target: Fix possible NULL pointer with __transport_execute_tasks
[linux-2.6.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_backend.h>
49 #include <target/target_core_fabric.h>
50 #include <target/target_core_configfs.h>
51
52 #include "target_core_internal.h"
53 #include "target_core_alua.h"
54 #include "target_core_pr.h"
55 #include "target_core_ua.h"
56
57 static int sub_api_initialized;
58
59 static struct workqueue_struct *target_completion_wq;
60 static struct kmem_cache *se_sess_cache;
61 struct kmem_cache *se_tmr_req_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74                 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void transport_generic_request_failure(struct se_cmd *);
81 static void target_complete_ok_work(struct work_struct *work);
82
83 int init_se_kmem_caches(void)
84 {
85         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
86                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
87                         0, NULL);
88         if (!se_tmr_req_cache) {
89                 pr_err("kmem_cache_create() for struct se_tmr_req"
90                                 " failed\n");
91                 goto out;
92         }
93         se_sess_cache = kmem_cache_create("se_sess_cache",
94                         sizeof(struct se_session), __alignof__(struct se_session),
95                         0, NULL);
96         if (!se_sess_cache) {
97                 pr_err("kmem_cache_create() for struct se_session"
98                                 " failed\n");
99                 goto out_free_tmr_req_cache;
100         }
101         se_ua_cache = kmem_cache_create("se_ua_cache",
102                         sizeof(struct se_ua), __alignof__(struct se_ua),
103                         0, NULL);
104         if (!se_ua_cache) {
105                 pr_err("kmem_cache_create() for struct se_ua failed\n");
106                 goto out_free_sess_cache;
107         }
108         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
109                         sizeof(struct t10_pr_registration),
110                         __alignof__(struct t10_pr_registration), 0, NULL);
111         if (!t10_pr_reg_cache) {
112                 pr_err("kmem_cache_create() for struct t10_pr_registration"
113                                 " failed\n");
114                 goto out_free_ua_cache;
115         }
116         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
117                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
118                         0, NULL);
119         if (!t10_alua_lu_gp_cache) {
120                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
121                                 " failed\n");
122                 goto out_free_pr_reg_cache;
123         }
124         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
125                         sizeof(struct t10_alua_lu_gp_member),
126                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
127         if (!t10_alua_lu_gp_mem_cache) {
128                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
129                                 "cache failed\n");
130                 goto out_free_lu_gp_cache;
131         }
132         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
133                         sizeof(struct t10_alua_tg_pt_gp),
134                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
135         if (!t10_alua_tg_pt_gp_cache) {
136                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137                                 "cache failed\n");
138                 goto out_free_lu_gp_mem_cache;
139         }
140         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
141                         "t10_alua_tg_pt_gp_mem_cache",
142                         sizeof(struct t10_alua_tg_pt_gp_member),
143                         __alignof__(struct t10_alua_tg_pt_gp_member),
144                         0, NULL);
145         if (!t10_alua_tg_pt_gp_mem_cache) {
146                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147                                 "mem_t failed\n");
148                 goto out_free_tg_pt_gp_cache;
149         }
150
151         target_completion_wq = alloc_workqueue("target_completion",
152                                                WQ_MEM_RECLAIM, 0);
153         if (!target_completion_wq)
154                 goto out_free_tg_pt_gp_mem_cache;
155
156         return 0;
157
158 out_free_tg_pt_gp_mem_cache:
159         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
160 out_free_tg_pt_gp_cache:
161         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
162 out_free_lu_gp_mem_cache:
163         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 out_free_lu_gp_cache:
165         kmem_cache_destroy(t10_alua_lu_gp_cache);
166 out_free_pr_reg_cache:
167         kmem_cache_destroy(t10_pr_reg_cache);
168 out_free_ua_cache:
169         kmem_cache_destroy(se_ua_cache);
170 out_free_sess_cache:
171         kmem_cache_destroy(se_sess_cache);
172 out_free_tmr_req_cache:
173         kmem_cache_destroy(se_tmr_req_cache);
174 out:
175         return -ENOMEM;
176 }
177
178 void release_se_kmem_caches(void)
179 {
180         destroy_workqueue(target_completion_wq);
181         kmem_cache_destroy(se_tmr_req_cache);
182         kmem_cache_destroy(se_sess_cache);
183         kmem_cache_destroy(se_ua_cache);
184         kmem_cache_destroy(t10_pr_reg_cache);
185         kmem_cache_destroy(t10_alua_lu_gp_cache);
186         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
187         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
188         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
189 }
190
191 /* This code ensures unique mib indexes are handed out. */
192 static DEFINE_SPINLOCK(scsi_mib_index_lock);
193 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
194
195 /*
196  * Allocate a new row index for the entry type specified
197  */
198 u32 scsi_get_new_index(scsi_index_t type)
199 {
200         u32 new_index;
201
202         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
203
204         spin_lock(&scsi_mib_index_lock);
205         new_index = ++scsi_mib_index[type];
206         spin_unlock(&scsi_mib_index_lock);
207
208         return new_index;
209 }
210
211 static void transport_init_queue_obj(struct se_queue_obj *qobj)
212 {
213         atomic_set(&qobj->queue_cnt, 0);
214         INIT_LIST_HEAD(&qobj->qobj_list);
215         init_waitqueue_head(&qobj->thread_wq);
216         spin_lock_init(&qobj->cmd_queue_lock);
217 }
218
219 void transport_subsystem_check_init(void)
220 {
221         int ret;
222
223         if (sub_api_initialized)
224                 return;
225
226         ret = request_module("target_core_iblock");
227         if (ret != 0)
228                 pr_err("Unable to load target_core_iblock\n");
229
230         ret = request_module("target_core_file");
231         if (ret != 0)
232                 pr_err("Unable to load target_core_file\n");
233
234         ret = request_module("target_core_pscsi");
235         if (ret != 0)
236                 pr_err("Unable to load target_core_pscsi\n");
237
238         ret = request_module("target_core_stgt");
239         if (ret != 0)
240                 pr_err("Unable to load target_core_stgt\n");
241
242         sub_api_initialized = 1;
243         return;
244 }
245
246 struct se_session *transport_init_session(void)
247 {
248         struct se_session *se_sess;
249
250         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
251         if (!se_sess) {
252                 pr_err("Unable to allocate struct se_session from"
253                                 " se_sess_cache\n");
254                 return ERR_PTR(-ENOMEM);
255         }
256         INIT_LIST_HEAD(&se_sess->sess_list);
257         INIT_LIST_HEAD(&se_sess->sess_acl_list);
258         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
259         INIT_LIST_HEAD(&se_sess->sess_wait_list);
260         spin_lock_init(&se_sess->sess_cmd_lock);
261
262         return se_sess;
263 }
264 EXPORT_SYMBOL(transport_init_session);
265
266 /*
267  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
268  */
269 void __transport_register_session(
270         struct se_portal_group *se_tpg,
271         struct se_node_acl *se_nacl,
272         struct se_session *se_sess,
273         void *fabric_sess_ptr)
274 {
275         unsigned char buf[PR_REG_ISID_LEN];
276
277         se_sess->se_tpg = se_tpg;
278         se_sess->fabric_sess_ptr = fabric_sess_ptr;
279         /*
280          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
281          *
282          * Only set for struct se_session's that will actually be moving I/O.
283          * eg: *NOT* discovery sessions.
284          */
285         if (se_nacl) {
286                 /*
287                  * If the fabric module supports an ISID based TransportID,
288                  * save this value in binary from the fabric I_T Nexus now.
289                  */
290                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
291                         memset(&buf[0], 0, PR_REG_ISID_LEN);
292                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
293                                         &buf[0], PR_REG_ISID_LEN);
294                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
295                 }
296                 spin_lock_irq(&se_nacl->nacl_sess_lock);
297                 /*
298                  * The se_nacl->nacl_sess pointer will be set to the
299                  * last active I_T Nexus for each struct se_node_acl.
300                  */
301                 se_nacl->nacl_sess = se_sess;
302
303                 list_add_tail(&se_sess->sess_acl_list,
304                               &se_nacl->acl_sess_list);
305                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
306         }
307         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
308
309         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
310                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
311 }
312 EXPORT_SYMBOL(__transport_register_session);
313
314 void transport_register_session(
315         struct se_portal_group *se_tpg,
316         struct se_node_acl *se_nacl,
317         struct se_session *se_sess,
318         void *fabric_sess_ptr)
319 {
320         spin_lock_bh(&se_tpg->session_lock);
321         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
322         spin_unlock_bh(&se_tpg->session_lock);
323 }
324 EXPORT_SYMBOL(transport_register_session);
325
326 void transport_deregister_session_configfs(struct se_session *se_sess)
327 {
328         struct se_node_acl *se_nacl;
329         unsigned long flags;
330         /*
331          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
332          */
333         se_nacl = se_sess->se_node_acl;
334         if (se_nacl) {
335                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
336                 list_del(&se_sess->sess_acl_list);
337                 /*
338                  * If the session list is empty, then clear the pointer.
339                  * Otherwise, set the struct se_session pointer from the tail
340                  * element of the per struct se_node_acl active session list.
341                  */
342                 if (list_empty(&se_nacl->acl_sess_list))
343                         se_nacl->nacl_sess = NULL;
344                 else {
345                         se_nacl->nacl_sess = container_of(
346                                         se_nacl->acl_sess_list.prev,
347                                         struct se_session, sess_acl_list);
348                 }
349                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
350         }
351 }
352 EXPORT_SYMBOL(transport_deregister_session_configfs);
353
354 void transport_free_session(struct se_session *se_sess)
355 {
356         kmem_cache_free(se_sess_cache, se_sess);
357 }
358 EXPORT_SYMBOL(transport_free_session);
359
360 void transport_deregister_session(struct se_session *se_sess)
361 {
362         struct se_portal_group *se_tpg = se_sess->se_tpg;
363         struct se_node_acl *se_nacl;
364         unsigned long flags;
365
366         if (!se_tpg) {
367                 transport_free_session(se_sess);
368                 return;
369         }
370
371         spin_lock_irqsave(&se_tpg->session_lock, flags);
372         list_del(&se_sess->sess_list);
373         se_sess->se_tpg = NULL;
374         se_sess->fabric_sess_ptr = NULL;
375         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
376
377         /*
378          * Determine if we need to do extra work for this initiator node's
379          * struct se_node_acl if it had been previously dynamically generated.
380          */
381         se_nacl = se_sess->se_node_acl;
382         if (se_nacl) {
383                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384                 if (se_nacl->dynamic_node_acl) {
385                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
386                                         se_tpg)) {
387                                 list_del(&se_nacl->acl_list);
388                                 se_tpg->num_node_acls--;
389                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
390
391                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
392                                 core_free_device_list_for_node(se_nacl, se_tpg);
393                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
394                                                 se_nacl);
395                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
396                         }
397                 }
398                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
399         }
400
401         transport_free_session(se_sess);
402
403         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
404                 se_tpg->se_tpg_tfo->get_fabric_name());
405 }
406 EXPORT_SYMBOL(transport_deregister_session);
407
408 /*
409  * Called with cmd->t_state_lock held.
410  */
411 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
412 {
413         struct se_device *dev = cmd->se_dev;
414         struct se_task *task;
415         unsigned long flags;
416
417         if (!dev)
418                 return;
419
420         list_for_each_entry(task, &cmd->t_task_list, t_list) {
421                 if (task->task_flags & TF_ACTIVE)
422                         continue;
423
424                 spin_lock_irqsave(&dev->execute_task_lock, flags);
425                 if (task->t_state_active) {
426                         pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
427                                 cmd->se_tfo->get_task_tag(cmd), dev, task);
428
429                         list_del(&task->t_state_list);
430                         atomic_dec(&cmd->t_task_cdbs_ex_left);
431                         task->t_state_active = false;
432                 }
433                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
434         }
435
436 }
437
438 /*      transport_cmd_check_stop():
439  *
440  *      'transport_off = 1' determines if t_transport_active should be cleared.
441  *      'transport_off = 2' determines if task_dev_state should be removed.
442  *
443  *      A non-zero u8 t_state sets cmd->t_state.
444  *      Returns 1 when command is stopped, else 0.
445  */
446 static int transport_cmd_check_stop(
447         struct se_cmd *cmd,
448         int transport_off,
449         u8 t_state)
450 {
451         unsigned long flags;
452
453         spin_lock_irqsave(&cmd->t_state_lock, flags);
454         /*
455          * Determine if IOCTL context caller in requesting the stopping of this
456          * command for LUN shutdown purposes.
457          */
458         if (atomic_read(&cmd->transport_lun_stop)) {
459                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
460                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
461                         cmd->se_tfo->get_task_tag(cmd));
462
463                 atomic_set(&cmd->t_transport_active, 0);
464                 if (transport_off == 2)
465                         transport_all_task_dev_remove_state(cmd);
466                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
467
468                 complete(&cmd->transport_lun_stop_comp);
469                 return 1;
470         }
471         /*
472          * Determine if frontend context caller is requesting the stopping of
473          * this command for frontend exceptions.
474          */
475         if (atomic_read(&cmd->t_transport_stop)) {
476                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
477                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
478                         cmd->se_tfo->get_task_tag(cmd));
479
480                 if (transport_off == 2)
481                         transport_all_task_dev_remove_state(cmd);
482
483                 /*
484                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
485                  * to FE.
486                  */
487                 if (transport_off == 2)
488                         cmd->se_lun = NULL;
489                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
490
491                 complete(&cmd->t_transport_stop_comp);
492                 return 1;
493         }
494         if (transport_off) {
495                 atomic_set(&cmd->t_transport_active, 0);
496                 if (transport_off == 2) {
497                         transport_all_task_dev_remove_state(cmd);
498                         /*
499                          * Clear struct se_cmd->se_lun before the transport_off == 2
500                          * handoff to fabric module.
501                          */
502                         cmd->se_lun = NULL;
503                         /*
504                          * Some fabric modules like tcm_loop can release
505                          * their internally allocated I/O reference now and
506                          * struct se_cmd now.
507                          *
508                          * Fabric modules are expected to return '1' here if the
509                          * se_cmd being passed is released at this point,
510                          * or zero if not being released.
511                          */
512                         if (cmd->se_tfo->check_stop_free != NULL) {
513                                 spin_unlock_irqrestore(
514                                         &cmd->t_state_lock, flags);
515
516                                 return cmd->se_tfo->check_stop_free(cmd);
517                         }
518                 }
519                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520
521                 return 0;
522         } else if (t_state)
523                 cmd->t_state = t_state;
524         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525
526         return 0;
527 }
528
529 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
530 {
531         return transport_cmd_check_stop(cmd, 2, 0);
532 }
533
534 static void transport_lun_remove_cmd(struct se_cmd *cmd)
535 {
536         struct se_lun *lun = cmd->se_lun;
537         unsigned long flags;
538
539         if (!lun)
540                 return;
541
542         spin_lock_irqsave(&cmd->t_state_lock, flags);
543         if (!atomic_read(&cmd->transport_dev_active)) {
544                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545                 goto check_lun;
546         }
547         atomic_set(&cmd->transport_dev_active, 0);
548         transport_all_task_dev_remove_state(cmd);
549         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550
551
552 check_lun:
553         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
554         if (atomic_read(&cmd->transport_lun_active)) {
555                 list_del(&cmd->se_lun_node);
556                 atomic_set(&cmd->transport_lun_active, 0);
557 #if 0
558                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
559                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
560 #endif
561         }
562         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
563 }
564
565 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
566 {
567         if (!cmd->se_tmr_req)
568                 transport_lun_remove_cmd(cmd);
569
570         if (transport_cmd_check_stop_to_fabric(cmd))
571                 return;
572         if (remove) {
573                 transport_remove_cmd_from_queue(cmd);
574                 transport_put_cmd(cmd);
575         }
576 }
577
578 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
579                 bool at_head)
580 {
581         struct se_device *dev = cmd->se_dev;
582         struct se_queue_obj *qobj = &dev->dev_queue_obj;
583         unsigned long flags;
584
585         if (t_state) {
586                 spin_lock_irqsave(&cmd->t_state_lock, flags);
587                 cmd->t_state = t_state;
588                 atomic_set(&cmd->t_transport_active, 1);
589                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
590         }
591
592         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
593
594         /* If the cmd is already on the list, remove it before we add it */
595         if (!list_empty(&cmd->se_queue_node))
596                 list_del(&cmd->se_queue_node);
597         else
598                 atomic_inc(&qobj->queue_cnt);
599
600         if (at_head)
601                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
602         else
603                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
604         atomic_set(&cmd->t_transport_queue_active, 1);
605         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
606
607         wake_up_interruptible(&qobj->thread_wq);
608 }
609
610 static struct se_cmd *
611 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
612 {
613         struct se_cmd *cmd;
614         unsigned long flags;
615
616         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
617         if (list_empty(&qobj->qobj_list)) {
618                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619                 return NULL;
620         }
621         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
622
623         atomic_set(&cmd->t_transport_queue_active, 0);
624
625         list_del_init(&cmd->se_queue_node);
626         atomic_dec(&qobj->queue_cnt);
627         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
628
629         return cmd;
630 }
631
632 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
633 {
634         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
635         unsigned long flags;
636
637         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
638         if (!atomic_read(&cmd->t_transport_queue_active)) {
639                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640                 return;
641         }
642         atomic_set(&cmd->t_transport_queue_active, 0);
643         atomic_dec(&qobj->queue_cnt);
644         list_del_init(&cmd->se_queue_node);
645         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
646
647         if (atomic_read(&cmd->t_transport_queue_active)) {
648                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
649                         cmd->se_tfo->get_task_tag(cmd),
650                         atomic_read(&cmd->t_transport_queue_active));
651         }
652 }
653
654 /*
655  * Completion function used by TCM subsystem plugins (such as FILEIO)
656  * for queueing up response from struct se_subsystem_api->do_task()
657  */
658 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
659 {
660         struct se_task *task = list_entry(cmd->t_task_list.next,
661                                 struct se_task, t_list);
662
663         if (good) {
664                 cmd->scsi_status = SAM_STAT_GOOD;
665                 task->task_scsi_status = GOOD;
666         } else {
667                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
668                 task->task_se_cmd->scsi_sense_reason =
669                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
670
671         }
672
673         transport_complete_task(task, good);
674 }
675 EXPORT_SYMBOL(transport_complete_sync_cache);
676
677 static void target_complete_failure_work(struct work_struct *work)
678 {
679         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
680
681         transport_generic_request_failure(cmd);
682 }
683
684 /*      transport_complete_task():
685  *
686  *      Called from interrupt and non interrupt context depending
687  *      on the transport plugin.
