cf996d81cfcbc2472f5832911edad0dde92251b5
[linux-2.6.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_backend.h>
49 #include <target/target_core_fabric.h>
50 #include <target/target_core_configfs.h>
51
52 #include "target_core_internal.h"
53 #include "target_core_alua.h"
54 #include "target_core_pr.h"
55 #include "target_core_ua.h"
56
57 static int sub_api_initialized;
58
59 static struct workqueue_struct *target_completion_wq;
60 static struct kmem_cache *se_sess_cache;
61 struct kmem_cache *se_tmr_req_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74                 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void transport_generic_request_failure(struct se_cmd *);
81 static void target_complete_ok_work(struct work_struct *work);
82
83 int init_se_kmem_caches(void)
84 {
85         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
86                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
87                         0, NULL);
88         if (!se_tmr_req_cache) {
89                 pr_err("kmem_cache_create() for struct se_tmr_req"
90                                 " failed\n");
91                 goto out;
92         }
93         se_sess_cache = kmem_cache_create("se_sess_cache",
94                         sizeof(struct se_session), __alignof__(struct se_session),
95                         0, NULL);
96         if (!se_sess_cache) {
97                 pr_err("kmem_cache_create() for struct se_session"
98                                 " failed\n");
99                 goto out_free_tmr_req_cache;
100         }
101         se_ua_cache = kmem_cache_create("se_ua_cache",
102                         sizeof(struct se_ua), __alignof__(struct se_ua),
103                         0, NULL);
104         if (!se_ua_cache) {
105                 pr_err("kmem_cache_create() for struct se_ua failed\n");
106                 goto out_free_sess_cache;
107         }
108         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
109                         sizeof(struct t10_pr_registration),
110                         __alignof__(struct t10_pr_registration), 0, NULL);
111         if (!t10_pr_reg_cache) {
112                 pr_err("kmem_cache_create() for struct t10_pr_registration"
113                                 " failed\n");
114                 goto out_free_ua_cache;
115         }
116         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
117                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
118                         0, NULL);
119         if (!t10_alua_lu_gp_cache) {
120                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
121                                 " failed\n");
122                 goto out_free_pr_reg_cache;
123         }
124         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
125                         sizeof(struct t10_alua_lu_gp_member),
126                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
127         if (!t10_alua_lu_gp_mem_cache) {
128                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
129                                 "cache failed\n");
130                 goto out_free_lu_gp_cache;
131         }
132         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
133                         sizeof(struct t10_alua_tg_pt_gp),
134                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
135         if (!t10_alua_tg_pt_gp_cache) {
136                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137                                 "cache failed\n");
138                 goto out_free_lu_gp_mem_cache;
139         }
140         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
141                         "t10_alua_tg_pt_gp_mem_cache",
142                         sizeof(struct t10_alua_tg_pt_gp_member),
143                         __alignof__(struct t10_alua_tg_pt_gp_member),
144                         0, NULL);
145         if (!t10_alua_tg_pt_gp_mem_cache) {
146                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147                                 "mem_t failed\n");
148                 goto out_free_tg_pt_gp_cache;
149         }
150
151         target_completion_wq = alloc_workqueue("target_completion",
152                                                WQ_MEM_RECLAIM, 0);
153         if (!target_completion_wq)
154                 goto out_free_tg_pt_gp_mem_cache;
155
156         return 0;
157
158 out_free_tg_pt_gp_mem_cache:
159         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
160 out_free_tg_pt_gp_cache:
161         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
162 out_free_lu_gp_mem_cache:
163         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 out_free_lu_gp_cache:
165         kmem_cache_destroy(t10_alua_lu_gp_cache);
166 out_free_pr_reg_cache:
167         kmem_cache_destroy(t10_pr_reg_cache);
168 out_free_ua_cache:
169         kmem_cache_destroy(se_ua_cache);
170 out_free_sess_cache:
171         kmem_cache_destroy(se_sess_cache);
172 out_free_tmr_req_cache:
173         kmem_cache_destroy(se_tmr_req_cache);
174 out:
175         return -ENOMEM;
176 }
177
178 void release_se_kmem_caches(void)
179 {
180         destroy_workqueue(target_completion_wq);
181         kmem_cache_destroy(se_tmr_req_cache);
182         kmem_cache_destroy(se_sess_cache);
183         kmem_cache_destroy(se_ua_cache);
184         kmem_cache_destroy(t10_pr_reg_cache);
185         kmem_cache_destroy(t10_alua_lu_gp_cache);
186         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
187         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
188         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
189 }
190
191 /* This code ensures unique mib indexes are handed out. */
192 static DEFINE_SPINLOCK(scsi_mib_index_lock);
193 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
194
195 /*
196  * Allocate a new row index for the entry type specified
197  */
198 u32 scsi_get_new_index(scsi_index_t type)
199 {
200         u32 new_index;
201
202         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
203
204         spin_lock(&scsi_mib_index_lock);
205         new_index = ++scsi_mib_index[type];
206         spin_unlock(&scsi_mib_index_lock);
207
208         return new_index;
209 }
210
211 static void transport_init_queue_obj(struct se_queue_obj *qobj)
212 {
213         atomic_set(&qobj->queue_cnt, 0);
214         INIT_LIST_HEAD(&qobj->qobj_list);
215         init_waitqueue_head(&qobj->thread_wq);
216         spin_lock_init(&qobj->cmd_queue_lock);
217 }
218
219 void transport_subsystem_check_init(void)
220 {
221         int ret;
222
223         if (sub_api_initialized)
224                 return;
225
226         ret = request_module("target_core_iblock");
227         if (ret != 0)
228                 pr_err("Unable to load target_core_iblock\n");
229
230         ret = request_module("target_core_file");
231         if (ret != 0)
232                 pr_err("Unable to load target_core_file\n");
233
234         ret = request_module("target_core_pscsi");
235         if (ret != 0)
236                 pr_err("Unable to load target_core_pscsi\n");
237
238         ret = request_module("target_core_stgt");
239         if (ret != 0)
240                 pr_err("Unable to load target_core_stgt\n");
241
242         sub_api_initialized = 1;
243         return;
244 }
245
246 struct se_session *transport_init_session(void)
247 {
248         struct se_session *se_sess;
249
250         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
251         if (!se_sess) {
252                 pr_err("Unable to allocate struct se_session from"
253                                 " se_sess_cache\n");
254                 return ERR_PTR(-ENOMEM);
255         }
256         INIT_LIST_HEAD(&se_sess->sess_list);
257         INIT_LIST_HEAD(&se_sess->sess_acl_list);
258         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
259         INIT_LIST_HEAD(&se_sess->sess_wait_list);
260         spin_lock_init(&se_sess->sess_cmd_lock);
261
262         return se_sess;
263 }
264 EXPORT_SYMBOL(transport_init_session);
265
266 /*
267  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
268  */
269 void __transport_register_session(
270         struct se_portal_group *se_tpg,
271         struct se_node_acl *se_nacl,
272         struct se_session *se_sess,
273         void *fabric_sess_ptr)
274 {
275         unsigned char buf[PR_REG_ISID_LEN];
276
277         se_sess->se_tpg = se_tpg;
278         se_sess->fabric_sess_ptr = fabric_sess_ptr;
279         /*
280          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
281          *
282          * Only set for struct se_session's that will actually be moving I/O.
283          * eg: *NOT* discovery sessions.
284          */
285         if (se_nacl) {
286                 /*
287                  * If the fabric module supports an ISID based TransportID,
288                  * save this value in binary from the fabric I_T Nexus now.
289                  */
290                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
291                         memset(&buf[0], 0, PR_REG_ISID_LEN);
292                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
293                                         &buf[0], PR_REG_ISID_LEN);
294                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
295                 }
296                 spin_lock_irq(&se_nacl->nacl_sess_lock);
297                 /*
298                  * The se_nacl->nacl_sess pointer will be set to the
299                  * last active I_T Nexus for each struct se_node_acl.
300                  */
301                 se_nacl->nacl_sess = se_sess;
302
303                 list_add_tail(&se_sess->sess_acl_list,
304                               &se_nacl->acl_sess_list);
305                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
306         }
307         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
308
309         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
310                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
311 }
312 EXPORT_SYMBOL(__transport_register_session);
313
314 void transport_register_session(
315         struct se_portal_group *se_tpg,
316         struct se_node_acl *se_nacl,
317         struct se_session *se_sess,
318         void *fabric_sess_ptr)
319 {
320         spin_lock_bh(&se_tpg->session_lock);
321         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
322         spin_unlock_bh(&se_tpg->session_lock);
323 }
324 EXPORT_SYMBOL(transport_register_session);
325
326 void transport_deregister_session_configfs(struct se_session *se_sess)
327 {
328         struct se_node_acl *se_nacl;
329         unsigned long flags;
330         /*
331          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
332          */
333         se_nacl = se_sess->se_node_acl;
334         if (se_nacl) {
335                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
336                 list_del(&se_sess->sess_acl_list);
337                 /*
338                  * If the session list is empty, then clear the pointer.
339                  * Otherwise, set the struct se_session pointer from the tail
340                  * element of the per struct se_node_acl active session list.
341                  */
342                 if (list_empty(&se_nacl->acl_sess_list))
343                         se_nacl->nacl_sess = NULL;
344                 else {
345                         se_nacl->nacl_sess = container_of(
346                                         se_nacl->acl_sess_list.prev,
347                                         struct se_session, sess_acl_list);
348                 }
349                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
350         }
351 }
352 EXPORT_SYMBOL(transport_deregister_session_configfs);
353
354 void transport_free_session(struct se_session *se_sess)
355 {
356         kmem_cache_free(se_sess_cache, se_sess);
357 }
358 EXPORT_SYMBOL(transport_free_session);
359
360 void transport_deregister_session(struct se_session *se_sess)
361 {
362         struct se_portal_group *se_tpg = se_sess->se_tpg;
363         struct se_node_acl *se_nacl;
364         unsigned long flags;
365
366         if (!se_tpg) {
367                 transport_free_session(se_sess);
368                 return;
369         }
370
371         spin_lock_irqsave(&se_tpg->session_lock, flags);
372         list_del(&se_sess->sess_list);
373         se_sess->se_tpg = NULL;
374         se_sess->fabric_sess_ptr = NULL;
375         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
376
377         /*
378          * Determine if we need to do extra work for this initiator node's
379          * struct se_node_acl if it had been previously dynamically generated.
380          */
381         se_nacl = se_sess->se_node_acl;
382         if (se_nacl) {
383                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384                 if (se_nacl->dynamic_node_acl) {
385                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
386                                         se_tpg)) {
387                                 list_del(&se_nacl->acl_list);
388                                 se_tpg->num_node_acls--;
389                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
390
391                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
392                                 core_free_device_list_for_node(se_nacl, se_tpg);
393                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
394                                                 se_nacl);
395                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
396                         }
397                 }
398                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
399         }
400
401         transport_free_session(se_sess);
402
403         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
404                 se_tpg->se_tpg_tfo->get_fabric_name());
405 }
406 EXPORT_SYMBOL(transport_deregister_session);
407
408 /*
409  * Called with cmd->t_state_lock held.
410  */
411 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
412 {
413         struct se_device *dev = cmd->se_dev;
414         struct se_task *task;
415         unsigned long flags;
416
417         if (!dev)
418                 return;
419
420         list_for_each_entry(task, &cmd->t_task_list, t_list) {
421                 if (task->task_flags & TF_ACTIVE)
422                         continue;
423
424                 spin_lock_irqsave(&dev->execute_task_lock, flags);
425                 if (task->t_state_active) {
426                         pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
427                                 cmd->se_tfo->get_task_tag(cmd), dev, task);
428
429                         list_del(&task->t_state_list);
430                         atomic_dec(&cmd->t_task_cdbs_ex_left);
431                         task->t_state_active = false;
432                 }
433                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
434         }
435
436 }
437
438 /*      transport_cmd_check_stop():
439  *
440  *      'transport_off = 1' determines if t_transport_active should be cleared.
441  *      'transport_off = 2' determines if task_dev_state should be removed.
442  *
443  *      A non-zero u8 t_state sets cmd->t_state.
444  *      Returns 1 when command is stopped, else 0.
445  */
446 static int transport_cmd_check_stop(
447         struct se_cmd *cmd,
448         int transport_off,
449         u8 t_state)
450 {
451         unsigned long flags;
452
453         spin_lock_irqsave(&cmd->t_state_lock, flags);
454         /*
455          * Determine if IOCTL context caller in requesting the stopping of this
456          * command for LUN shutdown purposes.
457          */
458         if (atomic_read(&cmd->transport_lun_stop)) {
459                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
460                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
461                         cmd->se_tfo->get_task_tag(cmd));
462
463                 atomic_set(&cmd->t_transport_active, 0);
464                 if (transport_off == 2)
465                         transport_all_task_dev_remove_state(cmd);
466                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
467
468                 complete(&cmd->transport_lun_stop_comp);
469                 return 1;
470         }
471         /*
472          * Determine if frontend context caller is requesting the stopping of
473          * this command for frontend exceptions.
474          */
475         if (atomic_read(&cmd->t_transport_stop)) {
476                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
477                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
478                         cmd->se_tfo->get_task_tag(cmd));
479
480                 if (transport_off == 2)
481                         transport_all_task_dev_remove_state(cmd);
482
483                 /*
484                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
485                  * to FE.
486                  */
487                 if (transport_off == 2)
488                         cmd->se_lun = NULL;
489                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
490
491                 complete(&cmd->t_transport_stop_comp);
492                 return 1;
493         }
494         if (transport_off) {
495                 atomic_set(&cmd->t_transport_active, 0);
496                 if (transport_off == 2) {
497                         transport_all_task_dev_remove_state(cmd);
498                         /*
499                          * Clear struct se_cmd->se_lun before the transport_off == 2
500                          * handoff to fabric module.
501                          */
502                         cmd->se_lun = NULL;
503                         /*
504                          * Some fabric modules like tcm_loop can release
505                          * their internally allocated I/O reference now and
506                          * struct se_cmd now.
507                          *
508                          * Fabric modules are expected to return '1' here if the
509                          * se_cmd being passed is released at this point,
510                          * or zero if not being released.
511                          */
512                         if (cmd->se_tfo->check_stop_free != NULL) {
513                                 spin_unlock_irqrestore(
514                                         &cmd->t_state_lock, flags);
515
516                                 return cmd->se_tfo->check_stop_free(cmd);
517                         }
518                 }
519                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520
521                 return 0;
522         } else if (t_state)
523                 cmd->t_state = t_state;
524         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525
526         return 0;
527 }
528
529 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
530 {
531         return transport_cmd_check_stop(cmd, 2, 0);
532 }
533
534 static void transport_lun_remove_cmd(struct se_cmd *cmd)
535 {
536         struct se_lun *lun = cmd->se_lun;
537         unsigned long flags;
538
539         if (!lun)
540                 return;
541
542         spin_lock_irqsave(&cmd->t_state_lock, flags);
543         if (!atomic_read(&cmd->transport_dev_active)) {
544                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545                 goto check_lun;
546         }
547         atomic_set(&cmd->transport_dev_active, 0);
548         transport_all_task_dev_remove_state(cmd);
549         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550
551
552 check_lun:
553         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
554         if (atomic_read(&cmd->transport_lun_active)) {
555                 list_del(&cmd->se_lun_node);
556                 atomic_set(&cmd->transport_lun_active, 0);
557 #if 0
558                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
559                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
560 #endif
561         }
562         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
563 }
564
565 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
566 {
567         if (!cmd->se_tmr_req)
568                 transport_lun_remove_cmd(cmd);
569
570         if (transport_cmd_check_stop_to_fabric(cmd))
571                 return;
572         if (remove) {
573                 transport_remove_cmd_from_queue(cmd);
574                 transport_put_cmd(cmd);
575         }
576 }
577
578 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
579                 bool at_head)
580 {
581         struct se_device *dev = cmd->se_dev;
582         struct se_queue_obj *qobj = &dev->dev_queue_obj;
583         unsigned long flags;
584
585         if (t_state) {
586                 spin_lock_irqsave(&cmd->t_state_lock, flags);
587                 cmd->t_state = t_state;
588                 atomic_set(&cmd->t_transport_active, 1);
589                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
590         }
591
592         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
593
594         /* If the cmd is already on the list, remove it before we add it */
595         if (!list_empty(&cmd->se_queue_node))
596                 list_del(&cmd->se_queue_node);
597         else
598                 atomic_inc(&qobj->queue_cnt);
599
600         if (at_head)
601                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
602         else
603                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
604         atomic_set(&cmd->t_transport_queue_active, 1);
605         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
606
607         wake_up_interruptible(&qobj->thread_wq);
608 }
609
610 static struct se_cmd *
611 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
612 {
613         struct se_cmd *cmd;
614         unsigned long flags;
615
616         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
617         if (list_empty(&qobj->qobj_list)) {
618                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619                 return NULL;
620         }
621         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
622
623         atomic_set(&cmd->t_transport_queue_active, 0);
624
625         list_del_init(&cmd->se_queue_node);
626         atomic_dec(&qobj->queue_cnt);
627         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
628
629         return cmd;
630 }
631
632 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
633 {
634         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
635         unsigned long flags;
636
637         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
638         if (!atomic_read(&cmd->t_transport_queue_active)) {
639                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640                 return;
641         }
642         atomic_set(&cmd->t_transport_queue_active, 0);
643         atomic_dec(&qobj->queue_cnt);
644         list_del_init(&cmd->se_queue_node);
645         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
646
647         if (atomic_read(&cmd->t_transport_queue_active)) {
648                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
649                         cmd->se_tfo->get_task_tag(cmd),
650                         atomic_read(&cmd->t_transport_queue_active));
651         }
652 }
653
654 /*
655  * Completion function used by TCM subsystem plugins (such as FILEIO)
656  * for queueing up response from struct se_subsystem_api->do_task()
657  */
658 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
659 {
660         struct se_task *task = list_entry(cmd->t_task_list.next,
661                                 struct se_task, t_list);
662
663         if (good) {
664                 cmd->scsi_status = SAM_STAT_GOOD;
665                 task->task_scsi_status = GOOD;
666         } else {
667                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
668                 task->task_se_cmd->scsi_sense_reason =
669                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
670
671         }
672
673         transport_complete_task(task, good);
674 }
675 EXPORT_SYMBOL(transport_complete_sync_cache);
676
677 static void target_complete_failure_work(struct work_struct *work)
678 {
679         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
680
681         transport_generic_request_failure(cmd);
682 }
683
684 /*      transport_complete_task():
685  *
686  *      Called from interrupt and non interrupt context depending
687  *      on the transport plugin.
