPACITY:
3350         case GPCMD_SEND_OPC:
3351         case LOG_SELECT:
3352         case LOG_SENSE:
3353                 size = (cdb[7] << 8) + cdb[8];
3354                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3355                 break;
3356         case READ_BLOCK_LIMITS:
3357                 size = READ_BLOCK_LEN;
3358                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3359                 break;
3360         case GPCMD_GET_CONFIGURATION:
3361         case GPCMD_READ_FORMAT_CAPACITIES:
3362         case GPCMD_READ_DISC_INFO:
3363         case GPCMD_READ_TRACK_RZONE_INFO:
3364                 size = (cdb[7] << 8) + cdb[8];
3365                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3366                 break;
3367         case PERSISTENT_RESERVE_IN:
3368         case PERSISTENT_RESERVE_OUT:
3369                 cmd->transport_emulate_cdb =
3370                         (T10_RES(su_dev)->res_type ==
3371                          SPC3_PERSISTENT_RESERVATIONS) ?
3372                         &core_scsi3_emulate_pr : NULL;
3373                 size = (cdb[7] << 8) + cdb[8];
3374                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3375                 break;
3376         case GPCMD_MECHANISM_STATUS:
3377         case GPCMD_READ_DVD_STRUCTURE:
3378                 size = (cdb[8] << 8) + cdb[9];
3379                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3380                 break;
3381         case READ_POSITION:
3382                 size = READ_POSITION_LEN;
3383                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3384                 break;
3385         case 0xa4:
3386                 if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) {
3387                         /* MAINTENANCE_OUT from SCC-2
3388                          *
3389                          * Check for emulated MO_SET_TARGET_PGS.
3390                          */
3391                         if (cdb[1] == MO_SET_TARGET_PGS) {
3392                                 cmd->transport_emulate_cdb =
3393                                 (T10_ALUA(su_dev)->alua_type ==
3394                                         SPC3_ALUA_EMULATED) ?
3395                                 &core_emulate_set_target_port_groups :
3396                                 NULL;
3397                         }
3398
3399                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3400                                (cdb[8] << 8) | cdb[9];
3401                 } else  {
3402                         /* GPCMD_REPORT_KEY from multi media commands */
3403                         size = (cdb[8] << 8) + cdb[9];
3404                 }
3405                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3406                 break;
3407         case INQUIRY:
3408                 size = (cdb[3] << 8) + cdb[4];
3409                 /*
3410                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3411                  * See spc4r17 section 5.3
3412                  */
3413                 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3414                         cmd->sam_task_attr = TASK_ATTR_HOQ;
3415                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3416                 break;
3417         case READ_BUFFER:
3418                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3419                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3420                 break;
3421         case READ_CAPACITY:
3422                 size = READ_CAP_LEN;
3423                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3424                 break;
3425         case READ_MEDIA_SERIAL_NUMBER:
3426         case SECURITY_PROTOCOL_IN:
3427         case SECURITY_PROTOCOL_OUT:
3428                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3429                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3430                 break;
3431         case SERVICE_ACTION_IN:
3432         case ACCESS_CONTROL_IN:
3433         case ACCESS_CONTROL_OUT:
3434         case EXTENDED_COPY:
3435         case READ_ATTRIBUTE:
3436         case RECEIVE_COPY_RESULTS:
3437         case WRITE_ATTRIBUTE:
3438                 size = (cdb[10] << 24) | (cdb[11] << 16) |
3439                        (cdb[12] << 8) | cdb[13];
3440                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3441                 break;
3442         case RECEIVE_DIAGNOSTIC:
3443         case SEND_DIAGNOSTIC:
3444                 size = (cdb[3] << 8) | cdb[4];
3445                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3446                 break;
3447 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3448 #if 0
3449         case GPCMD_READ_CD:
3450                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3451                 size = (2336 * sectors);
3452                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3453                 break;
3454 #endif
3455         case READ_TOC:
3456                 size = cdb[8];
3457                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3458                 break;
3459         case REQUEST_SENSE:
3460                 size = cdb[4];
3461                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3462                 break;
3463         case READ_ELEMENT_STATUS:
3464                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3465                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3466                 break;
3467         case WRITE_BUFFER:
3468                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3469                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3470                 break;
3471         case RESERVE:
3472         case RESERVE_10:
3473                 /*
3474                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3475                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3476                  */
3477                 if (cdb[0] == RESERVE_10)
3478                         size = (cdb[7] << 8) | cdb[8];
3479                 else
3480                         size = cmd->data_length;
3481
3482                 /*
3483                  * Setup the legacy emulated handler for SPC-2 and
3484                  * >= SPC-3 compatible reservation handling (CRH=1)
3485                  * Otherwise, we assume the underlying SCSI logic is
3486                  * is running in SPC_PASSTHROUGH, and wants reservations
3487                  * emulation disabled.
3488                  */
3489                 cmd->transport_emulate_cdb =
3490                                 (T10_RES(su_dev)->res_type !=
3491                                  SPC_PASSTHROUGH) ?
3492                                 &core_scsi2_emulate_crh : NULL;
3493                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3494                 break;
3495         case RELEASE:
3496         case RELEASE_10:
3497                 /*
3498                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3499                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3500                 */
3501                 if (cdb[0] == RELEASE_10)
3502                         size = (cdb[7] << 8) | cdb[8];
3503                 else
3504                         size = cmd->data_length;
3505
3506                 cmd->transport_emulate_cdb =
3507                                 (T10_RES(su_dev)->res_type !=
3508                                  SPC_PASSTHROUGH) ?
3509                                 &core_scsi2_emulate_crh : NULL;
3510                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3511                 break;
3512         case SYNCHRONIZE_CACHE:
3513         case 0x91: /* SYNCHRONIZE_CACHE_16: */
3514                 /*
3515                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3516                  */
3517                 if (cdb[0] == SYNCHRONIZE_CACHE) {
3518                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3519                         T_TASK(cmd)->t_task_lba = transport_lba_32(cdb);
3520                 } else {
3521                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3522                         T_TASK(cmd)->t_task_lba = transport_lba_64(cdb);
3523                 }
3524                 if (sector_ret)
3525                         goto out_unsupported_cdb;
3526
3527                 size = transport_get_size(sectors, cdb, cmd);
3528                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3529
3530                 /*
3531                  * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3532                  */
3533                 if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3534                         break;
3535                 /*
3536                  * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3537                  * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3538                  */
3539                 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3540                 /*
3541                  * Check to ensure that LBA + Range does not exceed past end of
3542                  * device.
3543                  */
3544                 if (transport_get_sectors(cmd) < 0)
3545                         goto out_invalid_cdb_field;
3546                 break;
3547         case UNMAP:
3548                 size = get_unaligned_be16(&cdb[7]);
3549                 passthrough = (TRANSPORT(dev)->transport_type ==
3550                                 TRANSPORT_PLUGIN_PHBA_PDEV);
3551                 /*
3552                  * Determine if the received UNMAP used to for direct passthrough
3553                  * into Linux/SCSI with struct request via TCM/pSCSI or we are
3554                  * signaling the use of internal transport_generic_unmap() emulation
3555                  * for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO
3556                  * subsystem plugin backstores.
3557                  */
3558                 if (!(passthrough))
3559                         cmd->se_cmd_flags |= SCF_EMULATE_SYNC_UNMAP;
3560
3561                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3562                 break;
3563         case WRITE_SAME_16:
3564                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3565                 if (sector_ret)
3566                         goto out_unsupported_cdb;
3567                 size = transport_get_size(sectors, cdb, cmd);
3568                 T_TASK(cmd)->t_task_lba = get_unaligned_be16(&cdb[2]);
3569                 passthrough = (TRANSPORT(dev)->transport_type ==
3570                                 TRANSPORT_PLUGIN_PHBA_PDEV);
3571                 /*
3572                  * Determine if the received WRITE_SAME_16 is used to for direct
3573                  * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3574                  * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3575                  * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3576                  * TCM/FILEIO subsystem plugin backstores.
3577                  */
3578                 if (!(passthrough)) {
3579                         if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) {
3580                                 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3581                                         " bits not supported for Block Discard"
3582                                         " Emulation\n");
3583                                 goto out_invalid_cdb_field;
3584                         }
3585                         /*
3586                          * Currently for the emulated case we only accept
3587                          * tpws with the UNMAP=1 bit set.
3588                          */
3589                         if (!(cdb[1] & 0x08)) {
3590                                 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not "
3591                                         " supported for Block Discard Emulation\n");
3592                                 goto out_invalid_cdb_field;
3593                         }
3594                 }
3595                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3596                 break;
3597         case ALLOW_MEDIUM_REMOVAL:
3598         case GPCMD_CLOSE_TRACK:
3599         case ERASE:
3600         case INITIALIZE_ELEMENT_STATUS:
3601         case GPCMD_LOAD_UNLOAD:
3602         case REZERO_UNIT:
3603         case SEEK_10:
3604         case GPCMD_SET_SPEED:
3605         case SPACE:
3606         case START_STOP:
3607         case TEST_UNIT_READY:
3608         case VERIFY:
3609         case WRITE_FILEMARKS:
3610         case MOVE_MEDIUM:
3611                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3612                 break;
3613         case REPORT_LUNS:
3614                 cmd->transport_emulate_cdb =
3615                                 &transport_core_report_lun_response;
3616                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3617                 /*
3618                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3619                  * See spc4r17 section 5.3
3620                  */
3621                 if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3622                         cmd->sam_task_attr = TASK_ATTR_HOQ;
3623                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB;
3624                 break;
3625         default:
3626                 printk(KERN_WARNING "TARGET_CORE[%s]: Unsupported SCSI Opcode"
3627                         " 0x%02x, sending CHECK_CONDITION.\n",
3628                         CMD_TFO(cmd)->get_fabric_name(), cdb[0]);
3629                 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3630                 goto out_unsupported_cdb;
3631         }
3632
3633         if (size != cmd->data_length) {
3634                 printk(KERN_WARNING "TARGET_CORE[%s]: Expected Transfer Length:"
3635                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3636                         " 0x%02x\n", CMD_TFO(cmd)->get_fabric_name(),
3637                                 cmd->data_length, size, cdb[0]);
3638
3639                 cmd->cmd_spdtl = size;
3640
3641                 if (cmd->data_direction == DMA_TO_DEVICE) {
3642                         printk(KERN_ERR "Rejecting underflow/overflow"
3643                                         " WRITE data\n");
3644                         goto out_invalid_cdb_field;
3645                 }
3646                 /*
3647                  * Reject READ_* or WRITE_* with overflow/underflow for
3648                  * type SCF_SCSI_DATA_SG_IO_CDB.
3649                  */
3650                 if (!(ret) && (DEV_ATTRIB(dev)->block_size != 512))  {
3651                         printk(KERN_ERR "Failing OVERFLOW/UNDERFLOW for LBA op"
3652                                 " CDB on non 512-byte sector setup subsystem"
3653                                 " plugin: %s\n", TRANSPORT(dev)->name);
3654                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3655                         goto out_invalid_cdb_field;
3656                 }
3657
3658                 if (size > cmd->data_length) {
3659                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3660                         cmd->residual_count = (size - cmd->data_length);
3661                 } else {
3662                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3663                         cmd->residual_count = (cmd->data_length - size);
3664                 }
3665                 cmd->data_length = size;
3666         }
3667
3668         transport_set_supported_SAM_opcode(cmd);
3669         return ret;
3670
3671 out_unsupported_cdb:
3672         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3673         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3674         return -2;
3675 out_invalid_cdb_field:
3676         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3677         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3678         return -2;
3679 }
3680
3681 static inline void transport_release_tasks(struct se_cmd *);
3682
3683 /*
3684  * This function will copy a contiguous *src buffer into a destination
3685  * struct scatterlist array.
