target: Make all control CDBs scatter-gather
[linux-2.6.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
38 #include <linux/in.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
54
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
60
61 /* #define DEBUG_CDB_HANDLER */
62 #ifdef DEBUG_CDB_HANDLER
63 #define DEBUG_CDB_H(x...) printk(KERN_INFO x)
64 #else
65 #define DEBUG_CDB_H(x...)
66 #endif
67
68 /* #define DEBUG_CMD_MAP */
69 #ifdef DEBUG_CMD_MAP
70 #define DEBUG_CMD_M(x...) printk(KERN_INFO x)
71 #else
72 #define DEBUG_CMD_M(x...)
73 #endif
74
75 /* #define DEBUG_MEM_ALLOC */
76 #ifdef DEBUG_MEM_ALLOC
77 #define DEBUG_MEM(x...) printk(KERN_INFO x)
78 #else
79 #define DEBUG_MEM(x...)
80 #endif
81
82 /* #define DEBUG_MEM2_ALLOC */
83 #ifdef DEBUG_MEM2_ALLOC
84 #define DEBUG_MEM2(x...) printk(KERN_INFO x)
85 #else
86 #define DEBUG_MEM2(x...)
87 #endif
88
89 /* #define DEBUG_SG_CALC */
90 #ifdef DEBUG_SG_CALC
91 #define DEBUG_SC(x...) printk(KERN_INFO x)
92 #else
93 #define DEBUG_SC(x...)
94 #endif
95
96 /* #define DEBUG_SE_OBJ */
97 #ifdef DEBUG_SE_OBJ
98 #define DEBUG_SO(x...) printk(KERN_INFO x)
99 #else
100 #define DEBUG_SO(x...)
101 #endif
102
103 /* #define DEBUG_CMD_VOL */
104 #ifdef DEBUG_CMD_VOL
105 #define DEBUG_VOL(x...) printk(KERN_INFO x)
106 #else
107 #define DEBUG_VOL(x...)
108 #endif
109
110 /* #define DEBUG_CMD_STOP */
111 #ifdef DEBUG_CMD_STOP
112 #define DEBUG_CS(x...) printk(KERN_INFO x)
113 #else
114 #define DEBUG_CS(x...)
115 #endif
116
117 /* #define DEBUG_PASSTHROUGH */
118 #ifdef DEBUG_PASSTHROUGH
119 #define DEBUG_PT(x...) printk(KERN_INFO x)
120 #else
121 #define DEBUG_PT(x...)
122 #endif
123
124 /* #define DEBUG_TASK_STOP */
125 #ifdef DEBUG_TASK_STOP
126 #define DEBUG_TS(x...) printk(KERN_INFO x)
127 #else
128 #define DEBUG_TS(x...)
129 #endif
130
131 /* #define DEBUG_TRANSPORT_STOP */
132 #ifdef DEBUG_TRANSPORT_STOP
133 #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x)
134 #else
135 #define DEBUG_TRANSPORT_S(x...)
136 #endif
137
138 /* #define DEBUG_TASK_FAILURE */
139 #ifdef DEBUG_TASK_FAILURE
140 #define DEBUG_TF(x...) printk(KERN_INFO x)
141 #else
142 #define DEBUG_TF(x...)
143 #endif
144
145 /* #define DEBUG_DEV_OFFLINE */
146 #ifdef DEBUG_DEV_OFFLINE
147 #define DEBUG_DO(x...) printk(KERN_INFO x)
148 #else
149 #define DEBUG_DO(x...)
150 #endif
151
152 /* #define DEBUG_TASK_STATE */
153 #ifdef DEBUG_TASK_STATE
154 #define DEBUG_TSTATE(x...) printk(KERN_INFO x)
155 #else
156 #define DEBUG_TSTATE(x...)
157 #endif
158
159 /* #define DEBUG_STATUS_THR */
160 #ifdef DEBUG_STATUS_THR
161 #define DEBUG_ST(x...) printk(KERN_INFO x)
162 #else
163 #define DEBUG_ST(x...)
164 #endif
165
166 /* #define DEBUG_TASK_TIMEOUT */
167 #ifdef DEBUG_TASK_TIMEOUT
168 #define DEBUG_TT(x...) printk(KERN_INFO x)
169 #else
170 #define DEBUG_TT(x...)
171 #endif
172
173 /* #define DEBUG_GENERIC_REQUEST_FAILURE */
174 #ifdef DEBUG_GENERIC_REQUEST_FAILURE
175 #define DEBUG_GRF(x...) printk(KERN_INFO x)
176 #else
177 #define DEBUG_GRF(x...)
178 #endif
179
180 /* #define DEBUG_SAM_TASK_ATTRS */
181 #ifdef DEBUG_SAM_TASK_ATTRS
182 #define DEBUG_STA(x...) printk(KERN_INFO x)
183 #else
184 #define DEBUG_STA(x...)
185 #endif
186
187 static int sub_api_initialized;
188
189 static struct kmem_cache *se_cmd_cache;
190 static struct kmem_cache *se_sess_cache;
191 struct kmem_cache *se_tmr_req_cache;
192 struct kmem_cache *se_ua_cache;
193 struct kmem_cache *se_mem_cache;
194 struct kmem_cache *t10_pr_reg_cache;
195 struct kmem_cache *t10_alua_lu_gp_cache;
196 struct kmem_cache *t10_alua_lu_gp_mem_cache;
197 struct kmem_cache *t10_alua_tg_pt_gp_cache;
198 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
199
200 /* Used for transport_dev_get_map_*() */
201 typedef int (*map_func_t)(struct se_task *, u32);
202
203 static int transport_generic_write_pending(struct se_cmd *);
204 static int transport_processing_thread(void *param);
205 static int __transport_execute_tasks(struct se_device *dev);
206 static void transport_complete_task_attr(struct se_cmd *cmd);
207 static int transport_complete_qf(struct se_cmd *cmd);
208 static void transport_handle_queue_full(struct se_cmd *cmd,
209                 struct se_device *dev, int (*qf_callback)(struct se_cmd *));
210 static void transport_direct_request_timeout(struct se_cmd *cmd);
211 static void transport_free_dev_tasks(struct se_cmd *cmd);
212 static u32 transport_allocate_tasks(struct se_cmd *cmd,
213                 unsigned long long starting_lba, u32 sectors,
214                 enum dma_data_direction data_direction,
215                 struct list_head *mem_list, int set_counts);
216 static int transport_generic_get_mem(struct se_cmd *cmd);
217 static int transport_generic_remove(struct se_cmd *cmd,
218                 int session_reinstatement);
219 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd);
220 static int transport_map_sg_to_mem(struct se_cmd *cmd,
221                 struct list_head *se_mem_list, struct scatterlist *sgl);
222 static void transport_memcpy_se_mem_read_contig(unsigned char *dst,
223                 struct list_head *se_mem_list, u32 len);
224 static void transport_release_fe_cmd(struct se_cmd *cmd);
225 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
226                 struct se_queue_obj *qobj);
227 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
228 static void transport_stop_all_task_timers(struct se_cmd *cmd);
229
230 int init_se_kmem_caches(void)
231 {
232         se_cmd_cache = kmem_cache_create("se_cmd_cache",
233                         sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
234         if (!(se_cmd_cache)) {
235                 printk(KERN_ERR "kmem_cache_create for struct se_cmd failed\n");
236                 goto out;
237         }
238         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
239                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
240                         0, NULL);
241         if (!(se_tmr_req_cache)) {
242                 printk(KERN_ERR "kmem_cache_create() for struct se_tmr_req"
243                                 " failed\n");
244                 goto out;
245         }
246         se_sess_cache = kmem_cache_create("se_sess_cache",
247                         sizeof(struct se_session), __alignof__(struct se_session),
248                         0, NULL);
249         if (!(se_sess_cache)) {
250                 printk(KERN_ERR "kmem_cache_create() for struct se_session"
251                                 " failed\n");
252                 goto out;
253         }
254         se_ua_cache = kmem_cache_create("se_ua_cache",
255                         sizeof(struct se_ua), __alignof__(struct se_ua),
256                         0, NULL);
257         if (!(se_ua_cache)) {
258                 printk(KERN_ERR "kmem_cache_create() for struct se_ua failed\n");
259                 goto out;
260         }
261         se_mem_cache = kmem_cache_create("se_mem_cache",
262                         sizeof(struct se_mem), __alignof__(struct se_mem), 0, NULL);
263         if (!(se_mem_cache)) {
264                 printk(KERN_ERR "kmem_cache_create() for struct se_mem failed\n");
265                 goto out;
266         }
267         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
268                         sizeof(struct t10_pr_registration),
269                         __alignof__(struct t10_pr_registration), 0, NULL);
270         if (!(t10_pr_reg_cache)) {
271                 printk(KERN_ERR "kmem_cache_create() for struct t10_pr_registration"
272                                 " failed\n");
273                 goto out;
274         }
275         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
276                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
277                         0, NULL);
278         if (!(t10_alua_lu_gp_cache)) {
279                 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_cache"
280                                 " failed\n");
281                 goto out;
282         }
283         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
284                         sizeof(struct t10_alua_lu_gp_member),
285                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
286         if (!(t10_alua_lu_gp_mem_cache)) {
287                 printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_mem_"
288                                 "cache failed\n");
289                 goto out;
290         }
291         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
292                         sizeof(struct t10_alua_tg_pt_gp),
293                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
294         if (!(t10_alua_tg_pt_gp_cache)) {
295                 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
296                                 "cache failed\n");
297                 goto out;
298         }
299         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
300                         "t10_alua_tg_pt_gp_mem_cache",
301                         sizeof(struct t10_alua_tg_pt_gp_member),
302                         __alignof__(struct t10_alua_tg_pt_gp_member),
303                         0, NULL);
304         if (!(t10_alua_tg_pt_gp_mem_cache)) {
305                 printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_"
306                                 "mem_t failed\n");
307                 goto out;
308         }
309
310         return 0;
311 out:
312         if (se_cmd_cache)
313                 kmem_cache_destroy(se_cmd_cache);
314         if (se_tmr_req_cache)
315                 kmem_cache_destroy(se_tmr_req_cache);
316         if (se_sess_cache)
317                 kmem_cache_destroy(se_sess_cache);
318         if (se_ua_cache)
319                 kmem_cache_destroy(se_ua_cache);
320         if (se_mem_cache)
321                 kmem_cache_destroy(se_mem_cache);
322         if (t10_pr_reg_cache)
323                 kmem_cache_destroy(t10_pr_reg_cache);
324         if (t10_alua_lu_gp_cache)
325                 kmem_cache_destroy(t10_alua_lu_gp_cache);
326         if (t10_alua_lu_gp_mem_cache)
327                 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
328         if (t10_alua_tg_pt_gp_cache)
329                 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
330         if (t10_alua_tg_pt_gp_mem_cache)
331                 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
332         return -ENOMEM;
333 }
334
335 void release_se_kmem_caches(void)
336 {
337         kmem_cache_destroy(se_cmd_cache);
338         kmem_cache_destroy(se_tmr_req_cache);
339         kmem_cache_destroy(se_sess_cache);
340         kmem_cache_destroy(se_ua_cache);
341         kmem_cache_destroy(se_mem_cache);
342         kmem_cache_destroy(t10_pr_reg_cache);
343         kmem_cache_destroy(t10_alua_lu_gp_cache);
344         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
345         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
346         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
347 }
348
349 /* This code ensures unique mib indexes are handed out. */
350 static DEFINE_SPINLOCK(scsi_mib_index_lock);
351 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
352
353 /*
354  * Allocate a new row index for the entry type specified
355  */
356 u32 scsi_get_new_index(scsi_index_t type)
357 {
358         u32 new_index;
359
360         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
361
362         spin_lock(&scsi_mib_index_lock);
363         new_index = ++scsi_mib_index[type];
364         spin_unlock(&scsi_mib_index_lock);
365
366         return new_index;
367 }
368
369 void transport_init_queue_obj(struct se_queue_obj *qobj)
370 {
371         atomic_set(&qobj->queue_cnt, 0);
372         INIT_LIST_HEAD(&qobj->qobj_list);
373         init_waitqueue_head(&qobj->thread_wq);
374         spin_lock_init(&qobj->cmd_queue_lock);
375 }
376 EXPORT_SYMBOL(transport_init_queue_obj);
377
378 static int transport_subsystem_reqmods(void)
379 {
380         int ret;
381
382         ret = request_module("target_core_iblock");
383         if (ret != 0)
384                 printk(KERN_ERR "Unable to load target_core_iblock\n");
385
386         ret = request_module("target_core_file");
387         if (ret != 0)
388                 printk(KERN_ERR "Unable to load target_core_file\n");
389
390         ret = request_module("target_core_pscsi");
391         if (ret != 0)
392                 printk(KERN_ERR "Unable to load target_core_pscsi\n");
393
394         ret = request_module("target_core_stgt");
395         if (ret != 0)
396                 printk(KERN_ERR "Unable to load target_core_stgt\n");
397
398         return 0;
399 }
400
401 int transport_subsystem_check_init(void)
402 {
403         int ret;
404
405         if (sub_api_initialized)
406                 return 0;
407         /*
408          * Request the loading of known TCM subsystem plugins..
409          */
410         ret = transport_subsystem_reqmods();
411         if (ret < 0)
412                 return ret;
413
414         sub_api_initialized = 1;
415         return 0;
416 }
417
418 struct se_session *transport_init_session(void)
419 {
420         struct se_session *se_sess;
421
422         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
423         if (!(se_sess)) {
424                 printk(KERN_ERR "Unable to allocate struct se_session from"
425                                 " se_sess_cache\n");
426                 return ERR_PTR(-ENOMEM);
427         }
428         INIT_LIST_HEAD(&se_sess->sess_list);
429         INIT_LIST_HEAD(&se_sess->sess_acl_list);
430
431         return se_sess;
432 }
433 EXPORT_SYMBOL(transport_init_session);
434
435 /*
436  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
437  */
438 void __transport_register_session(
439         struct se_portal_group *se_tpg,
440         struct se_node_acl *se_nacl,
441         struct se_session *se_sess,
442         void *fabric_sess_ptr)
443 {
444         unsigned char buf[PR_REG_ISID_LEN];
445
446         se_sess->se_tpg = se_tpg;
447         se_sess->fabric_sess_ptr = fabric_sess_ptr;
448         /*
449          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
450          *
451          * Only set for struct se_session's that will actually be moving I/O.
452          * eg: *NOT* discovery sessions.
453          */
454         if (se_nacl) {
455                 /*
456                  * If the fabric module supports an ISID based TransportID,
457                  * save this value in binary from the fabric I_T Nexus now.
458                  */
459                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
460                         memset(&buf[0], 0, PR_REG_ISID_LEN);
461                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
462                                         &buf[0], PR_REG_ISID_LEN);
463                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
464                 }
465                 spin_lock_irq(&se_nacl->nacl_sess_lock);
466                 /*
467                  * The se_nacl->nacl_sess pointer will be set to the
468                  * last active I_T Nexus for each struct se_node_acl.
469                  */
470                 se_nacl->nacl_sess = se_sess;
471
472                 list_add_tail(&se_sess->sess_acl_list,
473                               &se_nacl->acl_sess_list);
474                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
475         }
476         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
477
478         printk(KERN_INFO "TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
479                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
480 }
481 EXPORT_SYMBOL(__transport_register_session);
482
483 void transport_register_session(
484         struct se_portal_group *se_tpg,
485         struct se_node_acl *se_nacl,
486         struct se_session *se_sess,
487         void *fabric_sess_ptr)
488 {
489         spin_lock_bh(&se_tpg->session_lock);
490         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
491         spin_unlock_bh(&se_tpg->session_lock);
492 }
493 EXPORT_SYMBOL(transport_register_session);
494
495 void transport_deregister_session_configfs(struct se_session *se_sess)
496 {
497         struct se_node_acl *se_nacl;
498         unsigned long flags;
499         /*
500          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
501          */
502         se_nacl = se_sess->se_node_acl;
503         if ((se_nacl)) {
504                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
505                 list_del(&se_sess->sess_acl_list);
506                 /*
507                  * If the session list is empty, then clear the pointer.
508                  * Otherwise, set the struct se_session pointer from the tail
509                  * element of the per struct se_node_acl active session list.
510                  */
511                 if (list_empty(&se_nacl->acl_sess_list))
512                         se_nacl->nacl_sess = NULL;
513                 else {
514                         se_nacl->nacl_sess = container_of(
515                                         se_nacl->acl_sess_list.prev,
516                                         struct se_session, sess_acl_list);
517                 }
518                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
519         }
520 }
521 EXPORT_SYMBOL(transport_deregister_session_configfs);
522
523 void transport_free_session(struct se_session *se_sess)
524 {
525         kmem_cache_free(se_sess_cache, se_sess);
526 }
527 EXPORT_SYMBOL(transport_free_session);
528
529 void transport_deregister_session(struct se_session *se_sess)
530 {
531         struct se_portal_group *se_tpg = se_sess->se_tpg;
532         struct se_node_acl *se_nacl;
533
534         if (!(se_tpg)) {
535                 transport_free_session(se_sess);
536                 return;
537         }
538
539         spin_lock_bh(&se_tpg->session_lock);
540         list_del(&se_sess->sess_list);
541         se_sess->se_tpg = NULL;
542         se_sess->fabric_sess_ptr = NULL;
543         spin_unlock_bh(&se_tpg->session_lock);
544
545         /*
546          * Determine if we need to do extra work for this initiator node's
547          * struct se_node_acl if it had been previously dynamically generated.
548          */
549         se_nacl = se_sess->se_node_acl;
550         if ((se_nacl)) {
551                 spin_lock_bh(&se_tpg->acl_node_lock);
552                 if (se_nacl->dynamic_node_acl) {
553                         if (!(se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
554                                         se_tpg))) {
555                                 list_del(&se_nacl->acl_list);
556                                 se_tpg->num_node_acls--;
557                                 spin_unlock_bh(&se_tpg->acl_node_lock);
558
559                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
560                                 core_free_device_list_for_node(se_nacl, se_tpg);
561                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
562                                                 se_nacl);
563                                 spin_lock_bh(&se_tpg->acl_node_lock);
564                         }
565                 }
566                 spin_unlock_bh(&se_tpg->acl_node_lock);
567         }
568
569         transport_free_session(se_sess);
570
571         printk(KERN_INFO "TARGET_CORE[%s]: Deregistered fabric_sess\n",
572                 se_tpg->se_tpg_tfo->get_fabric_name());
573 }
574 EXPORT_SYMBOL(transport_deregister_session);
575
576 /*
577  * Called with cmd->t_state_lock held.
578  */
579 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
580 {
581         struct se_device *dev;
582         struct se_task *task;
583         unsigned long flags;
584
585         list_for_each_entry(task, &cmd->t_task_list, t_list) {
586                 dev = task->se_dev;
587                 if (!(dev))
588                         continue;
589
590                 if (atomic_read(&task->task_active))
591                         continue;
592
593                 if (!(atomic_read(&task->task_state_active)))
594                         continue;
595
596                 spin_lock_irqsave(&dev->execute_task_lock, flags);
597                 list_del(&task->t_state_list);
598                 DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n",
599                         cmd->se_tfo->tfo_get_task_tag(cmd), dev, task);
600                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
601
602                 atomic_set(&task->task_state_active, 0);
603                 atomic_dec(&cmd->t_task_cdbs_ex_left);
604         }
605 }
606
607 /*      transport_cmd_check_stop():
608  *
609  *      'transport_off = 1' determines if t_transport_active should be cleared.
610  *      'transport_off = 2' determines if task_dev_state should be removed.
611  *
612  *      A non-zero u8 t_state sets cmd->t_state.
613  *      Returns 1 when command is stopped, else 0.
614  */
615 static int transport_cmd_check_stop(
616         struct se_cmd *cmd,
617         int transport_off,
618         u8 t_state)
619 {
620         unsigned long flags;
621
622         spin_lock_irqsave(&cmd->t_state_lock, flags);
623         /*
624          * Determine if IOCTL context caller in requesting the stopping of this
625          * command for LUN shutdown purposes.
626          */
627         if (atomic_read(&cmd->transport_lun_stop)) {
628                 DEBUG_CS("%s:%d atomic_read(&cmd->transport_lun_stop)"
629                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
630                         cmd->se_tfo->get_task_tag(cmd));
631
632                 cmd->deferred_t_state = cmd->t_state;
633                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
634                 atomic_set(&cmd->t_transport_active, 0);
635                 if (transport_off == 2)
636                         transport_all_task_dev_remove_state(cmd);
637                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
638
639                 complete(&cmd->transport_lun_stop_comp);
640                 return 1;
641         }
642         /*
643          * Determine if frontend context caller is requesting the stopping of
644          * this command for frontend exceptions.
645          */
646         if (atomic_read(&cmd->t_transport_stop)) {
647                 DEBUG_CS("%s:%d atomic_read(&cmd->t_transport_stop) =="
648                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
649                         cmd->se_tfo->get_task_tag(cmd));
650
651                 cmd->deferred_t_state = cmd->t_state;
652                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
653                 if (transport_off == 2)
654                         transport_all_task_dev_remove_state(cmd);
655
656                 /*
657                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
658                  * to FE.
659                  */
660                 if (transport_off == 2)
661                         cmd->se_lun = NULL;
662                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
663
664                 complete(&cmd->t_transport_stop_comp);
665                 return 1;
666         }
667         if (transport_off) {
668                 atomic_set(&cmd->t_transport_active, 0);
669                 if (transport_off == 2) {
670                         transport_all_task_dev_remove_state(cmd);
671                         /*
672                          * Clear struct se_cmd->se_lun before the transport_off == 2
673                          * handoff to fabric module.
674                          */
675                         cmd->se_lun = NULL;
676                         /*
677                          * Some fabric modules like tcm_loop can release
678                          * their internally allocated I/O reference now and
679                          * struct se_cmd now.
