target: move depth_left manipulation out of transport_generic_request_failure
[linux-2.6.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
58
59 static int sub_api_initialized;
60
61 static struct kmem_cache *se_cmd_cache;
62 static struct kmem_cache *se_sess_cache;
63 struct kmem_cache *se_tmr_req_cache;
64 struct kmem_cache *se_ua_cache;
65 struct kmem_cache *t10_pr_reg_cache;
66 struct kmem_cache *t10_alua_lu_gp_cache;
67 struct kmem_cache *t10_alua_lu_gp_mem_cache;
68 struct kmem_cache *t10_alua_tg_pt_gp_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
70
71 static int transport_generic_write_pending(struct se_cmd *);
72 static int transport_processing_thread(void *param);
73 static int __transport_execute_tasks(struct se_device *dev);
74 static void transport_complete_task_attr(struct se_cmd *cmd);
75 static void transport_handle_queue_full(struct se_cmd *cmd,
76                 struct se_device *dev);
77 static void transport_direct_request_timeout(struct se_cmd *cmd);
78 static void transport_free_dev_tasks(struct se_cmd *cmd);
79 static u32 transport_allocate_tasks(struct se_cmd *cmd,
80                 unsigned long long starting_lba,
81                 enum dma_data_direction data_direction,
82                 struct scatterlist *sgl, unsigned int nents);
83 static int transport_generic_get_mem(struct se_cmd *cmd);
84 static void transport_put_cmd(struct se_cmd *cmd);
85 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
86 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
87
88 int init_se_kmem_caches(void)
89 {
90         se_cmd_cache = kmem_cache_create("se_cmd_cache",
91                         sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
92         if (!se_cmd_cache) {
93                 pr_err("kmem_cache_create for struct se_cmd failed\n");
94                 goto out;
95         }
96         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
97                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
98                         0, NULL);
99         if (!se_tmr_req_cache) {
100                 pr_err("kmem_cache_create() for struct se_tmr_req"
101                                 " failed\n");
102                 goto out;
103         }
104         se_sess_cache = kmem_cache_create("se_sess_cache",
105                         sizeof(struct se_session), __alignof__(struct se_session),
106                         0, NULL);
107         if (!se_sess_cache) {
108                 pr_err("kmem_cache_create() for struct se_session"
109                                 " failed\n");
110                 goto out;
111         }
112         se_ua_cache = kmem_cache_create("se_ua_cache",
113                         sizeof(struct se_ua), __alignof__(struct se_ua),
114                         0, NULL);
115         if (!se_ua_cache) {
116                 pr_err("kmem_cache_create() for struct se_ua failed\n");
117                 goto out;
118         }
119         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
120                         sizeof(struct t10_pr_registration),
121                         __alignof__(struct t10_pr_registration), 0, NULL);
122         if (!t10_pr_reg_cache) {
123                 pr_err("kmem_cache_create() for struct t10_pr_registration"
124                                 " failed\n");
125                 goto out;
126         }
127         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
128                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
129                         0, NULL);
130         if (!t10_alua_lu_gp_cache) {
131                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
132                                 " failed\n");
133                 goto out;
134         }
135         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
136                         sizeof(struct t10_alua_lu_gp_member),
137                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
138         if (!t10_alua_lu_gp_mem_cache) {
139                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
140                                 "cache failed\n");
141                 goto out;
142         }
143         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
144                         sizeof(struct t10_alua_tg_pt_gp),
145                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
146         if (!t10_alua_tg_pt_gp_cache) {
147                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
148                                 "cache failed\n");
149                 goto out;
150         }
151         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
152                         "t10_alua_tg_pt_gp_mem_cache",
153                         sizeof(struct t10_alua_tg_pt_gp_member),
154                         __alignof__(struct t10_alua_tg_pt_gp_member),
155                         0, NULL);
156         if (!t10_alua_tg_pt_gp_mem_cache) {
157                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
158                                 "mem_t failed\n");
159                 goto out;
160         }
161
162         return 0;
163 out:
164         if (se_cmd_cache)
165                 kmem_cache_destroy(se_cmd_cache);
166         if (se_tmr_req_cache)
167                 kmem_cache_destroy(se_tmr_req_cache);
168         if (se_sess_cache)
169                 kmem_cache_destroy(se_sess_cache);
170         if (se_ua_cache)
171                 kmem_cache_destroy(se_ua_cache);
172         if (t10_pr_reg_cache)
173                 kmem_cache_destroy(t10_pr_reg_cache);
174         if (t10_alua_lu_gp_cache)
175                 kmem_cache_destroy(t10_alua_lu_gp_cache);
176         if (t10_alua_lu_gp_mem_cache)
177                 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
178         if (t10_alua_tg_pt_gp_cache)
179                 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
180         if (t10_alua_tg_pt_gp_mem_cache)
181                 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
182         return -ENOMEM;
183 }
184
185 void release_se_kmem_caches(void)
186 {
187         kmem_cache_destroy(se_cmd_cache);
188         kmem_cache_destroy(se_tmr_req_cache);
189         kmem_cache_destroy(se_sess_cache);
190         kmem_cache_destroy(se_ua_cache);
191         kmem_cache_destroy(t10_pr_reg_cache);
192         kmem_cache_destroy(t10_alua_lu_gp_cache);
193         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
194         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
195         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
196 }
197
198 /* This code ensures unique mib indexes are handed out. */
199 static DEFINE_SPINLOCK(scsi_mib_index_lock);
200 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
201
202 /*
203  * Allocate a new row index for the entry type specified
204  */
205 u32 scsi_get_new_index(scsi_index_t type)
206 {
207         u32 new_index;
208
209         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
210
211         spin_lock(&scsi_mib_index_lock);
212         new_index = ++scsi_mib_index[type];
213         spin_unlock(&scsi_mib_index_lock);
214
215         return new_index;
216 }
217
218 void transport_init_queue_obj(struct se_queue_obj *qobj)
219 {
220         atomic_set(&qobj->queue_cnt, 0);
221         INIT_LIST_HEAD(&qobj->qobj_list);
222         init_waitqueue_head(&qobj->thread_wq);
223         spin_lock_init(&qobj->cmd_queue_lock);
224 }
225 EXPORT_SYMBOL(transport_init_queue_obj);
226
227 static int transport_subsystem_reqmods(void)
228 {
229         int ret;
230
231         ret = request_module("target_core_iblock");
232         if (ret != 0)
233                 pr_err("Unable to load target_core_iblock\n");
234
235         ret = request_module("target_core_file");
236         if (ret != 0)
237                 pr_err("Unable to load target_core_file\n");
238
239         ret = request_module("target_core_pscsi");
240         if (ret != 0)
241                 pr_err("Unable to load target_core_pscsi\n");
242
243         ret = request_module("target_core_stgt");
244         if (ret != 0)
245                 pr_err("Unable to load target_core_stgt\n");
246
247         return 0;
248 }
249
250 int transport_subsystem_check_init(void)
251 {
252         int ret;
253
254         if (sub_api_initialized)
255                 return 0;
256         /*
257          * Request the loading of known TCM subsystem plugins..
258          */
259         ret = transport_subsystem_reqmods();
260         if (ret < 0)
261                 return ret;
262
263         sub_api_initialized = 1;
264         return 0;
265 }
266
267 struct se_session *transport_init_session(void)
268 {
269         struct se_session *se_sess;
270
271         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
272         if (!se_sess) {
273                 pr_err("Unable to allocate struct se_session from"
274                                 " se_sess_cache\n");
275                 return ERR_PTR(-ENOMEM);
276         }
277         INIT_LIST_HEAD(&se_sess->sess_list);
278         INIT_LIST_HEAD(&se_sess->sess_acl_list);
279
280         return se_sess;
281 }
282 EXPORT_SYMBOL(transport_init_session);
283
284 /*
285  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
286  */
287 void __transport_register_session(
288         struct se_portal_group *se_tpg,
289         struct se_node_acl *se_nacl,
290         struct se_session *se_sess,
291         void *fabric_sess_ptr)
292 {
293         unsigned char buf[PR_REG_ISID_LEN];
294
295         se_sess->se_tpg = se_tpg;
296         se_sess->fabric_sess_ptr = fabric_sess_ptr;
297         /*
298          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
299          *
300          * Only set for struct se_session's that will actually be moving I/O.
301          * eg: *NOT* discovery sessions.
302          */
303         if (se_nacl) {
304                 /*
305                  * If the fabric module supports an ISID based TransportID,
306                  * save this value in binary from the fabric I_T Nexus now.
307                  */
308                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
309                         memset(&buf[0], 0, PR_REG_ISID_LEN);
310                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
311                                         &buf[0], PR_REG_ISID_LEN);
312                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
313                 }
314                 spin_lock_irq(&se_nacl->nacl_sess_lock);
315                 /*
316                  * The se_nacl->nacl_sess pointer will be set to the
317                  * last active I_T Nexus for each struct se_node_acl.
318                  */
319                 se_nacl->nacl_sess = se_sess;
320
321                 list_add_tail(&se_sess->sess_acl_list,
322                               &se_nacl->acl_sess_list);
323                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
324         }
325         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
326
327         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
328                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
329 }
330 EXPORT_SYMBOL(__transport_register_session);
331
332 void transport_register_session(
333         struct se_portal_group *se_tpg,
334         struct se_node_acl *se_nacl,
335         struct se_session *se_sess,
336         void *fabric_sess_ptr)
337 {
338         spin_lock_bh(&se_tpg->session_lock);
339         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
340         spin_unlock_bh(&se_tpg->session_lock);
341 }
342 EXPORT_SYMBOL(transport_register_session);
343
344 void transport_deregister_session_configfs(struct se_session *se_sess)
345 {
346         struct se_node_acl *se_nacl;
347         unsigned long flags;
348         /*
349          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
350          */
351         se_nacl = se_sess->se_node_acl;
352         if (se_nacl) {
353                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
354                 list_del(&se_sess->sess_acl_list);
355                 /*
356                  * If the session list is empty, then clear the pointer.
357                  * Otherwise, set the struct se_session pointer from the tail
358                  * element of the per struct se_node_acl active session list.
359                  */
360                 if (list_empty(&se_nacl->acl_sess_list))
361                         se_nacl->nacl_sess = NULL;
362                 else {
363                         se_nacl->nacl_sess = container_of(
364                                         se_nacl->acl_sess_list.prev,
365                                         struct se_session, sess_acl_list);
366                 }
367                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
368         }
369 }
370 EXPORT_SYMBOL(transport_deregister_session_configfs);
371
372 void transport_free_session(struct se_session *se_sess)
373 {
374         kmem_cache_free(se_sess_cache, se_sess);
375 }
376 EXPORT_SYMBOL(transport_free_session);
377
378 void transport_deregister_session(struct se_session *se_sess)
379 {
380         struct se_portal_group *se_tpg = se_sess->se_tpg;
381         struct se_node_acl *se_nacl;
382         unsigned long flags;
383
384         if (!se_tpg) {
385                 transport_free_session(se_sess);
386                 return;
387         }
388
389         spin_lock_irqsave(&se_tpg->session_lock, flags);
390         list_del(&se_sess->sess_list);
391         se_sess->se_tpg = NULL;
392         se_sess->fabric_sess_ptr = NULL;
393         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
394
395         /*
396          * Determine if we need to do extra work for this initiator node's
397          * struct se_node_acl if it had been previously dynamically generated.
398          */
399         se_nacl = se_sess->se_node_acl;
400         if (se_nacl) {
401                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
402                 if (se_nacl->dynamic_node_acl) {
403                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
404                                         se_tpg)) {
405                                 list_del(&se_nacl->acl_list);
406                                 se_tpg->num_node_acls--;
407                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
408
409                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
410                                 core_free_device_list_for_node(se_nacl, se_tpg);
411                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
412                                                 se_nacl);
413                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
414                         }
415                 }
416                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
417         }
418
419         transport_free_session(se_sess);
420
421         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
422                 se_tpg->se_tpg_tfo->get_fabric_name());
423 }
424 EXPORT_SYMBOL(transport_deregister_session);
425
426 /*
427  * Called with cmd->t_state_lock held.
428  */
429 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
430 {
431         struct se_device *dev = cmd->se_dev;
432         struct se_task *task;
433         unsigned long flags;
434
435         if (!dev)
436                 return;
437
438         list_for_each_entry(task, &cmd->t_task_list, t_list) {
439                 if (task->task_flags & TF_ACTIVE)
440                         continue;
441
442                 if (!atomic_read(&task->task_state_active))
443                         continue;
444
445                 spin_lock_irqsave(&dev->execute_task_lock, flags);
446                 list_del(&task->t_state_list);
447                 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
448                         cmd->se_tfo->get_task_tag(cmd), dev, task);
449                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
450
451                 atomic_set(&task->task_state_active, 0);
452                 atomic_dec(&cmd->t_task_cdbs_ex_left);
453         }
454 }
455
456 /*      transport_cmd_check_stop():
457  *
458  *      'transport_off = 1' determines if t_transport_active should be cleared.
459  *      'transport_off = 2' determines if task_dev_state should be removed.
460  *
461  *      A non-zero u8 t_state sets cmd->t_state.
462  *      Returns 1 when command is stopped, else 0.
463  */
464 static int transport_cmd_check_stop(
465         struct se_cmd *cmd,
466         int transport_off,
467         u8 t_state)
468 {
469         unsigned long flags;
470
471         spin_lock_irqsave(&cmd->t_state_lock, flags);
472         /*
473          * Determine if IOCTL context caller in requesting the stopping of this
474          * command for LUN shutdown purposes.
475          */
476         if (atomic_read(&cmd->transport_lun_stop)) {
477                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
478                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
479                         cmd->se_tfo->get_task_tag(cmd));
480
481                 cmd->deferred_t_state = cmd->t_state;
482                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
483                 atomic_set(&cmd->t_transport_active, 0);
484                 if (transport_off == 2)
485                         transport_all_task_dev_remove_state(cmd);
486                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
487
488                 complete(&cmd->transport_lun_stop_comp);
489                 return 1;
490         }
491         /*
492          * Determine if frontend context caller is requesting the stopping of
493          * this command for frontend exceptions.
494          */
495         if (atomic_read(&cmd->t_transport_stop)) {
496                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
497                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
498                         cmd->se_tfo->get_task_tag(cmd));
499
500                 cmd->deferred_t_state = cmd->t_state;
501                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
502                 if (transport_off == 2)
503                         transport_all_task_dev_remove_state(cmd);
504
505                 /*
506                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
507                  * to FE.
508                  */
509                 if (transport_off == 2)
510                         cmd->se_lun = NULL;
511                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
512
513                 complete(&cmd->t_transport_stop_comp);
514                 return 1;
515         }
516         if (transport_off) {
517                 atomic_set(&cmd->t_transport_active, 0);
518                 if (transport_off == 2) {
519                         transport_all_task_dev_remove_state(cmd);
520                         /*
521                          * Clear struct se_cmd->se_lun before the transport_off == 2
522                          * handoff to fabric module.
523                          */
524                         cmd->se_lun = NULL;
525                         /*
526                          * Some fabric modules like tcm_loop can release
527                          * their internally allocated I/O reference now and
528                          * struct se_cmd now.
529                          */
530                         if (cmd->se_tfo->check_stop_free != NULL) {
531                                 spin_unlock_irqrestore(
532                                         &cmd->t_state_lock, flags);
533
534                                 cmd->se_tfo->check_stop_free(cmd);
535                                 return 1;
536                         }
537                 }
538                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
539
540                 return 0;
541         } else if (t_state)
542                 cmd->t_state = t_state;
543         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
544
545         return 0;
546 }
547
548 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
549 {
550         return transport_cmd_check_stop(cmd, 2, 0);
551 }
552
553 static void transport_lun_remove_cmd(struct se_cmd *cmd)
554 {
555         struct se_lun *lun = cmd->se_lun;
556         unsigned long flags;
557
558         if (!lun)
559                 return;
560
561         spin_lock_irqsave(&cmd->t_state_lock, flags);
562         if (!atomic_read(&cmd->transport_dev_active)) {
563                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
564                 goto check_lun;
565         }
566         atomic_set(&cmd->transport_dev_active, 0);
567         transport_all_task_dev_remove_state(cmd);
568         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
569
570
571 check_lun:
572         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
573         if (atomic_read(&cmd->transport_lun_active)) {
574                 list_del(&cmd->se_lun_node);
575                 atomic_set(&cmd->transport_lun_active, 0);
576 #if 0
577                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
578                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
579 #endif
580         }
581         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
582 }
583
584 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
585 {
586         if (!cmd->se_tmr_req)
587                 transport_lun_remove_cmd(cmd);
588
589         if (transport_cmd_check_stop_to_fabric(cmd))
590                 return;
591         if (remove) {
592                 transport_remove_cmd_from_queue(cmd);
593                 transport_put_cmd(cmd);
594         }
595 }
596
597 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
598                 bool at_head)
599 {
600         struct se_device *dev = cmd->se_dev;
601         struct se_queue_obj *qobj = &dev->dev_queue_obj;
602         unsigned long flags;
603
604         if (t_state) {
605                 spin_lock_irqsave(&cmd->t_state_lock, flags);
606                 cmd->t_state = t_state;
607                 atomic_set(&cmd->t_transport_active, 1);
608                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
609         }
610
611         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
612
613         /* If the cmd is already on the list, remove it before we add it */
614         if (!list_empty(&cmd->se_queue_node))
615                 list_del(&cmd->se_queue_node);
616         else
617                 atomic_inc(&qobj->queue_cnt);
618
619         if (at_head)
620                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
621         else
622                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
623         atomic_set(&cmd->t_transport_queue_active, 1);
624         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
625
626         wake_up_interruptible(&qobj->thread_wq);
627 }
628
629 static struct se_cmd *
630 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
631 {
632         struct se_cmd *cmd;
633         unsigned long flags;
634
635         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
636         if (list_empty(&qobj->qobj_list)) {
637                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
638                 return NULL;
639         }
640         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
641
642         atomic_set(&cmd->t_transport_queue_active, 0);
643
644         list_del_init(&cmd->se_queue_node);
645         atomic_dec(&qobj->queue_cnt);
646         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
647
648         return cmd;
649 }
650
651 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
652 {
653         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
654         unsigned long flags;
655
656         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
657         if (!atomic_read(&cmd->t_transport_queue_active)) {
658                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
659                 return;
660         }
661         atomic_set(&cmd->t_transport_queue_active, 0);
662         atomic_dec(&qobj->queue_cnt);
663         list_del_init(&cmd->se_queue_node);
664         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
665
666         if (atomic_read(&cmd->t_transport_queue_active)) {
667                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
668                         cmd->se_tfo->get_task_tag(cmd),
669                         atomic_read(&cmd->t_transport_queue_active));
670         }
671 }
672
673 /*
674  * Completion function used by TCM subsystem plugins (such as FILEIO)
675  * for queueing up response from struct se_subsystem_api->do_task()
676  */
677 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
678 {
679         struct se_task *task = list_entry(cmd->t_task_list.next,
680                                 struct se_task, t_list);
681
682         if (good) {
683                 cmd->scsi_status = SAM_STAT_GOOD;
684                 task->task_scsi_status = GOOD;
685         } else {
686                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
687                 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
688                 task->task_se_cmd->transport_error_status =
689                                         PYX_TRANSPORT_ILLEGAL_REQUEST;
690         }
691
692         transport_complete_task(task, good);
693 }
694 EXPORT_SYMBOL(transport_complete_sync_cache);
695
696 /*      transport_complete_task():
697  *
698  *      Called from interrupt and non interrupt context depending
699  *      on the transport plugin.