688  */
689 void transport_complete_task(struct se_task *task, int success)
690 {
691         struct se_cmd *cmd = task->task_se_cmd;
692         struct se_device *dev = cmd->se_dev;
693         unsigned long flags;
694 #if 0
695         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
696                         cmd->t_task_cdb[0], dev);
697 #endif
698         if (dev)
699                 atomic_inc(&dev->depth_left);
700
701         spin_lock_irqsave(&cmd->t_state_lock, flags);
702         task->task_flags &= ~TF_ACTIVE;
703
704         /*
705          * See if any sense data exists, if so set the TASK_SENSE flag.
706          * Also check for any other post completion work that needs to be
707          * done by the plugins.
708          */
709         if (dev && dev->transport->transport_complete) {
710                 if (dev->transport->transport_complete(task) != 0) {
711                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
712                         task->task_flags |= TF_HAS_SENSE;
713                         success = 1;
714                 }
715         }
716
717         /*
718          * See if we are waiting for outstanding struct se_task
719          * to complete for an exception condition
720          */
721         if (task->task_flags & TF_REQUEST_STOP) {
722                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
723                 complete(&task->task_stop_comp);
724                 return;
725         }
726
727         if (!success)
728                 cmd->t_tasks_failed = 1;
729
730         /*
731          * Decrement the outstanding t_task_cdbs_left count.  The last
732          * struct se_task from struct se_cmd will complete itself into the
733          * device queue depending upon int success.
734          */
735         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
736                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
737                 return;
738         }
739
740         if (cmd->t_tasks_failed) {
741                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
742                 INIT_WORK(&cmd->work, target_complete_failure_work);
743         } else {
744                 atomic_set(&cmd->t_transport_complete, 1);
745                 INIT_WORK(&cmd->work, target_complete_ok_work);
746         }
747
748         cmd->t_state = TRANSPORT_COMPLETE;
749         atomic_set(&cmd->t_transport_active, 1);
750         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
751
752         queue_work(target_completion_wq, &cmd->work);
753 }
754 EXPORT_SYMBOL(transport_complete_task);
755
756 /*
757  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
758  * struct se_task list are ready to be added to the active execution list
759  * struct se_device
760
761  * Called with se_dev_t->execute_task_lock called.
762  */
763 static inline int transport_add_task_check_sam_attr(
764         struct se_task *task,
765         struct se_task *task_prev,
766         struct se_device *dev)
767 {
768         /*
769          * No SAM Task attribute emulation enabled, add to tail of
770          * execution queue
771          */
772         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
773                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
774                 return 0;
775         }
776         /*
777          * HEAD_OF_QUEUE attribute for received CDB, which means
778          * the first task that is associated with a struct se_cmd goes to
779          * head of the struct se_device->execute_task_list, and task_prev
780          * after that for each subsequent task
781          */
782         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
783                 list_add(&task->t_execute_list,
784                                 (task_prev != NULL) ?
785                                 &task_prev->t_execute_list :
786                                 &dev->execute_task_list);
787
788                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
789                                 " in execution queue\n",
790                                 task->task_se_cmd->t_task_cdb[0]);
791                 return 1;
792         }
793         /*
794          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
795          * transitioned from Dermant -> Active state, and are added to the end
796          * of the struct se_device->execute_task_list
797          */
798         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
799         return 0;
800 }
801
802 /*      __transport_add_task_to_execute_queue():
803  *
804  *      Called with se_dev_t->execute_task_lock called.
805  */
806 static void __transport_add_task_to_execute_queue(
807         struct se_task *task,
808         struct se_task *task_prev,
809         struct se_device *dev)
810 {
811         int head_of_queue;
812
813         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
814         atomic_inc(&dev->execute_tasks);
815
816         if (task->t_state_active)
817                 return;
818         /*
819          * Determine if this task needs to go to HEAD_OF_QUEUE for the
820          * state list as well.  Running with SAM Task Attribute emulation
821          * will always return head_of_queue == 0 here
822          */
823         if (head_of_queue)
824                 list_add(&task->t_state_list, (task_prev) ?
825                                 &task_prev->t_state_list :
826                                 &dev->state_task_list);
827         else
828                 list_add_tail(&task->t_state_list, &dev->state_task_list);
829
830         task->t_state_active = true;
831
832         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
833                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
834                 task, dev);
835 }
836
837 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
838 {
839         struct se_device *dev = cmd->se_dev;
840         struct se_task *task;
841         unsigned long flags;
842
843         spin_lock_irqsave(&cmd->t_state_lock, flags);
844         list_for_each_entry(task, &cmd->t_task_list, t_list) {
845                 spin_lock(&dev->execute_task_lock);
846                 if (!task->t_state_active) {
847                         list_add_tail(&task->t_state_list,
848                                       &dev->state_task_list);
849                         task->t_state_active = true;
850
851                         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
852                                 task->task_se_cmd->se_tfo->get_task_tag(
853                                 task->task_se_cmd), task, dev);
854                 }
855                 spin_unlock(&dev->execute_task_lock);
856         }
857         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
858 }
859
860 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
861 {
862         struct se_device *dev = cmd->se_dev;
863         struct se_task *task, *task_prev = NULL;
864         unsigned long flags;
865
866         spin_lock_irqsave(&dev->execute_task_lock, flags);
867         list_for_each_entry(task, &cmd->t_task_list, t_list) {
868                 if (!list_empty(&task->t_execute_list))
869                         continue;
870                 /*
871                  * __transport_add_task_to_execute_queue() handles the
872                  * SAM Task Attribute emulation if enabled
873                  */
874                 __transport_add_task_to_execute_queue(task, task_prev, dev);
875                 task_prev = task;
876         }
877         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
878 }
879
880 void __transport_remove_task_from_execute_queue(struct se_task *task,
881                 struct se_device *dev)
882 {
883         list_del_init(&task->t_execute_list);
884         atomic_dec(&dev->execute_tasks);
885 }
886
887 static void transport_remove_task_from_execute_queue(
888         struct se_task *task,
889         struct se_device *dev)
890 {
891         unsigned long flags;
892
893         if (WARN_ON(list_empty(&task->t_execute_list)))
894                 return;
895
896         spin_lock_irqsave(&dev->execute_task_lock, flags);
897         __transport_remove_task_from_execute_queue(task, dev);
898         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
899 }
900
901 /*
902  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
903  */
904
905 static void target_qf_do_work(struct work_struct *work)
906 {
907         struct se_device *dev = container_of(work, struct se_device,
908                                         qf_work_queue);
909         LIST_HEAD(qf_cmd_list);
910         struct se_cmd *cmd, *cmd_tmp;
911
912         spin_lock_irq(&dev->qf_cmd_lock);
913         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
914         spin_unlock_irq(&dev->qf_cmd_lock);
915
916         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
917                 list_del(&cmd->se_qf_node);
918                 atomic_dec(&dev->dev_qf_count);
919                 smp_mb__after_atomic_dec();
920
921                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
922                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
923                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
924                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
925                         : "UNKNOWN");
926
927                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
928         }
929 }
930
931 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
932 {
933         switch (cmd->data_direction) {
934         case DMA_NONE:
935                 return "NONE";
936         case DMA_FROM_DEVICE:
937                 return "READ";
938         case DMA_TO_DEVICE:
939                 return "WRITE";
940         case DMA_BIDIRECTIONAL:
941                 return "BIDI";
942         default:
943                 break;
944         }
945
946         return "UNKNOWN";
947 }
948
949 void transport_dump_dev_state(
950         struct se_device *dev,
951         char *b,
952         int *bl)
953 {
954         *bl += sprintf(b + *bl, "Status: ");
955         switch (dev->dev_status) {
956         case TRANSPORT_DEVICE_ACTIVATED:
957                 *bl += sprintf(b + *bl, "ACTIVATED");
958                 break;
959         case TRANSPORT_DEVICE_DEACTIVATED:
960                 *bl += sprintf(b + *bl, "DEACTIVATED");
961                 break;
962         case TRANSPORT_DEVICE_SHUTDOWN:
963                 *bl += sprintf(b + *bl, "SHUTDOWN");
964                 break;
965         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
966         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
967                 *bl += sprintf(b + *bl, "OFFLINE");
968                 break;
969         default:
970                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
971                 break;
972         }
973
974         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
975                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
976                 dev->queue_depth);
977         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
978                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
979         *bl += sprintf(b + *bl, "        ");
980 }
981
982 void transport_dump_vpd_proto_id(
983         struct t10_vpd *vpd,
984         unsigned char *p_buf,
985         int p_buf_len)
986 {
987         unsigned char buf[VPD_TMP_BUF_SIZE];
988         int len;
989
990         memset(buf, 0, VPD_TMP_BUF_SIZE);
991         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
992
993         switch (vpd->protocol_identifier) {
994         case 0x00:
995                 sprintf(buf+len, "Fibre Channel\n");
996                 break;
997         case 0x10:
998                 sprintf(buf+len, "Parallel SCSI\n");
999                 break;
1000         case 0x20:
1001                 sprintf(buf+len, "SSA\n");
1002                 break;
1003         case 0x30:
1004                 sprintf(buf+len, "IEEE 1394\n");
1005                 break;
1006         case 0x40:
1007                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1008                                 " Protocol\n");
1009                 break;
1010         case 0x50:
1011                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1012                 break;
1013         case 0x60:
1014                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1015                 break;
1016         case 0x70:
1017                 sprintf(buf+len, "Automation/Drive Interface Transport"
1018                                 " Protocol\n");
1019                 break;
1020         case 0x80:
1021                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1022                 break;
1023         default:
1024                 sprintf(buf+len, "Unknown 0x%02x\n",
1025                                 vpd->protocol_identifier);
1026                 break;
1027         }
1028
1029         if (p_buf)
1030                 strncpy(p_buf, buf, p_buf_len);
1031         else
1032                 pr_debug("%s", buf);
1033 }
1034
1035 void
1036 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1037 {
1038         /*
1039          * Check if the Protocol Identifier Valid (PIV) bit is set..
1040          *
1041          * from spc3r23.pdf section 7.5.1
1042          */
1043          if (page_83[1] & 0x80) {
1044                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1045                 vpd->protocol_identifier_set = 1;
1046                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1047         }
1048 }
1049 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1050
1051 int transport_dump_vpd_assoc(
1052         struct t10_vpd *vpd,
1053         unsigned char *p_buf,
1054         int p_buf_len)
1055 {
1056         unsigned char buf[VPD_TMP_BUF_SIZE];
1057         int ret = 0;
1058         int len;
1059
1060         memset(buf, 0, VPD_TMP_BUF_SIZE);
1061         len = sprintf(buf, "T10 VPD Identifier Association: ");
1062
1063         switch (vpd->association) {
1064         case 0x00:
1065                 sprintf(buf+len, "addressed logical unit\n");
1066                 break;
1067         case 0x10:
1068                 sprintf(buf+len, "target port\n");
1069                 break;
1070         case 0x20:
1071                 sprintf(buf+len, "SCSI target device\n");
1072                 break;
1073         default:
1074                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1075                 ret = -EINVAL;
1076                 break;
1077         }
1078
1079         if (p_buf)
1080                 strncpy(p_buf, buf, p_buf_len);
1081         else
1082                 pr_debug("%s", buf);
1083
1084         return ret;
1085 }
1086
1087 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1088 {
1089         /*
1090          * The VPD identification association..
1091          *
1092          * from spc3r23.pdf Section 7.6.3.1 Table 297
1093          */
1094         vpd->association = (page_83[1] & 0x30);
1095         return transport_dump_vpd_assoc(vpd, NULL, 0);
1096 }
1097 EXPORT_SYMBOL(transport_set_vpd_assoc);
1098
1099 int transport_dump_vpd_ident_type(
1100         struct t10_vpd *vpd,
1101         unsigned char *p_buf,
1102         int p_buf_len)
1103 {
1104         unsigned char buf[VPD_TMP_BUF_SIZE];
1105         int ret = 0;
1106         int len;
1107
1108         memset(buf, 0, VPD_TMP_BUF_SIZE);
1109         len = sprintf(buf, "T10 VPD Identifier Type: ");
1110
1111         switch (vpd->device_identifier_type) {
1112         case 0x00:
1113                 sprintf(buf+len, "Vendor specific\n");
1114                 break;
1115         case 0x01:
1116                 sprintf(buf+len, "T10 Vendor ID based\n");
1117                 break;
1118         case 0x02:
1119                 sprintf(buf+len, "EUI-64 based\n");
1120                 break;
1121         case 0x03:
1122                 sprintf(buf+len, "NAA\n");
1123                 break;
1124         case 0x04:
1125                 sprintf(buf+len, "Relative target port identifier\n");
1126                 break;
1127         case 0x08:
1128                 sprintf(buf+len, "SCSI name string\n");
1129                 break;
1130         default:
1131                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1132                                 vpd->device_identifier_type);
1133                 ret = -EINVAL;
1134                 break;
1135         }
1136
1137         if (p_buf) {
1138                 if (p_buf_len < strlen(buf)+1)
1139                         return -EINVAL;
1140                 strncpy(p_buf, buf, p_buf_len);
1141         } else {
1142                 pr_debug("%s", buf);
1143         }
1144
1145         return ret;
1146 }
1147
1148 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1149 {
1150         /*
1151          * The VPD identifier type..
1152          *
1153          * from spc3r23.pdf Section 7.6.3.1 Table 298
1154          */
1155         vpd->device_identifier_type = (page_83[1] & 0x0f);
1156         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1157 }
1158 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1159
1160 int transport_dump_vpd_ident(
1161         struct t10_vpd *vpd,
1162         unsigned char *p_buf,
1163         int p_buf_len)
1164 {
1165         unsigned char buf[VPD_TMP_BUF_SIZE];
1166         int ret = 0;
1167
1168         memset(buf, 0, VPD_TMP_BUF_SIZE);
1169
1170         switch (vpd->device_identifier_code_set) {
1171         case 0x01: /* Binary */
1172                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1173                         &vpd->device_identifier[0]);
1174                 break;
1175         case 0x02: /* ASCII */
1176                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1177                         &vpd->device_identifier[0]);
1178                 break;
1179         case 0x03: /* UTF-8 */
1180                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1181                         &vpd->device_identifier[0]);
1182                 break;
1183         default:
1184                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1185                         " 0x%02x", vpd->device_identifier_code_set);
1186                 ret = -EINVAL;
1187                 break;
1188         }
1189
1190         if (p_buf)
1191                 strncpy(p_buf, buf, p_buf_len);
1192         else
1193                 pr_debug("%s", buf);
1194
1195         return ret;
1196 }
1197
1198 int
1199 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1200 {
1201         static const char hex_str[] = "0123456789abcdef";
1202         int j = 0, i = 4; /* offset to start of the identifer */
1203
1204         /*
1205          * The VPD Code Set (encoding)
1206          *
1207          * from spc3r23.pdf Section 7.6.3.1 Table 296
1208          */
1209         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1210         switch (vpd->device_identifier_code_set) {
1211         case 0x01: /* Binary */
1212                 vpd->device_identifier[j++] =
1213                                 hex_str[vpd->device_identifier_type];
1214                 while (i < (4 + page_83[3])) {
1215                         vpd->device_identifier[j++] =
1216                                 hex_str[(page_83[i] & 0xf0) >> 4];
1217                         vpd->device_identifier[j++] =
1218                                 hex_str[page_83[i] & 0x0f];
1219                         i++;
1220                 }
1221                 break;
1222         case 0x02: /* ASCII */
1223         case 0x03: /* UTF-8 */
1224                 while (i < (4 + page_83[3]))
1225                         vpd->device_identifier[j++] = page_83[i++];
1226                 break;
1227         default:
1228                 break;
1229         }
1230
1231         return transport_dump_vpd_ident(vpd, NULL, 0);
1232 }
1233 EXPORT_SYMBOL(transport_set_vpd_ident);
1234
1235 static void core_setup_task_attr_emulation(struct se_device *dev)
1236 {
1237         /*
1238          * If this device is from Target_Core_Mod/pSCSI, disable the
1239          * SAM Task Attribute emulation.