688  */
689 void transport_complete_task(struct se_task *task, int success)
690 {
691         struct se_cmd *cmd = task->task_se_cmd;
692         struct se_device *dev = cmd->se_dev;
693         unsigned long flags;
694
695         spin_lock_irqsave(&cmd->t_state_lock, flags);
696         task->task_flags &= ~TF_ACTIVE;
697
698         /*
699          * See if any sense data exists, if so set the TASK_SENSE flag.
700          * Also check for any other post completion work that needs to be
701          * done by the plugins.
702          */
703         if (dev && dev->transport->transport_complete) {
704                 if (dev->transport->transport_complete(task) != 0) {
705                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
706                         task->task_flags |= TF_HAS_SENSE;
707                         success = 1;
708                 }
709         }
710
711         /*
712          * See if we are waiting for outstanding struct se_task
713          * to complete for an exception condition
714          */
715         if (task->task_flags & TF_REQUEST_STOP) {
716                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
717                 complete(&task->task_stop_comp);
718                 return;
719         }
720
721         if (!success)
722                 cmd->t_tasks_failed = 1;
723
724         /*
725          * Decrement the outstanding t_task_cdbs_left count.  The last
726          * struct se_task from struct se_cmd will complete itself into the
727          * device queue depending upon int success.
728          */
729         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
730                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
731                 return;
732         }
733
734         if (cmd->t_tasks_failed) {
735                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
736                 INIT_WORK(&cmd->work, target_complete_failure_work);
737         } else {
738                 atomic_set(&cmd->t_transport_complete, 1);
739                 INIT_WORK(&cmd->work, target_complete_ok_work);
740         }
741
742         cmd->t_state = TRANSPORT_COMPLETE;
743         atomic_set(&cmd->t_transport_active, 1);
744         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
745
746         queue_work(target_completion_wq, &cmd->work);
747 }
748 EXPORT_SYMBOL(transport_complete_task);
749
750 /*
751  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
752  * struct se_task list are ready to be added to the active execution list
753  * struct se_device
754
755  * Called with se_dev_t->execute_task_lock called.
756  */
757 static inline int transport_add_task_check_sam_attr(
758         struct se_task *task,
759         struct se_task *task_prev,
760         struct se_device *dev)
761 {
762         /*
763          * No SAM Task attribute emulation enabled, add to tail of
764          * execution queue
765          */
766         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
767                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
768                 return 0;
769         }
770         /*
771          * HEAD_OF_QUEUE attribute for received CDB, which means
772          * the first task that is associated with a struct se_cmd goes to
773          * head of the struct se_device->execute_task_list, and task_prev
774          * after that for each subsequent task
775          */
776         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
777                 list_add(&task->t_execute_list,
778                                 (task_prev != NULL) ?
779                                 &task_prev->t_execute_list :
780                                 &dev->execute_task_list);
781
782                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
783                                 " in execution queue\n",
784                                 task->task_se_cmd->t_task_cdb[0]);
785                 return 1;
786         }
787         /*
788          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
789          * transitioned from Dermant -> Active state, and are added to the end
790          * of the struct se_device->execute_task_list
791          */
792         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793         return 0;
794 }
795
796 /*      __transport_add_task_to_execute_queue():
797  *
798  *      Called with se_dev_t->execute_task_lock called.
799  */
800 static void __transport_add_task_to_execute_queue(
801         struct se_task *task,
802         struct se_task *task_prev,
803         struct se_device *dev)
804 {
805         int head_of_queue;
806
807         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
808         atomic_inc(&dev->execute_tasks);
809
810         if (task->t_state_active)
811                 return;
812         /*
813          * Determine if this task needs to go to HEAD_OF_QUEUE for the
814          * state list as well.  Running with SAM Task Attribute emulation
815          * will always return head_of_queue == 0 here
816          */
817         if (head_of_queue)
818                 list_add(&task->t_state_list, (task_prev) ?
819                                 &task_prev->t_state_list :
820                                 &dev->state_task_list);
821         else
822                 list_add_tail(&task->t_state_list, &dev->state_task_list);
823
824         task->t_state_active = true;
825
826         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
827                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
828                 task, dev);
829 }
830
831 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
832 {
833         struct se_device *dev = cmd->se_dev;
834         struct se_task *task;
835         unsigned long flags;
836
837         spin_lock_irqsave(&cmd->t_state_lock, flags);
838         list_for_each_entry(task, &cmd->t_task_list, t_list) {
839                 spin_lock(&dev->execute_task_lock);
840                 if (!task->t_state_active) {
841                         list_add_tail(&task->t_state_list,
842                                       &dev->state_task_list);
843                         task->t_state_active = true;
844
845                         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
846                                 task->task_se_cmd->se_tfo->get_task_tag(
847                                 task->task_se_cmd), task, dev);
848                 }
849                 spin_unlock(&dev->execute_task_lock);
850         }
851         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
852 }
853
854 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
855 {
856         struct se_device *dev = cmd->se_dev;
857         struct se_task *task, *task_prev = NULL;
858
859         list_for_each_entry(task, &cmd->t_task_list, t_list) {
860                 if (!list_empty(&task->t_execute_list))
861                         continue;
862                 /*
863                  * __transport_add_task_to_execute_queue() handles the
864                  * SAM Task Attribute emulation if enabled
865                  */
866                 __transport_add_task_to_execute_queue(task, task_prev, dev);
867                 task_prev = task;
868         }
869 }
870
871 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
872 {
873         unsigned long flags;
874         struct se_device *dev = cmd->se_dev;
875
876         spin_lock_irqsave(&dev->execute_task_lock, flags);
877         __transport_add_tasks_from_cmd(cmd);
878         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
879 }
880
881 void __transport_remove_task_from_execute_queue(struct se_task *task,
882                 struct se_device *dev)
883 {
884         list_del_init(&task->t_execute_list);
885         atomic_dec(&dev->execute_tasks);
886 }
887
888 static void transport_remove_task_from_execute_queue(
889         struct se_task *task,
890         struct se_device *dev)
891 {
892         unsigned long flags;
893
894         if (WARN_ON(list_empty(&task->t_execute_list)))
895                 return;
896
897         spin_lock_irqsave(&dev->execute_task_lock, flags);
898         __transport_remove_task_from_execute_queue(task, dev);
899         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
900 }
901
902 /*
903  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
904  */
905
906 static void target_qf_do_work(struct work_struct *work)
907 {
908         struct se_device *dev = container_of(work, struct se_device,
909                                         qf_work_queue);
910         LIST_HEAD(qf_cmd_list);
911         struct se_cmd *cmd, *cmd_tmp;
912
913         spin_lock_irq(&dev->qf_cmd_lock);
914         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
915         spin_unlock_irq(&dev->qf_cmd_lock);
916
917         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
918                 list_del(&cmd->se_qf_node);
919                 atomic_dec(&dev->dev_qf_count);
920                 smp_mb__after_atomic_dec();
921
922                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
923                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
924                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
925                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
926                         : "UNKNOWN");
927
928                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
929         }
930 }
931
932 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
933 {
934         switch (cmd->data_direction) {
935         case DMA_NONE:
936                 return "NONE";
937         case DMA_FROM_DEVICE:
938                 return "READ";
939         case DMA_TO_DEVICE:
940                 return "WRITE";
941         case DMA_BIDIRECTIONAL:
942                 return "BIDI";
943         default:
944                 break;
945         }
946
947         return "UNKNOWN";
948 }
949
950 void transport_dump_dev_state(
951         struct se_device *dev,
952         char *b,
953         int *bl)
954 {
955         *bl += sprintf(b + *bl, "Status: ");
956         switch (dev->dev_status) {
957         case TRANSPORT_DEVICE_ACTIVATED:
958                 *bl += sprintf(b + *bl, "ACTIVATED");
959                 break;
960         case TRANSPORT_DEVICE_DEACTIVATED:
961                 *bl += sprintf(b + *bl, "DEACTIVATED");
962                 break;
963         case TRANSPORT_DEVICE_SHUTDOWN:
964                 *bl += sprintf(b + *bl, "SHUTDOWN");
965                 break;
966         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
967         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
968                 *bl += sprintf(b + *bl, "OFFLINE");
969                 break;
970         default:
971                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
972                 break;
973         }
974
975         *bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
976                 atomic_read(&dev->execute_tasks), dev->queue_depth);
977         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
978                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
979         *bl += sprintf(b + *bl, "        ");
980 }
981
982 void transport_dump_vpd_proto_id(
983         struct t10_vpd *vpd,
984         unsigned char *p_buf,
985         int p_buf_len)
986 {
987         unsigned char buf[VPD_TMP_BUF_SIZE];
988         int len;
989
990         memset(buf, 0, VPD_TMP_BUF_SIZE);
991         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
992
993         switch (vpd->protocol_identifier) {
994         case 0x00:
995                 sprintf(buf+len, "Fibre Channel\n");
996                 break;
997         case 0x10:
998                 sprintf(buf+len, "Parallel SCSI\n");
999                 break;
1000         case 0x20:
1001                 sprintf(buf+len, "SSA\n");
1002                 break;
1003         case 0x30:
1004                 sprintf(buf+len, "IEEE 1394\n");
1005                 break;
1006         case 0x40:
1007                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1008                                 " Protocol\n");
1009                 break;
1010         case 0x50:
1011                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1012                 break;
1013         case 0x60:
1014                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1015                 break;
1016         case 0x70:
1017                 sprintf(buf+len, "Automation/Drive Interface Transport"
1018                                 " Protocol\n");
1019                 break;
1020         case 0x80:
1021                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1022                 break;
1023         default:
1024                 sprintf(buf+len, "Unknown 0x%02x\n",
1025                                 vpd->protocol_identifier);
1026                 break;
1027         }
1028
1029         if (p_buf)
1030                 strncpy(p_buf, buf, p_buf_len);
1031         else
1032                 pr_debug("%s", buf);
1033 }
1034
1035 void
1036 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1037 {
1038         /*
1039          * Check if the Protocol Identifier Valid (PIV) bit is set..
1040          *
1041          * from spc3r23.pdf section 7.5.1
1042          */
1043          if (page_83[1] & 0x80) {
1044                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1045                 vpd->protocol_identifier_set = 1;
1046                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1047         }
1048 }
1049 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1050
1051 int transport_dump_vpd_assoc(
1052         struct t10_vpd *vpd,
1053         unsigned char *p_buf,
1054         int p_buf_len)
1055 {
1056         unsigned char buf[VPD_TMP_BUF_SIZE];
1057         int ret = 0;
1058         int len;
1059
1060         memset(buf, 0, VPD_TMP_BUF_SIZE);
1061         len = sprintf(buf, "T10 VPD Identifier Association: ");
1062
1063         switch (vpd->association) {
1064         case 0x00:
1065                 sprintf(buf+len, "addressed logical unit\n");
1066                 break;
1067         case 0x10:
1068                 sprintf(buf+len, "target port\n");
1069                 break;
1070         case 0x20:
1071                 sprintf(buf+len, "SCSI target device\n");
1072                 break;
1073         default:
1074                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1075                 ret = -EINVAL;
1076                 break;
1077         }
1078
1079         if (p_buf)
1080                 strncpy(p_buf, buf, p_buf_len);
1081         else
1082                 pr_debug("%s", buf);
1083
1084         return ret;
1085 }
1086
1087 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1088 {
1089         /*
1090          * The VPD identification association..
1091          *
1092          * from spc3r23.pdf Section 7.6.3.1 Table 297
1093          */
1094         vpd->association = (page_83[1] & 0x30);
1095         return transport_dump_vpd_assoc(vpd, NULL, 0);
1096 }
1097 EXPORT_SYMBOL(transport_set_vpd_assoc);
1098
1099 int transport_dump_vpd_ident_type(
1100         struct t10_vpd *vpd,
1101         unsigned char *p_buf,
1102         int p_buf_len)
1103 {
1104         unsigned char buf[VPD_TMP_BUF_SIZE];
1105         int ret = 0;
1106         int len;
1107
1108         memset(buf, 0, VPD_TMP_BUF_SIZE);
1109         len = sprintf(buf, "T10 VPD Identifier Type: ");
1110
1111         switch (vpd->device_identifier_type) {
1112         case 0x00:
1113                 sprintf(buf+len, "Vendor specific\n");
1114                 break;
1115         case 0x01:
1116                 sprintf(buf+len, "T10 Vendor ID based\n");
1117                 break;
1118         case 0x02:
1119                 sprintf(buf+len, "EUI-64 based\n");
1120                 break;
1121         case 0x03:
1122                 sprintf(buf+len, "NAA\n");
1123                 break;
1124         case 0x04:
1125                 sprintf(buf+len, "Relative target port identifier\n");
1126                 break;
1127         case 0x08:
1128                 sprintf(buf+len, "SCSI name string\n");
1129                 break;
1130         default:
1131                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1132                                 vpd->device_identifier_type);
1133                 ret = -EINVAL;
1134                 break;
1135         }
1136
1137         if (p_buf) {
1138                 if (p_buf_len < strlen(buf)+1)
1139                         return -EINVAL;
1140                 strncpy(p_buf, buf, p_buf_len);
1141         } else {
1142                 pr_debug("%s", buf);
1143         }
1144
1145         return ret;
1146 }
1147
1148 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1149 {
1150         /*
1151          * The VPD identifier type..
1152          *
1153          * from spc3r23.pdf Section 7.6.3.1 Table 298
1154          */
1155         vpd->device_identifier_type = (page_83[1] & 0x0f);
1156         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1157 }
1158 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1159
1160 int transport_dump_vpd_ident(
1161         struct t10_vpd *vpd,
1162         unsigned char *p_buf,
1163         int p_buf_len)
1164 {
1165         unsigned char buf[VPD_TMP_BUF_SIZE];
1166         int ret = 0;
1167
1168         memset(buf, 0, VPD_TMP_BUF_SIZE);
1169
1170         switch (vpd->device_identifier_code_set) {
1171         case 0x01: /* Binary */
1172                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1173                         &vpd->device_identifier[0]);
1174                 break;
1175         case 0x02: /* ASCII */
1176                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1177                         &vpd->device_identifier[0]);
1178                 break;
1179         case 0x03: /* UTF-8 */
1180                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1181                         &vpd->device_identifier[0]);
1182                 break;
1183         default:
1184                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1185                         " 0x%02x", vpd->device_identifier_code_set);
1186                 ret = -EINVAL;
1187                 break;
1188         }
1189
1190         if (p_buf)
1191                 strncpy(p_buf, buf, p_buf_len);
1192         else
1193                 pr_debug("%s", buf);
1194
1195         return ret;
1196 }
1197
1198 int
1199 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1200 {
1201         static const char hex_str[] = "0123456789abcdef";
1202         int j = 0, i = 4; /* offset to start of the identifer */
1203
1204         /*
1205          * The VPD Code Set (encoding)
1206          *
1207          * from spc3r23.pdf Section 7.6.3.1 Table 296
1208          */
1209         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1210         switch (vpd->device_identifier_code_set) {
1211         case 0x01: /* Binary */
1212                 vpd->device_identifier[j++] =
1213                                 hex_str[vpd->device_identifier_type];
1214                 while (i < (4 + page_83[3])) {
1215                         vpd->device_identifier[j++] =
1216                                 hex_str[(page_83[i] & 0xf0) >> 4];
1217                         vpd->device_identifier[j++] =
1218                                 hex_str[page_83[i] & 0x0f];
1219                         i++;
1220                 }
1221                 break;
1222         case 0x02: /* ASCII */
1223         case 0x03: /* UTF-8 */
1224                 while (i < (4 + page_83[3]))
1225                         vpd->device_identifier[j++] = page_83[i++];
1226                 break;
1227         default:
1228                 break;
1229         }
1230
1231         return transport_dump_vpd_ident(vpd, NULL, 0);
1232 }
1233 EXPORT_SYMBOL(transport_set_vpd_ident);
1234
1235 static void core_setup_task_attr_emulation(struct se_device *dev)
1236 {
1237         /*
1238          * If this device is from Target_Core_Mod/pSCSI, disable the
1239          * SAM Task Attribute emulation.
