drm/i915: SDVO hotplug have different interrupt status bits for i915/i965/g4x
[linux-2.6.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74                 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void target_complete_ok_work(struct work_struct *work);
81
82 int init_se_kmem_caches(void)
83 {
84         se_sess_cache = kmem_cache_create("se_sess_cache",
85                         sizeof(struct se_session), __alignof__(struct se_session),
86                         0, NULL);
87         if (!se_sess_cache) {
88                 pr_err("kmem_cache_create() for struct se_session"
89                                 " failed\n");
90                 goto out;
91         }
92         se_ua_cache = kmem_cache_create("se_ua_cache",
93                         sizeof(struct se_ua), __alignof__(struct se_ua),
94                         0, NULL);
95         if (!se_ua_cache) {
96                 pr_err("kmem_cache_create() for struct se_ua failed\n");
97                 goto out_free_sess_cache;
98         }
99         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
100                         sizeof(struct t10_pr_registration),
101                         __alignof__(struct t10_pr_registration), 0, NULL);
102         if (!t10_pr_reg_cache) {
103                 pr_err("kmem_cache_create() for struct t10_pr_registration"
104                                 " failed\n");
105                 goto out_free_ua_cache;
106         }
107         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
108                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
109                         0, NULL);
110         if (!t10_alua_lu_gp_cache) {
111                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
112                                 " failed\n");
113                 goto out_free_pr_reg_cache;
114         }
115         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
116                         sizeof(struct t10_alua_lu_gp_member),
117                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
118         if (!t10_alua_lu_gp_mem_cache) {
119                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
120                                 "cache failed\n");
121                 goto out_free_lu_gp_cache;
122         }
123         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
124                         sizeof(struct t10_alua_tg_pt_gp),
125                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
126         if (!t10_alua_tg_pt_gp_cache) {
127                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128                                 "cache failed\n");
129                 goto out_free_lu_gp_mem_cache;
130         }
131         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
132                         "t10_alua_tg_pt_gp_mem_cache",
133                         sizeof(struct t10_alua_tg_pt_gp_member),
134                         __alignof__(struct t10_alua_tg_pt_gp_member),
135                         0, NULL);
136         if (!t10_alua_tg_pt_gp_mem_cache) {
137                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
138                                 "mem_t failed\n");
139                 goto out_free_tg_pt_gp_cache;
140         }
141
142         target_completion_wq = alloc_workqueue("target_completion",
143                                                WQ_MEM_RECLAIM, 0);
144         if (!target_completion_wq)
145                 goto out_free_tg_pt_gp_mem_cache;
146
147         return 0;
148
149 out_free_tg_pt_gp_mem_cache:
150         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
151 out_free_tg_pt_gp_cache:
152         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156         kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158         kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160         kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162         kmem_cache_destroy(se_sess_cache);
163 out:
164         return -ENOMEM;
165 }
166
167 void release_se_kmem_caches(void)
168 {
169         destroy_workqueue(target_completion_wq);
170         kmem_cache_destroy(se_sess_cache);
171         kmem_cache_destroy(se_ua_cache);
172         kmem_cache_destroy(t10_pr_reg_cache);
173         kmem_cache_destroy(t10_alua_lu_gp_cache);
174         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
177 }
178
179 /* This code ensures unique mib indexes are handed out. */
180 static DEFINE_SPINLOCK(scsi_mib_index_lock);
181 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
182
183 /*
184  * Allocate a new row index for the entry type specified
185  */
186 u32 scsi_get_new_index(scsi_index_t type)
187 {
188         u32 new_index;
189
190         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
191
192         spin_lock(&scsi_mib_index_lock);
193         new_index = ++scsi_mib_index[type];
194         spin_unlock(&scsi_mib_index_lock);
195
196         return new_index;
197 }
198
199 static void transport_init_queue_obj(struct se_queue_obj *qobj)
200 {
201         atomic_set(&qobj->queue_cnt, 0);
202         INIT_LIST_HEAD(&qobj->qobj_list);
203         init_waitqueue_head(&qobj->thread_wq);
204         spin_lock_init(&qobj->cmd_queue_lock);
205 }
206
207 void transport_subsystem_check_init(void)
208 {
209         int ret;
210
211         if (sub_api_initialized)
212                 return;
213
214         ret = request_module("target_core_iblock");
215         if (ret != 0)
216                 pr_err("Unable to load target_core_iblock\n");
217
218         ret = request_module("target_core_file");
219         if (ret != 0)
220                 pr_err("Unable to load target_core_file\n");
221
222         ret = request_module("target_core_pscsi");
223         if (ret != 0)
224                 pr_err("Unable to load target_core_pscsi\n");
225
226         ret = request_module("target_core_stgt");
227         if (ret != 0)
228                 pr_err("Unable to load target_core_stgt\n");
229
230         sub_api_initialized = 1;
231         return;
232 }
233
234 struct se_session *transport_init_session(void)
235 {
236         struct se_session *se_sess;
237
238         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
239         if (!se_sess) {
240                 pr_err("Unable to allocate struct se_session from"
241                                 " se_sess_cache\n");
242                 return ERR_PTR(-ENOMEM);
243         }
244         INIT_LIST_HEAD(&se_sess->sess_list);
245         INIT_LIST_HEAD(&se_sess->sess_acl_list);
246         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
247         INIT_LIST_HEAD(&se_sess->sess_wait_list);
248         spin_lock_init(&se_sess->sess_cmd_lock);
249         kref_init(&se_sess->sess_kref);
250
251         return se_sess;
252 }
253 EXPORT_SYMBOL(transport_init_session);
254
255 /*
256  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
257  */
258 void __transport_register_session(
259         struct se_portal_group *se_tpg,
260         struct se_node_acl *se_nacl,
261         struct se_session *se_sess,
262         void *fabric_sess_ptr)
263 {
264         unsigned char buf[PR_REG_ISID_LEN];
265
266         se_sess->se_tpg = se_tpg;
267         se_sess->fabric_sess_ptr = fabric_sess_ptr;
268         /*
269          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
270          *
271          * Only set for struct se_session's that will actually be moving I/O.
272          * eg: *NOT* discovery sessions.
273          */
274         if (se_nacl) {
275                 /*
276                  * If the fabric module supports an ISID based TransportID,
277                  * save this value in binary from the fabric I_T Nexus now.
278                  */
279                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
280                         memset(&buf[0], 0, PR_REG_ISID_LEN);
281                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
282                                         &buf[0], PR_REG_ISID_LEN);
283                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
284                 }
285                 kref_get(&se_nacl->acl_kref);
286
287                 spin_lock_irq(&se_nacl->nacl_sess_lock);
288                 /*
289                  * The se_nacl->nacl_sess pointer will be set to the
290                  * last active I_T Nexus for each struct se_node_acl.
291                  */
292                 se_nacl->nacl_sess = se_sess;
293
294                 list_add_tail(&se_sess->sess_acl_list,
295                               &se_nacl->acl_sess_list);
296                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
297         }
298         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
299
300         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
301                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
302 }
303 EXPORT_SYMBOL(__transport_register_session);
304
305 void transport_register_session(
306         struct se_portal_group *se_tpg,
307         struct se_node_acl *se_nacl,
308         struct se_session *se_sess,
309         void *fabric_sess_ptr)
310 {
311         unsigned long flags;
312
313         spin_lock_irqsave(&se_tpg->session_lock, flags);
314         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
315         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
316 }
317 EXPORT_SYMBOL(transport_register_session);
318
319 static void target_release_session(struct kref *kref)
320 {
321         struct se_session *se_sess = container_of(kref,
322                         struct se_session, sess_kref);
323         struct se_portal_group *se_tpg = se_sess->se_tpg;
324
325         se_tpg->se_tpg_tfo->close_session(se_sess);
326 }
327
328 void target_get_session(struct se_session *se_sess)
329 {
330         kref_get(&se_sess->sess_kref);
331 }
332 EXPORT_SYMBOL(target_get_session);
333
334 int target_put_session(struct se_session *se_sess)
335 {
336         return kref_put(&se_sess->sess_kref, target_release_session);
337 }
338 EXPORT_SYMBOL(target_put_session);
339
340 static void target_complete_nacl(struct kref *kref)
341 {
342         struct se_node_acl *nacl = container_of(kref,
343                                 struct se_node_acl, acl_kref);
344
345         complete(&nacl->acl_free_comp);
346 }
347
348 void target_put_nacl(struct se_node_acl *nacl)
349 {
350         kref_put(&nacl->acl_kref, target_complete_nacl);
351 }
352
353 void transport_deregister_session_configfs(struct se_session *se_sess)
354 {
355         struct se_node_acl *se_nacl;
356         unsigned long flags;
357         /*
358          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
359          */
360         se_nacl = se_sess->se_node_acl;
361         if (se_nacl) {
362                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
363                 if (se_nacl->acl_stop == 0)
364                         list_del(&se_sess->sess_acl_list);
365                 /*
366                  * If the session list is empty, then clear the pointer.
367                  * Otherwise, set the struct se_session pointer from the tail
368                  * element of the per struct se_node_acl active session list.
369                  */
370                 if (list_empty(&se_nacl->acl_sess_list))
371                         se_nacl->nacl_sess = NULL;
372                 else {
373                         se_nacl->nacl_sess = container_of(
374                                         se_nacl->acl_sess_list.prev,
375                                         struct se_session, sess_acl_list);
376                 }
377                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
378         }
379 }
380 EXPORT_SYMBOL(transport_deregister_session_configfs);
381
382 void transport_free_session(struct se_session *se_sess)
383 {
384         kmem_cache_free(se_sess_cache, se_sess);
385 }
386 EXPORT_SYMBOL(transport_free_session);
387
388 void transport_deregister_session(struct se_session *se_sess)
389 {
390         struct se_portal_group *se_tpg = se_sess->se_tpg;
391         struct target_core_fabric_ops *se_tfo;
392         struct se_node_acl *se_nacl;
393         unsigned long flags;
394         bool comp_nacl = true;
395
396         if (!se_tpg) {
397                 transport_free_session(se_sess);
398                 return;
399         }
400         se_tfo = se_tpg->se_tpg_tfo;
401
402         spin_lock_irqsave(&se_tpg->session_lock, flags);
403         list_del(&se_sess->sess_list);
404         se_sess->se_tpg = NULL;
405         se_sess->fabric_sess_ptr = NULL;
406         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
407
408         /*
409          * Determine if we need to do extra work for this initiator node's
410          * struct se_node_acl if it had been previously dynamically generated.
411          */
412         se_nacl = se_sess->se_node_acl;
413
414         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
415         if (se_nacl && se_nacl->dynamic_node_acl) {
416                 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
417                         list_del(&se_nacl->acl_list);
418                         se_tpg->num_node_acls--;
419                         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
420                         core_tpg_wait_for_nacl_pr_ref(se_nacl);
421                         core_free_device_list_for_node(se_nacl, se_tpg);
422                         se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
423
424                         comp_nacl = false;
425                         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
426                 }
427         }
428         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
429
430         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
431                 se_tpg->se_tpg_tfo->get_fabric_name());
432         /*
433          * If last kref is dropping now for an explict NodeACL, awake sleeping
434          * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
435          * removal context.
436          */
437         if (se_nacl && comp_nacl == true)
438                 target_put_nacl(se_nacl);
439
440         transport_free_session(se_sess);
441 }
442 EXPORT_SYMBOL(transport_deregister_session);
443
444 /*
445  * Called with cmd->t_state_lock held.
446  */
447 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
448 {
449         struct se_device *dev = cmd->se_dev;
450         struct se_task *task;
451         unsigned long flags;
452
453         if (!dev)
454                 return;
455
456         list_for_each_entry(task, &cmd->t_task_list, t_list) {
457                 if (task->task_flags & TF_ACTIVE)
458                         continue;
459
460                 spin_lock_irqsave(&dev->execute_task_lock, flags);
461                 if (task->t_state_active) {
462                         pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
463                                 cmd->se_tfo->get_task_tag(cmd), dev, task);
464
465                         list_del(&task->t_state_list);
466                         atomic_dec(&cmd->t_task_cdbs_ex_left);
467                         task->t_state_active = false;
468                 }
469                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
470         }
471
472 }
473
474 /*      transport_cmd_check_stop():
475  *
476  *      'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
477  *      'transport_off = 2' determines if task_dev_state should be removed.
478  *
479  *      A non-zero u8 t_state sets cmd->t_state.
480  *      Returns 1 when command is stopped, else 0.