1240          *
1241          * This is currently not available in upsream Linux/SCSI Target
1242          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1243          */
1244         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1245                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1246                 return;
1247         }
1248
1249         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1250         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1251                 " device\n", dev->transport->name,
1252                 dev->transport->get_device_rev(dev));
1253 }
1254
1255 static void scsi_dump_inquiry(struct se_device *dev)
1256 {
1257         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1258         int i, device_type;
1259         /*
1260          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1261          */
1262         pr_debug("  Vendor: ");
1263         for (i = 0; i < 8; i++)
1264                 if (wwn->vendor[i] >= 0x20)
1265                         pr_debug("%c", wwn->vendor[i]);
1266                 else
1267                         pr_debug(" ");
1268
1269         pr_debug("  Model: ");
1270         for (i = 0; i < 16; i++)
1271                 if (wwn->model[i] >= 0x20)
1272                         pr_debug("%c", wwn->model[i]);
1273                 else
1274                         pr_debug(" ");
1275
1276         pr_debug("  Revision: ");
1277         for (i = 0; i < 4; i++)
1278                 if (wwn->revision[i] >= 0x20)
1279                         pr_debug("%c", wwn->revision[i]);
1280                 else
1281                         pr_debug(" ");
1282
1283         pr_debug("\n");
1284
1285         device_type = dev->transport->get_device_type(dev);
1286         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1287         pr_debug("                 ANSI SCSI revision: %02x\n",
1288                                 dev->transport->get_device_rev(dev));
1289 }
1290
1291 struct se_device *transport_add_device_to_core_hba(
1292         struct se_hba *hba,
1293         struct se_subsystem_api *transport,
1294         struct se_subsystem_dev *se_dev,
1295         u32 device_flags,
1296         void *transport_dev,
1297         struct se_dev_limits *dev_limits,
1298         const char *inquiry_prod,
1299         const char *inquiry_rev)
1300 {
1301         int force_pt;
1302         struct se_device  *dev;
1303
1304         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1305         if (!dev) {
1306                 pr_err("Unable to allocate memory for se_dev_t\n");
1307                 return NULL;
1308         }
1309
1310         transport_init_queue_obj(&dev->dev_queue_obj);
1311         dev->dev_flags          = device_flags;
1312         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1313         dev->dev_ptr            = transport_dev;
1314         dev->se_hba             = hba;
1315         dev->se_sub_dev         = se_dev;
1316         dev->transport          = transport;
1317         INIT_LIST_HEAD(&dev->dev_list);
1318         INIT_LIST_HEAD(&dev->dev_sep_list);
1319         INIT_LIST_HEAD(&dev->dev_tmr_list);
1320         INIT_LIST_HEAD(&dev->execute_task_list);
1321         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1322         INIT_LIST_HEAD(&dev->state_task_list);
1323         INIT_LIST_HEAD(&dev->qf_cmd_list);
1324         spin_lock_init(&dev->execute_task_lock);
1325         spin_lock_init(&dev->delayed_cmd_lock);
1326         spin_lock_init(&dev->dev_reservation_lock);
1327         spin_lock_init(&dev->dev_status_lock);
1328         spin_lock_init(&dev->se_port_lock);
1329         spin_lock_init(&dev->se_tmr_lock);
1330         spin_lock_init(&dev->qf_cmd_lock);
1331
1332         dev->queue_depth        = dev_limits->queue_depth;
1333         atomic_set(&dev->depth_left, dev->queue_depth);
1334         atomic_set(&dev->dev_ordered_id, 0);
1335
1336         se_dev_set_default_attribs(dev, dev_limits);
1337
1338         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1339         dev->creation_time = get_jiffies_64();
1340         spin_lock_init(&dev->stats_lock);
1341
1342         spin_lock(&hba->device_lock);
1343         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1344         hba->dev_count++;
1345         spin_unlock(&hba->device_lock);
1346         /*
1347          * Setup the SAM Task Attribute emulation for struct se_device
1348          */
1349         core_setup_task_attr_emulation(dev);
1350         /*
1351          * Force PR and ALUA passthrough emulation with internal object use.
1352          */
1353         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1354         /*
1355          * Setup the Reservations infrastructure for struct se_device
1356          */
1357         core_setup_reservations(dev, force_pt);
1358         /*
1359          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1360          */
1361         if (core_setup_alua(dev, force_pt) < 0)
1362                 goto out;
1363
1364         /*
1365          * Startup the struct se_device processing thread
1366          */
1367         dev->process_thread = kthread_run(transport_processing_thread, dev,
1368                                           "LIO_%s", dev->transport->name);
1369         if (IS_ERR(dev->process_thread)) {
1370                 pr_err("Unable to create kthread: LIO_%s\n",
1371                         dev->transport->name);
1372                 goto out;
1373         }
1374         /*
1375          * Setup work_queue for QUEUE_FULL
1376          */
1377         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1378         /*
1379          * Preload the initial INQUIRY const values if we are doing
1380          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1381          * passthrough because this is being provided by the backend LLD.
1382          * This is required so that transport_get_inquiry() copies these
1383          * originals once back into DEV_T10_WWN(dev) for the virtual device
1384          * setup.
1385          */
1386         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1387                 if (!inquiry_prod || !inquiry_rev) {
1388                         pr_err("All non TCM/pSCSI plugins require"
1389                                 " INQUIRY consts\n");
1390                         goto out;
1391                 }
1392
1393                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1394                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1395                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1396         }
1397         scsi_dump_inquiry(dev);
1398
1399         return dev;
1400 out:
1401         kthread_stop(dev->process_thread);
1402
1403         spin_lock(&hba->device_lock);
1404         list_del(&dev->dev_list);
1405         hba->dev_count--;
1406         spin_unlock(&hba->device_lock);
1407
1408         se_release_vpd_for_dev(dev);
1409
1410         kfree(dev);
1411
1412         return NULL;
1413 }
1414 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1415
1416 /*      transport_generic_prepare_cdb():
1417  *
1418  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1419  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1420  *      The point of this is since we are mapping iSCSI LUNs to
1421  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1422  *      devices and HBAs for a loop.
1423  */
1424 static inline void transport_generic_prepare_cdb(
1425         unsigned char *cdb)
1426 {
1427         switch (cdb[0]) {
1428         case READ_10: /* SBC - RDProtect */
1429         case READ_12: /* SBC - RDProtect */
1430         case READ_16: /* SBC - RDProtect */
1431         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1432         case VERIFY: /* SBC - VRProtect */
1433         case VERIFY_16: /* SBC - VRProtect */
1434         case WRITE_VERIFY: /* SBC - VRProtect */
1435         case WRITE_VERIFY_12: /* SBC - VRProtect */
1436                 break;
1437         default:
1438                 cdb[1] &= 0x1f; /* clear logical unit number */
1439                 break;
1440         }
1441 }
1442
1443 static struct se_task *
1444 transport_generic_get_task(struct se_cmd *cmd,
1445                 enum dma_data_direction data_direction)
1446 {
1447         struct se_task *task;
1448         struct se_device *dev = cmd->se_dev;
1449
1450         task = dev->transport->alloc_task(cmd->t_task_cdb);
1451         if (!task) {
1452                 pr_err("Unable to allocate struct se_task\n");
1453                 return NULL;
1454         }
1455
1456         INIT_LIST_HEAD(&task->t_list);
1457         INIT_LIST_HEAD(&task->t_execute_list);
1458         INIT_LIST_HEAD(&task->t_state_list);
1459         init_completion(&task->task_stop_comp);
1460         task->task_se_cmd = cmd;
1461         task->task_data_direction = data_direction;
1462
1463         return task;
1464 }
1465
1466 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1467
1468 /*
1469  * Used by fabric modules containing a local struct se_cmd within their
1470  * fabric dependent per I/O descriptor.
1471  */
1472 void transport_init_se_cmd(
1473         struct se_cmd *cmd,
1474         struct target_core_fabric_ops *tfo,
1475         struct se_session *se_sess,
1476         u32 data_length,
1477         int data_direction,
1478         int task_attr,
1479         unsigned char *sense_buffer)
1480 {
1481         INIT_LIST_HEAD(&cmd->se_lun_node);
1482         INIT_LIST_HEAD(&cmd->se_delayed_node);
1483         INIT_LIST_HEAD(&cmd->se_qf_node);
1484         INIT_LIST_HEAD(&cmd->se_queue_node);
1485         INIT_LIST_HEAD(&cmd->se_cmd_list);
1486         INIT_LIST_HEAD(&cmd->t_task_list);
1487         init_completion(&cmd->transport_lun_fe_stop_comp);
1488         init_completion(&cmd->transport_lun_stop_comp);
1489         init_completion(&cmd->t_transport_stop_comp);
1490         init_completion(&cmd->cmd_wait_comp);
1491         spin_lock_init(&cmd->t_state_lock);
1492         atomic_set(&cmd->transport_dev_active, 1);
1493
1494         cmd->se_tfo = tfo;
1495         cmd->se_sess = se_sess;
1496         cmd->data_length = data_length;
1497         cmd->data_direction = data_direction;
1498         cmd->sam_task_attr = task_attr;
1499         cmd->sense_buffer = sense_buffer;
1500 }
1501 EXPORT_SYMBOL(transport_init_se_cmd);
1502
1503 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1504 {
1505         /*
1506          * Check if SAM Task Attribute emulation is enabled for this
1507          * struct se_device storage object
1508          */
1509         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1510                 return 0;
1511
1512         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1513                 pr_debug("SAM Task Attribute ACA"
1514                         " emulation is not supported\n");
1515                 return -EINVAL;
1516         }
1517         /*
1518          * Used to determine when ORDERED commands should go from
1519          * Dormant to Active status.
1520          */
1521         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1522         smp_mb__after_atomic_inc();
1523         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1524                         cmd->se_ordered_id, cmd->sam_task_attr,
1525                         cmd->se_dev->transport->name);
1526         return 0;
1527 }
1528
1529 /*      transport_generic_allocate_tasks():
1530  *
1531  *      Called from fabric RX Thread.
1532  */
1533 int transport_generic_allocate_tasks(
1534         struct se_cmd *cmd,
1535         unsigned char *cdb)
1536 {
1537         int ret;
1538
1539         transport_generic_prepare_cdb(cdb);
1540         /*
1541          * Ensure that the received CDB is less than the max (252 + 8) bytes
1542          * for VARIABLE_LENGTH_CMD
1543          */
1544         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1545                 pr_err("Received SCSI CDB with command_size: %d that"
1546                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1547                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1548                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1549                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1550                 return -EINVAL;
1551         }
1552         /*
1553          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1554          * allocate the additional extended CDB buffer now..  Otherwise
1555          * setup the pointer from __t_task_cdb to t_task_cdb.
1556          */
1557         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1558                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1559                                                 GFP_KERNEL);
1560                 if (!cmd->t_task_cdb) {
1561                         pr_err("Unable to allocate cmd->t_task_cdb"
1562                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1563                                 scsi_command_size(cdb),
1564                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1565                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1566                         cmd->scsi_sense_reason =
1567                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1568                         return -ENOMEM;
1569                 }
1570         } else
1571                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1572         /*
1573          * Copy the original CDB into cmd->
1574          */
1575         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1576         /*
1577          * Setup the received CDB based on SCSI defined opcodes and
1578          * perform unit attention, persistent reservations and ALUA
1579          * checks for virtual device backends.  The cmd->t_task_cdb
1580          * pointer is expected to be setup before we reach this point.
1581          */
1582         ret = transport_generic_cmd_sequencer(cmd, cdb);
1583         if (ret < 0)
1584                 return ret;
1585         /*
1586          * Check for SAM Task Attribute Emulation
1587          */
1588         if (transport_check_alloc_task_attr(cmd) < 0) {
1589                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1590                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1591                 return -EINVAL;
1592         }
1593         spin_lock(&cmd->se_lun->lun_sep_lock);
1594         if (cmd->se_lun->lun_sep)
1595                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1596         spin_unlock(&cmd->se_lun->lun_sep_lock);
1597         return 0;
1598 }
1599 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1600
1601 /*
1602  * Used by fabric module frontends to queue tasks directly.
1603  * Many only be used from process context only
1604  */
1605 int transport_handle_cdb_direct(
1606         struct se_cmd *cmd)
1607 {
1608         int ret;
1609
1610         if (!cmd->se_lun) {
1611                 dump_stack();
1612                 pr_err("cmd->se_lun is NULL\n");
1613                 return -EINVAL;
1614         }
1615         if (in_interrupt()) {
1616                 dump_stack();
1617                 pr_err("transport_generic_handle_cdb cannot be called"
1618                                 " from interrupt context\n");
1619                 return -EINVAL;
1620         }
1621         /*
1622          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1623          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1624          * in existing usage to ensure that outstanding descriptors are handled
1625          * correctly during shutdown via transport_wait_for_tasks()
1626          *
1627          * Also, we don't take cmd->t_state_lock here as we only expect
1628          * this to be called for initial descriptor submission.
1629          */
1630         cmd->t_state = TRANSPORT_NEW_CMD;
1631         atomic_set(&cmd->t_transport_active, 1);
1632         /*
1633          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1634          * so follow TRANSPORT_NEW_CMD processing thread context usage
1635          * and call transport_generic_request_failure() if necessary..
1636          */
1637         ret = transport_generic_new_cmd(cmd);
1638         if (ret < 0)
1639                 transport_generic_request_failure(cmd);
1640
1641         return 0;
1642 }
1643 EXPORT_SYMBOL(transport_handle_cdb_direct);
1644
1645 /**
1646  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1647  *
1648  * @se_cmd: command descriptor to submit
1649  * @se_sess: associated se_sess for endpoint
1650  * @cdb: pointer to SCSI CDB
1651  * @sense: pointer to SCSI sense buffer
1652  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1653  * @data_length: fabric expected data transfer length
1654  * @task_addr: SAM task attribute
1655  * @data_dir: DMA data direction
1656  * @flags: flags for command submission from target_sc_flags_tables
1657  *
1658  * This may only be called from process context, and also currently
1659  * assumes internal allocation of fabric payload buffer by target-core.
1660  **/
1661 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1662                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1663                 u32 data_length, int task_attr, int data_dir, int flags)
1664 {
1665         struct se_portal_group *se_tpg;
1666         int rc;
1667
1668         se_tpg = se_sess->se_tpg;
1669         BUG_ON(!se_tpg);
1670         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1671         BUG_ON(in_interrupt());
1672         /*
1673          * Initialize se_cmd for target operation.  From this point
1674          * exceptions are handled by sending exception status via
1675          * target_core_fabric_ops->queue_status() callback
1676          */
1677         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1678                                 data_length, data_dir, task_attr, sense);
1679         /*
1680          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1681          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1682          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1683          * kref_put() to happen during fabric packet acknowledgement.
1684          */
1685         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1686         /*
1687          * Signal bidirectional data payloads to target-core
1688          */
1689         if (flags & TARGET_SCF_BIDI_OP)
1690                 se_cmd->se_cmd_flags |= SCF_BIDI;
1691         /*
1692          * Locate se_lun pointer and attach it to struct se_cmd
1693          */
1694         if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0)
1695                 goto out_check_cond;
1696         /*
1697          * Sanitize CDBs via transport_generic_cmd_sequencer() and
1698          * allocate the necessary tasks to complete the received CDB+data
1699          */
1700         rc = transport_generic_allocate_tasks(se_cmd, cdb);
1701         if (rc != 0)
1702                 goto out_check_cond;
1703         /*
1704          * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1705          * for immediate execution of READs, otherwise wait for
1706          * transport_generic_handle_data() to be called for WRITEs
1707          * when fabric has filled the incoming buffer.
1708          */
1709         transport_handle_cdb_direct(se_cmd);
1710         return 0;
1711
1712 out_check_cond:
1713         transport_send_check_condition_and_sense(se_cmd,
1714                                 se_cmd->scsi_sense_reason, 0);
1715         return 0;
1716 }
1717 EXPORT_SYMBOL(target_submit_cmd);
1718
1719 /*
1720  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1721  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1722  * complete setup in TCM process context w/ TFO->new_cmd_map().
1723  */
1724 int transport_generic_handle_cdb_map(
1725         struct se_cmd *cmd)
1726 {
1727         if (!cmd->se_lun) {
1728                 dump_stack();
1729                 pr_err("cmd->se_lun is NULL\n");
1730                 return -EINVAL;
1731         }
1732
1733         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1734         return 0;
1735 }
1736 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1737
1738 /*      transport_generic_handle_data():
1739  *
1740  *
1741  */
1742 int transport_generic_handle_data(
1743         struct se_cmd *cmd)
1744 {
1745         /*
1746          * For the software fabric case, then we assume the nexus is being
1747          * failed/shutdown when signals are pending from the kthread context
1748          * caller, so we return a failure.  For the HW target mode case running
1749          * in interrupt code, the signal_pending() check is skipped.
1750          */
1751         if (!in_interrupt() && signal_pending(current))
1752                 return -EPERM;
1753         /*
1754          * If the received CDB has aleady been ABORTED by the generic
1755          * target engine, we now call transport_check_aborted_status()
1756          * to queue any delated TASK_ABORTED status for the received CDB to the
1757          * fabric module as we are expecting no further incoming DATA OUT
1758          * sequences at this point.
1759          */
1760         if (transport_check_aborted_status(cmd, 1) != 0)
1761                 return 0;
1762
1763         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1764         return 0;
1765 }
1766 EXPORT_SYMBOL(transport_generic_handle_data);
1767
1768 /*      transport_generic_handle_tmr():
1769  *
1770  *
1771  */
1772 int transport_generic_handle_tmr(
1773         struct se_cmd *cmd)
1774 {
1775         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1776         return 0;
1777 }
1778 EXPORT_SYMBOL(transport_generic_handle_tmr);
1779
1780 /*
1781  * If the task is active, request it to be stopped and sleep until it
1782  * has completed.