1240          *
1241          * This is currently not available in upsream Linux/SCSI Target
1242          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1243          */
1244         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1245                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1246                 return;
1247         }
1248
1249         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1250         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1251                 " device\n", dev->transport->name,
1252                 dev->transport->get_device_rev(dev));
1253 }
1254
1255 static void scsi_dump_inquiry(struct se_device *dev)
1256 {
1257         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1258         char buf[17];
1259         int i, device_type;
1260         /*
1261          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1262          */
1263         for (i = 0; i < 8; i++)
1264                 if (wwn->vendor[i] >= 0x20)
1265                         buf[i] = wwn->vendor[i];
1266                 else
1267                         buf[i] = ' ';
1268         buf[i] = '\0';
1269         pr_debug("  Vendor: %s\n", buf);
1270
1271         for (i = 0; i < 16; i++)
1272                 if (wwn->model[i] >= 0x20)
1273                         buf[i] = wwn->model[i];
1274                 else
1275                         buf[i] = ' ';
1276         buf[i] = '\0';
1277         pr_debug("  Model: %s\n", buf);
1278
1279         for (i = 0; i < 4; i++)
1280                 if (wwn->revision[i] >= 0x20)
1281                         buf[i] = wwn->revision[i];
1282                 else
1283                         buf[i] = ' ';
1284         buf[i] = '\0';
1285         pr_debug("  Revision: %s\n", buf);
1286
1287         device_type = dev->transport->get_device_type(dev);
1288         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1289         pr_debug("                 ANSI SCSI revision: %02x\n",
1290                                 dev->transport->get_device_rev(dev));
1291 }
1292
1293 struct se_device *transport_add_device_to_core_hba(
1294         struct se_hba *hba,
1295         struct se_subsystem_api *transport,
1296         struct se_subsystem_dev *se_dev,
1297         u32 device_flags,
1298         void *transport_dev,
1299         struct se_dev_limits *dev_limits,
1300         const char *inquiry_prod,
1301         const char *inquiry_rev)
1302 {
1303         int force_pt;
1304         struct se_device  *dev;
1305
1306         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1307         if (!dev) {
1308                 pr_err("Unable to allocate memory for se_dev_t\n");
1309                 return NULL;
1310         }
1311
1312         transport_init_queue_obj(&dev->dev_queue_obj);
1313         dev->dev_flags          = device_flags;
1314         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1315         dev->dev_ptr            = transport_dev;
1316         dev->se_hba             = hba;
1317         dev->se_sub_dev         = se_dev;
1318         dev->transport          = transport;
1319         INIT_LIST_HEAD(&dev->dev_list);
1320         INIT_LIST_HEAD(&dev->dev_sep_list);
1321         INIT_LIST_HEAD(&dev->dev_tmr_list);
1322         INIT_LIST_HEAD(&dev->execute_task_list);
1323         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1324         INIT_LIST_HEAD(&dev->state_task_list);
1325         INIT_LIST_HEAD(&dev->qf_cmd_list);
1326         spin_lock_init(&dev->execute_task_lock);
1327         spin_lock_init(&dev->delayed_cmd_lock);
1328         spin_lock_init(&dev->dev_reservation_lock);
1329         spin_lock_init(&dev->dev_status_lock);
1330         spin_lock_init(&dev->se_port_lock);
1331         spin_lock_init(&dev->se_tmr_lock);
1332         spin_lock_init(&dev->qf_cmd_lock);
1333         atomic_set(&dev->dev_ordered_id, 0);
1334
1335         se_dev_set_default_attribs(dev, dev_limits);
1336
1337         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1338         dev->creation_time = get_jiffies_64();
1339         spin_lock_init(&dev->stats_lock);
1340
1341         spin_lock(&hba->device_lock);
1342         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1343         hba->dev_count++;
1344         spin_unlock(&hba->device_lock);
1345         /*
1346          * Setup the SAM Task Attribute emulation for struct se_device
1347          */
1348         core_setup_task_attr_emulation(dev);
1349         /*
1350          * Force PR and ALUA passthrough emulation with internal object use.
1351          */
1352         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1353         /*
1354          * Setup the Reservations infrastructure for struct se_device
1355          */
1356         core_setup_reservations(dev, force_pt);
1357         /*
1358          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1359          */
1360         if (core_setup_alua(dev, force_pt) < 0)
1361                 goto out;
1362
1363         /*
1364          * Startup the struct se_device processing thread
1365          */
1366         dev->process_thread = kthread_run(transport_processing_thread, dev,
1367                                           "LIO_%s", dev->transport->name);
1368         if (IS_ERR(dev->process_thread)) {
1369                 pr_err("Unable to create kthread: LIO_%s\n",
1370                         dev->transport->name);
1371                 goto out;
1372         }
1373         /*
1374          * Setup work_queue for QUEUE_FULL
1375          */
1376         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1377         /*
1378          * Preload the initial INQUIRY const values if we are doing
1379          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1380          * passthrough because this is being provided by the backend LLD.
1381          * This is required so that transport_get_inquiry() copies these
1382          * originals once back into DEV_T10_WWN(dev) for the virtual device
1383          * setup.
1384          */
1385         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1386                 if (!inquiry_prod || !inquiry_rev) {
1387                         pr_err("All non TCM/pSCSI plugins require"
1388                                 " INQUIRY consts\n");
1389                         goto out;
1390                 }
1391
1392                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1393                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1394                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1395         }
1396         scsi_dump_inquiry(dev);
1397
1398         return dev;
1399 out:
1400         kthread_stop(dev->process_thread);
1401
1402         spin_lock(&hba->device_lock);
1403         list_del(&dev->dev_list);
1404         hba->dev_count--;
1405         spin_unlock(&hba->device_lock);
1406
1407         se_release_vpd_for_dev(dev);
1408
1409         kfree(dev);
1410
1411         return NULL;
1412 }
1413 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1414
1415 /*      transport_generic_prepare_cdb():
1416  *
1417  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1418  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1419  *      The point of this is since we are mapping iSCSI LUNs to
1420  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1421  *      devices and HBAs for a loop.
1422  */
1423 static inline void transport_generic_prepare_cdb(
1424         unsigned char *cdb)
1425 {
1426         switch (cdb[0]) {
1427         case READ_10: /* SBC - RDProtect */
1428         case READ_12: /* SBC - RDProtect */
1429         case READ_16: /* SBC - RDProtect */
1430         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1431         case VERIFY: /* SBC - VRProtect */
1432         case VERIFY_16: /* SBC - VRProtect */
1433         case WRITE_VERIFY: /* SBC - VRProtect */
1434         case WRITE_VERIFY_12: /* SBC - VRProtect */
1435                 break;
1436         default:
1437                 cdb[1] &= 0x1f; /* clear logical unit number */
1438                 break;
1439         }
1440 }
1441
1442 static struct se_task *
1443 transport_generic_get_task(struct se_cmd *cmd,
1444                 enum dma_data_direction data_direction)
1445 {
1446         struct se_task *task;
1447         struct se_device *dev = cmd->se_dev;
1448
1449         task = dev->transport->alloc_task(cmd->t_task_cdb);
1450         if (!task) {
1451                 pr_err("Unable to allocate struct se_task\n");
1452                 return NULL;
1453         }
1454
1455         INIT_LIST_HEAD(&task->t_list);
1456         INIT_LIST_HEAD(&task->t_execute_list);
1457         INIT_LIST_HEAD(&task->t_state_list);
1458         init_completion(&task->task_stop_comp);
1459         task->task_se_cmd = cmd;
1460         task->task_data_direction = data_direction;
1461
1462         return task;
1463 }
1464
1465 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1466
1467 /*
1468  * Used by fabric modules containing a local struct se_cmd within their
1469  * fabric dependent per I/O descriptor.
1470  */
1471 void transport_init_se_cmd(
1472         struct se_cmd *cmd,
1473         struct target_core_fabric_ops *tfo,
1474         struct se_session *se_sess,
1475         u32 data_length,
1476         int data_direction,
1477         int task_attr,
1478         unsigned char *sense_buffer)
1479 {
1480         INIT_LIST_HEAD(&cmd->se_lun_node);
1481         INIT_LIST_HEAD(&cmd->se_delayed_node);
1482         INIT_LIST_HEAD(&cmd->se_qf_node);
1483         INIT_LIST_HEAD(&cmd->se_queue_node);
1484         INIT_LIST_HEAD(&cmd->se_cmd_list);
1485         INIT_LIST_HEAD(&cmd->t_task_list);
1486         init_completion(&cmd->transport_lun_fe_stop_comp);
1487         init_completion(&cmd->transport_lun_stop_comp);
1488         init_completion(&cmd->t_transport_stop_comp);
1489         init_completion(&cmd->cmd_wait_comp);
1490         spin_lock_init(&cmd->t_state_lock);
1491         atomic_set(&cmd->transport_dev_active, 1);
1492
1493         cmd->se_tfo = tfo;
1494         cmd->se_sess = se_sess;
1495         cmd->data_length = data_length;
1496         cmd->data_direction = data_direction;
1497         cmd->sam_task_attr = task_attr;
1498         cmd->sense_buffer = sense_buffer;
1499 }
1500 EXPORT_SYMBOL(transport_init_se_cmd);
1501
1502 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1503 {
1504         /*
1505          * Check if SAM Task Attribute emulation is enabled for this
1506          * struct se_device storage object
1507          */
1508         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1509                 return 0;
1510
1511         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1512                 pr_debug("SAM Task Attribute ACA"
1513                         " emulation is not supported\n");
1514                 return -EINVAL;
1515         }
1516         /*
1517          * Used to determine when ORDERED commands should go from
1518          * Dormant to Active status.
1519          */
1520         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1521         smp_mb__after_atomic_inc();
1522         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1523                         cmd->se_ordered_id, cmd->sam_task_attr,
1524                         cmd->se_dev->transport->name);
1525         return 0;
1526 }
1527
1528 /*      transport_generic_allocate_tasks():
1529  *
1530  *      Called from fabric RX Thread.
1531  */
1532 int transport_generic_allocate_tasks(
1533         struct se_cmd *cmd,
1534         unsigned char *cdb)
1535 {
1536         int ret;
1537
1538         transport_generic_prepare_cdb(cdb);
1539         /*
1540          * Ensure that the received CDB is less than the max (252 + 8) bytes
1541          * for VARIABLE_LENGTH_CMD
1542          */
1543         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1544                 pr_err("Received SCSI CDB with command_size: %d that"
1545                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1546                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1547                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1548                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1549                 return -EINVAL;
1550         }
1551         /*
1552          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1553          * allocate the additional extended CDB buffer now..  Otherwise
1554          * setup the pointer from __t_task_cdb to t_task_cdb.
1555          */
1556         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1557                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1558                                                 GFP_KERNEL);
1559                 if (!cmd->t_task_cdb) {
1560                         pr_err("Unable to allocate cmd->t_task_cdb"
1561                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1562                                 scsi_command_size(cdb),
1563                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1564                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1565                         cmd->scsi_sense_reason =
1566                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1567                         return -ENOMEM;
1568                 }
1569         } else
1570                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1571         /*
1572          * Copy the original CDB into cmd->
1573          */
1574         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1575         /*
1576          * Setup the received CDB based on SCSI defined opcodes and
1577          * perform unit attention, persistent reservations and ALUA
1578          * checks for virtual device backends.  The cmd->t_task_cdb
1579          * pointer is expected to be setup before we reach this point.
1580          */
1581         ret = transport_generic_cmd_sequencer(cmd, cdb);
1582         if (ret < 0)
1583                 return ret;
1584         /*
1585          * Check for SAM Task Attribute Emulation
1586          */
1587         if (transport_check_alloc_task_attr(cmd) < 0) {
1588                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1589                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1590                 return -EINVAL;
1591         }
1592         spin_lock(&cmd->se_lun->lun_sep_lock);
1593         if (cmd->se_lun->lun_sep)
1594                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1595         spin_unlock(&cmd->se_lun->lun_sep_lock);
1596         return 0;
1597 }
1598 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1599
1600 /*
1601  * Used by fabric module frontends to queue tasks directly.
1602  * Many only be used from process context only
1603  */
1604 int transport_handle_cdb_direct(
1605         struct se_cmd *cmd)
1606 {
1607         int ret;
1608
1609         if (!cmd->se_lun) {
1610                 dump_stack();
1611                 pr_err("cmd->se_lun is NULL\n");
1612                 return -EINVAL;
1613         }
1614         if (in_interrupt()) {
1615                 dump_stack();
1616                 pr_err("transport_generic_handle_cdb cannot be called"
1617                                 " from interrupt context\n");
1618                 return -EINVAL;
1619         }
1620         /*
1621          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1622          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1623          * in existing usage to ensure that outstanding descriptors are handled
1624          * correctly during shutdown via transport_wait_for_tasks()
1625          *
1626          * Also, we don't take cmd->t_state_lock here as we only expect
1627          * this to be called for initial descriptor submission.
1628          */
1629         cmd->t_state = TRANSPORT_NEW_CMD;
1630         atomic_set(&cmd->t_transport_active, 1);
1631         /*
1632          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1633          * so follow TRANSPORT_NEW_CMD processing thread context usage
1634          * and call transport_generic_request_failure() if necessary..
1635          */
1636         ret = transport_generic_new_cmd(cmd);
1637         if (ret < 0)
1638                 transport_generic_request_failure(cmd);
1639
1640         return 0;
1641 }
1642 EXPORT_SYMBOL(transport_handle_cdb_direct);
1643
1644 /**
1645  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1646  *
1647  * @se_cmd: command descriptor to submit
1648  * @se_sess: associated se_sess for endpoint
1649  * @cdb: pointer to SCSI CDB
1650  * @sense: pointer to SCSI sense buffer
1651  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1652  * @data_length: fabric expected data transfer length
1653  * @task_addr: SAM task attribute
1654  * @data_dir: DMA data direction
1655  * @flags: flags for command submission from target_sc_flags_tables
1656  *
1657  * This may only be called from process context, and also currently
1658  * assumes internal allocation of fabric payload buffer by target-core.
1659  **/
1660 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1661                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1662                 u32 data_length, int task_attr, int data_dir, int flags)
1663 {
1664         struct se_portal_group *se_tpg;
1665         int rc;
1666
1667         se_tpg = se_sess->se_tpg;
1668         BUG_ON(!se_tpg);
1669         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1670         BUG_ON(in_interrupt());
1671         /*
1672          * Initialize se_cmd for target operation.  From this point
1673          * exceptions are handled by sending exception status via
1674          * target_core_fabric_ops->queue_status() callback
1675          */
1676         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1677                                 data_length, data_dir, task_attr, sense);
1678         /*
1679          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1680          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1681          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1682          * kref_put() to happen during fabric packet acknowledgement.
1683          */
1684         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1685         /*
1686          * Signal bidirectional data payloads to target-core
1687          */
1688         if (flags & TARGET_SCF_BIDI_OP)
1689                 se_cmd->se_cmd_flags |= SCF_BIDI;
1690         /*
1691          * Locate se_lun pointer and attach it to struct se_cmd
1692          */
1693         if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0)
1694                 goto out_check_cond;
1695         /*
1696          * Sanitize CDBs via transport_generic_cmd_sequencer() and
1697          * allocate the necessary tasks to complete the received CDB+data
1698          */
1699         rc = transport_generic_allocate_tasks(se_cmd, cdb);
1700         if (rc != 0)
1701                 goto out_check_cond;
1702         /*
1703          * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1704          * for immediate execution of READs, otherwise wait for
1705          * transport_generic_handle_data() to be called for WRITEs
1706          * when fabric has filled the incoming buffer.
1707          */
1708         transport_handle_cdb_direct(se_cmd);
1709         return 0;
1710
1711 out_check_cond:
1712         transport_send_check_condition_and_sense(se_cmd,
1713                                 se_cmd->scsi_sense_reason, 0);
1714         return 0;
1715 }
1716 EXPORT_SYMBOL(target_submit_cmd);
1717
1718 /*
1719  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1720  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1721  * complete setup in TCM process context w/ TFO->new_cmd_map().
1722  */
1723 int transport_generic_handle_cdb_map(
1724         struct se_cmd *cmd)
1725 {
1726         if (!cmd->se_lun) {
1727                 dump_stack();
1728                 pr_err("cmd->se_lun is NULL\n");
1729                 return -EINVAL;
1730         }
1731
1732         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1733         return 0;
1734 }
1735 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1736
1737 /*      transport_generic_handle_data():
1738  *
1739  *
1740  */
1741 int transport_generic_handle_data(
1742         struct se_cmd *cmd)
1743 {
1744         /*
1745          * For the software fabric case, then we assume the nexus is being
1746          * failed/shutdown when signals are pending from the kthread context
1747          * caller, so we return a failure.  For the HW target mode case running
1748          * in interrupt code, the signal_pending() check is skipped.
1749          */
1750         if (!in_interrupt() && signal_pending(current))
1751                 return -EPERM;
1752         /*
1753          * If the received CDB has aleady been ABORTED by the generic
1754          * target engine, we now call transport_check_aborted_status()
1755          * to queue any delated TASK_ABORTED status for the received CDB to the
1756          * fabric module as we are expecting no further incoming DATA OUT
1757          * sequences at this point.
1758          */
1759         if (transport_check_aborted_status(cmd, 1) != 0)
1760                 return 0;
1761
1762         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1763         return 0;
1764 }
1765 EXPORT_SYMBOL(transport_generic_handle_data);
1766
1767 /*      transport_generic_handle_tmr():
1768  *
1769  *
1770  */
1771 int transport_generic_handle_tmr(
1772         struct se_cmd *cmd)
1773 {
1774         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1775         return 0;
1776 }
1777 EXPORT_SYMBOL(transport_generic_handle_tmr);
1778
1779 /*
1780  * If the task is active, request it to be stopped and sleep until it
1781  * has completed.
1782  */
1783 bool target_stop_task(struct se_task *task, unsigned long *flags)
1784 {
1785         struct se_cmd *cmd = task->task_se_cmd;
1786         bool was_active = false;
1787
1788         if (task->task_flags & TF_ACTIVE) {
1789                 task->task_flags |= TF_REQUEST_STOP;
1790                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1791
1792                 pr_debug("Task %p waiting to complete\n", task);
1793                 wait_for_completion(&task->task_stop_comp);
1794                 pr_debug("Task %p stopped successfully\n", task);
1795
1796                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1797                 atomic_dec(&cmd->t_task_cdbs_left);
1798                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1799                 was_active = true;
1800         }
1801
1802         return was_active;
1803 }
1804
1805 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1806 {
1807         struct se_task *task, *task_tmp;
1808         unsigned long flags;
1809         int ret = 0;
1810
1811         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1812                 cmd->se_tfo->get_task_tag(cmd));
1813
1814         /*
1815          * No tasks remain in the execution queue
1816          */
1817         spin_lock_irqsave(&cmd->t_state_lock, flags);
1818         list_for_each_entry_safe(task, task_tmp,
1819                                 &cmd->t_task_list, t_list) {
1820                 pr_debug("Processing task %p\n", task);
1821                 /*
1822                  * If the struct se_task has not been sent and is not active,
1823                  * remove the struct se_task from the execution queue.