680                          */
681                         if (cmd->se_tfo->check_stop_free != NULL) {
682                                 spin_unlock_irqrestore(
683                                         &cmd->t_state_lock, flags);
684
685                                 cmd->se_tfo->check_stop_free(cmd);
686                                 return 1;
687                         }
688                 }
689                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
690
691                 return 0;
692         } else if (t_state)
693                 cmd->t_state = t_state;
694         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
695
696         return 0;
697 }
698
699 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
700 {
701         return transport_cmd_check_stop(cmd, 2, 0);
702 }
703
704 static void transport_lun_remove_cmd(struct se_cmd *cmd)
705 {
706         struct se_lun *lun = cmd->se_lun;
707         unsigned long flags;
708
709         if (!lun)
710                 return;
711
712         spin_lock_irqsave(&cmd->t_state_lock, flags);
713         if (!(atomic_read(&cmd->transport_dev_active))) {
714                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
715                 goto check_lun;
716         }
717         atomic_set(&cmd->transport_dev_active, 0);
718         transport_all_task_dev_remove_state(cmd);
719         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
720
721
722 check_lun:
723         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
724         if (atomic_read(&cmd->transport_lun_active)) {
725                 list_del(&cmd->se_lun_node);
726                 atomic_set(&cmd->transport_lun_active, 0);
727 #if 0
728                 printk(KERN_INFO "Removed ITT: 0x%08x from LUN LIST[%d]\n"
729                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
730 #endif
731         }
732         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
733 }
734
735 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
736 {
737         transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
738         transport_lun_remove_cmd(cmd);
739
740         if (transport_cmd_check_stop_to_fabric(cmd))
741                 return;
742         if (remove)
743                 transport_generic_remove(cmd, 0);
744 }
745
746 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
747 {
748         transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
749
750         if (transport_cmd_check_stop_to_fabric(cmd))
751                 return;
752
753         transport_generic_remove(cmd, 0);
754 }
755
756 static void transport_add_cmd_to_queue(
757         struct se_cmd *cmd,
758         int t_state)
759 {
760         struct se_device *dev = cmd->se_dev;
761         struct se_queue_obj *qobj = &dev->dev_queue_obj;
762         unsigned long flags;
763
764         INIT_LIST_HEAD(&cmd->se_queue_node);
765
766         if (t_state) {
767                 spin_lock_irqsave(&cmd->t_state_lock, flags);
768                 cmd->t_state = t_state;
769                 atomic_set(&cmd->t_transport_active, 1);
770                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
771         }
772
773         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
774         if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
775                 cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
776                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
777         } else
778                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
779         atomic_inc(&cmd->t_transport_queue_active);
780         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
781
782         atomic_inc(&qobj->queue_cnt);
783         wake_up_interruptible(&qobj->thread_wq);
784 }
785
786 static struct se_cmd *
787 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
788 {
789         struct se_cmd *cmd;
790         unsigned long flags;
791
792         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
793         if (list_empty(&qobj->qobj_list)) {
794                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
795                 return NULL;
796         }
797         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
798
799         atomic_dec(&cmd->t_transport_queue_active);
800
801         list_del(&cmd->se_queue_node);
802         atomic_dec(&qobj->queue_cnt);
803         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
804
805         return cmd;
806 }
807
808 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
809                 struct se_queue_obj *qobj)
810 {
811         struct se_cmd *t;
812         unsigned long flags;
813
814         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
815         if (!(atomic_read(&cmd->t_transport_queue_active))) {
816                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
817                 return;
818         }
819
820         list_for_each_entry(t, &qobj->qobj_list, se_queue_node)
821                 if (t == cmd) {
822                         atomic_dec(&cmd->t_transport_queue_active);
823                         atomic_dec(&qobj->queue_cnt);
824                         list_del(&cmd->se_queue_node);
825                         break;
826                 }
827         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
828
829         if (atomic_read(&cmd->t_transport_queue_active)) {
830                 printk(KERN_ERR "ITT: 0x%08x t_transport_queue_active: %d\n",
831                         cmd->se_tfo->get_task_tag(cmd),
832                         atomic_read(&cmd->t_transport_queue_active));
833         }
834 }
835
836 /*
837  * Completion function used by TCM subsystem plugins (such as FILEIO)
838  * for queueing up response from struct se_subsystem_api->do_task()
839  */
840 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
841 {
842         struct se_task *task = list_entry(cmd->t_task_list.next,
843                                 struct se_task, t_list);
844
845         if (good) {
846                 cmd->scsi_status = SAM_STAT_GOOD;
847                 task->task_scsi_status = GOOD;
848         } else {
849                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
850                 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
851                 task->task_se_cmd->transport_error_status =
852                                         PYX_TRANSPORT_ILLEGAL_REQUEST;
853         }
854
855         transport_complete_task(task, good);
856 }
857 EXPORT_SYMBOL(transport_complete_sync_cache);
858
859 /*      transport_complete_task():
860  *
861  *      Called from interrupt and non interrupt context depending
862  *      on the transport plugin.
863  */
864 void transport_complete_task(struct se_task *task, int success)
865 {
866         struct se_cmd *cmd = task->task_se_cmd;
867         struct se_device *dev = task->se_dev;
868         int t_state;
869         unsigned long flags;
870 #if 0
871         printk(KERN_INFO "task: %p CDB: 0x%02x obj_ptr: %p\n", task,
872                         cmd->t_task_cdb[0], dev);
873 #endif
874         if (dev)
875                 atomic_inc(&dev->depth_left);
876
877         spin_lock_irqsave(&cmd->t_state_lock, flags);
878         atomic_set(&task->task_active, 0);
879
880         /*
881          * See if any sense data exists, if so set the TASK_SENSE flag.
882          * Also check for any other post completion work that needs to be
883          * done by the plugins.
884          */
885         if (dev && dev->transport->transport_complete) {
886                 if (dev->transport->transport_complete(task) != 0) {
887                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
888                         task->task_sense = 1;
889                         success = 1;
890                 }
891         }
892
893         /*
894          * See if we are waiting for outstanding struct se_task
895          * to complete for an exception condition
896          */
897         if (atomic_read(&task->task_stop)) {
898                 /*
899                  * Decrement cmd->t_se_count if this task had
900                  * previously thrown its timeout exception handler.
901                  */
902                 if (atomic_read(&task->task_timeout)) {
903                         atomic_dec(&cmd->t_se_count);
904                         atomic_set(&task->task_timeout, 0);
905                 }
906                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
907
908                 complete(&task->task_stop_comp);
909                 return;
910         }
911         /*
912          * If the task's timeout handler has fired, use the t_task_cdbs_timeout
913          * left counter to determine when the struct se_cmd is ready to be queued to
914          * the processing thread.
915          */
916         if (atomic_read(&task->task_timeout)) {
917                 if (!(atomic_dec_and_test(
918                                 &cmd->t_task_cdbs_timeout_left))) {
919                         spin_unlock_irqrestore(&cmd->t_state_lock,
920                                 flags);
921                         return;
922                 }
923                 t_state = TRANSPORT_COMPLETE_TIMEOUT;
924                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
925
926                 transport_add_cmd_to_queue(cmd, t_state);
927                 return;
928         }
929         atomic_dec(&cmd->t_task_cdbs_timeout_left);
930
931         /*
932          * Decrement the outstanding t_task_cdbs_left count.  The last
933          * struct se_task from struct se_cmd will complete itself into the
934          * device queue depending upon int success.
935          */
936         if (!(atomic_dec_and_test(&cmd->t_task_cdbs_left))) {
937                 if (!success)
938                         cmd->t_tasks_failed = 1;
939
940                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
941                 return;
942         }
943
944         if (!success || cmd->t_tasks_failed) {
945                 t_state = TRANSPORT_COMPLETE_FAILURE;
946                 if (!task->task_error_status) {
947                         task->task_error_status =
948                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
949                         cmd->transport_error_status =
950                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
951                 }
952         } else {
953                 atomic_set(&cmd->t_transport_complete, 1);
954                 t_state = TRANSPORT_COMPLETE_OK;
955         }
956         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
957
958         transport_add_cmd_to_queue(cmd, t_state);
959 }
960 EXPORT_SYMBOL(transport_complete_task);
961
962 /*
963  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
964  * struct se_task list are ready to be added to the active execution list
965  * struct se_device
966
967  * Called with se_dev_t->execute_task_lock called.
968  */
969 static inline int transport_add_task_check_sam_attr(
970         struct se_task *task,
971         struct se_task *task_prev,
972         struct se_device *dev)
973 {
974         /*
975          * No SAM Task attribute emulation enabled, add to tail of
976          * execution queue
977          */
978         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
979                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
980                 return 0;
981         }
982         /*
983          * HEAD_OF_QUEUE attribute for received CDB, which means
984          * the first task that is associated with a struct se_cmd goes to
985          * head of the struct se_device->execute_task_list, and task_prev
986          * after that for each subsequent task
987          */
988         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
989                 list_add(&task->t_execute_list,
990                                 (task_prev != NULL) ?
991                                 &task_prev->t_execute_list :
992                                 &dev->execute_task_list);
993
994                 DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
995                                 " in execution queue\n",
996                                 T_TASK(task->task_se_cmd)->t_task_cdb[0]);
997                 return 1;
998         }
999         /*
1000          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
1001          * transitioned from Dermant -> Active state, and are added to the end
1002          * of the struct se_device->execute_task_list
1003          */
1004         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
1005         return 0;
1006 }
1007
1008 /*      __transport_add_task_to_execute_queue():
1009  *
1010  *      Called with se_dev_t->execute_task_lock called.
1011  */
1012 static void __transport_add_task_to_execute_queue(
1013         struct se_task *task,
1014         struct se_task *task_prev,
1015         struct se_device *dev)
1016 {
1017         int head_of_queue;
1018
1019         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
1020         atomic_inc(&dev->execute_tasks);
1021
1022         if (atomic_read(&task->task_state_active))
1023                 return;
1024         /*
1025          * Determine if this task needs to go to HEAD_OF_QUEUE for the
1026          * state list as well.  Running with SAM Task Attribute emulation
1027          * will always return head_of_queue == 0 here
1028          */
1029         if (head_of_queue)
1030                 list_add(&task->t_state_list, (task_prev) ?
1031                                 &task_prev->t_state_list :
1032                                 &dev->state_task_list);
1033         else
1034                 list_add_tail(&task->t_state_list, &dev->state_task_list);
1035
1036         atomic_set(&task->task_state_active, 1);
1037
1038         DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1039                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
1040                 task, dev);
1041 }
1042
1043 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
1044 {
1045         struct se_device *dev;
1046         struct se_task *task;
1047         unsigned long flags;
1048
1049         spin_lock_irqsave(&cmd->t_state_lock, flags);
1050         list_for_each_entry(task, &cmd->t_task_list, t_list) {
1051                 dev = task->se_dev;
1052
1053                 if (atomic_read(&task->task_state_active))
1054                         continue;
1055
1056                 spin_lock(&dev->execute_task_lock);
1057                 list_add_tail(&task->t_state_list, &dev->state_task_list);
1058                 atomic_set(&task->task_state_active, 1);
1059
1060                 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1061                         task->se_cmd->se_tfo->get_task_tag(
1062                         task->task_se_cmd), task, dev);
1063
1064                 spin_unlock(&dev->execute_task_lock);
1065         }
1066         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1067 }
1068
1069 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
1070 {
1071         struct se_device *dev = cmd->se_dev;
1072         struct se_task *task, *task_prev = NULL;
1073         unsigned long flags;
1074
1075         spin_lock_irqsave(&dev->execute_task_lock, flags);
1076         list_for_each_entry(task, &cmd->t_task_list, t_list) {
1077                 if (atomic_read(&task->task_execute_queue))
1078                         continue;
1079                 /*
1080                  * __transport_add_task_to_execute_queue() handles the
1081                  * SAM Task Attribute emulation if enabled
1082                  */
1083                 __transport_add_task_to_execute_queue(task, task_prev, dev);
1084                 atomic_set(&task->task_execute_queue, 1);
1085                 task_prev = task;
1086         }
1087         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1088 }
1089
1090 /*      transport_remove_task_from_execute_queue():
1091  *
1092  *
1093  */
1094 void transport_remove_task_from_execute_queue(
1095         struct se_task *task,
1096         struct se_device *dev)
1097 {
1098         unsigned long flags;
1099
1100         if (atomic_read(&task->task_execute_queue) == 0) {
1101                 dump_stack();
1102                 return;
1103         }
1104
1105         spin_lock_irqsave(&dev->execute_task_lock, flags);
1106         list_del(&task->t_execute_list);
1107         atomic_set(&task->task_execute_queue, 0);
1108         atomic_dec(&dev->execute_tasks);
1109         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
1110 }
1111
1112 /*
1113  * Handle QUEUE_FULL / -EAGAIN status
1114  */
1115
1116 static void target_qf_do_work(struct work_struct *work)
1117 {
1118         struct se_device *dev = container_of(work, struct se_device,
1119                                         qf_work_queue);
1120         struct se_cmd *cmd, *cmd_tmp;
1121
1122         spin_lock_irq(&dev->qf_cmd_lock);
1123         list_for_each_entry_safe(cmd, cmd_tmp, &dev->qf_cmd_list, se_qf_node) {
1124
1125                 list_del(&cmd->se_qf_node);
1126                 atomic_dec(&dev->dev_qf_count);
1127                 smp_mb__after_atomic_dec();
1128                 spin_unlock_irq(&dev->qf_cmd_lock);
1129
1130                 printk(KERN_INFO "Processing %s cmd: %p QUEUE_FULL in work queue"
1131                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
1132                         (cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" :
1133                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
1134                         : "UNKNOWN");
1135                 /*
1136                  * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
1137                  * has been added to head of queue
1138                  */
1139                 transport_add_cmd_to_queue(cmd, cmd->t_state);
1140
1141                 spin_lock_irq(&dev->qf_cmd_lock);
1142         }
1143         spin_unlock_irq(&dev->qf_cmd_lock);
1144 }
1145
1146 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1147 {
1148         switch (cmd->data_direction) {
1149         case DMA_NONE:
1150                 return "NONE";
1151         case DMA_FROM_DEVICE:
1152                 return "READ";
1153         case DMA_TO_DEVICE:
1154                 return "WRITE";
1155         case DMA_BIDIRECTIONAL:
1156                 return "BIDI";
1157         default:
1158                 break;
1159         }
1160
1161         return "UNKNOWN";
1162 }
1163
1164 void transport_dump_dev_state(
1165         struct se_device *dev,
1166         char *b,
1167         int *bl)
1168 {
1169         *bl += sprintf(b + *bl, "Status: ");
1170         switch (dev->dev_status) {
1171         case TRANSPORT_DEVICE_ACTIVATED:
1172                 *bl += sprintf(b + *bl, "ACTIVATED");
1173                 break;
1174         case TRANSPORT_DEVICE_DEACTIVATED:
1175                 *bl += sprintf(b + *bl, "DEACTIVATED");
1176                 break;
1177         case TRANSPORT_DEVICE_SHUTDOWN:
1178                 *bl += sprintf(b + *bl, "SHUTDOWN");
1179                 break;
1180         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1181         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1182                 *bl += sprintf(b + *bl, "OFFLINE");
1183                 break;
1184         default:
1185                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1186                 break;
1187         }
1188
1189         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
1190                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1191                 dev->queue_depth);
1192         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1193                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1194         *bl += sprintf(b + *bl, "        ");
1195 }
1196
1197 /*      transport_release_all_cmds():
1198  *
1199  *
1200  */
1201 static void transport_release_all_cmds(struct se_device *dev)
1202 {
1203         struct se_cmd *cmd, *tcmd;
1204         int bug_out = 0, t_state;
1205         unsigned long flags;
1206
1207         spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1208         list_for_each_entry_safe(cmd, tcmd, &dev->dev_queue_obj.qobj_list,
1209                                 se_queue_node) {
1210                 t_state = cmd->t_state;
1211                 list_del(&cmd->se_queue_node);
1212                 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock,
1213                                 flags);
1214
1215                 printk(KERN_ERR "Releasing ITT: 0x%08x, i_state: %u,"
1216                         " t_state: %u directly\n",
1217                         cmd->se_tfo->get_task_tag(cmd),
1218                         cmd->se_tfo->get_cmd_state(cmd), t_state);
1219
1220                 transport_release_fe_cmd(cmd);
1221                 bug_out = 1;
1222
1223                 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1224         }
1225         spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock, flags);
1226 #if 0
1227         if (bug_out)
1228                 BUG();
1229 #endif
1230 }
1231
1232 void transport_dump_vpd_proto_id(
1233         struct t10_vpd *vpd,
1234         unsigned char *p_buf,
1235         int p_buf_len)
1236 {
1237         unsigned char buf[VPD_TMP_BUF_SIZE];
1238         int len;
1239
1240         memset(buf, 0, VPD_TMP_BUF_SIZE);
1241         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1242
1243         switch (vpd->protocol_identifier) {
1244         case 0x00:
1245                 sprintf(buf+len, "Fibre Channel\n");
1246                 break;
1247         case 0x10:
1248                 sprintf(buf+len, "Parallel SCSI\n");
1249                 break;
1250         case 0x20:
1251                 sprintf(buf+len, "SSA\n");
1252                 break;
1253         case 0x30:
1254                 sprintf(buf+len, "IEEE 1394\n");
1255                 break;
1256         case 0x40:
1257                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1258                                 " Protocol\n");
1259                 break;
1260         case 0x50:
1261                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1262                 break;
1263         case 0x60:
1264                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1265                 break;
1266         case 0x70:
1267                 sprintf(buf+len, "Automation/Drive Interface Transport"
1268                                 " Protocol\n");
1269                 break;
1270         case 0x80:
1271                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1272                 break;
1273         default:
1274                 sprintf(buf+len, "Unknown 0x%02x\n",
1275                                 vpd->protocol_identifier);
1276                 break;
1277         }
1278
1279         if (p_buf)
1280                 strncpy(p_buf, buf, p_buf_len);
1281         else
1282                 printk(KERN_INFO "%s", buf);
1283 }
1284
1285 void
1286 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1287 {
1288         /*
1289          * Check if the Protocol Identifier Valid (PIV) bit is set..
1290          *
1291          * from spc3r23.pdf section 7.5.1
1292          */
1293          if (page_83[1] & 0x80) {
1294                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1295                 vpd->protocol_identifier_set = 1;
1296                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1297         }
1298 }
1299 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1300
1301 int transport_dump_vpd_assoc(
1302         struct t10_vpd *vpd,
1303         unsigned char *p_buf,
1304         int p_buf_len)
1305 {
1306         unsigned char buf[VPD_TMP_BUF_SIZE];
1307         int ret = 0;
1308         int len;
1309
1310         memset(buf, 0, VPD_TMP_BUF_SIZE);
1311         len = sprintf(buf, "T10 VPD Identifier Association: ");
1312
1313         switch (vpd->association) {
1314         case 0x00:
1315                 sprintf(buf+len, "addressed logical unit\n");
1316                 break;
1317         case 0x10:
1318                 sprintf(buf+len, "target port\n");
1319                 break;
1320         case 0x20:
1321                 sprintf(buf+len, "SCSI target device\n");
1322                 break;
1323         default:
1324                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1325                 ret = -EINVAL;
1326                 break;
1327         }
1328
1329         if (p_buf)
1330                 strncpy(p_buf, buf, p_buf_len);
1331         else
1332                 printk("%s", buf);
1333
1334         return ret;
1335 }
1336
1337 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1338 {
1339         /*
1340          * The VPD identification association..
1341          *
1342          * from spc3r23.pdf Section 7.6.3.1 Table 297
1343          */
1344         vpd->association = (page_83[1] & 0x30);
1345         return transport_dump_vpd_assoc(vpd, NULL, 0);
1346 }
1347 EXPORT_SYMBOL(transport_set_vpd_assoc);
1348
1349 int transport_dump_vpd_ident_type(
1350         struct t10_vpd *vpd,
1351         unsigned char *p_buf,
1352         int p_buf_len)
1353 {
1354         unsigned char buf[VPD_TMP_BUF_SIZE];
1355         int ret = 0;
1356         int len;
1357
1358         memset(buf, 0, VPD_TMP_BUF_SIZE);
1359         len = sprintf(buf, "T10 VPD Identifier Type: ");
1360
1361         switch (vpd->device_identifier_type) {
1362         case 0x00:
1363                 sprintf(buf+len, "Vendor specific\n");
1364                 break;
1365         case 0x01:
1366                 sprintf(buf+len, "T10 Vendor ID based\n");
1367                 break;
1368         case 0x02:
1369                 sprintf(buf+len, "EUI-64 based\n");
1370                 break;
1371         case 0x03:
1372                 sprintf(buf+len, "NAA\n");
1373                 break;
1374         case 0x04:
1375                 sprintf(buf+len, "Relative target port identifier\n");
1376                 break;
1377         case 0x08:
1378                 sprintf(buf+len, "SCSI name string\n");
1379                 break;
1380         default:
1381                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1382                                 vpd->device_identifier_type);
1383                 ret = -EINVAL;
1384                 break;
1385         }
1386
1387         if (p_buf) {
1388                 if (p_buf_len < strlen(buf)+1)
1389                         return -EINVAL;
1390                 strncpy(p_buf, buf, p_buf_len);
1391         } else {
1392                 printk("%s", buf);
1393         }
1394
1395         return ret;
1396 }
1397
1398 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1399 {
1400         /*
1401          * The VPD identifier type..
1402          *
1403          * from spc3r23.pdf Section 7.6.3.1 Table 298
1404          */
1405         vpd->device_identifier_type = (page_83[1] & 0x0f);
1406         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1407 }
1408 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1409
1410 int transport_dump_vpd_ident(
1411         struct t10_vpd *vpd,
1412         unsigned char *p_buf,
1413         int p_buf_len)
1414 {
1415         unsigned char buf[VPD_TMP_BUF_SIZE];
1416         int ret = 0;
1417
1418         memset(buf, 0, VPD_TMP_BUF_SIZE);
1419
1420         switch (vpd->device_identifier_code_set) {
1421         case 0x01: /* Binary */
1422                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1423                         &vpd->device_identifier[0]);
1424                 break;
1425         case 0x02: /* ASCII */
1426                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1427                         &vpd->device_identifier[0]);
1428                 break;
1429         case 0x03: /* UTF-8 */
1430                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1431                         &vpd->device_identifier[0]);
1432                 break;
1433         default:
1434                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1435                         " 0x%02x", vpd->device_identifier_code_set);
1436                 ret = -EINVAL;
1437                 break;
1438         }
1439
1440         if (p_buf)
1441                 strncpy(p_buf, buf, p_buf_len);
1442         else
1443                 printk("%s", buf);
1444
1445         return ret;
1446 }
1447
1448 int
1449 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1450 {
1451         static const char hex_str[] = "0123456789abcdef";
1452         int j = 0, i = 4; /* offset to start of the identifer */
1453
1454         /*
1455          * The VPD Code Set (encoding)
1456          *
1457          * from spc3r23.pdf Section 7.6.3.1 Table 296
1458          */
1459         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1460         switch (vpd->device_identifier_code_set) {
1461         case 0x01: /* Binary */
1462                 vpd->device_identifier[j++] =
1463                                 hex_str[vpd->device_identifier_type];
1464                 while (i < (4 + page_83[3])) {
1465                         vpd->device_identifier[j++] =
1466                                 hex_str[(page_83[i] & 0xf0) >> 4];
1467                         vpd->device_identifier[j++] =
1468                                 hex_str[page_83[i] & 0x0f];
1469                         i++;
1470                 }
1471                 break;
1472         case 0x02: /* ASCII */
1473         case 0x03: /* UTF-8 */
1474                 while (i < (4 + page_83[3]))
1475                         vpd->device_identifier[j++] = page_83[i++];
1476                 break;
1477         default:
1478                 break;
1479         }
1480
1481         return transport_dump_vpd_ident(vpd, NULL, 0);
1482 }
1483 EXPORT_SYMBOL(transport_set_vpd_ident);
1484
1485 static void core_setup_task_attr_emulation(struct se_device *dev)
1486 {
1487         /*
1488          * If this device is from Target_Core_Mod/pSCSI, disable the
1489          * SAM Task Attribute emulation.