1783  */
1784 bool target_stop_task(struct se_task *task, unsigned long *flags)
1785 {
1786         struct se_cmd *cmd = task->task_se_cmd;
1787         bool was_active = false;
1788
1789         if (task->task_flags & TF_ACTIVE) {
1790                 task->task_flags |= TF_REQUEST_STOP;
1791                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1792
1793                 pr_debug("Task %p waiting to complete\n", task);
1794                 wait_for_completion(&task->task_stop_comp);
1795                 pr_debug("Task %p stopped successfully\n", task);
1796
1797                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1798                 atomic_dec(&cmd->t_task_cdbs_left);
1799                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1800                 was_active = true;
1801         }
1802
1803         return was_active;
1804 }
1805
1806 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1807 {
1808         struct se_task *task, *task_tmp;
1809         unsigned long flags;
1810         int ret = 0;
1811
1812         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1813                 cmd->se_tfo->get_task_tag(cmd));
1814
1815         /*
1816          * No tasks remain in the execution queue
1817          */
1818         spin_lock_irqsave(&cmd->t_state_lock, flags);
1819         list_for_each_entry_safe(task, task_tmp,
1820                                 &cmd->t_task_list, t_list) {
1821                 pr_debug("Processing task %p\n", task);
1822                 /*
1823                  * If the struct se_task has not been sent and is not active,
1824                  * remove the struct se_task from the execution queue.
1825                  */
1826                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1827                         spin_unlock_irqrestore(&cmd->t_state_lock,
1828                                         flags);
1829                         transport_remove_task_from_execute_queue(task,
1830                                         cmd->se_dev);
1831
1832                         pr_debug("Task %p removed from execute queue\n", task);
1833                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1834                         continue;
1835                 }
1836
1837                 if (!target_stop_task(task, &flags)) {
1838                         pr_debug("Task %p - did nothing\n", task);
1839                         ret++;
1840                 }
1841         }
1842         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1843
1844         return ret;
1845 }
1846
1847 /*
1848  * Handle SAM-esque emulation for generic transport request failures.
1849  */
1850 static void transport_generic_request_failure(struct se_cmd *cmd)
1851 {
1852         int ret = 0;
1853
1854         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1855                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1856                 cmd->t_task_cdb[0]);
1857         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1858                 cmd->se_tfo->get_cmd_state(cmd),
1859                 cmd->t_state, cmd->scsi_sense_reason);
1860         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1861                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1862                 " t_transport_active: %d t_transport_stop: %d"
1863                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1864                 atomic_read(&cmd->t_task_cdbs_left),
1865                 atomic_read(&cmd->t_task_cdbs_sent),
1866                 atomic_read(&cmd->t_task_cdbs_ex_left),
1867                 atomic_read(&cmd->t_transport_active),
1868                 atomic_read(&cmd->t_transport_stop),
1869                 atomic_read(&cmd->t_transport_sent));
1870
1871         /*
1872          * For SAM Task Attribute emulation for failed struct se_cmd
1873          */
1874         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1875                 transport_complete_task_attr(cmd);
1876
1877         switch (cmd->scsi_sense_reason) {
1878         case TCM_NON_EXISTENT_LUN:
1879         case TCM_UNSUPPORTED_SCSI_OPCODE:
1880         case TCM_INVALID_CDB_FIELD:
1881         case TCM_INVALID_PARAMETER_LIST:
1882         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1883         case TCM_UNKNOWN_MODE_PAGE:
1884         case TCM_WRITE_PROTECTED:
1885         case TCM_CHECK_CONDITION_ABORT_CMD:
1886         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1887         case TCM_CHECK_CONDITION_NOT_READY:
1888                 break;
1889         case TCM_RESERVATION_CONFLICT:
1890                 /*
1891                  * No SENSE Data payload for this case, set SCSI Status
1892                  * and queue the response to $FABRIC_MOD.
1893                  *
1894                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1895                  */
1896                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1897                 /*
1898                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1899                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1900                  * CONFLICT STATUS.
1901                  *
1902                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1903                  */
1904                 if (cmd->se_sess &&
1905                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1906                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1907                                 cmd->orig_fe_lun, 0x2C,
1908                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1909
1910                 ret = cmd->se_tfo->queue_status(cmd);
1911                 if (ret == -EAGAIN || ret == -ENOMEM)
1912                         goto queue_full;
1913                 goto check_stop;
1914         default:
1915                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1916                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1917                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1918                 break;
1919         }
1920         /*
1921          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1922          * make the call to transport_send_check_condition_and_sense()
1923          * directly.  Otherwise expect the fabric to make the call to
1924          * transport_send_check_condition_and_sense() after handling
1925          * possible unsoliticied write data payloads.
1926          */
1927         ret = transport_send_check_condition_and_sense(cmd,
1928                         cmd->scsi_sense_reason, 0);
1929         if (ret == -EAGAIN || ret == -ENOMEM)
1930                 goto queue_full;
1931
1932 check_stop:
1933         transport_lun_remove_cmd(cmd);
1934         if (!transport_cmd_check_stop_to_fabric(cmd))
1935                 ;
1936         return;
1937
1938 queue_full:
1939         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1940         transport_handle_queue_full(cmd, cmd->se_dev);
1941 }
1942
1943 static inline u32 transport_lba_21(unsigned char *cdb)
1944 {
1945         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1946 }
1947
1948 static inline u32 transport_lba_32(unsigned char *cdb)
1949 {
1950         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1951 }
1952
1953 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1954 {
1955         unsigned int __v1, __v2;
1956
1957         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1958         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1959
1960         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1961 }
1962
1963 /*
1964  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1965  */
1966 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1967 {
1968         unsigned int __v1, __v2;
1969
1970         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1971         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1972
1973         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1974 }
1975
1976 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1977 {
1978         unsigned long flags;
1979
1980         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1981         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1982         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1983 }
1984
1985 static inline int transport_tcq_window_closed(struct se_device *dev)
1986 {
1987         if (dev->dev_tcq_window_closed++ <
1988                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
1989                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
1990         } else
1991                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
1992
1993         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
1994         return 0;
1995 }
1996
1997 /*
1998  * Called from Fabric Module context from transport_execute_tasks()
1999  *
2000  * The return of this function determins if the tasks from struct se_cmd
2001  * get added to the execution queue in transport_execute_tasks(),
2002  * or are added to the delayed or ordered lists here.
2003  */
2004 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2005 {
2006         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2007                 return 1;
2008         /*
2009          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2010          * to allow the passed struct se_cmd list of tasks to the front of the list.
2011          */
2012          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2013                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2014                         " 0x%02x, se_ordered_id: %u\n",
2015                         cmd->t_task_cdb[0],
2016                         cmd->se_ordered_id);
2017                 return 1;
2018         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2019                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2020                 smp_mb__after_atomic_inc();
2021
2022                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2023                                 " list, se_ordered_id: %u\n",
2024                                 cmd->t_task_cdb[0],
2025                                 cmd->se_ordered_id);
2026                 /*
2027                  * Add ORDERED command to tail of execution queue if
2028                  * no other older commands exist that need to be
2029                  * completed first.
2030                  */
2031                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2032                         return 1;
2033         } else {
2034                 /*
2035                  * For SIMPLE and UNTAGGED Task Attribute commands
2036                  */
2037                 atomic_inc(&cmd->se_dev->simple_cmds);
2038                 smp_mb__after_atomic_inc();
2039         }
2040         /*
2041          * Otherwise if one or more outstanding ORDERED task attribute exist,
2042          * add the dormant task(s) built for the passed struct se_cmd to the
2043          * execution queue and become in Active state for this struct se_device.
2044          */
2045         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2046                 /*
2047                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2048                  * will be drained upon completion of HEAD_OF_QUEUE task.
2049                  */
2050                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2051                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2052                 list_add_tail(&cmd->se_delayed_node,
2053                                 &cmd->se_dev->delayed_cmd_list);
2054                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2055
2056                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2057                         " delayed CMD list, se_ordered_id: %u\n",
2058                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2059                         cmd->se_ordered_id);
2060                 /*
2061                  * Return zero to let transport_execute_tasks() know
2062                  * not to add the delayed tasks to the execution list.
2063                  */
2064                 return 0;
2065         }
2066         /*
2067          * Otherwise, no ORDERED task attributes exist..
2068          */
2069         return 1;
2070 }
2071
2072 /*
2073  * Called from fabric module context in transport_generic_new_cmd() and
2074  * transport_generic_process_write()
2075  */
2076 static int transport_execute_tasks(struct se_cmd *cmd)
2077 {
2078         int add_tasks;
2079         struct se_device *se_dev = cmd->se_dev;
2080
2081         if (se_dev_check_online(cmd->se_dev) != 0) {
2082                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2083                 transport_generic_request_failure(cmd);
2084                 return 0;
2085         }
2086
2087         /*
2088          * Call transport_cmd_check_stop() to see if a fabric exception
2089          * has occurred that prevents execution.
2090          */
2091         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2092                 /*
2093                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2094                  * attribute for the tasks of the received struct se_cmd CDB
2095                  */
2096                 add_tasks = transport_execute_task_attr(cmd);
2097                 if (!add_tasks)
2098                         goto execute_tasks;
2099                 /*
2100                  * This calls transport_add_tasks_from_cmd() to handle
2101                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2102                  * (if enabled) in __transport_add_task_to_execute_queue() and
2103                  * transport_add_task_check_sam_attr().
2104                  */
2105                 transport_add_tasks_from_cmd(cmd);
2106         }
2107         /*
2108          * Kick the execution queue for the cmd associated struct se_device
2109          * storage object.
2110          */
2111 execute_tasks:
2112         __transport_execute_tasks(se_dev);
2113         return 0;
2114 }
2115
2116 /*
2117  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2118  * from struct se_device->execute_task_list and
2119  *
2120  * Called from transport_processing_thread()
2121  */
2122 static int __transport_execute_tasks(struct se_device *dev)
2123 {
2124         int error;
2125         struct se_cmd *cmd = NULL;
2126         struct se_task *task = NULL;
2127         unsigned long flags;
2128
2129         /*
2130          * Check if there is enough room in the device and HBA queue to send
2131          * struct se_tasks to the selected transport.
2132          */
2133 check_depth:
2134         if (!atomic_read(&dev->depth_left))
2135                 return transport_tcq_window_closed(dev);
2136
2137         dev->dev_tcq_window_closed = 0;
2138
2139         spin_lock_irq(&dev->execute_task_lock);
2140         if (list_empty(&dev->execute_task_list)) {
2141                 spin_unlock_irq(&dev->execute_task_lock);
2142                 return 0;
2143         }
2144         task = list_first_entry(&dev->execute_task_list,
2145                                 struct se_task, t_execute_list);
2146         __transport_remove_task_from_execute_queue(task, dev);
2147         spin_unlock_irq(&dev->execute_task_lock);
2148
2149         atomic_dec(&dev->depth_left);
2150
2151         cmd = task->task_se_cmd;
2152
2153         spin_lock_irqsave(&cmd->t_state_lock, flags);
2154         task->task_flags |= (TF_ACTIVE | TF_SENT);
2155         atomic_inc(&cmd->t_task_cdbs_sent);
2156
2157         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2158             cmd->t_task_list_num)
2159                 atomic_set(&cmd->t_transport_sent, 1);
2160
2161         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2162
2163         if (cmd->execute_task)
2164                 error = cmd->execute_task(task);
2165         else
2166                 error = dev->transport->do_task(task);
2167         if (error != 0) {
2168                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2169                 task->task_flags &= ~TF_ACTIVE;
2170                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2171                 atomic_set(&cmd->t_transport_sent, 0);
2172                 transport_stop_tasks_for_cmd(cmd);
2173                 atomic_inc(&dev->depth_left);
2174                 transport_generic_request_failure(cmd);
2175         }
2176
2177         goto check_depth;
2178
2179         return 0;
2180 }
2181
2182 static inline u32 transport_get_sectors_6(
2183         unsigned char *cdb,
2184         struct se_cmd *cmd,
2185         int *ret)
2186 {
2187         struct se_device *dev = cmd->se_dev;
2188
2189         /*
2190          * Assume TYPE_DISK for non struct se_device objects.
2191          * Use 8-bit sector value.
2192          */
2193         if (!dev)
2194                 goto type_disk;
2195
2196         /*
2197          * Use 24-bit allocation length for TYPE_TAPE.
2198          */
2199         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2200                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2201
2202         /*
2203          * Everything else assume TYPE_DISK Sector CDB location.
2204          * Use 8-bit sector value.  SBC-3 says:
2205          *
2206          *   A TRANSFER LENGTH field set to zero specifies that 256
2207          *   logical blocks shall be written.  Any other value
2208          *   specifies the number of logical blocks that shall be
2209          *   written.
2210          */
2211 type_disk:
2212         return cdb[4] ? : 256;
2213 }
2214
2215 static inline u32 transport_get_sectors_10(
2216         unsigned char *cdb,
2217         struct se_cmd *cmd,
2218         int *ret)
2219 {
2220         struct se_device *dev = cmd->se_dev;
2221
2222         /*
2223          * Assume TYPE_DISK for non struct se_device objects.
2224          * Use 16-bit sector value.
2225          */
2226         if (!dev)
2227                 goto type_disk;
2228
2229         /*
2230          * XXX_10 is not defined in SSC, throw an exception
2231          */
2232         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2233                 *ret = -EINVAL;
2234                 return 0;
2235         }
2236
2237         /*
2238          * Everything else assume TYPE_DISK Sector CDB location.
2239          * Use 16-bit sector value.
2240          */
2241 type_disk:
2242         return (u32)(cdb[7] << 8) + cdb[8];
2243 }
2244
2245 static inline u32 transport_get_sectors_12(
2246         unsigned char *cdb,
2247         struct se_cmd *cmd,
2248         int *ret)
2249 {
2250         struct se_device *dev = cmd->se_dev;
2251
2252         /*
2253          * Assume TYPE_DISK for non struct se_device objects.
2254          * Use 32-bit sector value.
2255          */
2256         if (!dev)
2257                 goto type_disk;
2258
2259         /*
2260          * XXX_12 is not defined in SSC, throw an exception
2261          */
2262         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2263                 *ret = -EINVAL;
2264                 return 0;
2265         }
2266
2267         /*
2268          * Everything else assume TYPE_DISK Sector CDB location.
2269          * Use 32-bit sector value.
2270          */
2271 type_disk:
2272         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2273 }
2274
2275 static inline u32 transport_get_sectors_16(
2276         unsigned char *cdb,
2277         struct se_cmd *cmd,
2278         int *ret)
2279 {
2280         struct se_device *dev = cmd->se_dev;
2281
2282         /*
2283          * Assume TYPE_DISK for non struct se_device objects.
2284          * Use 32-bit sector value.
2285          */
2286         if (!dev)
2287                 goto type_disk;
2288
2289         /*
2290          * Use 24-bit allocation length for TYPE_TAPE.
2291          */
2292         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2293                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2294
2295 type_disk:
2296         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2297                     (cdb[12] << 8) + cdb[13];
2298 }
2299
2300 /*
2301  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2302  */
2303 static inline u32 transport_get_sectors_32(
2304         unsigned char *cdb,
2305         struct se_cmd *cmd,
2306         int *ret)
2307 {
2308         /*
2309          * Assume TYPE_DISK for non struct se_device objects.
2310          * Use 32-bit sector value.
2311          */
2312         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2313                     (cdb[30] << 8) + cdb[31];
2314
2315 }
2316
2317 static inline u32 transport_get_size(
2318         u32 sectors,
2319         unsigned char *cdb,
2320         struct se_cmd *cmd)
2321 {
2322         struct se_device *dev = cmd->se_dev;
2323
2324         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2325                 if (cdb[1] & 1) { /* sectors */
2326                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2327                 } else /* bytes */
2328                         return sectors;
2329         }
2330 #if 0
2331         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2332                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2333                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2334                         dev->transport->name);
2335 #endif
2336         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2337 }
2338
2339 static void transport_xor_callback(struct se_cmd *cmd)
2340 {
2341         unsigned char *buf, *addr;
2342         struct scatterlist *sg;
2343         unsigned int offset;
2344         int i;
2345         int count;
2346         /*
2347          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2348          *
2349          * 1) read the specified logical block(s);
2350          * 2) transfer logical blocks from the data-out buffer;
2351          * 3) XOR the logical blocks transferred from the data-out buffer with
2352          *    the logical blocks read, storing the resulting XOR data in a buffer;
2353          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2354          *    blocks transferred from the data-out buffer; and
2355          * 5) transfer the resulting XOR data to the data-in buffer.