700  */
701 void transport_complete_task(struct se_task *task, int success)
702 {
703         struct se_cmd *cmd = task->task_se_cmd;
704         struct se_device *dev = cmd->se_dev;
705         int t_state;
706         unsigned long flags;
707 #if 0
708         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
709                         cmd->t_task_cdb[0], dev);
710 #endif
711         if (dev)
712                 atomic_inc(&dev->depth_left);
713
714         del_timer(&task->task_timer);
715
716         spin_lock_irqsave(&cmd->t_state_lock, flags);
717         task->task_flags &= ~TF_ACTIVE;
718
719         /*
720          * See if any sense data exists, if so set the TASK_SENSE flag.
721          * Also check for any other post completion work that needs to be
722          * done by the plugins.
723          */
724         if (dev && dev->transport->transport_complete) {
725                 if (dev->transport->transport_complete(task) != 0) {
726                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
727                         task->task_sense = 1;
728                         success = 1;
729                 }
730         }
731
732         /*
733          * See if we are waiting for outstanding struct se_task
734          * to complete for an exception condition
735          */
736         if (task->task_flags & TF_REQUEST_STOP) {
737                 /*
738                  * Decrement cmd->t_se_count if this task had
739                  * previously thrown its timeout exception handler.
740                  */
741                 if (task->task_flags & TF_TIMEOUT) {
742                         atomic_dec(&cmd->t_se_count);
743                         task->task_flags &= ~TF_TIMEOUT;
744                 }
745                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
746
747                 complete(&task->task_stop_comp);
748                 return;
749         }
750         /*
751          * If the task's timeout handler has fired, use the t_task_cdbs_timeout
752          * left counter to determine when the struct se_cmd is ready to be queued to
753          * the processing thread.
754          */
755         if (task->task_flags & TF_TIMEOUT) {
756                 if (!atomic_dec_and_test(
757                                 &cmd->t_task_cdbs_timeout_left)) {
758                         spin_unlock_irqrestore(&cmd->t_state_lock,
759                                 flags);
760                         return;
761                 }
762                 t_state = TRANSPORT_COMPLETE_TIMEOUT;
763                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
764
765                 transport_add_cmd_to_queue(cmd, t_state, false);
766                 return;
767         }
768         atomic_dec(&cmd->t_task_cdbs_timeout_left);
769
770         /*
771          * Decrement the outstanding t_task_cdbs_left count.  The last
772          * struct se_task from struct se_cmd will complete itself into the
773          * device queue depending upon int success.
774          */
775         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
776                 if (!success)
777                         cmd->t_tasks_failed = 1;
778
779                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
780                 return;
781         }
782
783         if (!success || cmd->t_tasks_failed) {
784                 t_state = TRANSPORT_COMPLETE_FAILURE;
785                 if (!task->task_error_status) {
786                         task->task_error_status =
787                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
788                         cmd->transport_error_status =
789                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
790                 }
791         } else {
792                 atomic_set(&cmd->t_transport_complete, 1);
793                 t_state = TRANSPORT_COMPLETE_OK;
794         }
795         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
796
797         transport_add_cmd_to_queue(cmd, t_state, false);
798 }
799 EXPORT_SYMBOL(transport_complete_task);
800
801 /*
802  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
803  * struct se_task list are ready to be added to the active execution list
804  * struct se_device
805
806  * Called with se_dev_t->execute_task_lock called.
807  */
808 static inline int transport_add_task_check_sam_attr(
809         struct se_task *task,
810         struct se_task *task_prev,
811         struct se_device *dev)
812 {
813         /*
814          * No SAM Task attribute emulation enabled, add to tail of
815          * execution queue
816          */
817         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
818                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
819                 return 0;
820         }
821         /*
822          * HEAD_OF_QUEUE attribute for received CDB, which means
823          * the first task that is associated with a struct se_cmd goes to
824          * head of the struct se_device->execute_task_list, and task_prev
825          * after that for each subsequent task
826          */
827         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
828                 list_add(&task->t_execute_list,
829                                 (task_prev != NULL) ?
830                                 &task_prev->t_execute_list :
831                                 &dev->execute_task_list);
832
833                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
834                                 " in execution queue\n",
835                                 task->task_se_cmd->t_task_cdb[0]);
836                 return 1;
837         }
838         /*
839          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
840          * transitioned from Dermant -> Active state, and are added to the end
841          * of the struct se_device->execute_task_list
842          */
843         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
844         return 0;
845 }
846
847 /*      __transport_add_task_to_execute_queue():
848  *
849  *      Called with se_dev_t->execute_task_lock called.
850  */
851 static void __transport_add_task_to_execute_queue(
852         struct se_task *task,
853         struct se_task *task_prev,
854         struct se_device *dev)
855 {
856         int head_of_queue;
857
858         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
859         atomic_inc(&dev->execute_tasks);
860
861         if (atomic_read(&task->task_state_active))
862                 return;
863         /*
864          * Determine if this task needs to go to HEAD_OF_QUEUE for the
865          * state list as well.  Running with SAM Task Attribute emulation
866          * will always return head_of_queue == 0 here
867          */
868         if (head_of_queue)
869                 list_add(&task->t_state_list, (task_prev) ?
870                                 &task_prev->t_state_list :
871                                 &dev->state_task_list);
872         else
873                 list_add_tail(&task->t_state_list, &dev->state_task_list);
874
875         atomic_set(&task->task_state_active, 1);
876
877         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
878                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
879                 task, dev);
880 }
881
882 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
883 {
884         struct se_device *dev = cmd->se_dev;
885         struct se_task *task;
886         unsigned long flags;
887
888         spin_lock_irqsave(&cmd->t_state_lock, flags);
889         list_for_each_entry(task, &cmd->t_task_list, t_list) {
890                 if (atomic_read(&task->task_state_active))
891                         continue;
892
893                 spin_lock(&dev->execute_task_lock);
894                 list_add_tail(&task->t_state_list, &dev->state_task_list);
895                 atomic_set(&task->task_state_active, 1);
896
897                 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
898                         task->task_se_cmd->se_tfo->get_task_tag(
899                         task->task_se_cmd), task, dev);
900
901                 spin_unlock(&dev->execute_task_lock);
902         }
903         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
904 }
905
906 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
907 {
908         struct se_device *dev = cmd->se_dev;
909         struct se_task *task, *task_prev = NULL;
910         unsigned long flags;
911
912         spin_lock_irqsave(&dev->execute_task_lock, flags);
913         list_for_each_entry(task, &cmd->t_task_list, t_list) {
914                 if (!list_empty(&task->t_execute_list))
915                         continue;
916                 /*
917                  * __transport_add_task_to_execute_queue() handles the
918                  * SAM Task Attribute emulation if enabled
919                  */
920                 __transport_add_task_to_execute_queue(task, task_prev, dev);
921                 task_prev = task;
922         }
923         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
924 }
925
926 void __transport_remove_task_from_execute_queue(struct se_task *task,
927                 struct se_device *dev)
928 {
929         list_del_init(&task->t_execute_list);
930         atomic_dec(&dev->execute_tasks);
931 }
932
933 void transport_remove_task_from_execute_queue(
934         struct se_task *task,
935         struct se_device *dev)
936 {
937         unsigned long flags;
938
939         if (WARN_ON(list_empty(&task->t_execute_list)))
940                 return;
941
942         spin_lock_irqsave(&dev->execute_task_lock, flags);
943         __transport_remove_task_from_execute_queue(task, dev);
944         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
945 }
946
947 /*
948  * Handle QUEUE_FULL / -EAGAIN status
949  */
950
951 static void target_qf_do_work(struct work_struct *work)
952 {
953         struct se_device *dev = container_of(work, struct se_device,
954                                         qf_work_queue);
955         LIST_HEAD(qf_cmd_list);
956         struct se_cmd *cmd, *cmd_tmp;
957
958         spin_lock_irq(&dev->qf_cmd_lock);
959         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
960         spin_unlock_irq(&dev->qf_cmd_lock);
961
962         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
963                 list_del(&cmd->se_qf_node);
964                 atomic_dec(&dev->dev_qf_count);
965                 smp_mb__after_atomic_dec();
966
967                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
968                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
969                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
970                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
971                         : "UNKNOWN");
972
973                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
974         }
975 }
976
977 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
978 {
979         switch (cmd->data_direction) {
980         case DMA_NONE:
981                 return "NONE";
982         case DMA_FROM_DEVICE:
983                 return "READ";
984         case DMA_TO_DEVICE:
985                 return "WRITE";
986         case DMA_BIDIRECTIONAL:
987                 return "BIDI";
988         default:
989                 break;
990         }
991
992         return "UNKNOWN";
993 }
994
995 void transport_dump_dev_state(
996         struct se_device *dev,
997         char *b,
998         int *bl)
999 {
1000         *bl += sprintf(b + *bl, "Status: ");
1001         switch (dev->dev_status) {
1002         case TRANSPORT_DEVICE_ACTIVATED:
1003                 *bl += sprintf(b + *bl, "ACTIVATED");
1004                 break;
1005         case TRANSPORT_DEVICE_DEACTIVATED:
1006                 *bl += sprintf(b + *bl, "DEACTIVATED");
1007                 break;
1008         case TRANSPORT_DEVICE_SHUTDOWN:
1009                 *bl += sprintf(b + *bl, "SHUTDOWN");
1010                 break;
1011         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1012         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1013                 *bl += sprintf(b + *bl, "OFFLINE");
1014                 break;
1015         default:
1016                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1017                 break;
1018         }
1019
1020         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
1021                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1022                 dev->queue_depth);
1023         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1024                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1025         *bl += sprintf(b + *bl, "        ");
1026 }
1027
1028 void transport_dump_vpd_proto_id(
1029         struct t10_vpd *vpd,
1030         unsigned char *p_buf,
1031         int p_buf_len)
1032 {
1033         unsigned char buf[VPD_TMP_BUF_SIZE];
1034         int len;
1035
1036         memset(buf, 0, VPD_TMP_BUF_SIZE);
1037         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1038
1039         switch (vpd->protocol_identifier) {
1040         case 0x00:
1041                 sprintf(buf+len, "Fibre Channel\n");
1042                 break;
1043         case 0x10:
1044                 sprintf(buf+len, "Parallel SCSI\n");
1045                 break;
1046         case 0x20:
1047                 sprintf(buf+len, "SSA\n");
1048                 break;
1049         case 0x30:
1050                 sprintf(buf+len, "IEEE 1394\n");
1051                 break;
1052         case 0x40:
1053                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1054                                 " Protocol\n");
1055                 break;
1056         case 0x50:
1057                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1058                 break;
1059         case 0x60:
1060                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1061                 break;
1062         case 0x70:
1063                 sprintf(buf+len, "Automation/Drive Interface Transport"
1064                                 " Protocol\n");
1065                 break;
1066         case 0x80:
1067                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1068                 break;
1069         default:
1070                 sprintf(buf+len, "Unknown 0x%02x\n",
1071                                 vpd->protocol_identifier);
1072                 break;
1073         }
1074
1075         if (p_buf)
1076                 strncpy(p_buf, buf, p_buf_len);
1077         else
1078                 pr_debug("%s", buf);
1079 }
1080
1081 void
1082 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1083 {
1084         /*
1085          * Check if the Protocol Identifier Valid (PIV) bit is set..
1086          *
1087          * from spc3r23.pdf section 7.5.1
1088          */
1089          if (page_83[1] & 0x80) {
1090                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1091                 vpd->protocol_identifier_set = 1;
1092                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1093         }
1094 }
1095 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1096
1097 int transport_dump_vpd_assoc(
1098         struct t10_vpd *vpd,
1099         unsigned char *p_buf,
1100         int p_buf_len)
1101 {
1102         unsigned char buf[VPD_TMP_BUF_SIZE];
1103         int ret = 0;
1104         int len;
1105
1106         memset(buf, 0, VPD_TMP_BUF_SIZE);
1107         len = sprintf(buf, "T10 VPD Identifier Association: ");
1108
1109         switch (vpd->association) {
1110         case 0x00:
1111                 sprintf(buf+len, "addressed logical unit\n");
1112                 break;
1113         case 0x10:
1114                 sprintf(buf+len, "target port\n");
1115                 break;
1116         case 0x20:
1117                 sprintf(buf+len, "SCSI target device\n");
1118                 break;
1119         default:
1120                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1121                 ret = -EINVAL;
1122                 break;
1123         }
1124
1125         if (p_buf)
1126                 strncpy(p_buf, buf, p_buf_len);
1127         else
1128                 pr_debug("%s", buf);
1129
1130         return ret;
1131 }
1132
1133 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1134 {
1135         /*
1136          * The VPD identification association..
1137          *
1138          * from spc3r23.pdf Section 7.6.3.1 Table 297
1139          */
1140         vpd->association = (page_83[1] & 0x30);
1141         return transport_dump_vpd_assoc(vpd, NULL, 0);
1142 }
1143 EXPORT_SYMBOL(transport_set_vpd_assoc);
1144
1145 int transport_dump_vpd_ident_type(
1146         struct t10_vpd *vpd,
1147         unsigned char *p_buf,
1148         int p_buf_len)
1149 {
1150         unsigned char buf[VPD_TMP_BUF_SIZE];
1151         int ret = 0;
1152         int len;
1153
1154         memset(buf, 0, VPD_TMP_BUF_SIZE);
1155         len = sprintf(buf, "T10 VPD Identifier Type: ");
1156
1157         switch (vpd->device_identifier_type) {
1158         case 0x00:
1159                 sprintf(buf+len, "Vendor specific\n");
1160                 break;
1161         case 0x01:
1162                 sprintf(buf+len, "T10 Vendor ID based\n");
1163                 break;
1164         case 0x02:
1165                 sprintf(buf+len, "EUI-64 based\n");
1166                 break;
1167         case 0x03:
1168                 sprintf(buf+len, "NAA\n");
1169                 break;
1170         case 0x04:
1171                 sprintf(buf+len, "Relative target port identifier\n");
1172                 break;
1173         case 0x08:
1174                 sprintf(buf+len, "SCSI name string\n");
1175                 break;
1176         default:
1177                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1178                                 vpd->device_identifier_type);
1179                 ret = -EINVAL;
1180                 break;
1181         }
1182
1183         if (p_buf) {
1184                 if (p_buf_len < strlen(buf)+1)
1185                         return -EINVAL;
1186                 strncpy(p_buf, buf, p_buf_len);
1187         } else {
1188                 pr_debug("%s", buf);
1189         }
1190
1191         return ret;
1192 }
1193
1194 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1195 {
1196         /*
1197          * The VPD identifier type..
1198          *
1199          * from spc3r23.pdf Section 7.6.3.1 Table 298
1200          */
1201         vpd->device_identifier_type = (page_83[1] & 0x0f);
1202         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1203 }
1204 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1205
1206 int transport_dump_vpd_ident(
1207         struct t10_vpd *vpd,
1208         unsigned char *p_buf,
1209         int p_buf_len)
1210 {
1211         unsigned char buf[VPD_TMP_BUF_SIZE];
1212         int ret = 0;
1213
1214         memset(buf, 0, VPD_TMP_BUF_SIZE);
1215
1216         switch (vpd->device_identifier_code_set) {
1217         case 0x01: /* Binary */
1218                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1219                         &vpd->device_identifier[0]);
1220                 break;
1221         case 0x02: /* ASCII */
1222                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1223                         &vpd->device_identifier[0]);
1224                 break;
1225         case 0x03: /* UTF-8 */
1226                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1227                         &vpd->device_identifier[0]);
1228                 break;
1229         default:
1230                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1231                         " 0x%02x", vpd->device_identifier_code_set);
1232                 ret = -EINVAL;
1233                 break;
1234         }
1235
1236         if (p_buf)
1237                 strncpy(p_buf, buf, p_buf_len);
1238         else
1239                 pr_debug("%s", buf);
1240
1241         return ret;
1242 }
1243
1244 int
1245 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1246 {
1247         static const char hex_str[] = "0123456789abcdef";
1248         int j = 0, i = 4; /* offset to start of the identifer */
1249
1250         /*
1251          * The VPD Code Set (encoding)
1252          *
1253          * from spc3r23.pdf Section 7.6.3.1 Table 296
1254          */
1255         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1256         switch (vpd->device_identifier_code_set) {
1257         case 0x01: /* Binary */
1258                 vpd->device_identifier[j++] =
1259                                 hex_str[vpd->device_identifier_type];
1260                 while (i < (4 + page_83[3])) {
1261                         vpd->device_identifier[j++] =
1262                                 hex_str[(page_83[i] & 0xf0) >> 4];
1263                         vpd->device_identifier[j++] =
1264                                 hex_str[page_83[i] & 0x0f];
1265                         i++;
1266                 }
1267                 break;
1268         case 0x02: /* ASCII */
1269         case 0x03: /* UTF-8 */
1270                 while (i < (4 + page_83[3]))
1271                         vpd->device_identifier[j++] = page_83[i++];
1272                 break;
1273         default:
1274                 break;
1275         }
1276
1277         return transport_dump_vpd_ident(vpd, NULL, 0);
1278 }
1279 EXPORT_SYMBOL(transport_set_vpd_ident);
1280
1281 static void core_setup_task_attr_emulation(struct se_device *dev)
1282 {
1283         /*
1284          * If this device is from Target_Core_Mod/pSCSI, disable the
1285          * SAM Task Attribute emulation.