481  */
482 static int transport_cmd_check_stop(
483         struct se_cmd *cmd,
484         int transport_off,
485         u8 t_state)
486 {
487         unsigned long flags;
488
489         spin_lock_irqsave(&cmd->t_state_lock, flags);
490         /*
491          * Determine if IOCTL context caller in requesting the stopping of this
492          * command for LUN shutdown purposes.
493          */
494         if (cmd->transport_state & CMD_T_LUN_STOP) {
495                 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
496                         __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
497
498                 cmd->transport_state &= ~CMD_T_ACTIVE;
499                 if (transport_off == 2)
500                         transport_all_task_dev_remove_state(cmd);
501                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
502
503                 complete(&cmd->transport_lun_stop_comp);
504                 return 1;
505         }
506         /*
507          * Determine if frontend context caller is requesting the stopping of
508          * this command for frontend exceptions.
509          */
510         if (cmd->transport_state & CMD_T_STOP) {
511                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
512                         __func__, __LINE__,
513                         cmd->se_tfo->get_task_tag(cmd));
514
515                 if (transport_off == 2)
516                         transport_all_task_dev_remove_state(cmd);
517
518                 /*
519                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
520                  * to FE.
521                  */
522                 if (transport_off == 2)
523                         cmd->se_lun = NULL;
524                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525
526                 complete(&cmd->t_transport_stop_comp);
527                 return 1;
528         }
529         if (transport_off) {
530                 cmd->transport_state &= ~CMD_T_ACTIVE;
531                 if (transport_off == 2) {
532                         transport_all_task_dev_remove_state(cmd);
533                         /*
534                          * Clear struct se_cmd->se_lun before the transport_off == 2
535                          * handoff to fabric module.
536                          */
537                         cmd->se_lun = NULL;
538                         /*
539                          * Some fabric modules like tcm_loop can release
540                          * their internally allocated I/O reference now and
541                          * struct se_cmd now.
542                          *
543                          * Fabric modules are expected to return '1' here if the
544                          * se_cmd being passed is released at this point,
545                          * or zero if not being released.
546                          */
547                         if (cmd->se_tfo->check_stop_free != NULL) {
548                                 spin_unlock_irqrestore(
549                                         &cmd->t_state_lock, flags);
550
551                                 return cmd->se_tfo->check_stop_free(cmd);
552                         }
553                 }
554                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
555
556                 return 0;
557         } else if (t_state)
558                 cmd->t_state = t_state;
559         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
560
561         return 0;
562 }
563
564 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
565 {
566         return transport_cmd_check_stop(cmd, 2, 0);
567 }
568
569 static void transport_lun_remove_cmd(struct se_cmd *cmd)
570 {
571         struct se_lun *lun = cmd->se_lun;
572         unsigned long flags;
573
574         if (!lun)
575                 return;
576
577         spin_lock_irqsave(&cmd->t_state_lock, flags);
578         if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
579                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
580                 transport_all_task_dev_remove_state(cmd);
581         }
582         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
583
584         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
585         if (!list_empty(&cmd->se_lun_node))
586                 list_del_init(&cmd->se_lun_node);
587         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
588 }
589
590 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
591 {
592         if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
593                 transport_lun_remove_cmd(cmd);
594
595         if (transport_cmd_check_stop_to_fabric(cmd))
596                 return;
597         if (remove) {
598                 transport_remove_cmd_from_queue(cmd);
599                 transport_put_cmd(cmd);
600         }
601 }
602
603 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
604                 bool at_head)
605 {
606         struct se_device *dev = cmd->se_dev;
607         struct se_queue_obj *qobj = &dev->dev_queue_obj;
608         unsigned long flags;
609
610         if (t_state) {
611                 spin_lock_irqsave(&cmd->t_state_lock, flags);
612                 cmd->t_state = t_state;
613                 cmd->transport_state |= CMD_T_ACTIVE;
614                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
615         }
616
617         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
618
619         /* If the cmd is already on the list, remove it before we add it */
620         if (!list_empty(&cmd->se_queue_node))
621                 list_del(&cmd->se_queue_node);
622         else
623                 atomic_inc(&qobj->queue_cnt);
624
625         if (at_head)
626                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
627         else
628                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
629         cmd->transport_state |= CMD_T_QUEUED;
630         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
631
632         wake_up_interruptible(&qobj->thread_wq);
633 }
634
635 static struct se_cmd *
636 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
637 {
638         struct se_cmd *cmd;
639         unsigned long flags;
640
641         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
642         if (list_empty(&qobj->qobj_list)) {
643                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
644                 return NULL;
645         }
646         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
647
648         cmd->transport_state &= ~CMD_T_QUEUED;
649         list_del_init(&cmd->se_queue_node);
650         atomic_dec(&qobj->queue_cnt);
651         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
652
653         return cmd;
654 }
655
656 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
657 {
658         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
659         unsigned long flags;
660
661         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
662         if (!(cmd->transport_state & CMD_T_QUEUED)) {
663                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
664                 return;
665         }
666         cmd->transport_state &= ~CMD_T_QUEUED;
667         atomic_dec(&qobj->queue_cnt);
668         list_del_init(&cmd->se_queue_node);
669         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
670 }
671
672 /*
673  * Completion function used by TCM subsystem plugins (such as FILEIO)
674  * for queueing up response from struct se_subsystem_api->do_task()
675  */
676 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
677 {
678         struct se_task *task = list_entry(cmd->t_task_list.next,
679                                 struct se_task, t_list);
680
681         if (good) {
682                 cmd->scsi_status = SAM_STAT_GOOD;
683                 task->task_scsi_status = GOOD;
684         } else {
685                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
686                 task->task_se_cmd->scsi_sense_reason =
687                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
688
689         }
690
691         transport_complete_task(task, good);
692 }
693 EXPORT_SYMBOL(transport_complete_sync_cache);
694
695 static void target_complete_failure_work(struct work_struct *work)
696 {
697         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
698
699         transport_generic_request_failure(cmd);
700 }
701
702 /*      transport_complete_task():
703  *
704  *      Called from interrupt and non interrupt context depending
705  *      on the transport plugin.
706  */
707 void transport_complete_task(struct se_task *task, int success)
708 {
709         struct se_cmd *cmd = task->task_se_cmd;
710         struct se_device *dev = cmd->se_dev;
711         unsigned long flags;
712
713         spin_lock_irqsave(&cmd->t_state_lock, flags);
714         task->task_flags &= ~TF_ACTIVE;
715
716         /*
717          * See if any sense data exists, if so set the TASK_SENSE flag.
718          * Also check for any other post completion work that needs to be
719          * done by the plugins.
720          */
721         if (dev && dev->transport->transport_complete) {
722                 if (dev->transport->transport_complete(task) != 0) {
723                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
724                         task->task_flags |= TF_HAS_SENSE;
725                         success = 1;
726                 }
727         }
728
729         /*
730          * See if we are waiting for outstanding struct se_task
731          * to complete for an exception condition
732          */
733         if (task->task_flags & TF_REQUEST_STOP) {
734                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
735                 complete(&task->task_stop_comp);
736                 return;
737         }
738
739         if (!success)
740                 cmd->transport_state |= CMD_T_FAILED;
741
742         /*
743          * Decrement the outstanding t_task_cdbs_left count.  The last
744          * struct se_task from struct se_cmd will complete itself into the
745          * device queue depending upon int success.
746          */
747         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
748                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
749                 return;
750         }
751         /*
752          * Check for case where an explict ABORT_TASK has been received
753          * and transport_wait_for_tasks() will be waiting for completion..
754          */
755         if (cmd->transport_state & CMD_T_ABORTED &&
756             cmd->transport_state & CMD_T_STOP) {
757                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
758                 complete(&cmd->t_transport_stop_comp);
759                 return;
760         } else if (cmd->transport_state & CMD_T_FAILED) {
761                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
762                 INIT_WORK(&cmd->work, target_complete_failure_work);
763         } else {
764                 INIT_WORK(&cmd->work, target_complete_ok_work);
765         }
766
767         cmd->t_state = TRANSPORT_COMPLETE;
768         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
769         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
770
771         queue_work(target_completion_wq, &cmd->work);
772 }
773 EXPORT_SYMBOL(transport_complete_task);
774
775 /*
776  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
777  * struct se_task list are ready to be added to the active execution list
778  * struct se_device
779
780  * Called with se_dev_t->execute_task_lock called.
781  */
782 static inline int transport_add_task_check_sam_attr(
783         struct se_task *task,
784         struct se_task *task_prev,
785         struct se_device *dev)
786 {
787         /*
788          * No SAM Task attribute emulation enabled, add to tail of
789          * execution queue
790          */
791         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
792                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793                 return 0;
794         }
795         /*
796          * HEAD_OF_QUEUE attribute for received CDB, which means
797          * the first task that is associated with a struct se_cmd goes to
798          * head of the struct se_device->execute_task_list, and task_prev
799          * after that for each subsequent task
800          */
801         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
802                 list_add(&task->t_execute_list,
803                                 (task_prev != NULL) ?
804                                 &task_prev->t_execute_list :
805                                 &dev->execute_task_list);
806
807                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
808                                 " in execution queue\n",
809                                 task->task_se_cmd->t_task_cdb[0]);
810                 return 1;
811         }
812         /*
813          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
814          * transitioned from Dermant -> Active state, and are added to the end
815          * of the struct se_device->execute_task_list
816          */
817         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
818         return 0;
819 }
820
821 /*      __transport_add_task_to_execute_queue():
822  *
823  *      Called with se_dev_t->execute_task_lock called.
824  */
825 static void __transport_add_task_to_execute_queue(
826         struct se_task *task,
827         struct se_task *task_prev,
828         struct se_device *dev)
829 {
830         int head_of_queue;
831
832         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
833         atomic_inc(&dev->execute_tasks);
834
835         if (task->t_state_active)
836                 return;
837         /*
838          * Determine if this task needs to go to HEAD_OF_QUEUE for the
839          * state list as well.  Running with SAM Task Attribute emulation
840          * will always return head_of_queue == 0 here
841          */
842         if (head_of_queue)
843                 list_add(&task->t_state_list, (task_prev) ?