3686  */
3687 static void transport_memcpy_write_contig(
3688         struct se_cmd *cmd,
3689         struct scatterlist *sg_d,
3690         unsigned char *src)
3691 {
3692         u32 i = 0, length = 0, total_length = cmd->data_length;
3693         void *dst;
3694
3695         while (total_length) {
3696                 length = sg_d[i].length;
3697
3698                 if (length > total_length)
3699                         length = total_length;
3700
3701                 dst = sg_virt(&sg_d[i]);
3702
3703                 memcpy(dst, src, length);
3704
3705                 if (!(total_length -= length))
3706                         return;
3707
3708                 src += length;
3709                 i++;
3710         }
3711 }
3712
3713 /*
3714  * This function will copy a struct scatterlist array *sg_s into a destination
3715  * contiguous *dst buffer.
3716  */
3717 static void transport_memcpy_read_contig(
3718         struct se_cmd *cmd,
3719         unsigned char *dst,
3720         struct scatterlist *sg_s)
3721 {
3722         u32 i = 0, length = 0, total_length = cmd->data_length;
3723         void *src;
3724
3725         while (total_length) {
3726                 length = sg_s[i].length;
3727
3728                 if (length > total_length)
3729                         length = total_length;
3730
3731                 src = sg_virt(&sg_s[i]);
3732
3733                 memcpy(dst, src, length);
3734
3735                 if (!(total_length -= length))
3736                         return;
3737
3738                 dst += length;
3739                 i++;
3740         }
3741 }
3742
3743 static void transport_memcpy_se_mem_read_contig(
3744         struct se_cmd *cmd,
3745         unsigned char *dst,
3746         struct list_head *se_mem_list)
3747 {
3748         struct se_mem *se_mem;
3749         void *src;
3750         u32 length = 0, total_length = cmd->data_length;
3751
3752         list_for_each_entry(se_mem, se_mem_list, se_list) {
3753                 length = se_mem->se_len;
3754
3755                 if (length > total_length)
3756                         length = total_length;
3757
3758                 src = page_address(se_mem->se_page) + se_mem->se_off;
3759
3760                 memcpy(dst, src, length);
3761
3762                 if (!(total_length -= length))
3763                         return;
3764
3765                 dst += length;
3766         }
3767 }
3768
3769 /*
3770  * Called from transport_generic_complete_ok() and
3771  * transport_generic_request_failure() to determine which dormant/delayed
3772  * and ordered cmds need to have their tasks added to the execution queue.
3773  */
3774 static void transport_complete_task_attr(struct se_cmd *cmd)
3775 {
3776         struct se_device *dev = SE_DEV(cmd);
3777         struct se_cmd *cmd_p, *cmd_tmp;
3778         int new_active_tasks = 0;
3779
3780         if (cmd->sam_task_attr == TASK_ATTR_SIMPLE) {
3781                 atomic_dec(&dev->simple_cmds);
3782                 smp_mb__after_atomic_dec();
3783                 dev->dev_cur_ordered_id++;
3784                 DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for"
3785                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3786                         cmd->se_ordered_id);
3787         } else if (cmd->sam_task_attr == TASK_ATTR_HOQ) {
3788                 atomic_dec(&dev->dev_hoq_count);
3789                 smp_mb__after_atomic_dec();
3790                 dev->dev_cur_ordered_id++;
3791                 DEBUG_STA("Incremented dev_cur_ordered_id: %u for"
3792                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3793                         cmd->se_ordered_id);
3794         } else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) {
3795                 spin_lock(&dev->ordered_cmd_lock);
3796                 list_del(&cmd->se_ordered_list);
3797                 atomic_dec(&dev->dev_ordered_sync);
3798                 smp_mb__after_atomic_dec();
3799                 spin_unlock(&dev->ordered_cmd_lock);
3800
3801                 dev->dev_cur_ordered_id++;
3802                 DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:"
3803                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3804         }
3805         /*
3806          * Process all commands up to the last received
3807          * ORDERED task attribute which requires another blocking
3808          * boundary
3809          */
3810         spin_lock(&dev->delayed_cmd_lock);
3811         list_for_each_entry_safe(cmd_p, cmd_tmp,
3812                         &dev->delayed_cmd_list, se_delayed_list) {
3813
3814                 list_del(&cmd_p->se_delayed_list);
3815                 spin_unlock(&dev->delayed_cmd_lock);
3816
3817                 DEBUG_STA("Calling add_tasks() for"
3818                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3819                         " Dormant -> Active, se_ordered_id: %u\n",
3820                         T_TASK(cmd_p)->t_task_cdb[0],
3821                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3822
3823                 transport_add_tasks_from_cmd(cmd_p);
3824                 new_active_tasks++;
3825
3826                 spin_lock(&dev->delayed_cmd_lock);
3827                 if (cmd_p->sam_task_attr == TASK_ATTR_ORDERED)
3828                         break;
3829         }
3830         spin_unlock(&dev->delayed_cmd_lock);
3831         /*
3832          * If new tasks have become active, wake up the transport thread
3833          * to do the processing of the Active tasks.
3834          */
3835         if (new_active_tasks != 0)
3836                 wake_up_interruptible(&dev->dev_queue_obj->thread_wq);
3837 }
3838
3839 static void transport_generic_complete_ok(struct se_cmd *cmd)
3840 {
3841         int reason = 0;
3842         /*
3843          * Check if we need to move delayed/dormant tasks from cmds on the
3844          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3845          * Attribute.
3846          */
3847         if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3848                 transport_complete_task_attr(cmd);
3849         /*
3850          * Check if we need to retrieve a sense buffer from
3851          * the struct se_cmd in question.
3852          */
3853         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3854                 if (transport_get_sense_data(cmd) < 0)
3855                         reason = TCM_NON_EXISTENT_LUN;
3856
3857                 /*
3858                  * Only set when an struct se_task->task_scsi_status returned
3859                  * a non GOOD status.
3860                  */
3861                 if (cmd->scsi_status) {
3862                         transport_send_check_condition_and_sense(
3863                                         cmd, reason, 1);
3864                         transport_lun_remove_cmd(cmd);
3865                         transport_cmd_check_stop_to_fabric(cmd);
3866                         return;
3867                 }
3868         }
3869         /*
3870          * Check for a callback, used by amongst other things
3871          * XDWRITE_READ_10 emulation.
3872          */
3873         if (cmd->transport_complete_callback)
3874                 cmd->transport_complete_callback(cmd);
3875
3876         switch (cmd->data_direction) {
3877         case DMA_FROM_DEVICE:
3878                 spin_lock(&cmd->se_lun->lun_sep_lock);
3879                 if (SE_LUN(cmd)->lun_sep) {
3880                         SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
3881                                         cmd->data_length;
3882                 }
3883                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3884                 /*
3885                  * If enabled by TCM fabirc module pre-registered SGL
3886                  * memory, perform the memcpy() from the TCM internal
3887                  * contigious buffer back to the original SGL.
3888                  */
3889                 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
3890                         transport_memcpy_write_contig(cmd,
3891                                  T_TASK(cmd)->t_task_pt_sgl,
3892                                  T_TASK(cmd)->t_task_buf);
3893
3894                 CMD_TFO(cmd)->queue_data_in(cmd);
3895                 break;
3896         case DMA_TO_DEVICE:
3897                 spin_lock(&cmd->se_lun->lun_sep_lock);
3898                 if (SE_LUN(cmd)->lun_sep) {
3899                         SE_LUN(cmd)->lun_sep->sep_stats.rx_data_octets +=
3900                                 cmd->data_length;
3901                 }
3902                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3903                 /*
3904                  * Check if we need to send READ payload for BIDI-COMMAND
3905                  */
3906                 if (T_TASK(cmd)->t_mem_bidi_list != NULL) {
3907                         spin_lock(&cmd->se_lun->lun_sep_lock);
3908                         if (SE_LUN(cmd)->lun_sep) {
3909                                 SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets +=
3910                                         cmd->data_length;
3911                         }
3912                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3913                         CMD_TFO(cmd)->queue_data_in(cmd);
3914                         break;
3915                 }
3916                 /* Fall through for DMA_TO_DEVICE */
3917         case DMA_NONE:
3918                 CMD_TFO(cmd)->queue_status(cmd);
3919                 break;
3920         default:
3921                 break;
3922         }
3923
3924         transport_lun_remove_cmd(cmd);
3925         transport_cmd_check_stop_to_fabric(cmd);
3926 }
3927
3928 static void transport_free_dev_tasks(struct se_cmd *cmd)
3929 {
3930         struct se_task *task, *task_tmp;
3931         unsigned long flags;
3932
3933         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3934         list_for_each_entry_safe(task, task_tmp,
3935                                 &T_TASK(cmd)->t_task_list, t_list) {
3936                 if (atomic_read(&task->task_active))
3937                         continue;
3938
3939                 kfree(task->task_sg_bidi);
3940                 kfree(task->task_sg);
3941
3942                 list_del(&task->t_list);
3943
3944                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3945                 if (task->se_dev)
3946                         TRANSPORT(task->se_dev)->free_task(task);
3947                 else
3948                         printk(KERN_ERR "task[%u] - task->se_dev is NULL\n",
3949                                 task->task_no);
3950                 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
3951         }
3952         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
3953 }
3954
3955 static inline void transport_free_pages(struct se_cmd *cmd)
3956 {
3957         struct se_mem *se_mem, *se_mem_tmp;
3958         int free_page = 1;
3959
3960         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3961                 free_page = 0;
3962         if (cmd->se_dev->transport->do_se_mem_map)
3963                 free_page = 0;
3964
3965         if (T_TASK(cmd)->t_task_buf) {
3966                 kfree(T_TASK(cmd)->t_task_buf);
3967                 T_TASK(cmd)->t_task_buf = NULL;
3968                 return;
3969         }
3970
3971         /*
3972          * Caller will handle releasing of struct se_mem.