1286          *
1287          * This is currently not available in upsream Linux/SCSI Target
1288          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1289          */
1290         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1291                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1292                 return;
1293         }
1294
1295         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1296         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1297                 " device\n", dev->transport->name,
1298                 dev->transport->get_device_rev(dev));
1299 }
1300
1301 static void scsi_dump_inquiry(struct se_device *dev)
1302 {
1303         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1304         int i, device_type;
1305         /*
1306          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1307          */
1308         pr_debug("  Vendor: ");
1309         for (i = 0; i < 8; i++)
1310                 if (wwn->vendor[i] >= 0x20)
1311                         pr_debug("%c", wwn->vendor[i]);
1312                 else
1313                         pr_debug(" ");
1314
1315         pr_debug("  Model: ");
1316         for (i = 0; i < 16; i++)
1317                 if (wwn->model[i] >= 0x20)
1318                         pr_debug("%c", wwn->model[i]);
1319                 else
1320                         pr_debug(" ");
1321
1322         pr_debug("  Revision: ");
1323         for (i = 0; i < 4; i++)
1324                 if (wwn->revision[i] >= 0x20)
1325                         pr_debug("%c", wwn->revision[i]);
1326                 else
1327                         pr_debug(" ");
1328
1329         pr_debug("\n");
1330
1331         device_type = dev->transport->get_device_type(dev);
1332         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1333         pr_debug("                 ANSI SCSI revision: %02x\n",
1334                                 dev->transport->get_device_rev(dev));
1335 }
1336
1337 struct se_device *transport_add_device_to_core_hba(
1338         struct se_hba *hba,
1339         struct se_subsystem_api *transport,
1340         struct se_subsystem_dev *se_dev,
1341         u32 device_flags,
1342         void *transport_dev,
1343         struct se_dev_limits *dev_limits,
1344         const char *inquiry_prod,
1345         const char *inquiry_rev)
1346 {
1347         int force_pt;
1348         struct se_device  *dev;
1349
1350         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1351         if (!dev) {
1352                 pr_err("Unable to allocate memory for se_dev_t\n");
1353                 return NULL;
1354         }
1355
1356         transport_init_queue_obj(&dev->dev_queue_obj);
1357         dev->dev_flags          = device_flags;
1358         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1359         dev->dev_ptr            = transport_dev;
1360         dev->se_hba             = hba;
1361         dev->se_sub_dev         = se_dev;
1362         dev->transport          = transport;
1363         atomic_set(&dev->active_cmds, 0);
1364         INIT_LIST_HEAD(&dev->dev_list);
1365         INIT_LIST_HEAD(&dev->dev_sep_list);
1366         INIT_LIST_HEAD(&dev->dev_tmr_list);
1367         INIT_LIST_HEAD(&dev->execute_task_list);
1368         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1369         INIT_LIST_HEAD(&dev->ordered_cmd_list);
1370         INIT_LIST_HEAD(&dev->state_task_list);
1371         INIT_LIST_HEAD(&dev->qf_cmd_list);
1372         spin_lock_init(&dev->execute_task_lock);
1373         spin_lock_init(&dev->delayed_cmd_lock);
1374         spin_lock_init(&dev->ordered_cmd_lock);
1375         spin_lock_init(&dev->state_task_lock);
1376         spin_lock_init(&dev->dev_alua_lock);
1377         spin_lock_init(&dev->dev_reservation_lock);
1378         spin_lock_init(&dev->dev_status_lock);
1379         spin_lock_init(&dev->dev_status_thr_lock);
1380         spin_lock_init(&dev->se_port_lock);
1381         spin_lock_init(&dev->se_tmr_lock);
1382         spin_lock_init(&dev->qf_cmd_lock);
1383
1384         dev->queue_depth        = dev_limits->queue_depth;
1385         atomic_set(&dev->depth_left, dev->queue_depth);
1386         atomic_set(&dev->dev_ordered_id, 0);
1387
1388         se_dev_set_default_attribs(dev, dev_limits);
1389
1390         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1391         dev->creation_time = get_jiffies_64();
1392         spin_lock_init(&dev->stats_lock);
1393
1394         spin_lock(&hba->device_lock);
1395         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1396         hba->dev_count++;
1397         spin_unlock(&hba->device_lock);
1398         /*
1399          * Setup the SAM Task Attribute emulation for struct se_device
1400          */
1401         core_setup_task_attr_emulation(dev);
1402         /*
1403          * Force PR and ALUA passthrough emulation with internal object use.
1404          */
1405         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1406         /*
1407          * Setup the Reservations infrastructure for struct se_device
1408          */
1409         core_setup_reservations(dev, force_pt);
1410         /*
1411          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1412          */
1413         if (core_setup_alua(dev, force_pt) < 0)
1414                 goto out;
1415
1416         /*
1417          * Startup the struct se_device processing thread
1418          */
1419         dev->process_thread = kthread_run(transport_processing_thread, dev,
1420                                           "LIO_%s", dev->transport->name);
1421         if (IS_ERR(dev->process_thread)) {
1422                 pr_err("Unable to create kthread: LIO_%s\n",
1423                         dev->transport->name);
1424                 goto out;
1425         }
1426         /*
1427          * Setup work_queue for QUEUE_FULL
1428          */
1429         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1430         /*
1431          * Preload the initial INQUIRY const values if we are doing
1432          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1433          * passthrough because this is being provided by the backend LLD.
1434          * This is required so that transport_get_inquiry() copies these
1435          * originals once back into DEV_T10_WWN(dev) for the virtual device
1436          * setup.
1437          */
1438         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1439                 if (!inquiry_prod || !inquiry_rev) {
1440                         pr_err("All non TCM/pSCSI plugins require"
1441                                 " INQUIRY consts\n");
1442                         goto out;
1443                 }
1444
1445                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1446                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1447                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1448         }
1449         scsi_dump_inquiry(dev);
1450
1451         return dev;
1452 out:
1453         kthread_stop(dev->process_thread);
1454
1455         spin_lock(&hba->device_lock);
1456         list_del(&dev->dev_list);
1457         hba->dev_count--;
1458         spin_unlock(&hba->device_lock);
1459
1460         se_release_vpd_for_dev(dev);
1461
1462         kfree(dev);
1463
1464         return NULL;
1465 }
1466 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1467
1468 /*      transport_generic_prepare_cdb():
1469  *
1470  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1471  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1472  *      The point of this is since we are mapping iSCSI LUNs to
1473  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1474  *      devices and HBAs for a loop.
1475  */
1476 static inline void transport_generic_prepare_cdb(
1477         unsigned char *cdb)
1478 {
1479         switch (cdb[0]) {
1480         case READ_10: /* SBC - RDProtect */
1481         case READ_12: /* SBC - RDProtect */
1482         case READ_16: /* SBC - RDProtect */
1483         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1484         case VERIFY: /* SBC - VRProtect */
1485         case VERIFY_16: /* SBC - VRProtect */
1486         case WRITE_VERIFY: /* SBC - VRProtect */
1487         case WRITE_VERIFY_12: /* SBC - VRProtect */
1488                 break;
1489         default:
1490                 cdb[1] &= 0x1f; /* clear logical unit number */
1491                 break;
1492         }
1493 }
1494
1495 static struct se_task *
1496 transport_generic_get_task(struct se_cmd *cmd,
1497                 enum dma_data_direction data_direction)
1498 {
1499         struct se_task *task;
1500         struct se_device *dev = cmd->se_dev;
1501
1502         task = dev->transport->alloc_task(cmd->t_task_cdb);
1503         if (!task) {
1504                 pr_err("Unable to allocate struct se_task\n");
1505                 return NULL;
1506         }
1507
1508         INIT_LIST_HEAD(&task->t_list);
1509         INIT_LIST_HEAD(&task->t_execute_list);
1510         INIT_LIST_HEAD(&task->t_state_list);
1511         init_timer(&task->task_timer);
1512         init_completion(&task->task_stop_comp);
1513         task->task_se_cmd = cmd;
1514         task->task_data_direction = data_direction;
1515
1516         return task;
1517 }
1518
1519 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1520
1521 /*
1522  * Used by fabric modules containing a local struct se_cmd within their
1523  * fabric dependent per I/O descriptor.
1524  */
1525 void transport_init_se_cmd(
1526         struct se_cmd *cmd,
1527         struct target_core_fabric_ops *tfo,
1528         struct se_session *se_sess,
1529         u32 data_length,
1530         int data_direction,
1531         int task_attr,
1532         unsigned char *sense_buffer)
1533 {
1534         INIT_LIST_HEAD(&cmd->se_lun_node);
1535         INIT_LIST_HEAD(&cmd->se_delayed_node);
1536         INIT_LIST_HEAD(&cmd->se_ordered_node);
1537         INIT_LIST_HEAD(&cmd->se_qf_node);
1538         INIT_LIST_HEAD(&cmd->se_queue_node);
1539
1540         INIT_LIST_HEAD(&cmd->t_task_list);
1541         init_completion(&cmd->transport_lun_fe_stop_comp);
1542         init_completion(&cmd->transport_lun_stop_comp);
1543         init_completion(&cmd->t_transport_stop_comp);
1544         spin_lock_init(&cmd->t_state_lock);
1545         atomic_set(&cmd->transport_dev_active, 1);
1546
1547         cmd->se_tfo = tfo;
1548         cmd->se_sess = se_sess;
1549         cmd->data_length = data_length;
1550         cmd->data_direction = data_direction;
1551         cmd->sam_task_attr = task_attr;
1552         cmd->sense_buffer = sense_buffer;
1553 }
1554 EXPORT_SYMBOL(transport_init_se_cmd);
1555
1556 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1557 {
1558         /*
1559          * Check if SAM Task Attribute emulation is enabled for this
1560          * struct se_device storage object
1561          */
1562         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1563                 return 0;
1564
1565         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1566                 pr_debug("SAM Task Attribute ACA"
1567                         " emulation is not supported\n");
1568                 return -EINVAL;
1569         }
1570         /*
1571          * Used to determine when ORDERED commands should go from
1572          * Dormant to Active status.
1573          */
1574         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1575         smp_mb__after_atomic_inc();
1576         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1577                         cmd->se_ordered_id, cmd->sam_task_attr,
1578                         cmd->se_dev->transport->name);
1579         return 0;
1580 }
1581
1582 /*      transport_generic_allocate_tasks():
1583  *
1584  *      Called from fabric RX Thread.
1585  */
1586 int transport_generic_allocate_tasks(
1587         struct se_cmd *cmd,
1588         unsigned char *cdb)
1589 {
1590         int ret;
1591
1592         transport_generic_prepare_cdb(cdb);
1593         /*
1594          * Ensure that the received CDB is less than the max (252 + 8) bytes
1595          * for VARIABLE_LENGTH_CMD
1596          */
1597         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1598                 pr_err("Received SCSI CDB with command_size: %d that"
1599                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1600                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1601                 return -EINVAL;
1602         }
1603         /*
1604          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1605          * allocate the additional extended CDB buffer now..  Otherwise
1606          * setup the pointer from __t_task_cdb to t_task_cdb.
1607          */
1608         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1609                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1610                                                 GFP_KERNEL);
1611                 if (!cmd->t_task_cdb) {
1612                         pr_err("Unable to allocate cmd->t_task_cdb"
1613                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1614                                 scsi_command_size(cdb),
1615                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1616                         return -ENOMEM;
1617                 }
1618         } else
1619                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1620         /*
1621          * Copy the original CDB into cmd->
1622          */
1623         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1624         /*
1625          * Setup the received CDB based on SCSI defined opcodes and
1626          * perform unit attention, persistent reservations and ALUA
1627          * checks for virtual device backends.  The cmd->t_task_cdb
1628          * pointer is expected to be setup before we reach this point.
1629          */
1630         ret = transport_generic_cmd_sequencer(cmd, cdb);
1631         if (ret < 0)
1632                 return ret;
1633         /*
1634          * Check for SAM Task Attribute Emulation
1635          */
1636         if (transport_check_alloc_task_attr(cmd) < 0) {
1637                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1638                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1639                 return -EINVAL;
1640         }
1641         spin_lock(&cmd->se_lun->lun_sep_lock);
1642         if (cmd->se_lun->lun_sep)
1643                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1644         spin_unlock(&cmd->se_lun->lun_sep_lock);
1645         return 0;
1646 }
1647 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1648
1649 static void transport_generic_request_failure(struct se_cmd *, int, int);
1650
1651 /*
1652  * Used by fabric module frontends to queue tasks directly.
1653  * Many only be used from process context only
1654  */
1655 int transport_handle_cdb_direct(
1656         struct se_cmd *cmd)
1657 {
1658         int ret;
1659
1660         if (!cmd->se_lun) {
1661                 dump_stack();
1662                 pr_err("cmd->se_lun is NULL\n");
1663                 return -EINVAL;
1664         }
1665         if (in_interrupt()) {
1666                 dump_stack();
1667                 pr_err("transport_generic_handle_cdb cannot be called"
1668                                 " from interrupt context\n");
1669                 return -EINVAL;
1670         }
1671         /*
1672          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1673          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1674          * in existing usage to ensure that outstanding descriptors are handled
1675          * correctly during shutdown via transport_wait_for_tasks()
1676          *
1677          * Also, we don't take cmd->t_state_lock here as we only expect
1678          * this to be called for initial descriptor submission.
1679          */
1680         cmd->t_state = TRANSPORT_NEW_CMD;
1681         atomic_set(&cmd->t_transport_active, 1);
1682         /*
1683          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1684          * so follow TRANSPORT_NEW_CMD processing thread context usage
1685          * and call transport_generic_request_failure() if necessary..
1686          */
1687         ret = transport_generic_new_cmd(cmd);
1688         if (ret == -EAGAIN)
1689                 return 0;
1690         else if (ret < 0) {
1691                 cmd->transport_error_status = ret;
1692                 transport_generic_request_failure(cmd, 0,
1693                                 (cmd->data_direction != DMA_TO_DEVICE));
1694         }
1695         return 0;
1696 }
1697 EXPORT_SYMBOL(transport_handle_cdb_direct);
1698
1699 /*
1700  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1701  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1702  * complete setup in TCM process context w/ TFO->new_cmd_map().
1703  */
1704 int transport_generic_handle_cdb_map(
1705         struct se_cmd *cmd)
1706 {
1707         if (!cmd->se_lun) {
1708                 dump_stack();
1709                 pr_err("cmd->se_lun is NULL\n");
1710                 return -EINVAL;
1711         }
1712
1713         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1714         return 0;
1715 }
1716 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1717
1718 /*      transport_generic_handle_data():
1719  *
1720  *
1721  */
1722 int transport_generic_handle_data(
1723         struct se_cmd *cmd)
1724 {
1725         /*
1726          * For the software fabric case, then we assume the nexus is being
1727          * failed/shutdown when signals are pending from the kthread context
1728          * caller, so we return a failure.  For the HW target mode case running
1729          * in interrupt code, the signal_pending() check is skipped.
1730          */
1731         if (!in_interrupt() && signal_pending(current))
1732                 return -EPERM;
1733         /*
1734          * If the received CDB has aleady been ABORTED by the generic
1735          * target engine, we now call transport_check_aborted_status()
1736          * to queue any delated TASK_ABORTED status for the received CDB to the
1737          * fabric module as we are expecting no further incoming DATA OUT
1738          * sequences at this point.
1739          */
1740         if (transport_check_aborted_status(cmd, 1) != 0)
1741                 return 0;
1742
1743         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1744         return 0;
1745 }
1746 EXPORT_SYMBOL(transport_generic_handle_data);
1747
1748 /*      transport_generic_handle_tmr():
1749  *
1750  *
1751  */
1752 int transport_generic_handle_tmr(
1753         struct se_cmd *cmd)
1754 {
1755         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1756         return 0;
1757 }
1758 EXPORT_SYMBOL(transport_generic_handle_tmr);
1759
1760 void transport_generic_free_cmd_intr(
1761         struct se_cmd *cmd)
1762 {
1763         transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR, false);
1764 }
1765 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1766
1767 /*
1768  * If the task is active, request it to be stopped and sleep until it
1769  * has completed.
1770  */
1771 bool target_stop_task(struct se_task *task, unsigned long *flags)
1772 {
1773         struct se_cmd *cmd = task->task_se_cmd;
1774         bool was_active = false;
1775
1776         if (task->task_flags & TF_ACTIVE) {
1777                 task->task_flags |= TF_REQUEST_STOP;
1778                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1779
1780                 pr_debug("Task %p waiting to complete\n", task);
1781                 del_timer_sync(&task->task_timer);
1782                 wait_for_completion(&task->task_stop_comp);
1783                 pr_debug("Task %p stopped successfully\n", task);
1784
1785                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1786                 atomic_dec(&cmd->t_task_cdbs_left);
1787                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1788                 was_active = true;
1789         }
1790
1791         return was_active;
1792 }
1793
1794 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1795 {
1796         struct se_task *task, *task_tmp;
1797         unsigned long flags;
1798         int ret = 0;
1799
1800         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1801                 cmd->se_tfo->get_task_tag(cmd));
1802
1803         /*
1804          * No tasks remain in the execution queue
1805          */
1806         spin_lock_irqsave(&cmd->t_state_lock, flags);
1807         list_for_each_entry_safe(task, task_tmp,
1808                                 &cmd->t_task_list, t_list) {
1809                 pr_debug("Processing task %p\n", task);
1810                 /*
1811                  * If the struct se_task has not been sent and is not active,
1812                  * remove the struct se_task from the execution queue.
1813                  */
1814                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1815                         spin_unlock_irqrestore(&cmd->t_state_lock,
1816                                         flags);
1817                         transport_remove_task_from_execute_queue(task,
1818                                         cmd->se_dev);
1819
1820                         pr_debug("Task %p removed from execute queue\n", task);
1821                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1822                         continue;
1823                 }
1824
1825                 if (!target_stop_task(task, &flags)) {
1826                         pr_debug("Task %p - did nothing\n", task);
1827                         ret++;
1828                 }
1829         }
1830         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1831
1832         return ret;
1833 }
1834
1835 /*
1836  * Handle SAM-esque emulation for generic transport request failures.