2356          */
2357         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2358         if (!buf) {
2359                 pr_err("Unable to allocate xor_callback buf\n");
2360                 return;
2361         }
2362         /*
2363          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2364          * into the locally allocated *buf
2365          */
2366         sg_copy_to_buffer(cmd->t_data_sg,
2367                           cmd->t_data_nents,
2368                           buf,
2369                           cmd->data_length);
2370
2371         /*
2372          * Now perform the XOR against the BIDI read memory located at
2373          * cmd->t_mem_bidi_list
2374          */
2375
2376         offset = 0;
2377         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2378                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2379                 if (!addr)
2380                         goto out;
2381
2382                 for (i = 0; i < sg->length; i++)
2383                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2384
2385                 offset += sg->length;
2386                 kunmap_atomic(addr, KM_USER0);
2387         }
2388
2389 out:
2390         kfree(buf);
2391 }
2392
2393 /*
2394  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2395  */
2396 static int transport_get_sense_data(struct se_cmd *cmd)
2397 {
2398         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2399         struct se_device *dev = cmd->se_dev;
2400         struct se_task *task = NULL, *task_tmp;
2401         unsigned long flags;
2402         u32 offset = 0;
2403
2404         WARN_ON(!cmd->se_lun);
2405
2406         if (!dev)
2407                 return 0;
2408
2409         spin_lock_irqsave(&cmd->t_state_lock, flags);
2410         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2411                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2412                 return 0;
2413         }
2414
2415         list_for_each_entry_safe(task, task_tmp,
2416                                 &cmd->t_task_list, t_list) {
2417                 if (!(task->task_flags & TF_HAS_SENSE))
2418                         continue;
2419
2420                 if (!dev->transport->get_sense_buffer) {
2421                         pr_err("dev->transport->get_sense_buffer"
2422                                         " is NULL\n");
2423                         continue;
2424                 }
2425
2426                 sense_buffer = dev->transport->get_sense_buffer(task);
2427                 if (!sense_buffer) {
2428                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2429                                 " sense buffer for task with sense\n",
2430                                 cmd->se_tfo->get_task_tag(cmd), task);
2431                         continue;
2432                 }
2433                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2434
2435                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2436                                 TRANSPORT_SENSE_BUFFER);
2437
2438                 memcpy(&buffer[offset], sense_buffer,
2439                                 TRANSPORT_SENSE_BUFFER);
2440                 cmd->scsi_status = task->task_scsi_status;
2441                 /* Automatically padded */
2442                 cmd->scsi_sense_length =
2443                                 (TRANSPORT_SENSE_BUFFER + offset);
2444
2445                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2446                                 " and sense\n",
2447                         dev->se_hba->hba_id, dev->transport->name,
2448                                 cmd->scsi_status);
2449                 return 0;
2450         }
2451         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2452
2453         return -1;
2454 }
2455
2456 static inline long long transport_dev_end_lba(struct se_device *dev)
2457 {
2458         return dev->transport->get_blocks(dev) + 1;
2459 }
2460
2461 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2462 {
2463         struct se_device *dev = cmd->se_dev;
2464         u32 sectors;
2465
2466         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2467                 return 0;
2468
2469         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2470
2471         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2472                 pr_err("LBA: %llu Sectors: %u exceeds"
2473                         " transport_dev_end_lba(): %llu\n",
2474                         cmd->t_task_lba, sectors,
2475                         transport_dev_end_lba(dev));
2476                 return -EINVAL;
2477         }
2478
2479         return 0;
2480 }
2481
2482 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2483 {
2484         /*
2485          * Determine if the received WRITE_SAME is used to for direct
2486          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2487          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2488          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2489          */
2490         int passthrough = (dev->transport->transport_type ==
2491                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2492
2493         if (!passthrough) {
2494                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2495                         pr_err("WRITE_SAME PBDATA and LBDATA"
2496                                 " bits not supported for Block Discard"
2497                                 " Emulation\n");
2498                         return -ENOSYS;
2499                 }
2500                 /*
2501                  * Currently for the emulated case we only accept
2502                  * tpws with the UNMAP=1 bit set.
2503                  */
2504                 if (!(flags[0] & 0x08)) {
2505                         pr_err("WRITE_SAME w/o UNMAP bit not"
2506                                 " supported for Block Discard Emulation\n");
2507                         return -ENOSYS;
2508                 }
2509         }
2510
2511         return 0;
2512 }
2513
2514 /*      transport_generic_cmd_sequencer():
2515  *
2516  *      Generic Command Sequencer that should work for most DAS transport
2517  *      drivers.
2518  *
2519  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2520  *      RX Thread.
2521  *
2522  *      FIXME: Need to support other SCSI OPCODES where as well.
2523  */
2524 static int transport_generic_cmd_sequencer(
2525         struct se_cmd *cmd,
2526         unsigned char *cdb)
2527 {
2528         struct se_device *dev = cmd->se_dev;
2529         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2530         int ret = 0, sector_ret = 0, passthrough;
2531         u32 sectors = 0, size = 0, pr_reg_type = 0;
2532         u16 service_action;
2533         u8 alua_ascq = 0;
2534         /*
2535          * Check for an existing UNIT ATTENTION condition
2536          */
2537         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2538                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2539                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2540                 return -EINVAL;
2541         }
2542         /*
2543          * Check status of Asymmetric Logical Unit Assignment port
2544          */
2545         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2546         if (ret != 0) {
2547                 /*
2548                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2549                  * The ALUA additional sense code qualifier (ASCQ) is determined
2550                  * by the ALUA primary or secondary access state..
2551                  */
2552                 if (ret > 0) {
2553 #if 0
2554                         pr_debug("[%s]: ALUA TG Port not available,"
2555                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2556                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2557 #endif
2558                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2559                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2560                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2561                         return -EINVAL;
2562                 }
2563                 goto out_invalid_cdb_field;
2564         }
2565         /*
2566          * Check status for SPC-3 Persistent Reservations
2567          */
2568         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2569                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2570                                         cmd, cdb, pr_reg_type) != 0) {
2571                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2572                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2573                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2574                         return -EBUSY;
2575                 }
2576                 /*
2577                  * This means the CDB is allowed for the SCSI Initiator port
2578                  * when said port is *NOT* holding the legacy SPC-2 or
2579                  * SPC-3 Persistent Reservation.
2580                  */
2581         }
2582
2583         /*
2584          * If we operate in passthrough mode we skip most CDB emulation and
2585          * instead hand the commands down to the physical SCSI device.
2586          */
2587         passthrough =
2588                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2589
2590         switch (cdb[0]) {
2591         case READ_6:
2592                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2593                 if (sector_ret)
2594                         goto out_unsupported_cdb;
2595                 size = transport_get_size(sectors, cdb, cmd);
2596                 cmd->t_task_lba = transport_lba_21(cdb);
2597                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2598                 break;
2599         case READ_10:
2600                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2601                 if (sector_ret)
2602                         goto out_unsupported_cdb;
2603                 size = transport_get_size(sectors, cdb, cmd);
2604                 cmd->t_task_lba = transport_lba_32(cdb);
2605                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2606                 break;
2607         case READ_12:
2608                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2609                 if (sector_ret)
2610                         goto out_unsupported_cdb;
2611                 size = transport_get_size(sectors, cdb, cmd);
2612                 cmd->t_task_lba = transport_lba_32(cdb);
2613                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2614                 break;
2615         case READ_16:
2616                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2617                 if (sector_ret)
2618                         goto out_unsupported_cdb;
2619                 size = transport_get_size(sectors, cdb, cmd);
2620                 cmd->t_task_lba = transport_lba_64(cdb);
2621                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2622                 break;
2623         case WRITE_6:
2624                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2625                 if (sector_ret)
2626                         goto out_unsupported_cdb;
2627                 size = transport_get_size(sectors, cdb, cmd);
2628                 cmd->t_task_lba = transport_lba_21(cdb);
2629                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2630                 break;
2631         case WRITE_10:
2632                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2633                 if (sector_ret)
2634                         goto out_unsupported_cdb;
2635                 size = transport_get_size(sectors, cdb, cmd);
2636                 cmd->t_task_lba = transport_lba_32(cdb);
2637                 if (cdb[1] & 0x8)
2638                         cmd->se_cmd_flags |= SCF_FUA;
2639                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2640                 break;
2641         case WRITE_12:
2642                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2643                 if (sector_ret)
2644                         goto out_unsupported_cdb;
2645                 size = transport_get_size(sectors, cdb, cmd);
2646                 cmd->t_task_lba = transport_lba_32(cdb);
2647                 if (cdb[1] & 0x8)
2648                         cmd->se_cmd_flags |= SCF_FUA;
2649                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2650                 break;
2651         case WRITE_16:
2652                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2653                 if (sector_ret)
2654                         goto out_unsupported_cdb;
2655                 size = transport_get_size(sectors, cdb, cmd);
2656                 cmd->t_task_lba = transport_lba_64(cdb);
2657                 if (cdb[1] & 0x8)
2658                         cmd->se_cmd_flags |= SCF_FUA;
2659                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2660                 break;
2661         case XDWRITEREAD_10:
2662                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2663                     !(cmd->se_cmd_flags & SCF_BIDI))
2664                         goto out_invalid_cdb_field;
2665                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2666                 if (sector_ret)
2667                         goto out_unsupported_cdb;
2668                 size = transport_get_size(sectors, cdb, cmd);
2669                 cmd->t_task_lba = transport_lba_32(cdb);
2670                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2671
2672                 /*
2673                  * Do now allow BIDI commands for passthrough mode.
2674                  */
2675                 if (passthrough)
2676                         goto out_unsupported_cdb;
2677
2678                 /*
2679                  * Setup BIDI XOR callback to be run after I/O completion.
2680                  */
2681                 cmd->transport_complete_callback = &transport_xor_callback;
2682                 if (cdb[1] & 0x8)
2683                         cmd->se_cmd_flags |= SCF_FUA;
2684                 break;
2685         case VARIABLE_LENGTH_CMD:
2686                 service_action = get_unaligned_be16(&cdb[8]);
2687                 switch (service_action) {
2688                 case XDWRITEREAD_32:
2689                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2690                         if (sector_ret)
2691                                 goto out_unsupported_cdb;
2692                         size = transport_get_size(sectors, cdb, cmd);
2693                         /*
2694                          * Use WRITE_32 and READ_32 opcodes for the emulated
2695                          * XDWRITE_READ_32 logic.
2696                          */
2697                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2698                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2699
2700                         /*
2701                          * Do now allow BIDI commands for passthrough mode.
2702                          */
2703                         if (passthrough)
2704                                 goto out_unsupported_cdb;
2705
2706                         /*
2707                          * Setup BIDI XOR callback to be run during after I/O
2708                          * completion.
2709                          */
2710                         cmd->transport_complete_callback = &transport_xor_callback;
2711                         if (cdb[1] & 0x8)
2712                                 cmd->se_cmd_flags |= SCF_FUA;
2713                         break;
2714                 case WRITE_SAME_32:
2715                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2716                         if (sector_ret)
2717                                 goto out_unsupported_cdb;
2718
2719                         if (sectors)
2720                                 size = transport_get_size(1, cdb, cmd);
2721                         else {
2722                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2723                                        " supported\n");
2724                                 goto out_invalid_cdb_field;
2725                         }
2726
2727                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2728                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2729
2730                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2731                                 goto out_invalid_cdb_field;
2732                         if (!passthrough)
2733                                 cmd->execute_task = target_emulate_write_same;
2734                         break;
2735                 default:
2736                         pr_err("VARIABLE_LENGTH_CMD service action"
2737                                 " 0x%04x not supported\n", service_action);
2738                         goto out_unsupported_cdb;
2739                 }
2740                 break;
2741         case MAINTENANCE_IN:
2742                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2743                         /* MAINTENANCE_IN from SCC-2 */
2744                         /*
2745                          * Check for emulated MI_REPORT_TARGET_PGS.
2746                          */
2747                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2748                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2749                                 cmd->execute_task =
2750                                         target_emulate_report_target_port_groups;
2751                         }
2752                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2753                                (cdb[8] << 8) | cdb[9];
2754                 } else {
2755                         /* GPCMD_SEND_KEY from multi media commands */
2756                         size = (cdb[8] << 8) + cdb[9];
2757                 }
2758                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2759                 break;
2760         case MODE_SELECT:
2761                 size = cdb[4];
2762                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2763                 break;
2764         case MODE_SELECT_10:
2765                 size = (cdb[7] << 8) + cdb[8];
2766                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2767                 break;
2768         case MODE_SENSE:
2769                 size = cdb[4];
2770                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2771                 if (!passthrough)
2772                         cmd->execute_task = target_emulate_modesense;
2773                 break;
2774         case MODE_SENSE_10:
2775                 size = (cdb[7] << 8) + cdb[8];
2776                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2777                 if (!passthrough)
2778                         cmd->execute_task = target_emulate_modesense;
2779                 break;
2780         case GPCMD_READ_BUFFER_CAPACITY:
2781         case GPCMD_SEND_OPC:
2782         case LOG_SELECT:
2783         case LOG_SENSE:
2784                 size = (cdb[7] << 8) + cdb[8];
2785                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2786                 break;
2787         case READ_BLOCK_LIMITS:
2788                 size = READ_BLOCK_LEN;
2789                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2790                 break;
2791         case GPCMD_GET_CONFIGURATION:
2792         case GPCMD_READ_FORMAT_CAPACITIES:
2793         case GPCMD_READ_DISC_INFO:
2794         case GPCMD_READ_TRACK_RZONE_INFO:
2795                 size = (cdb[7] << 8) + cdb[8];
2796                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2797                 break;
2798         case PERSISTENT_RESERVE_IN:
2799                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2800                         cmd->execute_task = target_scsi3_emulate_pr_in;
2801                 size = (cdb[7] << 8) + cdb[8];
2802                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2803                 break;
2804         case PERSISTENT_RESERVE_OUT:
2805                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2806                         cmd->execute_task = target_scsi3_emulate_pr_out;
2807                 size = (cdb[7] << 8) + cdb[8];
2808                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2809                 break;
2810         case GPCMD_MECHANISM_STATUS:
2811         case GPCMD_READ_DVD_STRUCTURE:
2812                 size = (cdb[8] << 8) + cdb[9];
2813                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2814                 break;
2815         case READ_POSITION:
2816                 size = READ_POSITION_LEN;
2817                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2818                 break;
2819         case MAINTENANCE_OUT:
2820                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2821                         /* MAINTENANCE_OUT from SCC-2
2822                          *
2823                          * Check for emulated MO_SET_TARGET_PGS.
2824                          */
2825                         if (cdb[1] == MO_SET_TARGET_PGS &&
2826                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2827                                 cmd->execute_task =
2828                                         target_emulate_set_target_port_groups;
2829                         }
2830
2831                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2832                                (cdb[8] << 8) | cdb[9];
2833                 } else  {
2834                         /* GPCMD_REPORT_KEY from multi media commands */
2835                         size = (cdb[8] << 8) + cdb[9];
2836                 }
2837                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2838                 break;
2839         case INQUIRY:
2840                 size = (cdb[3] << 8) + cdb[4];
2841                 /*
2842                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2843                  * See spc4r17 section 5.3
2844                  */
2845                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2846                         cmd->sam_task_attr = MSG_HEAD_TAG;
2847                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2848                 if (!passthrough)
2849                         cmd->execute_task = target_emulate_inquiry;
2850                 break;
2851         case READ_BUFFER:
2852                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2853                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2854                 break;
2855         case READ_CAPACITY:
2856                 size = READ_CAP_LEN;
2857                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2858                 if (!passthrough)
2859                         cmd->execute_task = target_emulate_readcapacity;
2860                 break;
2861         case READ_MEDIA_SERIAL_NUMBER:
2862         case SECURITY_PROTOCOL_IN:
2863         case SECURITY_PROTOCOL_OUT:
2864                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2865                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2866                 break;
2867         case SERVICE_ACTION_IN:
2868                 switch (cmd->t_task_cdb[1] & 0x1f) {
2869                 case SAI_READ_CAPACITY_16:
2870                         if (!passthrough)
2871                                 cmd->execute_task =
2872                                         target_emulate_readcapacity_16;
2873                         break;
2874                 default:
2875                         if (passthrough)
2876                                 break;
2877
2878                         pr_err("Unsupported SA: 0x%02x\n",
2879                                 cmd->t_task_cdb[1] & 0x1f);
2880                         goto out_unsupported_cdb;
2881                 }
2882                 /*FALLTHROUGH*/
2883         case ACCESS_CONTROL_IN:
2884         case ACCESS_CONTROL_OUT:
2885         case EXTENDED_COPY:
2886         case READ_ATTRIBUTE:
2887         case RECEIVE_COPY_RESULTS:
2888         case WRITE_ATTRIBUTE:
2889                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2890                        (cdb[12] << 8) | cdb[13];
2891                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2892                 break;
2893         case RECEIVE_DIAGNOSTIC:
2894         case SEND_DIAGNOSTIC:
2895                 size = (cdb[3] << 8) | cdb[4];
2896                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2897                 break;
2898 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2899 #if 0
2900         case GPCMD_READ_CD:
2901                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2902                 size = (2336 * sectors);
2903                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2904                 break;
2905 #endif
2906         case READ_TOC:
2907                 size = cdb[8];
2908                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2909                 break;
2910         case REQUEST_SENSE:
2911                 size = cdb[4];
2912                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2913                 if (!passthrough)
2914                         cmd->execute_task = target_emulate_request_sense;
2915                 break;
2916         case READ_ELEMENT_STATUS:
2917                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2918                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2919                 break;
2920         case WRITE_BUFFER:
2921                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2922                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2923                 break;
2924         case RESERVE:
2925         case RESERVE_10:
2926                 /*
2927                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2928                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2929                  */
2930                 if (cdb[0] == RESERVE_10)
2931                         size = (cdb[7] << 8) | cdb[8];
2932                 else
2933                         size = cmd->data_length;
2934
2935                 /*
2936                  * Setup the legacy emulated handler for SPC-2 and
2937                  * >= SPC-3 compatible reservation handling (CRH=1)
2938                  * Otherwise, we assume the underlying SCSI logic is
2939                  * is running in SPC_PASSTHROUGH, and wants reservations
2940                  * emulation disabled.