1490          *
1491          * This is currently not available in upsream Linux/SCSI Target
1492          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1493          */
1494         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1495                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1496                 return;
1497         }
1498
1499         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1500         DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1501                 " device\n", dev->transport->name,
1502                 dev->transport->get_device_rev(dev));
1503 }
1504
1505 static void scsi_dump_inquiry(struct se_device *dev)
1506 {
1507         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1508         int i, device_type;
1509         /*
1510          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1511          */
1512         printk("  Vendor: ");
1513         for (i = 0; i < 8; i++)
1514                 if (wwn->vendor[i] >= 0x20)
1515                         printk("%c", wwn->vendor[i]);
1516                 else
1517                         printk(" ");
1518
1519         printk("  Model: ");
1520         for (i = 0; i < 16; i++)
1521                 if (wwn->model[i] >= 0x20)
1522                         printk("%c", wwn->model[i]);
1523                 else
1524                         printk(" ");
1525
1526         printk("  Revision: ");
1527         for (i = 0; i < 4; i++)
1528                 if (wwn->revision[i] >= 0x20)
1529                         printk("%c", wwn->revision[i]);
1530                 else
1531                         printk(" ");
1532
1533         printk("\n");
1534
1535         device_type = dev->transport->get_device_type(dev);
1536         printk("  Type:   %s ", scsi_device_type(device_type));
1537         printk("                 ANSI SCSI revision: %02x\n",
1538                                 dev->transport->get_device_rev(dev));
1539 }
1540
1541 struct se_device *transport_add_device_to_core_hba(
1542         struct se_hba *hba,
1543         struct se_subsystem_api *transport,
1544         struct se_subsystem_dev *se_dev,
1545         u32 device_flags,
1546         void *transport_dev,
1547         struct se_dev_limits *dev_limits,
1548         const char *inquiry_prod,
1549         const char *inquiry_rev)
1550 {
1551         int force_pt;
1552         struct se_device  *dev;
1553
1554         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1555         if (!(dev)) {
1556                 printk(KERN_ERR "Unable to allocate memory for se_dev_t\n");
1557                 return NULL;
1558         }
1559
1560         transport_init_queue_obj(&dev->dev_queue_obj);
1561         dev->dev_flags          = device_flags;
1562         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1563         dev->dev_ptr            = transport_dev;
1564         dev->se_hba             = hba;
1565         dev->se_sub_dev         = se_dev;
1566         dev->transport          = transport;
1567         atomic_set(&dev->active_cmds, 0);
1568         INIT_LIST_HEAD(&dev->dev_list);
1569         INIT_LIST_HEAD(&dev->dev_sep_list);
1570         INIT_LIST_HEAD(&dev->dev_tmr_list);
1571         INIT_LIST_HEAD(&dev->execute_task_list);
1572         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1573         INIT_LIST_HEAD(&dev->ordered_cmd_list);
1574         INIT_LIST_HEAD(&dev->state_task_list);
1575         INIT_LIST_HEAD(&dev->qf_cmd_list);
1576         spin_lock_init(&dev->execute_task_lock);
1577         spin_lock_init(&dev->delayed_cmd_lock);
1578         spin_lock_init(&dev->ordered_cmd_lock);
1579         spin_lock_init(&dev->state_task_lock);
1580         spin_lock_init(&dev->dev_alua_lock);
1581         spin_lock_init(&dev->dev_reservation_lock);
1582         spin_lock_init(&dev->dev_status_lock);
1583         spin_lock_init(&dev->dev_status_thr_lock);
1584         spin_lock_init(&dev->se_port_lock);
1585         spin_lock_init(&dev->se_tmr_lock);
1586         spin_lock_init(&dev->qf_cmd_lock);
1587
1588         dev->queue_depth        = dev_limits->queue_depth;
1589         atomic_set(&dev->depth_left, dev->queue_depth);
1590         atomic_set(&dev->dev_ordered_id, 0);
1591
1592         se_dev_set_default_attribs(dev, dev_limits);
1593
1594         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1595         dev->creation_time = get_jiffies_64();
1596         spin_lock_init(&dev->stats_lock);
1597
1598         spin_lock(&hba->device_lock);
1599         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1600         hba->dev_count++;
1601         spin_unlock(&hba->device_lock);
1602         /*
1603          * Setup the SAM Task Attribute emulation for struct se_device
1604          */
1605         core_setup_task_attr_emulation(dev);
1606         /*
1607          * Force PR and ALUA passthrough emulation with internal object use.
1608          */
1609         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1610         /*
1611          * Setup the Reservations infrastructure for struct se_device
1612          */
1613         core_setup_reservations(dev, force_pt);
1614         /*
1615          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1616          */
1617         if (core_setup_alua(dev, force_pt) < 0)
1618                 goto out;
1619
1620         /*
1621          * Startup the struct se_device processing thread
1622          */
1623         dev->process_thread = kthread_run(transport_processing_thread, dev,
1624                                           "LIO_%s", dev->transport->name);
1625         if (IS_ERR(dev->process_thread)) {
1626                 printk(KERN_ERR "Unable to create kthread: LIO_%s\n",
1627                         dev->transport->name);
1628                 goto out;
1629         }
1630         /*
1631          * Setup work_queue for QUEUE_FULL
1632          */
1633         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1634         /*
1635          * Preload the initial INQUIRY const values if we are doing
1636          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1637          * passthrough because this is being provided by the backend LLD.
1638          * This is required so that transport_get_inquiry() copies these
1639          * originals once back into DEV_T10_WWN(dev) for the virtual device
1640          * setup.
1641          */
1642         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1643                 if (!inquiry_prod || !inquiry_rev) {
1644                         printk(KERN_ERR "All non TCM/pSCSI plugins require"
1645                                 " INQUIRY consts\n");
1646                         goto out;
1647                 }
1648
1649                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1650                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1651                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1652         }
1653         scsi_dump_inquiry(dev);
1654
1655         return dev;
1656 out:
1657         kthread_stop(dev->process_thread);
1658
1659         spin_lock(&hba->device_lock);
1660         list_del(&dev->dev_list);
1661         hba->dev_count--;
1662         spin_unlock(&hba->device_lock);
1663
1664         se_release_vpd_for_dev(dev);
1665
1666         kfree(dev);
1667
1668         return NULL;
1669 }
1670 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1671
1672 /*      transport_generic_prepare_cdb():
1673  *
1674  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1675  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1676  *      The point of this is since we are mapping iSCSI LUNs to
1677  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1678  *      devices and HBAs for a loop.
1679  */
1680 static inline void transport_generic_prepare_cdb(
1681         unsigned char *cdb)
1682 {
1683         switch (cdb[0]) {
1684         case READ_10: /* SBC - RDProtect */
1685         case READ_12: /* SBC - RDProtect */
1686         case READ_16: /* SBC - RDProtect */
1687         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1688         case VERIFY: /* SBC - VRProtect */
1689         case VERIFY_16: /* SBC - VRProtect */
1690         case WRITE_VERIFY: /* SBC - VRProtect */
1691         case WRITE_VERIFY_12: /* SBC - VRProtect */
1692                 break;
1693         default:
1694                 cdb[1] &= 0x1f; /* clear logical unit number */
1695                 break;
1696         }
1697 }
1698
1699 static struct se_task *
1700 transport_generic_get_task(struct se_cmd *cmd,
1701                 enum dma_data_direction data_direction)
1702 {
1703         struct se_task *task;
1704         struct se_device *dev = cmd->se_dev;
1705         unsigned long flags;
1706
1707         task = dev->transport->alloc_task(cmd);
1708         if (!task) {
1709                 printk(KERN_ERR "Unable to allocate struct se_task\n");
1710                 return NULL;
1711         }
1712
1713         INIT_LIST_HEAD(&task->t_list);
1714         INIT_LIST_HEAD(&task->t_execute_list);
1715         INIT_LIST_HEAD(&task->t_state_list);
1716         init_completion(&task->task_stop_comp);
1717         task->task_se_cmd = cmd;
1718         task->se_dev = dev;
1719         task->task_data_direction = data_direction;
1720
1721         spin_lock_irqsave(&cmd->t_state_lock, flags);
1722         list_add_tail(&task->t_list, &cmd->t_task_list);
1723         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1724
1725         return task;
1726 }
1727
1728 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1729
1730 /*
1731  * Used by fabric modules containing a local struct se_cmd within their
1732  * fabric dependent per I/O descriptor.
1733  */
1734 void transport_init_se_cmd(
1735         struct se_cmd *cmd,
1736         struct target_core_fabric_ops *tfo,
1737         struct se_session *se_sess,
1738         u32 data_length,
1739         int data_direction,
1740         int task_attr,
1741         unsigned char *sense_buffer)
1742 {
1743         INIT_LIST_HEAD(&cmd->se_lun_node);
1744         INIT_LIST_HEAD(&cmd->se_delayed_node);
1745         INIT_LIST_HEAD(&cmd->se_ordered_node);
1746         INIT_LIST_HEAD(&cmd->se_qf_node);
1747
1748         INIT_LIST_HEAD(&cmd->t_mem_list);
1749         INIT_LIST_HEAD(&cmd->t_mem_bidi_list);
1750         INIT_LIST_HEAD(&cmd->t_task_list);
1751         init_completion(&cmd->transport_lun_fe_stop_comp);
1752         init_completion(&cmd->transport_lun_stop_comp);
1753         init_completion(&cmd->t_transport_stop_comp);
1754         spin_lock_init(&cmd->t_state_lock);
1755         atomic_set(&cmd->transport_dev_active, 1);
1756
1757         cmd->se_tfo = tfo;
1758         cmd->se_sess = se_sess;
1759         cmd->data_length = data_length;
1760         cmd->data_direction = data_direction;
1761         cmd->sam_task_attr = task_attr;
1762         cmd->sense_buffer = sense_buffer;
1763 }
1764 EXPORT_SYMBOL(transport_init_se_cmd);
1765
1766 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1767 {
1768         /*
1769          * Check if SAM Task Attribute emulation is enabled for this
1770          * struct se_device storage object
1771          */
1772         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1773                 return 0;
1774
1775         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1776                 DEBUG_STA("SAM Task Attribute ACA"
1777                         " emulation is not supported\n");
1778                 return -EINVAL;
1779         }
1780         /*
1781          * Used to determine when ORDERED commands should go from
1782          * Dormant to Active status.
1783          */
1784         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1785         smp_mb__after_atomic_inc();
1786         DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1787                         cmd->se_ordered_id, cmd->sam_task_attr,
1788                         TRANSPORT(cmd->se_dev)->name);
1789         return 0;
1790 }
1791
1792 void transport_free_se_cmd(
1793         struct se_cmd *se_cmd)
1794 {
1795         if (se_cmd->se_tmr_req)
1796                 core_tmr_release_req(se_cmd->se_tmr_req);
1797         /*
1798          * Check and free any extended CDB buffer that was allocated
1799          */
1800         if (se_cmd->t_task_cdb != se_cmd->__t_task_cdb)
1801                 kfree(se_cmd->t_task_cdb);
1802 }
1803 EXPORT_SYMBOL(transport_free_se_cmd);
1804
1805 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1806
1807 /*      transport_generic_allocate_tasks():
1808  *
1809  *      Called from fabric RX Thread.
1810  */
1811 int transport_generic_allocate_tasks(
1812         struct se_cmd *cmd,
1813         unsigned char *cdb)
1814 {
1815         int ret;
1816
1817         transport_generic_prepare_cdb(cdb);
1818
1819         /*
1820          * This is needed for early exceptions.
1821          */
1822         cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1823
1824         /*
1825          * Ensure that the received CDB is less than the max (252 + 8) bytes
1826          * for VARIABLE_LENGTH_CMD
1827          */
1828         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1829                 printk(KERN_ERR "Received SCSI CDB with command_size: %d that"
1830                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1831                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1832                 return -EINVAL;
1833         }
1834         /*
1835          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1836          * allocate the additional extended CDB buffer now..  Otherwise
1837          * setup the pointer from __t_task_cdb to t_task_cdb.
1838          */
1839         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1840                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1841                                                 GFP_KERNEL);
1842                 if (!(cmd->t_task_cdb)) {
1843                         printk(KERN_ERR "Unable to allocate cmd->t_task_cdb"
1844                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1845                                 scsi_command_size(cdb),
1846                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1847                         return -ENOMEM;
1848                 }
1849         } else
1850                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1851         /*
1852          * Copy the original CDB into cmd->
1853          */
1854         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1855         /*
1856          * Setup the received CDB based on SCSI defined opcodes and
1857          * perform unit attention, persistent reservations and ALUA
1858          * checks for virtual device backends.  The cmd->t_task_cdb
1859          * pointer is expected to be setup before we reach this point.
1860          */
1861         ret = transport_generic_cmd_sequencer(cmd, cdb);
1862         if (ret < 0)
1863                 return ret;
1864         /*
1865          * Check for SAM Task Attribute Emulation
1866          */
1867         if (transport_check_alloc_task_attr(cmd) < 0) {
1868                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1869                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1870                 return -EINVAL;
1871         }
1872         spin_lock(&cmd->se_lun->lun_sep_lock);
1873         if (cmd->se_lun->lun_sep)
1874                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1875         spin_unlock(&cmd->se_lun->lun_sep_lock);
1876         return 0;
1877 }
1878 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1879
1880 /*
1881  * Used by fabric module frontends not defining a TFO->new_cmd_map()
1882  * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1883  */
1884 int transport_generic_handle_cdb(
1885         struct se_cmd *cmd)
1886 {
1887         if (!cmd->se_lun) {
1888                 dump_stack();
1889                 printk(KERN_ERR "cmd->se_lun is NULL\n");
1890                 return -EINVAL;
1891         }
1892
1893         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
1894         return 0;
1895 }
1896 EXPORT_SYMBOL(transport_generic_handle_cdb);
1897
1898 /*
1899  * Used by fabric module frontends to queue tasks directly.
1900  * Many only be used from process context only
1901  */
1902 int transport_handle_cdb_direct(
1903         struct se_cmd *cmd)
1904 {
1905         if (!cmd->se_lun) {
1906                 dump_stack();
1907                 printk(KERN_ERR "cmd->se_lun is NULL\n");
1908                 return -EINVAL;
1909         }
1910         if (in_interrupt()) {
1911                 dump_stack();
1912                 printk(KERN_ERR "transport_generic_handle_cdb cannot be called"
1913                                 " from interrupt context\n");
1914                 return -EINVAL;
1915         }
1916
1917         return transport_generic_new_cmd(cmd);
1918 }
1919 EXPORT_SYMBOL(transport_handle_cdb_direct);
1920
1921 /*
1922  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1923  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1924  * complete setup in TCM process context w/ TFO->new_cmd_map().
1925  */
1926 int transport_generic_handle_cdb_map(
1927         struct se_cmd *cmd)
1928 {
1929         if (!cmd->se_lun) {
1930                 dump_stack();
1931                 printk(KERN_ERR "cmd->se_lun is NULL\n");
1932                 return -EINVAL;
1933         }
1934
1935         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1936         return 0;
1937 }
1938 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1939
1940 /*      transport_generic_handle_data():
1941  *
1942  *
1943  */
1944 int transport_generic_handle_data(
1945         struct se_cmd *cmd)
1946 {
1947         /*
1948          * For the software fabric case, then we assume the nexus is being
1949          * failed/shutdown when signals are pending from the kthread context
1950          * caller, so we return a failure.  For the HW target mode case running
1951          * in interrupt code, the signal_pending() check is skipped.
1952          */
1953         if (!in_interrupt() && signal_pending(current))
1954                 return -EPERM;
1955         /*
1956          * If the received CDB has aleady been ABORTED by the generic
1957          * target engine, we now call transport_check_aborted_status()
1958          * to queue any delated TASK_ABORTED status for the received CDB to the
1959          * fabric module as we are expecting no further incoming DATA OUT
1960          * sequences at this point.
1961          */
1962         if (transport_check_aborted_status(cmd, 1) != 0)
1963                 return 0;
1964
1965         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1966         return 0;
1967 }
1968 EXPORT_SYMBOL(transport_generic_handle_data);
1969
1970 /*      transport_generic_handle_tmr():
1971  *
1972  *
1973  */
1974 int transport_generic_handle_tmr(
1975         struct se_cmd *cmd)
1976 {
1977         /*
1978          * This is needed for early exceptions.
1979          */
1980         cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1981
1982         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1983         return 0;
1984 }
1985 EXPORT_SYMBOL(transport_generic_handle_tmr);
1986
1987 void transport_generic_free_cmd_intr(
1988         struct se_cmd *cmd)
1989 {
1990         transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1991 }
1992 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1993
1994 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1995 {
1996         struct se_task *task, *task_tmp;
1997         unsigned long flags;
1998         int ret = 0;
1999
2000         DEBUG_TS("ITT[0x%08x] - Stopping tasks\n",
2001                 cmd->se_tfo->get_task_tag(cmd));
2002
2003         /*
2004          * No tasks remain in the execution queue
2005          */
2006         spin_lock_irqsave(&cmd->t_state_lock, flags);
2007         list_for_each_entry_safe(task, task_tmp,
2008                                 &cmd->t_task_list, t_list) {
2009                 DEBUG_TS("task_no[%d] - Processing task %p\n",
2010                                 task->task_no, task);
2011                 /*
2012                  * If the struct se_task has not been sent and is not active,
2013                  * remove the struct se_task from the execution queue.
2014                  */
2015                 if (!atomic_read(&task->task_sent) &&
2016                     !atomic_read(&task->task_active)) {
2017                         spin_unlock_irqrestore(&cmd->t_state_lock,
2018                                         flags);
2019                         transport_remove_task_from_execute_queue(task,
2020                                         task->se_dev);
2021
2022                         DEBUG_TS("task_no[%d] - Removed from execute queue\n",
2023                                 task->task_no);
2024                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2025                         continue;
2026                 }
2027
2028                 /*
2029                  * If the struct se_task is active, sleep until it is returned
2030                  * from the plugin.
2031                  */
2032                 if (atomic_read(&task->task_active)) {
2033                         atomic_set(&task->task_stop, 1);
2034                         spin_unlock_irqrestore(&cmd->t_state_lock,
2035                                         flags);
2036
2037                         DEBUG_TS("task_no[%d] - Waiting to complete\n",
2038                                 task->task_no);
2039                         wait_for_completion(&task->task_stop_comp);
2040                         DEBUG_TS("task_no[%d] - Stopped successfully\n",
2041                                 task->task_no);
2042
2043                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2044                         atomic_dec(&cmd->t_task_cdbs_left);
2045
2046                         atomic_set(&task->task_active, 0);
2047                         atomic_set(&task->task_stop, 0);
2048                 } else {
2049                         DEBUG_TS("task_no[%d] - Did nothing\n", task->task_no);
2050                         ret++;
2051                 }
2052
2053                 __transport_stop_task_timer(task, &flags);
2054         }
2055         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2056
2057         return ret;
2058 }
2059
2060 /*
2061  * Handle SAM-esque emulation for generic transport request failures.
2062  */
2063 static void transport_generic_request_failure(
2064         struct se_cmd *cmd,
2065         struct se_device *dev,
2066         int complete,
2067         int sc)
2068 {
2069         int ret = 0;
2070
2071         DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
2072                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
2073                 cmd->t_task_cdb[0]);
2074         DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:"
2075                 " %d/%d transport_error_status: %d\n",
2076                 cmd->se_tfo->get_cmd_state(cmd),
2077                 cmd->t_state, cmd->deferred_t_state,
2078                 cmd->transport_error_status);
2079         DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d"
2080                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
2081                 " t_transport_active: %d t_transport_stop: %d"
2082                 " t_transport_sent: %d\n", cmd->t_task_cdbs,
2083                 atomic_read(&cmd->t_task_cdbs_left),
2084                 atomic_read(&cmd->t_task_cdbs_sent),
2085                 atomic_read(&cmd->t_task_cdbs_ex_left),
2086                 atomic_read(&cmd->t_transport_active),
2087                 atomic_read(&cmd->t_transport_stop),
2088                 atomic_read(&cmd->t_transport_sent));
2089
2090         transport_stop_all_task_timers(cmd);
2091
2092         if (dev)
2093                 atomic_inc(&dev->depth_left);
2094         /*
2095          * For SAM Task Attribute emulation for failed struct se_cmd
2096          */
2097         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2098                 transport_complete_task_attr(cmd);
2099
2100         if (complete) {
2101                 transport_direct_request_timeout(cmd);
2102                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2103         }
2104
2105         switch (cmd->transport_error_status) {
2106         case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
2107                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2108                 break;
2109         case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
2110                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
2111                 break;
2112         case PYX_TRANSPORT_INVALID_CDB_FIELD:
2113                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
2114                 break;
2115         case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
2116                 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
2117                 break;
2118         case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
2119                 if (!sc)
2120                         transport_new_cmd_failure(cmd);
2121                 /*
2122                  * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2123                  * we force this session to fall back to session
2124                  * recovery.
2125                  */
2126                 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
2127                 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
2128
2129                 goto check_stop;
2130         case PYX_TRANSPORT_LU_COMM_FAILURE:
2131         case PYX_TRANSPORT_ILLEGAL_REQUEST:
2132                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2133                 break;
2134         case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2135                 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2136                 break;
2137         case PYX_TRANSPORT_WRITE_PROTECTED:
2138                 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2139                 break;
2140         case PYX_TRANSPORT_RESERVATION_CONFLICT:
2141                 /*
2142                  * No SENSE Data payload for this case, set SCSI Status
2143                  * and queue the response to $FABRIC_MOD.
2144                  *
2145                  * Uses linux/include/scsi/scsi.h SAM status codes defs
2146                  */
2147                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2148                 /*
2149                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2150                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2151                  * CONFLICT STATUS.
2152                  *
2153                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2154                  */
2155                 if (cmd->se_sess &&
2156                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2157                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2158                                 cmd->orig_fe_lun, 0x2C,
2159                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2160
2161                 ret = cmd->se_tfo->queue_status(cmd);
2162                 if (ret == -EAGAIN)
2163                         goto queue_full;
2164                 goto check_stop;
2165         case PYX_TRANSPORT_USE_SENSE_REASON:
2166                 /*
2167                  * struct se_cmd->scsi_sense_reason already set
2168                  */
2169                 break;
2170         default:
2171                 printk(KERN_ERR "Unknown transport error for CDB 0x%02x: %d\n",
2172                         cmd->t_task_cdb[0],
2173                         cmd->transport_error_status);
2174                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2175                 break;
2176         }
2177
2178         if (!sc)
2179                 transport_new_cmd_failure(cmd);
2180         else {
2181                 ret = transport_send_check_condition_and_sense(cmd,
2182                                 cmd->scsi_sense_reason, 0);
2183                 if (ret == -EAGAIN)
2184                         goto queue_full;
2185         }
2186
2187 check_stop:
2188         transport_lun_remove_cmd(cmd);
2189         if (!(transport_cmd_check_stop_to_fabric(cmd)))
2190                 ;
2191         return;
2192
2193 queue_full:
2194         cmd->t_state = TRANSPORT_COMPLETE_OK;
2195         transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
2196 }
2197
2198 static void transport_direct_request_timeout(struct se_cmd *cmd)
2199 {
2200         unsigned long flags;
2201
2202         spin_lock_irqsave(&cmd->t_state_lock, flags);
2203         if (!(atomic_read(&cmd->t_transport_timeout))) {
2204                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2205                 return;
2206         }
2207         if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
2208                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2209                 return;
2210         }
2211
2212         atomic_sub(atomic_read(&cmd->t_transport_timeout),
2213                    &cmd->t_se_count);
2214         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2215 }
2216
2217 static void transport_generic_request_timeout(struct se_cmd *cmd)
2218 {
2219         unsigned long flags;
2220
2221         /*
2222          * Reset cmd->t_se_count to allow transport_generic_remove()
2223          * to allow last call to free memory resources.
2224          */
2225         spin_lock_irqsave(&cmd->t_state_lock, flags);
2226         if (atomic_read(&cmd->t_transport_timeout) > 1) {
2227                 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2228
2229                 atomic_sub(tmp, &cmd->t_se_count);
2230         }
2231         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2232
2233         transport_generic_remove(cmd, 0);
2234 }
2235
2236 static inline u32 transport_lba_21(unsigned char *cdb)
2237 {
2238         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2239 }
2240
2241 static inline u32 transport_lba_32(unsigned char *cdb)
2242 {
2243         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2244 }
2245
2246 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2247 {
2248         unsigned int __v1, __v2;
2249
2250         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2251         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2252
2253         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2254 }
2255
2256 /*
2257  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2258  */
2259 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2260 {
2261         unsigned int __v1, __v2;
2262
2263         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2264         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2265
2266         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2267 }
2268
2269 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2270 {
2271         unsigned long flags;
2272
2273         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2274         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2275         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2276 }
2277
2278 /*
2279  * Called from interrupt context.
2280  */
2281 static void transport_task_timeout_handler(unsigned long data)
2282 {
2283         struct se_task *task = (struct se_task *)data;
2284         struct se_cmd *cmd = task->task_se_cmd;
2285         unsigned long flags;
2286
2287         DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2288
2289         spin_lock_irqsave(&cmd->t_state_lock, flags);
2290         if (task->task_flags & TF_STOP) {
2291                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2292                 return;
2293         }
2294         task->task_flags &= ~TF_RUNNING;
2295
2296         /*
2297          * Determine if transport_complete_task() has already been called.
2298          */
2299         if (!(atomic_read(&task->task_active))) {
2300                 DEBUG_TT("transport task: %p cmd: %p timeout task_active"
2301                                 " == 0\n", task, cmd);
2302                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2303                 return;
2304         }
2305
2306         atomic_inc(&cmd->t_se_count);
2307         atomic_inc(&cmd->t_transport_timeout);
2308         cmd->t_tasks_failed = 1;
2309
2310         atomic_set(&task->task_timeout, 1);
2311         task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2312         task->task_scsi_status = 1;
2313
2314         if (atomic_read(&task->task_stop)) {
2315                 DEBUG_TT("transport task: %p cmd: %p timeout task_stop"
2316                                 " == 1\n", task, cmd);
2317                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2318                 complete(&task->task_stop_comp);
2319                 return;
2320         }
2321
2322         if (!(atomic_dec_and_test(&cmd->t_task_cdbs_left))) {
2323                 DEBUG_TT("transport task: %p cmd: %p timeout non zero"
2324                                 " t_task_cdbs_left\n", task, cmd);
2325                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2326                 return;
2327         }
2328         DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2329                         task, cmd);
2330
2331         cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2332         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2333
2334         transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2335 }
2336
2337 /*
2338  * Called with cmd->t_state_lock held.