1837  */
1838 static void transport_generic_request_failure(
1839         struct se_cmd *cmd,
1840         int complete,
1841         int sc)
1842 {
1843         int ret = 0;
1844
1845         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1846                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1847                 cmd->t_task_cdb[0]);
1848         pr_debug("-----[ i_state: %d t_state/def_t_state:"
1849                 " %d/%d transport_error_status: %d\n",
1850                 cmd->se_tfo->get_cmd_state(cmd),
1851                 cmd->t_state, cmd->deferred_t_state,
1852                 cmd->transport_error_status);
1853         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1854                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1855                 " t_transport_active: %d t_transport_stop: %d"
1856                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1857                 atomic_read(&cmd->t_task_cdbs_left),
1858                 atomic_read(&cmd->t_task_cdbs_sent),
1859                 atomic_read(&cmd->t_task_cdbs_ex_left),
1860                 atomic_read(&cmd->t_transport_active),
1861                 atomic_read(&cmd->t_transport_stop),
1862                 atomic_read(&cmd->t_transport_sent));
1863
1864         /*
1865          * For SAM Task Attribute emulation for failed struct se_cmd
1866          */
1867         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1868                 transport_complete_task_attr(cmd);
1869
1870         if (complete) {
1871                 transport_direct_request_timeout(cmd);
1872                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1873         }
1874
1875         switch (cmd->transport_error_status) {
1876         case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1877                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1878                 break;
1879         case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1880                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1881                 break;
1882         case PYX_TRANSPORT_INVALID_CDB_FIELD:
1883                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1884                 break;
1885         case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1886                 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1887                 break;
1888         case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1889                 if (!sc)
1890                         transport_new_cmd_failure(cmd);
1891                 /*
1892                  * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1893                  * we force this session to fall back to session
1894                  * recovery.
1895                  */
1896                 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1897                 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1898
1899                 goto check_stop;
1900         case PYX_TRANSPORT_LU_COMM_FAILURE:
1901         case PYX_TRANSPORT_ILLEGAL_REQUEST:
1902                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1903                 break;
1904         case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1905                 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1906                 break;
1907         case PYX_TRANSPORT_WRITE_PROTECTED:
1908                 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1909                 break;
1910         case PYX_TRANSPORT_RESERVATION_CONFLICT:
1911                 /*
1912                  * No SENSE Data payload for this case, set SCSI Status
1913                  * and queue the response to $FABRIC_MOD.
1914                  *
1915                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1916                  */
1917                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1918                 /*
1919                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1920                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1921                  * CONFLICT STATUS.
1922                  *
1923                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1924                  */
1925                 if (cmd->se_sess &&
1926                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1927                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1928                                 cmd->orig_fe_lun, 0x2C,
1929                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1930
1931                 ret = cmd->se_tfo->queue_status(cmd);
1932                 if (ret == -EAGAIN)
1933                         goto queue_full;
1934                 goto check_stop;
1935         case PYX_TRANSPORT_USE_SENSE_REASON:
1936                 /*
1937                  * struct se_cmd->scsi_sense_reason already set
1938                  */
1939                 break;
1940         default:
1941                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1942                         cmd->t_task_cdb[0],
1943                         cmd->transport_error_status);
1944                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1945                 break;
1946         }
1947         /*
1948          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1949          * make the call to transport_send_check_condition_and_sense()
1950          * directly.  Otherwise expect the fabric to make the call to
1951          * transport_send_check_condition_and_sense() after handling
1952          * possible unsoliticied write data payloads.
1953          */
1954         if (!sc && !cmd->se_tfo->new_cmd_map)
1955                 transport_new_cmd_failure(cmd);
1956         else {
1957                 ret = transport_send_check_condition_and_sense(cmd,
1958                                 cmd->scsi_sense_reason, 0);
1959                 if (ret == -EAGAIN)
1960                         goto queue_full;
1961         }
1962
1963 check_stop:
1964         transport_lun_remove_cmd(cmd);
1965         if (!transport_cmd_check_stop_to_fabric(cmd))
1966                 ;
1967         return;
1968
1969 queue_full:
1970         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1971         transport_handle_queue_full(cmd, cmd->se_dev);
1972 }
1973
1974 static void transport_direct_request_timeout(struct se_cmd *cmd)
1975 {
1976         unsigned long flags;
1977
1978         spin_lock_irqsave(&cmd->t_state_lock, flags);
1979         if (!atomic_read(&cmd->t_transport_timeout)) {
1980                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1981                 return;
1982         }
1983         if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
1984                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1985                 return;
1986         }
1987
1988         atomic_sub(atomic_read(&cmd->t_transport_timeout),
1989                    &cmd->t_se_count);
1990         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1991 }
1992
1993 static void transport_generic_request_timeout(struct se_cmd *cmd)
1994 {
1995         unsigned long flags;
1996
1997         /*
1998          * Reset cmd->t_se_count to allow transport_put_cmd()
1999          * to allow last call to free memory resources.
2000          */
2001         spin_lock_irqsave(&cmd->t_state_lock, flags);
2002         if (atomic_read(&cmd->t_transport_timeout) > 1) {
2003                 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2004
2005                 atomic_sub(tmp, &cmd->t_se_count);
2006         }
2007         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2008
2009         transport_put_cmd(cmd);
2010 }
2011
2012 static inline u32 transport_lba_21(unsigned char *cdb)
2013 {
2014         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2015 }
2016
2017 static inline u32 transport_lba_32(unsigned char *cdb)
2018 {
2019         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2020 }
2021
2022 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2023 {
2024         unsigned int __v1, __v2;
2025
2026         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2027         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2028
2029         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2030 }
2031
2032 /*
2033  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2034  */
2035 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2036 {
2037         unsigned int __v1, __v2;
2038
2039         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2040         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2041
2042         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2043 }
2044
2045 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2046 {
2047         unsigned long flags;
2048
2049         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2050         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2051         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2052 }
2053
2054 /*
2055  * Called from interrupt context.
2056  */
2057 static void transport_task_timeout_handler(unsigned long data)
2058 {
2059         struct se_task *task = (struct se_task *)data;
2060         struct se_cmd *cmd = task->task_se_cmd;
2061         unsigned long flags;
2062
2063         pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2064
2065         spin_lock_irqsave(&cmd->t_state_lock, flags);
2066
2067         /*
2068          * Determine if transport_complete_task() has already been called.
2069          */
2070         if (!(task->task_flags & TF_ACTIVE)) {
2071                 pr_debug("transport task: %p cmd: %p timeout !TF_ACTIVE\n",
2072                          task, cmd);
2073                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2074                 return;
2075         }
2076
2077         atomic_inc(&cmd->t_se_count);
2078         atomic_inc(&cmd->t_transport_timeout);
2079         cmd->t_tasks_failed = 1;
2080
2081         task->task_flags |= TF_TIMEOUT;
2082         task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2083         task->task_scsi_status = 1;
2084
2085         if (task->task_flags & TF_REQUEST_STOP) {
2086                 pr_debug("transport task: %p cmd: %p timeout TF_REQUEST_STOP"
2087                                 " == 1\n", task, cmd);
2088                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2089                 complete(&task->task_stop_comp);
2090                 return;
2091         }
2092
2093         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2094                 pr_debug("transport task: %p cmd: %p timeout non zero"
2095                                 " t_task_cdbs_left\n", task, cmd);
2096                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2097                 return;
2098         }
2099         pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2100                         task, cmd);
2101
2102         cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2103         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2104
2105         transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE, false);
2106 }
2107
2108 static void transport_start_task_timer(struct se_task *task)
2109 {
2110         struct se_device *dev = task->task_se_cmd->se_dev;
2111         int timeout;
2112
2113         /*
2114          * If the task_timeout is disabled, exit now.
2115          */
2116         timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2117         if (!timeout)
2118                 return;
2119
2120         task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2121         task->task_timer.data = (unsigned long) task;
2122         task->task_timer.function = transport_task_timeout_handler;
2123         add_timer(&task->task_timer);
2124 }
2125
2126 static inline int transport_tcq_window_closed(struct se_device *dev)
2127 {
2128         if (dev->dev_tcq_window_closed++ <
2129                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2130                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2131         } else
2132                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2133
2134         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2135         return 0;
2136 }
2137
2138 /*
2139  * Called from Fabric Module context from transport_execute_tasks()
2140  *
2141  * The return of this function determins if the tasks from struct se_cmd
2142  * get added to the execution queue in transport_execute_tasks(),
2143  * or are added to the delayed or ordered lists here.
2144  */
2145 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2146 {
2147         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2148                 return 1;
2149         /*
2150          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2151          * to allow the passed struct se_cmd list of tasks to the front of the list.
2152          */
2153          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2154                 atomic_inc(&cmd->se_dev->dev_hoq_count);
2155                 smp_mb__after_atomic_inc();
2156                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2157                         " 0x%02x, se_ordered_id: %u\n",
2158                         cmd->t_task_cdb[0],
2159                         cmd->se_ordered_id);
2160                 return 1;
2161         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2162                 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2163                 list_add_tail(&cmd->se_ordered_node,
2164                                 &cmd->se_dev->ordered_cmd_list);
2165                 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2166
2167                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2168                 smp_mb__after_atomic_inc();
2169
2170                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2171                                 " list, se_ordered_id: %u\n",
2172                                 cmd->t_task_cdb[0],
2173                                 cmd->se_ordered_id);
2174                 /*
2175                  * Add ORDERED command to tail of execution queue if
2176                  * no other older commands exist that need to be
2177                  * completed first.
2178                  */
2179                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2180                         return 1;
2181         } else {
2182                 /*
2183                  * For SIMPLE and UNTAGGED Task Attribute commands
2184                  */
2185                 atomic_inc(&cmd->se_dev->simple_cmds);
2186                 smp_mb__after_atomic_inc();
2187         }
2188         /*
2189          * Otherwise if one or more outstanding ORDERED task attribute exist,
2190          * add the dormant task(s) built for the passed struct se_cmd to the
2191          * execution queue and become in Active state for this struct se_device.
2192          */
2193         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2194                 /*
2195                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2196                  * will be drained upon completion of HEAD_OF_QUEUE task.
2197                  */
2198                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2199                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2200                 list_add_tail(&cmd->se_delayed_node,
2201                                 &cmd->se_dev->delayed_cmd_list);
2202                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2203
2204                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2205                         " delayed CMD list, se_ordered_id: %u\n",
2206                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2207                         cmd->se_ordered_id);
2208                 /*
2209                  * Return zero to let transport_execute_tasks() know
2210                  * not to add the delayed tasks to the execution list.
2211                  */
2212                 return 0;
2213         }
2214         /*
2215          * Otherwise, no ORDERED task attributes exist..
2216          */
2217         return 1;
2218 }
2219
2220 /*
2221  * Called from fabric module context in transport_generic_new_cmd() and
2222  * transport_generic_process_write()
2223  */
2224 static int transport_execute_tasks(struct se_cmd *cmd)
2225 {
2226         int add_tasks;
2227
2228         if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2229                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2230                 transport_generic_request_failure(cmd, 0, 1);
2231                 return 0;
2232         }
2233
2234         /*
2235          * Call transport_cmd_check_stop() to see if a fabric exception
2236          * has occurred that prevents execution.
2237          */
2238         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2239                 /*
2240                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2241                  * attribute for the tasks of the received struct se_cmd CDB
2242                  */
2243                 add_tasks = transport_execute_task_attr(cmd);
2244                 if (!add_tasks)
2245                         goto execute_tasks;
2246                 /*
2247                  * This calls transport_add_tasks_from_cmd() to handle
2248                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2249                  * (if enabled) in __transport_add_task_to_execute_queue() and
2250                  * transport_add_task_check_sam_attr().
2251                  */
2252                 transport_add_tasks_from_cmd(cmd);
2253         }
2254         /*
2255          * Kick the execution queue for the cmd associated struct se_device
2256          * storage object.
2257          */
2258 execute_tasks:
2259         __transport_execute_tasks(cmd->se_dev);
2260         return 0;
2261 }
2262
2263 /*
2264  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2265  * from struct se_device->execute_task_list and
2266  *
2267  * Called from transport_processing_thread()
2268  */
2269 static int __transport_execute_tasks(struct se_device *dev)
2270 {
2271         int error;
2272         struct se_cmd *cmd = NULL;
2273         struct se_task *task = NULL;
2274         unsigned long flags;
2275
2276         /*
2277          * Check if there is enough room in the device and HBA queue to send
2278          * struct se_tasks to the selected transport.
2279          */
2280 check_depth:
2281         if (!atomic_read(&dev->depth_left))
2282                 return transport_tcq_window_closed(dev);
2283
2284         dev->dev_tcq_window_closed = 0;
2285
2286         spin_lock_irq(&dev->execute_task_lock);
2287         if (list_empty(&dev->execute_task_list)) {
2288                 spin_unlock_irq(&dev->execute_task_lock);
2289                 return 0;
2290         }
2291         task = list_first_entry(&dev->execute_task_list,
2292                                 struct se_task, t_execute_list);
2293         __transport_remove_task_from_execute_queue(task, dev);
2294         spin_unlock_irq(&dev->execute_task_lock);
2295
2296         atomic_dec(&dev->depth_left);
2297
2298         cmd = task->task_se_cmd;
2299
2300         spin_lock_irqsave(&cmd->t_state_lock, flags);
2301         task->task_flags |= (TF_ACTIVE | TF_SENT);
2302         atomic_inc(&cmd->t_task_cdbs_sent);
2303
2304         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2305             cmd->t_task_list_num)
2306                 atomic_set(&cmd->transport_sent, 1);
2307
2308         transport_start_task_timer(task);
2309         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2310         /*
2311          * The struct se_cmd->transport_emulate_cdb() function pointer is used
2312          * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2313          * struct se_subsystem_api->do_task() caller below.
2314          */
2315         if (cmd->transport_emulate_cdb) {
2316                 error = cmd->transport_emulate_cdb(cmd);
2317                 if (error != 0) {
2318                         cmd->transport_error_status = error;
2319                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2320                         task->task_flags &= ~TF_ACTIVE;
2321                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2322                         del_timer_sync(&task->task_timer);
2323                         atomic_set(&cmd->transport_sent, 0);
2324                         transport_stop_tasks_for_cmd(cmd);
2325                         atomic_inc(&dev->depth_left);
2326                         transport_generic_request_failure(cmd, 0, 1);
2327                         goto check_depth;
2328                 }
2329                 /*
2330                  * Handle the successful completion for transport_emulate_cdb()
2331                  * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2332                  * Otherwise the caller is expected to complete the task with
2333                  * proper status.
2334                  */
2335                 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2336                         cmd->scsi_status = SAM_STAT_GOOD;
2337                         task->task_scsi_status = GOOD;
2338                         transport_complete_task(task, 1);
2339                 }
2340         } else {
2341                 /*
2342                  * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2343                  * RAMDISK we use the internal transport_emulate_control_cdb() logic
2344                  * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2345                  * LUN emulation code.
2346                  *
2347                  * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2348                  * call ->do_task() directly and let the underlying TCM subsystem plugin
2349                  * code handle the CDB emulation.
2350                  */
2351                 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2352                     (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2353                         error = transport_emulate_control_cdb(task);
2354                 else
2355                         error = dev->transport->do_task(task);
2356
2357                 if (error != 0) {
2358                         cmd->transport_error_status = error;
2359                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2360                         task->task_flags &= ~TF_ACTIVE;
2361                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2362                         del_timer_sync(&task->task_timer);
2363                         atomic_set(&cmd->transport_sent, 0);
2364                         transport_stop_tasks_for_cmd(cmd);
2365                         atomic_inc(&dev->depth_left);
2366                         transport_generic_request_failure(cmd, 0, 1);
2367                 }
2368         }
2369
2370         goto check_depth;
2371
2372         return 0;
2373 }
2374
2375 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2376 {
2377         unsigned long flags;
2378         /*
2379          * Any unsolicited data will get dumped for failed command inside of
2380          * the fabric plugin
2381          */
2382         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2383         se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2384         se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2385         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2386 }
2387
2388 static inline u32 transport_get_sectors_6(
2389         unsigned char *cdb,
2390         struct se_cmd *cmd,
2391         int *ret)
2392 {
2393         struct se_device *dev = cmd->se_dev;
2394
2395         /*
2396          * Assume TYPE_DISK for non struct se_device objects.
2397          * Use 8-bit sector value.
2398          */
2399         if (!dev)
2400                 goto type_disk;
2401
2402         /*
2403          * Use 24-bit allocation length for TYPE_TAPE.
2404          */
2405         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2406                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2407
2408         /*
2409          * Everything else assume TYPE_DISK Sector CDB location.
2410          * Use 8-bit sector value.
2411          */
2412 type_disk:
2413         return (u32)cdb[4];
2414 }
2415
2416 static inline u32 transport_get_sectors_10(
2417         unsigned char *cdb,
2418         struct se_cmd *cmd,
2419         int *ret)
2420 {
2421         struct se_device *dev = cmd->se_dev;
2422
2423         /*
2424          * Assume TYPE_DISK for non struct se_device objects.
2425          * Use 16-bit sector value.
2426          */
2427         if (!dev)
2428                 goto type_disk;
2429
2430         /*
2431          * XXX_10 is not defined in SSC, throw an exception
2432          */
2433         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2434                 *ret = -EINVAL;
2435                 return 0;
2436         }
2437
2438         /*
2439          * Everything else assume TYPE_DISK Sector CDB location.
2440          * Use 16-bit sector value.
2441          */
2442 type_disk:
2443         return (u32)(cdb[7] << 8) + cdb[8];
2444 }
2445
2446 static inline u32 transport_get_sectors_12(
2447         unsigned char *cdb,
2448         struct se_cmd *cmd,
2449         int *ret)
2450 {
2451         struct se_device *dev = cmd->se_dev;
2452
2453         /*
2454          * Assume TYPE_DISK for non struct se_device objects.
2455          * Use 32-bit sector value.
2456          */
2457         if (!dev)
2458                 goto type_disk;
2459
2460         /*
2461          * XXX_12 is not defined in SSC, throw an exception
2462          */
2463         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2464                 *ret = -EINVAL;
2465                 return 0;
2466         }
2467
2468         /*
2469          * Everything else assume TYPE_DISK Sector CDB location.