3973          */
3974         if (cmd->se_cmd_flags & SCF_CMD_PASSTHROUGH_NOALLOC)
3975                 return;
3976
3977         if (!(T_TASK(cmd)->t_tasks_se_num))
3978                 return;
3979
3980         list_for_each_entry_safe(se_mem, se_mem_tmp,
3981                         T_TASK(cmd)->t_mem_list, se_list) {
3982                 /*
3983                  * We only release call __free_page(struct se_mem->se_page) when
3984                  * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3985                  */
3986                 if (free_page)
3987                         __free_page(se_mem->se_page);
3988
3989                 list_del(&se_mem->se_list);
3990                 kmem_cache_free(se_mem_cache, se_mem);
3991         }
3992
3993         if (T_TASK(cmd)->t_mem_bidi_list && T_TASK(cmd)->t_tasks_se_bidi_num) {
3994                 list_for_each_entry_safe(se_mem, se_mem_tmp,
3995                                 T_TASK(cmd)->t_mem_bidi_list, se_list) {
3996                         /*
3997                          * We only release call __free_page(struct se_mem->se_page) when
3998                          * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3999                          */
4000                         if (free_page)
4001                                 __free_page(se_mem->se_page);
4002
4003                         list_del(&se_mem->se_list);
4004                         kmem_cache_free(se_mem_cache, se_mem);
4005                 }
4006         }
4007
4008         kfree(T_TASK(cmd)->t_mem_bidi_list);
4009         T_TASK(cmd)->t_mem_bidi_list = NULL;
4010         kfree(T_TASK(cmd)->t_mem_list);
4011         T_TASK(cmd)->t_mem_list = NULL;
4012         T_TASK(cmd)->t_tasks_se_num = 0;
4013 }
4014
4015 static inline void transport_release_tasks(struct se_cmd *cmd)
4016 {
4017         transport_free_dev_tasks(cmd);
4018 }
4019
4020 static inline int transport_dec_and_check(struct se_cmd *cmd)
4021 {
4022         unsigned long flags;
4023
4024         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4025         if (atomic_read(&T_TASK(cmd)->t_fe_count)) {
4026                 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_fe_count))) {
4027                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4028                                         flags);
4029                         return 1;
4030                 }
4031         }
4032
4033         if (atomic_read(&T_TASK(cmd)->t_se_count)) {
4034                 if (!(atomic_dec_and_test(&T_TASK(cmd)->t_se_count))) {
4035                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4036                                         flags);
4037                         return 1;
4038                 }
4039         }
4040         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4041
4042         return 0;
4043 }
4044
4045 static void transport_release_fe_cmd(struct se_cmd *cmd)
4046 {
4047         unsigned long flags;
4048
4049         if (transport_dec_and_check(cmd))
4050                 return;
4051
4052         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4053         if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
4054                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4055                 goto free_pages;
4056         }
4057         atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
4058         transport_all_task_dev_remove_state(cmd);
4059         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4060
4061         transport_release_tasks(cmd);
4062 free_pages:
4063         transport_free_pages(cmd);
4064         transport_free_se_cmd(cmd);
4065         CMD_TFO(cmd)->release_cmd_direct(cmd);
4066 }
4067
4068 static int transport_generic_remove(
4069         struct se_cmd *cmd,
4070         int release_to_pool,
4071         int session_reinstatement)
4072 {
4073         unsigned long flags;
4074
4075         if (!(T_TASK(cmd)))
4076                 goto release_cmd;
4077
4078         if (transport_dec_and_check(cmd)) {
4079                 if (session_reinstatement) {
4080                         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4081                         transport_all_task_dev_remove_state(cmd);
4082                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
4083                                         flags);
4084                 }
4085                 return 1;
4086         }
4087
4088         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
4089         if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
4090                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4091                 goto free_pages;
4092         }
4093         atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
4094         transport_all_task_dev_remove_state(cmd);
4095         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
4096
4097         transport_release_tasks(cmd);
4098 free_pages:
4099         transport_free_pages(cmd);
4100
4101 release_cmd:
4102         if (release_to_pool) {
4103                 transport_release_cmd_to_pool(cmd);
4104         } else {
4105                 transport_free_se_cmd(cmd);
4106                 CMD_TFO(cmd)->release_cmd_direct(cmd);
4107         }
4108
4109         return 0;
4110 }
4111
4112 /*
4113  * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map
4114  * @cmd:  Associated se_cmd descriptor
4115  * @mem:  SGL style memory for TCM WRITE / READ
4116  * @sg_mem_num: Number of SGL elements
4117  * @mem_bidi_in: SGL style memory for TCM BIDI READ
4118  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
4119  *
4120  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
4121  * of parameters.
4122  */
4123 int transport_generic_map_mem_to_cmd(
4124         struct se_cmd *cmd,
4125         struct scatterlist *mem,
4126         u32 sg_mem_num,
4127         struct scatterlist *mem_bidi_in,
4128         u32 sg_mem_bidi_num)
4129 {
4130         u32 se_mem_cnt_out = 0;
4131         int ret;
4132
4133         if (!(mem) || !(sg_mem_num))
4134                 return 0;
4135         /*
4136          * Passed *mem will contain a list_head containing preformatted
4137          * struct se_mem elements...
4138          */
4139         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM)) {
4140                 if ((mem_bidi_in) || (sg_mem_bidi_num)) {
4141                         printk(KERN_ERR "SCF_CMD_PASSTHROUGH_NOALLOC not supported"
4142                                 " with BIDI-COMMAND\n");
4143                         return -ENOSYS;
4144                 }
4145
4146                 T_TASK(cmd)->t_mem_list = (struct list_head *)mem;
4147                 T_TASK(cmd)->t_tasks_se_num = sg_mem_num;
4148                 cmd->se_cmd_flags |= SCF_CMD_PASSTHROUGH_NOALLOC;
4149                 return 0;
4150         }
4151         /*
4152          * Otherwise, assume the caller is passing a struct scatterlist
4153          * array from include/linux/scatterlist.h
4154          */
4155         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
4156             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
4157                 /*
4158                  * For CDB using TCM struct se_mem linked list scatterlist memory
4159                  * processed into a TCM struct se_subsystem_dev, we do the mapping
4160                  * from the passed physical memory to struct se_mem->se_page here.
4161                  */
4162                 T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
4163                 if (!(T_TASK(cmd)->t_mem_list))
4164                         return -ENOMEM;
4165
4166                 ret = transport_map_sg_to_mem(cmd,
4167                         T_TASK(cmd)->t_mem_list, mem, &se_mem_cnt_out);
4168                 if (ret < 0)
4169                         return -ENOMEM;
4170
4171                 T_TASK(cmd)->t_tasks_se_num = se_mem_cnt_out;
4172                 /*
4173                  * Setup BIDI READ list of struct se_mem elements
4174                  */
4175                 if ((mem_bidi_in) && (sg_mem_bidi_num)) {
4176                         T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
4177                         if (!(T_TASK(cmd)->t_mem_bidi_list)) {
4178                                 kfree(T_TASK(cmd)->t_mem_list);
4179                                 return -ENOMEM;
4180                         }
4181                         se_mem_cnt_out = 0;
4182
4183                         ret = transport_map_sg_to_mem(cmd,
4184                                 T_TASK(cmd)->t_mem_bidi_list, mem_bidi_in,
4185                                 &se_mem_cnt_out);
4186                         if (ret < 0) {
4187                                 kfree(T_TASK(cmd)->t_mem_list);
4188                                 return -ENOMEM;
4189                         }
4190
4191                         T_TASK(cmd)->t_tasks_se_bidi_num = se_mem_cnt_out;
4192                 }
4193                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
4194
4195         } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
4196                 if (mem_bidi_in || sg_mem_bidi_num) {
4197                         printk(KERN_ERR "BIDI-Commands not supported using "
4198                                 "SCF_SCSI_CONTROL_NONSG_IO_CDB\n");
4199                         return -ENOSYS;
4200                 }
4201                 /*
4202                  * For incoming CDBs using a contiguous buffer internall with TCM,
4203                  * save the passed struct scatterlist memory.  After TCM storage object
4204                  * processing has completed for this struct se_cmd, TCM core will call
4205                  * transport_memcpy_[write,read]_contig() as necessary from
4206                  * transport_generic_complete_ok() and transport_write_pending() in order
4207                  * to copy the TCM buffer to/from the original passed *mem in SGL ->
4208                  * struct scatterlist format.
4209                  */
4210                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_CONTIG_TO_SG;
4211                 T_TASK(cmd)->t_task_pt_sgl = mem;
4212         }
4213
4214         return 0;
4215 }
4216 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
4217
4218
4219 static inline long long transport_dev_end_lba(struct se_device *dev)
4220 {
4221         return dev->transport->get_blocks(dev) + 1;
4222 }
4223
4224 static int transport_get_sectors(struct se_cmd *cmd)
4225 {
4226         struct se_device *dev = SE_DEV(cmd);
4227
4228         T_TASK(cmd)->t_tasks_sectors =
4229                 (cmd->data_length / DEV_ATTRIB(dev)->block_size);
4230         if (!(T_TASK(cmd)->t_tasks_sectors))
4231                 T_TASK(cmd)->t_tasks_sectors = 1;
4232
4233         if (TRANSPORT(dev)->get_device_type(dev) != TYPE_DISK)
4234                 return 0;
4235
4236         if ((T_TASK(cmd)->t_task_lba + T_TASK(cmd)->t_tasks_sectors) >
4237              transport_dev_end_lba(dev)) {
4238                 printk(KERN_ERR "LBA: %llu Sectors: %u exceeds"
4239                         " transport_dev_end_lba(): %llu\n",
4240                         T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
4241                         transport_dev_end_lba(dev));
4242                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4243                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
4244                 return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS;
4245         }
4246
4247         return 0;
4248 }
4249
4250 static int transport_new_cmd_obj(struct se_cmd *cmd)
4251 {
4252         struct se_device *dev = SE_DEV(cmd);
4253         u32 task_cdbs = 0, rc;
4254
4255         if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
4256                 task_cdbs++;
4257                 T_TASK(cmd)->t_task_cdbs++;
4258         } else {
4259                 int set_counts = 1;
4260
4261                 /*
4262                  * Setup any BIDI READ tasks and memory from
4263                  * T_TASK(cmd)->t_mem_bidi_list so the READ struct se_tasks
4264                  * are queued first for the non pSCSI passthrough case.
4265                  */
4266                 if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
4267                     (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
4268                         rc = transport_generic_get_cdb_count(cmd,
4269                                 T_TASK(cmd)->t_task_lba,
4270                                 T_TASK(cmd)->t_tasks_sectors,
4271                                 DMA_FROM_DEVICE, T_TASK(cmd)->t_mem_bidi_list,
4272                                 set_counts);
4273                         if (!(rc)) {
4274                                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4275                                 cmd->scsi_sense_reason =
4276                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4277                                 return PYX_TRANSPORT_LU_COMM_FAILURE;
4278                         }
4279                         set_counts = 0;
4280                 }
4281                 /*
4282                  * Setup the tasks and memory from T_TASK(cmd)->t_mem_list
4283                  * Note for BIDI transfers this will contain the WRITE payload
4284                  */
4285                 task_cdbs = transport_generic_get_cdb_count(cmd,
4286                                 T_TASK(cmd)->t_task_lba,
4287                                 T_TASK(cmd)->t_tasks_sectors,
4288                                 cmd->data_direction, T_TASK(cmd)->t_mem_list,
4289                                 set_counts);
4290                 if (!(task_cdbs)) {
4291                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4292                         cmd->scsi_sense_reason =
4293                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4294                         return PYX_TRANSPORT_LU_COMM_FAILURE;
4295                 }
4296                 T_TASK(cmd)->t_task_cdbs += task_cdbs;
4297
4298 #if 0
4299                 printk(KERN_INFO "data_length: %u, LBA: %llu t_tasks_sectors:"
4300                         " %u, t_task_cdbs: %u\n", obj_ptr, cmd->data_length,
4301                         T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors,
4302                         T_TASK(cmd)->t_task_cdbs);
4303 #endif
4304         }
4305
4306         atomic_set(&T_TASK(cmd)->t_task_cdbs_left, task_cdbs);
4307         atomic_set(&T_TASK(cmd)->t_task_cdbs_ex_left, task_cdbs);
4308         atomic_set(&T_TASK(cmd)->t_task_cdbs_timeout_left, task_cdbs);
4309         return 0;
4310 }
4311
4312 static struct list_head *transport_init_se_mem_list(void)
4313 {
4314         struct list_head *se_mem_list;
4315
4316         se_mem_list = kzalloc(sizeof(struct list_head), GFP_KERNEL);
4317         if (!(se_mem_list)) {
4318                 printk(KERN_ERR "Unable to allocate memory for se_mem_list\n");
4319                 return NULL;
4320         }
4321         INIT_LIST_HEAD(se_mem_list);
4322
4323         return se_mem_list;
4324 }
4325
4326 static int
4327 transport_generic_get_mem(struct se_cmd *cmd, u32 length, u32 dma_size)
4328 {
4329         unsigned char *buf;
4330         struct se_mem *se_mem;
4331
4332         T_TASK(cmd)->t_mem_list = transport_init_se_mem_list();
4333         if (!(T_TASK(cmd)->t_mem_list))
4334                 return -ENOMEM;
4335
4336         /*
4337          * If the device uses memory mapping this is enough.