2339  */
2340 static void transport_start_task_timer(struct se_task *task)
2341 {
2342         struct se_device *dev = task->se_dev;
2343         int timeout;
2344
2345         if (task->task_flags & TF_RUNNING)
2346                 return;
2347         /*
2348          * If the task_timeout is disabled, exit now.
2349          */
2350         timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2351         if (!(timeout))
2352                 return;
2353
2354         init_timer(&task->task_timer);
2355         task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2356         task->task_timer.data = (unsigned long) task;
2357         task->task_timer.function = transport_task_timeout_handler;
2358
2359         task->task_flags |= TF_RUNNING;
2360         add_timer(&task->task_timer);
2361 #if 0
2362         printk(KERN_INFO "Starting task timer for cmd: %p task: %p seconds:"
2363                 " %d\n", task->task_se_cmd, task, timeout);
2364 #endif
2365 }
2366
2367 /*
2368  * Called with spin_lock_irq(&cmd->t_state_lock) held.
2369  */
2370 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2371 {
2372         struct se_cmd *cmd = task->task_se_cmd;
2373
2374         if (!(task->task_flags & TF_RUNNING))
2375                 return;
2376
2377         task->task_flags |= TF_STOP;
2378         spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2379
2380         del_timer_sync(&task->task_timer);
2381
2382         spin_lock_irqsave(&cmd->t_state_lock, *flags);
2383         task->task_flags &= ~TF_RUNNING;
2384         task->task_flags &= ~TF_STOP;
2385 }
2386
2387 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2388 {
2389         struct se_task *task = NULL, *task_tmp;
2390         unsigned long flags;
2391
2392         spin_lock_irqsave(&cmd->t_state_lock, flags);
2393         list_for_each_entry_safe(task, task_tmp,
2394                                 &cmd->t_task_list, t_list)
2395                 __transport_stop_task_timer(task, &flags);
2396         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2397 }
2398
2399 static inline int transport_tcq_window_closed(struct se_device *dev)
2400 {
2401         if (dev->dev_tcq_window_closed++ <
2402                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2403                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2404         } else
2405                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2406
2407         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2408         return 0;
2409 }
2410
2411 /*
2412  * Called from Fabric Module context from transport_execute_tasks()
2413  *
2414  * The return of this function determins if the tasks from struct se_cmd
2415  * get added to the execution queue in transport_execute_tasks(),
2416  * or are added to the delayed or ordered lists here.
2417  */
2418 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2419 {
2420         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2421                 return 1;
2422         /*
2423          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2424          * to allow the passed struct se_cmd list of tasks to the front of the list.
2425          */
2426          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2427                 atomic_inc(&cmd->se_dev->dev_hoq_count);
2428                 smp_mb__after_atomic_inc();
2429                 DEBUG_STA("Added HEAD_OF_QUEUE for CDB:"
2430                         " 0x%02x, se_ordered_id: %u\n",
2431                         cmd->_task_cdb[0],
2432                         cmd->se_ordered_id);
2433                 return 1;
2434         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2435                 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2436                 list_add_tail(&cmd->se_ordered_node,
2437                                 &cmd->se_dev->ordered_cmd_list);
2438                 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2439
2440                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2441                 smp_mb__after_atomic_inc();
2442
2443                 DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered"
2444                                 " list, se_ordered_id: %u\n",
2445                                 cmd->t_task_cdb[0],
2446                                 cmd->se_ordered_id);
2447                 /*
2448                  * Add ORDERED command to tail of execution queue if
2449                  * no other older commands exist that need to be
2450                  * completed first.
2451                  */
2452                 if (!(atomic_read(&cmd->se_dev->simple_cmds)))
2453                         return 1;
2454         } else {
2455                 /*
2456                  * For SIMPLE and UNTAGGED Task Attribute commands
2457                  */
2458                 atomic_inc(&cmd->se_dev->simple_cmds);
2459                 smp_mb__after_atomic_inc();
2460         }
2461         /*
2462          * Otherwise if one or more outstanding ORDERED task attribute exist,
2463          * add the dormant task(s) built for the passed struct se_cmd to the
2464          * execution queue and become in Active state for this struct se_device.
2465          */
2466         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2467                 /*
2468                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2469                  * will be drained upon completion of HEAD_OF_QUEUE task.
2470                  */
2471                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2472                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2473                 list_add_tail(&cmd->se_delayed_node,
2474                                 &cmd->se_dev->delayed_cmd_list);
2475                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2476
2477                 DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to"
2478                         " delayed CMD list, se_ordered_id: %u\n",
2479                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2480                         cmd->se_ordered_id);
2481                 /*
2482                  * Return zero to let transport_execute_tasks() know
2483                  * not to add the delayed tasks to the execution list.
2484                  */
2485                 return 0;
2486         }
2487         /*
2488          * Otherwise, no ORDERED task attributes exist..
2489          */
2490         return 1;
2491 }
2492
2493 /*
2494  * Called from fabric module context in transport_generic_new_cmd() and
2495  * transport_generic_process_write()
2496  */
2497 static int transport_execute_tasks(struct se_cmd *cmd)
2498 {
2499         int add_tasks;
2500
2501         if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2502                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2503                 transport_generic_request_failure(cmd, NULL, 0, 1);
2504                 return 0;
2505         }
2506
2507         /*
2508          * Call transport_cmd_check_stop() to see if a fabric exception
2509          * has occurred that prevents execution.
2510          */
2511         if (!(transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING))) {
2512                 /*
2513                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2514                  * attribute for the tasks of the received struct se_cmd CDB
2515                  */
2516                 add_tasks = transport_execute_task_attr(cmd);
2517                 if (!add_tasks)
2518                         goto execute_tasks;
2519                 /*
2520                  * This calls transport_add_tasks_from_cmd() to handle
2521                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2522                  * (if enabled) in __transport_add_task_to_execute_queue() and
2523                  * transport_add_task_check_sam_attr().
2524                  */
2525                 transport_add_tasks_from_cmd(cmd);
2526         }
2527         /*
2528          * Kick the execution queue for the cmd associated struct se_device
2529          * storage object.
2530          */
2531 execute_tasks:
2532         __transport_execute_tasks(cmd->se_dev);
2533         return 0;
2534 }
2535
2536 /*
2537  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2538  * from struct se_device->execute_task_list and
2539  *
2540  * Called from transport_processing_thread()
2541  */
2542 static int __transport_execute_tasks(struct se_device *dev)
2543 {
2544         int error;
2545         struct se_cmd *cmd = NULL;
2546         struct se_task *task = NULL;
2547         unsigned long flags;
2548
2549         /*
2550          * Check if there is enough room in the device and HBA queue to send
2551          * struct se_tasks to the selected transport.
2552          */
2553 check_depth:
2554         if (!atomic_read(&dev->depth_left))
2555                 return transport_tcq_window_closed(dev);
2556
2557         dev->dev_tcq_window_closed = 0;
2558
2559         spin_lock_irq(&dev->execute_task_lock);
2560         if (list_empty(&dev->execute_task_list)) {
2561                 spin_unlock_irq(&dev->execute_task_lock);
2562                 return 0;
2563         }
2564         task = list_first_entry(&dev->execute_task_list,
2565                                 struct se_task, t_execute_list);
2566         list_del(&task->t_execute_list);
2567         atomic_set(&task->task_execute_queue, 0);
2568         atomic_dec(&dev->execute_tasks);
2569         spin_unlock_irq(&dev->execute_task_lock);
2570
2571         atomic_dec(&dev->depth_left);
2572
2573         cmd = task->task_se_cmd;
2574
2575         spin_lock_irqsave(&cmd->t_state_lock, flags);
2576         atomic_set(&task->task_active, 1);
2577         atomic_set(&task->task_sent, 1);
2578         atomic_inc(&cmd->t_task_cdbs_sent);
2579
2580         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2581             cmd->t_task_list_num)
2582                 atomic_set(&cmd->transport_sent, 1);
2583
2584         transport_start_task_timer(task);
2585         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2586         /*
2587          * The struct se_cmd->transport_emulate_cdb() function pointer is used
2588          * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2589          * struct se_subsystem_api->do_task() caller below.
2590          */
2591         if (cmd->transport_emulate_cdb) {
2592                 error = cmd->transport_emulate_cdb(cmd);
2593                 if (error != 0) {
2594                         cmd->transport_error_status = error;
2595                         atomic_set(&task->task_active, 0);
2596                         atomic_set(&cmd->transport_sent, 0);
2597                         transport_stop_tasks_for_cmd(cmd);
2598                         transport_generic_request_failure(cmd, dev, 0, 1);
2599                         goto check_depth;
2600                 }
2601                 /*
2602                  * Handle the successful completion for transport_emulate_cdb()
2603                  * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2604                  * Otherwise the caller is expected to complete the task with
2605                  * proper status.
2606                  */
2607                 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2608                         cmd->scsi_status = SAM_STAT_GOOD;
2609                         task->task_scsi_status = GOOD;
2610                         transport_complete_task(task, 1);
2611                 }
2612         } else {
2613                 /*
2614                  * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2615                  * RAMDISK we use the internal transport_emulate_control_cdb() logic
2616                  * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2617                  * LUN emulation code.
2618                  *
2619                  * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2620                  * call ->do_task() directly and let the underlying TCM subsystem plugin
2621                  * code handle the CDB emulation.
2622                  */
2623                 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2624                     (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2625                         error = transport_emulate_control_cdb(task);
2626                 else
2627                         error = dev->transport->do_task(task);
2628
2629                 if (error != 0) {
2630                         cmd->transport_error_status = error;
2631                         atomic_set(&task->task_active, 0);
2632                         atomic_set(&cmd->transport_sent, 0);
2633                         transport_stop_tasks_for_cmd(cmd);
2634                         transport_generic_request_failure(cmd, dev, 0, 1);
2635                 }
2636         }
2637
2638         goto check_depth;
2639
2640         return 0;
2641 }
2642
2643 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2644 {
2645         unsigned long flags;
2646         /*
2647          * Any unsolicited data will get dumped for failed command inside of
2648          * the fabric plugin
2649          */
2650         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2651         se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2652         se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2653         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2654 }
2655
2656 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2657
2658 static inline u32 transport_get_sectors_6(
2659         unsigned char *cdb,
2660         struct se_cmd *cmd,
2661         int *ret)
2662 {
2663         struct se_device *dev = cmd->se_dev;
2664
2665         /*
2666          * Assume TYPE_DISK for non struct se_device objects.
2667          * Use 8-bit sector value.
2668          */
2669         if (!dev)
2670                 goto type_disk;
2671
2672         /*
2673          * Use 24-bit allocation length for TYPE_TAPE.
2674          */
2675         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2676                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2677
2678         /*
2679          * Everything else assume TYPE_DISK Sector CDB location.
2680          * Use 8-bit sector value.
2681          */
2682 type_disk:
2683         return (u32)cdb[4];
2684 }
2685
2686 static inline u32 transport_get_sectors_10(
2687         unsigned char *cdb,
2688         struct se_cmd *cmd,
2689         int *ret)
2690 {
2691         struct se_device *dev = cmd->se_dev;
2692
2693         /*
2694          * Assume TYPE_DISK for non struct se_device objects.
2695          * Use 16-bit sector value.
2696          */
2697         if (!dev)
2698                 goto type_disk;
2699
2700         /*
2701          * XXX_10 is not defined in SSC, throw an exception
2702          */
2703         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2704                 *ret = -EINVAL;
2705                 return 0;
2706         }
2707
2708         /*
2709          * Everything else assume TYPE_DISK Sector CDB location.
2710          * Use 16-bit sector value.
2711          */
2712 type_disk:
2713         return (u32)(cdb[7] << 8) + cdb[8];
2714 }
2715
2716 static inline u32 transport_get_sectors_12(
2717         unsigned char *cdb,
2718         struct se_cmd *cmd,
2719         int *ret)
2720 {
2721         struct se_device *dev = cmd->se_dev;
2722
2723         /*
2724          * Assume TYPE_DISK for non struct se_device objects.
2725          * Use 32-bit sector value.
2726          */
2727         if (!dev)
2728                 goto type_disk;
2729
2730         /*
2731          * XXX_12 is not defined in SSC, throw an exception
2732          */
2733         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2734                 *ret = -EINVAL;
2735                 return 0;
2736         }
2737
2738         /*
2739          * Everything else assume TYPE_DISK Sector CDB location.
2740          * Use 32-bit sector value.
2741          */
2742 type_disk:
2743         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2744 }
2745
2746 static inline u32 transport_get_sectors_16(
2747         unsigned char *cdb,
2748         struct se_cmd *cmd,
2749         int *ret)
2750 {
2751         struct se_device *dev = cmd->se_dev;
2752
2753         /*
2754          * Assume TYPE_DISK for non struct se_device objects.
2755          * Use 32-bit sector value.
2756          */
2757         if (!dev)
2758                 goto type_disk;
2759
2760         /*
2761          * Use 24-bit allocation length for TYPE_TAPE.
2762          */
2763         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2764                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2765
2766 type_disk:
2767         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2768                     (cdb[12] << 8) + cdb[13];
2769 }
2770
2771 /*
2772  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2773  */
2774 static inline u32 transport_get_sectors_32(
2775         unsigned char *cdb,
2776         struct se_cmd *cmd,
2777         int *ret)
2778 {
2779         /*
2780          * Assume TYPE_DISK for non struct se_device objects.
2781          * Use 32-bit sector value.
2782          */
2783         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2784                     (cdb[30] << 8) + cdb[31];
2785
2786 }
2787
2788 static inline u32 transport_get_size(
2789         u32 sectors,
2790         unsigned char *cdb,
2791         struct se_cmd *cmd)
2792 {
2793         struct se_device *dev = cmd->se_dev;
2794
2795         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2796                 if (cdb[1] & 1) { /* sectors */
2797                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2798                 } else /* bytes */
2799                         return sectors;
2800         }
2801 #if 0
2802         printk(KERN_INFO "Returning block_size: %u, sectors: %u == %u for"
2803                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2804                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2805                         dev->transport->name);
2806 #endif
2807         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2808 }
2809
2810 unsigned char transport_asciihex_to_binaryhex(unsigned char val[2])
2811 {
2812         unsigned char result = 0;
2813         /*
2814          * MSB
2815          */
2816         if ((val[0] >= 'a') && (val[0] <= 'f'))
2817                 result = ((val[0] - 'a' + 10) & 0xf) << 4;
2818         else
2819                 if ((val[0] >= 'A') && (val[0] <= 'F'))
2820                         result = ((val[0] - 'A' + 10) & 0xf) << 4;
2821                 else /* digit */
2822                         result = ((val[0] - '0') & 0xf) << 4;
2823         /*
2824          * LSB
2825          */
2826         if ((val[1] >= 'a') && (val[1] <= 'f'))
2827                 result |= ((val[1] - 'a' + 10) & 0xf);
2828         else
2829                 if ((val[1] >= 'A') && (val[1] <= 'F'))
2830                         result |= ((val[1] - 'A' + 10) & 0xf);
2831                 else /* digit */
2832                         result |= ((val[1] - '0') & 0xf);
2833
2834         return result;
2835 }
2836 EXPORT_SYMBOL(transport_asciihex_to_binaryhex);
2837
2838 static void transport_xor_callback(struct se_cmd *cmd)
2839 {
2840         unsigned char *buf, *addr;
2841         struct se_mem *se_mem;
2842         unsigned int offset;
2843         int i;
2844         /*
2845          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2846          *
2847          * 1) read the specified logical block(s);
2848          * 2) transfer logical blocks from the data-out buffer;
2849          * 3) XOR the logical blocks transferred from the data-out buffer with
2850          *    the logical blocks read, storing the resulting XOR data in a buffer;
2851          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2852          *    blocks transferred from the data-out buffer; and
2853          * 5) transfer the resulting XOR data to the data-in buffer.
2854          */
2855         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2856         if (!(buf)) {
2857                 printk(KERN_ERR "Unable to allocate xor_callback buf\n");
2858                 return;
2859         }
2860         /*
2861          * Copy the scatterlist WRITE buffer located at cmd->t_mem_list
2862          * into the locally allocated *buf
2863          */
2864         transport_memcpy_se_mem_read_contig(buf, &cmd->t_mem_list,
2865                                             cmd->data_length);
2866         /*
2867          * Now perform the XOR against the BIDI read memory located at
2868          * cmd->t_mem_bidi_list
2869          */
2870
2871         offset = 0;
2872         list_for_each_entry(se_mem, &cmd->t_mem_bidi_list, se_list) {
2873                 addr = (unsigned char *)kmap_atomic(se_mem->se_page, KM_USER0);
2874                 if (!(addr))
2875                         goto out;
2876
2877                 for (i = 0; i < se_mem->se_len; i++)
2878                         *(addr + se_mem->se_off + i) ^= *(buf + offset + i);
2879
2880                 offset += se_mem->se_len;
2881                 kunmap_atomic(addr, KM_USER0);
2882         }
2883 out:
2884         kfree(buf);
2885 }
2886
2887 /*
2888  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2889  */
2890 static int transport_get_sense_data(struct se_cmd *cmd)
2891 {
2892         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2893         struct se_device *dev;
2894         struct se_task *task = NULL, *task_tmp;
2895         unsigned long flags;
2896         u32 offset = 0;
2897
2898         WARN_ON(!cmd->se_lun);
2899
2900         spin_lock_irqsave(&cmd->t_state_lock, flags);
2901         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2902                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2903                 return 0;
2904         }
2905
2906         list_for_each_entry_safe(task, task_tmp,
2907                                 &cmd->t_task_list, t_list) {
2908
2909                 if (!task->task_sense)
2910                         continue;
2911
2912                 dev = task->se_dev;
2913                 if (!(dev))
2914                         continue;
2915
2916                 if (!dev->transport->get_sense_buffer) {
2917                         printk(KERN_ERR "dev->transport->get_sense_buffer"
2918                                         " is NULL\n");
2919                         continue;
2920                 }
2921
2922                 sense_buffer = dev->transport->get_sense_buffer(task);
2923                 if (!(sense_buffer)) {
2924                         printk(KERN_ERR "ITT[0x%08x]_TASK[%d]: Unable to locate"
2925                                 " sense buffer for task with sense\n",
2926                                 cmd->se_tfo->get_task_tag(cmd), task->task_no);
2927                         continue;
2928                 }
2929                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2930
2931                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2932                                 TRANSPORT_SENSE_BUFFER);
2933
2934                 memcpy(&buffer[offset], sense_buffer,
2935                                 TRANSPORT_SENSE_BUFFER);
2936                 cmd->scsi_status = task->task_scsi_status;
2937                 /* Automatically padded */
2938                 cmd->scsi_sense_length =
2939                                 (TRANSPORT_SENSE_BUFFER + offset);
2940
2941                 printk(KERN_INFO "HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2942                                 " and sense\n",
2943                         dev->se_hba->hba_id, dev->transport->name,
2944                                 cmd->scsi_status);
2945                 return 0;
2946         }
2947         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2948
2949         return -1;
2950 }
2951
2952 static int
2953 transport_handle_reservation_conflict(struct se_cmd *cmd)
2954 {
2955         cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2956         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2957         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2958         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2959         /*
2960          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2961          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2962          * CONFLICT STATUS.
2963          *
2964          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2965          */
2966         if (cmd->se_sess &&
2967             cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2968                 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2969                         cmd->orig_fe_lun, 0x2C,
2970                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2971         return -EINVAL;
2972 }
2973
2974 /*      transport_generic_cmd_sequencer():
2975  *
2976  *      Generic Command Sequencer that should work for most DAS transport
2977  *      drivers.
2978  *
2979  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2980  *      RX Thread.
2981  *
2982  *      FIXME: Need to support other SCSI OPCODES where as well.
2983  */
2984 static int transport_generic_cmd_sequencer(
2985         struct se_cmd *cmd,
2986         unsigned char *cdb)
2987 {
2988         struct se_device *dev = cmd->se_dev;
2989         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2990         int ret = 0, sector_ret = 0, passthrough;
2991         u32 sectors = 0, size = 0, pr_reg_type = 0;
2992         u16 service_action;
2993         u8 alua_ascq = 0;
2994         /*
2995          * Check for an existing UNIT ATTENTION condition
2996          */
2997         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2998                 cmd->transport_wait_for_tasks =
2999                                 &transport_nop_wait_for_tasks;
3000                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3001                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
3002                 return -EINVAL;
3003         }
3004         /*
3005          * Check status of Asymmetric Logical Unit Assignment port
3006          */
3007         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
3008         if (ret != 0) {
3009                 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3010                 /*
3011                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
3012                  * The ALUA additional sense code qualifier (ASCQ) is determined
3013                  * by the ALUA primary or secondary access state..
3014                  */
3015                 if (ret > 0) {
3016 #if 0
3017                         printk(KERN_INFO "[%s]: ALUA TG Port not available,"
3018                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
3019                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
3020 #endif
3021                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
3022                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3023                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
3024                         return -EINVAL;
3025                 }
3026                 goto out_invalid_cdb_field;
3027         }
3028         /*
3029          * Check status for SPC-3 Persistent Reservations
3030          */
3031         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
3032                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
3033                                         cmd, cdb, pr_reg_type) != 0)
3034                         return transport_handle_reservation_conflict(cmd);
3035                 /*
3036                  * This means the CDB is allowed for the SCSI Initiator port
3037                  * when said port is *NOT* holding the legacy SPC-2 or
3038                  * SPC-3 Persistent Reservation.