2470          * Use 32-bit sector value.
2471          */
2472 type_disk:
2473         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2474 }
2475
2476 static inline u32 transport_get_sectors_16(
2477         unsigned char *cdb,
2478         struct se_cmd *cmd,
2479         int *ret)
2480 {
2481         struct se_device *dev = cmd->se_dev;
2482
2483         /*
2484          * Assume TYPE_DISK for non struct se_device objects.
2485          * Use 32-bit sector value.
2486          */
2487         if (!dev)
2488                 goto type_disk;
2489
2490         /*
2491          * Use 24-bit allocation length for TYPE_TAPE.
2492          */
2493         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2494                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2495
2496 type_disk:
2497         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2498                     (cdb[12] << 8) + cdb[13];
2499 }
2500
2501 /*
2502  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2503  */
2504 static inline u32 transport_get_sectors_32(
2505         unsigned char *cdb,
2506         struct se_cmd *cmd,
2507         int *ret)
2508 {
2509         /*
2510          * Assume TYPE_DISK for non struct se_device objects.
2511          * Use 32-bit sector value.
2512          */
2513         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2514                     (cdb[30] << 8) + cdb[31];
2515
2516 }
2517
2518 static inline u32 transport_get_size(
2519         u32 sectors,
2520         unsigned char *cdb,
2521         struct se_cmd *cmd)
2522 {
2523         struct se_device *dev = cmd->se_dev;
2524
2525         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2526                 if (cdb[1] & 1) { /* sectors */
2527                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2528                 } else /* bytes */
2529                         return sectors;
2530         }
2531 #if 0
2532         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2533                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2534                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2535                         dev->transport->name);
2536 #endif
2537         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2538 }
2539
2540 static void transport_xor_callback(struct se_cmd *cmd)
2541 {
2542         unsigned char *buf, *addr;
2543         struct scatterlist *sg;
2544         unsigned int offset;
2545         int i;
2546         int count;
2547         /*
2548          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2549          *
2550          * 1) read the specified logical block(s);
2551          * 2) transfer logical blocks from the data-out buffer;
2552          * 3) XOR the logical blocks transferred from the data-out buffer with
2553          *    the logical blocks read, storing the resulting XOR data in a buffer;
2554          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2555          *    blocks transferred from the data-out buffer; and
2556          * 5) transfer the resulting XOR data to the data-in buffer.
2557          */
2558         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2559         if (!buf) {
2560                 pr_err("Unable to allocate xor_callback buf\n");
2561                 return;
2562         }
2563         /*
2564          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2565          * into the locally allocated *buf
2566          */
2567         sg_copy_to_buffer(cmd->t_data_sg,
2568                           cmd->t_data_nents,
2569                           buf,
2570                           cmd->data_length);
2571
2572         /*
2573          * Now perform the XOR against the BIDI read memory located at
2574          * cmd->t_mem_bidi_list
2575          */
2576
2577         offset = 0;
2578         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2579                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2580                 if (!addr)
2581                         goto out;
2582
2583                 for (i = 0; i < sg->length; i++)
2584                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2585
2586                 offset += sg->length;
2587                 kunmap_atomic(addr, KM_USER0);
2588         }
2589
2590 out:
2591         kfree(buf);
2592 }
2593
2594 /*
2595  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2596  */
2597 static int transport_get_sense_data(struct se_cmd *cmd)
2598 {
2599         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2600         struct se_device *dev = cmd->se_dev;
2601         struct se_task *task = NULL, *task_tmp;
2602         unsigned long flags;
2603         u32 offset = 0;
2604
2605         WARN_ON(!cmd->se_lun);
2606
2607         if (!dev)
2608                 return 0;
2609
2610         spin_lock_irqsave(&cmd->t_state_lock, flags);
2611         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2612                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2613                 return 0;
2614         }
2615
2616         list_for_each_entry_safe(task, task_tmp,
2617                                 &cmd->t_task_list, t_list) {
2618                 if (!task->task_sense)
2619                         continue;
2620
2621                 if (!dev->transport->get_sense_buffer) {
2622                         pr_err("dev->transport->get_sense_buffer"
2623                                         " is NULL\n");
2624                         continue;
2625                 }
2626
2627                 sense_buffer = dev->transport->get_sense_buffer(task);
2628                 if (!sense_buffer) {
2629                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2630                                 " sense buffer for task with sense\n",
2631                                 cmd->se_tfo->get_task_tag(cmd), task);
2632                         continue;
2633                 }
2634                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2635
2636                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2637                                 TRANSPORT_SENSE_BUFFER);
2638
2639                 memcpy(&buffer[offset], sense_buffer,
2640                                 TRANSPORT_SENSE_BUFFER);
2641                 cmd->scsi_status = task->task_scsi_status;
2642                 /* Automatically padded */
2643                 cmd->scsi_sense_length =
2644                                 (TRANSPORT_SENSE_BUFFER + offset);
2645
2646                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2647                                 " and sense\n",
2648                         dev->se_hba->hba_id, dev->transport->name,
2649                                 cmd->scsi_status);
2650                 return 0;
2651         }
2652         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2653
2654         return -1;
2655 }
2656
2657 static int
2658 transport_handle_reservation_conflict(struct se_cmd *cmd)
2659 {
2660         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2661         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2662         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2663         /*
2664          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2665          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2666          * CONFLICT STATUS.
2667          *
2668          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2669          */
2670         if (cmd->se_sess &&
2671             cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2672                 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2673                         cmd->orig_fe_lun, 0x2C,
2674                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2675         return -EINVAL;
2676 }
2677
2678 static inline long long transport_dev_end_lba(struct se_device *dev)
2679 {
2680         return dev->transport->get_blocks(dev) + 1;
2681 }
2682
2683 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2684 {
2685         struct se_device *dev = cmd->se_dev;
2686         u32 sectors;
2687
2688         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2689                 return 0;
2690
2691         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2692
2693         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2694                 pr_err("LBA: %llu Sectors: %u exceeds"
2695                         " transport_dev_end_lba(): %llu\n",
2696                         cmd->t_task_lba, sectors,
2697                         transport_dev_end_lba(dev));
2698                 return -EINVAL;
2699         }
2700
2701         return 0;
2702 }
2703
2704 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2705 {
2706         /*
2707          * Determine if the received WRITE_SAME is used to for direct
2708          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2709          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2710          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2711          */
2712         int passthrough = (dev->transport->transport_type ==
2713                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2714
2715         if (!passthrough) {
2716                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2717                         pr_err("WRITE_SAME PBDATA and LBDATA"
2718                                 " bits not supported for Block Discard"
2719                                 " Emulation\n");
2720                         return -ENOSYS;
2721                 }
2722                 /*
2723                  * Currently for the emulated case we only accept
2724                  * tpws with the UNMAP=1 bit set.
2725                  */
2726                 if (!(flags[0] & 0x08)) {
2727                         pr_err("WRITE_SAME w/o UNMAP bit not"
2728                                 " supported for Block Discard Emulation\n");
2729                         return -ENOSYS;
2730                 }
2731         }
2732
2733         return 0;
2734 }
2735
2736 /*      transport_generic_cmd_sequencer():
2737  *
2738  *      Generic Command Sequencer that should work for most DAS transport
2739  *      drivers.
2740  *
2741  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2742  *      RX Thread.
2743  *
2744  *      FIXME: Need to support other SCSI OPCODES where as well.
2745  */
2746 static int transport_generic_cmd_sequencer(
2747         struct se_cmd *cmd,
2748         unsigned char *cdb)
2749 {
2750         struct se_device *dev = cmd->se_dev;
2751         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2752         int ret = 0, sector_ret = 0, passthrough;
2753         u32 sectors = 0, size = 0, pr_reg_type = 0;
2754         u16 service_action;
2755         u8 alua_ascq = 0;
2756         /*
2757          * Check for an existing UNIT ATTENTION condition
2758          */
2759         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2760                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2761                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2762                 return -EINVAL;
2763         }
2764         /*
2765          * Check status of Asymmetric Logical Unit Assignment port
2766          */
2767         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2768         if (ret != 0) {
2769                 /*
2770                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2771                  * The ALUA additional sense code qualifier (ASCQ) is determined
2772                  * by the ALUA primary or secondary access state..
2773                  */
2774                 if (ret > 0) {
2775 #if 0
2776                         pr_debug("[%s]: ALUA TG Port not available,"
2777                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2778                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2779 #endif
2780                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2781                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2782                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2783                         return -EINVAL;
2784                 }
2785                 goto out_invalid_cdb_field;
2786         }
2787         /*
2788          * Check status for SPC-3 Persistent Reservations
2789          */
2790         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2791                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2792                                         cmd, cdb, pr_reg_type) != 0)
2793                         return transport_handle_reservation_conflict(cmd);
2794                 /*
2795                  * This means the CDB is allowed for the SCSI Initiator port
2796                  * when said port is *NOT* holding the legacy SPC-2 or
2797                  * SPC-3 Persistent Reservation.
2798                  */
2799         }
2800
2801         switch (cdb[0]) {
2802         case READ_6:
2803                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2804                 if (sector_ret)
2805                         goto out_unsupported_cdb;
2806                 size = transport_get_size(sectors, cdb, cmd);
2807                 cmd->t_task_lba = transport_lba_21(cdb);
2808                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2809                 break;
2810         case READ_10:
2811                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2812                 if (sector_ret)
2813                         goto out_unsupported_cdb;
2814                 size = transport_get_size(sectors, cdb, cmd);
2815                 cmd->t_task_lba = transport_lba_32(cdb);
2816                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2817                 break;
2818         case READ_12:
2819                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2820                 if (sector_ret)
2821                         goto out_unsupported_cdb;
2822                 size = transport_get_size(sectors, cdb, cmd);
2823                 cmd->t_task_lba = transport_lba_32(cdb);
2824                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2825                 break;
2826         case READ_16:
2827                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2828                 if (sector_ret)
2829                         goto out_unsupported_cdb;
2830                 size = transport_get_size(sectors, cdb, cmd);
2831                 cmd->t_task_lba = transport_lba_64(cdb);
2832                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2833                 break;
2834         case WRITE_6:
2835                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2836                 if (sector_ret)
2837                         goto out_unsupported_cdb;
2838                 size = transport_get_size(sectors, cdb, cmd);
2839                 cmd->t_task_lba = transport_lba_21(cdb);
2840                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2841                 break;
2842         case WRITE_10:
2843                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2844                 if (sector_ret)
2845                         goto out_unsupported_cdb;
2846                 size = transport_get_size(sectors, cdb, cmd);
2847                 cmd->t_task_lba = transport_lba_32(cdb);
2848                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2849                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2850                 break;
2851         case WRITE_12:
2852                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2853                 if (sector_ret)
2854                         goto out_unsupported_cdb;
2855                 size = transport_get_size(sectors, cdb, cmd);
2856                 cmd->t_task_lba = transport_lba_32(cdb);
2857                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2858                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2859                 break;
2860         case WRITE_16:
2861                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2862                 if (sector_ret)
2863                         goto out_unsupported_cdb;
2864                 size = transport_get_size(sectors, cdb, cmd);
2865                 cmd->t_task_lba = transport_lba_64(cdb);
2866                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2867                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2868                 break;
2869         case XDWRITEREAD_10:
2870                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2871                     !(cmd->t_tasks_bidi))
2872                         goto out_invalid_cdb_field;
2873                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2874                 if (sector_ret)
2875                         goto out_unsupported_cdb;
2876                 size = transport_get_size(sectors, cdb, cmd);
2877                 cmd->t_task_lba = transport_lba_32(cdb);
2878                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2879                 passthrough = (dev->transport->transport_type ==
2880                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2881                 /*
2882                  * Skip the remaining assignments for TCM/PSCSI passthrough
2883                  */
2884                 if (passthrough)
2885                         break;
2886                 /*
2887                  * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
2888                  */
2889                 cmd->transport_complete_callback = &transport_xor_callback;
2890                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2891                 break;
2892         case VARIABLE_LENGTH_CMD:
2893                 service_action = get_unaligned_be16(&cdb[8]);
2894                 /*
2895                  * Determine if this is TCM/PSCSI device and we should disable
2896                  * internal emulation for this CDB.
2897                  */
2898                 passthrough = (dev->transport->transport_type ==
2899                                         TRANSPORT_PLUGIN_PHBA_PDEV);
2900
2901                 switch (service_action) {
2902                 case XDWRITEREAD_32:
2903                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2904                         if (sector_ret)
2905                                 goto out_unsupported_cdb;
2906                         size = transport_get_size(sectors, cdb, cmd);
2907                         /*
2908                          * Use WRITE_32 and READ_32 opcodes for the emulated
2909                          * XDWRITE_READ_32 logic.
2910                          */
2911                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2912                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2913
2914                         /*
2915                          * Skip the remaining assignments for TCM/PSCSI passthrough
2916                          */
2917                         if (passthrough)
2918                                 break;
2919
2920                         /*
2921                          * Setup BIDI XOR callback to be run during
2922                          * transport_generic_complete_ok()
2923                          */
2924                         cmd->transport_complete_callback = &transport_xor_callback;
2925                         cmd->t_tasks_fua = (cdb[10] & 0x8);
2926                         break;
2927                 case WRITE_SAME_32:
2928                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2929                         if (sector_ret)
2930                                 goto out_unsupported_cdb;
2931
2932                         if (sectors)
2933                                 size = transport_get_size(1, cdb, cmd);
2934                         else {
2935                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2936                                        " supported\n");
2937                                 goto out_invalid_cdb_field;
2938                         }
2939
2940                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2941                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2942
2943                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2944                                 goto out_invalid_cdb_field;
2945
2946                         break;
2947                 default:
2948                         pr_err("VARIABLE_LENGTH_CMD service action"
2949                                 " 0x%04x not supported\n", service_action);
2950                         goto out_unsupported_cdb;
2951                 }
2952                 break;
2953         case MAINTENANCE_IN:
2954                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2955                         /* MAINTENANCE_IN from SCC-2 */
2956                         /*
2957                          * Check for emulated MI_REPORT_TARGET_PGS.
2958                          */
2959                         if (cdb[1] == MI_REPORT_TARGET_PGS) {
2960                                 cmd->transport_emulate_cdb =
2961                                 (su_dev->t10_alua.alua_type ==
2962                                  SPC3_ALUA_EMULATED) ?
2963                                 core_emulate_report_target_port_groups :
2964                                 NULL;
2965                         }
2966                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2967                                (cdb[8] << 8) | cdb[9];
2968                 } else {
2969                         /* GPCMD_SEND_KEY from multi media commands */
2970                         size = (cdb[8] << 8) + cdb[9];
2971                 }
2972                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2973                 break;
2974         case MODE_SELECT:
2975                 size = cdb[4];
2976                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2977                 break;
2978         case MODE_SELECT_10:
2979                 size = (cdb[7] << 8) + cdb[8];
2980                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2981                 break;
2982         case MODE_SENSE:
2983                 size = cdb[4];
2984                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2985                 break;
2986         case MODE_SENSE_10:
2987         case GPCMD_READ_BUFFER_CAPACITY:
2988         case GPCMD_SEND_OPC:
2989         case LOG_SELECT:
2990         case LOG_SENSE:
2991                 size = (cdb[7] << 8) + cdb[8];
2992                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2993                 break;
2994         case READ_BLOCK_LIMITS:
2995                 size = READ_BLOCK_LEN;
2996                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2997                 break;
2998         case GPCMD_GET_CONFIGURATION:
2999         case GPCMD_READ_FORMAT_CAPACITIES:
3000         case GPCMD_READ_DISC_INFO:
3001         case GPCMD_READ_TRACK_RZONE_INFO:
3002                 size = (cdb[7] << 8) + cdb[8];
3003                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3004                 break;
3005         case PERSISTENT_RESERVE_IN:
3006         case PERSISTENT_RESERVE_OUT:
3007                 cmd->transport_emulate_cdb =
3008                         (su_dev->t10_pr.res_type ==
3009                          SPC3_PERSISTENT_RESERVATIONS) ?
3010                         core_scsi3_emulate_pr : NULL;
3011                 size = (cdb[7] << 8) + cdb[8];
3012                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3013                 break;
3014         case GPCMD_MECHANISM_STATUS:
3015         case GPCMD_READ_DVD_STRUCTURE:
3016                 size = (cdb[8] << 8) + cdb[9];
3017                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3018                 break;
3019         case READ_POSITION:
3020                 size = READ_POSITION_LEN;
3021                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3022                 break;
3023         case MAINTENANCE_OUT:
3024                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3025                         /* MAINTENANCE_OUT from SCC-2
3026                          *
3027                          * Check for emulated MO_SET_TARGET_PGS.