4338          */
4339         if (cmd->se_dev->transport->do_se_mem_map)
4340                 return 0;
4341
4342         /*
4343          * Setup BIDI-COMMAND READ list of struct se_mem elements
4344          */
4345         if (T_TASK(cmd)->t_tasks_bidi) {
4346                 T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list();
4347                 if (!(T_TASK(cmd)->t_mem_bidi_list)) {
4348                         kfree(T_TASK(cmd)->t_mem_list);
4349                         return -ENOMEM;
4350                 }
4351         }
4352
4353         while (length) {
4354                 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4355                 if (!(se_mem)) {
4356                         printk(KERN_ERR "Unable to allocate struct se_mem\n");
4357                         goto out;
4358                 }
4359
4360 /* #warning FIXME Allocate contigous pages for struct se_mem elements */
4361                 se_mem->se_page = alloc_pages(GFP_KERNEL, 0);
4362                 if (!(se_mem->se_page)) {
4363                         printk(KERN_ERR "alloc_pages() failed\n");
4364                         goto out;
4365                 }
4366
4367                 buf = kmap_atomic(se_mem->se_page, KM_IRQ0);
4368                 if (!(buf)) {
4369                         printk(KERN_ERR "kmap_atomic() failed\n");
4370                         goto out;
4371                 }
4372                 INIT_LIST_HEAD(&se_mem->se_list);
4373                 se_mem->se_len = (length > dma_size) ? dma_size : length;
4374                 memset(buf, 0, se_mem->se_len);
4375                 kunmap_atomic(buf, KM_IRQ0);
4376
4377                 list_add_tail(&se_mem->se_list, T_TASK(cmd)->t_mem_list);
4378                 T_TASK(cmd)->t_tasks_se_num++;
4379
4380                 DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)"
4381                         " Offset(%u)\n", se_mem->se_page, se_mem->se_len,
4382                         se_mem->se_off);
4383
4384                 length -= se_mem->se_len;
4385         }
4386
4387         DEBUG_MEM("Allocated total struct se_mem elements(%u)\n",
4388                         T_TASK(cmd)->t_tasks_se_num);
4389
4390         return 0;
4391 out:
4392         if (se_mem)
4393                 __free_pages(se_mem->se_page, 0);
4394         kmem_cache_free(se_mem_cache, se_mem);
4395         return -1;
4396 }
4397
4398 u32 transport_calc_sg_num(
4399         struct se_task *task,
4400         struct se_mem *in_se_mem,
4401         u32 task_offset)
4402 {
4403         struct se_cmd *se_cmd = task->task_se_cmd;
4404         struct se_device *se_dev = SE_DEV(se_cmd);
4405         struct se_mem *se_mem = in_se_mem;
4406         struct target_core_fabric_ops *tfo = CMD_TFO(se_cmd);
4407         u32 sg_length, task_size = task->task_size, task_sg_num_padded;
4408
4409         while (task_size != 0) {
4410                 DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)"
4411                         " se_mem->se_off(%u) task_offset(%u)\n",
4412                         se_mem->se_page, se_mem->se_len,
4413                         se_mem->se_off, task_offset);
4414
4415                 if (task_offset == 0) {
4416                         if (task_size >= se_mem->se_len) {
4417                                 sg_length = se_mem->se_len;
4418
4419                                 if (!(list_is_last(&se_mem->se_list,
4420                                                 T_TASK(se_cmd)->t_mem_list)))
4421                                         se_mem = list_entry(se_mem->se_list.next,
4422                                                         struct se_mem, se_list);
4423                         } else {
4424                                 sg_length = task_size;
4425                                 task_size -= sg_length;
4426                                 goto next;
4427                         }
4428
4429                         DEBUG_SC("sg_length(%u) task_size(%u)\n",
4430                                         sg_length, task_size);
4431                 } else {
4432                         if ((se_mem->se_len - task_offset) > task_size) {
4433                                 sg_length = task_size;
4434                                 task_size -= sg_length;
4435                                 goto next;
4436                          } else {
4437                                 sg_length = (se_mem->se_len - task_offset);
4438
4439                                 if (!(list_is_last(&se_mem->se_list,
4440                                                 T_TASK(se_cmd)->t_mem_list)))
4441                                         se_mem = list_entry(se_mem->se_list.next,
4442                                                         struct se_mem, se_list);
4443                         }
4444
4445                         DEBUG_SC("sg_length(%u) task_size(%u)\n",
4446                                         sg_length, task_size);
4447
4448                         task_offset = 0;
4449                 }
4450                 task_size -= sg_length;
4451 next:
4452                 DEBUG_SC("task[%u] - Reducing task_size to(%u)\n",
4453                         task->task_no, task_size);
4454
4455                 task->task_sg_num++;
4456         }
4457         /*
4458          * Check if the fabric module driver is requesting that all
4459          * struct se_task->task_sg[] be chained together..  If so,
4460          * then allocate an extra padding SG entry for linking and
4461          * marking the end of the chained SGL.
4462          */
4463         if (tfo->task_sg_chaining) {
4464                 task_sg_num_padded = (task->task_sg_num + 1);
4465                 task->task_padded_sg = 1;
4466         } else
4467                 task_sg_num_padded = task->task_sg_num;
4468
4469         task->task_sg = kzalloc(task_sg_num_padded *
4470                         sizeof(struct scatterlist), GFP_KERNEL);
4471         if (!(task->task_sg)) {
4472                 printk(KERN_ERR "Unable to allocate memory for"
4473                                 " task->task_sg\n");
4474                 return 0;
4475         }
4476         sg_init_table(&task->task_sg[0], task_sg_num_padded);
4477         /*
4478          * Setup task->task_sg_bidi for SCSI READ payload for
4479          * TCM/pSCSI passthrough if present for BIDI-COMMAND
4480          */
4481         if ((T_TASK(se_cmd)->t_mem_bidi_list != NULL) &&
4482             (TRANSPORT(se_dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) {
4483                 task->task_sg_bidi = kzalloc(task_sg_num_padded *
4484                                 sizeof(struct scatterlist), GFP_KERNEL);
4485                 if (!(task->task_sg_bidi)) {
4486                         printk(KERN_ERR "Unable to allocate memory for"
4487                                 " task->task_sg_bidi\n");
4488                         return 0;
4489                 }
4490                 sg_init_table(&task->task_sg_bidi[0], task_sg_num_padded);
4491         }
4492         /*
4493          * For the chaining case, setup the proper end of SGL for the
4494          * initial submission struct task into struct se_subsystem_api.
4495          * This will be cleared later by transport_do_task_sg_chain()
4496          */
4497         if (task->task_padded_sg) {
4498                 sg_mark_end(&task->task_sg[task->task_sg_num - 1]);
4499                 /*
4500                  * Added the 'if' check before marking end of bi-directional
4501                  * scatterlist (which gets created only in case of request
4502                  * (RD + WR).
4503                  */
4504                 if (task->task_sg_bidi)
4505                         sg_mark_end(&task->task_sg_bidi[task->task_sg_num - 1]);
4506         }
4507
4508         DEBUG_SC("Successfully allocated task->task_sg_num(%u),"
4509                 " task_sg_num_padded(%u)\n", task->task_sg_num,
4510                 task_sg_num_padded);
4511
4512         return task->task_sg_num;
4513 }
4514
4515 static inline int transport_set_tasks_sectors_disk(
4516         struct se_task *task,
4517         struct se_device *dev,
4518         unsigned long long lba,
4519         u32 sectors,
4520         int *max_sectors_set)
4521 {
4522         if ((lba + sectors) > transport_dev_end_lba(dev)) {
4523                 task->task_sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4524
4525                 if (task->task_sectors > DEV_ATTRIB(dev)->max_sectors) {
4526                         task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4527                         *max_sectors_set = 1;
4528                 }
4529         } else {
4530                 if (sectors > DEV_ATTRIB(dev)->max_sectors) {
4531                         task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4532                         *max_sectors_set = 1;
4533                 } else
4534                         task->task_sectors = sectors;
4535         }
4536
4537         return 0;
4538 }
4539
4540 static inline int transport_set_tasks_sectors_non_disk(
4541         struct se_task *task,
4542         struct se_device *dev,
4543         unsigned long long lba,
4544         u32 sectors,
4545         int *max_sectors_set)
4546 {
4547         if (sectors > DEV_ATTRIB(dev)->max_sectors) {
4548                 task->task_sectors = DEV_ATTRIB(dev)->max_sectors;
4549                 *max_sectors_set = 1;
4550         } else
4551                 task->task_sectors = sectors;
4552
4553         return 0;
4554 }
4555
4556 static inline int transport_set_tasks_sectors(
4557         struct se_task *task,
4558         struct se_device *dev,
4559         unsigned long long lba,
4560         u32 sectors,
4561         int *max_sectors_set)
4562 {
4563         return (TRANSPORT(dev)->get_device_type(dev) == TYPE_DISK) ?
4564                 transport_set_tasks_sectors_disk(task, dev, lba, sectors,
4565                                 max_sectors_set) :
4566                 transport_set_tasks_sectors_non_disk(task, dev, lba, sectors,
4567                                 max_sectors_set);
4568 }
4569
4570 static int transport_map_sg_to_mem(
4571         struct se_cmd *cmd,
4572         struct list_head *se_mem_list,
4573         void *in_mem,
4574         u32 *se_mem_cnt)
4575 {
4576         struct se_mem *se_mem;
4577         struct scatterlist *sg;
4578         u32 sg_count = 1, cmd_size = cmd->data_length;
4579
4580         if (!in_mem) {
4581                 printk(KERN_ERR "No source scatterlist\n");
4582                 return -1;
4583         }
4584         sg = (struct scatterlist *)in_mem;
4585
4586         while (cmd_size) {
4587                 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4588                 if (!(se_mem)) {
4589                         printk(KERN_ERR "Unable to allocate struct se_mem\n");
4590                         return -1;
4591                 }
4592                 INIT_LIST_HEAD(&se_mem->se_list);
4593                 DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u"
4594                         " sg_page: %p offset: %d length: %d\n", cmd_size,
4595                         sg_page(sg), sg->offset, sg->length);
4596
4597                 se_mem->se_page = sg_page(sg);
4598                 se_mem->se_off = sg->offset;
4599
4600                 if (cmd_size > sg->length) {
4601                         se_mem->se_len = sg->length;
4602                         sg = sg_next(sg);
4603                         sg_count++;
4604                 } else
4605                         se_mem->se_len = cmd_size;
4606
4607                 cmd_size -= se_mem->se_len;
4608
4609                 DEBUG_MEM("sg_to_mem: *se_mem_cnt: %u cmd_size: %u\n",
4610                                 *se_mem_cnt, cmd_size);
4611                 DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n",
4612                                 se_mem->se_page, se_mem->se_off, se_mem->se_len);
4613
4614                 list_add_tail(&se_mem->se_list, se_mem_list);
4615                 (*se_mem_cnt)++;
4616         }
4617
4618         DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments to(%u)"
4619                 " struct se_mem\n", sg_count, *se_mem_cnt);
4620
4621         if (sg_count != *se_mem_cnt)
4622                 BUG();
4623
4624         return 0;
4625 }
4626
4627 /*      transport_map_mem_to_sg():
4628  *
4629  *
4630  */
4631 int transport_map_mem_to_sg(
4632         struct se_task *task,
4633         struct list_head *se_mem_list,
4634         void *in_mem,
4635         struct se_mem *in_se_mem,
4636         struct se_mem **out_se_mem,
4637         u32 *se_mem_cnt,
4638         u32 *task_offset)
4639 {
4640         struct se_cmd *se_cmd = task->task_se_cmd;
4641         struct se_mem *se_mem = in_se_mem;
4642         struct scatterlist *sg = (struct scatterlist *)in_mem;
4643         u32 task_size = task->task_size, sg_no = 0;
4644
4645         if (!sg) {
4646                 printk(KERN_ERR "Unable to locate valid struct"
4647                                 " scatterlist pointer\n");
4648                 return -1;
4649         }
4650
4651         while (task_size != 0) {
4652                 /*
4653                  * Setup the contigious array of scatterlists for
4654                  * this struct se_task.