1824                  */
1825                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1826                         spin_unlock_irqrestore(&cmd->t_state_lock,
1827                                         flags);
1828                         transport_remove_task_from_execute_queue(task,
1829                                         cmd->se_dev);
1830
1831                         pr_debug("Task %p removed from execute queue\n", task);
1832                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1833                         continue;
1834                 }
1835
1836                 if (!target_stop_task(task, &flags)) {
1837                         pr_debug("Task %p - did nothing\n", task);
1838                         ret++;
1839                 }
1840         }
1841         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1842
1843         return ret;
1844 }
1845
1846 /*
1847  * Handle SAM-esque emulation for generic transport request failures.
1848  */
1849 static void transport_generic_request_failure(struct se_cmd *cmd)
1850 {
1851         int ret = 0;
1852
1853         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1854                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1855                 cmd->t_task_cdb[0]);
1856         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1857                 cmd->se_tfo->get_cmd_state(cmd),
1858                 cmd->t_state, cmd->scsi_sense_reason);
1859         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1860                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1861                 " t_transport_active: %d t_transport_stop: %d"
1862                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1863                 atomic_read(&cmd->t_task_cdbs_left),
1864                 atomic_read(&cmd->t_task_cdbs_sent),
1865                 atomic_read(&cmd->t_task_cdbs_ex_left),
1866                 atomic_read(&cmd->t_transport_active),
1867                 atomic_read(&cmd->t_transport_stop),
1868                 atomic_read(&cmd->t_transport_sent));
1869
1870         /*
1871          * For SAM Task Attribute emulation for failed struct se_cmd
1872          */
1873         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1874                 transport_complete_task_attr(cmd);
1875
1876         switch (cmd->scsi_sense_reason) {
1877         case TCM_NON_EXISTENT_LUN:
1878         case TCM_UNSUPPORTED_SCSI_OPCODE:
1879         case TCM_INVALID_CDB_FIELD:
1880         case TCM_INVALID_PARAMETER_LIST:
1881         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1882         case TCM_UNKNOWN_MODE_PAGE:
1883         case TCM_WRITE_PROTECTED:
1884         case TCM_CHECK_CONDITION_ABORT_CMD:
1885         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1886         case TCM_CHECK_CONDITION_NOT_READY:
1887                 break;
1888         case TCM_RESERVATION_CONFLICT:
1889                 /*
1890                  * No SENSE Data payload for this case, set SCSI Status
1891                  * and queue the response to $FABRIC_MOD.
1892                  *
1893                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1894                  */
1895                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1896                 /*
1897                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1898                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1899                  * CONFLICT STATUS.
1900                  *
1901                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1902                  */
1903                 if (cmd->se_sess &&
1904                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1905                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1906                                 cmd->orig_fe_lun, 0x2C,
1907                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1908
1909                 ret = cmd->se_tfo->queue_status(cmd);
1910                 if (ret == -EAGAIN || ret == -ENOMEM)
1911                         goto queue_full;
1912                 goto check_stop;
1913         default:
1914                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1915                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1916                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1917                 break;
1918         }
1919         /*
1920          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1921          * make the call to transport_send_check_condition_and_sense()
1922          * directly.  Otherwise expect the fabric to make the call to
1923          * transport_send_check_condition_and_sense() after handling
1924          * possible unsoliticied write data payloads.
1925          */
1926         ret = transport_send_check_condition_and_sense(cmd,
1927                         cmd->scsi_sense_reason, 0);
1928         if (ret == -EAGAIN || ret == -ENOMEM)
1929                 goto queue_full;
1930
1931 check_stop:
1932         transport_lun_remove_cmd(cmd);
1933         if (!transport_cmd_check_stop_to_fabric(cmd))
1934                 ;
1935         return;
1936
1937 queue_full:
1938         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1939         transport_handle_queue_full(cmd, cmd->se_dev);
1940 }
1941
1942 static inline u32 transport_lba_21(unsigned char *cdb)
1943 {
1944         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1945 }
1946
1947 static inline u32 transport_lba_32(unsigned char *cdb)
1948 {
1949         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1950 }
1951
1952 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1953 {
1954         unsigned int __v1, __v2;
1955
1956         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1957         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1958
1959         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1960 }
1961
1962 /*
1963  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1964  */
1965 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1966 {
1967         unsigned int __v1, __v2;
1968
1969         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1970         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1971
1972         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1973 }
1974
1975 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1976 {
1977         unsigned long flags;
1978
1979         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1980         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1981         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1982 }
1983
1984 /*
1985  * Called from Fabric Module context from transport_execute_tasks()
1986  *
1987  * The return of this function determins if the tasks from struct se_cmd
1988  * get added to the execution queue in transport_execute_tasks(),
1989  * or are added to the delayed or ordered lists here.
1990  */
1991 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1992 {
1993         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1994                 return 1;
1995         /*
1996          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1997          * to allow the passed struct se_cmd list of tasks to the front of the list.
1998          */
1999          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2000                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2001                         " 0x%02x, se_ordered_id: %u\n",
2002                         cmd->t_task_cdb[0],
2003                         cmd->se_ordered_id);
2004                 return 1;
2005         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2006                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2007                 smp_mb__after_atomic_inc();
2008
2009                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2010                                 " list, se_ordered_id: %u\n",
2011                                 cmd->t_task_cdb[0],
2012                                 cmd->se_ordered_id);
2013                 /*
2014                  * Add ORDERED command to tail of execution queue if
2015                  * no other older commands exist that need to be
2016                  * completed first.
2017                  */
2018                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2019                         return 1;
2020         } else {
2021                 /*
2022                  * For SIMPLE and UNTAGGED Task Attribute commands
2023                  */
2024                 atomic_inc(&cmd->se_dev->simple_cmds);
2025                 smp_mb__after_atomic_inc();
2026         }
2027         /*
2028          * Otherwise if one or more outstanding ORDERED task attribute exist,
2029          * add the dormant task(s) built for the passed struct se_cmd to the
2030          * execution queue and become in Active state for this struct se_device.
2031          */
2032         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2033                 /*
2034                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2035                  * will be drained upon completion of HEAD_OF_QUEUE task.
2036                  */
2037                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2038                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2039                 list_add_tail(&cmd->se_delayed_node,
2040                                 &cmd->se_dev->delayed_cmd_list);
2041                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2042
2043                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2044                         " delayed CMD list, se_ordered_id: %u\n",
2045                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2046                         cmd->se_ordered_id);
2047                 /*
2048                  * Return zero to let transport_execute_tasks() know
2049                  * not to add the delayed tasks to the execution list.
2050                  */
2051                 return 0;
2052         }
2053         /*
2054          * Otherwise, no ORDERED task attributes exist..
2055          */
2056         return 1;
2057 }
2058
2059 /*
2060  * Called from fabric module context in transport_generic_new_cmd() and
2061  * transport_generic_process_write()
2062  */
2063 static int transport_execute_tasks(struct se_cmd *cmd)
2064 {
2065         int add_tasks;
2066         struct se_device *se_dev = cmd->se_dev;
2067         /*
2068          * Call transport_cmd_check_stop() to see if a fabric exception
2069          * has occurred that prevents execution.
2070          */
2071         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2072                 /*
2073                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2074                  * attribute for the tasks of the received struct se_cmd CDB
2075                  */
2076                 add_tasks = transport_execute_task_attr(cmd);
2077                 if (!add_tasks)
2078                         goto execute_tasks;
2079                 /*
2080                  * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2081                  * adds associated se_tasks while holding dev->execute_task_lock
2082                  * before I/O dispath to avoid a double spinlock access.
2083                  */
2084                 __transport_execute_tasks(se_dev, cmd);
2085                 return 0;
2086         }
2087
2088 execute_tasks:
2089         __transport_execute_tasks(se_dev, NULL);
2090         return 0;
2091 }
2092
2093 /*
2094  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2095  * from struct se_device->execute_task_list and
2096  *
2097  * Called from transport_processing_thread()
2098  */
2099 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2100 {
2101         int error;
2102         struct se_cmd *cmd = NULL;
2103         struct se_task *task = NULL;
2104         unsigned long flags;
2105
2106 check_depth:
2107         spin_lock_irq(&dev->execute_task_lock);
2108         if (new_cmd != NULL)
2109                 __transport_add_tasks_from_cmd(new_cmd);
2110
2111         if (list_empty(&dev->execute_task_list)) {
2112                 spin_unlock_irq(&dev->execute_task_lock);
2113                 return 0;
2114         }
2115         task = list_first_entry(&dev->execute_task_list,
2116                                 struct se_task, t_execute_list);
2117         __transport_remove_task_from_execute_queue(task, dev);
2118         spin_unlock_irq(&dev->execute_task_lock);
2119
2120         cmd = task->task_se_cmd;
2121         spin_lock_irqsave(&cmd->t_state_lock, flags);
2122         task->task_flags |= (TF_ACTIVE | TF_SENT);
2123         atomic_inc(&cmd->t_task_cdbs_sent);
2124
2125         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2126             cmd->t_task_list_num)
2127                 atomic_set(&cmd->t_transport_sent, 1);
2128
2129         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2130
2131         if (cmd->execute_task)
2132                 error = cmd->execute_task(task);
2133         else
2134                 error = dev->transport->do_task(task);
2135         if (error != 0) {
2136                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2137                 task->task_flags &= ~TF_ACTIVE;
2138                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2139                 atomic_set(&cmd->t_transport_sent, 0);
2140                 transport_stop_tasks_for_cmd(cmd);
2141                 transport_generic_request_failure(cmd);
2142         }
2143
2144         new_cmd = NULL;
2145         goto check_depth;
2146
2147         return 0;
2148 }
2149
2150 static inline u32 transport_get_sectors_6(
2151         unsigned char *cdb,
2152         struct se_cmd *cmd,
2153         int *ret)
2154 {
2155         struct se_device *dev = cmd->se_dev;
2156
2157         /*
2158          * Assume TYPE_DISK for non struct se_device objects.
2159          * Use 8-bit sector value.
2160          */
2161         if (!dev)
2162                 goto type_disk;
2163
2164         /*
2165          * Use 24-bit allocation length for TYPE_TAPE.
2166          */
2167         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2168                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2169
2170         /*
2171          * Everything else assume TYPE_DISK Sector CDB location.
2172          * Use 8-bit sector value.  SBC-3 says:
2173          *
2174          *   A TRANSFER LENGTH field set to zero specifies that 256
2175          *   logical blocks shall be written.  Any other value
2176          *   specifies the number of logical blocks that shall be
2177          *   written.
2178          */
2179 type_disk:
2180         return cdb[4] ? : 256;
2181 }
2182
2183 static inline u32 transport_get_sectors_10(
2184         unsigned char *cdb,
2185         struct se_cmd *cmd,
2186         int *ret)
2187 {
2188         struct se_device *dev = cmd->se_dev;
2189
2190         /*
2191          * Assume TYPE_DISK for non struct se_device objects.
2192          * Use 16-bit sector value.
2193          */
2194         if (!dev)
2195                 goto type_disk;
2196
2197         /*
2198          * XXX_10 is not defined in SSC, throw an exception
2199          */
2200         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2201                 *ret = -EINVAL;
2202                 return 0;
2203         }
2204
2205         /*
2206          * Everything else assume TYPE_DISK Sector CDB location.
2207          * Use 16-bit sector value.
2208          */
2209 type_disk:
2210         return (u32)(cdb[7] << 8) + cdb[8];
2211 }
2212
2213 static inline u32 transport_get_sectors_12(
2214         unsigned char *cdb,
2215         struct se_cmd *cmd,
2216         int *ret)
2217 {
2218         struct se_device *dev = cmd->se_dev;
2219
2220         /*
2221          * Assume TYPE_DISK for non struct se_device objects.
2222          * Use 32-bit sector value.
2223          */
2224         if (!dev)
2225                 goto type_disk;
2226
2227         /*
2228          * XXX_12 is not defined in SSC, throw an exception
2229          */
2230         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2231                 *ret = -EINVAL;
2232                 return 0;
2233         }
2234
2235         /*
2236          * Everything else assume TYPE_DISK Sector CDB location.
2237          * Use 32-bit sector value.
2238          */
2239 type_disk:
2240         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2241 }
2242
2243 static inline u32 transport_get_sectors_16(
2244         unsigned char *cdb,
2245         struct se_cmd *cmd,
2246         int *ret)
2247 {
2248         struct se_device *dev = cmd->se_dev;
2249
2250         /*
2251          * Assume TYPE_DISK for non struct se_device objects.
2252          * Use 32-bit sector value.
2253          */
2254         if (!dev)
2255                 goto type_disk;
2256
2257         /*
2258          * Use 24-bit allocation length for TYPE_TAPE.
2259          */
2260         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2261                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2262
2263 type_disk:
2264         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2265                     (cdb[12] << 8) + cdb[13];
2266 }
2267
2268 /*
2269  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2270  */
2271 static inline u32 transport_get_sectors_32(
2272         unsigned char *cdb,
2273         struct se_cmd *cmd,
2274         int *ret)
2275 {
2276         /*
2277          * Assume TYPE_DISK for non struct se_device objects.
2278          * Use 32-bit sector value.
2279          */
2280         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2281                     (cdb[30] << 8) + cdb[31];
2282
2283 }
2284
2285 static inline u32 transport_get_size(
2286         u32 sectors,
2287         unsigned char *cdb,
2288         struct se_cmd *cmd)
2289 {
2290         struct se_device *dev = cmd->se_dev;
2291
2292         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2293                 if (cdb[1] & 1) { /* sectors */
2294                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2295                 } else /* bytes */
2296                         return sectors;
2297         }
2298 #if 0
2299         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2300                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2301                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2302                         dev->transport->name);
2303 #endif
2304         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2305 }
2306
2307 static void transport_xor_callback(struct se_cmd *cmd)
2308 {
2309         unsigned char *buf, *addr;
2310         struct scatterlist *sg;
2311         unsigned int offset;
2312         int i;
2313         int count;
2314         /*
2315          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2316          *
2317          * 1) read the specified logical block(s);
2318          * 2) transfer logical blocks from the data-out buffer;
2319          * 3) XOR the logical blocks transferred from the data-out buffer with
2320          *    the logical blocks read, storing the resulting XOR data in a buffer;
2321          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2322          *    blocks transferred from the data-out buffer; and
2323          * 5) transfer the resulting XOR data to the data-in buffer.
2324          */
2325         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2326         if (!buf) {
2327                 pr_err("Unable to allocate xor_callback buf\n");
2328                 return;
2329         }
2330         /*
2331          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2332          * into the locally allocated *buf
2333          */
2334         sg_copy_to_buffer(cmd->t_data_sg,
2335                           cmd->t_data_nents,
2336                           buf,
2337                           cmd->data_length);
2338
2339         /*
2340          * Now perform the XOR against the BIDI read memory located at
2341          * cmd->t_mem_bidi_list
2342          */
2343
2344         offset = 0;
2345         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2346                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2347                 if (!addr)
2348                         goto out;
2349
2350                 for (i = 0; i < sg->length; i++)
2351                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2352
2353                 offset += sg->length;
2354                 kunmap_atomic(addr, KM_USER0);
2355         }
2356
2357 out:
2358         kfree(buf);
2359 }
2360
2361 /*
2362  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2363  */
2364 static int transport_get_sense_data(struct se_cmd *cmd)
2365 {
2366         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2367         struct se_device *dev = cmd->se_dev;
2368         struct se_task *task = NULL, *task_tmp;
2369         unsigned long flags;
2370         u32 offset = 0;
2371
2372         WARN_ON(!cmd->se_lun);
2373
2374         if (!dev)
2375                 return 0;
2376
2377         spin_lock_irqsave(&cmd->t_state_lock, flags);
2378         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2379                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2380                 return 0;
2381         }
2382
2383         list_for_each_entry_safe(task, task_tmp,
2384                                 &cmd->t_task_list, t_list) {
2385                 if (!(task->task_flags & TF_HAS_SENSE))
2386                         continue;
2387
2388                 if (!dev->transport->get_sense_buffer) {
2389                         pr_err("dev->transport->get_sense_buffer"
2390                                         " is NULL\n");
2391                         continue;
2392                 }
2393
2394                 sense_buffer = dev->transport->get_sense_buffer(task);
2395                 if (!sense_buffer) {
2396                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2397                                 " sense buffer for task with sense\n",
2398                                 cmd->se_tfo->get_task_tag(cmd), task);
2399                         continue;
2400                 }
2401                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2402
2403                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2404                                 TRANSPORT_SENSE_BUFFER);
2405
2406                 memcpy(&buffer[offset], sense_buffer,
2407                                 TRANSPORT_SENSE_BUFFER);
2408                 cmd->scsi_status = task->task_scsi_status;
2409                 /* Automatically padded */
2410                 cmd->scsi_sense_length =
2411                                 (TRANSPORT_SENSE_BUFFER + offset);
2412
2413                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2414                                 " and sense\n",
2415                         dev->se_hba->hba_id, dev->transport->name,
2416                                 cmd->scsi_status);
2417                 return 0;
2418         }
2419         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2420
2421         return -1;
2422 }
2423
2424 static inline long long transport_dev_end_lba(struct se_device *dev)
2425 {
2426         return dev->transport->get_blocks(dev) + 1;
2427 }
2428
2429 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2430 {
2431         struct se_device *dev = cmd->se_dev;
2432         u32 sectors;
2433
2434         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2435                 return 0;
2436
2437         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2438
2439         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2440                 pr_err("LBA: %llu Sectors: %u exceeds"
2441                         " transport_dev_end_lba(): %llu\n",
2442                         cmd->t_task_lba, sectors,
2443                         transport_dev_end_lba(dev));
2444                 return -EINVAL;
2445         }
2446
2447         return 0;
2448 }
2449
2450 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2451 {
2452         /*
2453          * Determine if the received WRITE_SAME is used to for direct
2454          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2455          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2456          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2457          */
2458         int passthrough = (dev->transport->transport_type ==
2459                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2460
2461         if (!passthrough) {
2462                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2463                         pr_err("WRITE_SAME PBDATA and LBDATA"
2464                                 " bits not supported for Block Discard"
2465                                 " Emulation\n");
2466                         return -ENOSYS;
2467                 }
2468                 /*
2469                  * Currently for the emulated case we only accept
2470                  * tpws with the UNMAP=1 bit set.