3028                          */
3029                         if (cdb[1] == MO_SET_TARGET_PGS) {
3030                                 cmd->transport_emulate_cdb =
3031                                 (su_dev->t10_alua.alua_type ==
3032                                         SPC3_ALUA_EMULATED) ?
3033                                 core_emulate_set_target_port_groups :
3034                                 NULL;
3035                         }
3036
3037                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3038                                (cdb[8] << 8) | cdb[9];
3039                 } else  {
3040                         /* GPCMD_REPORT_KEY from multi media commands */
3041                         size = (cdb[8] << 8) + cdb[9];
3042                 }
3043                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3044                 break;
3045         case INQUIRY:
3046                 size = (cdb[3] << 8) + cdb[4];
3047                 /*
3048                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3049                  * See spc4r17 section 5.3
3050                  */
3051                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3052                         cmd->sam_task_attr = MSG_HEAD_TAG;
3053                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3054                 break;
3055         case READ_BUFFER:
3056                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3057                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3058                 break;
3059         case READ_CAPACITY:
3060                 size = READ_CAP_LEN;
3061                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3062                 break;
3063         case READ_MEDIA_SERIAL_NUMBER:
3064         case SECURITY_PROTOCOL_IN:
3065         case SECURITY_PROTOCOL_OUT:
3066                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3067                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3068                 break;
3069         case SERVICE_ACTION_IN:
3070         case ACCESS_CONTROL_IN:
3071         case ACCESS_CONTROL_OUT:
3072         case EXTENDED_COPY:
3073         case READ_ATTRIBUTE:
3074         case RECEIVE_COPY_RESULTS:
3075         case WRITE_ATTRIBUTE:
3076                 size = (cdb[10] << 24) | (cdb[11] << 16) |
3077                        (cdb[12] << 8) | cdb[13];
3078                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3079                 break;
3080         case RECEIVE_DIAGNOSTIC:
3081         case SEND_DIAGNOSTIC:
3082                 size = (cdb[3] << 8) | cdb[4];
3083                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3084                 break;
3085 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3086 #if 0
3087         case GPCMD_READ_CD:
3088                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3089                 size = (2336 * sectors);
3090                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3091                 break;
3092 #endif
3093         case READ_TOC:
3094                 size = cdb[8];
3095                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3096                 break;
3097         case REQUEST_SENSE:
3098                 size = cdb[4];
3099                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3100                 break;
3101         case READ_ELEMENT_STATUS:
3102                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3103                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3104                 break;
3105         case WRITE_BUFFER:
3106                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3107                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3108                 break;
3109         case RESERVE:
3110         case RESERVE_10:
3111                 /*
3112                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3113                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3114                  */
3115                 if (cdb[0] == RESERVE_10)
3116                         size = (cdb[7] << 8) | cdb[8];
3117                 else
3118                         size = cmd->data_length;
3119
3120                 /*
3121                  * Setup the legacy emulated handler for SPC-2 and
3122                  * >= SPC-3 compatible reservation handling (CRH=1)
3123                  * Otherwise, we assume the underlying SCSI logic is
3124                  * is running in SPC_PASSTHROUGH, and wants reservations
3125                  * emulation disabled.
3126                  */
3127                 cmd->transport_emulate_cdb =
3128                                 (su_dev->t10_pr.res_type !=
3129                                  SPC_PASSTHROUGH) ?
3130                                 core_scsi2_emulate_crh : NULL;
3131                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3132                 break;
3133         case RELEASE:
3134         case RELEASE_10:
3135                 /*
3136                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3137                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3138                 */
3139                 if (cdb[0] == RELEASE_10)
3140                         size = (cdb[7] << 8) | cdb[8];
3141                 else
3142                         size = cmd->data_length;
3143
3144                 cmd->transport_emulate_cdb =
3145                                 (su_dev->t10_pr.res_type !=
3146                                  SPC_PASSTHROUGH) ?
3147                                 core_scsi2_emulate_crh : NULL;
3148                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3149                 break;
3150         case SYNCHRONIZE_CACHE:
3151         case 0x91: /* SYNCHRONIZE_CACHE_16: */
3152                 /*
3153                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3154                  */
3155                 if (cdb[0] == SYNCHRONIZE_CACHE) {
3156                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3157                         cmd->t_task_lba = transport_lba_32(cdb);
3158                 } else {
3159                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3160                         cmd->t_task_lba = transport_lba_64(cdb);
3161                 }
3162                 if (sector_ret)
3163                         goto out_unsupported_cdb;
3164
3165                 size = transport_get_size(sectors, cdb, cmd);
3166                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3167
3168                 /*
3169                  * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3170                  */
3171                 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3172                         break;
3173                 /*
3174                  * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3175                  * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3176                  */
3177                 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3178                 /*
3179                  * Check to ensure that LBA + Range does not exceed past end of
3180                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3181                  */
3182                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3183                         if (transport_cmd_get_valid_sectors(cmd) < 0)
3184                                 goto out_invalid_cdb_field;
3185                 }
3186                 break;
3187         case UNMAP:
3188                 size = get_unaligned_be16(&cdb[7]);
3189                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3190                 break;
3191         case WRITE_SAME_16:
3192                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3193                 if (sector_ret)
3194                         goto out_unsupported_cdb;
3195
3196                 if (sectors)
3197                         size = transport_get_size(1, cdb, cmd);
3198                 else {
3199                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3200                         goto out_invalid_cdb_field;
3201                 }
3202
3203                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3204                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3205
3206                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3207                         goto out_invalid_cdb_field;
3208                 break;
3209         case WRITE_SAME:
3210                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3211                 if (sector_ret)
3212                         goto out_unsupported_cdb;
3213
3214                 if (sectors)
3215                         size = transport_get_size(1, cdb, cmd);
3216                 else {
3217                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3218                         goto out_invalid_cdb_field;
3219                 }
3220
3221                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3222                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3223                 /*
3224                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3225                  * of byte 1 bit 3 UNMAP instead of original reserved field
3226                  */
3227                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3228                         goto out_invalid_cdb_field;
3229                 break;
3230         case ALLOW_MEDIUM_REMOVAL:
3231         case GPCMD_CLOSE_TRACK:
3232         case ERASE:
3233         case INITIALIZE_ELEMENT_STATUS:
3234         case GPCMD_LOAD_UNLOAD:
3235         case REZERO_UNIT:
3236         case SEEK_10:
3237         case GPCMD_SET_SPEED:
3238         case SPACE:
3239         case START_STOP:
3240         case TEST_UNIT_READY:
3241         case VERIFY:
3242         case WRITE_FILEMARKS:
3243         case MOVE_MEDIUM:
3244                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3245                 break;
3246         case REPORT_LUNS:
3247                 cmd->transport_emulate_cdb =
3248                                 transport_core_report_lun_response;
3249                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3250                 /*
3251                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3252                  * See spc4r17 section 5.3
3253                  */
3254                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3255                         cmd->sam_task_attr = MSG_HEAD_TAG;
3256                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3257                 break;
3258         default:
3259                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3260                         " 0x%02x, sending CHECK_CONDITION.\n",
3261                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3262                 goto out_unsupported_cdb;
3263         }
3264
3265         if (size != cmd->data_length) {
3266                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3267                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3268                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3269                                 cmd->data_length, size, cdb[0]);
3270
3271                 cmd->cmd_spdtl = size;
3272
3273                 if (cmd->data_direction == DMA_TO_DEVICE) {
3274                         pr_err("Rejecting underflow/overflow"
3275                                         " WRITE data\n");
3276                         goto out_invalid_cdb_field;
3277                 }
3278                 /*
3279                  * Reject READ_* or WRITE_* with overflow/underflow for
3280                  * type SCF_SCSI_DATA_SG_IO_CDB.
3281                  */
3282                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3283                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3284                                 " CDB on non 512-byte sector setup subsystem"
3285                                 " plugin: %s\n", dev->transport->name);
3286                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3287                         goto out_invalid_cdb_field;
3288                 }
3289
3290                 if (size > cmd->data_length) {
3291                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3292                         cmd->residual_count = (size - cmd->data_length);
3293                 } else {
3294                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3295                         cmd->residual_count = (cmd->data_length - size);
3296                 }
3297                 cmd->data_length = size;
3298         }
3299
3300         /* Let's limit control cdbs to a page, for simplicity's sake. */
3301         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3302             size > PAGE_SIZE)
3303                 goto out_invalid_cdb_field;
3304
3305         transport_set_supported_SAM_opcode(cmd);
3306         return ret;
3307
3308 out_unsupported_cdb:
3309         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3310         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3311         return -EINVAL;
3312 out_invalid_cdb_field:
3313         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3314         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3315         return -EINVAL;
3316 }
3317
3318 /*
3319  * Called from transport_generic_complete_ok() and
3320  * transport_generic_request_failure() to determine which dormant/delayed
3321  * and ordered cmds need to have their tasks added to the execution queue.
3322  */
3323 static void transport_complete_task_attr(struct se_cmd *cmd)
3324 {
3325         struct se_device *dev = cmd->se_dev;
3326         struct se_cmd *cmd_p, *cmd_tmp;
3327         int new_active_tasks = 0;
3328
3329         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3330                 atomic_dec(&dev->simple_cmds);
3331                 smp_mb__after_atomic_dec();
3332                 dev->dev_cur_ordered_id++;
3333                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3334                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3335                         cmd->se_ordered_id);
3336         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3337                 atomic_dec(&dev->dev_hoq_count);
3338                 smp_mb__after_atomic_dec();
3339                 dev->dev_cur_ordered_id++;
3340                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3341                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3342                         cmd->se_ordered_id);
3343         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3344                 spin_lock(&dev->ordered_cmd_lock);
3345                 list_del(&cmd->se_ordered_node);
3346                 atomic_dec(&dev->dev_ordered_sync);
3347                 smp_mb__after_atomic_dec();
3348                 spin_unlock(&dev->ordered_cmd_lock);
3349
3350                 dev->dev_cur_ordered_id++;
3351                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3352                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3353         }
3354         /*
3355          * Process all commands up to the last received
3356          * ORDERED task attribute which requires another blocking
3357          * boundary
3358          */
3359         spin_lock(&dev->delayed_cmd_lock);
3360         list_for_each_entry_safe(cmd_p, cmd_tmp,
3361                         &dev->delayed_cmd_list, se_delayed_node) {
3362
3363                 list_del(&cmd_p->se_delayed_node);
3364                 spin_unlock(&dev->delayed_cmd_lock);
3365
3366                 pr_debug("Calling add_tasks() for"
3367                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3368                         " Dormant -> Active, se_ordered_id: %u\n",
3369                         cmd_p->t_task_cdb[0],
3370                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3371
3372                 transport_add_tasks_from_cmd(cmd_p);
3373                 new_active_tasks++;
3374
3375                 spin_lock(&dev->delayed_cmd_lock);
3376                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3377                         break;
3378         }
3379         spin_unlock(&dev->delayed_cmd_lock);
3380         /*
3381          * If new tasks have become active, wake up the transport thread
3382          * to do the processing of the Active tasks.
3383          */
3384         if (new_active_tasks != 0)
3385                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3386 }
3387
3388 static void transport_complete_qf(struct se_cmd *cmd)
3389 {
3390         int ret = 0;
3391
3392         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3393                 transport_complete_task_attr(cmd);
3394
3395         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3396                 ret = cmd->se_tfo->queue_status(cmd);
3397                 if (ret)
3398                         goto out;
3399         }
3400
3401         switch (cmd->data_direction) {
3402         case DMA_FROM_DEVICE:
3403                 ret = cmd->se_tfo->queue_data_in(cmd);
3404                 break;
3405         case DMA_TO_DEVICE:
3406                 if (cmd->t_bidi_data_sg) {
3407                         ret = cmd->se_tfo->queue_data_in(cmd);
3408                         if (ret < 0)
3409                                 break;
3410                 }
3411                 /* Fall through for DMA_TO_DEVICE */
3412         case DMA_NONE:
3413                 ret = cmd->se_tfo->queue_status(cmd);
3414                 break;
3415         default:
3416                 break;
3417         }
3418
3419 out:
3420         if (ret < 0) {
3421                 transport_handle_queue_full(cmd, cmd->se_dev);
3422                 return;
3423         }
3424         transport_lun_remove_cmd(cmd);
3425         transport_cmd_check_stop_to_fabric(cmd);
3426 }
3427
3428 static void transport_handle_queue_full(
3429         struct se_cmd *cmd,
3430         struct se_device *dev)
3431 {
3432         spin_lock_irq(&dev->qf_cmd_lock);
3433         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3434         atomic_inc(&dev->dev_qf_count);
3435         smp_mb__after_atomic_inc();
3436         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3437
3438         schedule_work(&cmd->se_dev->qf_work_queue);
3439 }
3440
3441 static void transport_generic_complete_ok(struct se_cmd *cmd)
3442 {
3443         int reason = 0, ret;
3444         /*
3445          * Check if we need to move delayed/dormant tasks from cmds on the
3446          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3447          * Attribute.
3448          */
3449         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3450                 transport_complete_task_attr(cmd);
3451         /*
3452          * Check to schedule QUEUE_FULL work, or execute an existing
3453          * cmd->transport_qf_callback()
3454          */
3455         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3456                 schedule_work(&cmd->se_dev->qf_work_queue);
3457
3458         /*
3459          * Check if we need to retrieve a sense buffer from
3460          * the struct se_cmd in question.
3461          */
3462         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3463                 if (transport_get_sense_data(cmd) < 0)
3464                         reason = TCM_NON_EXISTENT_LUN;
3465
3466                 /*
3467                  * Only set when an struct se_task->task_scsi_status returned
3468                  * a non GOOD status.
3469                  */
3470                 if (cmd->scsi_status) {
3471                         ret = transport_send_check_condition_and_sense(
3472                                         cmd, reason, 1);
3473                         if (ret == -EAGAIN)
3474                                 goto queue_full;
3475
3476                         transport_lun_remove_cmd(cmd);
3477                         transport_cmd_check_stop_to_fabric(cmd);
3478                         return;
3479                 }
3480         }
3481         /*
3482          * Check for a callback, used by amongst other things
3483          * XDWRITE_READ_10 emulation.
3484          */
3485         if (cmd->transport_complete_callback)
3486                 cmd->transport_complete_callback(cmd);
3487
3488         switch (cmd->data_direction) {
3489         case DMA_FROM_DEVICE:
3490                 spin_lock(&cmd->se_lun->lun_sep_lock);
3491                 if (cmd->se_lun->lun_sep) {
3492                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3493                                         cmd->data_length;
3494                 }
3495                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3496
3497                 ret = cmd->se_tfo->queue_data_in(cmd);
3498                 if (ret == -EAGAIN)
3499                         goto queue_full;
3500                 break;
3501         case DMA_TO_DEVICE:
3502                 spin_lock(&cmd->se_lun->lun_sep_lock);
3503                 if (cmd->se_lun->lun_sep) {
3504                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3505                                 cmd->data_length;
3506                 }
3507                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3508                 /*
3509                  * Check if we need to send READ payload for BIDI-COMMAND
3510                  */
3511                 if (cmd->t_bidi_data_sg) {
3512                         spin_lock(&cmd->se_lun->lun_sep_lock);
3513                         if (cmd->se_lun->lun_sep) {
3514                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3515                                         cmd->data_length;
3516                         }
3517                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3518                         ret = cmd->se_tfo->queue_data_in(cmd);
3519                         if (ret == -EAGAIN)
3520                                 goto queue_full;
3521                         break;
3522                 }
3523                 /* Fall through for DMA_TO_DEVICE */
3524         case DMA_NONE:
3525                 ret = cmd->se_tfo->queue_status(cmd);
3526                 if (ret == -EAGAIN)
3527                         goto queue_full;
3528                 break;
3529         default:
3530                 break;
3531         }
3532
3533         transport_lun_remove_cmd(cmd);
3534         transport_cmd_check_stop_to_fabric(cmd);
3535         return;
3536
3537 queue_full:
3538         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3539                 " data_direction: %d\n", cmd, cmd->data_direction);
3540         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3541         transport_handle_queue_full(cmd, cmd->se_dev);
3542 }
3543
3544 static void transport_free_dev_tasks(struct se_cmd *cmd)
3545 {
3546         struct se_task *task, *task_tmp;
3547         unsigned long flags;
3548         LIST_HEAD(dispose_list);
3549
3550         spin_lock_irqsave(&cmd->t_state_lock, flags);
3551         list_for_each_entry_safe(task, task_tmp,
3552                                 &cmd->t_task_list, t_list) {
3553                 if (!(task->task_flags & TF_ACTIVE))
3554                         list_move_tail(&task->t_list, &dispose_list);
3555         }
3556         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3557
3558         while (!list_empty(&dispose_list)) {
3559                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3560
3561                 /*
3562                  * We already cancelled all pending timers in
3563                  * transport_complete_task, but that was just a pure del_timer,
3564                  * so do a full del_timer_sync here to make sure any handler
3565                  * that was running at that point has finished execution.
3566                  */
3567                 del_timer_sync(&task->task_timer);
3568
3569                 kfree(task->task_sg_bidi);
3570                 kfree(task->task_sg);
3571
3572                 list_del(&task->t_list);
3573
3574                 cmd->se_dev->transport->free_task(task);
3575         }
3576 }
3577
3578 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3579 {
3580         struct scatterlist *sg;
3581         int count;
3582
3583         for_each_sg(sgl, sg, nents, count)
3584                 __free_page(sg_page(sg));
3585
3586         kfree(sgl);
3587 }
3588
3589 static inline void transport_free_pages(struct se_cmd *cmd)
3590 {
3591         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3592                 return;
3593
3594         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3595         cmd->t_data_sg = NULL;
3596         cmd->t_data_nents = 0;
3597
3598         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3599         cmd->t_bidi_data_sg = NULL;
3600         cmd->t_bidi_data_nents = 0;
3601 }
3602
3603 /**
3604  * transport_put_cmd - release a reference to a command
3605  * @cmd:       command to release
3606  *
3607  * This routine releases our reference to the command and frees it if possible.
3608  */
3609 static void transport_put_cmd(struct se_cmd *cmd)
3610 {
3611         unsigned long flags;
3612         int free_tasks = 0;
3613
3614         spin_lock_irqsave(&cmd->t_state_lock, flags);
3615         if (atomic_read(&cmd->t_fe_count)) {
3616                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3617                         goto out_busy;
3618         }
3619
3620         if (atomic_read(&cmd->t_se_count)) {
3621                 if (!atomic_dec_and_test(&cmd->t_se_count))
3622                         goto out_busy;
3623         }
3624
3625         if (atomic_read(&cmd->transport_dev_active)) {
3626                 atomic_set(&cmd->transport_dev_active, 0);
3627                 transport_all_task_dev_remove_state(cmd);
3628                 free_tasks = 1;
3629         }
3630         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3631
3632         if (free_tasks != 0)
3633                 transport_free_dev_tasks(cmd);
3634
3635         transport_free_pages(cmd);
3636         transport_release_cmd(cmd);
3637         return;
3638 out_busy:
3639         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3640 }
3641
3642 /*
3643  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3644  * allocating in the core.
3645  * @cmd:  Associated se_cmd descriptor
3646  * @mem:  SGL style memory for TCM WRITE / READ
3647  * @sg_mem_num: Number of SGL elements
3648  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3649  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3650  *
3651  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3652  * of parameters.