4655                  */
4656                 sg_assign_page(sg, se_mem->se_page);
4657
4658                 if (*task_offset == 0) {
4659                         sg->offset = se_mem->se_off;
4660
4661                         if (task_size >= se_mem->se_len) {
4662                                 sg->length = se_mem->se_len;
4663
4664                                 if (!(list_is_last(&se_mem->se_list,
4665                                                 T_TASK(se_cmd)->t_mem_list))) {
4666                                         se_mem = list_entry(se_mem->se_list.next,
4667                                                         struct se_mem, se_list);
4668                                         (*se_mem_cnt)++;
4669                                 }
4670                         } else {
4671                                 sg->length = task_size;
4672                                 /*
4673                                  * Determine if we need to calculate an offset
4674                                  * into the struct se_mem on the next go around..
4675                                  */
4676                                 task_size -= sg->length;
4677                                 if (!(task_size))
4678                                         *task_offset = sg->length;
4679
4680                                 goto next;
4681                         }
4682
4683                 } else {
4684                         sg->offset = (*task_offset + se_mem->se_off);
4685
4686                         if ((se_mem->se_len - *task_offset) > task_size) {
4687                                 sg->length = task_size;
4688                                 /*
4689                                  * Determine if we need to calculate an offset
4690                                  * into the struct se_mem on the next go around..
4691                                  */
4692                                 task_size -= sg->length;
4693                                 if (!(task_size))
4694                                         *task_offset += sg->length;
4695
4696                                 goto next;
4697                         } else {
4698                                 sg->length = (se_mem->se_len - *task_offset);
4699
4700                                 if (!(list_is_last(&se_mem->se_list,
4701                                                 T_TASK(se_cmd)->t_mem_list))) {
4702                                         se_mem = list_entry(se_mem->se_list.next,
4703                                                         struct se_mem, se_list);
4704                                         (*se_mem_cnt)++;
4705                                 }
4706                         }
4707
4708                         *task_offset = 0;
4709                 }
4710                 task_size -= sg->length;
4711 next:
4712                 DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing"
4713                         " task_size to(%u), task_offset: %u\n", task->task_no, sg_no,
4714                         sg_page(sg), sg->length, sg->offset, task_size, *task_offset);
4715
4716                 sg_no++;
4717                 if (!(task_size))
4718                         break;
4719
4720                 sg = sg_next(sg);
4721
4722                 if (task_size > se_cmd->data_length)
4723                         BUG();
4724         }
4725         *out_se_mem = se_mem;
4726
4727         DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)"
4728                 " SGs\n", task->task_no, *se_mem_cnt, sg_no);
4729
4730         return 0;
4731 }
4732
4733 /*
4734  * This function can be used by HW target mode drivers to create a linked
4735  * scatterlist from all contiguously allocated struct se_task->task_sg[].
4736  * This is intended to be called during the completion path by TCM Core
4737  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4738  */
4739 void transport_do_task_sg_chain(struct se_cmd *cmd)
4740 {
4741         struct scatterlist *sg_head = NULL, *sg_link = NULL, *sg_first = NULL;
4742         struct scatterlist *sg_head_cur = NULL, *sg_link_cur = NULL;
4743         struct scatterlist *sg, *sg_end = NULL, *sg_end_cur = NULL;
4744         struct se_task *task;
4745         struct target_core_fabric_ops *tfo = CMD_TFO(cmd);
4746         u32 task_sg_num = 0, sg_count = 0;
4747         int i;
4748
4749         if (tfo->task_sg_chaining == 0) {
4750                 printk(KERN_ERR "task_sg_chaining is diabled for fabric module:"
4751                                 " %s\n", tfo->get_fabric_name());
4752                 dump_stack();
4753                 return;
4754         }
4755         /*
4756          * Walk the struct se_task list and setup scatterlist chains
4757          * for each contiguosly allocated struct se_task->task_sg[].
4758          */
4759         list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
4760                 if (!(task->task_sg) || !(task->task_padded_sg))
4761                         continue;
4762
4763                 if (sg_head && sg_link) {
4764                         sg_head_cur = &task->task_sg[0];
4765                         sg_link_cur = &task->task_sg[task->task_sg_num];
4766                         /*
4767                          * Either add chain or mark end of scatterlist
4768                          */
4769                         if (!(list_is_last(&task->t_list,
4770                                         &T_TASK(cmd)->t_task_list))) {
4771                                 /*
4772                                  * Clear existing SGL termination bit set in
4773                                  * transport_calc_sg_num(), see sg_mark_end()
4774                                  */
4775                                 sg_end_cur = &task->task_sg[task->task_sg_num - 1];
4776                                 sg_end_cur->page_link &= ~0x02;
4777
4778                                 sg_chain(sg_head, task_sg_num, sg_head_cur);
4779                                 sg_count += task->task_sg_num;
4780                                 task_sg_num = (task->task_sg_num + 1);
4781                         } else {
4782                                 sg_chain(sg_head, task_sg_num, sg_head_cur);
4783                                 sg_count += task->task_sg_num;
4784                                 task_sg_num = task->task_sg_num;
4785                         }
4786
4787                         sg_head = sg_head_cur;
4788                         sg_link = sg_link_cur;
4789                         continue;
4790                 }
4791                 sg_head = sg_first = &task->task_sg[0];
4792                 sg_link = &task->task_sg[task->task_sg_num];
4793                 /*
4794                  * Check for single task..
4795                  */
4796                 if (!(list_is_last(&task->t_list, &T_TASK(cmd)->t_task_list))) {
4797                         /*
4798                          * Clear existing SGL termination bit set in
4799                          * transport_calc_sg_num(), see sg_mark_end()
4800                          */
4801                         sg_end = &task->task_sg[task->task_sg_num - 1];
4802                         sg_end->page_link &= ~0x02;
4803                         sg_count += task->task_sg_num;
4804                         task_sg_num = (task->task_sg_num + 1);
4805                 } else {
4806                         sg_count += task->task_sg_num;
4807                         task_sg_num = task->task_sg_num;
4808                 }
4809         }
4810         /*
4811          * Setup the starting pointer and total t_tasks_sg_linked_no including
4812          * padding SGs for linking and to mark the end.
4813          */
4814         T_TASK(cmd)->t_tasks_sg_chained = sg_first;
4815         T_TASK(cmd)->t_tasks_sg_chained_no = sg_count;
4816
4817         DEBUG_CMD_M("Setup cmd: %p T_TASK(cmd)->t_tasks_sg_chained: %p and"
4818                 " t_tasks_sg_chained_no: %u\n", cmd, T_TASK(cmd)->t_tasks_sg_chained,
4819                 T_TASK(cmd)->t_tasks_sg_chained_no);
4820
4821         for_each_sg(T_TASK(cmd)->t_tasks_sg_chained, sg,
4822                         T_TASK(cmd)->t_tasks_sg_chained_no, i) {
4823
4824                 DEBUG_CMD_M("SG[%d]: %p page: %p length: %d offset: %d, magic: 0x%08x\n",
4825                         i, sg, sg_page(sg), sg->length, sg->offset, sg->sg_magic);
4826                 if (sg_is_chain(sg))
4827                         DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg);
4828                 if (sg_is_last(sg))
4829                         DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg);
4830         }
4831 }
4832 EXPORT_SYMBOL(transport_do_task_sg_chain);
4833
4834 static int transport_do_se_mem_map(
4835         struct se_device *dev,
4836         struct se_task *task,
4837         struct list_head *se_mem_list,
4838         void *in_mem,
4839         struct se_mem *in_se_mem,
4840         struct se_mem **out_se_mem,
4841         u32 *se_mem_cnt,
4842         u32 *task_offset_in)
4843 {
4844         u32 task_offset = *task_offset_in;
4845         int ret = 0;
4846         /*
4847          * se_subsystem_api_t->do_se_mem_map is used when internal allocation
4848          * has been done by the transport plugin.
4849          */
4850         if (TRANSPORT(dev)->do_se_mem_map) {
4851                 ret = TRANSPORT(dev)->do_se_mem_map(task, se_mem_list,
4852                                 in_mem, in_se_mem, out_se_mem, se_mem_cnt,
4853                                 task_offset_in);
4854                 if (ret == 0)
4855                         T_TASK(task->task_se_cmd)->t_tasks_se_num += *se_mem_cnt;
4856
4857                 return ret;
4858         }
4859
4860         BUG_ON(list_empty(se_mem_list));
4861         /*
4862          * This is the normal path for all normal non BIDI and BIDI-COMMAND
4863          * WRITE payloads..  If we need to do BIDI READ passthrough for
4864          * TCM/pSCSI the first call to transport_do_se_mem_map ->
4865          * transport_calc_sg_num() -> transport_map_mem_to_sg() will do the
4866          * allocation for task->task_sg_bidi, and the subsequent call to
4867          * transport_do_se_mem_map() from transport_generic_get_cdb_count()
4868          */
4869         if (!(task->task_sg_bidi)) {
4870                 /*
4871                  * Assume default that transport plugin speaks preallocated
4872                  * scatterlists.
4873                  */
4874                 if (!(transport_calc_sg_num(task, in_se_mem, task_offset)))
4875                         return -1;
4876                 /*
4877                  * struct se_task->task_sg now contains the struct scatterlist array.
4878                  */
4879                 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg,
4880                                         in_se_mem, out_se_mem, se_mem_cnt,
4881                                         task_offset_in);
4882         }
4883         /*
4884          * Handle the se_mem_list -> struct task->task_sg_bidi
4885          * memory map for the extra BIDI READ payload
4886          */
4887         return transport_map_mem_to_sg(task, se_mem_list, task->task_sg_bidi,
4888                                 in_se_mem, out_se_mem, se_mem_cnt,
4889                                 task_offset_in);
4890 }
4891
4892 static u32 transport_generic_get_cdb_count(
4893         struct se_cmd *cmd,
4894         unsigned long long lba,
4895         u32 sectors,
4896         enum dma_data_direction data_direction,
4897         struct list_head *mem_list,
4898         int set_counts)
4899 {
4900         unsigned char *cdb = NULL;
4901         struct se_task *task;
4902         struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
4903         struct se_mem *se_mem_bidi = NULL, *se_mem_bidi_lout = NULL;
4904         struct se_device *dev = SE_DEV(cmd);
4905         int max_sectors_set = 0, ret;
4906         u32 task_offset_in = 0, se_mem_cnt = 0, se_mem_bidi_cnt = 0, task_cdbs = 0;
4907
4908         if (!mem_list) {
4909                 printk(KERN_ERR "mem_list is NULL in transport_generic_get"
4910                                 "_cdb_count()\n");
4911                 return 0;
4912         }
4913         /*
4914          * While using RAMDISK_DR backstores is the only case where
4915          * mem_list will ever be empty at this point.