844                                 &task_prev->t_state_list :
845                                 &dev->state_task_list);
846         else
847                 list_add_tail(&task->t_state_list, &dev->state_task_list);
848
849         task->t_state_active = true;
850
851         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
852                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
853                 task, dev);
854 }
855
856 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
857 {
858         struct se_device *dev = cmd->se_dev;
859         struct se_task *task;
860         unsigned long flags;
861
862         spin_lock_irqsave(&cmd->t_state_lock, flags);
863         list_for_each_entry(task, &cmd->t_task_list, t_list) {
864                 spin_lock(&dev->execute_task_lock);
865                 if (!task->t_state_active) {
866                         list_add_tail(&task->t_state_list,
867                                       &dev->state_task_list);
868                         task->t_state_active = true;
869
870                         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
871                                 task->task_se_cmd->se_tfo->get_task_tag(
872                                 task->task_se_cmd), task, dev);
873                 }
874                 spin_unlock(&dev->execute_task_lock);
875         }
876         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
877 }
878
879 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
880 {
881         struct se_device *dev = cmd->se_dev;
882         struct se_task *task, *task_prev = NULL;
883
884         list_for_each_entry(task, &cmd->t_task_list, t_list) {
885                 if (!list_empty(&task->t_execute_list))
886                         continue;
887                 /*
888                  * __transport_add_task_to_execute_queue() handles the
889                  * SAM Task Attribute emulation if enabled
890                  */
891                 __transport_add_task_to_execute_queue(task, task_prev, dev);
892                 task_prev = task;
893         }
894 }
895
896 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
897 {
898         unsigned long flags;
899         struct se_device *dev = cmd->se_dev;
900
901         spin_lock_irqsave(&dev->execute_task_lock, flags);
902         __transport_add_tasks_from_cmd(cmd);
903         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
904 }
905
906 void __transport_remove_task_from_execute_queue(struct se_task *task,
907                 struct se_device *dev)
908 {
909         list_del_init(&task->t_execute_list);
910         atomic_dec(&dev->execute_tasks);
911 }
912
913 static void transport_remove_task_from_execute_queue(
914         struct se_task *task,
915         struct se_device *dev)
916 {
917         unsigned long flags;
918
919         if (WARN_ON(list_empty(&task->t_execute_list)))
920                 return;
921
922         spin_lock_irqsave(&dev->execute_task_lock, flags);
923         __transport_remove_task_from_execute_queue(task, dev);
924         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
925 }
926
927 /*
928  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
929  */
930
931 static void target_qf_do_work(struct work_struct *work)
932 {
933         struct se_device *dev = container_of(work, struct se_device,
934                                         qf_work_queue);
935         LIST_HEAD(qf_cmd_list);
936         struct se_cmd *cmd, *cmd_tmp;
937
938         spin_lock_irq(&dev->qf_cmd_lock);
939         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
940         spin_unlock_irq(&dev->qf_cmd_lock);
941
942         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
943                 list_del(&cmd->se_qf_node);
944                 atomic_dec(&dev->dev_qf_count);
945                 smp_mb__after_atomic_dec();
946
947                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
948                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
949                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
950                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
951                         : "UNKNOWN");
952
953                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
954         }
955 }
956
957 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
958 {
959         switch (cmd->data_direction) {
960         case DMA_NONE:
961                 return "NONE";
962         case DMA_FROM_DEVICE:
963                 return "READ";
964         case DMA_TO_DEVICE:
965                 return "WRITE";
966         case DMA_BIDIRECTIONAL:
967                 return "BIDI";
968         default:
969                 break;
970         }
971
972         return "UNKNOWN";
973 }
974
975 void transport_dump_dev_state(
976         struct se_device *dev,
977         char *b,
978         int *bl)
979 {
980         *bl += sprintf(b + *bl, "Status: ");
981         switch (dev->dev_status) {
982         case TRANSPORT_DEVICE_ACTIVATED:
983                 *bl += sprintf(b + *bl, "ACTIVATED");
984                 break;
985         case TRANSPORT_DEVICE_DEACTIVATED:
986                 *bl += sprintf(b + *bl, "DEACTIVATED");
987                 break;
988         case TRANSPORT_DEVICE_SHUTDOWN:
989                 *bl += sprintf(b + *bl, "SHUTDOWN");
990                 break;
991         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
992         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
993                 *bl += sprintf(b + *bl, "OFFLINE");
994                 break;
995         default:
996                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
997                 break;
998         }
999
1000         *bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
1001                 atomic_read(&dev->execute_tasks), dev->queue_depth);
1002         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1003                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1004         *bl += sprintf(b + *bl, "        ");
1005 }
1006
1007 void transport_dump_vpd_proto_id(
1008         struct t10_vpd *vpd,
1009         unsigned char *p_buf,
1010         int p_buf_len)
1011 {
1012         unsigned char buf[VPD_TMP_BUF_SIZE];
1013         int len;
1014
1015         memset(buf, 0, VPD_TMP_BUF_SIZE);
1016         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1017
1018         switch (vpd->protocol_identifier) {
1019         case 0x00:
1020                 sprintf(buf+len, "Fibre Channel\n");
1021                 break;
1022         case 0x10:
1023                 sprintf(buf+len, "Parallel SCSI\n");
1024                 break;
1025         case 0x20:
1026                 sprintf(buf+len, "SSA\n");
1027                 break;
1028         case 0x30:
1029                 sprintf(buf+len, "IEEE 1394\n");
1030                 break;
1031         case 0x40:
1032                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1033                                 " Protocol\n");
1034                 break;
1035         case 0x50:
1036                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1037                 break;
1038         case 0x60:
1039                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1040                 break;
1041         case 0x70:
1042                 sprintf(buf+len, "Automation/Drive Interface Transport"
1043                                 " Protocol\n");
1044                 break;
1045         case 0x80:
1046                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1047                 break;
1048         default:
1049                 sprintf(buf+len, "Unknown 0x%02x\n",
1050                                 vpd->protocol_identifier);
1051                 break;
1052         }
1053
1054         if (p_buf)
1055                 strncpy(p_buf, buf, p_buf_len);
1056         else
1057                 pr_debug("%s", buf);
1058 }
1059
1060 void
1061 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1062 {
1063         /*
1064          * Check if the Protocol Identifier Valid (PIV) bit is set..
1065          *
1066          * from spc3r23.pdf section 7.5.1
1067          */
1068          if (page_83[1] & 0x80) {
1069                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1070                 vpd->protocol_identifier_set = 1;
1071                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1072         }
1073 }
1074 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1075
1076 int transport_dump_vpd_assoc(
1077         struct t10_vpd *vpd,
1078         unsigned char *p_buf,
1079         int p_buf_len)
1080 {
1081         unsigned char buf[VPD_TMP_BUF_SIZE];
1082         int ret = 0;
1083         int len;
1084
1085         memset(buf, 0, VPD_TMP_BUF_SIZE);
1086         len = sprintf(buf, "T10 VPD Identifier Association: ");
1087
1088         switch (vpd->association) {
1089         case 0x00:
1090                 sprintf(buf+len, "addressed logical unit\n");
1091                 break;
1092         case 0x10:
1093                 sprintf(buf+len, "target port\n");
1094                 break;
1095         case 0x20:
1096                 sprintf(buf+len, "SCSI target device\n");
1097                 break;
1098         default:
1099                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1100                 ret = -EINVAL;
1101                 break;
1102         }
1103
1104         if (p_buf)
1105                 strncpy(p_buf, buf, p_buf_len);
1106         else
1107                 pr_debug("%s", buf);
1108
1109         return ret;
1110 }
1111
1112 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1113 {
1114         /*
1115          * The VPD identification association..
1116          *
1117          * from spc3r23.pdf Section 7.6.3.1 Table 297
1118          */
1119         vpd->association = (page_83[1] & 0x30);
1120         return transport_dump_vpd_assoc(vpd, NULL, 0);
1121 }
1122 EXPORT_SYMBOL(transport_set_vpd_assoc);
1123
1124 int transport_dump_vpd_ident_type(
1125         struct t10_vpd *vpd,
1126         unsigned char *p_buf,
1127         int p_buf_len)
1128 {
1129         unsigned char buf[VPD_TMP_BUF_SIZE];
1130         int ret = 0;
1131         int len;
1132
1133         memset(buf, 0, VPD_TMP_BUF_SIZE);
1134         len = sprintf(buf, "T10 VPD Identifier Type: ");
1135
1136         switch (vpd->device_identifier_type) {
1137         case 0x00:
1138                 sprintf(buf+len, "Vendor specific\n");
1139                 break;
1140         case 0x01:
1141                 sprintf(buf+len, "T10 Vendor ID based\n");
1142                 break;
1143         case 0x02:
1144                 sprintf(buf+len, "EUI-64 based\n");
1145                 break;
1146         case 0x03:
1147                 sprintf(buf+len, "NAA\n");
1148                 break;
1149         case 0x04:
1150                 sprintf(buf+len, "Relative target port identifier\n");
1151                 break;
1152         case 0x08:
1153                 sprintf(buf+len, "SCSI name string\n");
1154                 break;
1155         default:
1156                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1157                                 vpd->device_identifier_type);
1158                 ret = -EINVAL;
1159                 break;
1160         }
1161
1162         if (p_buf) {
1163                 if (p_buf_len < strlen(buf)+1)
1164                         return -EINVAL;
1165                 strncpy(p_buf, buf, p_buf_len);
1166         } else {
1167                 pr_debug("%s", buf);
1168         }
1169
1170         return ret;
1171 }
1172
1173 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1174 {
1175         /*
1176          * The VPD identifier type..
1177          *
1178          * from spc3r23.pdf Section 7.6.3.1 Table 298
1179          */
1180         vpd->device_identifier_type = (page_83[1] & 0x0f);
1181         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1182 }
1183 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1184
1185 int transport_dump_vpd_ident(
1186         struct t10_vpd *vpd,
1187         unsigned char *p_buf,
1188         int p_buf_len)
1189 {
1190         unsigned char buf[VPD_TMP_BUF_SIZE];
1191         int ret = 0;
1192
1193         memset(buf, 0, VPD_TMP_BUF_SIZE);
1194
1195         switch (vpd->device_identifier_code_set) {
1196         case 0x01: /* Binary */
1197                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1198                         &vpd->device_identifier[0]);
1199                 break;
1200         case 0x02: /* ASCII */
1201                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1202                         &vpd->device_identifier[0]);
1203                 break;
1204         case 0x03: /* UTF-8 */
1205                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1206                         &vpd->device_identifier[0]);
1207                 break;
1208         default:
1209                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1210                         " 0x%02x", vpd->device_identifier_code_set);
1211                 ret = -EINVAL;
1212                 break;
1213         }
1214
1215         if (p_buf)
1216                 strncpy(p_buf, buf, p_buf_len);
1217         else
1218                 pr_debug("%s", buf);
1219
1220         return ret;
1221 }
1222
1223 int
1224 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1225 {
1226         static const char hex_str[] = "0123456789abcdef";
1227         int j = 0, i = 4; /* offset to start of the identifer */
1228
1229         /*
1230          * The VPD Code Set (encoding)
1231          *
1232          * from spc3r23.pdf Section 7.6.3.1 Table 296
1233          */
1234         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1235         switch (vpd->device_identifier_code_set) {
1236         case 0x01: /* Binary */
1237                 vpd->device_identifier[j++] =
1238                                 hex_str[vpd->device_identifier_type];
1239                 while (i < (4 + page_83[3])) {
1240                         vpd->device_identifier[j++] =
1241                                 hex_str[(page_83[i] & 0xf0) >> 4];
1242                         vpd->device_identifier[j++] =
1243                                 hex_str[page_83[i] & 0x0f];
1244                         i++;
1245                 }
1246                 break;
1247         case 0x02: /* ASCII */
1248         case 0x03: /* UTF-8 */
1249                 while (i < (4 + page_83[3]))
1250                         vpd->device_identifier[j++] = page_83[i++];
1251                 break;
1252         default:
1253                 break;
1254         }
1255
1256         return transport_dump_vpd_ident(vpd, NULL, 0);
1257 }
1258 EXPORT_SYMBOL(transport_set_vpd_ident);
1259
1260 static void core_setup_task_attr_emulation(struct se_device *dev)
1261 {
1262         /*
1263          * If this device is from Target_Core_Mod/pSCSI, disable the
1264          * SAM Task Attribute emulation.
1265          *
1266          * This is currently not available in upsream Linux/SCSI Target
1267          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1268          */
1269         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1270                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1271                 return;
1272         }
1273
1274         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1275         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1276                 " device\n", dev->transport->name,
1277                 dev->transport->get_device_rev(dev));
1278 }
1279
1280 static void scsi_dump_inquiry(struct se_device *dev)
1281 {
1282         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1283         char buf[17];
1284         int i, device_type;
1285         /*
1286          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1287          */
1288         for (i = 0; i < 8; i++)
1289                 if (wwn->vendor[i] >= 0x20)
1290                         buf[i] = wwn->vendor[i];
1291                 else
1292                         buf[i] = ' ';
1293         buf[i] = '\0';
1294         pr_debug("  Vendor: %s\n", buf);
1295
1296         for (i = 0; i < 16; i++)
1297                 if (wwn->model[i] >= 0x20)
1298                         buf[i] = wwn->model[i];
1299                 else
1300                         buf[i] = ' ';
1301         buf[i] = '\0';
1302         pr_debug("  Model: %s\n", buf);
1303
1304         for (i = 0; i < 4; i++)
1305                 if (wwn->revision[i] >= 0x20)
1306                         buf[i] = wwn->revision[i];
1307                 else
1308                         buf[i] = ' ';
1309         buf[i] = '\0';
1310         pr_debug("  Revision: %s\n", buf);
1311
1312         device_type = dev->transport->get_device_type(dev);
1313         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1314         pr_debug("                 ANSI SCSI revision: %02x\n",
1315                                 dev->transport->get_device_rev(dev));
1316 }
1317
1318 struct se_device *transport_add_device_to_core_hba(
1319         struct se_hba *hba,
1320         struct se_subsystem_api *transport,
1321         struct se_subsystem_dev *se_dev,
1322         u32 device_flags,
1323         void *transport_dev,
1324         struct se_dev_limits *dev_limits,
1325         const char *inquiry_prod,
1326         const char *inquiry_rev)
1327 {
1328         int force_pt;
1329         struct se_device  *dev;
1330
1331         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1332         if (!dev) {
1333                 pr_err("Unable to allocate memory for se_dev_t\n");
1334                 return NULL;
1335         }
1336
1337         transport_init_queue_obj(&dev->dev_queue_obj);
1338         dev->dev_flags          = device_flags;
1339         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1340         dev->dev_ptr            = transport_dev;
1341         dev->se_hba             = hba;
1342         dev->se_sub_dev         = se_dev;
1343         dev->transport          = transport;
1344         INIT_LIST_HEAD(&dev->dev_list);
1345         INIT_LIST_HEAD(&dev->dev_sep_list);
1346         INIT_LIST_HEAD(&dev->dev_tmr_list);
1347         INIT_LIST_HEAD(&dev->execute_task_list);
1348         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1349         INIT_LIST_HEAD(&dev->state_task_list);
1350         INIT_LIST_HEAD(&dev->qf_cmd_list);
1351         spin_lock_init(&dev->execute_task_lock);
1352         spin_lock_init(&dev->delayed_cmd_lock);
1353         spin_lock_init(&dev->dev_reservation_lock);
1354         spin_lock_init(&dev->dev_status_lock);
1355         spin_lock_init(&dev->se_port_lock);
1356         spin_lock_init(&dev->se_tmr_lock);
1357         spin_lock_init(&dev->qf_cmd_lock);
1358         atomic_set(&dev->dev_ordered_id, 0);
1359
1360         se_dev_set_default_attribs(dev, dev_limits);
1361
1362         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1363         dev->creation_time = get_jiffies_64();
1364         spin_lock_init(&dev->stats_lock);
1365
1366         spin_lock(&hba->device_lock);
1367         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1368         hba->dev_count++;
1369         spin_unlock(&hba->device_lock);
1370         /*
1371          * Setup the SAM Task Attribute emulation for struct se_device
1372          */
1373         core_setup_task_attr_emulation(dev);
1374         /*
1375          * Force PR and ALUA passthrough emulation with internal object use.