2471                  */
2472                 if (!(flags[0] & 0x08)) {
2473                         pr_err("WRITE_SAME w/o UNMAP bit not"
2474                                 " supported for Block Discard Emulation\n");
2475                         return -ENOSYS;
2476                 }
2477         }
2478
2479         return 0;
2480 }
2481
2482 /*      transport_generic_cmd_sequencer():
2483  *
2484  *      Generic Command Sequencer that should work for most DAS transport
2485  *      drivers.
2486  *
2487  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2488  *      RX Thread.
2489  *
2490  *      FIXME: Need to support other SCSI OPCODES where as well.
2491  */
2492 static int transport_generic_cmd_sequencer(
2493         struct se_cmd *cmd,
2494         unsigned char *cdb)
2495 {
2496         struct se_device *dev = cmd->se_dev;
2497         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2498         int ret = 0, sector_ret = 0, passthrough;
2499         u32 sectors = 0, size = 0, pr_reg_type = 0;
2500         u16 service_action;
2501         u8 alua_ascq = 0;
2502         /*
2503          * Check for an existing UNIT ATTENTION condition
2504          */
2505         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2506                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2507                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2508                 return -EINVAL;
2509         }
2510         /*
2511          * Check status of Asymmetric Logical Unit Assignment port
2512          */
2513         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2514         if (ret != 0) {
2515                 /*
2516                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2517                  * The ALUA additional sense code qualifier (ASCQ) is determined
2518                  * by the ALUA primary or secondary access state..
2519                  */
2520                 if (ret > 0) {
2521 #if 0
2522                         pr_debug("[%s]: ALUA TG Port not available,"
2523                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2524                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2525 #endif
2526                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2527                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2528                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2529                         return -EINVAL;
2530                 }
2531                 goto out_invalid_cdb_field;
2532         }
2533         /*
2534          * Check status for SPC-3 Persistent Reservations
2535          */
2536         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2537                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2538                                         cmd, cdb, pr_reg_type) != 0) {
2539                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2540                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2541                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2542                         return -EBUSY;
2543                 }
2544                 /*
2545                  * This means the CDB is allowed for the SCSI Initiator port
2546                  * when said port is *NOT* holding the legacy SPC-2 or
2547                  * SPC-3 Persistent Reservation.
2548                  */
2549         }
2550
2551         /*
2552          * If we operate in passthrough mode we skip most CDB emulation and
2553          * instead hand the commands down to the physical SCSI device.
2554          */
2555         passthrough =
2556                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2557
2558         switch (cdb[0]) {
2559         case READ_6:
2560                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2561                 if (sector_ret)
2562                         goto out_unsupported_cdb;
2563                 size = transport_get_size(sectors, cdb, cmd);
2564                 cmd->t_task_lba = transport_lba_21(cdb);
2565                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2566                 break;
2567         case READ_10:
2568                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2569                 if (sector_ret)
2570                         goto out_unsupported_cdb;
2571                 size = transport_get_size(sectors, cdb, cmd);
2572                 cmd->t_task_lba = transport_lba_32(cdb);
2573                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2574                 break;
2575         case READ_12:
2576                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2577                 if (sector_ret)
2578                         goto out_unsupported_cdb;
2579                 size = transport_get_size(sectors, cdb, cmd);
2580                 cmd->t_task_lba = transport_lba_32(cdb);
2581                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2582                 break;
2583         case READ_16:
2584                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2585                 if (sector_ret)
2586                         goto out_unsupported_cdb;
2587                 size = transport_get_size(sectors, cdb, cmd);
2588                 cmd->t_task_lba = transport_lba_64(cdb);
2589                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2590                 break;
2591         case WRITE_6:
2592                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2593                 if (sector_ret)
2594                         goto out_unsupported_cdb;
2595                 size = transport_get_size(sectors, cdb, cmd);
2596                 cmd->t_task_lba = transport_lba_21(cdb);
2597                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2598                 break;
2599         case WRITE_10:
2600                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2601                 if (sector_ret)
2602                         goto out_unsupported_cdb;
2603                 size = transport_get_size(sectors, cdb, cmd);
2604                 cmd->t_task_lba = transport_lba_32(cdb);
2605                 if (cdb[1] & 0x8)
2606                         cmd->se_cmd_flags |= SCF_FUA;
2607                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2608                 break;
2609         case WRITE_12:
2610                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2611                 if (sector_ret)
2612                         goto out_unsupported_cdb;
2613                 size = transport_get_size(sectors, cdb, cmd);
2614                 cmd->t_task_lba = transport_lba_32(cdb);
2615                 if (cdb[1] & 0x8)
2616                         cmd->se_cmd_flags |= SCF_FUA;
2617                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2618                 break;
2619         case WRITE_16:
2620                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2621                 if (sector_ret)
2622                         goto out_unsupported_cdb;
2623                 size = transport_get_size(sectors, cdb, cmd);
2624                 cmd->t_task_lba = transport_lba_64(cdb);
2625                 if (cdb[1] & 0x8)
2626                         cmd->se_cmd_flags |= SCF_FUA;
2627                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2628                 break;
2629         case XDWRITEREAD_10:
2630                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2631                     !(cmd->se_cmd_flags & SCF_BIDI))
2632                         goto out_invalid_cdb_field;
2633                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2634                 if (sector_ret)
2635                         goto out_unsupported_cdb;
2636                 size = transport_get_size(sectors, cdb, cmd);
2637                 cmd->t_task_lba = transport_lba_32(cdb);
2638                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2639
2640                 /*
2641                  * Do now allow BIDI commands for passthrough mode.
2642                  */
2643                 if (passthrough)
2644                         goto out_unsupported_cdb;
2645
2646                 /*
2647                  * Setup BIDI XOR callback to be run after I/O completion.
2648                  */
2649                 cmd->transport_complete_callback = &transport_xor_callback;
2650                 if (cdb[1] & 0x8)
2651                         cmd->se_cmd_flags |= SCF_FUA;
2652                 break;
2653         case VARIABLE_LENGTH_CMD:
2654                 service_action = get_unaligned_be16(&cdb[8]);
2655                 switch (service_action) {
2656                 case XDWRITEREAD_32:
2657                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2658                         if (sector_ret)
2659                                 goto out_unsupported_cdb;
2660                         size = transport_get_size(sectors, cdb, cmd);
2661                         /*
2662                          * Use WRITE_32 and READ_32 opcodes for the emulated
2663                          * XDWRITE_READ_32 logic.
2664                          */
2665                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2666                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2667
2668                         /*
2669                          * Do now allow BIDI commands for passthrough mode.
2670                          */
2671                         if (passthrough)
2672                                 goto out_unsupported_cdb;
2673
2674                         /*
2675                          * Setup BIDI XOR callback to be run during after I/O
2676                          * completion.
2677                          */
2678                         cmd->transport_complete_callback = &transport_xor_callback;
2679                         if (cdb[1] & 0x8)
2680                                 cmd->se_cmd_flags |= SCF_FUA;
2681                         break;
2682                 case WRITE_SAME_32:
2683                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2684                         if (sector_ret)
2685                                 goto out_unsupported_cdb;
2686
2687                         if (sectors)
2688                                 size = transport_get_size(1, cdb, cmd);
2689                         else {
2690                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2691                                        " supported\n");
2692                                 goto out_invalid_cdb_field;
2693                         }
2694
2695                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2696                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2697
2698                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2699                                 goto out_invalid_cdb_field;
2700                         if (!passthrough)
2701                                 cmd->execute_task = target_emulate_write_same;
2702                         break;
2703                 default:
2704                         pr_err("VARIABLE_LENGTH_CMD service action"
2705                                 " 0x%04x not supported\n", service_action);
2706                         goto out_unsupported_cdb;
2707                 }
2708                 break;
2709         case MAINTENANCE_IN:
2710                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2711                         /* MAINTENANCE_IN from SCC-2 */
2712                         /*
2713                          * Check for emulated MI_REPORT_TARGET_PGS.
2714                          */
2715                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2716                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2717                                 cmd->execute_task =
2718                                         target_emulate_report_target_port_groups;
2719                         }
2720                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2721                                (cdb[8] << 8) | cdb[9];
2722                 } else {
2723                         /* GPCMD_SEND_KEY from multi media commands */
2724                         size = (cdb[8] << 8) + cdb[9];
2725                 }
2726                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2727                 break;
2728         case MODE_SELECT:
2729                 size = cdb[4];
2730                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2731                 break;
2732         case MODE_SELECT_10:
2733                 size = (cdb[7] << 8) + cdb[8];
2734                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2735                 break;
2736         case MODE_SENSE:
2737                 size = cdb[4];
2738                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2739                 if (!passthrough)
2740                         cmd->execute_task = target_emulate_modesense;
2741                 break;
2742         case MODE_SENSE_10:
2743                 size = (cdb[7] << 8) + cdb[8];
2744                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2745                 if (!passthrough)
2746                         cmd->execute_task = target_emulate_modesense;
2747                 break;
2748         case GPCMD_READ_BUFFER_CAPACITY:
2749         case GPCMD_SEND_OPC:
2750         case LOG_SELECT:
2751         case LOG_SENSE:
2752                 size = (cdb[7] << 8) + cdb[8];
2753                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2754                 break;
2755         case READ_BLOCK_LIMITS:
2756                 size = READ_BLOCK_LEN;
2757                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2758                 break;
2759         case GPCMD_GET_CONFIGURATION:
2760         case GPCMD_READ_FORMAT_CAPACITIES:
2761         case GPCMD_READ_DISC_INFO:
2762         case GPCMD_READ_TRACK_RZONE_INFO:
2763                 size = (cdb[7] << 8) + cdb[8];
2764                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2765                 break;
2766         case PERSISTENT_RESERVE_IN:
2767                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2768                         cmd->execute_task = target_scsi3_emulate_pr_in;
2769                 size = (cdb[7] << 8) + cdb[8];
2770                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2771                 break;
2772         case PERSISTENT_RESERVE_OUT:
2773                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2774                         cmd->execute_task = target_scsi3_emulate_pr_out;
2775                 size = (cdb[7] << 8) + cdb[8];
2776                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2777                 break;
2778         case GPCMD_MECHANISM_STATUS:
2779         case GPCMD_READ_DVD_STRUCTURE:
2780                 size = (cdb[8] << 8) + cdb[9];
2781                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2782                 break;
2783         case READ_POSITION:
2784                 size = READ_POSITION_LEN;
2785                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2786                 break;
2787         case MAINTENANCE_OUT:
2788                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2789                         /* MAINTENANCE_OUT from SCC-2
2790                          *
2791                          * Check for emulated MO_SET_TARGET_PGS.
2792                          */
2793                         if (cdb[1] == MO_SET_TARGET_PGS &&
2794                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2795                                 cmd->execute_task =
2796                                         target_emulate_set_target_port_groups;
2797                         }
2798
2799                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2800                                (cdb[8] << 8) | cdb[9];
2801                 } else  {
2802                         /* GPCMD_REPORT_KEY from multi media commands */
2803                         size = (cdb[8] << 8) + cdb[9];
2804                 }
2805                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2806                 break;
2807         case INQUIRY:
2808                 size = (cdb[3] << 8) + cdb[4];
2809                 /*
2810                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2811                  * See spc4r17 section 5.3
2812                  */
2813                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2814                         cmd->sam_task_attr = MSG_HEAD_TAG;
2815                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2816                 if (!passthrough)
2817                         cmd->execute_task = target_emulate_inquiry;
2818                 break;
2819         case READ_BUFFER:
2820                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2821                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2822                 break;
2823         case READ_CAPACITY:
2824                 size = READ_CAP_LEN;
2825                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2826                 if (!passthrough)
2827                         cmd->execute_task = target_emulate_readcapacity;
2828                 break;
2829         case READ_MEDIA_SERIAL_NUMBER:
2830         case SECURITY_PROTOCOL_IN:
2831         case SECURITY_PROTOCOL_OUT:
2832                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2833                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2834                 break;
2835         case SERVICE_ACTION_IN:
2836                 switch (cmd->t_task_cdb[1] & 0x1f) {
2837                 case SAI_READ_CAPACITY_16:
2838                         if (!passthrough)
2839                                 cmd->execute_task =
2840                                         target_emulate_readcapacity_16;
2841                         break;
2842                 default:
2843                         if (passthrough)
2844                                 break;
2845
2846                         pr_err("Unsupported SA: 0x%02x\n",
2847                                 cmd->t_task_cdb[1] & 0x1f);
2848                         goto out_unsupported_cdb;
2849                 }
2850                 /*FALLTHROUGH*/
2851         case ACCESS_CONTROL_IN:
2852         case ACCESS_CONTROL_OUT:
2853         case EXTENDED_COPY:
2854         case READ_ATTRIBUTE:
2855         case RECEIVE_COPY_RESULTS:
2856         case WRITE_ATTRIBUTE:
2857                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2858                        (cdb[12] << 8) | cdb[13];
2859                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2860                 break;
2861         case RECEIVE_DIAGNOSTIC:
2862         case SEND_DIAGNOSTIC:
2863                 size = (cdb[3] << 8) | cdb[4];
2864                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2865                 break;
2866 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2867 #if 0
2868         case GPCMD_READ_CD:
2869                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2870                 size = (2336 * sectors);
2871                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2872                 break;
2873 #endif
2874         case READ_TOC:
2875                 size = cdb[8];
2876                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2877                 break;
2878         case REQUEST_SENSE:
2879                 size = cdb[4];
2880                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2881                 if (!passthrough)
2882                         cmd->execute_task = target_emulate_request_sense;
2883                 break;
2884         case READ_ELEMENT_STATUS:
2885                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2886                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2887                 break;
2888         case WRITE_BUFFER:
2889                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2890                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2891                 break;
2892         case RESERVE:
2893         case RESERVE_10:
2894                 /*
2895                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2896                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2897                  */
2898                 if (cdb[0] == RESERVE_10)
2899                         size = (cdb[7] << 8) | cdb[8];
2900                 else
2901                         size = cmd->data_length;
2902
2903                 /*
2904                  * Setup the legacy emulated handler for SPC-2 and
2905                  * >= SPC-3 compatible reservation handling (CRH=1)
2906                  * Otherwise, we assume the underlying SCSI logic is
2907                  * is running in SPC_PASSTHROUGH, and wants reservations
2908                  * emulation disabled.
2909                  */
2910                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2911                         cmd->execute_task = target_scsi2_reservation_reserve;
2912                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2913                 break;
2914         case RELEASE:
2915         case RELEASE_10:
2916                 /*
2917                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2918                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2919                 */
2920                 if (cdb[0] == RELEASE_10)
2921                         size = (cdb[7] << 8) | cdb[8];
2922                 else
2923                         size = cmd->data_length;
2924
2925                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2926                         cmd->execute_task = target_scsi2_reservation_release;
2927                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2928                 break;
2929         case SYNCHRONIZE_CACHE:
2930         case 0x91: /* SYNCHRONIZE_CACHE_16: */
2931                 /*
2932                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2933                  */
2934                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2935                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2936                         cmd->t_task_lba = transport_lba_32(cdb);
2937                 } else {
2938                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2939                         cmd->t_task_lba = transport_lba_64(cdb);
2940                 }
2941                 if (sector_ret)
2942                         goto out_unsupported_cdb;
2943
2944                 size = transport_get_size(sectors, cdb, cmd);
2945                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2946
2947                 if (passthrough)
2948                         break;
2949
2950                 /*
2951                  * Check to ensure that LBA + Range does not exceed past end of
2952                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2953                  */
2954                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2955                         if (transport_cmd_get_valid_sectors(cmd) < 0)
2956                                 goto out_invalid_cdb_field;
2957                 }
2958                 cmd->execute_task = target_emulate_synchronize_cache;
2959                 break;
2960         case UNMAP:
2961                 size = get_unaligned_be16(&cdb[7]);
2962                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2963                 if (!passthrough)
2964                         cmd->execute_task = target_emulate_unmap;
2965                 break;
2966         case WRITE_SAME_16:
2967                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2968                 if (sector_ret)
2969                         goto out_unsupported_cdb;
2970
2971                 if (sectors)
2972                         size = transport_get_size(1, cdb, cmd);
2973                 else {
2974                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2975                         goto out_invalid_cdb_field;
2976                 }
2977
2978                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2979                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2980
2981                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2982                         goto out_invalid_cdb_field;
2983                 if (!passthrough)
2984                         cmd->execute_task = target_emulate_write_same;
2985                 break;
2986         case WRITE_SAME:
2987                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2988                 if (sector_ret)
2989                         goto out_unsupported_cdb;
2990
2991                 if (sectors)
2992                         size = transport_get_size(1, cdb, cmd);
2993                 else {
2994                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2995                         goto out_invalid_cdb_field;
2996                 }
2997
2998                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2999                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3000                 /*
3001                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3002                  * of byte 1 bit 3 UNMAP instead of original reserved field
3003                  */
3004                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3005                         goto out_invalid_cdb_field;
3006                 if (!passthrough)
3007                         cmd->execute_task = target_emulate_write_same;
3008                 break;
3009         case ALLOW_MEDIUM_REMOVAL:
3010         case ERASE:
3011         case REZERO_UNIT:
3012         case SEEK_10:
3013         case SPACE:
3014         case START_STOP:
3015         case TEST_UNIT_READY:
3016         case VERIFY:
3017         case WRITE_FILEMARKS:
3018                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3019                 if (!passthrough)
3020                         cmd->execute_task = target_emulate_noop;
3021                 break;
3022         case GPCMD_CLOSE_TRACK:
3023         case INITIALIZE_ELEMENT_STATUS:
3024         case GPCMD_LOAD_UNLOAD:
3025         case GPCMD_SET_SPEED:
3026         case MOVE_MEDIUM:
3027                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3028                 break;
3029         case REPORT_LUNS:
3030                 cmd->execute_task = target_report_luns;
3031                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3032                 /*
3033                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3034                  * See spc4r17 section 5.3
3035                  */
3036                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3037                         cmd->sam_task_attr = MSG_HEAD_TAG;
3038                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3039                 break;
3040         default:
3041                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3042                         " 0x%02x, sending CHECK_CONDITION.\n",
3043                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3044                 goto out_unsupported_cdb;
3045         }
3046
3047         if (size != cmd->data_length) {
3048                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3049                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3050                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3051                                 cmd->data_length, size, cdb[0]);
3052
3053                 cmd->cmd_spdtl = size;
3054
3055                 if (cmd->data_direction == DMA_TO_DEVICE) {
3056                         pr_err("Rejecting underflow/overflow"
3057                                         " WRITE data\n");
3058                         goto out_invalid_cdb_field;
3059                 }
3060                 /*
3061                  * Reject READ_* or WRITE_* with overflow/underflow for
3062                  * type SCF_SCSI_DATA_SG_IO_CDB.