2941                  */
2942                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2943                         cmd->execute_task = target_scsi2_reservation_reserve;
2944                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2945                 break;
2946         case RELEASE:
2947         case RELEASE_10:
2948                 /*
2949                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2950                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2951                 */
2952                 if (cdb[0] == RELEASE_10)
2953                         size = (cdb[7] << 8) | cdb[8];
2954                 else
2955                         size = cmd->data_length;
2956
2957                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2958                         cmd->execute_task = target_scsi2_reservation_release;
2959                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2960                 break;
2961         case SYNCHRONIZE_CACHE:
2962         case 0x91: /* SYNCHRONIZE_CACHE_16: */
2963                 /*
2964                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2965                  */
2966                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2967                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2968                         cmd->t_task_lba = transport_lba_32(cdb);
2969                 } else {
2970                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2971                         cmd->t_task_lba = transport_lba_64(cdb);
2972                 }
2973                 if (sector_ret)
2974                         goto out_unsupported_cdb;
2975
2976                 size = transport_get_size(sectors, cdb, cmd);
2977                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2978
2979                 if (passthrough)
2980                         break;
2981
2982                 /*
2983                  * Check to ensure that LBA + Range does not exceed past end of
2984                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2985                  */
2986                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2987                         if (transport_cmd_get_valid_sectors(cmd) < 0)
2988                                 goto out_invalid_cdb_field;
2989                 }
2990                 cmd->execute_task = target_emulate_synchronize_cache;
2991                 break;
2992         case UNMAP:
2993                 size = get_unaligned_be16(&cdb[7]);
2994                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2995                 if (!passthrough)
2996                         cmd->execute_task = target_emulate_unmap;
2997                 break;
2998         case WRITE_SAME_16:
2999                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3000                 if (sector_ret)
3001                         goto out_unsupported_cdb;
3002
3003                 if (sectors)
3004                         size = transport_get_size(1, cdb, cmd);
3005                 else {
3006                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3007                         goto out_invalid_cdb_field;
3008                 }
3009
3010                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3011                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3012
3013                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3014                         goto out_invalid_cdb_field;
3015                 if (!passthrough)
3016                         cmd->execute_task = target_emulate_write_same;
3017                 break;
3018         case WRITE_SAME:
3019                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3020                 if (sector_ret)
3021                         goto out_unsupported_cdb;
3022
3023                 if (sectors)
3024                         size = transport_get_size(1, cdb, cmd);
3025                 else {
3026                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3027                         goto out_invalid_cdb_field;
3028                 }
3029
3030                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3031                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3032                 /*
3033                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3034                  * of byte 1 bit 3 UNMAP instead of original reserved field
3035                  */
3036                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3037                         goto out_invalid_cdb_field;
3038                 if (!passthrough)
3039                         cmd->execute_task = target_emulate_write_same;
3040                 break;
3041         case ALLOW_MEDIUM_REMOVAL:
3042         case ERASE:
3043         case REZERO_UNIT:
3044         case SEEK_10:
3045         case SPACE:
3046         case START_STOP:
3047         case TEST_UNIT_READY:
3048         case VERIFY:
3049         case WRITE_FILEMARKS:
3050                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3051                 if (!passthrough)
3052                         cmd->execute_task = target_emulate_noop;
3053                 break;
3054         case GPCMD_CLOSE_TRACK:
3055         case INITIALIZE_ELEMENT_STATUS:
3056         case GPCMD_LOAD_UNLOAD:
3057         case GPCMD_SET_SPEED:
3058         case MOVE_MEDIUM:
3059                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3060                 break;
3061         case REPORT_LUNS:
3062                 cmd->execute_task = target_report_luns;
3063                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3064                 /*
3065                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3066                  * See spc4r17 section 5.3
3067                  */
3068                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3069                         cmd->sam_task_attr = MSG_HEAD_TAG;
3070                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3071                 break;
3072         default:
3073                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3074                         " 0x%02x, sending CHECK_CONDITION.\n",
3075                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3076                 goto out_unsupported_cdb;
3077         }
3078
3079         if (size != cmd->data_length) {
3080                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3081                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3082                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3083                                 cmd->data_length, size, cdb[0]);
3084
3085                 cmd->cmd_spdtl = size;
3086
3087                 if (cmd->data_direction == DMA_TO_DEVICE) {
3088                         pr_err("Rejecting underflow/overflow"
3089                                         " WRITE data\n");
3090                         goto out_invalid_cdb_field;
3091                 }
3092                 /*
3093                  * Reject READ_* or WRITE_* with overflow/underflow for
3094                  * type SCF_SCSI_DATA_SG_IO_CDB.
3095                  */
3096                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3097                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3098                                 " CDB on non 512-byte sector setup subsystem"
3099                                 " plugin: %s\n", dev->transport->name);
3100                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3101                         goto out_invalid_cdb_field;
3102                 }
3103
3104                 if (size > cmd->data_length) {
3105                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3106                         cmd->residual_count = (size - cmd->data_length);
3107                 } else {
3108                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3109                         cmd->residual_count = (cmd->data_length - size);
3110                 }
3111                 cmd->data_length = size;
3112         }
3113
3114         /* reject any command that we don't have a handler for */
3115         if (!(passthrough || cmd->execute_task ||
3116              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3117                 goto out_unsupported_cdb;
3118
3119         /* Let's limit control cdbs to a page, for simplicity's sake. */
3120         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3121             size > PAGE_SIZE)
3122                 goto out_invalid_cdb_field;
3123
3124         transport_set_supported_SAM_opcode(cmd);
3125         return ret;
3126
3127 out_unsupported_cdb:
3128         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3129         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3130         return -EINVAL;
3131 out_invalid_cdb_field:
3132         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3133         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3134         return -EINVAL;
3135 }
3136
3137 /*
3138  * Called from I/O completion to determine which dormant/delayed
3139  * and ordered cmds need to have their tasks added to the execution queue.
3140  */
3141 static void transport_complete_task_attr(struct se_cmd *cmd)
3142 {
3143         struct se_device *dev = cmd->se_dev;
3144         struct se_cmd *cmd_p, *cmd_tmp;
3145         int new_active_tasks = 0;
3146
3147         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3148                 atomic_dec(&dev->simple_cmds);
3149                 smp_mb__after_atomic_dec();
3150                 dev->dev_cur_ordered_id++;
3151                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3152                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3153                         cmd->se_ordered_id);
3154         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3155                 dev->dev_cur_ordered_id++;
3156                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3157                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3158                         cmd->se_ordered_id);
3159         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3160                 atomic_dec(&dev->dev_ordered_sync);
3161                 smp_mb__after_atomic_dec();
3162
3163                 dev->dev_cur_ordered_id++;
3164                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3165                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3166         }
3167         /*
3168          * Process all commands up to the last received
3169          * ORDERED task attribute which requires another blocking
3170          * boundary
3171          */
3172         spin_lock(&dev->delayed_cmd_lock);
3173         list_for_each_entry_safe(cmd_p, cmd_tmp,
3174                         &dev->delayed_cmd_list, se_delayed_node) {
3175
3176                 list_del(&cmd_p->se_delayed_node);
3177                 spin_unlock(&dev->delayed_cmd_lock);
3178
3179                 pr_debug("Calling add_tasks() for"
3180                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3181                         " Dormant -> Active, se_ordered_id: %u\n",
3182                         cmd_p->t_task_cdb[0],
3183                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3184
3185                 transport_add_tasks_from_cmd(cmd_p);
3186                 new_active_tasks++;
3187
3188                 spin_lock(&dev->delayed_cmd_lock);
3189                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3190                         break;
3191         }
3192         spin_unlock(&dev->delayed_cmd_lock);
3193         /*
3194          * If new tasks have become active, wake up the transport thread
3195          * to do the processing of the Active tasks.
3196          */
3197         if (new_active_tasks != 0)
3198                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3199 }
3200
3201 static void transport_complete_qf(struct se_cmd *cmd)
3202 {
3203         int ret = 0;
3204
3205         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3206                 transport_complete_task_attr(cmd);
3207
3208         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3209                 ret = cmd->se_tfo->queue_status(cmd);
3210                 if (ret)
3211                         goto out;
3212         }
3213
3214         switch (cmd->data_direction) {
3215         case DMA_FROM_DEVICE:
3216                 ret = cmd->se_tfo->queue_data_in(cmd);
3217                 break;
3218         case DMA_TO_DEVICE:
3219                 if (cmd->t_bidi_data_sg) {
3220                         ret = cmd->se_tfo->queue_data_in(cmd);
3221                         if (ret < 0)
3222                                 break;
3223                 }
3224                 /* Fall through for DMA_TO_DEVICE */
3225         case DMA_NONE:
3226                 ret = cmd->se_tfo->queue_status(cmd);
3227                 break;
3228         default:
3229                 break;
3230         }
3231
3232 out:
3233         if (ret < 0) {
3234                 transport_handle_queue_full(cmd, cmd->se_dev);
3235                 return;
3236         }
3237         transport_lun_remove_cmd(cmd);
3238         transport_cmd_check_stop_to_fabric(cmd);
3239 }
3240
3241 static void transport_handle_queue_full(
3242         struct se_cmd *cmd,
3243         struct se_device *dev)
3244 {
3245         spin_lock_irq(&dev->qf_cmd_lock);
3246         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3247         atomic_inc(&dev->dev_qf_count);
3248         smp_mb__after_atomic_inc();
3249         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3250
3251         schedule_work(&cmd->se_dev->qf_work_queue);
3252 }
3253
3254 static void target_complete_ok_work(struct work_struct *work)
3255 {
3256         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3257         int reason = 0, ret;
3258
3259         /*
3260          * Check if we need to move delayed/dormant tasks from cmds on the
3261          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3262          * Attribute.
3263          */
3264         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3265                 transport_complete_task_attr(cmd);
3266         /*
3267          * Check to schedule QUEUE_FULL work, or execute an existing
3268          * cmd->transport_qf_callback()
3269          */
3270         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3271                 schedule_work(&cmd->se_dev->qf_work_queue);
3272
3273         /*
3274          * Check if we need to retrieve a sense buffer from
3275          * the struct se_cmd in question.
3276          */
3277         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3278                 if (transport_get_sense_data(cmd) < 0)
3279                         reason = TCM_NON_EXISTENT_LUN;
3280
3281                 /*
3282                  * Only set when an struct se_task->task_scsi_status returned
3283                  * a non GOOD status.
3284                  */
3285                 if (cmd->scsi_status) {
3286                         ret = transport_send_check_condition_and_sense(
3287                                         cmd, reason, 1);
3288                         if (ret == -EAGAIN || ret == -ENOMEM)
3289                                 goto queue_full;
3290
3291                         transport_lun_remove_cmd(cmd);
3292                         transport_cmd_check_stop_to_fabric(cmd);
3293                         return;
3294                 }
3295         }
3296         /*
3297          * Check for a callback, used by amongst other things
3298          * XDWRITE_READ_10 emulation.
3299          */
3300         if (cmd->transport_complete_callback)
3301                 cmd->transport_complete_callback(cmd);
3302
3303         switch (cmd->data_direction) {
3304         case DMA_FROM_DEVICE:
3305                 spin_lock(&cmd->se_lun->lun_sep_lock);
3306                 if (cmd->se_lun->lun_sep) {
3307                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3308                                         cmd->data_length;
3309                 }
3310                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3311
3312                 ret = cmd->se_tfo->queue_data_in(cmd);
3313                 if (ret == -EAGAIN || ret == -ENOMEM)
3314                         goto queue_full;
3315                 break;
3316         case DMA_TO_DEVICE:
3317                 spin_lock(&cmd->se_lun->lun_sep_lock);
3318                 if (cmd->se_lun->lun_sep) {
3319                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3320                                 cmd->data_length;
3321                 }
3322                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3323                 /*
3324                  * Check if we need to send READ payload for BIDI-COMMAND
3325                  */
3326                 if (cmd->t_bidi_data_sg) {
3327                         spin_lock(&cmd->se_lun->lun_sep_lock);
3328                         if (cmd->se_lun->lun_sep) {
3329                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3330                                         cmd->data_length;
3331                         }
3332                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3333                         ret = cmd->se_tfo->queue_data_in(cmd);
3334                         if (ret == -EAGAIN || ret == -ENOMEM)
3335                                 goto queue_full;
3336                         break;
3337                 }
3338                 /* Fall through for DMA_TO_DEVICE */
3339         case DMA_NONE:
3340                 ret = cmd->se_tfo->queue_status(cmd);
3341                 if (ret == -EAGAIN || ret == -ENOMEM)
3342                         goto queue_full;
3343                 break;
3344         default:
3345                 break;
3346         }
3347
3348         transport_lun_remove_cmd(cmd);
3349         transport_cmd_check_stop_to_fabric(cmd);
3350         return;
3351
3352 queue_full:
3353         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3354                 " data_direction: %d\n", cmd, cmd->data_direction);
3355         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3356         transport_handle_queue_full(cmd, cmd->se_dev);
3357 }
3358
3359 static void transport_free_dev_tasks(struct se_cmd *cmd)
3360 {
3361         struct se_task *task, *task_tmp;
3362         unsigned long flags;
3363         LIST_HEAD(dispose_list);
3364
3365         spin_lock_irqsave(&cmd->t_state_lock, flags);
3366         list_for_each_entry_safe(task, task_tmp,
3367                                 &cmd->t_task_list, t_list) {
3368                 if (!(task->task_flags & TF_ACTIVE))
3369                         list_move_tail(&task->t_list, &dispose_list);
3370         }
3371         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3372
3373         while (!list_empty(&dispose_list)) {
3374                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3375
3376                 if (task->task_sg != cmd->t_data_sg &&
3377                     task->task_sg != cmd->t_bidi_data_sg)
3378                         kfree(task->task_sg);
3379
3380                 list_del(&task->t_list);
3381
3382                 cmd->se_dev->transport->free_task(task);
3383         }
3384 }
3385
3386 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3387 {
3388         struct scatterlist *sg;
3389         int count;
3390
3391         for_each_sg(sgl, sg, nents, count)
3392                 __free_page(sg_page(sg));
3393
3394         kfree(sgl);
3395 }
3396
3397 static inline void transport_free_pages(struct se_cmd *cmd)
3398 {
3399         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3400                 return;
3401
3402         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3403         cmd->t_data_sg = NULL;
3404         cmd->t_data_nents = 0;
3405
3406         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3407         cmd->t_bidi_data_sg = NULL;
3408         cmd->t_bidi_data_nents = 0;
3409 }
3410
3411 /**
3412  * transport_release_cmd - free a command
3413  * @cmd:       command to free
3414  *
3415  * This routine unconditionally frees a command, and reference counting
3416  * or list removal must be done in the caller.
3417  */
3418 static void transport_release_cmd(struct se_cmd *cmd)
3419 {
3420         BUG_ON(!cmd->se_tfo);
3421
3422         if (cmd->se_tmr_req)
3423                 core_tmr_release_req(cmd->se_tmr_req);
3424         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3425                 kfree(cmd->t_task_cdb);
3426         /*
3427          * If this cmd has been setup with target_get_sess_cmd(), drop
3428          * the kref and call ->release_cmd() in kref callback.
3429          */
3430          if (cmd->check_release != 0) {
3431                 target_put_sess_cmd(cmd->se_sess, cmd);
3432                 return;
3433         }
3434         cmd->se_tfo->release_cmd(cmd);
3435 }
3436
3437 /**
3438  * transport_put_cmd - release a reference to a command
3439  * @cmd:       command to release
3440  *
3441  * This routine releases our reference to the command and frees it if possible.
3442  */
3443 static void transport_put_cmd(struct se_cmd *cmd)
3444 {
3445         unsigned long flags;
3446         int free_tasks = 0;
3447
3448         spin_lock_irqsave(&cmd->t_state_lock, flags);
3449         if (atomic_read(&cmd->t_fe_count)) {
3450                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3451                         goto out_busy;
3452         }
3453
3454         if (atomic_read(&cmd->t_se_count)) {
3455                 if (!atomic_dec_and_test(&cmd->t_se_count))
3456                         goto out_busy;
3457         }
3458
3459         if (atomic_read(&cmd->transport_dev_active)) {
3460                 atomic_set(&cmd->transport_dev_active, 0);
3461                 transport_all_task_dev_remove_state(cmd);
3462                 free_tasks = 1;
3463         }
3464         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3465
3466         if (free_tasks != 0)
3467                 transport_free_dev_tasks(cmd);
3468
3469         transport_free_pages(cmd);
3470         transport_release_cmd(cmd);
3471         return;
3472 out_busy:
3473         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3474 }
3475
3476 /*
3477  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3478  * allocating in the core.
3479  * @cmd:  Associated se_cmd descriptor
3480  * @mem:  SGL style memory for TCM WRITE / READ
3481  * @sg_mem_num: Number of SGL elements
3482  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3483  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3484  *
3485  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3486  * of parameters.
3487  */
3488 int transport_generic_map_mem_to_cmd(
3489         struct se_cmd *cmd,
3490         struct scatterlist *sgl,
3491         u32 sgl_count,
3492         struct scatterlist *sgl_bidi,
3493         u32 sgl_bidi_count)
3494 {
3495         if (!sgl || !sgl_count)
3496                 return 0;
3497
3498         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3499             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3500                 /*
3501                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3502                  * scatterlists already have been set to follow what the fabric
3503                  * passes for the original expected data transfer length.
3504                  */
3505                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3506                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3507                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3508                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3509                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3510                         return -EINVAL;
3511                 }
3512
3513                 cmd->t_data_sg = sgl;
3514                 cmd->t_data_nents = sgl_count;
3515
3516                 if (sgl_bidi && sgl_bidi_count) {
3517                         cmd->t_bidi_data_sg = sgl_bidi;
3518                         cmd->t_bidi_data_nents = sgl_bidi_count;
3519                 }
3520                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3521         }
3522
3523         return 0;
3524 }
3525 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3526
3527 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3528 {
3529         struct scatterlist *sg = cmd->t_data_sg;
3530
3531         BUG_ON(!sg);
3532         /*
3533          * We need to take into account a possible offset here for fabrics like
3534          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3535          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3536          */
3537         return kmap(sg_page(sg)) + sg->offset;
3538 }
3539 EXPORT_SYMBOL(transport_kmap_first_data_page);
3540
3541 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3542 {
3543         kunmap(sg_page(cmd->t_data_sg));
3544 }
3545 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3546
3547 static int
3548 transport_generic_get_mem(struct se_cmd *cmd)
3549 {
3550         u32 length = cmd->data_length;
3551         unsigned int nents;
3552         struct page *page;
3553         int i = 0;
3554
3555         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3556         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3557         if (!cmd->t_data_sg)
3558                 return -ENOMEM;
3559
3560         cmd->t_data_nents = nents;
3561         sg_init_table(cmd->t_data_sg, nents);
3562
3563         while (length) {
3564                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3565                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3566                 if (!page)
3567                         goto out;
3568
3569                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3570                 length -= page_len;
3571                 i++;
3572         }
3573         return 0;
3574
3575 out:
3576         while (i >= 0) {
3577                 __free_page(sg_page(&cmd->t_data_sg[i]));
3578                 i--;
3579         }
3580         kfree(cmd->t_data_sg);
3581         cmd->t_data_sg = NULL;
3582         return -ENOMEM;
3583 }
3584
3585 /* Reduce sectors if they are too long for the device */
3586 static inline sector_t transport_limit_task_sectors(
3587         struct se_device *dev,
3588         unsigned long long lba,
3589         sector_t sectors)
3590 {
3591         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3592
3593         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3594                 if ((lba + sectors) > transport_dev_end_lba(dev))
3595                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3596
3597         return sectors;
3598 }
3599
3600
3601 /*
3602  * This function can be used by HW target mode drivers to create a linked
3603  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3604  * This is intended to be called during the completion path by TCM Core
3605  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3606  */
3607 void transport_do_task_sg_chain(struct se_cmd *cmd)
3608 {
3609         struct scatterlist *sg_first = NULL;
3610         struct scatterlist *sg_prev = NULL;
3611         int sg_prev_nents = 0;
3612         struct scatterlist *sg;
3613         struct se_task *task;
3614         u32 chained_nents = 0;
3615         int i;
3616
3617         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3618
3619         /*
3620          * Walk the struct se_task list and setup scatterlist chains
3621          * for each contiguously allocated struct se_task->task_sg[].