3039                  */
3040         }
3041
3042         switch (cdb[0]) {
3043         case READ_6:
3044                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3045                 if (sector_ret)
3046                         goto out_unsupported_cdb;
3047                 size = transport_get_size(sectors, cdb, cmd);
3048                 cmd->transport_split_cdb = &split_cdb_XX_6;
3049                 cmd->t_task_lba = transport_lba_21(cdb);
3050                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3051                 break;
3052         case READ_10:
3053                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3054                 if (sector_ret)
3055                         goto out_unsupported_cdb;
3056                 size = transport_get_size(sectors, cdb, cmd);
3057                 cmd->transport_split_cdb = &split_cdb_XX_10;
3058                 cmd->t_task_lba = transport_lba_32(cdb);
3059                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3060                 break;
3061         case READ_12:
3062                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3063                 if (sector_ret)
3064                         goto out_unsupported_cdb;
3065                 size = transport_get_size(sectors, cdb, cmd);
3066                 cmd->transport_split_cdb = &split_cdb_XX_12;
3067                 cmd->t_task_lba = transport_lba_32(cdb);
3068                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3069                 break;
3070         case READ_16:
3071                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3072                 if (sector_ret)
3073                         goto out_unsupported_cdb;
3074                 size = transport_get_size(sectors, cdb, cmd);
3075                 cmd->transport_split_cdb = &split_cdb_XX_16;
3076                 cmd->t_task_lba = transport_lba_64(cdb);
3077                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3078                 break;
3079         case WRITE_6:
3080                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3081                 if (sector_ret)
3082                         goto out_unsupported_cdb;
3083                 size = transport_get_size(sectors, cdb, cmd);
3084                 cmd->transport_split_cdb = &split_cdb_XX_6;
3085                 cmd->t_task_lba = transport_lba_21(cdb);
3086                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3087                 break;
3088         case WRITE_10:
3089                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3090                 if (sector_ret)
3091                         goto out_unsupported_cdb;
3092                 size = transport_get_size(sectors, cdb, cmd);
3093                 cmd->transport_split_cdb = &split_cdb_XX_10;
3094                 cmd->t_task_lba = transport_lba_32(cdb);
3095                 cmd->t_tasks_fua = (cdb[1] & 0x8);
3096                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3097                 break;
3098         case WRITE_12:
3099                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3100                 if (sector_ret)
3101                         goto out_unsupported_cdb;
3102                 size = transport_get_size(sectors, cdb, cmd);
3103                 cmd->transport_split_cdb = &split_cdb_XX_12;
3104                 cmd->t_task_lba = transport_lba_32(cdb);
3105                 cmd->t_tasks_fua = (cdb[1] & 0x8);
3106                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3107                 break;
3108         case WRITE_16:
3109                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3110                 if (sector_ret)
3111                         goto out_unsupported_cdb;
3112                 size = transport_get_size(sectors, cdb, cmd);
3113                 cmd->transport_split_cdb = &split_cdb_XX_16;
3114                 cmd->t_task_lba = transport_lba_64(cdb);
3115                 cmd->t_tasks_fua = (cdb[1] & 0x8);
3116                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3117                 break;
3118         case XDWRITEREAD_10:
3119                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
3120                     !(cmd->t_tasks_bidi))
3121                         goto out_invalid_cdb_field;
3122                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3123                 if (sector_ret)
3124                         goto out_unsupported_cdb;
3125                 size = transport_get_size(sectors, cdb, cmd);
3126                 cmd->transport_split_cdb = &split_cdb_XX_10;
3127                 cmd->t_task_lba = transport_lba_32(cdb);
3128                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3129                 passthrough = (dev->transport->transport_type ==
3130                                 TRANSPORT_PLUGIN_PHBA_PDEV);
3131                 /*
3132                  * Skip the remaining assignments for TCM/PSCSI passthrough
3133                  */
3134                 if (passthrough)
3135                         break;
3136                 /*
3137                  * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3138                  */
3139                 cmd->transport_complete_callback = &transport_xor_callback;
3140                 cmd->t_tasks_fua = (cdb[1] & 0x8);
3141                 break;
3142         case VARIABLE_LENGTH_CMD:
3143                 service_action = get_unaligned_be16(&cdb[8]);
3144                 /*
3145                  * Determine if this is TCM/PSCSI device and we should disable
3146                  * internal emulation for this CDB.
3147                  */
3148                 passthrough = (dev->transport->transport_type ==
3149                                         TRANSPORT_PLUGIN_PHBA_PDEV);
3150
3151                 switch (service_action) {
3152                 case XDWRITEREAD_32:
3153                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3154                         if (sector_ret)
3155                                 goto out_unsupported_cdb;
3156                         size = transport_get_size(sectors, cdb, cmd);
3157                         /*
3158                          * Use WRITE_32 and READ_32 opcodes for the emulated
3159                          * XDWRITE_READ_32 logic.
3160                          */
3161                         cmd->transport_split_cdb = &split_cdb_XX_32;
3162                         cmd->t_task_lba = transport_lba_64_ext(cdb);
3163                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3164
3165                         /*
3166                          * Skip the remaining assignments for TCM/PSCSI passthrough
3167                          */
3168                         if (passthrough)
3169                                 break;
3170
3171                         /*
3172                          * Setup BIDI XOR callback to be run during
3173                          * transport_generic_complete_ok()
3174                          */
3175                         cmd->transport_complete_callback = &transport_xor_callback;
3176                         cmd->t_tasks_fua = (cdb[10] & 0x8);
3177                         break;
3178                 case WRITE_SAME_32:
3179                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3180                         if (sector_ret)
3181                                 goto out_unsupported_cdb;
3182
3183                         if (sectors != 0)
3184                                 size = transport_get_size(sectors, cdb, cmd);
3185                         else
3186                                 size = dev->se_sub_dev->se_dev_attrib.block_size;
3187
3188                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
3189                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3190
3191                         /*
3192                          * Skip the remaining assignments for TCM/PSCSI passthrough
3193                          */
3194                         if (passthrough)
3195                                 break;
3196
3197                         if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) {
3198                                 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3199                                         " bits not supported for Block Discard"
3200                                         " Emulation\n");
3201                                 goto out_invalid_cdb_field;
3202                         }
3203                         /*
3204                          * Currently for the emulated case we only accept
3205                          * tpws with the UNMAP=1 bit set.
3206                          */
3207                         if (!(cdb[10] & 0x08)) {
3208                                 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not"
3209                                         " supported for Block Discard Emulation\n");
3210                                 goto out_invalid_cdb_field;
3211                         }
3212                         break;
3213                 default:
3214                         printk(KERN_ERR "VARIABLE_LENGTH_CMD service action"
3215                                 " 0x%04x not supported\n", service_action);
3216                         goto out_unsupported_cdb;
3217                 }
3218                 break;
3219         case MAINTENANCE_IN:
3220                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3221                         /* MAINTENANCE_IN from SCC-2 */
3222                         /*
3223                          * Check for emulated MI_REPORT_TARGET_PGS.
3224                          */
3225                         if (cdb[1] == MI_REPORT_TARGET_PGS) {
3226                                 cmd->transport_emulate_cdb =
3227                                 (su_dev->t10_alua.alua_type ==
3228                                  SPC3_ALUA_EMULATED) ?
3229                                 core_emulate_report_target_port_groups :
3230                                 NULL;
3231                         }
3232                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3233                                (cdb[8] << 8) | cdb[9];
3234                 } else {
3235                         /* GPCMD_SEND_KEY from multi media commands */
3236                         size = (cdb[8] << 8) + cdb[9];
3237                 }
3238                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3239                 break;
3240         case MODE_SELECT:
3241                 size = cdb[4];
3242                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3243                 break;
3244         case MODE_SELECT_10:
3245                 size = (cdb[7] << 8) + cdb[8];
3246                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3247                 break;
3248         case MODE_SENSE:
3249                 size = cdb[4];
3250                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3251                 break;
3252         case MODE_SENSE_10:
3253         case GPCMD_READ_BUFFER_CAPACITY:
3254         case GPCMD_SEND_OPC:
3255         case LOG_SELECT:
3256         case LOG_SENSE:
3257                 size = (cdb[7] << 8) + cdb[8];
3258                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3259                 break;
3260         case READ_BLOCK_LIMITS:
3261                 size = READ_BLOCK_LEN;
3262                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3263                 break;
3264         case GPCMD_GET_CONFIGURATION:
3265         case GPCMD_READ_FORMAT_CAPACITIES:
3266         case GPCMD_READ_DISC_INFO:
3267         case GPCMD_READ_TRACK_RZONE_INFO:
3268                 size = (cdb[7] << 8) + cdb[8];
3269                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3270                 break;
3271         case PERSISTENT_RESERVE_IN:
3272         case PERSISTENT_RESERVE_OUT:
3273                 cmd->transport_emulate_cdb =
3274                         (su_dev->t10_pr.res_type ==
3275                          SPC3_PERSISTENT_RESERVATIONS) ?
3276                         core_scsi3_emulate_pr : NULL;
3277                 size = (cdb[7] << 8) + cdb[8];
3278                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3279                 break;
3280         case GPCMD_MECHANISM_STATUS:
3281         case GPCMD_READ_DVD_STRUCTURE:
3282                 size = (cdb[8] << 8) + cdb[9];
3283                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3284                 break;
3285         case READ_POSITION:
3286                 size = READ_POSITION_LEN;
3287                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3288                 break;
3289         case MAINTENANCE_OUT:
3290                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3291                         /* MAINTENANCE_OUT from SCC-2
3292                          *
3293                          * Check for emulated MO_SET_TARGET_PGS.
3294                          */
3295                         if (cdb[1] == MO_SET_TARGET_PGS) {
3296                                 cmd->transport_emulate_cdb =
3297                                 (su_dev->t10_alua.alua_type ==
3298                                         SPC3_ALUA_EMULATED) ?
3299                                 core_emulate_set_target_port_groups :
3300                                 NULL;
3301                         }
3302
3303                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3304                                (cdb[8] << 8) | cdb[9];
3305                 } else  {
3306                         /* GPCMD_REPORT_KEY from multi media commands */
3307                         size = (cdb[8] << 8) + cdb[9];
3308                 }
3309                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3310                 break;
3311         case INQUIRY:
3312                 size = (cdb[3] << 8) + cdb[4];
3313                 /*
3314                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3315                  * See spc4r17 section 5.3
3316                  */
3317                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3318                         cmd->sam_task_attr = MSG_HEAD_TAG;
3319                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3320                 break;
3321         case READ_BUFFER:
3322                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3323                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3324                 break;
3325         case READ_CAPACITY:
3326                 size = READ_CAP_LEN;
3327                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3328                 break;
3329         case READ_MEDIA_SERIAL_NUMBER:
3330         case SECURITY_PROTOCOL_IN:
3331         case SECURITY_PROTOCOL_OUT:
3332                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3333                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3334                 break;
3335         case SERVICE_ACTION_IN:
3336         case ACCESS_CONTROL_IN:
3337         case ACCESS_CONTROL_OUT:
3338         case EXTENDED_COPY:
3339         case READ_ATTRIBUTE:
3340         case RECEIVE_COPY_RESULTS:
3341         case WRITE_ATTRIBUTE:
3342                 size = (cdb[10] << 24) | (cdb[11] << 16) |
3343                        (cdb[12] << 8) | cdb[13];
3344                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3345                 break;
3346         case RECEIVE_DIAGNOSTIC:
3347         case SEND_DIAGNOSTIC:
3348                 size = (cdb[3] << 8) | cdb[4];
3349                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3350                 break;
3351 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3352 #if 0
3353         case GPCMD_READ_CD:
3354                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3355                 size = (2336 * sectors);
3356                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3357                 break;
3358 #endif
3359         case READ_TOC:
3360                 size = cdb[8];
3361                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3362                 break;
3363         case REQUEST_SENSE:
3364                 size = cdb[4];
3365                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3366                 break;
3367         case READ_ELEMENT_STATUS:
3368                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3369                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3370                 break;
3371         case WRITE_BUFFER:
3372                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3373                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3374                 break;
3375         case RESERVE:
3376         case RESERVE_10:
3377                 /*
3378                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3379                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3380                  */
3381                 if (cdb[0] == RESERVE_10)
3382                         size = (cdb[7] << 8) | cdb[8];
3383                 else
3384                         size = cmd->data_length;
3385
3386                 /*
3387                  * Setup the legacy emulated handler for SPC-2 and
3388                  * >= SPC-3 compatible reservation handling (CRH=1)
3389                  * Otherwise, we assume the underlying SCSI logic is
3390                  * is running in SPC_PASSTHROUGH, and wants reservations
3391                  * emulation disabled.
3392                  */
3393                 cmd->transport_emulate_cdb =
3394                                 (su_dev->t10_pr.res_type !=
3395                                  SPC_PASSTHROUGH) ?
3396                                 core_scsi2_emulate_crh : NULL;
3397                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3398                 break;
3399         case RELEASE:
3400         case RELEASE_10:
3401                 /*
3402                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3403                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3404                 */
3405                 if (cdb[0] == RELEASE_10)
3406                         size = (cdb[7] << 8) | cdb[8];
3407                 else
3408                         size = cmd->data_length;
3409
3410                 cmd->transport_emulate_cdb =
3411                                 (su_dev->t10_pr.res_type !=
3412                                  SPC_PASSTHROUGH) ?
3413                                 core_scsi2_emulate_crh : NULL;
3414                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3415                 break;
3416         case SYNCHRONIZE_CACHE:
3417         case 0x91: /* SYNCHRONIZE_CACHE_16: */
3418                 /*
3419                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3420                  */
3421                 if (cdb[0] == SYNCHRONIZE_CACHE) {
3422                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3423                         cmd->t_task_lba = transport_lba_32(cdb);
3424                 } else {
3425                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3426                         cmd->t_task_lba = transport_lba_64(cdb);
3427                 }
3428                 if (sector_ret)
3429                         goto out_unsupported_cdb;
3430
3431                 size = transport_get_size(sectors, cdb, cmd);
3432                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3433
3434                 /*
3435                  * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3436                  */
3437                 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3438                         break;
3439                 /*
3440                  * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3441                  * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3442                  */
3443                 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3444                 /*
3445                  * Check to ensure that LBA + Range does not exceed past end of
3446                  * device.
3447                  */
3448                 if (!transport_cmd_get_valid_sectors(cmd))
3449                         goto out_invalid_cdb_field;
3450                 break;
3451         case UNMAP:
3452                 size = get_unaligned_be16(&cdb[7]);
3453                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3454                 break;
3455         case WRITE_SAME_16:
3456                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3457                 if (sector_ret)
3458                         goto out_unsupported_cdb;
3459
3460                 if (sectors != 0)
3461                         size = transport_get_size(sectors, cdb, cmd);
3462                 else
3463                         size = dev->se_sub_dev->se_dev_attrib.block_size;
3464
3465                 cmd->t_task_lba = get_unaligned_be16(&cdb[2]);
3466                 passthrough = (dev->transport->transport_type ==
3467                                 TRANSPORT_PLUGIN_PHBA_PDEV);
3468                 /*
3469                  * Determine if the received WRITE_SAME_16 is used to for direct
3470                  * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3471                  * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3472                  * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3473                  * TCM/FILEIO subsystem plugin backstores.
3474                  */
3475                 if (!(passthrough)) {
3476                         if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) {
3477                                 printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA"
3478                                         " bits not supported for Block Discard"
3479                                         " Emulation\n");
3480                                 goto out_invalid_cdb_field;
3481                         }
3482                         /*
3483                          * Currently for the emulated case we only accept
3484                          * tpws with the UNMAP=1 bit set.
3485                          */
3486                         if (!(cdb[1] & 0x08)) {
3487                                 printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not "
3488                                         " supported for Block Discard Emulation\n");
3489                                 goto out_invalid_cdb_field;
3490                         }
3491                 }
3492                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3493                 break;
3494         case ALLOW_MEDIUM_REMOVAL:
3495         case GPCMD_CLOSE_TRACK:
3496         case ERASE:
3497         case INITIALIZE_ELEMENT_STATUS:
3498         case GPCMD_LOAD_UNLOAD:
3499         case REZERO_UNIT:
3500         case SEEK_10:
3501         case GPCMD_SET_SPEED:
3502         case SPACE:
3503         case START_STOP:
3504         case TEST_UNIT_READY:
3505         case VERIFY:
3506         case WRITE_FILEMARKS:
3507         case MOVE_MEDIUM:
3508                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3509                 break;
3510         case REPORT_LUNS:
3511                 cmd->transport_emulate_cdb =
3512                                 transport_core_report_lun_response;
3513                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3514                 /*
3515                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3516                  * See spc4r17 section 5.3
3517                  */
3518                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3519                         cmd->sam_task_attr = MSG_HEAD_TAG;
3520                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3521                 break;
3522         default:
3523                 printk(KERN_WARNING "TARGET_CORE[%s]: Unsupported SCSI Opcode"
3524                         " 0x%02x, sending CHECK_CONDITION.\n",
3525                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3526                 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3527                 goto out_unsupported_cdb;
3528         }
3529
3530         if (size != cmd->data_length) {
3531                 printk(KERN_WARNING "TARGET_CORE[%s]: Expected Transfer Length:"
3532                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3533                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3534                                 cmd->data_length, size, cdb[0]);
3535
3536                 cmd->cmd_spdtl = size;
3537
3538                 if (cmd->data_direction == DMA_TO_DEVICE) {
3539                         printk(KERN_ERR "Rejecting underflow/overflow"
3540                                         " WRITE data\n");
3541                         goto out_invalid_cdb_field;
3542                 }
3543                 /*
3544                  * Reject READ_* or WRITE_* with overflow/underflow for
3545                  * type SCF_SCSI_DATA_SG_IO_CDB.
3546                  */
3547                 if (!(ret) && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3548                         printk(KERN_ERR "Failing OVERFLOW/UNDERFLOW for LBA op"
3549                                 " CDB on non 512-byte sector setup subsystem"
3550                                 " plugin: %s\n", dev->transport->name);
3551                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3552                         goto out_invalid_cdb_field;
3553                 }
3554
3555                 if (size > cmd->data_length) {
3556                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3557                         cmd->residual_count = (size - cmd->data_length);
3558                 } else {
3559                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3560                         cmd->residual_count = (cmd->data_length - size);
3561                 }
3562                 cmd->data_length = size;
3563         }
3564
3565         transport_set_supported_SAM_opcode(cmd);
3566         return ret;
3567
3568 out_unsupported_cdb:
3569         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3570         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3571         return -EINVAL;
3572 out_invalid_cdb_field:
3573         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3574         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3575         return -EINVAL;
3576 }
3577
3578 static inline void transport_release_tasks(struct se_cmd *);
3579
3580 static void transport_memcpy_se_mem_read_contig(
3581         unsigned char *dst,
3582         struct list_head *se_mem_list,
3583         u32 tot_len)
3584 {
3585         struct se_mem *se_mem;
3586         void *src;
3587         u32 length;
3588
3589         list_for_each_entry(se_mem, se_mem_list, se_list) {
3590                 length = min_t(u32, se_mem->se_len, tot_len);
3591                 src = page_address(se_mem->se_page) + se_mem->se_off;
3592                 memcpy(dst, src, length);
3593                 tot_len -= length;
3594                 if (!tot_len)
3595                         break;
3596                 dst += length;
3597         }
3598 }
3599
3600 /*
3601  * Called from transport_generic_complete_ok() and
3602  * transport_generic_request_failure() to determine which dormant/delayed
3603  * and ordered cmds need to have their tasks added to the execution queue.
3604  */
3605 static void transport_complete_task_attr(struct se_cmd *cmd)
3606 {
3607         struct se_device *dev = cmd->se_dev;
3608         struct se_cmd *cmd_p, *cmd_tmp;
3609         int new_active_tasks = 0;
3610
3611         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3612                 atomic_dec(&dev->simple_cmds);
3613                 smp_mb__after_atomic_dec();
3614                 dev->dev_cur_ordered_id++;
3615                 DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for"
3616                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3617                         cmd->se_ordered_id);
3618         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3619                 atomic_dec(&dev->dev_hoq_count);
3620                 smp_mb__after_atomic_dec();
3621                 dev->dev_cur_ordered_id++;
3622                 DEBUG_STA("Incremented dev_cur_ordered_id: %u for"
3623                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3624                         cmd->se_ordered_id);
3625         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3626                 spin_lock(&dev->ordered_cmd_lock);
3627                 list_del(&cmd->se_ordered_node);
3628                 atomic_dec(&dev->dev_ordered_sync);
3629                 smp_mb__after_atomic_dec();
3630                 spin_unlock(&dev->ordered_cmd_lock);
3631
3632                 dev->dev_cur_ordered_id++;
3633                 DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:"
3634                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3635         }
3636         /*
3637          * Process all commands up to the last received
3638          * ORDERED task attribute which requires another blocking
3639          * boundary
3640          */
3641         spin_lock(&dev->delayed_cmd_lock);
3642         list_for_each_entry_safe(cmd_p, cmd_tmp,
3643                         &dev->delayed_cmd_list, se_delayed_node) {
3644
3645                 list_del(&cmd_p->se_delayed_node);
3646                 spin_unlock(&dev->delayed_cmd_lock);
3647
3648                 DEBUG_STA("Calling add_tasks() for"
3649                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3650                         " Dormant -> Active, se_ordered_id: %u\n",
3651                         T_TASK(cmd_p)->t_task_cdb[0],
3652                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3653
3654                 transport_add_tasks_from_cmd(cmd_p);
3655                 new_active_tasks++;
3656
3657                 spin_lock(&dev->delayed_cmd_lock);
3658                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3659                         break;
3660         }
3661         spin_unlock(&dev->delayed_cmd_lock);
3662         /*
3663          * If new tasks have become active, wake up the transport thread
3664          * to do the processing of the Active tasks.
3665          */
3666         if (new_active_tasks != 0)
3667                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3668 }
3669
3670 static int transport_complete_qf(struct se_cmd *cmd)
3671 {
3672         int ret = 0;
3673
3674         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
3675                 return cmd->se_tfo->queue_status(cmd);
3676
3677         switch (cmd->data_direction) {
3678         case DMA_FROM_DEVICE:
3679                 ret = cmd->se_tfo->queue_data_in(cmd);
3680                 break;
3681         case DMA_TO_DEVICE:
3682                 if (!list_empty(&cmd->t_mem_bidi_list)) {
3683                         ret = cmd->se_tfo->queue_data_in(cmd);
3684                         if (ret < 0)
3685                                 return ret;
3686                 }
3687                 /* Fall through for DMA_TO_DEVICE */
3688         case DMA_NONE:
3689                 ret = cmd->se_tfo->queue_status(cmd);
3690                 break;
3691         default:
3692                 break;
3693         }
3694
3695         return ret;
3696 }
3697
3698 static void transport_handle_queue_full(
3699         struct se_cmd *cmd,
3700         struct se_device *dev,
3701         int (*qf_callback)(struct se_cmd *))
3702 {
3703         spin_lock_irq(&dev->qf_cmd_lock);
3704         cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
3705         cmd->transport_qf_callback = qf_callback;
3706         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3707         atomic_inc(&dev->dev_qf_count);
3708         smp_mb__after_atomic_inc();
3709         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3710
3711         schedule_work(&cmd->se_dev->qf_work_queue);
3712 }
3713
3714 static void transport_generic_complete_ok(struct se_cmd *cmd)
3715 {
3716         int reason = 0, ret;
3717         /*
3718          * Check if we need to move delayed/dormant tasks from cmds on the
3719          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3720          * Attribute.
3721          */
3722         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3723                 transport_complete_task_attr(cmd);
3724         /*
3725          * Check to schedule QUEUE_FULL work, or execute an existing
3726          * cmd->transport_qf_callback()
3727          */
3728         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3729                 schedule_work(&cmd->se_dev->qf_work_queue);
3730
3731         if (cmd->transport_qf_callback) {
3732                 ret = cmd->transport_qf_callback(cmd);
3733                 if (ret < 0)
3734                         goto queue_full;
3735
3736                 cmd->transport_qf_callback = NULL;
3737                 goto done;
3738         }
3739         /*
3740          * Check if we need to retrieve a sense buffer from
3741          * the struct se_cmd in question.
3742          */
3743         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3744                 if (transport_get_sense_data(cmd) < 0)
3745                         reason = TCM_NON_EXISTENT_LUN;
3746
3747                 /*
3748                  * Only set when an struct se_task->task_scsi_status returned
3749                  * a non GOOD status.
3750                  */
3751                 if (cmd->scsi_status) {
3752                         ret = transport_send_check_condition_and_sense(
3753                                         cmd, reason, 1);
3754                         if (ret == -EAGAIN)
3755                                 goto queue_full;
3756
3757                         transport_lun_remove_cmd(cmd);
3758                         transport_cmd_check_stop_to_fabric(cmd);
3759                         return;
3760                 }
3761         }
3762         /*
3763          * Check for a callback, used by amongst other things
3764          * XDWRITE_READ_10 emulation.