1376          */
1377         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1378         /*
1379          * Setup the Reservations infrastructure for struct se_device
1380          */
1381         core_setup_reservations(dev, force_pt);
1382         /*
1383          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1384          */
1385         if (core_setup_alua(dev, force_pt) < 0)
1386                 goto out;
1387
1388         /*
1389          * Startup the struct se_device processing thread
1390          */
1391         dev->process_thread = kthread_run(transport_processing_thread, dev,
1392                                           "LIO_%s", dev->transport->name);
1393         if (IS_ERR(dev->process_thread)) {
1394                 pr_err("Unable to create kthread: LIO_%s\n",
1395                         dev->transport->name);
1396                 goto out;
1397         }
1398         /*
1399          * Setup work_queue for QUEUE_FULL
1400          */
1401         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1402         /*
1403          * Preload the initial INQUIRY const values if we are doing
1404          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1405          * passthrough because this is being provided by the backend LLD.
1406          * This is required so that transport_get_inquiry() copies these
1407          * originals once back into DEV_T10_WWN(dev) for the virtual device
1408          * setup.
1409          */
1410         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1411                 if (!inquiry_prod || !inquiry_rev) {
1412                         pr_err("All non TCM/pSCSI plugins require"
1413                                 " INQUIRY consts\n");
1414                         goto out;
1415                 }
1416
1417                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1418                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1419                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1420         }
1421         scsi_dump_inquiry(dev);
1422
1423         return dev;
1424 out:
1425         kthread_stop(dev->process_thread);
1426
1427         spin_lock(&hba->device_lock);
1428         list_del(&dev->dev_list);
1429         hba->dev_count--;
1430         spin_unlock(&hba->device_lock);
1431
1432         se_release_vpd_for_dev(dev);
1433
1434         kfree(dev);
1435
1436         return NULL;
1437 }
1438 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1439
1440 /*      transport_generic_prepare_cdb():
1441  *
1442  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1443  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1444  *      The point of this is since we are mapping iSCSI LUNs to
1445  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1446  *      devices and HBAs for a loop.
1447  */
1448 static inline void transport_generic_prepare_cdb(
1449         unsigned char *cdb)
1450 {
1451         switch (cdb[0]) {
1452         case READ_10: /* SBC - RDProtect */
1453         case READ_12: /* SBC - RDProtect */
1454         case READ_16: /* SBC - RDProtect */
1455         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1456         case VERIFY: /* SBC - VRProtect */
1457         case VERIFY_16: /* SBC - VRProtect */
1458         case WRITE_VERIFY: /* SBC - VRProtect */
1459         case WRITE_VERIFY_12: /* SBC - VRProtect */
1460                 break;
1461         default:
1462                 cdb[1] &= 0x1f; /* clear logical unit number */
1463                 break;
1464         }
1465 }
1466
1467 static struct se_task *
1468 transport_generic_get_task(struct se_cmd *cmd,
1469                 enum dma_data_direction data_direction)
1470 {
1471         struct se_task *task;
1472         struct se_device *dev = cmd->se_dev;
1473
1474         task = dev->transport->alloc_task(cmd->t_task_cdb);
1475         if (!task) {
1476                 pr_err("Unable to allocate struct se_task\n");
1477                 return NULL;
1478         }
1479
1480         INIT_LIST_HEAD(&task->t_list);
1481         INIT_LIST_HEAD(&task->t_execute_list);
1482         INIT_LIST_HEAD(&task->t_state_list);
1483         init_completion(&task->task_stop_comp);
1484         task->task_se_cmd = cmd;
1485         task->task_data_direction = data_direction;
1486
1487         return task;
1488 }
1489
1490 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1491
1492 /*
1493  * Used by fabric modules containing a local struct se_cmd within their
1494  * fabric dependent per I/O descriptor.
1495  */
1496 void transport_init_se_cmd(
1497         struct se_cmd *cmd,
1498         struct target_core_fabric_ops *tfo,
1499         struct se_session *se_sess,
1500         u32 data_length,
1501         int data_direction,
1502         int task_attr,
1503         unsigned char *sense_buffer)
1504 {
1505         INIT_LIST_HEAD(&cmd->se_lun_node);
1506         INIT_LIST_HEAD(&cmd->se_delayed_node);
1507         INIT_LIST_HEAD(&cmd->se_qf_node);
1508         INIT_LIST_HEAD(&cmd->se_queue_node);
1509         INIT_LIST_HEAD(&cmd->se_cmd_list);
1510         INIT_LIST_HEAD(&cmd->t_task_list);
1511         init_completion(&cmd->transport_lun_fe_stop_comp);
1512         init_completion(&cmd->transport_lun_stop_comp);
1513         init_completion(&cmd->t_transport_stop_comp);
1514         init_completion(&cmd->cmd_wait_comp);
1515         spin_lock_init(&cmd->t_state_lock);
1516         cmd->transport_state = CMD_T_DEV_ACTIVE;
1517
1518         cmd->se_tfo = tfo;
1519         cmd->se_sess = se_sess;
1520         cmd->data_length = data_length;
1521         cmd->data_direction = data_direction;
1522         cmd->sam_task_attr = task_attr;
1523         cmd->sense_buffer = sense_buffer;
1524 }
1525 EXPORT_SYMBOL(transport_init_se_cmd);
1526
1527 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1528 {
1529         /*
1530          * Check if SAM Task Attribute emulation is enabled for this
1531          * struct se_device storage object
1532          */
1533         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1534                 return 0;
1535
1536         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1537                 pr_debug("SAM Task Attribute ACA"
1538                         " emulation is not supported\n");
1539                 return -EINVAL;
1540         }
1541         /*
1542          * Used to determine when ORDERED commands should go from
1543          * Dormant to Active status.
1544          */
1545         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1546         smp_mb__after_atomic_inc();
1547         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1548                         cmd->se_ordered_id, cmd->sam_task_attr,
1549                         cmd->se_dev->transport->name);
1550         return 0;
1551 }
1552
1553 /*      transport_generic_allocate_tasks():
1554  *
1555  *      Called from fabric RX Thread.
1556  */
1557 int transport_generic_allocate_tasks(
1558         struct se_cmd *cmd,
1559         unsigned char *cdb)
1560 {
1561         int ret;
1562
1563         transport_generic_prepare_cdb(cdb);
1564         /*
1565          * Ensure that the received CDB is less than the max (252 + 8) bytes
1566          * for VARIABLE_LENGTH_CMD
1567          */
1568         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1569                 pr_err("Received SCSI CDB with command_size: %d that"
1570                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1571                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1572                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1573                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1574                 return -EINVAL;
1575         }
1576         /*
1577          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1578          * allocate the additional extended CDB buffer now..  Otherwise
1579          * setup the pointer from __t_task_cdb to t_task_cdb.
1580          */
1581         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1582                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1583                                                 GFP_KERNEL);
1584                 if (!cmd->t_task_cdb) {
1585                         pr_err("Unable to allocate cmd->t_task_cdb"
1586                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1587                                 scsi_command_size(cdb),
1588                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1589                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1590                         cmd->scsi_sense_reason =
1591                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1592                         return -ENOMEM;
1593                 }
1594         } else
1595                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1596         /*
1597          * Copy the original CDB into cmd->
1598          */
1599         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1600         /*
1601          * Setup the received CDB based on SCSI defined opcodes and
1602          * perform unit attention, persistent reservations and ALUA
1603          * checks for virtual device backends.  The cmd->t_task_cdb
1604          * pointer is expected to be setup before we reach this point.
1605          */
1606         ret = transport_generic_cmd_sequencer(cmd, cdb);
1607         if (ret < 0)
1608                 return ret;
1609         /*
1610          * Check for SAM Task Attribute Emulation
1611          */
1612         if (transport_check_alloc_task_attr(cmd) < 0) {
1613                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1614                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1615                 return -EINVAL;
1616         }
1617         spin_lock(&cmd->se_lun->lun_sep_lock);
1618         if (cmd->se_lun->lun_sep)
1619                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1620         spin_unlock(&cmd->se_lun->lun_sep_lock);
1621         return 0;
1622 }
1623 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1624
1625 /*
1626  * Used by fabric module frontends to queue tasks directly.
1627  * Many only be used from process context only
1628  */
1629 int transport_handle_cdb_direct(
1630         struct se_cmd *cmd)
1631 {
1632         int ret;
1633
1634         if (!cmd->se_lun) {
1635                 dump_stack();
1636                 pr_err("cmd->se_lun is NULL\n");
1637                 return -EINVAL;
1638         }
1639         if (in_interrupt()) {
1640                 dump_stack();
1641                 pr_err("transport_generic_handle_cdb cannot be called"
1642                                 " from interrupt context\n");
1643                 return -EINVAL;
1644         }
1645         /*
1646          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1647          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1648          * in existing usage to ensure that outstanding descriptors are handled
1649          * correctly during shutdown via transport_wait_for_tasks()
1650          *
1651          * Also, we don't take cmd->t_state_lock here as we only expect
1652          * this to be called for initial descriptor submission.
1653          */
1654         cmd->t_state = TRANSPORT_NEW_CMD;
1655         cmd->transport_state |= CMD_T_ACTIVE;
1656
1657         /*
1658          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1659          * so follow TRANSPORT_NEW_CMD processing thread context usage
1660          * and call transport_generic_request_failure() if necessary..
1661          */
1662         ret = transport_generic_new_cmd(cmd);
1663         if (ret < 0)
1664                 transport_generic_request_failure(cmd);
1665
1666         return 0;
1667 }
1668 EXPORT_SYMBOL(transport_handle_cdb_direct);
1669
1670 /**
1671  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1672  *
1673  * @se_cmd: command descriptor to submit
1674  * @se_sess: associated se_sess for endpoint
1675  * @cdb: pointer to SCSI CDB
1676  * @sense: pointer to SCSI sense buffer
1677  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1678  * @data_length: fabric expected data transfer length
1679  * @task_addr: SAM task attribute
1680  * @data_dir: DMA data direction
1681  * @flags: flags for command submission from target_sc_flags_tables
1682  *
1683  * This may only be called from process context, and also currently
1684  * assumes internal allocation of fabric payload buffer by target-core.
1685  **/
1686 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1687                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1688                 u32 data_length, int task_attr, int data_dir, int flags)
1689 {
1690         struct se_portal_group *se_tpg;
1691         int rc;
1692
1693         se_tpg = se_sess->se_tpg;
1694         BUG_ON(!se_tpg);
1695         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1696         BUG_ON(in_interrupt());
1697         /*
1698          * Initialize se_cmd for target operation.  From this point
1699          * exceptions are handled by sending exception status via
1700          * target_core_fabric_ops->queue_status() callback
1701          */
1702         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1703                                 data_length, data_dir, task_attr, sense);
1704         /*
1705          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1706          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1707          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1708          * kref_put() to happen during fabric packet acknowledgement.