4916          */
4917         if (!(list_empty(mem_list)))
4918                 se_mem = list_entry(mem_list->next, struct se_mem, se_list);
4919         /*
4920          * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to
4921          * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation
4922          */
4923         if ((T_TASK(cmd)->t_mem_bidi_list != NULL) &&
4924             !(list_empty(T_TASK(cmd)->t_mem_bidi_list)) &&
4925             (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV))
4926                 se_mem_bidi = list_entry(T_TASK(cmd)->t_mem_bidi_list->next,
4927                                         struct se_mem, se_list);
4928
4929         while (sectors) {
4930                 DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n",
4931                         CMD_TFO(cmd)->get_task_tag(cmd), lba, sectors,
4932                         transport_dev_end_lba(dev));
4933
4934                 task = transport_generic_get_task(cmd, data_direction);
4935                 if (!(task))
4936                         goto out;
4937
4938                 transport_set_tasks_sectors(task, dev, lba, sectors,
4939                                 &max_sectors_set);
4940
4941                 task->task_lba = lba;
4942                 lba += task->task_sectors;
4943                 sectors -= task->task_sectors;
4944                 task->task_size = (task->task_sectors *
4945                                    DEV_ATTRIB(dev)->block_size);
4946
4947                 cdb = TRANSPORT(dev)->get_cdb(task);
4948                 if ((cdb)) {
4949                         memcpy(cdb, T_TASK(cmd)->t_task_cdb,
4950                                 scsi_command_size(T_TASK(cmd)->t_task_cdb));
4951                         cmd->transport_split_cdb(task->task_lba,
4952                                         &task->task_sectors, cdb);
4953                 }
4954
4955                 /*
4956                  * Perform the SE OBJ plugin and/or Transport plugin specific
4957                  * mapping for T_TASK(cmd)->t_mem_list. And setup the
4958                  * task->task_sg and if necessary task->task_sg_bidi
4959                  */
4960                 ret = transport_do_se_mem_map(dev, task, mem_list,
4961                                 NULL, se_mem, &se_mem_lout, &se_mem_cnt,
4962                                 &task_offset_in);
4963                 if (ret < 0)
4964                         goto out;
4965
4966                 se_mem = se_mem_lout;
4967                 /*
4968                  * Setup the T_TASK(cmd)->t_mem_bidi_list -> task->task_sg_bidi
4969                  * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI
4970                  *
4971                  * Note that the first call to transport_do_se_mem_map() above will
4972                  * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map()
4973                  * -> transport_calc_sg_num(), and the second here will do the
4974                  * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI.
4975                  */
4976                 if (task->task_sg_bidi != NULL) {
4977                         ret = transport_do_se_mem_map(dev, task,
4978                                 T_TASK(cmd)->t_mem_bidi_list, NULL,
4979                                 se_mem_bidi, &se_mem_bidi_lout, &se_mem_bidi_cnt,
4980                                 &task_offset_in);
4981                         if (ret < 0)
4982                                 goto out;
4983
4984                         se_mem_bidi = se_mem_bidi_lout;
4985                 }
4986                 task_cdbs++;
4987
4988                 DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n",
4989                                 task_cdbs, task->task_sg_num);
4990
4991                 if (max_sectors_set) {
4992                         max_sectors_set = 0;
4993                         continue;
4994                 }
4995
4996                 if (!sectors)
4997                         break;
4998         }
4999
5000         if (set_counts) {
5001                 atomic_inc(&T_TASK(cmd)->t_fe_count);
5002                 atomic_inc(&T_TASK(cmd)->t_se_count);
5003         }
5004
5005         DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n",
5006                 CMD_TFO(cmd)->get_task_tag(cmd), (data_direction == DMA_TO_DEVICE)
5007                 ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs);
5008
5009         return task_cdbs;
5010 out:
5011         return 0;
5012 }
5013
5014 static int
5015 transport_map_control_cmd_to_task(struct se_cmd *cmd)
5016 {
5017         struct se_device *dev = SE_DEV(cmd);
5018         unsigned char *cdb;
5019         struct se_task *task;
5020         int ret;
5021
5022         task = transport_generic_get_task(cmd, cmd->data_direction);
5023         if (!task)
5024                 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5025
5026         cdb = TRANSPORT(dev)->get_cdb(task);
5027         if (cdb)
5028                 memcpy(cdb, cmd->t_task->t_task_cdb,
5029                         scsi_command_size(cmd->t_task->t_task_cdb));
5030
5031         task->task_size = cmd->data_length;
5032         task->task_sg_num =
5033                 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) ? 1 : 0;
5034
5035         atomic_inc(&cmd->t_task->t_fe_count);
5036         atomic_inc(&cmd->t_task->t_se_count);
5037
5038         if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
5039                 struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
5040                 u32 se_mem_cnt = 0, task_offset = 0;
5041
5042                 if (!list_empty(T_TASK(cmd)->t_mem_list))
5043                         se_mem = list_entry(T_TASK(cmd)->t_mem_list->next,
5044                                         struct se_mem, se_list);
5045
5046                 ret = transport_do_se_mem_map(dev, task,
5047                                 cmd->t_task->t_mem_list, NULL, se_mem,
5048                                 &se_mem_lout, &se_mem_cnt, &task_offset);
5049                 if (ret < 0)
5050                         return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5051
5052                 if (dev->transport->map_task_SG)
5053                         return dev->transport->map_task_SG(task);
5054                 return 0;
5055         } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) {
5056                 if (dev->transport->map_task_non_SG)
5057                         return dev->transport->map_task_non_SG(task);
5058                 return 0;
5059         } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
5060                 if (dev->transport->cdb_none)
5061                         return dev->transport->cdb_none(task);
5062                 return 0;
5063         } else {
5064                 BUG();
5065                 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5066         }
5067 }
5068
5069 /*       transport_generic_new_cmd(): Called from transport_processing_thread()
5070  *
5071  *       Allocate storage transport resources from a set of values predefined
5072  *       by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
5073  *       Any non zero return here is treated as an "out of resource' op here.
5074  */
5075         /*
5076          * Generate struct se_task(s) and/or their payloads for this CDB.
5077          */
5078 static int transport_generic_new_cmd(struct se_cmd *cmd)
5079 {
5080         struct se_portal_group *se_tpg;
5081         struct se_task *task;
5082         struct se_device *dev = SE_DEV(cmd);
5083         int ret = 0;
5084
5085         /*
5086          * Determine is the TCM fabric module has already allocated physical
5087          * memory, and is directly calling transport_generic_map_mem_to_cmd()
5088          * to setup beforehand the linked list of physical memory at
5089          * T_TASK(cmd)->t_mem_list of struct se_mem->se_page
5090          */
5091         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)) {
5092                 ret = transport_allocate_resources(cmd);
5093                 if (ret < 0)
5094                         return ret;
5095         }
5096
5097         ret = transport_get_sectors(cmd);
5098         if (ret < 0)
5099                 return ret;
5100
5101         ret = transport_new_cmd_obj(cmd);
5102         if (ret < 0)
5103                 return ret;
5104
5105         /*
5106          * Determine if the calling TCM fabric module is talking to
5107          * Linux/NET via kernel sockets and needs to allocate a
5108          * struct iovec array to complete the struct se_cmd
5109          */
5110         se_tpg = SE_LUN(cmd)->lun_sep->sep_tpg;
5111         if (TPG_TFO(se_tpg)->alloc_cmd_iovecs != NULL) {
5112                 ret = TPG_TFO(se_tpg)->alloc_cmd_iovecs(cmd);
5113                 if (ret < 0)
5114                         return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
5115         }
5116
5117         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
5118                 list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) {
5119                         if (atomic_read(&task->task_sent))
5120                                 continue;
5121                         if (!dev->transport->map_task_SG)
5122                                 continue;
5123
5124                         ret = dev->transport->map_task_SG(task);
5125                         if (ret < 0)
5126                                 return ret;
5127                 }
5128         } else {
5129                 ret = transport_map_control_cmd_to_task(cmd);
5130                 if (ret < 0)
5131                         return ret;
5132         }
5133
5134         /*
5135          * For WRITEs, let the iSCSI Target RX Thread know its buffer is ready..
5136          * This WRITE struct se_cmd (and all of its associated struct se_task's)
5137          * will be added to the struct se_device execution queue after its WRITE
5138          * data has arrived. (ie: It gets handled by the transport processing
5139          * thread a second time)
5140          */
5141         if (cmd->data_direction == DMA_TO_DEVICE) {
5142                 transport_add_tasks_to_state_queue(cmd);
5143                 return transport_generic_write_pending(cmd);
5144         }
5145         /*
5146          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
5147          * to the execution queue.
5148          */
5149         transport_execute_tasks(cmd);
5150         return 0;
5151 }
5152
5153 /*      transport_generic_process_write():
5154  *
5155  *
5156  */
5157 void transport_generic_process_write(struct se_cmd *cmd)
5158 {
5159 #if 0
5160         /*
5161          * Copy SCSI Presented DTL sector(s) from received buffers allocated to
5162          * original EDTL
5163          */
5164         if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
5165                 if (!T_TASK(cmd)->t_tasks_se_num) {
5166                         unsigned char *dst, *buf =
5167                                 (unsigned char *)T_TASK(cmd)->t_task_buf;
5168
5169                         dst = kzalloc(cmd->cmd_spdtl), GFP_KERNEL);
5170                         if (!(dst)) {
5171                                 printk(KERN_ERR "Unable to allocate memory for"
5172                                                 " WRITE underflow\n");
5173                                 transport_generic_request_failure(cmd, NULL,
5174                                         PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5175                                 return;
5176                         }
5177                         memcpy(dst, buf, cmd->cmd_spdtl);
5178
5179                         kfree(T_TASK(cmd)->t_task_buf);
5180                         T_TASK(cmd)->t_task_buf = dst;
5181                 } else {
5182                         struct scatterlist *sg =
5183                                 (struct scatterlist *sg)T_TASK(cmd)->t_task_buf;
5184                         struct scatterlist *orig_sg;
5185
5186                         orig_sg = kzalloc(sizeof(struct scatterlist) *
5187                                         T_TASK(cmd)->t_tasks_se_num,
5188                                         GFP_KERNEL))) {
5189                         if (!(orig_sg)) {
5190                                 printk(KERN_ERR "Unable to allocate memory"
5191                                                 " for WRITE underflow\n");
5192                                 transport_generic_request_failure(cmd, NULL,
5193                                         PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5194                                 return;
5195                         }
5196
5197                         memcpy(orig_sg, T_TASK(cmd)->t_task_buf,
5198                                         sizeof(struct scatterlist) *
5199                                         T_TASK(cmd)->t_tasks_se_num);
5200
5201                         cmd->data_length = cmd->cmd_spdtl;
5202                         /*
5203                          * FIXME, clear out original struct se_task and state
5204                          * information.