3765          */
3766         if (cmd->transport_complete_callback)
3767                 cmd->transport_complete_callback(cmd);
3768
3769         switch (cmd->data_direction) {
3770         case DMA_FROM_DEVICE:
3771                 spin_lock(&cmd->se_lun->lun_sep_lock);
3772                 if (cmd->se_lun->lun_sep) {
3773                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3774                                         cmd->data_length;
3775                 }
3776                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3777
3778                 ret = cmd->se_tfo->queue_data_in(cmd);
3779                 if (ret == -EAGAIN)
3780                         goto queue_full;
3781                 break;
3782         case DMA_TO_DEVICE:
3783                 spin_lock(&cmd->se_lun->lun_sep_lock);
3784                 if (cmd->se_lun->lun_sep) {
3785                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3786                                 cmd->data_length;
3787                 }
3788                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3789                 /*
3790                  * Check if we need to send READ payload for BIDI-COMMAND
3791                  */
3792                 if (!list_empty(&cmd->t_mem_bidi_list)) {
3793                         spin_lock(&cmd->se_lun->lun_sep_lock);
3794                         if (cmd->se_lun->lun_sep) {
3795                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3796                                         cmd->data_length;
3797                         }
3798                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3799                         ret = cmd->se_tfo->queue_data_in(cmd);
3800                         if (ret == -EAGAIN)
3801                                 goto queue_full;
3802                         break;
3803                 }
3804                 /* Fall through for DMA_TO_DEVICE */
3805         case DMA_NONE:
3806                 ret = cmd->se_tfo->queue_status(cmd);
3807                 if (ret == -EAGAIN)
3808                         goto queue_full;
3809                 break;
3810         default:
3811                 break;
3812         }
3813
3814 done:
3815         transport_lun_remove_cmd(cmd);
3816         transport_cmd_check_stop_to_fabric(cmd);
3817         return;
3818
3819 queue_full:
3820         printk(KERN_INFO "Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3821                 " data_direction: %d\n", cmd, cmd->data_direction);
3822         transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
3823 }
3824
3825 static void transport_free_dev_tasks(struct se_cmd *cmd)
3826 {
3827         struct se_task *task, *task_tmp;
3828         unsigned long flags;
3829
3830         spin_lock_irqsave(&cmd->t_state_lock, flags);
3831         list_for_each_entry_safe(task, task_tmp,
3832                                 &cmd->t_task_list, t_list) {
3833                 if (atomic_read(&task->task_active))
3834                         continue;
3835
3836                 kfree(task->task_sg_bidi);
3837                 kfree(task->task_sg);
3838
3839                 list_del(&task->t_list);
3840
3841                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3842                 if (task->se_dev)
3843                         task->se_dev->transport->free_task(task);
3844                 else
3845                         printk(KERN_ERR "task[%u] - task->se_dev is NULL\n",
3846                                 task->task_no);
3847                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3848         }
3849         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3850 }
3851
3852 static inline void transport_free_pages(struct se_cmd *cmd)
3853 {
3854         struct se_mem *se_mem, *se_mem_tmp;
3855         int free_page = 1;
3856
3857         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3858                 free_page = 0;
3859         if (cmd->se_dev->transport->do_se_mem_map)
3860                 free_page = 0;
3861
3862         list_for_each_entry_safe(se_mem, se_mem_tmp,
3863                         &cmd->t_mem_list, se_list) {
3864                 /*
3865                  * We only release call __free_page(struct se_mem->se_page) when
3866                  * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3867                  */
3868                 if (free_page)
3869                         __free_page(se_mem->se_page);
3870
3871                 list_del(&se_mem->se_list);
3872                 kmem_cache_free(se_mem_cache, se_mem);
3873         }
3874         cmd->t_tasks_se_num = 0;
3875
3876         list_for_each_entry_safe(se_mem, se_mem_tmp,
3877                                  &cmd->t_mem_bidi_list, se_list) {
3878                 /*
3879                  * We only release call __free_page(struct se_mem->se_page) when
3880                  * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
3881                  */
3882                 if (free_page)
3883                         __free_page(se_mem->se_page);
3884
3885                 list_del(&se_mem->se_list);
3886                 kmem_cache_free(se_mem_cache, se_mem);
3887         }
3888         cmd->t_tasks_se_bidi_num = 0;
3889 }
3890
3891 static inline void transport_release_tasks(struct se_cmd *cmd)
3892 {
3893         transport_free_dev_tasks(cmd);
3894 }
3895
3896 static inline int transport_dec_and_check(struct se_cmd *cmd)
3897 {
3898         unsigned long flags;
3899
3900         spin_lock_irqsave(&cmd->t_state_lock, flags);
3901         if (atomic_read(&cmd->t_fe_count)) {
3902                 if (!(atomic_dec_and_test(&cmd->t_fe_count))) {
3903                         spin_unlock_irqrestore(&cmd->t_state_lock,
3904                                         flags);
3905                         return 1;
3906                 }
3907         }
3908
3909         if (atomic_read(&cmd->t_se_count)) {
3910                 if (!(atomic_dec_and_test(&cmd->t_se_count))) {
3911                         spin_unlock_irqrestore(&cmd->t_state_lock,
3912                                         flags);
3913                         return 1;
3914                 }
3915         }
3916         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3917
3918         return 0;
3919 }
3920
3921 static void transport_release_fe_cmd(struct se_cmd *cmd)
3922 {
3923         unsigned long flags;
3924
3925         if (transport_dec_and_check(cmd))
3926                 return;
3927
3928         spin_lock_irqsave(&cmd->t_state_lock, flags);
3929         if (!(atomic_read(&cmd->transport_dev_active))) {
3930                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3931                 goto free_pages;
3932         }
3933         atomic_set(&cmd->transport_dev_active, 0);
3934         transport_all_task_dev_remove_state(cmd);
3935         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3936
3937         transport_release_tasks(cmd);
3938 free_pages:
3939         transport_free_pages(cmd);
3940         transport_free_se_cmd(cmd);
3941         cmd->se_tfo->release_cmd(cmd);
3942 }
3943
3944 static int
3945 transport_generic_remove(struct se_cmd *cmd, int session_reinstatement)
3946 {
3947         unsigned long flags;
3948
3949         if (transport_dec_and_check(cmd)) {
3950                 if (session_reinstatement) {
3951                         spin_lock_irqsave(&cmd->t_state_lock, flags);
3952                         transport_all_task_dev_remove_state(cmd);
3953                         spin_unlock_irqrestore(&cmd->t_state_lock,
3954                                         flags);
3955                 }
3956                 return 1;
3957         }
3958
3959         spin_lock_irqsave(&cmd->t_state_lock, flags);
3960         if (!(atomic_read(&cmd->transport_dev_active))) {
3961                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3962                 goto free_pages;
3963         }
3964         atomic_set(&cmd->transport_dev_active, 0);
3965         transport_all_task_dev_remove_state(cmd);
3966         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3967
3968         transport_release_tasks(cmd);
3969
3970 free_pages:
3971         transport_free_pages(cmd);
3972         transport_release_cmd(cmd);
3973         return 0;
3974 }
3975
3976 /*
3977  * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map
3978  * @cmd:  Associated se_cmd descriptor
3979  * @mem:  SGL style memory for TCM WRITE / READ
3980  * @sg_mem_num: Number of SGL elements
3981  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3982  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3983  *
3984  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3985  * of parameters.
3986  */
3987 int transport_generic_map_mem_to_cmd(
3988         struct se_cmd *cmd,
3989         struct scatterlist *sgl,
3990         u32 sgl_count,
3991         struct scatterlist *sgl_bidi,
3992         u32 sgl_bidi_count)
3993 {
3994         int ret;
3995
3996         if (!sgl || !sgl_count)
3997                 return 0;
3998
3999         /*
4000          * Convert sgls (sgl, sgl_bidi) to list of se_mems
4001          */
4002         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
4003             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
4004                 /*
4005                  * For CDB using TCM struct se_mem linked list scatterlist memory
4006                  * processed into a TCM struct se_subsystem_dev, we do the mapping
4007                  * from the passed physical memory to struct se_mem->se_page here.
4008                  */
4009                 ret = transport_map_sg_to_mem(cmd, &cmd->t_mem_list, sgl);
4010                 if (ret < 0)
4011                         return -ENOMEM;
4012
4013                 cmd->t_tasks_se_num = ret;
4014                 /*
4015                  * Setup BIDI READ list of struct se_mem elements
4016                  */
4017                 if (sgl_bidi && sgl_bidi_count) {
4018                         ret = transport_map_sg_to_mem(cmd, &cmd->t_mem_bidi_list, sgl_bidi);
4019                         if (ret < 0)
4020                                 return -ENOMEM;
4021
4022                         cmd->t_tasks_se_bidi_num = ret;
4023                 }
4024                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
4025         }
4026
4027         return 0;
4028 }
4029 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
4030
4031
4032 static inline long long transport_dev_end_lba(struct se_device *dev)
4033 {
4034         return dev->transport->get_blocks(dev) + 1;
4035 }
4036
4037 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
4038 {
4039         struct se_device *dev = cmd->se_dev;
4040         u32 sectors;
4041
4042         if (dev->transport->get_device_type(dev) != TYPE_DISK)
4043                 return 0;
4044
4045         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
4046
4047         if ((cmd->t_task_lba + sectors) >
4048              transport_dev_end_lba(dev)) {
4049                 printk(KERN_ERR "LBA: %llu Sectors: %u exceeds"
4050                         " transport_dev_end_lba(): %llu\n",
4051                         cmd->t_task_lba, sectors,
4052                         transport_dev_end_lba(dev));
4053                 return 0;
4054         }
4055
4056         return sectors;
4057 }
4058
4059 static int transport_new_cmd_obj(struct se_cmd *cmd)
4060 {
4061         struct se_device *dev = cmd->se_dev;
4062         u32 task_cdbs;
4063         u32 rc;
4064
4065         if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
4066                 task_cdbs = 1;
4067                 cmd->t_task_list_num = 1;
4068         } else {
4069                 int set_counts = 1;
4070
4071                 /*
4072                  * Setup any BIDI READ tasks and memory from
4073                  * cmd->t_mem_bidi_list so the READ struct se_tasks
4074                  * are queued first for the non pSCSI passthrough case.
4075                  */
4076                 if (!list_empty(&cmd->t_mem_bidi_list) &&
4077                     (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
4078                         rc = transport_allocate_tasks(cmd,
4079                                 cmd->t_task_lba,
4080                                 transport_cmd_get_valid_sectors(cmd),
4081                                 DMA_FROM_DEVICE, &cmd->t_mem_bidi_list,
4082                                 set_counts);
4083                         if (!(rc)) {
4084                                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4085                                 cmd->scsi_sense_reason =
4086                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4087                                 return PYX_TRANSPORT_LU_COMM_FAILURE;
4088                         }
4089                         set_counts = 0;
4090                 }
4091                 /*
4092                  * Setup the tasks and memory from cmd->t_mem_list
4093                  * Note for BIDI transfers this will contain the WRITE payload
4094                  */
4095                 task_cdbs = transport_allocate_tasks(cmd,
4096                                 cmd->t_task_lba,
4097                                 transport_cmd_get_valid_sectors(cmd),
4098                                 cmd->data_direction, &cmd->t_mem_list,
4099                                 set_counts);
4100                 if (!(task_cdbs)) {
4101                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4102                         cmd->scsi_sense_reason =
4103                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4104                         return PYX_TRANSPORT_LU_COMM_FAILURE;
4105                 }
4106                 cmd->t_task_list_num = task_cdbs;
4107
4108 #if 0
4109                 printk(KERN_INFO "data_length: %u, LBA: %llu t_tasks_sectors:"
4110                         " %u, t_task_cdbs: %u\n", obj_ptr, cmd->data_length,
4111                         cmd->t_task_lba, cmd->t_tasks_sectors,
4112                         cmd->t_task_cdbs);
4113 #endif
4114         }
4115
4116         atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
4117         atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
4118         atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
4119         return 0;
4120 }
4121
4122 void *transport_kmap_first_data_page(struct se_cmd *cmd)
4123 {
4124         struct se_mem *se_mem;
4125
4126         BUG_ON(list_empty(&cmd->t_mem_list));
4127
4128         se_mem = list_first_entry(&cmd->t_mem_list, struct se_mem, se_list);
4129
4130         /*
4131          * 1st se_mem should point to a page, and we shouldn't need more than
4132          * that for this cmd
4133          */
4134         BUG_ON(cmd->data_length > PAGE_SIZE);
4135
4136         return kmap(se_mem->se_page);
4137 }
4138 EXPORT_SYMBOL(transport_kmap_first_data_page);
4139
4140 void transport_kunmap_first_data_page(struct se_cmd *cmd)
4141 {
4142         struct se_mem *se_mem;
4143
4144         BUG_ON(list_empty(&cmd->t_mem_list));
4145
4146         se_mem = list_first_entry(&cmd->t_mem_list, struct se_mem, se_list);
4147
4148         kunmap(se_mem->se_page);
4149 }
4150 EXPORT_SYMBOL(transport_kunmap_first_data_page);
4151
4152 static int
4153 transport_generic_get_mem(struct se_cmd *cmd)
4154 {
4155         struct se_mem *se_mem;
4156         int length = cmd->data_length;
4157
4158         /*
4159          * If the device uses memory mapping this is enough.
4160          */
4161         if (cmd->se_dev->transport->do_se_mem_map)
4162                 return 0;
4163
4164         /* Even cmds with length 0 will get here, btw */
4165         while (length) {
4166                 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4167                 if (!(se_mem)) {
4168                         printk(KERN_ERR "Unable to allocate struct se_mem\n");
4169                         goto out;
4170                 }
4171
4172 /* #warning FIXME Allocate contigous pages for struct se_mem elements */
4173                 se_mem->se_page = alloc_pages(GFP_KERNEL | __GFP_ZERO, 0);
4174                 if (!(se_mem->se_page)) {
4175                         printk(KERN_ERR "alloc_pages() failed\n");
4176                         goto out;
4177                 }
4178
4179                 INIT_LIST_HEAD(&se_mem->se_list);
4180                 se_mem->se_len = min_t(u32, length, PAGE_SIZE);
4181                 list_add_tail(&se_mem->se_list, &cmd->t_mem_list);
4182                 cmd->t_tasks_se_num++;
4183
4184                 DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)"
4185                         " Offset(%u)\n", se_mem->se_page, se_mem->se_len,
4186                         se_mem->se_off);
4187
4188                 length -= se_mem->se_len;
4189         }
4190
4191         DEBUG_MEM("Allocated total struct se_mem elements(%u)\n",
4192                         cmd->t_tasks_se_num);
4193
4194         return 0;
4195 out:
4196         if (se_mem)
4197                 __free_pages(se_mem->se_page, 0);
4198         kmem_cache_free(se_mem_cache, se_mem);
4199         return -ENOMEM;
4200 }
4201
4202 int transport_init_task_sg(
4203         struct se_task *task,
4204         struct se_mem *in_se_mem,
4205         u32 task_offset)
4206 {
4207         struct se_cmd *se_cmd = task->task_se_cmd;
4208         struct se_device *se_dev = se_cmd->se_dev;
4209         struct se_mem *se_mem = in_se_mem;
4210         struct target_core_fabric_ops *tfo = se_cmd->se_tfo;
4211         u32 sg_length, task_size = task->task_size, task_sg_num_padded;
4212
4213         while (task_size != 0) {
4214                 DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)"
4215                         " se_mem->se_off(%u) task_offset(%u)\n",
4216                         se_mem->se_page, se_mem->se_len,
4217                         se_mem->se_off, task_offset);
4218
4219                 if (task_offset == 0) {
4220                         if (task_size >= se_mem->se_len) {
4221                                 sg_length = se_mem->se_len;
4222
4223                                 if (!(list_is_last(&se_mem->se_list,
4224                                                 &se_cmd->t_mem_list)))
4225                                         se_mem = list_entry(se_mem->se_list.next,
4226                                                         struct se_mem, se_list);
4227                         } else {
4228                                 sg_length = task_size;
4229                                 task_size -= sg_length;
4230                                 goto next;
4231                         }
4232
4233                         DEBUG_SC("sg_length(%u) task_size(%u)\n",
4234                                         sg_length, task_size);
4235                 } else {
4236                         if ((se_mem->se_len - task_offset) > task_size) {
4237                                 sg_length = task_size;
4238                                 task_size -= sg_length;
4239                                 goto next;
4240                          } else {
4241                                 sg_length = (se_mem->se_len - task_offset);
4242
4243                                 if (!(list_is_last(&se_mem->se_list,
4244                                                 &se_cmd->t_mem_list)))
4245                                         se_mem = list_entry(se_mem->se_list.next,
4246                                                         struct se_mem, se_list);
4247                         }
4248
4249                         DEBUG_SC("sg_length(%u) task_size(%u)\n",
4250                                         sg_length, task_size);
4251
4252                         task_offset = 0;
4253                 }
4254                 task_size -= sg_length;
4255 next:
4256                 DEBUG_SC("task[%u] - Reducing task_size to(%u)\n",
4257                         task->task_no, task_size);
4258
4259                 task->task_sg_num++;
4260         }
4261         /*
4262          * Check if the fabric module driver is requesting that all
4263          * struct se_task->task_sg[] be chained together..  If so,
4264          * then allocate an extra padding SG entry for linking and
4265          * marking the end of the chained SGL.
4266          */
4267         if (tfo->task_sg_chaining) {
4268                 task_sg_num_padded = (task->task_sg_num + 1);
4269                 task->task_padded_sg = 1;
4270         } else
4271                 task_sg_num_padded = task->task_sg_num;
4272
4273         task->task_sg = kzalloc(task_sg_num_padded *
4274                         sizeof(struct scatterlist), GFP_KERNEL);
4275         if (!(task->task_sg)) {
4276                 printk(KERN_ERR "Unable to allocate memory for"
4277                                 " task->task_sg\n");
4278                 return -ENOMEM;
4279         }
4280         sg_init_table(&task->task_sg[0], task_sg_num_padded);
4281         /*
4282          * Setup task->task_sg_bidi for SCSI READ payload for
4283          * TCM/pSCSI passthrough if present for BIDI-COMMAND
4284          */
4285         if (!list_empty(&se_cmd->t_mem_bidi_list) &&
4286             (se_dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) {
4287                 task->task_sg_bidi = kzalloc(task_sg_num_padded *
4288                                 sizeof(struct scatterlist), GFP_KERNEL);
4289                 if (!(task->task_sg_bidi)) {
4290                         kfree(task->task_sg);
4291                         task->task_sg = NULL;
4292                         printk(KERN_ERR "Unable to allocate memory for"
4293                                 " task->task_sg_bidi\n");
4294                         return -ENOMEM;
4295                 }
4296                 sg_init_table(&task->task_sg_bidi[0], task_sg_num_padded);
4297         }
4298         /*
4299          * For the chaining case, setup the proper end of SGL for the
4300          * initial submission struct task into struct se_subsystem_api.
4301          * This will be cleared later by transport_do_task_sg_chain()
4302          */
4303         if (task->task_padded_sg) {
4304                 sg_mark_end(&task->task_sg[task->task_sg_num - 1]);
4305                 /*
4306                  * Added the 'if' check before marking end of bi-directional
4307                  * scatterlist (which gets created only in case of request
4308                  * (RD + WR).
4309                  */
4310                 if (task->task_sg_bidi)
4311                         sg_mark_end(&task->task_sg_bidi[task->task_sg_num - 1]);
4312         }
4313
4314         DEBUG_SC("Successfully allocated task->task_sg_num(%u),"
4315                 " task_sg_num_padded(%u)\n", task->task_sg_num,
4316                 task_sg_num_padded);
4317
4318         return task->task_sg_num;
4319 }
4320
4321 /* Reduce sectors if they are too long for the device */
4322 static inline sector_t transport_limit_task_sectors(
4323         struct se_device *dev,
4324         unsigned long long lba,
4325         sector_t sectors)
4326 {
4327         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
4328
4329         if (dev->transport->get_device_type(dev) == TYPE_DISK)
4330                 if ((lba + sectors) > transport_dev_end_lba(dev))
4331                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4332
4333         return sectors;
4334 }
4335
4336 /*
4337  * Convert a sgl into a linked list of se_mems.
4338  */
4339 static int transport_map_sg_to_mem(
4340         struct se_cmd *cmd,
4341         struct list_head *se_mem_list,
4342         struct scatterlist *sg)
4343 {
4344         struct se_mem *se_mem;
4345         u32 cmd_size = cmd->data_length;
4346         int sg_count = 0;
4347
4348         WARN_ON(!sg);
4349
4350         while (cmd_size) {
4351                 /*
4352                  * NOTE: it is safe to return -ENOMEM at any time in creating this
4353                  * list because transport_free_pages() will eventually be called, and is
4354                  * smart enough to deallocate all list items for sg and sg_bidi lists.
4355                  */
4356                 se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL);
4357                 if (!(se_mem)) {
4358                         printk(KERN_ERR "Unable to allocate struct se_mem\n");
4359                         return -ENOMEM;
4360                 }
4361                 INIT_LIST_HEAD(&se_mem->se_list);
4362                 DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u"
4363                         " sg_page: %p offset: %d length: %d\n", cmd_size,
4364                         sg_page(sg), sg->offset, sg->length);
4365
4366                 se_mem->se_page = sg_page(sg);
4367                 se_mem->se_off = sg->offset;
4368
4369                 if (cmd_size > sg->length) {
4370                         se_mem->se_len = sg->length;
4371                         sg = sg_next(sg);
4372                 } else
4373                         se_mem->se_len = cmd_size;
4374
4375                 cmd_size -= se_mem->se_len;
4376                 sg_count++;
4377
4378                 DEBUG_MEM("sg_to_mem: sg_count: %u cmd_size: %u\n",
4379                                 sg_count, cmd_size);
4380                 DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n",
4381                                 se_mem->se_page, se_mem->se_off, se_mem->se_len);
4382
4383                 list_add_tail(&se_mem->se_list, se_mem_list);
4384         }
4385
4386         DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments\n", sg_count);
4387
4388         return sg_count;
4389 }
4390
4391 /*      transport_map_mem_to_sg():
4392  *
4393  *
4394  */
4395 int transport_map_mem_to_sg(
4396         struct se_task *task,
4397         struct list_head *se_mem_list,
4398         struct scatterlist *sg,
4399         struct se_mem *in_se_mem,
4400         struct se_mem **out_se_mem,
4401         u32 *se_mem_cnt,
4402         u32 *task_offset)
4403 {
4404         struct se_cmd *se_cmd = task->task_se_cmd;
4405         struct se_mem *se_mem = in_se_mem;
4406         u32 task_size = task->task_size, sg_no = 0;
4407
4408         if (!sg) {
4409                 printk(KERN_ERR "Unable to locate valid struct"
4410                                 " scatterlist pointer\n");
4411                 return -EINVAL;
4412         }
4413
4414         while (task_size != 0) {
4415                 /*
4416                  * Setup the contiguous array of scatterlists for
4417                  * this struct se_task.
4418                  */
4419                 sg_assign_page(sg, se_mem->se_page);
4420
4421                 if (*task_offset == 0) {
4422                         sg->offset = se_mem->se_off;
4423
4424                         if (task_size >= se_mem->se_len) {
4425                                 sg->length = se_mem->se_len;
4426
4427                                 if (!(list_is_last(&se_mem->se_list,
4428                                                 &se_cmd->t_mem_list))) {
4429                                         se_mem = list_entry(se_mem->se_list.next,
4430                                                         struct se_mem, se_list);
4431                                         (*se_mem_cnt)++;
4432                                 }
4433                         } else {
4434                                 sg->length = task_size;
4435                                 /*
4436                                  * Determine if we need to calculate an offset
4437                                  * into the struct se_mem on the next go around..
4438                                  */
4439                                 task_size -= sg->length;
4440                                 if (!(task_size))
4441                                         *task_offset = sg->length;
4442
4443                                 goto next;
4444                         }
4445
4446                 } else {
4447                         sg->offset = (*task_offset + se_mem->se_off);
4448
4449                         if ((se_mem->se_len - *task_offset) > task_size) {
4450                                 sg->length = task_size;
4451                                 /*
4452                                  * Determine if we need to calculate an offset
4453                                  * into the struct se_mem on the next go around..
4454                                  */
4455                                 task_size -= sg->length;
4456                                 if (!(task_size))
4457                                         *task_offset += sg->length;
4458
4459                                 goto next;
4460                         } else {
4461                                 sg->length = (se_mem->se_len - *task_offset);
4462
4463                                 if (!(list_is_last(&se_mem->se_list,
4464                                                 &se_cmd->t_mem_list))) {
4465                                         se_mem = list_entry(se_mem->se_list.next,
4466                                                         struct se_mem, se_list);
4467                                         (*se_mem_cnt)++;
4468                                 }
4469                         }
4470
4471                         *task_offset = 0;
4472                 }
4473                 task_size -= sg->length;
4474 next:
4475                 DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing"
4476                         " task_size to(%u), task_offset: %u\n", task->task_no, sg_no,
4477                         sg_page(sg), sg->length, sg->offset, task_size, *task_offset);
4478
4479                 sg_no++;
4480                 if (!(task_size))
4481                         break;
4482
4483                 sg = sg_next(sg);
4484
4485                 if (task_size > se_cmd->data_length)
4486                         BUG();
4487         }
4488         *out_se_mem = se_mem;
4489
4490         DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)"
4491                 " SGs\n", task->task_no, *se_mem_cnt, sg_no);
4492
4493         return 0;
4494 }
4495
4496 /*
4497  * This function can be used by HW target mode drivers to create a linked
4498  * scatterlist from all contiguously allocated struct se_task->task_sg[].