3653  */
3654 int transport_generic_map_mem_to_cmd(
3655         struct se_cmd *cmd,
3656         struct scatterlist *sgl,
3657         u32 sgl_count,
3658         struct scatterlist *sgl_bidi,
3659         u32 sgl_bidi_count)
3660 {
3661         if (!sgl || !sgl_count)
3662                 return 0;
3663
3664         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3665             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3666
3667                 cmd->t_data_sg = sgl;
3668                 cmd->t_data_nents = sgl_count;
3669
3670                 if (sgl_bidi && sgl_bidi_count) {
3671                         cmd->t_bidi_data_sg = sgl_bidi;
3672                         cmd->t_bidi_data_nents = sgl_bidi_count;
3673                 }
3674                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3675         }
3676
3677         return 0;
3678 }
3679 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3680
3681 static int transport_new_cmd_obj(struct se_cmd *cmd)
3682 {
3683         struct se_device *dev = cmd->se_dev;
3684         int set_counts = 1, rc, task_cdbs;
3685
3686         /*
3687          * Setup any BIDI READ tasks and memory from
3688          * cmd->t_mem_bidi_list so the READ struct se_tasks
3689          * are queued first for the non pSCSI passthrough case.
3690          */
3691         if (cmd->t_bidi_data_sg &&
3692             (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3693                 rc = transport_allocate_tasks(cmd,
3694                                               cmd->t_task_lba,
3695                                               DMA_FROM_DEVICE,
3696                                               cmd->t_bidi_data_sg,
3697                                               cmd->t_bidi_data_nents);
3698                 if (rc <= 0) {
3699                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3700                         cmd->scsi_sense_reason =
3701                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3702                         return -EINVAL;
3703                 }
3704                 atomic_inc(&cmd->t_fe_count);
3705                 atomic_inc(&cmd->t_se_count);
3706                 set_counts = 0;
3707         }
3708         /*
3709          * Setup the tasks and memory from cmd->t_mem_list
3710          * Note for BIDI transfers this will contain the WRITE payload
3711          */
3712         task_cdbs = transport_allocate_tasks(cmd,
3713                                              cmd->t_task_lba,
3714                                              cmd->data_direction,
3715                                              cmd->t_data_sg,
3716                                              cmd->t_data_nents);
3717         if (task_cdbs <= 0) {
3718                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3719                 cmd->scsi_sense_reason =
3720                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3721                 return -EINVAL;
3722         }
3723
3724         if (set_counts) {
3725                 atomic_inc(&cmd->t_fe_count);
3726                 atomic_inc(&cmd->t_se_count);
3727         }
3728
3729         cmd->t_task_list_num = task_cdbs;
3730
3731         atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3732         atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3733         atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3734         return 0;
3735 }
3736
3737 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3738 {
3739         struct scatterlist *sg = cmd->t_data_sg;
3740
3741         BUG_ON(!sg);
3742         /*
3743          * We need to take into account a possible offset here for fabrics like
3744          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3745          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3746          */
3747         return kmap(sg_page(sg)) + sg->offset;
3748 }
3749 EXPORT_SYMBOL(transport_kmap_first_data_page);
3750
3751 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3752 {
3753         kunmap(sg_page(cmd->t_data_sg));
3754 }
3755 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3756
3757 static int
3758 transport_generic_get_mem(struct se_cmd *cmd)
3759 {
3760         u32 length = cmd->data_length;
3761         unsigned int nents;
3762         struct page *page;
3763         int i = 0;
3764
3765         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3766         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3767         if (!cmd->t_data_sg)
3768                 return -ENOMEM;
3769
3770         cmd->t_data_nents = nents;
3771         sg_init_table(cmd->t_data_sg, nents);
3772
3773         while (length) {
3774                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3775                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3776                 if (!page)
3777                         goto out;
3778
3779                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3780                 length -= page_len;
3781                 i++;
3782         }
3783         return 0;
3784
3785 out:
3786         while (i >= 0) {
3787                 __free_page(sg_page(&cmd->t_data_sg[i]));
3788                 i--;
3789         }
3790         kfree(cmd->t_data_sg);
3791         cmd->t_data_sg = NULL;
3792         return -ENOMEM;
3793 }
3794
3795 /* Reduce sectors if they are too long for the device */
3796 static inline sector_t transport_limit_task_sectors(
3797         struct se_device *dev,
3798         unsigned long long lba,
3799         sector_t sectors)
3800 {
3801         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3802
3803         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3804                 if ((lba + sectors) > transport_dev_end_lba(dev))
3805                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3806
3807         return sectors;
3808 }
3809
3810
3811 /*
3812  * This function can be used by HW target mode drivers to create a linked
3813  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3814  * This is intended to be called during the completion path by TCM Core
3815  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3816  */
3817 void transport_do_task_sg_chain(struct se_cmd *cmd)
3818 {
3819         struct scatterlist *sg_first = NULL;
3820         struct scatterlist *sg_prev = NULL;
3821         int sg_prev_nents = 0;
3822         struct scatterlist *sg;
3823         struct se_task *task;
3824         u32 chained_nents = 0;
3825         int i;
3826
3827         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3828
3829         /*
3830          * Walk the struct se_task list and setup scatterlist chains
3831          * for each contiguously allocated struct se_task->task_sg[].
3832          */
3833         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3834                 if (!task->task_sg)
3835                         continue;
3836
3837                 if (!sg_first) {
3838                         sg_first = task->task_sg;
3839                         chained_nents = task->task_sg_nents;
3840                 } else {
3841                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3842                         chained_nents += task->task_sg_nents;
3843                 }
3844                 /*
3845                  * For the padded tasks, use the extra SGL vector allocated
3846                  * in transport_allocate_data_tasks() for the sg_prev_nents
3847                  * offset into sg_chain() above.
3848                  *
3849                  * We do not need the padding for the last task (or a single
3850                  * task), but in that case we will never use the sg_prev_nents
3851                  * value below which would be incorrect.
3852                  */
3853                 sg_prev_nents = (task->task_sg_nents + 1);
3854                 sg_prev = task->task_sg;
3855         }
3856         /*
3857          * Setup the starting pointer and total t_tasks_sg_linked_no including
3858          * padding SGs for linking and to mark the end.
3859          */
3860         cmd->t_tasks_sg_chained = sg_first;
3861         cmd->t_tasks_sg_chained_no = chained_nents;
3862
3863         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3864                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3865                 cmd->t_tasks_sg_chained_no);
3866
3867         for_each_sg(cmd->t_tasks_sg_chained, sg,
3868                         cmd->t_tasks_sg_chained_no, i) {
3869
3870                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3871                         i, sg, sg_page(sg), sg->length, sg->offset);
3872                 if (sg_is_chain(sg))
3873                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3874                 if (sg_is_last(sg))
3875                         pr_debug("SG: %p sg_is_last=1\n", sg);
3876         }
3877 }
3878 EXPORT_SYMBOL(transport_do_task_sg_chain);
3879
3880 /*
3881  * Break up cmd into chunks transport can handle
3882  */
3883 static int transport_allocate_data_tasks(
3884         struct se_cmd *cmd,
3885         unsigned long long lba,
3886         enum dma_data_direction data_direction,
3887         struct scatterlist *sgl,
3888         unsigned int sgl_nents)
3889 {
3890         struct se_task *task;
3891         struct se_device *dev = cmd->se_dev;
3892         unsigned long flags;
3893         int task_count, i;
3894         sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3895         u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3896         struct scatterlist *sg;
3897         struct scatterlist *cmd_sg;
3898
3899         WARN_ON(cmd->data_length % sector_size);
3900         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3901         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3902         
3903         cmd_sg = sgl;
3904         for (i = 0; i < task_count; i++) {
3905                 unsigned int task_size, task_sg_nents_padded;
3906                 int count;
3907
3908                 task = transport_generic_get_task(cmd, data_direction);
3909                 if (!task)
3910                         return -ENOMEM;
3911
3912                 task->task_lba = lba;
3913                 task->task_sectors = min(sectors, dev_max_sectors);
3914                 task->task_size = task->task_sectors * sector_size;
3915
3916                 /*
3917                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3918                  * in order to calculate the number per task SGL entries
3919                  */
3920                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3921                 /*
3922                  * Check if the fabric module driver is requesting that all
3923                  * struct se_task->task_sg[] be chained together..  If so,
3924                  * then allocate an extra padding SG entry for linking and
3925                  * marking the end of the chained SGL for every task except
3926                  * the last one for (task_count > 1) operation, or skipping
3927                  * the extra padding for the (task_count == 1) case.
3928                  */
3929                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3930                         task_sg_nents_padded = (task->task_sg_nents + 1);
3931                 } else
3932                         task_sg_nents_padded = task->task_sg_nents;
3933
3934                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3935                                         task_sg_nents_padded, GFP_KERNEL);
3936                 if (!task->task_sg) {
3937                         cmd->se_dev->transport->free_task(task);
3938                         return -ENOMEM;
3939                 }
3940
3941                 sg_init_table(task->task_sg, task_sg_nents_padded);
3942
3943                 task_size = task->task_size;
3944
3945                 /* Build new sgl, only up to task_size */
3946                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3947                         if (cmd_sg->length > task_size)
3948                                 break;
3949
3950                         *sg = *cmd_sg;
3951                         task_size -= cmd_sg->length;
3952                         cmd_sg = sg_next(cmd_sg);
3953                 }
3954
3955                 lba += task->task_sectors;
3956                 sectors -= task->task_sectors;
3957
3958                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3959                 list_add_tail(&task->t_list, &cmd->t_task_list);
3960                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3961         }
3962
3963         return task_count;
3964 }
3965
3966 static int
3967 transport_allocate_control_task(struct se_cmd *cmd)
3968 {
3969         struct se_task *task;
3970         unsigned long flags;
3971
3972         task = transport_generic_get_task(cmd, cmd->data_direction);
3973         if (!task)
3974                 return -ENOMEM;
3975
3976         task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
3977                                 GFP_KERNEL);
3978         if (!task->task_sg) {
3979                 cmd->se_dev->transport->free_task(task);
3980                 return -ENOMEM;
3981         }
3982
3983         memcpy(task->task_sg, cmd->t_data_sg,
3984                sizeof(struct scatterlist) * cmd->t_data_nents);
3985         task->task_size = cmd->data_length;
3986         task->task_sg_nents = cmd->t_data_nents;
3987
3988         spin_lock_irqsave(&cmd->t_state_lock, flags);
3989         list_add_tail(&task->t_list, &cmd->t_task_list);
3990         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3991
3992         /* Success! Return number of tasks allocated */
3993         return 1;
3994 }
3995
3996 static u32 transport_allocate_tasks(
3997         struct se_cmd *cmd,
3998         unsigned long long lba,
3999         enum dma_data_direction data_direction,
4000         struct scatterlist *sgl,
4001         unsigned int sgl_nents)
4002 {
4003         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4004                 if (transport_cmd_get_valid_sectors(cmd) < 0)
4005                         return -EINVAL;
4006
4007                 return transport_allocate_data_tasks(cmd, lba, data_direction,
4008                                                      sgl, sgl_nents);
4009         } else
4010                 return transport_allocate_control_task(cmd);
4011
4012 }
4013
4014
4015 /*       transport_generic_new_cmd(): Called from transport_processing_thread()
4016  *
4017  *       Allocate storage transport resources from a set of values predefined
4018  *       by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4019  *       Any non zero return here is treated as an "out of resource' op here.
4020  */
4021         /*
4022          * Generate struct se_task(s) and/or their payloads for this CDB.
4023          */
4024 int transport_generic_new_cmd(struct se_cmd *cmd)
4025 {
4026         int ret = 0;
4027
4028         /*
4029          * Determine is the TCM fabric module has already allocated physical
4030          * memory, and is directly calling transport_generic_map_mem_to_cmd()
4031          * beforehand.
4032          */
4033         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4034             cmd->data_length) {
4035                 ret = transport_generic_get_mem(cmd);
4036                 if (ret < 0)
4037                         return ret;
4038         }
4039         /*
4040          * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4041          * control or data CDB types, and perform the map to backend subsystem
4042          * code from SGL memory allocated here by transport_generic_get_mem(), or
4043          * via pre-existing SGL memory setup explictly by fabric module code with
4044          * transport_generic_map_mem_to_cmd().
4045          */
4046         ret = transport_new_cmd_obj(cmd);
4047         if (ret < 0)
4048                 return ret;
4049         /*
4050          * For WRITEs, let the fabric know its buffer is ready..
4051          * This WRITE struct se_cmd (and all of its associated struct se_task's)
4052          * will be added to the struct se_device execution queue after its WRITE
4053          * data has arrived. (ie: It gets handled by the transport processing
4054          * thread a second time)
4055          */
4056         if (cmd->data_direction == DMA_TO_DEVICE) {
4057                 transport_add_tasks_to_state_queue(cmd);
4058                 return transport_generic_write_pending(cmd);
4059         }
4060         /*
4061          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4062          * to the execution queue.
4063          */
4064         transport_execute_tasks(cmd);
4065         return 0;
4066 }
4067 EXPORT_SYMBOL(transport_generic_new_cmd);
4068
4069 /*      transport_generic_process_write():
4070  *
4071  *
4072  */
4073 void transport_generic_process_write(struct se_cmd *cmd)
4074 {
4075         transport_execute_tasks(cmd);
4076 }
4077 EXPORT_SYMBOL(transport_generic_process_write);
4078
4079 static void transport_write_pending_qf(struct se_cmd *cmd)
4080 {
4081         if (cmd->se_tfo->write_pending(cmd) == -EAGAIN) {
4082                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4083                          cmd);
4084                 transport_handle_queue_full(cmd, cmd->se_dev);
4085         }
4086 }
4087
4088 static int transport_generic_write_pending(struct se_cmd *cmd)
4089 {
4090         unsigned long flags;
4091         int ret;
4092
4093         spin_lock_irqsave(&cmd->t_state_lock, flags);
4094         cmd->t_state = TRANSPORT_WRITE_PENDING;
4095         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4096
4097         /*
4098          * Clear the se_cmd for WRITE_PENDING status in order to set
4099          * cmd->t_transport_active=0 so that transport_generic_handle_data
4100          * can be called from HW target mode interrupt code.  This is safe
4101          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4102          * because the se_cmd->se_lun pointer is not being cleared.
4103          */
4104         transport_cmd_check_stop(cmd, 1, 0);
4105
4106         /*
4107          * Call the fabric write_pending function here to let the
4108          * frontend know that WRITE buffers are ready.
4109          */
4110         ret = cmd->se_tfo->write_pending(cmd);
4111         if (ret == -EAGAIN)
4112                 goto queue_full;
4113         else if (ret < 0)
4114                 return ret;
4115
4116         return PYX_TRANSPORT_WRITE_PENDING;
4117
4118 queue_full:
4119         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4120         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4121         transport_handle_queue_full(cmd, cmd->se_dev);
4122         return ret;
4123 }
4124
4125 /**
4126  * transport_release_cmd - free a command
4127  * @cmd:       command to free
4128  *
4129  * This routine unconditionally frees a command, and reference counting
4130  * or list removal must be done in the caller.
4131  */
4132 void transport_release_cmd(struct se_cmd *cmd)
4133 {
4134         BUG_ON(!cmd->se_tfo);
4135
4136         if (cmd->se_tmr_req)
4137                 core_tmr_release_req(cmd->se_tmr_req);
4138         if (cmd->t_task_cdb != cmd->__t_task_cdb)
4139                 kfree(cmd->t_task_cdb);
4140         cmd->se_tfo->release_cmd(cmd);
4141 }
4142 EXPORT_SYMBOL(transport_release_cmd);
4143
4144 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4145 {
4146         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4147                 if (wait_for_tasks && cmd->se_tmr_req)
4148                          transport_wait_for_tasks(cmd);
4149
4150                 transport_release_cmd(cmd);
4151         } else {
4152                 if (wait_for_tasks)
4153                         transport_wait_for_tasks(cmd);
4154
4155                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4156
4157                 if (cmd->se_lun)
4158                         transport_lun_remove_cmd(cmd);
4159
4160                 transport_free_dev_tasks(cmd);
4161
4162                 transport_put_cmd(cmd);
4163         }
4164 }
4165 EXPORT_SYMBOL(transport_generic_free_cmd);
4166
4167 /*      transport_lun_wait_for_tasks():
4168  *
4169  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4170  *      an struct se_lun to be successfully shutdown.
4171  */
4172 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4173 {
4174         unsigned long flags;
4175         int ret;
4176         /*
4177          * If the frontend has already requested this struct se_cmd to
4178          * be stopped, we can safely ignore this struct se_cmd.
4179          */
4180         spin_lock_irqsave(&cmd->t_state_lock, flags);
4181         if (atomic_read(&cmd->t_transport_stop)) {
4182                 atomic_set(&cmd->transport_lun_stop, 0);
4183                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4184                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4185                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4186                 transport_cmd_check_stop(cmd, 1, 0);
4187                 return -EPERM;
4188         }
4189         atomic_set(&cmd->transport_lun_fe_stop, 1);
4190         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4191
4192         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4193
4194         ret = transport_stop_tasks_for_cmd(cmd);
4195
4196         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4197                         " %d\n", cmd, cmd->t_task_list_num, ret);
4198         if (!ret) {
4199                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4200                                 cmd->se_tfo->get_task_tag(cmd));
4201                 wait_for_completion(&cmd->transport_lun_stop_comp);
4202                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4203                                 cmd->se_tfo->get_task_tag(cmd));
4204         }
4205         transport_remove_cmd_from_queue(cmd);
4206
4207         return 0;
4208 }
4209
4210 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4211 {
4212         struct se_cmd *cmd = NULL;
4213         unsigned long lun_flags, cmd_flags;
4214         /*
4215          * Do exception processing and return CHECK_CONDITION status to the
4216          * Initiator Port.
4217          */
4218         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4219         while (!list_empty(&lun->lun_cmd_list)) {
4220                 cmd = list_first_entry(&lun->lun_cmd_list,
4221                        struct se_cmd, se_lun_node);
4222                 list_del(&cmd->se_lun_node);
4223
4224                 atomic_set(&cmd->transport_lun_active, 0);
4225                 /*
4226                  * This will notify iscsi_target_transport.c:
4227                  * transport_cmd_check_stop() that a LUN shutdown is in
4228                  * progress for the iscsi_cmd_t.
4229                  */
4230                 spin_lock(&cmd->t_state_lock);
4231                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4232                         "_lun_stop for  ITT: 0x%08x\n",
4233                         cmd->se_lun->unpacked_lun,
4234                         cmd->se_tfo->get_task_tag(cmd));
4235                 atomic_set(&cmd->transport_lun_stop, 1);
4236                 spin_unlock(&cmd->t_state_lock);
4237
4238                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4239
4240                 if (!cmd->se_lun) {
4241                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4242                                 cmd->se_tfo->get_task_tag(cmd),
4243                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4244                         BUG();
4245                 }
4246                 /*
4247                  * If the Storage engine still owns the iscsi_cmd_t, determine
4248                  * and/or stop its context.