5205                          */
5206                         if (transport_generic_new_cmd(cmd) < 0) {
5207                                 transport_generic_request_failure(cmd, NULL,
5208                                         PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
5209                                 kfree(orig_sg);
5210                                 return;
5211                         }
5212
5213                         transport_memcpy_write_sg(cmd, orig_sg);
5214                 }
5215         }
5216 #endif
5217         transport_execute_tasks(cmd);
5218 }
5219 EXPORT_SYMBOL(transport_generic_process_write);
5220
5221 /*      transport_generic_write_pending():
5222  *
5223  *
5224  */
5225 static int transport_generic_write_pending(struct se_cmd *cmd)
5226 {
5227         unsigned long flags;
5228         int ret;
5229
5230         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5231         cmd->t_state = TRANSPORT_WRITE_PENDING;
5232         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5233         /*
5234          * For the TCM control CDBs using a contiguous buffer, do the memcpy
5235          * from the passed Linux/SCSI struct scatterlist located at
5236          * T_TASK(se_cmd)->t_task_pt_buf to the contiguous buffer at
5237          * T_TASK(se_cmd)->t_task_buf.
5238          */
5239         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG)
5240                 transport_memcpy_read_contig(cmd,
5241                                 T_TASK(cmd)->t_task_buf,
5242                                 T_TASK(cmd)->t_task_pt_sgl);
5243         /*
5244          * Clear the se_cmd for WRITE_PENDING status in order to set
5245          * T_TASK(cmd)->t_transport_active=0 so that transport_generic_handle_data
5246          * can be called from HW target mode interrupt code.  This is safe
5247          * to be called with transport_off=1 before the CMD_TFO(cmd)->write_pending
5248          * because the se_cmd->se_lun pointer is not being cleared.
5249          */
5250         transport_cmd_check_stop(cmd, 1, 0);
5251
5252         /*
5253          * Call the fabric write_pending function here to let the
5254          * frontend know that WRITE buffers are ready.
5255          */
5256         ret = CMD_TFO(cmd)->write_pending(cmd);
5257         if (ret < 0)
5258                 return ret;
5259
5260         return PYX_TRANSPORT_WRITE_PENDING;
5261 }
5262
5263 /*      transport_release_cmd_to_pool():
5264  *
5265  *
5266  */
5267 void transport_release_cmd_to_pool(struct se_cmd *cmd)
5268 {
5269         BUG_ON(!T_TASK(cmd));
5270         BUG_ON(!CMD_TFO(cmd));
5271
5272         transport_free_se_cmd(cmd);
5273         CMD_TFO(cmd)->release_cmd_to_pool(cmd);
5274 }
5275 EXPORT_SYMBOL(transport_release_cmd_to_pool);
5276
5277 /*      transport_generic_free_cmd():
5278  *
5279  *      Called from processing frontend to release storage engine resources
5280  */
5281 void transport_generic_free_cmd(
5282         struct se_cmd *cmd,
5283         int wait_for_tasks,
5284         int release_to_pool,
5285         int session_reinstatement)
5286 {
5287         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) || !T_TASK(cmd))
5288                 transport_release_cmd_to_pool(cmd);
5289         else {
5290                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
5291
5292                 if (SE_LUN(cmd)) {
5293 #if 0
5294                         printk(KERN_INFO "cmd: %p ITT: 0x%08x contains"
5295                                 " SE_LUN(cmd)\n", cmd,
5296                                 CMD_TFO(cmd)->get_task_tag(cmd));
5297 #endif
5298                         transport_lun_remove_cmd(cmd);
5299                 }
5300
5301                 if (wait_for_tasks && cmd->transport_wait_for_tasks)
5302                         cmd->transport_wait_for_tasks(cmd, 0, 0);
5303
5304                 transport_generic_remove(cmd, release_to_pool,
5305                                 session_reinstatement);
5306         }
5307 }
5308 EXPORT_SYMBOL(transport_generic_free_cmd);
5309
5310 static void transport_nop_wait_for_tasks(
5311         struct se_cmd *cmd,
5312         int remove_cmd,
5313         int session_reinstatement)
5314 {
5315         return;
5316 }
5317
5318 /*      transport_lun_wait_for_tasks():
5319  *
5320  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
5321  *      an struct se_lun to be successfully shutdown.
5322  */
5323 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
5324 {
5325         unsigned long flags;
5326         int ret;
5327         /*
5328          * If the frontend has already requested this struct se_cmd to
5329          * be stopped, we can safely ignore this struct se_cmd.
5330          */
5331         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5332         if (atomic_read(&T_TASK(cmd)->t_transport_stop)) {
5333                 atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
5334                 DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop =="
5335                         " TRUE, skipping\n", CMD_TFO(cmd)->get_task_tag(cmd));
5336                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5337                 transport_cmd_check_stop(cmd, 1, 0);
5338                 return -1;
5339         }
5340         atomic_set(&T_TASK(cmd)->transport_lun_fe_stop, 1);
5341         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5342
5343         wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
5344
5345         ret = transport_stop_tasks_for_cmd(cmd);
5346
5347         DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:"
5348                         " %d\n", cmd, T_TASK(cmd)->t_task_cdbs, ret);
5349         if (!ret) {
5350                 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
5351                                 CMD_TFO(cmd)->get_task_tag(cmd));
5352                 wait_for_completion(&T_TASK(cmd)->transport_lun_stop_comp);
5353                 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
5354                                 CMD_TFO(cmd)->get_task_tag(cmd));
5355         }
5356         transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj);
5357
5358         return 0;
5359 }
5360
5361 /* #define DEBUG_CLEAR_LUN */
5362 #ifdef DEBUG_CLEAR_LUN
5363 #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x)
5364 #else
5365 #define DEBUG_CLEAR_L(x...)
5366 #endif
5367
5368 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
5369 {
5370         struct se_cmd *cmd = NULL;
5371         unsigned long lun_flags, cmd_flags;
5372         /*
5373          * Do exception processing and return CHECK_CONDITION status to the
5374          * Initiator Port.
5375          */
5376         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5377         while (!list_empty_careful(&lun->lun_cmd_list)) {
5378                 cmd = list_entry(lun->lun_cmd_list.next,
5379                         struct se_cmd, se_lun_list);
5380                 list_del(&cmd->se_lun_list);
5381
5382                 if (!(T_TASK(cmd))) {
5383                         printk(KERN_ERR "ITT: 0x%08x, T_TASK(cmd) = NULL"
5384                                 "[i,t]_state: %u/%u\n",
5385                                 CMD_TFO(cmd)->get_task_tag(cmd),
5386                                 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
5387                         BUG();
5388                 }
5389                 atomic_set(&T_TASK(cmd)->transport_lun_active, 0);
5390                 /*
5391                  * This will notify iscsi_target_transport.c:
5392                  * transport_cmd_check_stop() that a LUN shutdown is in
5393                  * progress for the iscsi_cmd_t.
5394                  */
5395                 spin_lock(&T_TASK(cmd)->t_state_lock);
5396                 DEBUG_CLEAR_L("SE_LUN[%d] - Setting T_TASK(cmd)->transport"
5397                         "_lun_stop for  ITT: 0x%08x\n",
5398                         SE_LUN(cmd)->unpacked_lun,
5399                         CMD_TFO(cmd)->get_task_tag(cmd));
5400                 atomic_set(&T_TASK(cmd)->transport_lun_stop, 1);
5401                 spin_unlock(&T_TASK(cmd)->t_state_lock);
5402
5403                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5404
5405                 if (!(SE_LUN(cmd))) {
5406                         printk(KERN_ERR "ITT: 0x%08x, [i,t]_state: %u/%u\n",
5407                                 CMD_TFO(cmd)->get_task_tag(cmd),
5408                                 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state);
5409                         BUG();
5410                 }
5411                 /*
5412                  * If the Storage engine still owns the iscsi_cmd_t, determine
5413                  * and/or stop its context.
5414                  */
5415                 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport"
5416                         "_lun_wait_for_tasks()\n", SE_LUN(cmd)->unpacked_lun,
5417                         CMD_TFO(cmd)->get_task_tag(cmd));
5418
5419                 if (transport_lun_wait_for_tasks(cmd, SE_LUN(cmd)) < 0) {
5420                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5421                         continue;
5422                 }
5423
5424                 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
5425                         "_wait_for_tasks(): SUCCESS\n",
5426                         SE_LUN(cmd)->unpacked_lun,
5427                         CMD_TFO(cmd)->get_task_tag(cmd));
5428
5429                 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
5430                 if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) {
5431                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5432                         goto check_cond;
5433                 }
5434                 atomic_set(&T_TASK(cmd)->transport_dev_active, 0);
5435                 transport_all_task_dev_remove_state(cmd);
5436                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5437
5438                 transport_free_dev_tasks(cmd);
5439                 /*
5440                  * The Storage engine stopped this struct se_cmd before it was
5441                  * send to the fabric frontend for delivery back to the
5442                  * Initiator Node.  Return this SCSI CDB back with an
5443                  * CHECK_CONDITION status.
5444                  */
5445 check_cond:
5446                 transport_send_check_condition_and_sense(cmd,
5447                                 TCM_NON_EXISTENT_LUN, 0);
5448                 /*
5449                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
5450                  * be released, notify the waiting thread now that LU has
5451                  * finished accessing it.
5452                  */
5453                 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags);
5454                 if (atomic_read(&T_TASK(cmd)->transport_lun_fe_stop)) {
5455                         DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for"
5456                                 " struct se_cmd: %p ITT: 0x%08x\n",
5457                                 lun->unpacked_lun,
5458                                 cmd, CMD_TFO(cmd)->get_task_tag(cmd));
5459
5460                         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock,
5461                                         cmd_flags);
5462                         transport_cmd_check_stop(cmd, 1, 0);
5463                         complete(&T_TASK(cmd)->transport_lun_fe_stop_comp);
5464                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5465                         continue;
5466                 }
5467                 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
5468                         lun->unpacked_lun, CMD_TFO(cmd)->get_task_tag(cmd));
5469
5470                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags);
5471                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5472         }
5473         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5474 }
5475
5476 static int transport_clear_lun_thread(void *p)
5477 {
5478         struct se_lun *lun = (struct se_lun *)p;
5479
5480         __transport_clear_lun_from_sessions(lun);
5481         complete(&lun->lun_shutdown_comp);
5482
5483         return 0;
5484 }
5485
5486 int transport_clear_lun_from_sessions(struct se_lun *lun)
5487 {
5488         struct task_struct *kt;
5489
5490         kt = kthread_run(transport_clear_lun_thread, (void *)lun,
5491                         "tcm_cl_%u", lun->unpacked_lun);
5492         if (IS_ERR(kt)) {
5493                 printk(KERN_ERR "Unable to start clear_lun thread\n");
5494                 return -1;
5495         }
5496         wait_for_completion(&lun->lun_shutdown_comp);
5497
5498         return 0;
5499 }
5500
5501 /*      transport_generic_wait_for_tasks():
5502  *
5503  *      Called from frontend or passthrough context to wait for storage engine
5504  *      to pause and/or release frontend generated struct se_cmd.
5505  */
5506 static void transport_generic_wait_for_tasks(
5507         struct se_cmd *cmd,
5508         int remove_cmd,
5509         int session_reinstatement)
5510 {
5511         unsigned long flags;
5512
5513         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
5514                 return;
5515
5516         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5517         /*
5518          * If we are already stopped due to an external event (ie: LUN shutdown)
5519          * sleep until the connection can have the passed struct se_cmd back.