4499  * This is intended to be called during the completion path by TCM Core
4500  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4501  */
4502 void transport_do_task_sg_chain(struct se_cmd *cmd)
4503 {
4504         struct scatterlist *sg_head = NULL, *sg_link = NULL, *sg_first = NULL;
4505         struct scatterlist *sg_head_cur = NULL, *sg_link_cur = NULL;
4506         struct scatterlist *sg, *sg_end = NULL, *sg_end_cur = NULL;
4507         struct se_task *task;
4508         struct target_core_fabric_ops *tfo = cmd->se_tfo;
4509         u32 task_sg_num = 0, sg_count = 0;
4510         int i;
4511
4512         if (tfo->task_sg_chaining == 0) {
4513                 printk(KERN_ERR "task_sg_chaining is diabled for fabric module:"
4514                                 " %s\n", tfo->get_fabric_name());
4515                 dump_stack();
4516                 return;
4517         }
4518         /*
4519          * Walk the struct se_task list and setup scatterlist chains
4520          * for each contiguously allocated struct se_task->task_sg[].
4521          */
4522         list_for_each_entry(task, &cmd->t_task_list, t_list) {
4523                 if (!(task->task_sg) || !(task->task_padded_sg))
4524                         continue;
4525
4526                 if (sg_head && sg_link) {
4527                         sg_head_cur = &task->task_sg[0];
4528                         sg_link_cur = &task->task_sg[task->task_sg_num];
4529                         /*
4530                          * Either add chain or mark end of scatterlist
4531                          */
4532                         if (!(list_is_last(&task->t_list,
4533                                         &cmd->t_task_list))) {
4534                                 /*
4535                                  * Clear existing SGL termination bit set in
4536                                  * transport_init_task_sg(), see sg_mark_end()
4537                                  */
4538                                 sg_end_cur = &task->task_sg[task->task_sg_num - 1];
4539                                 sg_end_cur->page_link &= ~0x02;
4540
4541                                 sg_chain(sg_head, task_sg_num, sg_head_cur);
4542                                 sg_count += task->task_sg_num;
4543                                 task_sg_num = (task->task_sg_num + 1);
4544                         } else {
4545                                 sg_chain(sg_head, task_sg_num, sg_head_cur);
4546                                 sg_count += task->task_sg_num;
4547                                 task_sg_num = task->task_sg_num;
4548                         }
4549
4550                         sg_head = sg_head_cur;
4551                         sg_link = sg_link_cur;
4552                         continue;
4553                 }
4554                 sg_head = sg_first = &task->task_sg[0];
4555                 sg_link = &task->task_sg[task->task_sg_num];
4556                 /*
4557                  * Check for single task..
4558                  */
4559                 if (!(list_is_last(&task->t_list, &cmd->t_task_list))) {
4560                         /*
4561                          * Clear existing SGL termination bit set in
4562                          * transport_init_task_sg(), see sg_mark_end()
4563                          */
4564                         sg_end = &task->task_sg[task->task_sg_num - 1];
4565                         sg_end->page_link &= ~0x02;
4566                         sg_count += task->task_sg_num;
4567                         task_sg_num = (task->task_sg_num + 1);
4568                 } else {
4569                         sg_count += task->task_sg_num;
4570                         task_sg_num = task->task_sg_num;
4571                 }
4572         }
4573         /*
4574          * Setup the starting pointer and total t_tasks_sg_linked_no including
4575          * padding SGs for linking and to mark the end.
4576          */
4577         cmd->t_tasks_sg_chained = sg_first;
4578         cmd->t_tasks_sg_chained_no = sg_count;
4579
4580         DEBUG_CMD_M("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
4581                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
4582                 cmd->t_tasks_sg_chained_no);
4583
4584         for_each_sg(cmd->t_tasks_sg_chained, sg,
4585                         cmd->t_tasks_sg_chained_no, i) {
4586
4587                 DEBUG_CMD_M("SG[%d]: %p page: %p length: %d offset: %d\n",
4588                         i, sg, sg_page(sg), sg->length, sg->offset);
4589                 if (sg_is_chain(sg))
4590                         DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg);
4591                 if (sg_is_last(sg))
4592                         DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg);
4593         }
4594 }
4595 EXPORT_SYMBOL(transport_do_task_sg_chain);
4596
4597 static int transport_do_se_mem_map(
4598         struct se_device *dev,
4599         struct se_task *task,
4600         struct list_head *se_mem_list,
4601         void *in_mem,
4602         struct se_mem *in_se_mem,
4603         struct se_mem **out_se_mem,
4604         u32 *se_mem_cnt,
4605         u32 *task_offset_in)
4606 {
4607         u32 task_offset = *task_offset_in;
4608         int ret = 0;
4609         /*
4610          * se_subsystem_api_t->do_se_mem_map is used when internal allocation
4611          * has been done by the transport plugin.
4612          */
4613         if (dev->transport->do_se_mem_map) {
4614                 ret = dev->transport->do_se_mem_map(task, se_mem_list,
4615                                 in_mem, in_se_mem, out_se_mem, se_mem_cnt,
4616                                 task_offset_in);
4617                 if (ret == 0)
4618                         task->task_se_cmd->t_tasks_se_num += *se_mem_cnt;
4619
4620                 return ret;
4621         }
4622
4623         BUG_ON(list_empty(se_mem_list));
4624         /*
4625          * This is the normal path for all normal non BIDI and BIDI-COMMAND
4626          * WRITE payloads..  If we need to do BIDI READ passthrough for
4627          * TCM/pSCSI the first call to transport_do_se_mem_map ->
4628          * transport_init_task_sg() -> transport_map_mem_to_sg() will do the
4629          * allocation for task->task_sg_bidi, and the subsequent call to
4630          * transport_do_se_mem_map() from transport_generic_get_cdb_count()
4631          */
4632         if (!(task->task_sg_bidi)) {
4633                 /*
4634                  * Assume default that transport plugin speaks preallocated
4635                  * scatterlists.
4636                  */
4637                 ret = transport_init_task_sg(task, in_se_mem, task_offset);
4638                 if (ret <= 0)
4639                         return ret;
4640                 /*
4641                  * struct se_task->task_sg now contains the struct scatterlist array.
4642                  */
4643                 return transport_map_mem_to_sg(task, se_mem_list, task->task_sg,
4644                                         in_se_mem, out_se_mem, se_mem_cnt,
4645                                         task_offset_in);
4646         }
4647         /*
4648          * Handle the se_mem_list -> struct task->task_sg_bidi
4649          * memory map for the extra BIDI READ payload
4650          */
4651         return transport_map_mem_to_sg(task, se_mem_list, task->task_sg_bidi,
4652                                 in_se_mem, out_se_mem, se_mem_cnt,
4653                                 task_offset_in);
4654 }
4655
4656 /*
4657  * Break up cmd into chunks transport can handle
4658  */
4659 static u32 transport_allocate_tasks(
4660         struct se_cmd *cmd,
4661         unsigned long long lba,
4662         u32 sectors,
4663         enum dma_data_direction data_direction,
4664         struct list_head *mem_list,
4665         int set_counts)
4666 {
4667         unsigned char *cdb = NULL;
4668         struct se_task *task;
4669         struct se_mem *se_mem = NULL;
4670         struct se_mem *se_mem_lout = NULL;
4671         struct se_mem *se_mem_bidi = NULL;
4672         struct se_mem *se_mem_bidi_lout = NULL;
4673         struct se_device *dev = cmd->se_dev;
4674         int ret;
4675         u32 task_offset_in = 0;
4676         u32 se_mem_cnt = 0;
4677         u32 se_mem_bidi_cnt = 0;
4678         u32 task_cdbs = 0;
4679
4680         BUG_ON(!mem_list);
4681         /*
4682          * While using RAMDISK_DR backstores is the only case where
4683          * mem_list will ever be empty at this point.
4684          */
4685         if (!(list_empty(mem_list)))
4686                 se_mem = list_first_entry(mem_list, struct se_mem, se_list);
4687         /*
4688          * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to
4689          * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation
4690          */
4691         if (!list_empty(&cmd->t_mem_bidi_list) &&
4692             (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV))
4693                 se_mem_bidi = list_first_entry(&cmd->t_mem_bidi_list,
4694                                         struct se_mem, se_list);
4695
4696         while (sectors) {
4697                 sector_t limited_sectors;
4698
4699                 DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n",
4700                         cmd->se_tfo->get_task_tag(cmd), lba, sectors,
4701                         transport_dev_end_lba(dev));
4702
4703                 limited_sectors = transport_limit_task_sectors(dev, lba, sectors);
4704                 if (!limited_sectors)
4705                         break;
4706
4707                 task = transport_generic_get_task(cmd, data_direction);
4708                 if (!task)
4709                         goto out;
4710
4711                 task->task_lba = lba;
4712                 task->task_sectors = limited_sectors;
4713                 lba += task->task_sectors;
4714                 sectors -= task->task_sectors;
4715                 task->task_size = (task->task_sectors *
4716                                    dev->se_sub_dev->se_dev_attrib.block_size);
4717
4718                 cdb = dev->transport->get_cdb(task);
4719                 /* Should be part of task, can't fail */
4720                 BUG_ON(!cdb);
4721
4722                 memcpy(cdb, cmd->t_task_cdb,
4723                        scsi_command_size(cmd->t_task_cdb));
4724
4725                 /* Update new cdb with updated lba/sectors */
4726                 cmd->transport_split_cdb(task->task_lba,
4727                                          &task->task_sectors, cdb);
4728
4729                 /*
4730                  * Perform the SE OBJ plugin and/or Transport plugin specific
4731                  * mapping for cmd->t_mem_list. And setup the
4732                  * task->task_sg and if necessary task->task_sg_bidi
4733                  */
4734                 ret = transport_do_se_mem_map(dev, task, mem_list,
4735                                 NULL, se_mem, &se_mem_lout, &se_mem_cnt,
4736                                 &task_offset_in);
4737                 if (ret < 0)
4738                         goto out;
4739
4740                 se_mem = se_mem_lout;
4741                 /*
4742                  * Setup the cmd->t_mem_bidi_list -> task->task_sg_bidi
4743                  * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI
4744                  *
4745                  * Note that the first call to transport_do_se_mem_map() above will
4746                  * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map()
4747                  * -> transport_init_task_sg(), and the second here will do the
4748                  * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI.
4749                  */
4750                 if (task->task_sg_bidi != NULL) {
4751                         ret = transport_do_se_mem_map(dev, task,
4752                                 &cmd->t_mem_bidi_list, NULL,
4753                                 se_mem_bidi, &se_mem_bidi_lout, &se_mem_bidi_cnt,
4754                                 &task_offset_in);
4755                         if (ret < 0)
4756                                 goto out;
4757
4758                         se_mem_bidi = se_mem_bidi_lout;
4759                 }
4760                 task_cdbs++;
4761
4762                 DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n",
4763                                 task_cdbs, task->task_sg_num);
4764         }
4765
4766         if (set_counts) {
4767                 atomic_inc(&cmd->t_fe_count);
4768                 atomic_inc(&cmd->t_se_count);
4769         }
4770
4771         DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n",
4772                 cmd->se_tfo->get_task_tag(cmd), (data_direction == DMA_TO_DEVICE)
4773                 ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs);
4774
4775         return task_cdbs;
4776 out:
4777         return 0;
4778 }
4779
4780 static int
4781 transport_map_control_cmd_to_task(struct se_cmd *cmd)
4782 {
4783         struct se_device *dev = cmd->se_dev;
4784         unsigned char *cdb;
4785         struct se_task *task;
4786         int ret;
4787
4788         task = transport_generic_get_task(cmd, cmd->data_direction);
4789         if (!task)
4790                 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
4791
4792         cdb = dev->transport->get_cdb(task);
4793         BUG_ON(!cdb);
4794         memcpy(cdb, cmd->t_task_cdb,
4795                scsi_command_size(cmd->t_task_cdb));
4796
4797         task->task_size = cmd->data_length;
4798         task->task_sg_num =
4799                 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) ? 1 : 0;
4800
4801         atomic_inc(&cmd->t_fe_count);
4802         atomic_inc(&cmd->t_se_count);
4803
4804         if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
4805                 struct se_mem *se_mem = NULL, *se_mem_lout = NULL;
4806                 u32 se_mem_cnt = 0, task_offset = 0;
4807
4808                 if (!list_empty(&cmd->t_mem_list))
4809                         se_mem = list_first_entry(&cmd->t_mem_list,
4810                                         struct se_mem, se_list);
4811
4812                 ret = transport_do_se_mem_map(dev, task,
4813                                 &cmd->t_mem_list, NULL, se_mem,
4814                                 &se_mem_lout, &se_mem_cnt, &task_offset);
4815                 if (ret < 0)
4816                         return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
4817
4818                 if (dev->transport->map_task_SG)
4819                         return dev->transport->map_task_SG(task);
4820                 return 0;
4821         } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
4822                 if (dev->transport->cdb_none)
4823                         return dev->transport->cdb_none(task);
4824                 return 0;
4825         } else {
4826                 BUG();
4827                 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES;
4828         }
4829 }
4830
4831 /*       transport_generic_new_cmd(): Called from transport_processing_thread()
4832  *
4833  *       Allocate storage transport resources from a set of values predefined
4834  *       by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4835  *       Any non zero return here is treated as an "out of resource' op here.
4836  */
4837         /*
4838          * Generate struct se_task(s) and/or their payloads for this CDB.
4839          */
4840 int transport_generic_new_cmd(struct se_cmd *cmd)
4841 {
4842         struct se_task *task;
4843         struct se_device *dev = cmd->se_dev;
4844         int ret = 0;
4845
4846         /*
4847          * Determine is the TCM fabric module has already allocated physical
4848          * memory, and is directly calling transport_generic_map_mem_to_cmd()
4849          * to setup beforehand the linked list of physical memory at
4850          * cmd->t_mem_list of struct se_mem->se_page
4851          */
4852         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)) {
4853                 ret = transport_generic_get_mem(cmd);
4854                 if (ret < 0)
4855                         return ret;
4856         }
4857
4858         ret = transport_new_cmd_obj(cmd);
4859         if (ret < 0)
4860                 return ret;
4861
4862         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4863                 list_for_each_entry(task, &cmd->t_task_list, t_list) {
4864                         if (atomic_read(&task->task_sent))
4865                                 continue;
4866                         if (!dev->transport->map_task_SG)
4867                                 continue;
4868
4869                         ret = dev->transport->map_task_SG(task);
4870                         if (ret < 0)
4871                                 return ret;
4872                 }
4873         } else {
4874                 ret = transport_map_control_cmd_to_task(cmd);
4875                 if (ret < 0)
4876                         return ret;
4877         }
4878
4879         /*
4880          * For WRITEs, let the fabric know its buffer is ready..
4881          * This WRITE struct se_cmd (and all of its associated struct se_task's)
4882          * will be added to the struct se_device execution queue after its WRITE
4883          * data has arrived. (ie: It gets handled by the transport processing
4884          * thread a second time)
4885          */
4886         if (cmd->data_direction == DMA_TO_DEVICE) {
4887                 transport_add_tasks_to_state_queue(cmd);
4888                 return transport_generic_write_pending(cmd);
4889         }
4890         /*
4891          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4892          * to the execution queue.
4893          */
4894         transport_execute_tasks(cmd);
4895         return 0;
4896 }
4897 EXPORT_SYMBOL(transport_generic_new_cmd);
4898
4899 /*      transport_generic_process_write():
4900  *
4901  *
4902  */
4903 void transport_generic_process_write(struct se_cmd *cmd)
4904 {
4905 #if 0
4906         /*
4907          * Copy SCSI Presented DTL sector(s) from received buffers allocated to
4908          * original EDTL
4909          */
4910         if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
4911                 if (!cmd->t_tasks_se_num) {
4912                         unsigned char *dst, *buf =
4913                                 (unsigned char *)cmd->t_task_buf;
4914
4915                         dst = kzalloc(cmd->cmd_spdtl), GFP_KERNEL);
4916                         if (!(dst)) {
4917                                 printk(KERN_ERR "Unable to allocate memory for"
4918                                                 " WRITE underflow\n");
4919                                 transport_generic_request_failure(cmd, NULL,
4920                                         PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
4921                                 return;
4922                         }
4923                         memcpy(dst, buf, cmd->cmd_spdtl);
4924
4925                         kfree(cmd->t_task_buf);
4926                         cmd->t_task_buf = dst;
4927                 } else {
4928                         struct scatterlist *sg =
4929                                 (struct scatterlist *sg)cmd->t_task_buf;
4930                         struct scatterlist *orig_sg;
4931
4932                         orig_sg = kzalloc(sizeof(struct scatterlist) *
4933                                         cmd->t_tasks_se_num,
4934                                         GFP_KERNEL))) {
4935                         if (!(orig_sg)) {
4936                                 printk(KERN_ERR "Unable to allocate memory"
4937                                                 " for WRITE underflow\n");
4938                                 transport_generic_request_failure(cmd, NULL,
4939                                         PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
4940                                 return;
4941                         }
4942
4943                         memcpy(orig_sg, cmd->t_task_buf,
4944                                         sizeof(struct scatterlist) *
4945                                         cmd->t_tasks_se_num);
4946
4947                         cmd->data_length = cmd->cmd_spdtl;
4948                         /*
4949                          * FIXME, clear out original struct se_task and state
4950                          * information.
4951                          */
4952                         if (transport_generic_new_cmd(cmd) < 0) {
4953                                 transport_generic_request_failure(cmd, NULL,
4954                                         PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1);
4955                                 kfree(orig_sg);
4956                                 return;
4957                         }
4958
4959                         transport_memcpy_write_sg(cmd, orig_sg);
4960                 }
4961         }
4962 #endif
4963         transport_execute_tasks(cmd);
4964 }
4965 EXPORT_SYMBOL(transport_generic_process_write);
4966
4967 static int transport_write_pending_qf(struct se_cmd *cmd)
4968 {
4969         return cmd->se_tfo->write_pending(cmd);
4970 }
4971
4972 /*      transport_generic_write_pending():
4973  *
4974  *
4975  */
4976 static int transport_generic_write_pending(struct se_cmd *cmd)
4977 {
4978         unsigned long flags;
4979         int ret;
4980
4981         spin_lock_irqsave(&cmd->t_state_lock, flags);
4982         cmd->t_state = TRANSPORT_WRITE_PENDING;
4983         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4984
4985         if (cmd->transport_qf_callback) {
4986                 ret = cmd->transport_qf_callback(cmd);
4987                 if (ret == -EAGAIN)
4988                         goto queue_full;
4989                 else if (ret < 0)
4990                         return ret;
4991
4992                 cmd->transport_qf_callback = NULL;
4993                 return 0;
4994         }
4995
4996         /*
4997          * Clear the se_cmd for WRITE_PENDING status in order to set
4998          * cmd->t_transport_active=0 so that transport_generic_handle_data
4999          * can be called from HW target mode interrupt code.  This is safe
5000          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
5001          * because the se_cmd->se_lun pointer is not being cleared.
5002          */
5003         transport_cmd_check_stop(cmd, 1, 0);
5004
5005         /*
5006          * Call the fabric write_pending function here to let the
5007          * frontend know that WRITE buffers are ready.
5008          */
5009         ret = cmd->se_tfo->write_pending(cmd);
5010         if (ret == -EAGAIN)
5011                 goto queue_full;
5012         else if (ret < 0)
5013                 return ret;
5014
5015         return PYX_TRANSPORT_WRITE_PENDING;
5016
5017 queue_full:
5018         printk(KERN_INFO "Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
5019         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
5020         transport_handle_queue_full(cmd, cmd->se_dev,
5021                         transport_write_pending_qf);
5022         return ret;
5023 }
5024
5025 void transport_release_cmd(struct se_cmd *cmd)
5026 {
5027         BUG_ON(!cmd->se_tfo);
5028
5029         transport_free_se_cmd(cmd);
5030         cmd->se_tfo->release_cmd(cmd);
5031 }
5032 EXPORT_SYMBOL(transport_release_cmd);
5033
5034 /*      transport_generic_free_cmd():
5035  *
5036  *      Called from processing frontend to release storage engine resources
5037  */
5038 void transport_generic_free_cmd(
5039         struct se_cmd *cmd,
5040         int wait_for_tasks,
5041         int session_reinstatement)
5042 {
5043         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD))
5044                 transport_release_cmd(cmd);
5045         else {
5046                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
5047
5048                 if (cmd->se_lun) {
5049 #if 0
5050                         printk(KERN_INFO "cmd: %p ITT: 0x%08x contains"
5051                                 " cmd->se_lun\n", cmd,
5052                                 cmd->se_tfo->get_task_tag(cmd));
5053 #endif
5054                         transport_lun_remove_cmd(cmd);
5055                 }
5056
5057                 if (wait_for_tasks && cmd->transport_wait_for_tasks)
5058                         cmd->transport_wait_for_tasks(cmd, 0, 0);
5059
5060                 transport_free_dev_tasks(cmd);
5061
5062                 transport_generic_remove(cmd, session_reinstatement);
5063         }
5064 }
5065 EXPORT_SYMBOL(transport_generic_free_cmd);
5066
5067 static void transport_nop_wait_for_tasks(
5068         struct se_cmd *cmd,
5069         int remove_cmd,
5070         int session_reinstatement)
5071 {
5072         return;
5073 }
5074
5075 /*      transport_lun_wait_for_tasks():
5076  *
5077  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
5078  *      an struct se_lun to be successfully shutdown.
5079  */
5080 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
5081 {
5082         unsigned long flags;
5083         int ret;
5084         /*
5085          * If the frontend has already requested this struct se_cmd to
5086          * be stopped, we can safely ignore this struct se_cmd.
5087          */
5088         spin_lock_irqsave(&cmd->t_state_lock, flags);
5089         if (atomic_read(&cmd->t_transport_stop)) {
5090                 atomic_set(&cmd->transport_lun_stop, 0);
5091                 DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop =="
5092                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
5093                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
5094                 transport_cmd_check_stop(cmd, 1, 0);
5095                 return -EPERM;
5096         }
5097         atomic_set(&cmd->transport_lun_fe_stop, 1);
5098         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
5099
5100         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
5101
5102         ret = transport_stop_tasks_for_cmd(cmd);
5103
5104         DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:"
5105                         " %d\n", cmd, cmd->t_task_cdbs, ret);
5106         if (!ret) {
5107                 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
5108                                 cmd->se_tfo->get_task_tag(cmd));
5109                 wait_for_completion(&cmd->transport_lun_stop_comp);
5110                 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
5111                                 cmd->se_tfo->get_task_tag(cmd));
5112         }
5113         transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
5114
5115         return 0;
5116 }
5117
5118 /* #define DEBUG_CLEAR_LUN */
5119 #ifdef DEBUG_CLEAR_LUN
5120 #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x)
5121 #else
5122 #define DEBUG_CLEAR_L(x...)
5123 #endif
5124
5125 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
5126 {
5127         struct se_cmd *cmd = NULL;
5128         unsigned long lun_flags, cmd_flags;
5129         /*
5130          * Do exception processing and return CHECK_CONDITION status to the
5131          * Initiator Port.
5132          */
5133         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5134         while (!list_empty(&lun->lun_cmd_list)) {
5135                 cmd = list_first_entry(&lun->lun_cmd_list,
5136                        struct se_cmd, se_lun_node);
5137                 list_del(&cmd->se_lun_node);
5138
5139                 atomic_set(&cmd->transport_lun_active, 0);
5140                 /*
5141                  * This will notify iscsi_target_transport.c:
5142                  * transport_cmd_check_stop() that a LUN shutdown is in
5143                  * progress for the iscsi_cmd_t.