1709          */
1710         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1711         /*
1712          * Signal bidirectional data payloads to target-core
1713          */
1714         if (flags & TARGET_SCF_BIDI_OP)
1715                 se_cmd->se_cmd_flags |= SCF_BIDI;
1716         /*
1717          * Locate se_lun pointer and attach it to struct se_cmd
1718          */
1719         if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1720                 transport_send_check_condition_and_sense(se_cmd,
1721                                 se_cmd->scsi_sense_reason, 0);
1722                 target_put_sess_cmd(se_sess, se_cmd);
1723                 return;
1724         }
1725         /*
1726          * Sanitize CDBs via transport_generic_cmd_sequencer() and
1727          * allocate the necessary tasks to complete the received CDB+data
1728          */
1729         rc = transport_generic_allocate_tasks(se_cmd, cdb);
1730         if (rc != 0) {
1731                 transport_generic_request_failure(se_cmd);
1732                 return;
1733         }
1734         /*
1735          * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1736          * for immediate execution of READs, otherwise wait for
1737          * transport_generic_handle_data() to be called for WRITEs
1738          * when fabric has filled the incoming buffer.
1739          */
1740         transport_handle_cdb_direct(se_cmd);
1741         return;
1742 }
1743 EXPORT_SYMBOL(target_submit_cmd);
1744
1745 static void target_complete_tmr_failure(struct work_struct *work)
1746 {
1747         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1748
1749         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1750         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1751 }
1752
1753 /**
1754  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1755  *                     for TMR CDBs
1756  *
1757  * @se_cmd: command descriptor to submit
1758  * @se_sess: associated se_sess for endpoint
1759  * @sense: pointer to SCSI sense buffer
1760  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1761  * @fabric_context: fabric context for TMR req
1762  * @tm_type: Type of TM request
1763  * @gfp: gfp type for caller
1764  * @tag: referenced task tag for TMR_ABORT_TASK
1765  * @flags: submit cmd flags
1766  *
1767  * Callable from all contexts.
1768  **/
1769
1770 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1771                 unsigned char *sense, u32 unpacked_lun,
1772                 void *fabric_tmr_ptr, unsigned char tm_type,
1773                 gfp_t gfp, unsigned int tag, int flags)
1774 {
1775         struct se_portal_group *se_tpg;
1776         int ret;
1777
1778         se_tpg = se_sess->se_tpg;
1779         BUG_ON(!se_tpg);
1780
1781         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1782                               0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1783         /*
1784          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1785          * allocation failure.
1786          */
1787         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1788         if (ret < 0)
1789                 return -ENOMEM;
1790
1791         if (tm_type == TMR_ABORT_TASK)
1792                 se_cmd->se_tmr_req->ref_task_tag = tag;
1793
1794         /* See target_submit_cmd for commentary */
1795         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1796
1797         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1798         if (ret) {
1799                 /*
1800                  * For callback during failure handling, push this work off
1801                  * to process context with TMR_LUN_DOES_NOT_EXIST status.
1802                  */
1803                 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1804                 schedule_work(&se_cmd->work);
1805                 return 0;
1806         }
1807         transport_generic_handle_tmr(se_cmd);
1808         return 0;
1809 }
1810 EXPORT_SYMBOL(target_submit_tmr);
1811
1812 /*
1813  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1814  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1815  * complete setup in TCM process context w/ TFO->new_cmd_map().
1816  */
1817 int transport_generic_handle_cdb_map(
1818         struct se_cmd *cmd)
1819 {
1820         if (!cmd->se_lun) {
1821                 dump_stack();
1822                 pr_err("cmd->se_lun is NULL\n");
1823                 return -EINVAL;
1824         }
1825
1826         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1827         return 0;
1828 }
1829 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1830
1831 /*      transport_generic_handle_data():
1832  *
1833  *
1834  */
1835 int transport_generic_handle_data(
1836         struct se_cmd *cmd)
1837 {
1838         /*
1839          * For the software fabric case, then we assume the nexus is being
1840          * failed/shutdown when signals are pending from the kthread context
1841          * caller, so we return a failure.  For the HW target mode case running
1842          * in interrupt code, the signal_pending() check is skipped.
1843          */
1844         if (!in_interrupt() && signal_pending(current))
1845                 return -EPERM;
1846         /*
1847          * If the received CDB has aleady been ABORTED by the generic
1848          * target engine, we now call transport_check_aborted_status()
1849          * to queue any delated TASK_ABORTED status for the received CDB to the
1850          * fabric module as we are expecting no further incoming DATA OUT
1851          * sequences at this point.
1852          */
1853         if (transport_check_aborted_status(cmd, 1) != 0)
1854                 return 0;
1855
1856         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1857         return 0;
1858 }
1859 EXPORT_SYMBOL(transport_generic_handle_data);
1860
1861 /*      transport_generic_handle_tmr():
1862  *
1863  *
1864  */
1865 int transport_generic_handle_tmr(
1866         struct se_cmd *cmd)
1867 {
1868         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1869         return 0;
1870 }
1871 EXPORT_SYMBOL(transport_generic_handle_tmr);
1872
1873 /*
1874  * If the task is active, request it to be stopped and sleep until it
1875  * has completed.
1876  */
1877 bool target_stop_task(struct se_task *task, unsigned long *flags)
1878 {
1879         struct se_cmd *cmd = task->task_se_cmd;
1880         bool was_active = false;
1881
1882         if (task->task_flags & TF_ACTIVE) {
1883                 task->task_flags |= TF_REQUEST_STOP;
1884                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1885
1886                 pr_debug("Task %p waiting to complete\n", task);
1887                 wait_for_completion(&task->task_stop_comp);
1888                 pr_debug("Task %p stopped successfully\n", task);
1889
1890                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1891                 atomic_dec(&cmd->t_task_cdbs_left);
1892                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1893                 was_active = true;
1894         }
1895
1896         return was_active;
1897 }
1898
1899 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1900 {
1901         struct se_task *task, *task_tmp;
1902         unsigned long flags;
1903         int ret = 0;
1904
1905         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1906                 cmd->se_tfo->get_task_tag(cmd));
1907
1908         /*
1909          * No tasks remain in the execution queue
1910          */
1911         spin_lock_irqsave(&cmd->t_state_lock, flags);
1912         list_for_each_entry_safe(task, task_tmp,
1913                                 &cmd->t_task_list, t_list) {
1914                 pr_debug("Processing task %p\n", task);
1915                 /*
1916                  * If the struct se_task has not been sent and is not active,
1917                  * remove the struct se_task from the execution queue.
1918                  */
1919                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1920                         spin_unlock_irqrestore(&cmd->t_state_lock,
1921                                         flags);
1922                         transport_remove_task_from_execute_queue(task,
1923                                         cmd->se_dev);
1924
1925                         pr_debug("Task %p removed from execute queue\n", task);
1926                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1927                         continue;
1928                 }
1929
1930                 if (!target_stop_task(task, &flags)) {
1931                         pr_debug("Task %p - did nothing\n", task);
1932                         ret++;
1933                 }
1934         }
1935         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1936
1937         return ret;
1938 }
1939
1940 /*
1941  * Handle SAM-esque emulation for generic transport request failures.
1942  */
1943 void transport_generic_request_failure(struct se_cmd *cmd)
1944 {
1945         int ret = 0;
1946
1947         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1948                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1949                 cmd->t_task_cdb[0]);
1950         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1951                 cmd->se_tfo->get_cmd_state(cmd),
1952                 cmd->t_state, cmd->scsi_sense_reason);
1953         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1954                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1955                 " CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1956                 cmd->t_task_list_num,
1957                 atomic_read(&cmd->t_task_cdbs_left),
1958                 atomic_read(&cmd->t_task_cdbs_sent),
1959                 atomic_read(&cmd->t_task_cdbs_ex_left),
1960                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1961                 (cmd->transport_state & CMD_T_STOP) != 0,
1962                 (cmd->transport_state & CMD_T_SENT) != 0);
1963
1964         /*
1965          * For SAM Task Attribute emulation for failed struct se_cmd
1966          */
1967         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1968                 transport_complete_task_attr(cmd);
1969
1970         switch (cmd->scsi_sense_reason) {
1971         case TCM_NON_EXISTENT_LUN:
1972         case TCM_UNSUPPORTED_SCSI_OPCODE:
1973         case TCM_INVALID_CDB_FIELD:
1974         case TCM_INVALID_PARAMETER_LIST:
1975         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1976         case TCM_UNKNOWN_MODE_PAGE:
1977         case TCM_WRITE_PROTECTED:
1978         case TCM_ADDRESS_OUT_OF_RANGE:
1979         case TCM_CHECK_CONDITION_ABORT_CMD:
1980         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1981         case TCM_CHECK_CONDITION_NOT_READY:
1982                 break;
1983         case TCM_RESERVATION_CONFLICT:
1984                 /*
1985                  * No SENSE Data payload for this case, set SCSI Status
1986                  * and queue the response to $FABRIC_MOD.
1987                  *
1988                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1989                  */
1990                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1991                 /*
1992                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1993                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1994                  * CONFLICT STATUS.
1995                  *
1996                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1997                  */
1998                 if (cmd->se_sess &&
1999                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2000                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2001                                 cmd->orig_fe_lun, 0x2C,
2002                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2003
2004                 ret = cmd->se_tfo->queue_status(cmd);
2005                 if (ret == -EAGAIN || ret == -ENOMEM)
2006                         goto queue_full;
2007                 goto check_stop;
2008         default:
2009                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2010                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
2011                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2012                 break;
2013         }
2014         /*
2015          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2016          * make the call to transport_send_check_condition_and_sense()
2017          * directly.  Otherwise expect the fabric to make the call to
2018          * transport_send_check_condition_and_sense() after handling
2019          * possible unsoliticied write data payloads.
2020          */
2021         ret = transport_send_check_condition_and_sense(cmd,
2022                         cmd->scsi_sense_reason, 0);
2023         if (ret == -EAGAIN || ret == -ENOMEM)
2024                 goto queue_full;
2025
2026 check_stop:
2027         transport_lun_remove_cmd(cmd);
2028         if (!transport_cmd_check_stop_to_fabric(cmd))
2029                 ;
2030         return;
2031
2032 queue_full:
2033         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2034         transport_handle_queue_full(cmd, cmd->se_dev);
2035 }
2036 EXPORT_SYMBOL(transport_generic_request_failure);
2037
2038 static inline u32 transport_lba_21(unsigned char *cdb)
2039 {
2040         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2041 }
2042
2043 static inline u32 transport_lba_32(unsigned char *cdb)
2044 {
2045         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2046 }
2047
2048 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2049 {
2050         unsigned int __v1, __v2;
2051
2052         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2053         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2054
2055         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2056 }
2057
2058 /*
2059  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2060  */
2061 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2062 {
2063         unsigned int __v1, __v2;
2064
2065         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2066         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2067
2068         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2069 }
2070
2071 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2072 {
2073         unsigned long flags;
2074
2075         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2076         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2077         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2078 }
2079
2080 /*
2081  * Called from Fabric Module context from transport_execute_tasks()
2082  *
2083  * The return of this function determins if the tasks from struct se_cmd
2084  * get added to the execution queue in transport_execute_tasks(),
2085  * or are added to the delayed or ordered lists here.
2086  */
2087 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2088 {
2089         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2090                 return 1;
2091         /*
2092          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2093          * to allow the passed struct se_cmd list of tasks to the front of the list.
2094          */
2095          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2096                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2097                         " 0x%02x, se_ordered_id: %u\n",
2098                         cmd->t_task_cdb[0],
2099                         cmd->se_ordered_id);
2100                 return 1;
2101         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2102                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2103                 smp_mb__after_atomic_inc();
2104
2105                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2106                                 " list, se_ordered_id: %u\n",
2107                                 cmd->t_task_cdb[0],
2108                                 cmd->se_ordered_id);
2109                 /*
2110                  * Add ORDERED command to tail of execution queue if
2111                  * no other older commands exist that need to be
2112                  * completed first.
2113                  */
2114                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2115                         return 1;
2116         } else {
2117                 /*
2118                  * For SIMPLE and UNTAGGED Task Attribute commands
2119                  */
2120                 atomic_inc(&cmd->se_dev->simple_cmds);
2121                 smp_mb__after_atomic_inc();
2122         }
2123         /*
2124          * Otherwise if one or more outstanding ORDERED task attribute exist,
2125          * add the dormant task(s) built for the passed struct se_cmd to the
2126          * execution queue and become in Active state for this struct se_device.
2127          */
2128         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2129                 /*
2130                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2131                  * will be drained upon completion of HEAD_OF_QUEUE task.
2132                  */
2133                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2134                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2135                 list_add_tail(&cmd->se_delayed_node,
2136                                 &cmd->se_dev->delayed_cmd_list);
2137                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2138
2139                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2140                         " delayed CMD list, se_ordered_id: %u\n",
2141                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2142                         cmd->se_ordered_id);
2143                 /*
2144                  * Return zero to let transport_execute_tasks() know
2145                  * not to add the delayed tasks to the execution list.