3063                  */
3064                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3065                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3066                                 " CDB on non 512-byte sector setup subsystem"
3067                                 " plugin: %s\n", dev->transport->name);
3068                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3069                         goto out_invalid_cdb_field;
3070                 }
3071
3072                 if (size > cmd->data_length) {
3073                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3074                         cmd->residual_count = (size - cmd->data_length);
3075                 } else {
3076                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3077                         cmd->residual_count = (cmd->data_length - size);
3078                 }
3079                 cmd->data_length = size;
3080         }
3081
3082         /* reject any command that we don't have a handler for */
3083         if (!(passthrough || cmd->execute_task ||
3084              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3085                 goto out_unsupported_cdb;
3086
3087         transport_set_supported_SAM_opcode(cmd);
3088         return ret;
3089
3090 out_unsupported_cdb:
3091         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3092         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3093         return -EINVAL;
3094 out_invalid_cdb_field:
3095         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3096         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3097         return -EINVAL;
3098 }
3099
3100 /*
3101  * Called from I/O completion to determine which dormant/delayed
3102  * and ordered cmds need to have their tasks added to the execution queue.
3103  */
3104 static void transport_complete_task_attr(struct se_cmd *cmd)
3105 {
3106         struct se_device *dev = cmd->se_dev;
3107         struct se_cmd *cmd_p, *cmd_tmp;
3108         int new_active_tasks = 0;
3109
3110         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3111                 atomic_dec(&dev->simple_cmds);
3112                 smp_mb__after_atomic_dec();
3113                 dev->dev_cur_ordered_id++;
3114                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3115                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3116                         cmd->se_ordered_id);
3117         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3118                 dev->dev_cur_ordered_id++;
3119                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3120                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3121                         cmd->se_ordered_id);
3122         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3123                 atomic_dec(&dev->dev_ordered_sync);
3124                 smp_mb__after_atomic_dec();
3125
3126                 dev->dev_cur_ordered_id++;
3127                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3128                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3129         }
3130         /*
3131          * Process all commands up to the last received
3132          * ORDERED task attribute which requires another blocking
3133          * boundary
3134          */
3135         spin_lock(&dev->delayed_cmd_lock);
3136         list_for_each_entry_safe(cmd_p, cmd_tmp,
3137                         &dev->delayed_cmd_list, se_delayed_node) {
3138
3139                 list_del(&cmd_p->se_delayed_node);
3140                 spin_unlock(&dev->delayed_cmd_lock);
3141
3142                 pr_debug("Calling add_tasks() for"
3143                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3144                         " Dormant -> Active, se_ordered_id: %u\n",
3145                         cmd_p->t_task_cdb[0],
3146                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3147
3148                 transport_add_tasks_from_cmd(cmd_p);
3149                 new_active_tasks++;
3150
3151                 spin_lock(&dev->delayed_cmd_lock);
3152                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3153                         break;
3154         }
3155         spin_unlock(&dev->delayed_cmd_lock);
3156         /*
3157          * If new tasks have become active, wake up the transport thread
3158          * to do the processing of the Active tasks.
3159          */
3160         if (new_active_tasks != 0)
3161                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3162 }
3163
3164 static void transport_complete_qf(struct se_cmd *cmd)
3165 {
3166         int ret = 0;
3167
3168         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3169                 transport_complete_task_attr(cmd);
3170
3171         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3172                 ret = cmd->se_tfo->queue_status(cmd);
3173                 if (ret)
3174                         goto out;
3175         }
3176
3177         switch (cmd->data_direction) {
3178         case DMA_FROM_DEVICE:
3179                 ret = cmd->se_tfo->queue_data_in(cmd);
3180                 break;
3181         case DMA_TO_DEVICE:
3182                 if (cmd->t_bidi_data_sg) {
3183                         ret = cmd->se_tfo->queue_data_in(cmd);
3184                         if (ret < 0)
3185                                 break;
3186                 }
3187                 /* Fall through for DMA_TO_DEVICE */
3188         case DMA_NONE:
3189                 ret = cmd->se_tfo->queue_status(cmd);
3190                 break;
3191         default:
3192                 break;
3193         }
3194
3195 out:
3196         if (ret < 0) {
3197                 transport_handle_queue_full(cmd, cmd->se_dev);
3198                 return;
3199         }
3200         transport_lun_remove_cmd(cmd);
3201         transport_cmd_check_stop_to_fabric(cmd);
3202 }
3203
3204 static void transport_handle_queue_full(
3205         struct se_cmd *cmd,
3206         struct se_device *dev)
3207 {
3208         spin_lock_irq(&dev->qf_cmd_lock);
3209         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3210         atomic_inc(&dev->dev_qf_count);
3211         smp_mb__after_atomic_inc();
3212         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3213
3214         schedule_work(&cmd->se_dev->qf_work_queue);
3215 }
3216
3217 static void target_complete_ok_work(struct work_struct *work)
3218 {
3219         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3220         int reason = 0, ret;
3221
3222         /*
3223          * Check if we need to move delayed/dormant tasks from cmds on the
3224          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3225          * Attribute.
3226          */
3227         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3228                 transport_complete_task_attr(cmd);
3229         /*
3230          * Check to schedule QUEUE_FULL work, or execute an existing
3231          * cmd->transport_qf_callback()
3232          */
3233         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3234                 schedule_work(&cmd->se_dev->qf_work_queue);
3235
3236         /*
3237          * Check if we need to retrieve a sense buffer from
3238          * the struct se_cmd in question.
3239          */
3240         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3241                 if (transport_get_sense_data(cmd) < 0)
3242                         reason = TCM_NON_EXISTENT_LUN;
3243
3244                 /*
3245                  * Only set when an struct se_task->task_scsi_status returned
3246                  * a non GOOD status.
3247                  */
3248                 if (cmd->scsi_status) {
3249                         ret = transport_send_check_condition_and_sense(
3250                                         cmd, reason, 1);
3251                         if (ret == -EAGAIN || ret == -ENOMEM)
3252                                 goto queue_full;
3253
3254                         transport_lun_remove_cmd(cmd);
3255                         transport_cmd_check_stop_to_fabric(cmd);
3256                         return;
3257                 }
3258         }
3259         /*
3260          * Check for a callback, used by amongst other things
3261          * XDWRITE_READ_10 emulation.
3262          */
3263         if (cmd->transport_complete_callback)
3264                 cmd->transport_complete_callback(cmd);
3265
3266         switch (cmd->data_direction) {
3267         case DMA_FROM_DEVICE:
3268                 spin_lock(&cmd->se_lun->lun_sep_lock);
3269                 if (cmd->se_lun->lun_sep) {
3270                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3271                                         cmd->data_length;
3272                 }
3273                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3274
3275                 ret = cmd->se_tfo->queue_data_in(cmd);
3276                 if (ret == -EAGAIN || ret == -ENOMEM)
3277                         goto queue_full;
3278                 break;
3279         case DMA_TO_DEVICE:
3280                 spin_lock(&cmd->se_lun->lun_sep_lock);
3281                 if (cmd->se_lun->lun_sep) {
3282                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3283                                 cmd->data_length;
3284                 }
3285                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3286                 /*
3287                  * Check if we need to send READ payload for BIDI-COMMAND
3288                  */
3289                 if (cmd->t_bidi_data_sg) {
3290                         spin_lock(&cmd->se_lun->lun_sep_lock);
3291                         if (cmd->se_lun->lun_sep) {
3292                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3293                                         cmd->data_length;
3294                         }
3295                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3296                         ret = cmd->se_tfo->queue_data_in(cmd);
3297                         if (ret == -EAGAIN || ret == -ENOMEM)
3298                                 goto queue_full;
3299                         break;
3300                 }
3301                 /* Fall through for DMA_TO_DEVICE */
3302         case DMA_NONE:
3303                 ret = cmd->se_tfo->queue_status(cmd);
3304                 if (ret == -EAGAIN || ret == -ENOMEM)
3305                         goto queue_full;
3306                 break;
3307         default:
3308                 break;
3309         }
3310
3311         transport_lun_remove_cmd(cmd);
3312         transport_cmd_check_stop_to_fabric(cmd);
3313         return;
3314
3315 queue_full:
3316         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3317                 " data_direction: %d\n", cmd, cmd->data_direction);
3318         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3319         transport_handle_queue_full(cmd, cmd->se_dev);
3320 }
3321
3322 static void transport_free_dev_tasks(struct se_cmd *cmd)
3323 {
3324         struct se_task *task, *task_tmp;
3325         unsigned long flags;
3326         LIST_HEAD(dispose_list);
3327
3328         spin_lock_irqsave(&cmd->t_state_lock, flags);
3329         list_for_each_entry_safe(task, task_tmp,
3330                                 &cmd->t_task_list, t_list) {
3331                 if (!(task->task_flags & TF_ACTIVE))
3332                         list_move_tail(&task->t_list, &dispose_list);
3333         }
3334         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3335
3336         while (!list_empty(&dispose_list)) {
3337                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3338
3339                 if (task->task_sg != cmd->t_data_sg &&
3340                     task->task_sg != cmd->t_bidi_data_sg)
3341                         kfree(task->task_sg);
3342
3343                 list_del(&task->t_list);
3344
3345                 cmd->se_dev->transport->free_task(task);
3346         }
3347 }
3348
3349 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3350 {
3351         struct scatterlist *sg;
3352         int count;
3353
3354         for_each_sg(sgl, sg, nents, count)
3355                 __free_page(sg_page(sg));
3356
3357         kfree(sgl);
3358 }
3359
3360 static inline void transport_free_pages(struct se_cmd *cmd)
3361 {
3362         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3363                 return;
3364
3365         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3366         cmd->t_data_sg = NULL;
3367         cmd->t_data_nents = 0;
3368
3369         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3370         cmd->t_bidi_data_sg = NULL;
3371         cmd->t_bidi_data_nents = 0;
3372 }
3373
3374 /**
3375  * transport_release_cmd - free a command
3376  * @cmd:       command to free
3377  *
3378  * This routine unconditionally frees a command, and reference counting
3379  * or list removal must be done in the caller.
3380  */
3381 static void transport_release_cmd(struct se_cmd *cmd)
3382 {
3383         BUG_ON(!cmd->se_tfo);
3384
3385         if (cmd->se_tmr_req)
3386                 core_tmr_release_req(cmd->se_tmr_req);
3387         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3388                 kfree(cmd->t_task_cdb);
3389         /*
3390          * If this cmd has been setup with target_get_sess_cmd(), drop
3391          * the kref and call ->release_cmd() in kref callback.
3392          */
3393          if (cmd->check_release != 0) {
3394                 target_put_sess_cmd(cmd->se_sess, cmd);
3395                 return;
3396         }
3397         cmd->se_tfo->release_cmd(cmd);
3398 }
3399
3400 /**
3401  * transport_put_cmd - release a reference to a command
3402  * @cmd:       command to release
3403  *
3404  * This routine releases our reference to the command and frees it if possible.
3405  */
3406 static void transport_put_cmd(struct se_cmd *cmd)
3407 {
3408         unsigned long flags;
3409         int free_tasks = 0;
3410
3411         spin_lock_irqsave(&cmd->t_state_lock, flags);
3412         if (atomic_read(&cmd->t_fe_count)) {
3413                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3414                         goto out_busy;
3415         }
3416
3417         if (atomic_read(&cmd->t_se_count)) {
3418                 if (!atomic_dec_and_test(&cmd->t_se_count))
3419                         goto out_busy;
3420         }
3421
3422         if (atomic_read(&cmd->transport_dev_active)) {
3423                 atomic_set(&cmd->transport_dev_active, 0);
3424                 transport_all_task_dev_remove_state(cmd);
3425                 free_tasks = 1;
3426         }
3427         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3428
3429         if (free_tasks != 0)
3430                 transport_free_dev_tasks(cmd);
3431
3432         transport_free_pages(cmd);
3433         transport_release_cmd(cmd);
3434         return;
3435 out_busy:
3436         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3437 }
3438
3439 /*
3440  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3441  * allocating in the core.
3442  * @cmd:  Associated se_cmd descriptor
3443  * @mem:  SGL style memory for TCM WRITE / READ
3444  * @sg_mem_num: Number of SGL elements
3445  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3446  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3447  *
3448  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3449  * of parameters.
3450  */
3451 int transport_generic_map_mem_to_cmd(
3452         struct se_cmd *cmd,
3453         struct scatterlist *sgl,
3454         u32 sgl_count,
3455         struct scatterlist *sgl_bidi,
3456         u32 sgl_bidi_count)
3457 {
3458         if (!sgl || !sgl_count)
3459                 return 0;
3460
3461         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3462             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3463                 /*
3464                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3465                  * scatterlists already have been set to follow what the fabric
3466                  * passes for the original expected data transfer length.
3467                  */
3468                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3469                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3470                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3471                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3472                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3473                         return -EINVAL;
3474                 }
3475
3476                 cmd->t_data_sg = sgl;
3477                 cmd->t_data_nents = sgl_count;
3478
3479                 if (sgl_bidi && sgl_bidi_count) {
3480                         cmd->t_bidi_data_sg = sgl_bidi;
3481                         cmd->t_bidi_data_nents = sgl_bidi_count;
3482                 }
3483                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3484         }
3485
3486         return 0;
3487 }
3488 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3489
3490 void *transport_kmap_data_sg(struct se_cmd *cmd)
3491 {
3492         struct scatterlist *sg = cmd->t_data_sg;
3493         struct page **pages;
3494         int i;
3495
3496         BUG_ON(!sg);
3497         /*
3498          * We need to take into account a possible offset here for fabrics like
3499          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3500          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3501          */
3502         if (!cmd->t_data_nents)
3503                 return NULL;
3504         else if (cmd->t_data_nents == 1)
3505                 return kmap(sg_page(sg)) + sg->offset;
3506
3507         /* >1 page. use vmap */
3508         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3509         if (!pages)
3510                 return NULL;
3511
3512         /* convert sg[] to pages[] */
3513         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3514                 pages[i] = sg_page(sg);
3515         }
3516
3517         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
3518         kfree(pages);
3519         if (!cmd->t_data_vmap)
3520                 return NULL;
3521
3522         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3523 }
3524 EXPORT_SYMBOL(transport_kmap_data_sg);
3525
3526 void transport_kunmap_data_sg(struct se_cmd *cmd)
3527 {
3528         if (!cmd->t_data_nents)
3529                 return;
3530         else if (cmd->t_data_nents == 1)
3531                 kunmap(sg_page(cmd->t_data_sg));
3532
3533         vunmap(cmd->t_data_vmap);
3534         cmd->t_data_vmap = NULL;
3535 }
3536 EXPORT_SYMBOL(transport_kunmap_data_sg);
3537
3538 static int
3539 transport_generic_get_mem(struct se_cmd *cmd)
3540 {
3541         u32 length = cmd->data_length;
3542         unsigned int nents;
3543         struct page *page;
3544         gfp_t zero_flag;
3545         int i = 0;
3546
3547         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3548         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3549         if (!cmd->t_data_sg)
3550                 return -ENOMEM;
3551
3552         cmd->t_data_nents = nents;
3553         sg_init_table(cmd->t_data_sg, nents);
3554
3555         zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3556
3557         while (length) {
3558                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3559                 page = alloc_page(GFP_KERNEL | zero_flag);
3560                 if (!page)
3561                         goto out;
3562
3563                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3564                 length -= page_len;
3565                 i++;
3566         }
3567         return 0;
3568
3569 out:
3570         while (i >= 0) {
3571                 __free_page(sg_page(&cmd->t_data_sg[i]));
3572                 i--;
3573         }
3574         kfree(cmd->t_data_sg);
3575         cmd->t_data_sg = NULL;
3576         return -ENOMEM;
3577 }
3578
3579 /* Reduce sectors if they are too long for the device */
3580 static inline sector_t transport_limit_task_sectors(
3581         struct se_device *dev,
3582         unsigned long long lba,
3583         sector_t sectors)
3584 {
3585         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3586
3587         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3588                 if ((lba + sectors) > transport_dev_end_lba(dev))
3589                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3590
3591         return sectors;
3592 }
3593
3594
3595 /*
3596  * This function can be used by HW target mode drivers to create a linked
3597  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3598  * This is intended to be called during the completion path by TCM Core
3599  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3600  */
3601 void transport_do_task_sg_chain(struct se_cmd *cmd)
3602 {
3603         struct scatterlist *sg_first = NULL;
3604         struct scatterlist *sg_prev = NULL;
3605         int sg_prev_nents = 0;
3606         struct scatterlist *sg;
3607         struct se_task *task;
3608         u32 chained_nents = 0;
3609         int i;
3610
3611         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3612
3613         /*
3614          * Walk the struct se_task list and setup scatterlist chains
3615          * for each contiguously allocated struct se_task->task_sg[].