3622          */
3623         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3624                 if (!task->task_sg)
3625                         continue;
3626
3627                 if (!sg_first) {
3628                         sg_first = task->task_sg;
3629                         chained_nents = task->task_sg_nents;
3630                 } else {
3631                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3632                         chained_nents += task->task_sg_nents;
3633                 }
3634                 /*
3635                  * For the padded tasks, use the extra SGL vector allocated
3636                  * in transport_allocate_data_tasks() for the sg_prev_nents
3637                  * offset into sg_chain() above.
3638                  *
3639                  * We do not need the padding for the last task (or a single
3640                  * task), but in that case we will never use the sg_prev_nents
3641                  * value below which would be incorrect.
3642                  */
3643                 sg_prev_nents = (task->task_sg_nents + 1);
3644                 sg_prev = task->task_sg;
3645         }
3646         /*
3647          * Setup the starting pointer and total t_tasks_sg_linked_no including
3648          * padding SGs for linking and to mark the end.
3649          */
3650         cmd->t_tasks_sg_chained = sg_first;
3651         cmd->t_tasks_sg_chained_no = chained_nents;
3652
3653         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3654                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3655                 cmd->t_tasks_sg_chained_no);
3656
3657         for_each_sg(cmd->t_tasks_sg_chained, sg,
3658                         cmd->t_tasks_sg_chained_no, i) {
3659
3660                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3661                         i, sg, sg_page(sg), sg->length, sg->offset);
3662                 if (sg_is_chain(sg))
3663                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3664                 if (sg_is_last(sg))
3665                         pr_debug("SG: %p sg_is_last=1\n", sg);
3666         }
3667 }
3668 EXPORT_SYMBOL(transport_do_task_sg_chain);
3669
3670 /*
3671  * Break up cmd into chunks transport can handle
3672  */
3673 static int
3674 transport_allocate_data_tasks(struct se_cmd *cmd,
3675         enum dma_data_direction data_direction,
3676         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3677 {
3678         struct se_device *dev = cmd->se_dev;
3679         int task_count, i;
3680         unsigned long long lba;
3681         sector_t sectors, dev_max_sectors;
3682         u32 sector_size;
3683
3684         if (transport_cmd_get_valid_sectors(cmd) < 0)
3685                 return -EINVAL;
3686
3687         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3688         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3689
3690         WARN_ON(cmd->data_length % sector_size);
3691
3692         lba = cmd->t_task_lba;
3693         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3694         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3695
3696         /*
3697          * If we need just a single task reuse the SG list in the command
3698          * and avoid a lot of work.
3699          */
3700         if (task_count == 1) {
3701                 struct se_task *task;
3702                 unsigned long flags;
3703
3704                 task = transport_generic_get_task(cmd, data_direction);
3705                 if (!task)
3706                         return -ENOMEM;
3707
3708                 task->task_sg = cmd_sg;
3709                 task->task_sg_nents = sgl_nents;
3710
3711                 task->task_lba = lba;
3712                 task->task_sectors = sectors;
3713                 task->task_size = task->task_sectors * sector_size;
3714
3715                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3716                 list_add_tail(&task->t_list, &cmd->t_task_list);
3717                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3718
3719                 return task_count;
3720         }
3721
3722         for (i = 0; i < task_count; i++) {
3723                 struct se_task *task;
3724                 unsigned int task_size, task_sg_nents_padded;
3725                 struct scatterlist *sg;
3726                 unsigned long flags;
3727                 int count;
3728
3729                 task = transport_generic_get_task(cmd, data_direction);
3730                 if (!task)
3731                         return -ENOMEM;
3732
3733                 task->task_lba = lba;
3734                 task->task_sectors = min(sectors, dev_max_sectors);
3735                 task->task_size = task->task_sectors * sector_size;
3736
3737                 /*
3738                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3739                  * in order to calculate the number per task SGL entries
3740                  */
3741                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3742                 /*
3743                  * Check if the fabric module driver is requesting that all
3744                  * struct se_task->task_sg[] be chained together..  If so,
3745                  * then allocate an extra padding SG entry for linking and
3746                  * marking the end of the chained SGL for every task except
3747                  * the last one for (task_count > 1) operation, or skipping
3748                  * the extra padding for the (task_count == 1) case.
3749                  */
3750                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3751                         task_sg_nents_padded = (task->task_sg_nents + 1);
3752                 } else
3753                         task_sg_nents_padded = task->task_sg_nents;
3754
3755                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3756                                         task_sg_nents_padded, GFP_KERNEL);
3757                 if (!task->task_sg) {
3758                         cmd->se_dev->transport->free_task(task);
3759                         return -ENOMEM;
3760                 }
3761
3762                 sg_init_table(task->task_sg, task_sg_nents_padded);
3763
3764                 task_size = task->task_size;
3765
3766                 /* Build new sgl, only up to task_size */
3767                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3768                         if (cmd_sg->length > task_size)
3769                                 break;
3770
3771                         *sg = *cmd_sg;
3772                         task_size -= cmd_sg->length;
3773                         cmd_sg = sg_next(cmd_sg);
3774                 }
3775
3776                 lba += task->task_sectors;
3777                 sectors -= task->task_sectors;
3778
3779                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3780                 list_add_tail(&task->t_list, &cmd->t_task_list);
3781                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3782         }
3783
3784         return task_count;
3785 }
3786
3787 static int
3788 transport_allocate_control_task(struct se_cmd *cmd)
3789 {
3790         struct se_task *task;
3791         unsigned long flags;
3792
3793         task = transport_generic_get_task(cmd, cmd->data_direction);
3794         if (!task)
3795                 return -ENOMEM;
3796
3797         task->task_sg = cmd->t_data_sg;
3798         task->task_size = cmd->data_length;
3799         task->task_sg_nents = cmd->t_data_nents;
3800
3801         spin_lock_irqsave(&cmd->t_state_lock, flags);
3802         list_add_tail(&task->t_list, &cmd->t_task_list);
3803         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3804
3805         /* Success! Return number of tasks allocated */
3806         return 1;
3807 }
3808
3809 /*
3810  * Allocate any required ressources to execute the command, and either place
3811  * it on the execution queue if possible.  For writes we might not have the
3812  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3813  */
3814 int transport_generic_new_cmd(struct se_cmd *cmd)
3815 {
3816         struct se_device *dev = cmd->se_dev;
3817         int task_cdbs, task_cdbs_bidi = 0;
3818         int set_counts = 1;
3819         int ret = 0;
3820
3821         /*
3822          * Determine is the TCM fabric module has already allocated physical
3823          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3824          * beforehand.
3825          */
3826         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3827             cmd->data_length) {
3828                 ret = transport_generic_get_mem(cmd);
3829                 if (ret < 0)
3830                         goto out_fail;
3831         }
3832
3833         /*
3834          * For BIDI command set up the read tasks first.
3835          */
3836         if (cmd->t_bidi_data_sg &&
3837             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3838                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3839
3840                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3841                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3842                                 cmd->t_bidi_data_nents);
3843                 if (task_cdbs_bidi <= 0)
3844                         goto out_fail;
3845
3846                 atomic_inc(&cmd->t_fe_count);
3847                 atomic_inc(&cmd->t_se_count);
3848                 set_counts = 0;
3849         }
3850
3851         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3852                 task_cdbs = transport_allocate_data_tasks(cmd,
3853                                         cmd->data_direction, cmd->t_data_sg,
3854                                         cmd->t_data_nents);
3855         } else {
3856                 task_cdbs = transport_allocate_control_task(cmd);
3857         }
3858
3859         if (task_cdbs < 0)
3860                 goto out_fail;
3861         else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3862                 cmd->t_state = TRANSPORT_COMPLETE;
3863                 atomic_set(&cmd->t_transport_active, 1);
3864                 INIT_WORK(&cmd->work, target_complete_ok_work);
3865                 queue_work(target_completion_wq, &cmd->work);
3866                 return 0;
3867         }
3868
3869         if (set_counts) {
3870                 atomic_inc(&cmd->t_fe_count);
3871                 atomic_inc(&cmd->t_se_count);
3872         }
3873
3874         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3875         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3876         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3877
3878         /*
3879          * For WRITEs, let the fabric know its buffer is ready..
3880          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3881          * will be added to the struct se_device execution queue after its WRITE
3882          * data has arrived. (ie: It gets handled by the transport processing
3883          * thread a second time)
3884          */
3885         if (cmd->data_direction == DMA_TO_DEVICE) {
3886                 transport_add_tasks_to_state_queue(cmd);
3887                 return transport_generic_write_pending(cmd);
3888         }
3889         /*
3890          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3891          * to the execution queue.
3892          */
3893         transport_execute_tasks(cmd);
3894         return 0;
3895
3896 out_fail:
3897         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3898         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3899         return -EINVAL;
3900 }
3901 EXPORT_SYMBOL(transport_generic_new_cmd);
3902
3903 /*      transport_generic_process_write():
3904  *
3905  *
3906  */
3907 void transport_generic_process_write(struct se_cmd *cmd)
3908 {
3909         transport_execute_tasks(cmd);
3910 }
3911 EXPORT_SYMBOL(transport_generic_process_write);
3912
3913 static void transport_write_pending_qf(struct se_cmd *cmd)
3914 {
3915         int ret;
3916
3917         ret = cmd->se_tfo->write_pending(cmd);
3918         if (ret == -EAGAIN || ret == -ENOMEM) {
3919                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3920                          cmd);
3921                 transport_handle_queue_full(cmd, cmd->se_dev);
3922         }
3923 }
3924
3925 static int transport_generic_write_pending(struct se_cmd *cmd)
3926 {
3927         unsigned long flags;
3928         int ret;
3929
3930         spin_lock_irqsave(&cmd->t_state_lock, flags);
3931         cmd->t_state = TRANSPORT_WRITE_PENDING;
3932         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3933
3934         /*
3935          * Clear the se_cmd for WRITE_PENDING status in order to set
3936          * cmd->t_transport_active=0 so that transport_generic_handle_data
3937          * can be called from HW target mode interrupt code.  This is safe
3938          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3939          * because the se_cmd->se_lun pointer is not being cleared.
3940          */
3941         transport_cmd_check_stop(cmd, 1, 0);
3942
3943         /*
3944          * Call the fabric write_pending function here to let the
3945          * frontend know that WRITE buffers are ready.
3946          */
3947         ret = cmd->se_tfo->write_pending(cmd);
3948         if (ret == -EAGAIN || ret == -ENOMEM)
3949                 goto queue_full;
3950         else if (ret < 0)
3951                 return ret;
3952
3953         return 1;
3954
3955 queue_full:
3956         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3957         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3958         transport_handle_queue_full(cmd, cmd->se_dev);
3959         return 0;
3960 }
3961
3962 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3963 {
3964         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3965                 if (wait_for_tasks && cmd->se_tmr_req)
3966                          transport_wait_for_tasks(cmd);
3967
3968                 transport_release_cmd(cmd);
3969         } else {
3970                 if (wait_for_tasks)
3971                         transport_wait_for_tasks(cmd);
3972
3973                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3974
3975                 if (cmd->se_lun)
3976                         transport_lun_remove_cmd(cmd);
3977
3978                 transport_free_dev_tasks(cmd);
3979
3980                 transport_put_cmd(cmd);
3981         }
3982 }
3983 EXPORT_SYMBOL(transport_generic_free_cmd);
3984
3985 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3986  * @se_sess:    session to reference
3987  * @se_cmd:     command descriptor to add
3988  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
3989  */
3990 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
3991                         bool ack_kref)
3992 {
3993         unsigned long flags;
3994
3995         kref_init(&se_cmd->cmd_kref);
3996         /*
3997          * Add a second kref if the fabric caller is expecting to handle
3998          * fabric acknowledgement that requires two target_put_sess_cmd()
3999          * invocations before se_cmd descriptor release.
4000          */
4001         if (ack_kref == true)
4002                 kref_get(&se_cmd->cmd_kref);
4003
4004         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4005         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4006         se_cmd->check_release = 1;
4007         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4008 }
4009 EXPORT_SYMBOL(target_get_sess_cmd);
4010
4011 static void target_release_cmd_kref(struct kref *kref)
4012 {
4013         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4014         struct se_session *se_sess = se_cmd->se_sess;
4015         unsigned long flags;
4016
4017         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4018         if (list_empty(&se_cmd->se_cmd_list)) {
4019                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4020                 WARN_ON(1);
4021                 return;
4022         }
4023         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4024                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4025                 complete(&se_cmd->cmd_wait_comp);
4026                 return;
4027         }
4028         list_del(&se_cmd->se_cmd_list);
4029         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4030
4031         se_cmd->se_tfo->release_cmd(se_cmd);
4032 }
4033
4034 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4035  * @se_sess:    session to reference
4036  * @se_cmd:     command descriptor to drop
4037  */
4038 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4039 {
4040         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4041 }
4042 EXPORT_SYMBOL(target_put_sess_cmd);
4043
4044 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4045  * @se_sess:    session to split
4046  */
4047 void target_splice_sess_cmd_list(struct se_session *se_sess)
4048 {
4049         struct se_cmd *se_cmd;
4050         unsigned long flags;
4051
4052         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4053         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4054
4055         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4056         se_sess->sess_tearing_down = 1;
4057
4058         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4059
4060         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4061                 se_cmd->cmd_wait_set = 1;
4062
4063         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4064 }
4065 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4066
4067 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4068  * @se_sess:    session to wait for active I/O
4069  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4070  */
4071 void target_wait_for_sess_cmds(
4072         struct se_session *se_sess,
4073         int wait_for_tasks)
4074 {
4075         struct se_cmd *se_cmd, *tmp_cmd;
4076         bool rc = false;
4077
4078         list_for_each_entry_safe(se_cmd, tmp_cmd,
4079                                 &se_sess->sess_wait_list, se_cmd_list) {
4080                 list_del(&se_cmd->se_cmd_list);
4081
4082                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4083                         " %d\n", se_cmd, se_cmd->t_state,
4084                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4085
4086                 if (wait_for_tasks) {
4087                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4088                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4089                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4090
4091                         rc = transport_wait_for_tasks(se_cmd);
4092
4093                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4094                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4095                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4096                 }
4097
4098                 if (!rc) {
4099                         wait_for_completion(&se_cmd->cmd_wait_comp);
4100                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4101                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4102                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4103                 }
4104
4105                 se_cmd->se_tfo->release_cmd(se_cmd);
4106         }
4107 }
4108 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4109
4110 /*      transport_lun_wait_for_tasks():
4111  *
4112  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4113  *      an struct se_lun to be successfully shutdown.
4114  */
4115 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4116 {
4117         unsigned long flags;
4118         int ret;
4119         /*
4120          * If the frontend has already requested this struct se_cmd to
4121          * be stopped, we can safely ignore this struct se_cmd.
4122          */
4123         spin_lock_irqsave(&cmd->t_state_lock, flags);
4124         if (atomic_read(&cmd->t_transport_stop)) {
4125                 atomic_set(&cmd->transport_lun_stop, 0);
4126                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4127                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4128                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4129                 transport_cmd_check_stop(cmd, 1, 0);
4130                 return -EPERM;
4131         }
4132         atomic_set(&cmd->transport_lun_fe_stop, 1);
4133         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4134
4135         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4136
4137         ret = transport_stop_tasks_for_cmd(cmd);
4138
4139         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4140                         " %d\n", cmd, cmd->t_task_list_num, ret);
4141         if (!ret) {
4142                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4143                                 cmd->se_tfo->get_task_tag(cmd));
4144                 wait_for_completion(&cmd->transport_lun_stop_comp);
4145                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4146                                 cmd->se_tfo->get_task_tag(cmd));
4147         }
4148         transport_remove_cmd_from_queue(cmd);
4149
4150         return 0;
4151 }
4152
4153 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4154 {
4155         struct se_cmd *cmd = NULL;
4156         unsigned long lun_flags, cmd_flags;
4157         /*
4158          * Do exception processing and return CHECK_CONDITION status to the
4159          * Initiator Port.
4160          */
4161         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4162         while (!list_empty(&lun->lun_cmd_list)) {
4163                 cmd = list_first_entry(&lun->lun_cmd_list,
4164                        struct se_cmd, se_lun_node);
4165                 list_del(&cmd->se_lun_node);
4166
4167                 atomic_set(&cmd->transport_lun_active, 0);
4168                 /*
4169                  * This will notify iscsi_target_transport.c:
4170                  * transport_cmd_check_stop() that a LUN shutdown is in
4171                  * progress for the iscsi_cmd_t.