2146                  */
2147                 return 0;
2148         }
2149         /*
2150          * Otherwise, no ORDERED task attributes exist..
2151          */
2152         return 1;
2153 }
2154
2155 /*
2156  * Called from fabric module context in transport_generic_new_cmd() and
2157  * transport_generic_process_write()
2158  */
2159 static int transport_execute_tasks(struct se_cmd *cmd)
2160 {
2161         int add_tasks;
2162         struct se_device *se_dev = cmd->se_dev;
2163         /*
2164          * Call transport_cmd_check_stop() to see if a fabric exception
2165          * has occurred that prevents execution.
2166          */
2167         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2168                 /*
2169                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2170                  * attribute for the tasks of the received struct se_cmd CDB
2171                  */
2172                 add_tasks = transport_execute_task_attr(cmd);
2173                 if (!add_tasks)
2174                         goto execute_tasks;
2175                 /*
2176                  * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2177                  * adds associated se_tasks while holding dev->execute_task_lock
2178                  * before I/O dispath to avoid a double spinlock access.
2179                  */
2180                 __transport_execute_tasks(se_dev, cmd);
2181                 return 0;
2182         }
2183
2184 execute_tasks:
2185         __transport_execute_tasks(se_dev, NULL);
2186         return 0;
2187 }
2188
2189 /*
2190  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2191  * from struct se_device->execute_task_list and
2192  *
2193  * Called from transport_processing_thread()
2194  */
2195 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2196 {
2197         int error;
2198         struct se_cmd *cmd = NULL;
2199         struct se_task *task = NULL;
2200         unsigned long flags;
2201
2202 check_depth:
2203         spin_lock_irq(&dev->execute_task_lock);
2204         if (new_cmd != NULL)
2205                 __transport_add_tasks_from_cmd(new_cmd);
2206
2207         if (list_empty(&dev->execute_task_list)) {
2208                 spin_unlock_irq(&dev->execute_task_lock);
2209                 return 0;
2210         }
2211         task = list_first_entry(&dev->execute_task_list,
2212                                 struct se_task, t_execute_list);
2213         __transport_remove_task_from_execute_queue(task, dev);
2214         spin_unlock_irq(&dev->execute_task_lock);
2215
2216         cmd = task->task_se_cmd;
2217         spin_lock_irqsave(&cmd->t_state_lock, flags);
2218         task->task_flags |= (TF_ACTIVE | TF_SENT);
2219         atomic_inc(&cmd->t_task_cdbs_sent);
2220
2221         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2222             cmd->t_task_list_num)
2223                 cmd->transport_state |= CMD_T_SENT;
2224
2225         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2226
2227         if (cmd->execute_task)
2228                 error = cmd->execute_task(task);
2229         else
2230                 error = dev->transport->do_task(task);
2231         if (error != 0) {
2232                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2233                 task->task_flags &= ~TF_ACTIVE;
2234                 cmd->transport_state &= ~CMD_T_SENT;
2235                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2236
2237                 transport_stop_tasks_for_cmd(cmd);
2238                 transport_generic_request_failure(cmd);
2239         }
2240
2241         new_cmd = NULL;
2242         goto check_depth;
2243
2244         return 0;
2245 }
2246
2247 static inline u32 transport_get_sectors_6(
2248         unsigned char *cdb,
2249         struct se_cmd *cmd,
2250         int *ret)
2251 {
2252         struct se_device *dev = cmd->se_dev;
2253
2254         /*
2255          * Assume TYPE_DISK for non struct se_device objects.
2256          * Use 8-bit sector value.
2257          */
2258         if (!dev)
2259                 goto type_disk;
2260
2261         /*
2262          * Use 24-bit allocation length for TYPE_TAPE.
2263          */
2264         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2265                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2266
2267         /*
2268          * Everything else assume TYPE_DISK Sector CDB location.
2269          * Use 8-bit sector value.  SBC-3 says:
2270          *
2271          *   A TRANSFER LENGTH field set to zero specifies that 256
2272          *   logical blocks shall be written.  Any other value
2273          *   specifies the number of logical blocks that shall be
2274          *   written.
2275          */
2276 type_disk:
2277         return cdb[4] ? : 256;
2278 }
2279
2280 static inline u32 transport_get_sectors_10(
2281         unsigned char *cdb,
2282         struct se_cmd *cmd,
2283         int *ret)
2284 {
2285         struct se_device *dev = cmd->se_dev;
2286
2287         /*
2288          * Assume TYPE_DISK for non struct se_device objects.
2289          * Use 16-bit sector value.
2290          */
2291         if (!dev)
2292                 goto type_disk;
2293
2294         /*
2295          * XXX_10 is not defined in SSC, throw an exception
2296          */
2297         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2298                 *ret = -EINVAL;
2299                 return 0;
2300         }
2301
2302         /*
2303          * Everything else assume TYPE_DISK Sector CDB location.
2304          * Use 16-bit sector value.
2305          */
2306 type_disk:
2307         return (u32)(cdb[7] << 8) + cdb[8];
2308 }
2309
2310 static inline u32 transport_get_sectors_12(
2311         unsigned char *cdb,
2312         struct se_cmd *cmd,
2313         int *ret)
2314 {
2315         struct se_device *dev = cmd->se_dev;
2316
2317         /*
2318          * Assume TYPE_DISK for non struct se_device objects.
2319          * Use 32-bit sector value.
2320          */
2321         if (!dev)
2322                 goto type_disk;
2323
2324         /*
2325          * XXX_12 is not defined in SSC, throw an exception
2326          */
2327         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2328                 *ret = -EINVAL;
2329                 return 0;
2330         }
2331
2332         /*
2333          * Everything else assume TYPE_DISK Sector CDB location.
2334          * Use 32-bit sector value.
2335          */
2336 type_disk:
2337         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2338 }
2339
2340 static inline u32 transport_get_sectors_16(
2341         unsigned char *cdb,
2342         struct se_cmd *cmd,
2343         int *ret)
2344 {
2345         struct se_device *dev = cmd->se_dev;
2346
2347         /*
2348          * Assume TYPE_DISK for non struct se_device objects.
2349          * Use 32-bit sector value.
2350          */
2351         if (!dev)
2352                 goto type_disk;
2353
2354         /*
2355          * Use 24-bit allocation length for TYPE_TAPE.
2356          */
2357         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2358                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2359
2360 type_disk:
2361         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2362                     (cdb[12] << 8) + cdb[13];
2363 }
2364
2365 /*
2366  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2367  */
2368 static inline u32 transport_get_sectors_32(
2369         unsigned char *cdb,
2370         struct se_cmd *cmd,
2371         int *ret)
2372 {
2373         /*
2374          * Assume TYPE_DISK for non struct se_device objects.
2375          * Use 32-bit sector value.
2376          */
2377         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2378                     (cdb[30] << 8) + cdb[31];
2379
2380 }
2381
2382 static inline u32 transport_get_size(
2383         u32 sectors,
2384         unsigned char *cdb,
2385         struct se_cmd *cmd)
2386 {
2387         struct se_device *dev = cmd->se_dev;
2388
2389         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2390                 if (cdb[1] & 1) { /* sectors */
2391                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2392                 } else /* bytes */
2393                         return sectors;
2394         }
2395 #if 0
2396         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2397                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2398                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2399                         dev->transport->name);
2400 #endif
2401         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2402 }
2403
2404 static void transport_xor_callback(struct se_cmd *cmd)
2405 {
2406         unsigned char *buf, *addr;
2407         struct scatterlist *sg;
2408         unsigned int offset;
2409         int i;
2410         int count;
2411         /*
2412          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2413          *
2414          * 1) read the specified logical block(s);
2415          * 2) transfer logical blocks from the data-out buffer;
2416          * 3) XOR the logical blocks transferred from the data-out buffer with
2417          *    the logical blocks read, storing the resulting XOR data in a buffer;
2418          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2419          *    blocks transferred from the data-out buffer; and
2420          * 5) transfer the resulting XOR data to the data-in buffer.
2421          */
2422         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2423         if (!buf) {
2424                 pr_err("Unable to allocate xor_callback buf\n");
2425                 return;
2426         }
2427         /*
2428          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2429          * into the locally allocated *buf
2430          */
2431         sg_copy_to_buffer(cmd->t_data_sg,
2432                           cmd->t_data_nents,
2433                           buf,
2434                           cmd->data_length);
2435
2436         /*
2437          * Now perform the XOR against the BIDI read memory located at
2438          * cmd->t_mem_bidi_list
2439          */
2440
2441         offset = 0;
2442         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2443                 addr = kmap_atomic(sg_page(sg));
2444                 if (!addr)
2445                         goto out;
2446
2447                 for (i = 0; i < sg->length; i++)
2448                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2449
2450                 offset += sg->length;
2451                 kunmap_atomic(addr);
2452         }
2453
2454 out:
2455         kfree(buf);
2456 }
2457
2458 /*
2459  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2460  */
2461 static int transport_get_sense_data(struct se_cmd *cmd)
2462 {
2463         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2464         struct se_device *dev = cmd->se_dev;
2465         struct se_task *task = NULL, *task_tmp;
2466         unsigned long flags;
2467         u32 offset = 0;
2468
2469         WARN_ON(!cmd->se_lun);
2470
2471         if (!dev)
2472                 return 0;
2473
2474         spin_lock_irqsave(&cmd->t_state_lock, flags);
2475         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2476                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2477                 return 0;
2478         }
2479
2480         list_for_each_entry_safe(task, task_tmp,
2481                                 &cmd->t_task_list, t_list) {
2482                 if (!(task->task_flags & TF_HAS_SENSE))
2483                         continue;
2484
2485                 if (!dev->transport->get_sense_buffer) {
2486                         pr_err("dev->transport->get_sense_buffer"
2487                                         " is NULL\n");
2488                         continue;
2489                 }
2490
2491                 sense_buffer = dev->transport->get_sense_buffer(task);
2492                 if (!sense_buffer) {
2493                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2494                                 " sense buffer for task with sense\n",
2495                                 cmd->se_tfo->get_task_tag(cmd), task);
2496                         continue;
2497                 }
2498                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2499
2500                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2501                                 TRANSPORT_SENSE_BUFFER);
2502
2503                 memcpy(&buffer[offset], sense_buffer,
2504                                 TRANSPORT_SENSE_BUFFER);
2505                 cmd->scsi_status = task->task_scsi_status;
2506                 /* Automatically padded */
2507                 cmd->scsi_sense_length =
2508                                 (TRANSPORT_SENSE_BUFFER + offset);
2509
2510                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2511                                 " and sense\n",
2512                         dev->se_hba->hba_id, dev->transport->name,
2513                                 cmd->scsi_status);
2514                 return 0;
2515         }
2516         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2517
2518         return -1;
2519 }
2520
2521 static inline long long transport_dev_end_lba(struct se_device *dev)
2522 {
2523         return dev->transport->get_blocks(dev) + 1;
2524 }
2525
2526 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2527 {
2528         struct se_device *dev = cmd->se_dev;
2529         u32 sectors;
2530
2531         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2532                 return 0;
2533
2534         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2535
2536         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2537                 pr_err("LBA: %llu Sectors: %u exceeds"
2538                         " transport_dev_end_lba(): %llu\n",
2539                         cmd->t_task_lba, sectors,
2540                         transport_dev_end_lba(dev));
2541                 return -EINVAL;
2542         }
2543
2544         return 0;
2545 }
2546
2547 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2548 {
2549         /*
2550          * Determine if the received WRITE_SAME is used to for direct
2551          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2552          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2553          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2554          */
2555         int passthrough = (dev->transport->transport_type ==
2556                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2557
2558         if (!passthrough) {
2559                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2560                         pr_err("WRITE_SAME PBDATA and LBDATA"
2561                                 " bits not supported for Block Discard"
2562                                 " Emulation\n");
2563                         return -ENOSYS;
2564                 }
2565                 /*
2566                  * Currently for the emulated case we only accept
2567                  * tpws with the UNMAP=1 bit set.
2568                  */
2569                 if (!(flags[0] & 0x08)) {
2570                         pr_err("WRITE_SAME w/o UNMAP bit not"
2571                                 " supported for Block Discard Emulation\n");
2572                         return -ENOSYS;
2573                 }
2574         }
2575
2576         return 0;
2577 }
2578
2579 /*      transport_generic_cmd_sequencer():
2580  *
2581  *      Generic Command Sequencer that should work for most DAS transport
2582  *      drivers.