4249                  */
4250                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4251                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4252                         cmd->se_tfo->get_task_tag(cmd));
4253
4254                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4255                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4256                         continue;
4257                 }
4258
4259                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4260                         "_wait_for_tasks(): SUCCESS\n",
4261                         cmd->se_lun->unpacked_lun,
4262                         cmd->se_tfo->get_task_tag(cmd));
4263
4264                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4265                 if (!atomic_read(&cmd->transport_dev_active)) {
4266                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4267                         goto check_cond;
4268                 }
4269                 atomic_set(&cmd->transport_dev_active, 0);
4270                 transport_all_task_dev_remove_state(cmd);
4271                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4272
4273                 transport_free_dev_tasks(cmd);
4274                 /*
4275                  * The Storage engine stopped this struct se_cmd before it was
4276                  * send to the fabric frontend for delivery back to the
4277                  * Initiator Node.  Return this SCSI CDB back with an
4278                  * CHECK_CONDITION status.
4279                  */
4280 check_cond:
4281                 transport_send_check_condition_and_sense(cmd,
4282                                 TCM_NON_EXISTENT_LUN, 0);
4283                 /*
4284                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4285                  * be released, notify the waiting thread now that LU has
4286                  * finished accessing it.
4287                  */
4288                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4289                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4290                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4291                                 " struct se_cmd: %p ITT: 0x%08x\n",
4292                                 lun->unpacked_lun,
4293                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4294
4295                         spin_unlock_irqrestore(&cmd->t_state_lock,
4296                                         cmd_flags);
4297                         transport_cmd_check_stop(cmd, 1, 0);
4298                         complete(&cmd->transport_lun_fe_stop_comp);
4299                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4300                         continue;
4301                 }
4302                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4303                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4304
4305                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4306                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4307         }
4308         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4309 }
4310
4311 static int transport_clear_lun_thread(void *p)
4312 {
4313         struct se_lun *lun = (struct se_lun *)p;
4314
4315         __transport_clear_lun_from_sessions(lun);
4316         complete(&lun->lun_shutdown_comp);
4317
4318         return 0;
4319 }
4320
4321 int transport_clear_lun_from_sessions(struct se_lun *lun)
4322 {
4323         struct task_struct *kt;
4324
4325         kt = kthread_run(transport_clear_lun_thread, lun,
4326                         "tcm_cl_%u", lun->unpacked_lun);
4327         if (IS_ERR(kt)) {
4328                 pr_err("Unable to start clear_lun thread\n");
4329                 return PTR_ERR(kt);
4330         }
4331         wait_for_completion(&lun->lun_shutdown_comp);
4332
4333         return 0;
4334 }
4335
4336 /**
4337  * transport_wait_for_tasks - wait for completion to occur
4338  * @cmd:        command to wait
4339  *
4340  * Called from frontend fabric context to wait for storage engine
4341  * to pause and/or release frontend generated struct se_cmd.
4342  */
4343 void transport_wait_for_tasks(struct se_cmd *cmd)
4344 {
4345         unsigned long flags;
4346
4347         spin_lock_irqsave(&cmd->t_state_lock, flags);
4348         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4349                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4350                 return;
4351         }
4352         /*
4353          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4354          * has been set in transport_set_supported_SAM_opcode().
4355          */
4356         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4357                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4358                 return;
4359         }
4360         /*
4361          * If we are already stopped due to an external event (ie: LUN shutdown)
4362          * sleep until the connection can have the passed struct se_cmd back.
4363          * The cmd->transport_lun_stopped_sem will be upped by
4364          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4365          * has completed its operation on the struct se_cmd.
4366          */
4367         if (atomic_read(&cmd->transport_lun_stop)) {
4368
4369                 pr_debug("wait_for_tasks: Stopping"
4370                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4371                         "_stop_comp); for ITT: 0x%08x\n",
4372                         cmd->se_tfo->get_task_tag(cmd));
4373                 /*
4374                  * There is a special case for WRITES where a FE exception +
4375                  * LUN shutdown means ConfigFS context is still sleeping on
4376                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4377                  * We go ahead and up transport_lun_stop_comp just to be sure
4378                  * here.
4379                  */
4380                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4381                 complete(&cmd->transport_lun_stop_comp);
4382                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4383                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4384
4385                 transport_all_task_dev_remove_state(cmd);
4386                 /*
4387                  * At this point, the frontend who was the originator of this
4388                  * struct se_cmd, now owns the structure and can be released through
4389                  * normal means below.
4390                  */
4391                 pr_debug("wait_for_tasks: Stopped"
4392                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4393                         "stop_comp); for ITT: 0x%08x\n",
4394                         cmd->se_tfo->get_task_tag(cmd));
4395
4396                 atomic_set(&cmd->transport_lun_stop, 0);
4397         }
4398         if (!atomic_read(&cmd->t_transport_active) ||
4399              atomic_read(&cmd->t_transport_aborted)) {
4400                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4401                 return;
4402         }
4403
4404         atomic_set(&cmd->t_transport_stop, 1);
4405
4406         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4407                 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4408                 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4409                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4410                 cmd->deferred_t_state);
4411
4412         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4413
4414         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4415
4416         wait_for_completion(&cmd->t_transport_stop_comp);
4417
4418         spin_lock_irqsave(&cmd->t_state_lock, flags);
4419         atomic_set(&cmd->t_transport_active, 0);
4420         atomic_set(&cmd->t_transport_stop, 0);
4421
4422         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4423                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4424                 cmd->se_tfo->get_task_tag(cmd));
4425
4426         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4427 }
4428 EXPORT_SYMBOL(transport_wait_for_tasks);
4429
4430 static int transport_get_sense_codes(
4431         struct se_cmd *cmd,
4432         u8 *asc,
4433         u8 *ascq)
4434 {
4435         *asc = cmd->scsi_asc;
4436         *ascq = cmd->scsi_ascq;
4437
4438         return 0;
4439 }
4440
4441 static int transport_set_sense_codes(
4442         struct se_cmd *cmd,
4443         u8 asc,
4444         u8 ascq)
4445 {
4446         cmd->scsi_asc = asc;
4447         cmd->scsi_ascq = ascq;
4448
4449         return 0;
4450 }
4451
4452 int transport_send_check_condition_and_sense(
4453         struct se_cmd *cmd,
4454         u8 reason,
4455         int from_transport)
4456 {
4457         unsigned char *buffer = cmd->sense_buffer;
4458         unsigned long flags;
4459         int offset;
4460         u8 asc = 0, ascq = 0;
4461
4462         spin_lock_irqsave(&cmd->t_state_lock, flags);
4463         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4464                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4465                 return 0;
4466         }
4467         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4468         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4469
4470         if (!reason && from_transport)
4471                 goto after_reason;
4472
4473         if (!from_transport)
4474                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4475         /*
4476          * Data Segment and SenseLength of the fabric response PDU.
4477          *
4478          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4479          * from include/scsi/scsi_cmnd.h
4480          */
4481         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4482                                 TRANSPORT_SENSE_BUFFER);
4483         /*
4484          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4485          * SENSE KEY values from include/scsi/scsi.h
4486          */
4487         switch (reason) {
4488         case TCM_NON_EXISTENT_LUN:
4489                 /* CURRENT ERROR */
4490                 buffer[offset] = 0x70;
4491                 /* ILLEGAL REQUEST */
4492                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4493                 /* LOGICAL UNIT NOT SUPPORTED */
4494                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4495                 break;
4496         case TCM_UNSUPPORTED_SCSI_OPCODE:
4497         case TCM_SECTOR_COUNT_TOO_MANY:
4498                 /* CURRENT ERROR */
4499                 buffer[offset] = 0x70;
4500                 /* ILLEGAL REQUEST */
4501                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4502                 /* INVALID COMMAND OPERATION CODE */
4503                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4504                 break;
4505         case TCM_UNKNOWN_MODE_PAGE:
4506                 /* CURRENT ERROR */
4507                 buffer[offset] = 0x70;
4508                 /* ILLEGAL REQUEST */
4509                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4510                 /* INVALID FIELD IN CDB */
4511                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4512                 break;
4513         case TCM_CHECK_CONDITION_ABORT_CMD:
4514                 /* CURRENT ERROR */
4515                 buffer[offset] = 0x70;
4516                 /* ABORTED COMMAND */
4517                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4518                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4519                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4520                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4521                 break;
4522         case TCM_INCORRECT_AMOUNT_OF_DATA:
4523                 /* CURRENT ERROR */
4524                 buffer[offset] = 0x70;
4525                 /* ABORTED COMMAND */
4526                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4527                 /* WRITE ERROR */
4528                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4529                 /* NOT ENOUGH UNSOLICITED DATA */
4530                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4531                 break;
4532         case TCM_INVALID_CDB_FIELD:
4533                 /* CURRENT ERROR */
4534                 buffer[offset] = 0x70;
4535                 /* ABORTED COMMAND */
4536                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4537                 /* INVALID FIELD IN CDB */
4538                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4539                 break;
4540         case TCM_INVALID_PARAMETER_LIST:
4541                 /* CURRENT ERROR */
4542                 buffer[offset] = 0x70;
4543                 /* ABORTED COMMAND */
4544                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4545                 /* INVALID FIELD IN PARAMETER LIST */
4546                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4547                 break;
4548         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4549                 /* CURRENT ERROR */
4550                 buffer[offset] = 0x70;
4551                 /* ABORTED COMMAND */
4552                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4553                 /* WRITE ERROR */
4554                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4555                 /* UNEXPECTED_UNSOLICITED_DATA */
4556                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4557                 break;
4558         case TCM_SERVICE_CRC_ERROR:
4559                 /* CURRENT ERROR */
4560                 buffer[offset] = 0x70;
4561                 /* ABORTED COMMAND */
4562                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4563                 /* PROTOCOL SERVICE CRC ERROR */
4564                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4565                 /* N/A */
4566                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4567                 break;
4568         case TCM_SNACK_REJECTED:
4569                 /* CURRENT ERROR */
4570                 buffer[offset] = 0x70;
4571                 /* ABORTED COMMAND */
4572                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4573                 /* READ ERROR */
4574                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4575                 /* FAILED RETRANSMISSION REQUEST */
4576                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4577                 break;
4578         case TCM_WRITE_PROTECTED:
4579                 /* CURRENT ERROR */
4580                 buffer[offset] = 0x70;
4581                 /* DATA PROTECT */
4582                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4583                 /* WRITE PROTECTED */
4584                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4585                 break;
4586         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4587                 /* CURRENT ERROR */
4588                 buffer[offset] = 0x70;
4589                 /* UNIT ATTENTION */
4590                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4591                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4592                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4593                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4594                 break;
4595         case TCM_CHECK_CONDITION_NOT_READY:
4596                 /* CURRENT ERROR */
4597                 buffer[offset] = 0x70;
4598                 /* Not Ready */
4599                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4600                 transport_get_sense_codes(cmd, &asc, &ascq);
4601                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4602                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4603                 break;
4604         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4605         default:
4606                 /* CURRENT ERROR */
4607                 buffer[offset] = 0x70;
4608                 /* ILLEGAL REQUEST */
4609                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4610                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4611                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4612                 break;
4613         }
4614         /*
4615          * This code uses linux/include/scsi/scsi.h SAM status codes!
4616          */
4617         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4618         /*
4619          * Automatically padded, this value is encoded in the fabric's
4620          * data_length response PDU containing the SCSI defined sense data.
4621          */
4622         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4623
4624 after_reason:
4625         return cmd->se_tfo->queue_status(cmd);
4626 }
4627 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4628
4629 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4630 {
4631         int ret = 0;
4632
4633         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4634                 if (!send_status ||
4635                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4636                         return 1;
4637 #if 0
4638                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4639                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4640                         cmd->t_task_cdb[0],
4641                         cmd->se_tfo->get_task_tag(cmd));
4642 #endif
4643                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4644                 cmd->se_tfo->queue_status(cmd);
4645                 ret = 1;
4646         }
4647         return ret;
4648 }
4649 EXPORT_SYMBOL(transport_check_aborted_status);
4650
4651 void transport_send_task_abort(struct se_cmd *cmd)
4652 {
4653         unsigned long flags;
4654
4655         spin_lock_irqsave(&cmd->t_state_lock, flags);
4656         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4657                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4658                 return;
4659         }
4660         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4661
4662         /*
4663          * If there are still expected incoming fabric WRITEs, we wait
4664          * until until they have completed before sending a TASK_ABORTED
4665          * response.  This response with TASK_ABORTED status will be
4666          * queued back to fabric module by transport_check_aborted_status().
4667          */
4668         if (cmd->data_direction == DMA_TO_DEVICE) {
4669                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4670                         atomic_inc(&cmd->t_transport_aborted);
4671                         smp_mb__after_atomic_inc();
4672                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4673                         transport_new_cmd_failure(cmd);
4674                         return;
4675                 }
4676         }
4677         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4678 #if 0
4679         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4680                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4681                 cmd->se_tfo->get_task_tag(cmd));
4682 #endif
4683         cmd->se_tfo->queue_status(cmd);
4684 }
4685
4686 /*      transport_generic_do_tmr():
4687  *
4688  *
4689  */
4690 int transport_generic_do_tmr(struct se_cmd *cmd)
4691 {
4692         struct se_device *dev = cmd->se_dev;
4693         struct se_tmr_req *tmr = cmd->se_tmr_req;
4694         int ret;
4695
4696         switch (tmr->function) {
4697         case TMR_ABORT_TASK:
4698                 tmr->response = TMR_FUNCTION_REJECTED;
4699                 break;
4700         case TMR_ABORT_TASK_SET:
4701         case TMR_CLEAR_ACA:
4702         case TMR_CLEAR_TASK_SET:
4703                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4704                 break;
4705         case TMR_LUN_RESET:
4706                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4707                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4708                                          TMR_FUNCTION_REJECTED;
4709                 break;
4710         case TMR_TARGET_WARM_RESET:
4711                 tmr->response = TMR_FUNCTION_REJECTED;
4712                 break;
4713         case TMR_TARGET_COLD_RESET:
4714                 tmr->response = TMR_FUNCTION_REJECTED;
4715                 break;
4716         default:
4717                 pr_err("Uknown TMR function: 0x%02x.\n",
4718                                 tmr->function);
4719                 tmr->response = TMR_FUNCTION_REJECTED;
4720                 break;
4721         }
4722
4723         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4724         cmd->se_tfo->queue_tm_rsp(cmd);
4725
4726         transport_cmd_check_stop_to_fabric(cmd);
4727         return 0;
4728 }
4729
4730 /*      transport_processing_thread():
4731  *
4732  *
4733  */
4734 static int transport_processing_thread(void *param)
4735 {
4736         int ret;
4737         struct se_cmd *cmd;
4738         struct se_device *dev = (struct se_device *) param;
4739
4740         set_user_nice(current, -20);
4741
4742         while (!kthread_should_stop()) {
4743                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4744                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4745                                 kthread_should_stop());
4746                 if (ret < 0)
4747                         goto out;
4748
4749 get_cmd:
4750                 __transport_execute_tasks(dev);
4751
4752                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4753                 if (!cmd)
4754                         continue;
4755
4756                 switch (cmd->t_state) {
4757                 case TRANSPORT_NEW_CMD:
4758                         BUG();
4759                         break;
4760                 case TRANSPORT_NEW_CMD_MAP:
4761                         if (!cmd->se_tfo->new_cmd_map) {
4762                                 pr_err("cmd->se_tfo->new_cmd_map is"
4763                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4764                                 BUG();
4765                         }
4766                         ret = cmd->se_tfo->new_cmd_map(cmd);
4767                         if (ret < 0) {
4768                                 cmd->transport_error_status = ret;
4769                                 transport_generic_request_failure(cmd,
4770                                                 0, (cmd->data_direction !=
4771                                                     DMA_TO_DEVICE));
4772                                 break;
4773                         }
4774                         ret = transport_generic_new_cmd(cmd);
4775                         if (ret == -EAGAIN)
4776                                 break;
4777                         else if (ret < 0) {
4778                                 cmd->transport_error_status = ret;
4779                                 transport_generic_request_failure(cmd,
4780                                         0, (cmd->data_direction !=
4781                                          DMA_TO_DEVICE));
4782                         }
4783                         break;
4784                 case TRANSPORT_PROCESS_WRITE:
4785                         transport_generic_process_write(cmd);
4786                         break;
4787                 case TRANSPORT_COMPLETE_OK:
4788                         transport_generic_complete_ok(cmd);
4789                         break;
4790                 case TRANSPORT_REMOVE:
4791                         transport_put_cmd(cmd);
4792                         break;
4793                 case TRANSPORT_FREE_CMD_INTR:
4794                         transport_generic_free_cmd(cmd, 0);
4795                         break;
4796                 case TRANSPORT_PROCESS_TMR:
4797                         transport_generic_do_tmr(cmd);
4798                         break;
4799                 case TRANSPORT_COMPLETE_FAILURE:
4800                         transport_generic_request_failure(cmd, 1, 1);
4801                         break;
4802                 case TRANSPORT_COMPLETE_TIMEOUT:
4803                         transport_generic_request_timeout(cmd);
4804                         break;
4805                 case TRANSPORT_COMPLETE_QF_WP:
4806                         transport_write_pending_qf(cmd);
4807                         break;
4808                 case TRANSPORT_COMPLETE_QF_OK:
4809                         transport_complete_qf(cmd);
4810                         break;
4811                 default:
4812                         pr_err("Unknown t_state: %d deferred_t_state:"
4813                                 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
4814                                 " %u\n", cmd->t_state, cmd->deferred_t_state,
4815                                 cmd->se_tfo->get_task_tag(cmd),
4816                                 cmd->se_tfo->get_cmd_state(cmd),
4817                                 cmd->se_lun->unpacked_lun);
4818                         BUG();
4819                 }
4820
4821                 goto get_cmd;
4822         }
4823
4824 out:
4825         WARN_ON(!list_empty(&dev->state_task_list));
4826         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4827         dev->process_thread = NULL;
4828         return 0;
4829 }