4172                  */
4173                 spin_lock(&cmd->t_state_lock);
4174                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4175                         "_lun_stop for  ITT: 0x%08x\n",
4176                         cmd->se_lun->unpacked_lun,
4177                         cmd->se_tfo->get_task_tag(cmd));
4178                 atomic_set(&cmd->transport_lun_stop, 1);
4179                 spin_unlock(&cmd->t_state_lock);
4180
4181                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4182
4183                 if (!cmd->se_lun) {
4184                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4185                                 cmd->se_tfo->get_task_tag(cmd),
4186                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4187                         BUG();
4188                 }
4189                 /*
4190                  * If the Storage engine still owns the iscsi_cmd_t, determine
4191                  * and/or stop its context.
4192                  */
4193                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4194                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4195                         cmd->se_tfo->get_task_tag(cmd));
4196
4197                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4198                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4199                         continue;
4200                 }
4201
4202                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4203                         "_wait_for_tasks(): SUCCESS\n",
4204                         cmd->se_lun->unpacked_lun,
4205                         cmd->se_tfo->get_task_tag(cmd));
4206
4207                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4208                 if (!atomic_read(&cmd->transport_dev_active)) {
4209                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4210                         goto check_cond;
4211                 }
4212                 atomic_set(&cmd->transport_dev_active, 0);
4213                 transport_all_task_dev_remove_state(cmd);
4214                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4215
4216                 transport_free_dev_tasks(cmd);
4217                 /*
4218                  * The Storage engine stopped this struct se_cmd before it was
4219                  * send to the fabric frontend for delivery back to the
4220                  * Initiator Node.  Return this SCSI CDB back with an
4221                  * CHECK_CONDITION status.
4222                  */
4223 check_cond:
4224                 transport_send_check_condition_and_sense(cmd,
4225                                 TCM_NON_EXISTENT_LUN, 0);
4226                 /*
4227                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4228                  * be released, notify the waiting thread now that LU has
4229                  * finished accessing it.
4230                  */
4231                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4232                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4233                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4234                                 " struct se_cmd: %p ITT: 0x%08x\n",
4235                                 lun->unpacked_lun,
4236                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4237
4238                         spin_unlock_irqrestore(&cmd->t_state_lock,
4239                                         cmd_flags);
4240                         transport_cmd_check_stop(cmd, 1, 0);
4241                         complete(&cmd->transport_lun_fe_stop_comp);
4242                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4243                         continue;
4244                 }
4245                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4246                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4247
4248                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4249                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4250         }
4251         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4252 }
4253
4254 static int transport_clear_lun_thread(void *p)
4255 {
4256         struct se_lun *lun = p;
4257
4258         __transport_clear_lun_from_sessions(lun);
4259         complete(&lun->lun_shutdown_comp);
4260
4261         return 0;
4262 }
4263
4264 int transport_clear_lun_from_sessions(struct se_lun *lun)
4265 {
4266         struct task_struct *kt;
4267
4268         kt = kthread_run(transport_clear_lun_thread, lun,
4269                         "tcm_cl_%u", lun->unpacked_lun);
4270         if (IS_ERR(kt)) {
4271                 pr_err("Unable to start clear_lun thread\n");
4272                 return PTR_ERR(kt);
4273         }
4274         wait_for_completion(&lun->lun_shutdown_comp);
4275
4276         return 0;
4277 }
4278
4279 /**
4280  * transport_wait_for_tasks - wait for completion to occur
4281  * @cmd:        command to wait
4282  *
4283  * Called from frontend fabric context to wait for storage engine
4284  * to pause and/or release frontend generated struct se_cmd.
4285  */
4286 bool transport_wait_for_tasks(struct se_cmd *cmd)
4287 {
4288         unsigned long flags;
4289
4290         spin_lock_irqsave(&cmd->t_state_lock, flags);
4291         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4292                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4293                 return false;
4294         }
4295         /*
4296          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4297          * has been set in transport_set_supported_SAM_opcode().
4298          */
4299         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4300                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4301                 return false;
4302         }
4303         /*
4304          * If we are already stopped due to an external event (ie: LUN shutdown)
4305          * sleep until the connection can have the passed struct se_cmd back.
4306          * The cmd->transport_lun_stopped_sem will be upped by
4307          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4308          * has completed its operation on the struct se_cmd.
4309          */
4310         if (atomic_read(&cmd->transport_lun_stop)) {
4311
4312                 pr_debug("wait_for_tasks: Stopping"
4313                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4314                         "_stop_comp); for ITT: 0x%08x\n",
4315                         cmd->se_tfo->get_task_tag(cmd));
4316                 /*
4317                  * There is a special case for WRITES where a FE exception +
4318                  * LUN shutdown means ConfigFS context is still sleeping on
4319                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4320                  * We go ahead and up transport_lun_stop_comp just to be sure
4321                  * here.
4322                  */
4323                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4324                 complete(&cmd->transport_lun_stop_comp);
4325                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4326                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4327
4328                 transport_all_task_dev_remove_state(cmd);
4329                 /*
4330                  * At this point, the frontend who was the originator of this
4331                  * struct se_cmd, now owns the structure and can be released through
4332                  * normal means below.
4333                  */
4334                 pr_debug("wait_for_tasks: Stopped"
4335                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4336                         "stop_comp); for ITT: 0x%08x\n",
4337                         cmd->se_tfo->get_task_tag(cmd));
4338
4339                 atomic_set(&cmd->transport_lun_stop, 0);
4340         }
4341         if (!atomic_read(&cmd->t_transport_active) ||
4342              atomic_read(&cmd->t_transport_aborted)) {
4343                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4344                 return false;
4345         }
4346
4347         atomic_set(&cmd->t_transport_stop, 1);
4348
4349         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4350                 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4351                 cmd, cmd->se_tfo->get_task_tag(cmd),
4352                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4353
4354         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4355
4356         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4357
4358         wait_for_completion(&cmd->t_transport_stop_comp);
4359
4360         spin_lock_irqsave(&cmd->t_state_lock, flags);
4361         atomic_set(&cmd->t_transport_active, 0);
4362         atomic_set(&cmd->t_transport_stop, 0);
4363
4364         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4365                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4366                 cmd->se_tfo->get_task_tag(cmd));
4367
4368         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4369
4370         return true;
4371 }
4372 EXPORT_SYMBOL(transport_wait_for_tasks);
4373
4374 static int transport_get_sense_codes(
4375         struct se_cmd *cmd,
4376         u8 *asc,
4377         u8 *ascq)
4378 {
4379         *asc = cmd->scsi_asc;
4380         *ascq = cmd->scsi_ascq;
4381
4382         return 0;
4383 }
4384
4385 static int transport_set_sense_codes(
4386         struct se_cmd *cmd,
4387         u8 asc,
4388         u8 ascq)
4389 {
4390         cmd->scsi_asc = asc;
4391         cmd->scsi_ascq = ascq;
4392
4393         return 0;
4394 }
4395
4396 int transport_send_check_condition_and_sense(
4397         struct se_cmd *cmd,
4398         u8 reason,
4399         int from_transport)
4400 {
4401         unsigned char *buffer = cmd->sense_buffer;
4402         unsigned long flags;
4403         int offset;
4404         u8 asc = 0, ascq = 0;
4405
4406         spin_lock_irqsave(&cmd->t_state_lock, flags);
4407         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4408                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4409                 return 0;
4410         }
4411         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4412         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4413
4414         if (!reason && from_transport)
4415                 goto after_reason;
4416
4417         if (!from_transport)
4418                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4419         /*
4420          * Data Segment and SenseLength of the fabric response PDU.
4421          *
4422          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4423          * from include/scsi/scsi_cmnd.h
4424          */
4425         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4426                                 TRANSPORT_SENSE_BUFFER);
4427         /*
4428          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4429          * SENSE KEY values from include/scsi/scsi.h
4430          */
4431         switch (reason) {
4432         case TCM_NON_EXISTENT_LUN:
4433                 /* CURRENT ERROR */
4434                 buffer[offset] = 0x70;
4435                 /* ILLEGAL REQUEST */
4436                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4437                 /* LOGICAL UNIT NOT SUPPORTED */
4438                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4439                 break;
4440         case TCM_UNSUPPORTED_SCSI_OPCODE:
4441         case TCM_SECTOR_COUNT_TOO_MANY:
4442                 /* CURRENT ERROR */
4443                 buffer[offset] = 0x70;
4444                 /* ILLEGAL REQUEST */
4445                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4446                 /* INVALID COMMAND OPERATION CODE */
4447                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4448                 break;
4449         case TCM_UNKNOWN_MODE_PAGE:
4450                 /* CURRENT ERROR */
4451                 buffer[offset] = 0x70;
4452                 /* ILLEGAL REQUEST */
4453                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4454                 /* INVALID FIELD IN CDB */
4455                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4456                 break;
4457         case TCM_CHECK_CONDITION_ABORT_CMD:
4458                 /* CURRENT ERROR */
4459                 buffer[offset] = 0x70;
4460                 /* ABORTED COMMAND */
4461                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4462                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4463                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4464                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4465                 break;
4466         case TCM_INCORRECT_AMOUNT_OF_DATA:
4467                 /* CURRENT ERROR */
4468                 buffer[offset] = 0x70;
4469                 /* ABORTED COMMAND */
4470                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4471                 /* WRITE ERROR */
4472                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4473                 /* NOT ENOUGH UNSOLICITED DATA */
4474                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4475                 break;
4476         case TCM_INVALID_CDB_FIELD:
4477                 /* CURRENT ERROR */
4478                 buffer[offset] = 0x70;
4479                 /* ABORTED COMMAND */
4480                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4481                 /* INVALID FIELD IN CDB */
4482                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4483                 break;
4484         case TCM_INVALID_PARAMETER_LIST:
4485                 /* CURRENT ERROR */
4486                 buffer[offset] = 0x70;
4487                 /* ABORTED COMMAND */
4488                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4489                 /* INVALID FIELD IN PARAMETER LIST */
4490                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4491                 break;
4492         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4493                 /* CURRENT ERROR */
4494                 buffer[offset] = 0x70;
4495                 /* ABORTED COMMAND */
4496                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4497                 /* WRITE ERROR */
4498                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4499                 /* UNEXPECTED_UNSOLICITED_DATA */
4500                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4501                 break;
4502         case TCM_SERVICE_CRC_ERROR:
4503                 /* CURRENT ERROR */
4504                 buffer[offset] = 0x70;
4505                 /* ABORTED COMMAND */
4506                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4507                 /* PROTOCOL SERVICE CRC ERROR */
4508                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4509                 /* N/A */
4510                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4511                 break;
4512         case TCM_SNACK_REJECTED:
4513                 /* CURRENT ERROR */
4514                 buffer[offset] = 0x70;
4515                 /* ABORTED COMMAND */
4516                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4517                 /* READ ERROR */
4518                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4519                 /* FAILED RETRANSMISSION REQUEST */
4520                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4521                 break;
4522         case TCM_WRITE_PROTECTED:
4523                 /* CURRENT ERROR */
4524                 buffer[offset] = 0x70;
4525                 /* DATA PROTECT */
4526                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4527                 /* WRITE PROTECTED */
4528                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4529                 break;
4530         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4531                 /* CURRENT ERROR */
4532                 buffer[offset] = 0x70;
4533                 /* UNIT ATTENTION */
4534                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4535                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4536                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4537                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4538                 break;
4539         case TCM_CHECK_CONDITION_NOT_READY:
4540                 /* CURRENT ERROR */
4541                 buffer[offset] = 0x70;
4542                 /* Not Ready */
4543                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4544                 transport_get_sense_codes(cmd, &asc, &ascq);
4545                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4546                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4547                 break;
4548         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4549         default:
4550                 /* CURRENT ERROR */
4551                 buffer[offset] = 0x70;
4552                 /* ILLEGAL REQUEST */
4553                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4554                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4555                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4556                 break;
4557         }
4558         /*
4559          * This code uses linux/include/scsi/scsi.h SAM status codes!
4560          */
4561         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4562         /*
4563          * Automatically padded, this value is encoded in the fabric's
4564          * data_length response PDU containing the SCSI defined sense data.
4565          */
4566         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4567
4568 after_reason:
4569         return cmd->se_tfo->queue_status(cmd);
4570 }
4571 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4572
4573 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4574 {
4575         int ret = 0;
4576
4577         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4578                 if (!send_status ||
4579                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4580                         return 1;
4581 #if 0
4582                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4583                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4584                         cmd->t_task_cdb[0],
4585                         cmd->se_tfo->get_task_tag(cmd));
4586 #endif
4587                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4588                 cmd->se_tfo->queue_status(cmd);
4589                 ret = 1;
4590         }
4591         return ret;
4592 }
4593 EXPORT_SYMBOL(transport_check_aborted_status);
4594
4595 void transport_send_task_abort(struct se_cmd *cmd)
4596 {
4597         unsigned long flags;
4598
4599         spin_lock_irqsave(&cmd->t_state_lock, flags);
4600         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4601                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4602                 return;
4603         }
4604         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4605
4606         /*
4607          * If there are still expected incoming fabric WRITEs, we wait
4608          * until until they have completed before sending a TASK_ABORTED
4609          * response.  This response with TASK_ABORTED status will be
4610          * queued back to fabric module by transport_check_aborted_status().
4611          */
4612         if (cmd->data_direction == DMA_TO_DEVICE) {
4613                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4614                         atomic_inc(&cmd->t_transport_aborted);
4615                         smp_mb__after_atomic_inc();
4616                 }
4617         }
4618         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4619 #if 0
4620         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4621                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4622                 cmd->se_tfo->get_task_tag(cmd));
4623 #endif
4624         cmd->se_tfo->queue_status(cmd);
4625 }
4626
4627 static int transport_generic_do_tmr(struct se_cmd *cmd)
4628 {
4629         struct se_device *dev = cmd->se_dev;
4630         struct se_tmr_req *tmr = cmd->se_tmr_req;
4631         int ret;
4632
4633         switch (tmr->function) {
4634         case TMR_ABORT_TASK:
4635                 tmr->response = TMR_FUNCTION_REJECTED;
4636                 break;
4637         case TMR_ABORT_TASK_SET:
4638         case TMR_CLEAR_ACA:
4639         case TMR_CLEAR_TASK_SET:
4640                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4641                 break;
4642         case TMR_LUN_RESET:
4643                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4644                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4645                                          TMR_FUNCTION_REJECTED;
4646                 break;
4647         case TMR_TARGET_WARM_RESET:
4648                 tmr->response = TMR_FUNCTION_REJECTED;
4649                 break;
4650         case TMR_TARGET_COLD_RESET:
4651                 tmr->response = TMR_FUNCTION_REJECTED;
4652                 break;
4653         default:
4654                 pr_err("Uknown TMR function: 0x%02x.\n",
4655                                 tmr->function);
4656                 tmr->response = TMR_FUNCTION_REJECTED;
4657                 break;
4658         }
4659
4660         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4661         cmd->se_tfo->queue_tm_rsp(cmd);
4662
4663         transport_cmd_check_stop_to_fabric(cmd);
4664         return 0;
4665 }
4666
4667 /*      transport_processing_thread():
4668  *
4669  *
4670  */
4671 static int transport_processing_thread(void *param)
4672 {
4673         int ret;
4674         struct se_cmd *cmd;
4675         struct se_device *dev = param;
4676
4677         while (!kthread_should_stop()) {
4678                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4679                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4680                                 kthread_should_stop());
4681                 if (ret < 0)
4682                         goto out;
4683
4684 get_cmd:
4685                 __transport_execute_tasks(dev);
4686
4687                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4688                 if (!cmd)
4689                         continue;
4690
4691                 switch (cmd->t_state) {
4692                 case TRANSPORT_NEW_CMD:
4693                         BUG();
4694                         break;
4695                 case TRANSPORT_NEW_CMD_MAP:
4696                         if (!cmd->se_tfo->new_cmd_map) {
4697                                 pr_err("cmd->se_tfo->new_cmd_map is"
4698                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4699                                 BUG();
4700                         }
4701                         ret = cmd->se_tfo->new_cmd_map(cmd);
4702                         if (ret < 0) {
4703                                 transport_generic_request_failure(cmd);
4704                                 break;
4705                         }
4706                         ret = transport_generic_new_cmd(cmd);
4707                         if (ret < 0) {
4708                                 transport_generic_request_failure(cmd);
4709                                 break;
4710                         }
4711                         break;
4712                 case TRANSPORT_PROCESS_WRITE:
4713                         transport_generic_process_write(cmd);
4714                         break;
4715                 case TRANSPORT_PROCESS_TMR:
4716                         transport_generic_do_tmr(cmd);
4717                         break;
4718                 case TRANSPORT_COMPLETE_QF_WP:
4719                         transport_write_pending_qf(cmd);
4720                         break;
4721                 case TRANSPORT_COMPLETE_QF_OK:
4722                         transport_complete_qf(cmd);
4723                         break;
4724                 default:
4725                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4726                                 "i_state: %d on SE LUN: %u\n",
4727                                 cmd->t_state,
4728                                 cmd->se_tfo->get_task_tag(cmd),
4729                                 cmd->se_tfo->get_cmd_state(cmd),
4730                                 cmd->se_lun->unpacked_lun);
4731                         BUG();
4732                 }
4733
4734                 goto get_cmd;
4735         }
4736
4737 out:
4738         WARN_ON(!list_empty(&dev->state_task_list));
4739         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4740         dev->process_thread = NULL;
4741         return 0;
4742 }