3616          */
3617         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3618                 if (!task->task_sg)
3619                         continue;
3620
3621                 if (!sg_first) {
3622                         sg_first = task->task_sg;
3623                         chained_nents = task->task_sg_nents;
3624                 } else {
3625                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3626                         chained_nents += task->task_sg_nents;
3627                 }
3628                 /*
3629                  * For the padded tasks, use the extra SGL vector allocated
3630                  * in transport_allocate_data_tasks() for the sg_prev_nents
3631                  * offset into sg_chain() above.
3632                  *
3633                  * We do not need the padding for the last task (or a single
3634                  * task), but in that case we will never use the sg_prev_nents
3635                  * value below which would be incorrect.
3636                  */
3637                 sg_prev_nents = (task->task_sg_nents + 1);
3638                 sg_prev = task->task_sg;
3639         }
3640         /*
3641          * Setup the starting pointer and total t_tasks_sg_linked_no including
3642          * padding SGs for linking and to mark the end.
3643          */
3644         cmd->t_tasks_sg_chained = sg_first;
3645         cmd->t_tasks_sg_chained_no = chained_nents;
3646
3647         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3648                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3649                 cmd->t_tasks_sg_chained_no);
3650
3651         for_each_sg(cmd->t_tasks_sg_chained, sg,
3652                         cmd->t_tasks_sg_chained_no, i) {
3653
3654                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3655                         i, sg, sg_page(sg), sg->length, sg->offset);
3656                 if (sg_is_chain(sg))
3657                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3658                 if (sg_is_last(sg))
3659                         pr_debug("SG: %p sg_is_last=1\n", sg);
3660         }
3661 }
3662 EXPORT_SYMBOL(transport_do_task_sg_chain);
3663
3664 /*
3665  * Break up cmd into chunks transport can handle
3666  */
3667 static int
3668 transport_allocate_data_tasks(struct se_cmd *cmd,
3669         enum dma_data_direction data_direction,
3670         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3671 {
3672         struct se_device *dev = cmd->se_dev;
3673         int task_count, i;
3674         unsigned long long lba;
3675         sector_t sectors, dev_max_sectors;
3676         u32 sector_size;
3677
3678         if (transport_cmd_get_valid_sectors(cmd) < 0)
3679                 return -EINVAL;
3680
3681         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3682         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3683
3684         WARN_ON(cmd->data_length % sector_size);
3685
3686         lba = cmd->t_task_lba;
3687         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3688         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3689
3690         /*
3691          * If we need just a single task reuse the SG list in the command
3692          * and avoid a lot of work.
3693          */
3694         if (task_count == 1) {
3695                 struct se_task *task;
3696                 unsigned long flags;
3697
3698                 task = transport_generic_get_task(cmd, data_direction);
3699                 if (!task)
3700                         return -ENOMEM;
3701
3702                 task->task_sg = cmd_sg;
3703                 task->task_sg_nents = sgl_nents;
3704
3705                 task->task_lba = lba;
3706                 task->task_sectors = sectors;
3707                 task->task_size = task->task_sectors * sector_size;
3708
3709                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3710                 list_add_tail(&task->t_list, &cmd->t_task_list);
3711                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3712
3713                 return task_count;
3714         }
3715
3716         for (i = 0; i < task_count; i++) {
3717                 struct se_task *task;
3718                 unsigned int task_size, task_sg_nents_padded;
3719                 struct scatterlist *sg;
3720                 unsigned long flags;
3721                 int count;
3722
3723                 task = transport_generic_get_task(cmd, data_direction);
3724                 if (!task)
3725                         return -ENOMEM;
3726
3727                 task->task_lba = lba;
3728                 task->task_sectors = min(sectors, dev_max_sectors);
3729                 task->task_size = task->task_sectors * sector_size;
3730
3731                 /*
3732                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3733                  * in order to calculate the number per task SGL entries
3734                  */
3735                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3736                 /*
3737                  * Check if the fabric module driver is requesting that all
3738                  * struct se_task->task_sg[] be chained together..  If so,
3739                  * then allocate an extra padding SG entry for linking and
3740                  * marking the end of the chained SGL for every task except
3741                  * the last one for (task_count > 1) operation, or skipping
3742                  * the extra padding for the (task_count == 1) case.
3743                  */
3744                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3745                         task_sg_nents_padded = (task->task_sg_nents + 1);
3746                 } else
3747                         task_sg_nents_padded = task->task_sg_nents;
3748
3749                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3750                                         task_sg_nents_padded, GFP_KERNEL);
3751                 if (!task->task_sg) {
3752                         cmd->se_dev->transport->free_task(task);
3753                         return -ENOMEM;
3754                 }
3755
3756                 sg_init_table(task->task_sg, task_sg_nents_padded);
3757
3758                 task_size = task->task_size;
3759
3760                 /* Build new sgl, only up to task_size */
3761                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3762                         if (cmd_sg->length > task_size)
3763                                 break;
3764
3765                         *sg = *cmd_sg;
3766                         task_size -= cmd_sg->length;
3767                         cmd_sg = sg_next(cmd_sg);
3768                 }
3769
3770                 lba += task->task_sectors;
3771                 sectors -= task->task_sectors;
3772
3773                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3774                 list_add_tail(&task->t_list, &cmd->t_task_list);
3775                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3776         }
3777
3778         return task_count;
3779 }
3780
3781 static int
3782 transport_allocate_control_task(struct se_cmd *cmd)
3783 {
3784         struct se_task *task;
3785         unsigned long flags;
3786
3787         /* Workaround for handling zero-length control CDBs */
3788         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3789             !cmd->data_length)
3790                 return 0;
3791
3792         task = transport_generic_get_task(cmd, cmd->data_direction);
3793         if (!task)
3794                 return -ENOMEM;
3795
3796         task->task_sg = cmd->t_data_sg;
3797         task->task_size = cmd->data_length;
3798         task->task_sg_nents = cmd->t_data_nents;
3799
3800         spin_lock_irqsave(&cmd->t_state_lock, flags);
3801         list_add_tail(&task->t_list, &cmd->t_task_list);
3802         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3803
3804         /* Success! Return number of tasks allocated */
3805         return 1;
3806 }
3807
3808 /*
3809  * Allocate any required ressources to execute the command, and either place
3810  * it on the execution queue if possible.  For writes we might not have the
3811  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3812  */
3813 int transport_generic_new_cmd(struct se_cmd *cmd)
3814 {
3815         struct se_device *dev = cmd->se_dev;
3816         int task_cdbs, task_cdbs_bidi = 0;
3817         int set_counts = 1;
3818         int ret = 0;
3819
3820         /*
3821          * Determine is the TCM fabric module has already allocated physical
3822          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3823          * beforehand.
3824          */
3825         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3826             cmd->data_length) {
3827                 ret = transport_generic_get_mem(cmd);
3828                 if (ret < 0)
3829                         goto out_fail;
3830         }
3831
3832         /*
3833          * For BIDI command set up the read tasks first.
3834          */
3835         if (cmd->t_bidi_data_sg &&
3836             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3837                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3838
3839                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3840                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3841                                 cmd->t_bidi_data_nents);
3842                 if (task_cdbs_bidi <= 0)
3843                         goto out_fail;
3844
3845                 atomic_inc(&cmd->t_fe_count);
3846                 atomic_inc(&cmd->t_se_count);
3847                 set_counts = 0;
3848         }
3849
3850         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3851                 task_cdbs = transport_allocate_data_tasks(cmd,
3852                                         cmd->data_direction, cmd->t_data_sg,
3853                                         cmd->t_data_nents);
3854         } else {
3855                 task_cdbs = transport_allocate_control_task(cmd);
3856         }
3857
3858         if (task_cdbs < 0)
3859                 goto out_fail;
3860         else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3861                 cmd->t_state = TRANSPORT_COMPLETE;
3862                 atomic_set(&cmd->t_transport_active, 1);
3863
3864                 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3865                         u8 ua_asc = 0, ua_ascq = 0;
3866
3867                         core_scsi3_ua_clear_for_request_sense(cmd,
3868                                         &ua_asc, &ua_ascq);
3869                 }
3870
3871                 INIT_WORK(&cmd->work, target_complete_ok_work);
3872                 queue_work(target_completion_wq, &cmd->work);
3873                 return 0;
3874         }
3875
3876         if (set_counts) {
3877                 atomic_inc(&cmd->t_fe_count);
3878                 atomic_inc(&cmd->t_se_count);
3879         }
3880
3881         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3882         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3883         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3884
3885         /*
3886          * For WRITEs, let the fabric know its buffer is ready..
3887          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3888          * will be added to the struct se_device execution queue after its WRITE
3889          * data has arrived. (ie: It gets handled by the transport processing
3890          * thread a second time)
3891          */
3892         if (cmd->data_direction == DMA_TO_DEVICE) {
3893                 transport_add_tasks_to_state_queue(cmd);
3894                 return transport_generic_write_pending(cmd);
3895         }
3896         /*
3897          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3898          * to the execution queue.
3899          */
3900         transport_execute_tasks(cmd);
3901         return 0;
3902
3903 out_fail:
3904         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3905         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3906         return -EINVAL;
3907 }
3908 EXPORT_SYMBOL(transport_generic_new_cmd);
3909
3910 /*      transport_generic_process_write():
3911  *
3912  *
3913  */
3914 void transport_generic_process_write(struct se_cmd *cmd)
3915 {
3916         transport_execute_tasks(cmd);
3917 }
3918 EXPORT_SYMBOL(transport_generic_process_write);
3919
3920 static void transport_write_pending_qf(struct se_cmd *cmd)
3921 {
3922         int ret;
3923
3924         ret = cmd->se_tfo->write_pending(cmd);
3925         if (ret == -EAGAIN || ret == -ENOMEM) {
3926                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3927                          cmd);
3928                 transport_handle_queue_full(cmd, cmd->se_dev);
3929         }
3930 }
3931
3932 static int transport_generic_write_pending(struct se_cmd *cmd)
3933 {
3934         unsigned long flags;
3935         int ret;
3936
3937         spin_lock_irqsave(&cmd->t_state_lock, flags);
3938         cmd->t_state = TRANSPORT_WRITE_PENDING;
3939         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3940
3941         /*
3942          * Clear the se_cmd for WRITE_PENDING status in order to set
3943          * cmd->t_transport_active=0 so that transport_generic_handle_data
3944          * can be called from HW target mode interrupt code.  This is safe
3945          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3946          * because the se_cmd->se_lun pointer is not being cleared.
3947          */
3948         transport_cmd_check_stop(cmd, 1, 0);
3949
3950         /*
3951          * Call the fabric write_pending function here to let the
3952          * frontend know that WRITE buffers are ready.
3953          */
3954         ret = cmd->se_tfo->write_pending(cmd);
3955         if (ret == -EAGAIN || ret == -ENOMEM)
3956                 goto queue_full;
3957         else if (ret < 0)
3958                 return ret;
3959
3960         return 1;
3961
3962 queue_full:
3963         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3964         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3965         transport_handle_queue_full(cmd, cmd->se_dev);
3966         return 0;
3967 }
3968
3969 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3970 {
3971         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3972                 if (wait_for_tasks && cmd->se_tmr_req)
3973                          transport_wait_for_tasks(cmd);
3974
3975                 transport_release_cmd(cmd);
3976         } else {
3977                 if (wait_for_tasks)
3978                         transport_wait_for_tasks(cmd);
3979
3980                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3981
3982                 if (cmd->se_lun)
3983                         transport_lun_remove_cmd(cmd);
3984
3985                 transport_free_dev_tasks(cmd);
3986
3987                 transport_put_cmd(cmd);
3988         }
3989 }
3990 EXPORT_SYMBOL(transport_generic_free_cmd);
3991
3992 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3993  * @se_sess:    session to reference
3994  * @se_cmd:     command descriptor to add
3995  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
3996  */
3997 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
3998                         bool ack_kref)
3999 {
4000         unsigned long flags;
4001
4002         kref_init(&se_cmd->cmd_kref);
4003         /*
4004          * Add a second kref if the fabric caller is expecting to handle
4005          * fabric acknowledgement that requires two target_put_sess_cmd()
4006          * invocations before se_cmd descriptor release.
4007          */
4008         if (ack_kref == true)
4009                 kref_get(&se_cmd->cmd_kref);
4010
4011         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4012         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4013         se_cmd->check_release = 1;
4014         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4015 }
4016 EXPORT_SYMBOL(target_get_sess_cmd);
4017
4018 static void target_release_cmd_kref(struct kref *kref)
4019 {
4020         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4021         struct se_session *se_sess = se_cmd->se_sess;
4022         unsigned long flags;
4023
4024         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4025         if (list_empty(&se_cmd->se_cmd_list)) {
4026                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4027                 WARN_ON(1);
4028                 return;
4029         }
4030         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4031                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4032                 complete(&se_cmd->cmd_wait_comp);
4033                 return;
4034         }
4035         list_del(&se_cmd->se_cmd_list);
4036         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4037
4038         se_cmd->se_tfo->release_cmd(se_cmd);
4039 }
4040
4041 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4042  * @se_sess:    session to reference
4043  * @se_cmd:     command descriptor to drop
4044  */
4045 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4046 {
4047         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4048 }
4049 EXPORT_SYMBOL(target_put_sess_cmd);
4050
4051 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4052  * @se_sess:    session to split
4053  */
4054 void target_splice_sess_cmd_list(struct se_session *se_sess)
4055 {
4056         struct se_cmd *se_cmd;
4057         unsigned long flags;
4058
4059         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4060         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4061
4062         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4063         se_sess->sess_tearing_down = 1;
4064
4065         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4066
4067         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4068                 se_cmd->cmd_wait_set = 1;
4069
4070         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4071 }
4072 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4073
4074 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4075  * @se_sess:    session to wait for active I/O
4076  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4077  */
4078 void target_wait_for_sess_cmds(
4079         struct se_session *se_sess,
4080         int wait_for_tasks)
4081 {
4082         struct se_cmd *se_cmd, *tmp_cmd;
4083         bool rc = false;
4084
4085         list_for_each_entry_safe(se_cmd, tmp_cmd,
4086                                 &se_sess->sess_wait_list, se_cmd_list) {
4087                 list_del(&se_cmd->se_cmd_list);
4088
4089                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4090                         " %d\n", se_cmd, se_cmd->t_state,
4091                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4092
4093                 if (wait_for_tasks) {
4094                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4095                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4096                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4097
4098                         rc = transport_wait_for_tasks(se_cmd);
4099
4100                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4101                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4102                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4103                 }
4104
4105                 if (!rc) {
4106                         wait_for_completion(&se_cmd->cmd_wait_comp);
4107                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4108                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4109                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4110                 }
4111
4112                 se_cmd->se_tfo->release_cmd(se_cmd);
4113         }
4114 }
4115 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4116
4117 /*      transport_lun_wait_for_tasks():
4118  *
4119  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4120  *      an struct se_lun to be successfully shutdown.
4121  */
4122 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4123 {
4124         unsigned long flags;
4125         int ret;
4126         /*
4127          * If the frontend has already requested this struct se_cmd to
4128          * be stopped, we can safely ignore this struct se_cmd.
4129          */
4130         spin_lock_irqsave(&cmd->t_state_lock, flags);
4131         if (atomic_read(&cmd->t_transport_stop)) {
4132                 atomic_set(&cmd->transport_lun_stop, 0);
4133                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4134                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4135                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4136                 transport_cmd_check_stop(cmd, 1, 0);
4137                 return -EPERM;
4138         }
4139         atomic_set(&cmd->transport_lun_fe_stop, 1);
4140         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4141
4142         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4143
4144         ret = transport_stop_tasks_for_cmd(cmd);
4145
4146         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4147                         " %d\n", cmd, cmd->t_task_list_num, ret);
4148         if (!ret) {
4149                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4150                                 cmd->se_tfo->get_task_tag(cmd));
4151                 wait_for_completion(&cmd->transport_lun_stop_comp);
4152                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4153                                 cmd->se_tfo->get_task_tag(cmd));
4154         }
4155         transport_remove_cmd_from_queue(cmd);
4156
4157         return 0;
4158 }
4159
4160 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4161 {
4162         struct se_cmd *cmd = NULL;
4163         unsigned long lun_flags, cmd_flags;
4164         /*
4165          * Do exception processing and return CHECK_CONDITION status to the
4166          * Initiator Port.
4167          */
4168         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4169         while (!list_empty(&lun->lun_cmd_list)) {
4170                 cmd = list_first_entry(&lun->lun_cmd_list,
4171                        struct se_cmd, se_lun_node);
4172                 list_del(&cmd->se_lun_node);
4173
4174                 atomic_set(&cmd->transport_lun_active, 0);
4175                 /*
4176                  * This will notify iscsi_target_transport.c:
4177                  * transport_cmd_check_stop() that a LUN shutdown is in
4178                  * progress for the iscsi_cmd_t.