5144                  */
5145                 spin_lock(&cmd->t_state_lock);
5146                 DEBUG_CLEAR_L("SE_LUN[%d] - Setting cmd->transport"
5147                         "_lun_stop for  ITT: 0x%08x\n",
5148                         cmd->se_lun->unpacked_lun,
5149                         cmd->se_tfo->get_task_tag(cmd));
5150                 atomic_set(&cmd->transport_lun_stop, 1);
5151                 spin_unlock(&cmd->t_state_lock);
5152
5153                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5154
5155                 if (!(cmd->se_lun)) {
5156                         printk(KERN_ERR "ITT: 0x%08x, [i,t]_state: %u/%u\n",
5157                                 cmd->se_tfo->get_task_tag(cmd),
5158                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
5159                         BUG();
5160                 }
5161                 /*
5162                  * If the Storage engine still owns the iscsi_cmd_t, determine
5163                  * and/or stop its context.
5164                  */
5165                 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport"
5166                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
5167                         cmd->se_tfo->get_task_tag(cmd));
5168
5169                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
5170                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5171                         continue;
5172                 }
5173
5174                 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
5175                         "_wait_for_tasks(): SUCCESS\n",
5176                         cmd->se_lun->unpacked_lun,
5177                         cmd->se_tfo->get_task_tag(cmd));
5178
5179                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
5180                 if (!(atomic_read(&cmd->transport_dev_active))) {
5181                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
5182                         goto check_cond;
5183                 }
5184                 atomic_set(&cmd->transport_dev_active, 0);
5185                 transport_all_task_dev_remove_state(cmd);
5186                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
5187
5188                 transport_free_dev_tasks(cmd);
5189                 /*
5190                  * The Storage engine stopped this struct se_cmd before it was
5191                  * send to the fabric frontend for delivery back to the
5192                  * Initiator Node.  Return this SCSI CDB back with an
5193                  * CHECK_CONDITION status.
5194                  */
5195 check_cond:
5196                 transport_send_check_condition_and_sense(cmd,
5197                                 TCM_NON_EXISTENT_LUN, 0);
5198                 /*
5199                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
5200                  * be released, notify the waiting thread now that LU has
5201                  * finished accessing it.
5202                  */
5203                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
5204                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
5205                         DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for"
5206                                 " struct se_cmd: %p ITT: 0x%08x\n",
5207                                 lun->unpacked_lun,
5208                                 cmd, cmd->se_tfo->get_task_tag(cmd));
5209
5210                         spin_unlock_irqrestore(&cmd->t_state_lock,
5211                                         cmd_flags);
5212                         transport_cmd_check_stop(cmd, 1, 0);
5213                         complete(&cmd->transport_lun_fe_stop_comp);
5214                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5215                         continue;
5216                 }
5217                 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
5218                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
5219
5220                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
5221                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
5222         }
5223         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
5224 }
5225
5226 static int transport_clear_lun_thread(void *p)
5227 {
5228         struct se_lun *lun = (struct se_lun *)p;
5229
5230         __transport_clear_lun_from_sessions(lun);
5231         complete(&lun->lun_shutdown_comp);
5232
5233         return 0;
5234 }
5235
5236 int transport_clear_lun_from_sessions(struct se_lun *lun)
5237 {
5238         struct task_struct *kt;
5239
5240         kt = kthread_run(transport_clear_lun_thread, lun,
5241                         "tcm_cl_%u", lun->unpacked_lun);
5242         if (IS_ERR(kt)) {
5243                 printk(KERN_ERR "Unable to start clear_lun thread\n");
5244                 return PTR_ERR(kt);
5245         }
5246         wait_for_completion(&lun->lun_shutdown_comp);
5247
5248         return 0;
5249 }
5250
5251 /*      transport_generic_wait_for_tasks():
5252  *
5253  *      Called from frontend or passthrough context to wait for storage engine
5254  *      to pause and/or release frontend generated struct se_cmd.
5255  */
5256 static void transport_generic_wait_for_tasks(
5257         struct se_cmd *cmd,
5258         int remove_cmd,
5259         int session_reinstatement)
5260 {
5261         unsigned long flags;
5262
5263         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
5264                 return;
5265
5266         spin_lock_irqsave(&cmd->t_state_lock, flags);
5267         /*
5268          * If we are already stopped due to an external event (ie: LUN shutdown)
5269          * sleep until the connection can have the passed struct se_cmd back.
5270          * The cmd->transport_lun_stopped_sem will be upped by
5271          * transport_clear_lun_from_sessions() once the ConfigFS context caller
5272          * has completed its operation on the struct se_cmd.
5273          */
5274         if (atomic_read(&cmd->transport_lun_stop)) {
5275
5276                 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping"
5277                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
5278                         "_stop_comp); for ITT: 0x%08x\n",
5279                         cmd->se_tfo->get_task_tag(cmd));
5280                 /*
5281                  * There is a special case for WRITES where a FE exception +
5282                  * LUN shutdown means ConfigFS context is still sleeping on
5283                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
5284                  * We go ahead and up transport_lun_stop_comp just to be sure
5285                  * here.
5286                  */
5287                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
5288                 complete(&cmd->transport_lun_stop_comp);
5289                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
5290                 spin_lock_irqsave(&cmd->t_state_lock, flags);
5291
5292                 transport_all_task_dev_remove_state(cmd);
5293                 /*
5294                  * At this point, the frontend who was the originator of this
5295                  * struct se_cmd, now owns the structure and can be released through
5296                  * normal means below.
5297                  */
5298                 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped"
5299                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
5300                         "stop_comp); for ITT: 0x%08x\n",
5301                         cmd->se_tfo->get_task_tag(cmd));
5302
5303                 atomic_set(&cmd->transport_lun_stop, 0);
5304         }
5305         if (!atomic_read(&cmd->t_transport_active) ||
5306              atomic_read(&cmd->t_transport_aborted))
5307                 goto remove;
5308
5309         atomic_set(&cmd->t_transport_stop, 1);
5310
5311         DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x"
5312                 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
5313                 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
5314                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
5315                 cmd->deferred_t_state);
5316
5317         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
5318
5319         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
5320
5321         wait_for_completion(&cmd->t_transport_stop_comp);
5322
5323         spin_lock_irqsave(&cmd->t_state_lock, flags);
5324         atomic_set(&cmd->t_transport_active, 0);
5325         atomic_set(&cmd->t_transport_stop, 0);
5326
5327         DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion("
5328                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
5329                 cmd->se_tfo->get_task_tag(cmd));
5330 remove:
5331         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
5332         if (!remove_cmd)
5333                 return;
5334
5335         transport_generic_free_cmd(cmd, 0, session_reinstatement);
5336 }
5337
5338 static int transport_get_sense_codes(
5339         struct se_cmd *cmd,
5340         u8 *asc,
5341         u8 *ascq)
5342 {
5343         *asc = cmd->scsi_asc;
5344         *ascq = cmd->scsi_ascq;
5345
5346         return 0;
5347 }
5348
5349 static int transport_set_sense_codes(
5350         struct se_cmd *cmd,
5351         u8 asc,
5352         u8 ascq)
5353 {
5354         cmd->scsi_asc = asc;
5355         cmd->scsi_ascq = ascq;
5356
5357         return 0;
5358 }
5359
5360 int transport_send_check_condition_and_sense(
5361         struct se_cmd *cmd,
5362         u8 reason,
5363         int from_transport)
5364 {
5365         unsigned char *buffer = cmd->sense_buffer;
5366         unsigned long flags;
5367         int offset;
5368         u8 asc = 0, ascq = 0;
5369
5370         spin_lock_irqsave(&cmd->t_state_lock, flags);
5371         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
5372                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
5373                 return 0;
5374         }
5375         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
5376         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
5377
5378         if (!reason && from_transport)
5379                 goto after_reason;
5380
5381         if (!from_transport)
5382                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
5383         /*
5384          * Data Segment and SenseLength of the fabric response PDU.
5385          *
5386          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
5387          * from include/scsi/scsi_cmnd.h
5388          */
5389         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
5390                                 TRANSPORT_SENSE_BUFFER);
5391         /*
5392          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
5393          * SENSE KEY values from include/scsi/scsi.h
5394          */
5395         switch (reason) {
5396         case TCM_NON_EXISTENT_LUN:
5397         case TCM_UNSUPPORTED_SCSI_OPCODE:
5398         case TCM_SECTOR_COUNT_TOO_MANY:
5399                 /* CURRENT ERROR */
5400                 buffer[offset] = 0x70;
5401                 /* ILLEGAL REQUEST */
5402                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5403                 /* INVALID COMMAND OPERATION CODE */
5404                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
5405                 break;
5406         case TCM_UNKNOWN_MODE_PAGE:
5407                 /* CURRENT ERROR */
5408                 buffer[offset] = 0x70;
5409                 /* ILLEGAL REQUEST */
5410                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5411                 /* INVALID FIELD IN CDB */
5412                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5413                 break;
5414         case TCM_CHECK_CONDITION_ABORT_CMD:
5415                 /* CURRENT ERROR */
5416                 buffer[offset] = 0x70;
5417                 /* ABORTED COMMAND */
5418                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5419                 /* BUS DEVICE RESET FUNCTION OCCURRED */
5420                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
5421                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
5422                 break;
5423         case TCM_INCORRECT_AMOUNT_OF_DATA:
5424                 /* CURRENT ERROR */
5425                 buffer[offset] = 0x70;
5426                 /* ABORTED COMMAND */
5427                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5428                 /* WRITE ERROR */
5429                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5430                 /* NOT ENOUGH UNSOLICITED DATA */
5431                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
5432                 break;
5433         case TCM_INVALID_CDB_FIELD:
5434                 /* CURRENT ERROR */
5435                 buffer[offset] = 0x70;
5436                 /* ABORTED COMMAND */
5437                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5438                 /* INVALID FIELD IN CDB */
5439                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
5440                 break;
5441         case TCM_INVALID_PARAMETER_LIST:
5442                 /* CURRENT ERROR */
5443                 buffer[offset] = 0x70;
5444                 /* ABORTED COMMAND */
5445                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5446                 /* INVALID FIELD IN PARAMETER LIST */
5447                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
5448                 break;
5449         case TCM_UNEXPECTED_UNSOLICITED_DATA:
5450                 /* CURRENT ERROR */
5451                 buffer[offset] = 0x70;
5452                 /* ABORTED COMMAND */
5453                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5454                 /* WRITE ERROR */
5455                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
5456                 /* UNEXPECTED_UNSOLICITED_DATA */
5457                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
5458                 break;
5459         case TCM_SERVICE_CRC_ERROR:
5460                 /* CURRENT ERROR */
5461                 buffer[offset] = 0x70;
5462                 /* ABORTED COMMAND */
5463                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5464                 /* PROTOCOL SERVICE CRC ERROR */
5465                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
5466                 /* N/A */
5467                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
5468                 break;
5469         case TCM_SNACK_REJECTED:
5470                 /* CURRENT ERROR */
5471                 buffer[offset] = 0x70;
5472                 /* ABORTED COMMAND */
5473                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
5474                 /* READ ERROR */
5475                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
5476                 /* FAILED RETRANSMISSION REQUEST */
5477                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
5478                 break;
5479         case TCM_WRITE_PROTECTED:
5480                 /* CURRENT ERROR */
5481                 buffer[offset] = 0x70;
5482                 /* DATA PROTECT */
5483                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
5484                 /* WRITE PROTECTED */
5485                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
5486                 break;
5487         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
5488                 /* CURRENT ERROR */
5489                 buffer[offset] = 0x70;
5490                 /* UNIT ATTENTION */
5491                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
5492                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
5493                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5494                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5495                 break;
5496         case TCM_CHECK_CONDITION_NOT_READY:
5497                 /* CURRENT ERROR */
5498                 buffer[offset] = 0x70;
5499                 /* Not Ready */
5500                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
5501                 transport_get_sense_codes(cmd, &asc, &ascq);
5502                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
5503                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
5504                 break;
5505         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
5506         default:
5507                 /* CURRENT ERROR */
5508                 buffer[offset] = 0x70;
5509                 /* ILLEGAL REQUEST */
5510                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
5511                 /* LOGICAL UNIT COMMUNICATION FAILURE */
5512                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
5513                 break;
5514         }
5515         /*
5516          * This code uses linux/include/scsi/scsi.h SAM status codes!
5517          */
5518         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
5519         /*
5520          * Automatically padded, this value is encoded in the fabric's
5521          * data_length response PDU containing the SCSI defined sense data.
5522          */
5523         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
5524
5525 after_reason:
5526         return cmd->se_tfo->queue_status(cmd);
5527 }
5528 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
5529
5530 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
5531 {
5532         int ret = 0;
5533
5534         if (atomic_read(&cmd->t_transport_aborted) != 0) {
5535                 if (!(send_status) ||
5536                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
5537                         return 1;
5538 #if 0
5539                 printk(KERN_INFO "Sending delayed SAM_STAT_TASK_ABORTED"
5540                         " status for CDB: 0x%02x ITT: 0x%08x\n",
5541                         cmd->t_task_cdb[0],
5542                         cmd->se_tfo->get_task_tag(cmd));
5543 #endif
5544                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
5545                 cmd->se_tfo->queue_status(cmd);
5546                 ret = 1;
5547         }
5548         return ret;
5549 }
5550 EXPORT_SYMBOL(transport_check_aborted_status);
5551
5552 void transport_send_task_abort(struct se_cmd *cmd)
5553 {
5554         /*
5555          * If there are still expected incoming fabric WRITEs, we wait
5556          * until until they have completed before sending a TASK_ABORTED
5557          * response.  This response with TASK_ABORTED status will be
5558          * queued back to fabric module by transport_check_aborted_status().
5559          */
5560         if (cmd->data_direction == DMA_TO_DEVICE) {
5561                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
5562                         atomic_inc(&cmd->t_transport_aborted);
5563                         smp_mb__after_atomic_inc();
5564                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5565                         transport_new_cmd_failure(cmd);
5566                         return;
5567                 }
5568         }
5569         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
5570 #if 0
5571         printk(KERN_INFO "Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
5572                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
5573                 cmd->se_tfo->get_task_tag(cmd));
5574 #endif
5575         cmd->se_tfo->queue_status(cmd);
5576 }
5577
5578 /*      transport_generic_do_tmr():
5579  *
5580  *
5581  */
5582 int transport_generic_do_tmr(struct se_cmd *cmd)
5583 {
5584         struct se_device *dev = cmd->se_dev;
5585         struct se_tmr_req *tmr = cmd->se_tmr_req;
5586         int ret;
5587
5588         switch (tmr->function) {
5589         case TMR_ABORT_TASK:
5590                 tmr->response = TMR_FUNCTION_REJECTED;
5591                 break;
5592         case TMR_ABORT_TASK_SET:
5593         case TMR_CLEAR_ACA:
5594         case TMR_CLEAR_TASK_SET:
5595                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
5596                 break;
5597         case TMR_LUN_RESET:
5598                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
5599                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
5600                                          TMR_FUNCTION_REJECTED;
5601                 break;
5602         case TMR_TARGET_WARM_RESET:
5603                 tmr->response = TMR_FUNCTION_REJECTED;
5604                 break;
5605         case TMR_TARGET_COLD_RESET:
5606                 tmr->response = TMR_FUNCTION_REJECTED;
5607                 break;
5608         default:
5609                 printk(KERN_ERR "Uknown TMR function: 0x%02x.\n",
5610                                 tmr->function);
5611                 tmr->response = TMR_FUNCTION_REJECTED;
5612                 break;
5613         }
5614
5615         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
5616         cmd->se_tfo->queue_tm_rsp(cmd);
5617
5618         transport_cmd_check_stop(cmd, 2, 0);
5619         return 0;
5620 }
5621
5622 /*
5623  *      Called with spin_lock_irq(&dev->execute_task_lock); held
5624  *
5625  */
5626 static struct se_task *
5627 transport_get_task_from_state_list(struct se_device *dev)
5628 {
5629         struct se_task *task;
5630
5631         if (list_empty(&dev->state_task_list))
5632                 return NULL;
5633
5634         list_for_each_entry(task, &dev->state_task_list, t_state_list)
5635                 break;
5636
5637         list_del(&task->t_state_list);
5638         atomic_set(&task->task_state_active, 0);
5639
5640         return task;
5641 }
5642
5643 static void transport_processing_shutdown(struct se_device *dev)
5644 {
5645         struct se_cmd *cmd;
5646         struct se_task *task;
5647         unsigned long flags;
5648         /*
5649          * Empty the struct se_device's struct se_task state list.
5650          */
5651         spin_lock_irqsave(&dev->execute_task_lock, flags);
5652         while ((task = transport_get_task_from_state_list(dev))) {
5653                 if (!task->task_se_cmd) {
5654                         printk(KERN_ERR "task->task_se_cmd is NULL!\n");
5655                         continue;
5656                 }
5657                 cmd = task->task_se_cmd;
5658
5659                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5660
5661                 spin_lock_irqsave(&cmd->t_state_lock, flags);
5662
5663                 DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x,"
5664                         " i_state/def_i_state: %d/%d, t_state/def_t_state:"
5665                         " %d/%d cdb: 0x%02x\n", cmd, task,
5666                         cmd->se_tfo->get_task_tag(cmd), cmd->cmd_sn,
5667                         cmd->se_tfo->get_cmd_state(cmd), cmd->deferred_i_state,
5668                         cmd->t_state, cmd->deferred_t_state,
5669                         cmd->t_task_cdb[0]);
5670                 DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:"
5671                         " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5672                         " t_transport_stop: %d t_transport_sent: %d\n",
5673                         cmd->se_tfo->get_task_tag(cmd),
5674                         cmd->t_task_cdbs,
5675                         atomic_read(&cmd->t_task_cdbs_left),
5676                         atomic_read(&cmd->t_task_cdbs_sent),
5677                         atomic_read(&cmd->t_transport_active),
5678                         atomic_read(&cmd->t_transport_stop),
5679                         atomic_read(&cmd->t_transport_sent));
5680
5681                 if (atomic_read(&task->task_active)) {
5682                         atomic_set(&task->task_stop, 1);
5683                         spin_unlock_irqrestore(
5684                                 &cmd->t_state_lock, flags);
5685
5686                         DEBUG_DO("Waiting for task: %p to shutdown for dev:"
5687                                 " %p\n", task, dev);
5688                         wait_for_completion(&task->task_stop_comp);
5689                         DEBUG_DO("Completed task: %p shutdown for dev: %p\n",
5690                                 task, dev);
5691
5692                         spin_lock_irqsave(&cmd->t_state_lock, flags);
5693                         atomic_dec(&cmd->t_task_cdbs_left);
5694
5695                         atomic_set(&task->task_active, 0);
5696                         atomic_set(&task->task_stop, 0);
5697                 } else {
5698                         if (atomic_read(&task->task_execute_queue) != 0)
5699                                 transport_remove_task_from_execute_queue(task, dev);
5700                 }
5701                 __transport_stop_task_timer(task, &flags);
5702
5703                 if (!(atomic_dec_and_test(&cmd->t_task_cdbs_ex_left))) {
5704                         spin_unlock_irqrestore(
5705                                         &cmd->t_state_lock, flags);
5706
5707                         DEBUG_DO("Skipping task: %p, dev: %p for"
5708                                 " t_task_cdbs_ex_left: %d\n", task, dev,
5709                                 atomic_read(&cmd->t_task_cdbs_ex_left));
5710
5711                         spin_lock_irqsave(&dev->execute_task_lock, flags);
5712                         continue;
5713                 }
5714
5715                 if (atomic_read(&cmd->t_transport_active)) {
5716                         DEBUG_DO("got t_transport_active = 1 for task: %p, dev:"
5717                                         " %p\n", task, dev);
5718
5719                         if (atomic_read(&cmd->t_fe_count)) {
5720                                 spin_unlock_irqrestore(
5721                                         &cmd->t_state_lock, flags);
5722                                 transport_send_check_condition_and_sense(
5723                                         cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
5724                                         0);
5725                                 transport_remove_cmd_from_queue(cmd,
5726                                         &cmd->se_dev->dev_queue_obj);
5727
5728                                 transport_lun_remove_cmd(cmd);
5729                                 transport_cmd_check_stop(cmd, 1, 0);
5730                         } else {
5731                                 spin_unlock_irqrestore(
5732                                         &cmd->t_state_lock, flags);
5733
5734                                 transport_remove_cmd_from_queue(cmd,
5735                                         &cmd->se_dev->dev_queue_obj);
5736
5737                                 transport_lun_remove_cmd(cmd);
5738
5739                                 if (transport_cmd_check_stop(cmd, 1, 0))
5740                                         transport_generic_remove(cmd, 0);
5741                         }
5742
5743                         spin_lock_irqsave(&dev->execute_task_lock, flags);
5744                         continue;
5745                 }
5746                 DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n",
5747                                 task, dev);
5748
5749                 if (atomic_read(&cmd->t_fe_count)) {
5750                         spin_unlock_irqrestore(
5751                                 &cmd->t_state_lock, flags);
5752                         transport_send_check_condition_and_sense(cmd,
5753                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5754                         transport_remove_cmd_from_queue(cmd,
5755                                 &cmd->se_dev->dev_queue_obj);
5756
5757                         transport_lun_remove_cmd(cmd);
5758                         transport_cmd_check_stop(cmd, 1, 0);
5759                 } else {
5760                         spin_unlock_irqrestore(
5761                                 &cmd->t_state_lock, flags);
5762
5763                         transport_remove_cmd_from_queue(cmd,
5764                                 &cmd->se_dev->dev_queue_obj);
5765                         transport_lun_remove_cmd(cmd);
5766
5767                         if (transport_cmd_check_stop(cmd, 1, 0))
5768                                 transport_generic_remove(cmd, 0);
5769                 }
5770
5771                 spin_lock_irqsave(&dev->execute_task_lock, flags);
5772         }
5773         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5774         /*
5775          * Empty the struct se_device's struct se_cmd list.
5776          */
5777         while ((cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj))) {
5778
5779                 DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n",
5780                                 cmd, cmd->t_state);
5781
5782                 if (atomic_read(&cmd->t_fe_count)) {
5783                         transport_send_check_condition_and_sense(cmd,
5784                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5785
5786                         transport_lun_remove_cmd(cmd);
5787                         transport_cmd_check_stop(cmd, 1, 0);
5788                 } else {
5789                         transport_lun_remove_cmd(cmd);
5790                         if (transport_cmd_check_stop(cmd, 1, 0))
5791                                 transport_generic_remove(cmd, 0);
5792                 }
5793         }
5794 }
5795
5796 /*      transport_processing_thread():
5797  *
5798  *
5799  */
5800 static int transport_processing_thread(void *param)
5801 {
5802         int ret;
5803         struct se_cmd *cmd;
5804         struct se_device *dev = (struct se_device *) param;
5805
5806         set_user_nice(current, -20);
5807
5808         while (!kthread_should_stop()) {
5809                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
5810                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
5811                                 kthread_should_stop());
5812                 if (ret < 0)
5813                         goto out;
5814
5815                 spin_lock_irq(&dev->dev_status_lock);
5816                 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
5817                         spin_unlock_irq(&dev->dev_status_lock);
5818                         transport_processing_shutdown(dev);
5819                         continue;
5820                 }
5821                 spin_unlock_irq(&dev->dev_status_lock);
5822
5823 get_cmd:
5824                 __transport_execute_tasks(dev);
5825
5826                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
5827                 if (!cmd)
5828                         continue;
5829
5830                 switch (cmd->t_state) {
5831                 case TRANSPORT_NEW_CMD_MAP:
5832                         if (!(cmd->se_tfo->new_cmd_map)) {
5833                                 printk(KERN_ERR "cmd->se_tfo->new_cmd_map is"
5834                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
5835                                 BUG();
5836                         }
5837                         ret = cmd->se_tfo->new_cmd_map(cmd);
5838   &n