2583  *
2584  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2585  *      RX Thread.
2586  *
2587  *      FIXME: Need to support other SCSI OPCODES where as well.
2588  */
2589 static int transport_generic_cmd_sequencer(
2590         struct se_cmd *cmd,
2591         unsigned char *cdb)
2592 {
2593         struct se_device *dev = cmd->se_dev;
2594         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2595         int ret = 0, sector_ret = 0, passthrough;
2596         u32 sectors = 0, size = 0, pr_reg_type = 0;
2597         u16 service_action;
2598         u8 alua_ascq = 0;
2599         /*
2600          * Check for an existing UNIT ATTENTION condition
2601          */
2602         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2603                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2604                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2605                 return -EINVAL;
2606         }
2607         /*
2608          * Check status of Asymmetric Logical Unit Assignment port
2609          */
2610         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2611         if (ret != 0) {
2612                 /*
2613                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2614                  * The ALUA additional sense code qualifier (ASCQ) is determined
2615                  * by the ALUA primary or secondary access state..
2616                  */
2617                 if (ret > 0) {
2618 #if 0
2619                         pr_debug("[%s]: ALUA TG Port not available,"
2620                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2621                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2622 #endif
2623                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2624                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2625                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2626                         return -EINVAL;
2627                 }
2628                 goto out_invalid_cdb_field;
2629         }
2630         /*
2631          * Check status for SPC-3 Persistent Reservations
2632          */
2633         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2634                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2635                                         cmd, cdb, pr_reg_type) != 0) {
2636                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2637                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2638                         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2639                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2640                         return -EBUSY;
2641                 }
2642                 /*
2643                  * This means the CDB is allowed for the SCSI Initiator port
2644                  * when said port is *NOT* holding the legacy SPC-2 or
2645                  * SPC-3 Persistent Reservation.
2646                  */
2647         }
2648
2649         /*
2650          * If we operate in passthrough mode we skip most CDB emulation and
2651          * instead hand the commands down to the physical SCSI device.
2652          */
2653         passthrough =
2654                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2655
2656         switch (cdb[0]) {
2657         case READ_6:
2658                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2659                 if (sector_ret)
2660                         goto out_unsupported_cdb;
2661                 size = transport_get_size(sectors, cdb, cmd);
2662                 cmd->t_task_lba = transport_lba_21(cdb);
2663                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2664                 break;
2665         case READ_10:
2666                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2667                 if (sector_ret)
2668                         goto out_unsupported_cdb;
2669                 size = transport_get_size(sectors, cdb, cmd);
2670                 cmd->t_task_lba = transport_lba_32(cdb);
2671                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2672                 break;
2673         case READ_12:
2674                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2675                 if (sector_ret)
2676                         goto out_unsupported_cdb;
2677                 size = transport_get_size(sectors, cdb, cmd);
2678                 cmd->t_task_lba = transport_lba_32(cdb);
2679                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2680                 break;
2681         case READ_16:
2682                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2683                 if (sector_ret)
2684                         goto out_unsupported_cdb;
2685                 size = transport_get_size(sectors, cdb, cmd);
2686                 cmd->t_task_lba = transport_lba_64(cdb);
2687                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2688                 break;
2689         case WRITE_6:
2690                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2691                 if (sector_ret)
2692                         goto out_unsupported_cdb;
2693                 size = transport_get_size(sectors, cdb, cmd);
2694                 cmd->t_task_lba = transport_lba_21(cdb);
2695                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2696                 break;
2697         case WRITE_10:
2698                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2699                 if (sector_ret)
2700                         goto out_unsupported_cdb;
2701                 size = transport_get_size(sectors, cdb, cmd);
2702                 cmd->t_task_lba = transport_lba_32(cdb);
2703                 if (cdb[1] & 0x8)
2704                         cmd->se_cmd_flags |= SCF_FUA;
2705                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2706                 break;
2707         case WRITE_12:
2708                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2709                 if (sector_ret)
2710                         goto out_unsupported_cdb;
2711                 size = transport_get_size(sectors, cdb, cmd);
2712                 cmd->t_task_lba = transport_lba_32(cdb);
2713                 if (cdb[1] & 0x8)
2714                         cmd->se_cmd_flags |= SCF_FUA;
2715                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2716                 break;
2717         case WRITE_16:
2718                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2719                 if (sector_ret)
2720                         goto out_unsupported_cdb;
2721                 size = transport_get_size(sectors, cdb, cmd);
2722                 cmd->t_task_lba = transport_lba_64(cdb);
2723                 if (cdb[1] & 0x8)
2724                         cmd->se_cmd_flags |= SCF_FUA;
2725                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2726                 break;
2727         case XDWRITEREAD_10:
2728                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2729                     !(cmd->se_cmd_flags & SCF_BIDI))
2730                         goto out_invalid_cdb_field;
2731                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2732                 if (sector_ret)
2733                         goto out_unsupported_cdb;
2734                 size = transport_get_size(sectors, cdb, cmd);
2735                 cmd->t_task_lba = transport_lba_32(cdb);
2736                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2737
2738                 /*
2739                  * Do now allow BIDI commands for passthrough mode.
2740                  */
2741                 if (passthrough)
2742                         goto out_unsupported_cdb;
2743
2744                 /*
2745                  * Setup BIDI XOR callback to be run after I/O completion.
2746                  */
2747                 cmd->transport_complete_callback = &transport_xor_callback;
2748                 if (cdb[1] & 0x8)
2749                         cmd->se_cmd_flags |= SCF_FUA;
2750                 break;
2751         case VARIABLE_LENGTH_CMD:
2752                 service_action = get_unaligned_be16(&cdb[8]);
2753                 switch (service_action) {
2754                 case XDWRITEREAD_32:
2755                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2756                         if (sector_ret)
2757                                 goto out_unsupported_cdb;
2758                         size = transport_get_size(sectors, cdb, cmd);
2759                         /*
2760                          * Use WRITE_32 and READ_32 opcodes for the emulated
2761                          * XDWRITE_READ_32 logic.
2762                          */
2763                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2764                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2765
2766                         /*
2767                          * Do now allow BIDI commands for passthrough mode.
2768                          */
2769                         if (passthrough)
2770                                 goto out_unsupported_cdb;
2771
2772                         /*
2773                          * Setup BIDI XOR callback to be run during after I/O
2774                          * completion.
2775                          */
2776                         cmd->transport_complete_callback = &transport_xor_callback;
2777                         if (cdb[1] & 0x8)
2778                                 cmd->se_cmd_flags |= SCF_FUA;
2779                         break;
2780                 case WRITE_SAME_32:
2781                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2782                         if (sector_ret)
2783                                 goto out_unsupported_cdb;
2784
2785                         if (sectors)
2786                                 size = transport_get_size(1, cdb, cmd);
2787                         else {
2788                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2789                                        " supported\n");
2790                                 goto out_invalid_cdb_field;
2791                         }
2792
2793                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2794                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2795
2796                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2797                                 goto out_unsupported_cdb;
2798                         if (!passthrough)
2799                                 cmd->execute_task = target_emulate_write_same;
2800                         break;
2801                 default:
2802                         pr_err("VARIABLE_LENGTH_CMD service action"
2803                                 " 0x%04x not supported\n", service_action);
2804                         goto out_unsupported_cdb;
2805                 }
2806                 break;
2807         case MAINTENANCE_IN:
2808                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2809                         /* MAINTENANCE_IN from SCC-2 */
2810                         /*
2811                          * Check for emulated MI_REPORT_TARGET_PGS.
2812                          */
2813                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2814                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2815                                 cmd->execute_task =
2816                                         target_emulate_report_target_port_groups;
2817                         }
2818                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2819                                (cdb[8] << 8) | cdb[9];
2820                 } else {
2821                         /* GPCMD_SEND_KEY from multi media commands */
2822                         size = (cdb[8] << 8) + cdb[9];
2823                 }
2824                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2825                 break;
2826         case MODE_SELECT:
2827                 size = cdb[4];
2828                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2829                 break;
2830         case MODE_SELECT_10:
2831                 size = (cdb[7] << 8) + cdb[8];
2832                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2833                 break;
2834         case MODE_SENSE:
2835                 size = cdb[4];
2836                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2837                 if (!passthrough)
2838                         cmd->execute_task = target_emulate_modesense;
2839                 break;
2840         case MODE_SENSE_10:
2841                 size = (cdb[7] << 8) + cdb[8];
2842                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2843                 if (!passthrough)
2844                         cmd->execute_task = target_emulate_modesense;
2845                 break;
2846         case GPCMD_READ_BUFFER_CAPACITY:
2847         case GPCMD_SEND_OPC:
2848         case LOG_SELECT:
2849         case LOG_SENSE:
2850                 size = (cdb[7] << 8) + cdb[8];
2851                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2852                 break;
2853         case READ_BLOCK_LIMITS:
2854                 size = READ_BLOCK_LEN;
2855                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2856                 break;
2857         case GPCMD_GET_CONFIGURATION:
2858         case GPCMD_READ_FORMAT_CAPACITIES:
2859         case GPCMD_READ_DISC_INFO:
2860         case GPCMD_READ_TRACK_RZONE_INFO:
2861                 size = (cdb[7] << 8) + cdb[8];
2862                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2863                 break;
2864         case PERSISTENT_RESERVE_IN:
2865                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2866                         cmd->execute_task = target_scsi3_emulate_pr_in;
2867                 size = (cdb[7] << 8) + cdb[8];
2868                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2869                 break;
2870         case PERSISTENT_RESERVE_OUT:
2871                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2872                         cmd->execute_task = target_scsi3_emulate_pr_out;
2873                 size = (cdb[7] << 8) + cdb[8];
2874                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2875                 break;
2876         case GPCMD_MECHANISM_STATUS:
2877         case GPCMD_READ_DVD_STRUCTURE:
2878                 size = (cdb[8] << 8) + cdb[9];
2879                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2880                 break;
2881         case READ_POSITION:
2882                 size = READ_POSITION_LEN;
2883                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2884                 break;
2885         case MAINTENANCE_OUT:
2886                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2887                         /* MAINTENANCE_OUT from SCC-2
2888                          *
2889                          * Check for emulated MO_SET_TARGET_PGS.
2890                          */
2891                         if (cdb[1] == MO_SET_TARGET_PGS &&
2892                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2893                                 cmd->execute_task =
2894                                         target_emulate_set_target_port_groups;
2895                         }
2896
2897                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2898                                (cdb[8] << 8) | cdb[9];
2899                 } else  {
2900                         /* GPCMD_REPORT_KEY from multi media commands */
2901                         size = (cdb[8] << 8) + cdb[9];
2902                 }
2903                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2904                 break;
2905         case INQUIRY:
2906                 size = (cdb[3] << 8) + cdb[4];
2907                 /*
2908                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2909                  * See spc4r17 section 5.3
2910                  */
2911                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2912                         cmd->sam_task_attr = MSG_HEAD_TAG;
2913                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2914                 if (!passthrough)
2915                         cmd->execute_task = target_emulate_inquiry;
2916                 break;
2917         case READ_BUFFER:
2918                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2919                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2920                 break;
2921         case READ_CAPACITY:
2922                 size = READ_CAP_LEN;
2923                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2924                 if (!passthrough)
2925                         cmd->execute_task = target_emulate_readcapacity;
2926                 break;
2927         case READ_MEDIA_SERIAL_NUMBER:
2928         case SECURITY_PROTOCOL_IN:
2929         case SECURITY_PROTOCOL_OUT:
2930                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2931                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2932                 break;
2933         case SERVICE_ACTION_IN:
2934                 switch (cmd->t_task_cdb[1] & 0x1f) {
2935                 case SAI_READ_CAPACITY_16:
2936                         if (!passthrough)
2937                                 cmd->execute_task =
2938                                         target_emulate_readcapacity_16;
2939                         break;
2940                 default:
2941                         if (passthrough)
2942                                 break;
2943
2944                         pr_err("Unsupported SA: 0x%02x\n",
2945                                 cmd->t_task_cdb[1] & 0x1f);
2946                         goto out_invalid_cdb_field;
2947                 }
2948                 /*FALLTHROUGH*/
2949         case ACCESS_CONTROL_IN:
2950         case ACCESS_CONTROL_OUT:
2951         case EXTENDED_COPY:
2952         case READ_ATTRIBUTE:
2953         case RECEIVE_COPY_RESULTS:
2954         case WRITE_ATTRIBUTE:
2955                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2956                        (cdb[12] << 8) | cdb[13];
2957                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2958                 break;
2959         case RECEIVE_DIAGNOSTIC:
2960         case SEND_DIAGNOSTIC:
2961                 size = (cdb[3] << 8) | cdb[4];
2962                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2963                 break;
2964 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2965 #if 0
2966         case GPCMD_READ_CD:
2967                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2968                 size = (2336 * sectors);
2969                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2970                 break;
2971 #endif
2972         case READ_TOC:
2973                 size = cdb[8];
2974                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2975                 break;
2976         case REQUEST_SENSE:
2977                 size = cdb[4];
2978                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2979                 if (!passthrough)
2980                         cmd->execute_task = target_emulate_request_sense;
2981                 break;
2982         case READ_ELEMENT_STATUS:
2983                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2984                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2985                 break;
2986         case WRITE_BUFFER:
2987                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2988                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2989                 break;
2990         case RESERVE:
2991         case RESERVE_10:
2992                 /*
2993                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2994                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2995                  */
2996                 if (cdb[0] == RESERVE_10)
2997                         size = (cdb[7] << 8) | cdb[8];
2998                 else
2999                         size = cmd->data_length;
3000
3001                 /*
3002                  * Setup the legacy emulated handler for SPC-2 and
3003                  * >= SPC-3 compatible reservation handling (CRH=1)
3004                  * Otherwise, we assume the underlying SCSI logic is
3005                  * is running in SPC_PASSTHROUGH, and wants reservations
3006                  * emulation disabled.