5520          * The T_TASK(cmd)->transport_lun_stopped_sem will be upped by
5521          * transport_clear_lun_from_sessions() once the ConfigFS context caller
5522          * has completed its operation on the struct se_cmd.
5523          */
5524         if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) {
5525
5526                 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping"
5527                         " wait_for_completion(&T_TASK(cmd)transport_lun_fe"
5528                         "_stop_comp); for ITT: 0x%08x\n",
5529                         CMD_TFO(cmd)->get_task_tag(cmd));
5530                 /*
5531                  * There is a special case for WRITES where a FE exception +
5532                  * LUN shutdown means ConfigFS context is still sleeping on
5533                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
5534                  * We go ahead and up transport_lun_stop_comp just to be sure
5535                  * here.
5536                  */
5537                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5538                 complete(&T_TASK(cmd)->transport_lun_stop_comp);
5539                 wait_for_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp);
5540                 spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5541
5542                 transport_all_task_dev_remove_state(cmd);
5543                 /*
5544                  * At this point, the frontend who was the originator of this
5545                  * struct se_cmd, now owns the structure and can be released through
5546                  * normal means below.
5547                  */
5548                 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped"
5549                         " wait_for_completion(&T_TASK(cmd)transport_lun_fe_"
5550                         "stop_comp); for ITT: 0x%08x\n",
5551                         CMD_TFO(cmd)->get_task_tag(cmd));
5552
5553                 atomic_set(&T_TASK(cmd)->transport_lun_stop, 0);
5554         }
5555         if (!atomic_read(&T_TASK(cmd)->t_transport_active) ||
5556              atomic_read(&T_TASK(cmd)->t_transport_aborted))
5557                 goto remove;
5558
5559         atomic_set(&T_TASK(cmd)->t_transport_stop, 1);
5560
5561         DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x"
5562                 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
5563                 " = TRUE\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd),
5564                 CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state,
5565                 cmd->deferred_t_state);
5566
5567         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5568
5569         wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq);
5570
5571         wait_for_completion(&T_TASK(cmd)->t_transport_stop_comp);
5572
5573         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5574         atomic_set(&T_TASK(cmd)->t_transport_active, 0);
5575         atomic_set(&T_TASK(cmd)->t_transport_stop, 0);
5576
5577         DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion("
5578                 "&T_TASK(cmd)->t_transport_stop_comp) for ITT: 0x%08x\n",
5579                 CMD_TFO(cmd)->get_task_tag(cmd));
5580 remove:
5581         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5582         if (!remove_cmd)
5583                 return;
5584
5585         transport_generic_free_cmd(cmd, 0, 0, session_reinstatement);
5586 }
5587
5588 static int transport_get_sense_codes(
5589         struct se_cmd *cmd,
5590         u8 *asc,
5591         u8 *ascq)
5592 {
5593         *asc = cmd->scsi_asc;
5594         *ascq = cmd->scsi_ascq;
5595
5596         return 0;
5597 }
5598
5599 static int transport_set_sense_codes(
5600         struct se_cmd *cmd,
5601         u8 asc,
5602         u8 ascq)
5603 {
5604         cmd->scsi_asc = asc;
5605         cmd->scsi_ascq = ascq;
5606
5607         return 0;
5608 }
5609
5610 int transport_send_check_condition_and_sense(
5611         struct se_cmd *cmd,
5612         u8 reason,
5613         int from_transport)
5614 {
5615         unsigned char *buffer = cmd->sense_buffer;
5616         unsigned long flags;
5617         int offset;
5618         u8 asc = 0, ascq = 0;
5619
5620         spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags);
5621         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
5622                 spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5623                 return 0;
5624         }
5625         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
5626         spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags);
5627
5628         if (!reason && from_transport)
5629                 goto after_reason;
5630
5631         if (!from_transport)
5632                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
5633         /*
5634          * Data Segment and SenseLength of the fabric response PDU.
5635          *
5636          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
5637          * from include/scsi/scsi_cmnd.h
5638          */
5639         offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd,
5640                                 TRANSPORT_SENSE_BUFFER);
5641         /*
5642          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
5643          * SENSE KEY values from include/scsi/scsi.h
5644          */
5645         switch (reason) {
5646         case TCM_NON_EXISTENT_LUN:
5647         case TCM_UNSUPPORTED_SCSI_OPCODE:
5648         case TCM_SECTOR_COUNT_TOO_MANY:
5649                 /* CURRENT ERROR */
5650                 buffer[offset] = 0x70;
5651                 /* ILLEGAL REQUEST */
5652                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5653                 /* INVALID COMMAND OPERATION CODE */
5654                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
5655                 break;
5656         case TCM_UNKNOWN_MODE_PAGE:
5657                 /* CURRENT ERROR */
5658                 buffer[offset] = 0x70;
5659                 /* ILLEGAL REQUEST */
5660                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5661                 /* INVALID FIELD IN CDB */
5662                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5663                 break;
5664         case TCM_CHECK_CONDITION_ABORT_CMD:
5665                 /* CURRENT ERROR */
5666                 buffer[offset] = 0x70;
5667                 /* ABORTED COMMAND */
5668                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5669                 /* BUS DEVICE RESET FUNCTION OCCURRED */
5670                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
5671                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
5672                 break;
5673         case TCM_INCORRECT_AMOUNT_OF_DATA:
5674                 /* CURRENT ERROR */
5675                 buffer[offset] = 0x70;
5676                 /* ABORTED COMMAND */
5677                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5678                 /* WRITE ERROR */
5679                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5680                 /* NOT ENOUGH UNSOLICITED DATA */
5681                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
5682                 break;
5683         case TCM_INVALID_CDB_FIELD:
5684                 /* CURRENT ERROR */
5685                 buffer[offset] = 0x70;
5686                 /* ABORTED COMMAND */
5687                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5688                 /* INVALID FIELD IN CDB */
5689                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5690                 break;
5691         case TCM_INVALID_PARAMETER_LIST:
5692                 /* CURRENT ERROR */
5693                 buffer[offset] = 0x70;
5694                 /* ABORTED COMMAND */
5695                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5696                 /* INVALID FIELD IN PARAMETER LIST */
5697                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
5698                 break;
5699         case TCM_UNEXPECTED_UNSOLICITED_DATA:
5700                 /* CURRENT ERROR */
5701                 buffer[offset] = 0x70;
5702                 /* ABORTED COMMAND */
5703                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5704                 /* WRITE ERROR */
5705                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5706                 /* UNEXPECTED_UNSOLICITED_DATA */
5707                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
5708                 break;
5709         case TCM_SERVICE_CRC_ERROR:
5710                 /* CURRENT ERROR */
5711                 buffer[offset] = 0x70;
5712                 /* ABORTED COMMAND */
5713                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5714                 /* PROTOCOL SERVICE CRC ERROR */
5715                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
5716                 /* N/A */
5717                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
5718                 break;
5719         case TCM_SNACK_REJECTED:
5720                 /* CURRENT ERROR */
5721                 buffer[offset] = 0x70;
5722                 /* ABORTED COMMAND */
5723                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5724                 /* READ ERROR */
5725                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
5726                 /* FAILED RETRANSMISSION REQUEST */
5727                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
5728                 break;
5729         case TCM_WRITE_PROTECTED:
5730                 /* CURRENT ERROR */
5731                 buffer[offset] = 0x70;
5732                 /* DATA PROTECT */
5733                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
5734                 /* WRITE PROTECTED */
5735                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
5736                 break;
5737         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
5738                 /* CURRENT ERROR */
5739                 buffer[offset] = 0x70;
5740                 /* UNIT ATTENTION */
5741                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
5742                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
5743                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5744                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5745                 break;
5746         case TCM_CHECK_CONDITION_NOT_READY:
5747                 /* CURRENT ERROR */
5748                 buffer[offset] = 0x70;
5749                 /* Not Ready */
5750                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
5751                 transport_get_sense_codes(cmd, &asc, &ascq);
5752                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5753                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5754                 break;
5755         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
5756         default:
5757                 /* CURRENT ERROR */
5758                 buffer[offset] = 0x70;
5759                 /* ILLEGAL REQUEST */
5760                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5761                 /* LOGICAL UNIT COMMUNICATION FAILURE */
5762                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
5763                 break;
5764         }
5765         /*
5766          * This code uses linux/include/scsi/scsi.h SAM status codes!
5767          */
5768         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
5769         /*
5770          * Automatically padded, this value is encoded in the fabric's
5771          * data_length response PDU containing the SCSI defined sense data.
5772          */
5773         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
5774
5775 after_reason:
5776         CMD_TFO(cmd)->queue_status(cmd);
5777         return 0;
5778 }
5779 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
5780
5781 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
5782 {
5783         int ret = 0;
5784
5785         if (atomic_read(&T_TASK(cmd)->t_transport_aborted) != 0) {
5786                 if (!(send_status) ||
5787                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
5788                         return 1;
5789 #if 0
5790                 printk(KERN_INFO "Sending delayed SAM_STAT_TASK_ABORTED"
5791                         " status for CDB: 0x%02x ITT: 0x%08x\n",
5792                         T_TASK(cmd)->t_task_cdb[0],
5793                         CMD_TFO(cmd)->get_task_tag(cmd));
5794 #endif
5795                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
5796                 CMD_TFO(cmd)->queue_status(cmd);
5797                 ret = 1;
5798         }
5799         return ret;
5800 }
5801 EXPORT_SYMBOL(transport_check_aborted_status);
5802
5803 void transport_send_task_abort(struct se_cmd *cmd)
5804 {
5805         /*
5806          * If there are still expected incoming fabric WRITEs, we wait
5807          * until until they have completed before sending a TASK_ABORTED
5808          * response.  This response with TASK_ABORTED status will be
5809          * queued back to fabric module by transport_check_aborted_status().
5810          */
5811         if (cmd->data_direction == DMA_TO_DEVICE) {
5812                 if (CMD_TFO(cmd)->write_pending_status(cmd) != 0) {
5813                         atomic_inc(&T_TASK(cmd)->t_transport_aborted);
5814                         smp_mb__after_atomic_inc();
5815                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5816                         transport_new_cmd_failure(cmd);
5817                         return;
5818                 }
5819         }
5820         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5821 #if 0
5822         printk(KERN_INFO "Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
5823                 " ITT: 0x%08x\n", T_TASK(cmd)->t_task_cdb[0],
5824                 CMD_TFO(cmd)->get_task_tag(cmd));
5825 #endif
5826         CMD_TFO(cmd)->queue_status(cmd);
5827 }
5828
5829 /*      transport_generic_do_tmr():
5830  *
5831  *
5832  */
5833 int transport_generic_do_tmr(struct se_cmd *cmd)
5834 {
5835         struct se_cmd *ref_cmd;
5836         struct se_device *dev = SE_DEV(cmd);
5837         struct se_tmr_req *tmr = cmd->se_tmr_req;
5838         int ret;
5839
5840         switch (tmr->function) {
5841         case TMR_ABORT_TASK:
5842                 ref_cmd = tmr->ref_cmd;
5843                 tmr->response = TMR_FUNCTION_REJECTED;
5844                 break;
5845         case TMR_ABORT_TASK_SET:
5846         case TMR_CLEAR_ACA:
5847         case TMR_CLEAR_TASK_SET:
5848                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
5849                 break;
5850         case TMR_LUN_RESET:
5851                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
5852                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
5853                                          TMR_FUNCTION_REJECTED;
5854                 break;
5855         case TMR_TARGET_WARM_RESET:
5856                 tmr->response = TMR_F