4179                  */
4180                 spin_lock(&cmd->t_state_lock);
4181                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4182                         "_lun_stop for  ITT: 0x%08x\n",
4183                         cmd->se_lun->unpacked_lun,
4184                         cmd->se_tfo->get_task_tag(cmd));
4185                 atomic_set(&cmd->transport_lun_stop, 1);
4186                 spin_unlock(&cmd->t_state_lock);
4187
4188                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4189
4190                 if (!cmd->se_lun) {
4191                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4192                                 cmd->se_tfo->get_task_tag(cmd),
4193                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4194                         BUG();
4195                 }
4196                 /*
4197                  * If the Storage engine still owns the iscsi_cmd_t, determine
4198                  * and/or stop its context.
4199                  */
4200                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4201                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4202                         cmd->se_tfo->get_task_tag(cmd));
4203
4204                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4205                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4206                         continue;
4207                 }
4208
4209                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4210                         "_wait_for_tasks(): SUCCESS\n",
4211                         cmd->se_lun->unpacked_lun,
4212                         cmd->se_tfo->get_task_tag(cmd));
4213
4214                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4215                 if (!atomic_read(&cmd->transport_dev_active)) {
4216                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4217                         goto check_cond;
4218                 }
4219                 atomic_set(&cmd->transport_dev_active, 0);
4220                 transport_all_task_dev_remove_state(cmd);
4221                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4222
4223                 transport_free_dev_tasks(cmd);
4224                 /*
4225                  * The Storage engine stopped this struct se_cmd before it was
4226                  * send to the fabric frontend for delivery back to the
4227                  * Initiator Node.  Return this SCSI CDB back with an
4228                  * CHECK_CONDITION status.
4229                  */
4230 check_cond:
4231                 transport_send_check_condition_and_sense(cmd,
4232                                 TCM_NON_EXISTENT_LUN, 0);
4233                 /*
4234                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4235                  * be released, notify the waiting thread now that LU has
4236                  * finished accessing it.
4237                  */
4238                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4239                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4240                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4241                                 " struct se_cmd: %p ITT: 0x%08x\n",
4242                                 lun->unpacked_lun,
4243                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4244
4245                         spin_unlock_irqrestore(&cmd->t_state_lock,
4246                                         cmd_flags);
4247                         transport_cmd_check_stop(cmd, 1, 0);
4248                         complete(&cmd->transport_lun_fe_stop_comp);
4249                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4250                         continue;
4251                 }
4252                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4253                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4254
4255                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4256                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4257         }
4258         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4259 }
4260
4261 static int transport_clear_lun_thread(void *p)
4262 {
4263         struct se_lun *lun = p;
4264
4265         __transport_clear_lun_from_sessions(lun);
4266         complete(&lun->lun_shutdown_comp);
4267
4268         return 0;
4269 }
4270
4271 int transport_clear_lun_from_sessions(struct se_lun *lun)
4272 {
4273         struct task_struct *kt;
4274
4275         kt = kthread_run(transport_clear_lun_thread, lun,
4276                         "tcm_cl_%u", lun->unpacked_lun);
4277         if (IS_ERR(kt)) {
4278                 pr_err("Unable to start clear_lun thread\n");
4279                 return PTR_ERR(kt);
4280         }
4281         wait_for_completion(&lun->lun_shutdown_comp);
4282
4283         return 0;
4284 }
4285
4286 /**
4287  * transport_wait_for_tasks - wait for completion to occur
4288  * @cmd:        command to wait
4289  *
4290  * Called from frontend fabric context to wait for storage engine
4291  * to pause and/or release frontend generated struct se_cmd.
4292  */
4293 bool transport_wait_for_tasks(struct se_cmd *cmd)
4294 {
4295         unsigned long flags;
4296
4297         spin_lock_irqsave(&cmd->t_state_lock, flags);
4298         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4299                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4300                 return false;
4301         }
4302         /*
4303          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4304          * has been set in transport_set_supported_SAM_opcode().
4305          */
4306         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4307                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4308                 return false;
4309         }
4310         /*
4311          * If we are already stopped due to an external event (ie: LUN shutdown)
4312          * sleep until the connection can have the passed struct se_cmd back.
4313          * The cmd->transport_lun_stopped_sem will be upped by
4314          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4315          * has completed its operation on the struct se_cmd.
4316          */
4317         if (atomic_read(&cmd->transport_lun_stop)) {
4318
4319                 pr_debug("wait_for_tasks: Stopping"
4320                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4321                         "_stop_comp); for ITT: 0x%08x\n",
4322                         cmd->se_tfo->get_task_tag(cmd));
4323                 /*
4324                  * There is a special case for WRITES where a FE exception +
4325                  * LUN shutdown means ConfigFS context is still sleeping on
4326                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4327                  * We go ahead and up transport_lun_stop_comp just to be sure
4328                  * here.
4329                  */
4330                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4331                 complete(&cmd->transport_lun_stop_comp);
4332                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4333                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4334
4335                 transport_all_task_dev_remove_state(cmd);
4336                 /*
4337                  * At this point, the frontend who was the originator of this
4338                  * struct se_cmd, now owns the structure and can be released through
4339                  * normal means below.
4340                  */
4341                 pr_debug("wait_for_tasks: Stopped"
4342                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4343                         "stop_comp); for ITT: 0x%08x\n",
4344                         cmd->se_tfo->get_task_tag(cmd));
4345
4346                 atomic_set(&cmd->transport_lun_stop, 0);
4347         }
4348         if (!atomic_read(&cmd->t_transport_active) ||
4349              atomic_read(&cmd->t_transport_aborted)) {
4350                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4351                 return false;
4352         }
4353
4354         atomic_set(&cmd->t_transport_stop, 1);
4355
4356         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4357                 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4358                 cmd, cmd->se_tfo->get_task_tag(cmd),
4359                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4360
4361         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4362
4363         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4364
4365         wait_for_completion(&cmd->t_transport_stop_comp);
4366
4367         spin_lock_irqsave(&cmd->t_state_lock, flags);
4368         atomic_set(&cmd->t_transport_active, 0);
4369         atomic_set(&cmd->t_transport_stop, 0);
4370
4371         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4372                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4373                 cmd->se_tfo->get_task_tag(cmd));
4374
4375         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4376
4377         return true;
4378 }
4379 EXPORT_SYMBOL(transport_wait_for_tasks);
4380
4381 static int transport_get_sense_codes(
4382         struct se_cmd *cmd,
4383         u8 *asc,
4384         u8 *ascq)
4385 {
4386         *asc = cmd->scsi_asc;
4387         *ascq = cmd->scsi_ascq;
4388
4389         return 0;
4390 }
4391
4392 static int transport_set_sense_codes(
4393         struct se_cmd *cmd,
4394         u8 asc,
4395         u8 ascq)
4396 {
4397         cmd->scsi_asc = asc;
4398         cmd->scsi_ascq = ascq;
4399
4400         return 0;
4401 }
4402
4403 int transport_send_check_condition_and_sense(
4404         struct se_cmd *cmd,
4405         u8 reason,
4406         int from_transport)
4407 {
4408         unsigned char *buffer = cmd->sense_buffer;
4409         unsigned long flags;
4410         int offset;
4411         u8 asc = 0, ascq = 0;
4412
4413         spin_lock_irqsave(&cmd->t_state_lock, flags);
4414         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4415                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4416                 return 0;
4417         }
4418         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4419         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4420
4421         if (!reason && from_transport)
4422                 goto after_reason;
4423
4424         if (!from_transport)
4425                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4426         /*
4427          * Data Segment and SenseLength of the fabric response PDU.
4428          *
4429          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4430          * from include/scsi/scsi_cmnd.h
4431          */
4432         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4433                                 TRANSPORT_SENSE_BUFFER);
4434         /*
4435          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4436          * SENSE KEY values from include/scsi/scsi.h
4437          */
4438         switch (reason) {
4439         case TCM_NON_EXISTENT_LUN:
4440                 /* CURRENT ERROR */
4441                 buffer[offset] = 0x70;
4442                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4443                 /* ILLEGAL REQUEST */
4444                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4445                 /* LOGICAL UNIT NOT SUPPORTED */
4446                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4447                 break;
4448         case TCM_UNSUPPORTED_SCSI_OPCODE:
4449         case TCM_SECTOR_COUNT_TOO_MANY:
4450                 /* CURRENT ERROR */
4451                 buffer[offset] = 0x70;
4452                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4453                 /* ILLEGAL REQUEST */
4454                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4455                 /* INVALID COMMAND OPERATION CODE */
4456                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4457                 break;
4458         case TCM_UNKNOWN_MODE_PAGE:
4459                 /* CURRENT ERROR */
4460                 buffer[offset] = 0x70;
4461                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4462                 /* ILLEGAL REQUEST */
4463                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4464                 /* INVALID FIELD IN CDB */
4465                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4466                 break;
4467         case TCM_CHECK_CONDITION_ABORT_CMD:
4468                 /* CURRENT ERROR */
4469                 buffer[offset] = 0x70;
4470                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4471                 /* ABORTED COMMAND */
4472                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4473                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4474                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4475                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4476                 break;
4477         case TCM_INCORRECT_AMOUNT_OF_DATA:
4478                 /* CURRENT ERROR */
4479                 buffer[offset] = 0x70;
4480                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4481                 /* ABORTED COMMAND */
4482                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4483                 /* WRITE ERROR */
4484                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4485                 /* NOT ENOUGH UNSOLICITED DATA */
4486                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4487                 break;
4488         case TCM_INVALID_CDB_FIELD:
4489                 /* CURRENT ERROR */
4490                 buffer[offset] = 0x70;
4491                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4492                 /* ILLEGAL REQUEST */
4493                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4494                 /* INVALID FIELD IN CDB */
4495                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4496                 break;
4497         case TCM_INVALID_PARAMETER_LIST:
4498                 /* CURRENT ERROR */
4499                 buffer[offset] = 0x70;
4500                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4501                 /* ILLEGAL REQUEST */
4502                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4503                 /* INVALID FIELD IN PARAMETER LIST */
4504                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4505                 break;
4506         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4507                 /* CURRENT ERROR */
4508                 buffer[offset] = 0x70;
4509                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4510                 /* ABORTED COMMAND */
4511                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4512                 /* WRITE ERROR */
4513                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4514                 /* UNEXPECTED_UNSOLICITED_DATA */
4515                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4516                 break;
4517         case TCM_SERVICE_CRC_ERROR:
4518                 /* CURRENT ERROR */
4519                 buffer[offset] = 0x70;
4520                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4521                 /* ABORTED COMMAND */
4522                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4523                 /* PROTOCOL SERVICE CRC ERROR */
4524                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4525                 /* N/A */
4526                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4527                 break;
4528         case TCM_SNACK_REJECTED:
4529                 /* CURRENT ERROR */
4530                 buffer[offset] = 0x70;
4531                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4532                 /* ABORTED COMMAND */
4533                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4534                 /* READ ERROR */
4535                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4536                 /* FAILED RETRANSMISSION REQUEST */
4537                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4538                 break;
4539         case TCM_WRITE_PROTECTED:
4540                 /* CURRENT ERROR */
4541                 buffer[offset] = 0x70;
4542                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4543                 /* DATA PROTECT */
4544                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4545                 /* WRITE PROTECTED */
4546                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4547                 break;
4548         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4549                 /* CURRENT ERROR */
4550                 buffer[offset] = 0x70;
4551                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4552                 /* UNIT ATTENTION */
4553                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4554                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4555                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4556                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4557                 break;
4558         case TCM_CHECK_CONDITION_NOT_READY:
4559                 /* CURRENT ERROR */
4560                 buffer[offset] = 0x70;
4561                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4562                 /* Not Ready */
4563                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4564                 transport_get_sense_codes(cmd, &asc, &ascq);
4565                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4566                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4567                 break;
4568         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4569         default:
4570                 /* CURRENT ERROR */
4571                 buffer[offset] = 0x70;
4572                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4573                 /* ILLEGAL REQUEST */
4574                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4575                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4576                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4577                 break;
4578         }
4579         /*
4580          * This code uses linux/include/scsi/scsi.h SAM status codes!
4581          */
4582         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4583         /*
4584          * Automatically padded, this value is encoded in the fabric's
4585          * data_length response PDU containing the SCSI defined sense data.
4586          */
4587         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4588
4589 after_reason:
4590         return cmd->se_tfo->queue_status(cmd);
4591 }
4592 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4593
4594 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4595 {
4596         int ret = 0;
4597
4598         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4599                 if (!send_status ||
4600                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4601                         return 1;
4602 #if 0
4603                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4604                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4605                         cmd->t_task_cdb[0],
4606                         cmd->se_tfo->get_task_tag(cmd));
4607 #endif
4608                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4609                 cmd->se_tfo->queue_status(cmd);
4610                 ret = 1;
4611         }
4612         return ret;
4613 }
4614 EXPORT_SYMBOL(transport_check_aborted_status);
4615
4616 void transport_send_task_abort(struct se_cmd *cmd)
4617 {
4618         unsigned long flags;
4619
4620         spin_lock_irqsave(&cmd->t_state_lock, flags);
4621         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4622                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4623                 return;
4624         }
4625         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4626
4627         /*
4628          * If there are still expected incoming fabric WRITEs, we wait
4629          * until until they have completed before sending a TASK_ABORTED
4630          * response.  This response with TASK_ABORTED status will be
4631          * queued back to fabric module by transport_check_aborted_status().
4632          */
4633         if (cmd->data_direction == DMA_TO_DEVICE) {
4634                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4635                         atomic_inc(&cmd->t_transport_aborted);
4636                         smp_mb__after_atomic_inc();
4637                 }
4638         }
4639         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4640 #if 0
4641         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4642                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4643                 cmd->se_tfo->get_task_tag(cmd));
4644 #endif
4645         cmd->se_tfo->queue_status(cmd);
4646 }
4647
4648 static int transport_generic_do_tmr(struct se_cmd *cmd)
4649 {
4650         struct se_device *dev = cmd->se_dev;
4651         struct se_tmr_req *tmr = cmd->se_tmr_req;
4652         int ret;
4653
4654         switch (tmr->function) {
4655         case TMR_ABORT_TASK:
4656                 tmr->response = TMR_FUNCTION_REJECTED;
4657                 break;
4658         case TMR_ABORT_TASK_SET:
4659         case TMR_CLEAR_ACA:
4660         case TMR_CLEAR_TASK_SET:
4661                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4662                 break;
4663         case TMR_LUN_RESET:
4664                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4665                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4666                                          TMR_FUNCTION_REJECTED;
4667                 break;
4668         case TMR_TARGET_WARM_RESET:
4669                 tmr->response = TMR_FUNCTION_REJECTED;
4670                 break;
4671         case TMR_TARGET_COLD_RESET:
4672                 tmr->response = TMR_FUNCTION_REJECTED;
4673                 break;
4674         default:
4675                 pr_err("Uknown TMR function: 0x%02x.\n",
4676                                 tmr->function);
4677                 tmr->response = TMR_FUNCTION_REJECTED;
4678                 break;
4679         }
4680
4681         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4682         cmd->se_tfo->queue_tm_rsp(cmd);
4683
4684         transport_cmd_check_stop_to_fabric(cmd);
4685         return 0;
4686 }
4687
4688 /*      transport_processing_thread():
4689  *
4690  *
4691  */
4692 static int transport_processing_thread(void *param)
4693 {
4694         int ret;
4695         struct se_cmd *cmd;
4696         struct se_device *dev = param;
4697
4698         while (!kthread_should_stop()) {
4699                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4700                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4701                                 kthread_should_stop());
4702                 if (ret < 0)
4703                         goto out;
4704
4705 get_cmd:
4706                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4707                 if (!cmd)
4708                         continue;
4709
4710                 switch (cmd->t_state) {
4711                 case TRANSPORT_NEW_CMD:
4712                         BUG();
4713                         break;
4714                 case TRANSPORT_NEW_CMD_MAP:
4715                         if (!cmd->se_tfo->new_cmd_map) {
4716                                 pr_err("cmd->se_tfo->new_cmd_map is"
4717                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4718                                 BUG();
4719                         }
4720                         ret = cmd->se_tfo->new_cmd_map(cmd);
4721                         if (ret < 0) {
4722                                 transport_generic_request_failure(cmd);
4723                                 break;
4724                         }
4725                         ret = transport_generic_new_cmd(cmd);
4726                         if (ret < 0) {
4727                                 transport_generic_request_failure(cmd);
4728                                 break;
4729                         }
4730                         break;
4731                 case TRANSPORT_PROCESS_WRITE:
4732                         transport_generic_process_write(cmd);
4733                         break;
4734                 case TRANSPORT_PROCESS_TMR:
4735                         transport_generic_do_tmr(cmd);
4736                         break;
4737                 case TRANSPORT_COMPLETE_QF_WP:
4738                         transport_write_pending_qf(cmd);
4739                         break;
4740                 case TRANSPORT_COMPLETE_QF_OK:
4741                         transport_complete_qf(cmd);
4742                         break;
4743                 default:
4744                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4745                                 "i_state: %d on SE LUN: %u\n",
4746                                 cmd->t_state,
4747                                 cmd->se_tfo->get_task_tag(cmd),
4748                                 cmd->se_tfo->get_cmd_state(cmd),
4749                                 cmd->se_lun->unpacked_lun);
4750                         BUG();
4751                 }
4752
4753                 goto get_cmd;
4754         }
4755
4756 out:
4757         WARN_ON(!list_empty(&dev->state_task_list));
4758         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4759         dev->process_thread = NULL;
4760         return 0;
4761 }