3007                  */
3008                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3009                         cmd->execute_task = target_scsi2_reservation_reserve;
3010                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3011                 break;
3012         case RELEASE:
3013         case RELEASE_10:
3014                 /*
3015                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3016                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3017                 */
3018                 if (cdb[0] == RELEASE_10)
3019                         size = (cdb[7] << 8) | cdb[8];
3020                 else
3021                         size = cmd->data_length;
3022
3023                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
3024                         cmd->execute_task = target_scsi2_reservation_release;
3025                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3026                 break;
3027         case SYNCHRONIZE_CACHE:
3028         case SYNCHRONIZE_CACHE_16:
3029                 /*
3030                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3031                  */
3032                 if (cdb[0] == SYNCHRONIZE_CACHE) {
3033                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3034                         cmd->t_task_lba = transport_lba_32(cdb);
3035                 } else {
3036                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3037                         cmd->t_task_lba = transport_lba_64(cdb);
3038                 }
3039                 if (sector_ret)
3040                         goto out_unsupported_cdb;
3041
3042                 size = transport_get_size(sectors, cdb, cmd);
3043                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3044
3045                 if (passthrough)
3046                         break;
3047
3048                 /*
3049                  * Check to ensure that LBA + Range does not exceed past end of
3050                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3051                  */
3052                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3053                         if (transport_cmd_get_valid_sectors(cmd) < 0)
3054                                 goto out_invalid_cdb_field;
3055                 }
3056                 cmd->execute_task = target_emulate_synchronize_cache;
3057                 break;
3058         case UNMAP:
3059                 size = get_unaligned_be16(&cdb[7]);
3060                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3061                 if (!passthrough)
3062                         cmd->execute_task = target_emulate_unmap;
3063                 break;
3064         case WRITE_SAME_16:
3065                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3066                 if (sector_ret)
3067                         goto out_unsupported_cdb;
3068
3069                 if (sectors)
3070                         size = transport_get_size(1, cdb, cmd);
3071                 else {
3072                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3073                         goto out_invalid_cdb_field;
3074                 }
3075
3076                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3077                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3078
3079                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3080                         goto out_unsupported_cdb;
3081                 if (!passthrough)
3082                         cmd->execute_task = target_emulate_write_same;
3083                 break;
3084         case WRITE_SAME:
3085                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3086                 if (sector_ret)
3087                         goto out_unsupported_cdb;
3088
3089                 if (sectors)
3090                         size = transport_get_size(1, cdb, cmd);
3091                 else {
3092                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3093                         goto out_invalid_cdb_field;
3094                 }
3095
3096                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3097                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3098                 /*
3099                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3100                  * of byte 1 bit 3 UNMAP instead of original reserved field
3101                  */
3102                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3103                         goto out_unsupported_cdb;
3104                 if (!passthrough)
3105                         cmd->execute_task = target_emulate_write_same;
3106                 break;
3107         case ALLOW_MEDIUM_REMOVAL:
3108         case ERASE:
3109         case REZERO_UNIT:
3110         case SEEK_10:
3111         case SPACE:
3112         case START_STOP:
3113         case TEST_UNIT_READY:
3114         case VERIFY:
3115         case WRITE_FILEMARKS:
3116                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3117                 if (!passthrough)
3118                         cmd->execute_task = target_emulate_noop;
3119                 break;
3120         case GPCMD_CLOSE_TRACK:
3121         case INITIALIZE_ELEMENT_STATUS:
3122         case GPCMD_LOAD_UNLOAD:
3123         case GPCMD_SET_SPEED:
3124         case MOVE_MEDIUM:
3125                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3126                 break;
3127         case REPORT_LUNS:
3128                 cmd->execute_task = target_report_luns;
3129                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3130                 /*
3131                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3132                  * See spc4r17 section 5.3
3133                  */
3134                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3135                         cmd->sam_task_attr = MSG_HEAD_TAG;
3136                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3137                 break;
3138         default:
3139                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3140                         " 0x%02x, sending CHECK_CONDITION.\n",
3141                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3142                 goto out_unsupported_cdb;
3143         }
3144
3145         if (size != cmd->data_length) {
3146                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3147                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3148                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3149                                 cmd->data_length, size, cdb[0]);
3150
3151                 cmd->cmd_spdtl = size;
3152
3153                 if (cmd->data_direction == DMA_TO_DEVICE) {
3154                         pr_err("Rejecting underflow/overflow"
3155                                         " WRITE data\n");
3156                         goto out_invalid_cdb_field;
3157                 }
3158                 /*
3159                  * Reject READ_* or WRITE_* with overflow/underflow for
3160                  * type SCF_SCSI_DATA_SG_IO_CDB.
3161                  */
3162                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3163                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3164                                 " CDB on non 512-byte sector setup subsystem"
3165                                 " plugin: %s\n", dev->transport->name);
3166                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3167                         goto out_invalid_cdb_field;
3168                 }
3169                 /*
3170                  * For the overflow case keep the existing fabric provided
3171                  * ->data_length.  Otherwise for the underflow case, reset
3172                  * ->data_length to the smaller SCSI expected data transfer
3173                  * length.
3174                  */
3175                 if (size > cmd->data_length) {
3176                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3177                         cmd->residual_count = (size - cmd->data_length);
3178                 } else {
3179                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3180                         cmd->residual_count = (cmd->data_length - size);
3181                         cmd->data_length = size;
3182                 }
3183         }
3184
3185         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB &&
3186             sectors > dev->se_sub_dev->se_dev_attrib.fabric_max_sectors) {
3187                 printk_ratelimited(KERN_ERR "SCSI OP %02xh with too big sectors %u\n",
3188                                    cdb[0], sectors);
3189                 goto out_invalid_cdb_field;
3190         }
3191
3192         /* reject any command that we don't have a handler for */
3193         if (!(passthrough || cmd->execute_task ||
3194              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3195                 goto out_unsupported_cdb;
3196
3197         transport_set_supported_SAM_opcode(cmd);
3198         return ret;
3199
3200 out_unsupported_cdb:
3201         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3202         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3203         return -EINVAL;
3204 out_invalid_cdb_field:
3205         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3206         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3207         return -EINVAL;
3208 }
3209
3210 /*
3211  * Called from I/O completion to determine which dormant/delayed
3212  * and ordered cmds need to have their tasks added to the execution queue.
3213  */
3214 static void transport_complete_task_attr(struct se_cmd *cmd)
3215 {
3216         struct se_device *dev = cmd->se_dev;
3217         struct se_cmd *cmd_p, *cmd_tmp;
3218         int new_active_tasks = 0;
3219
3220         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3221                 atomic_dec(&dev->simple_cmds);
3222                 smp_mb__after_atomic_dec();
3223                 dev->dev_cur_ordered_id++;
3224                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3225                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3226                         cmd->se_ordered_id);
3227         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3228                 dev->dev_cur_ordered_id++;
3229                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3230                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3231                         cmd->se_ordered_id);
3232         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3233                 atomic_dec(&dev->dev_ordered_sync);
3234                 smp_mb__after_atomic_dec();
3235
3236                 dev->dev_cur_ordered_id++;
3237                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3238                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3239         }
3240         /*
3241          * Process all commands up to the last received
3242          * ORDERED task attribute which requires another blocking
3243          * boundary
3244          */
3245         spin_lock(&dev->delayed_cmd_lock);
3246         list_for_each_entry_safe(cmd_p, cmd_tmp,
3247                         &dev->delayed_cmd_list, se_delayed_node) {
3248
3249                 list_del(&cmd_p->se_delayed_node);
3250                 spin_unlock(&dev->delayed_cmd_lock);
3251
3252                 pr_debug("Calling add_tasks() for"
3253                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3254                         " Dormant -> Active, se_ordered_id: %u\n",
3255                         cmd_p->t_task_cdb[0],
3256                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3257
3258                 transport_add_tasks_from_cmd(cmd_p);
3259                 new_active_tasks++;
3260
3261                 spin_lock(&dev->delayed_cmd_lock);
3262                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3263                         break;
3264         }
3265         spin_unlock(&dev->delayed_cmd_lock);
3266         /*
3267          * If new tasks have become active, wake up the transport thread
3268          * to do the processing of the Active tasks.
3269          */
3270         if (new_active_tasks != 0)
3271                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3272 }
3273
3274 static void transport_complete_qf(struct se_cmd *cmd)
3275 {
3276         int ret = 0;
3277
3278         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3279                 transport_complete_task_attr(cmd);
3280
3281         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3282                 ret = cmd->se_tfo->queue_status(cmd);
3283                 if (ret)
3284                         goto out;
3285         }
3286
3287         switch (cmd->data_direction) {
3288         case DMA_FROM_DEVICE:
3289                 ret = cmd->se_tfo->queue_data_in(cmd);
3290                 break;
3291         case DMA_TO_DEVICE:
3292                 if (cmd->t_bidi_data_sg) {
3293                         ret = cmd->se_tfo->queue_data_in(cmd);
3294                         if (ret < 0)
3295                                 break;
3296                 }
3297                 /* Fall through for DMA_TO_DEVICE */
3298         case DMA_NONE:
3299                 ret = cmd->se_tfo->queue_status(cmd);
3300                 break;
3301         default:
3302                 break;
3303         }
3304
3305 out:
3306         if (ret < 0) {
3307                 transport_handle_queue_full(cmd, cmd->se_dev);
3308                 return;
3309         }
3310         transport_lun_remove_cmd(cmd);
3311         transport_cmd_check_stop_to_fabric(cmd);
3312 }
3313
3314 static void transport_handle_queue_full(
3315         struct se_cmd *cmd,
3316         struct se_device *dev)
3317 {
3318         spin_lock_irq(&dev->qf_cmd_lock);
3319         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3320         atomic_inc(&dev->dev_qf_count);
3321         smp_mb__after_atomic_inc();
3322         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3323
3324         schedule_work(&cmd->se_dev->qf_work_queue);
3325 }
3326
3327 static void target_complete_ok_work(struct work_struct *work)
3328 {
3329         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3330         int reason = 0, ret;
3331
3332         /*
3333          * Check if we need to move delayed/dormant tasks from cmds on the
3334          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3335          * Attribute.
3336          */
3337         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3338                 transport_complete_task_attr(cmd);
3339         /*
3340          * Check to schedule QUEUE_FULL work, or execute an existing
3341          * cmd->transport_qf_callback()
3342          */
3343         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3344                 schedule_work(&cmd->se_dev->qf_work_queue);
3345
3346         /*
3347          * Check if we need to retrieve a sense buffer from
3348          * the struct se_cmd in question.
3349          */
3350         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3351                 if (transport_get_sense_data(cmd) < 0)
3352                         reason = TCM_NON_EXISTENT_LUN;
3353
3354                 /*
3355                  * Only set when an struct se_task->task_scsi_status returned
3356                  * a non GOOD status.
3357                  */
3358                 if (cmd->scsi_status) {
3359                         ret = transport_send_check_condition_and_sense(
3360                                         cmd, reason, 1);
3361                         if (ret == -EAGAIN || ret == -ENOMEM)
3362                                 goto queue_full;
3363
3364                         transport_lun_remove_cmd(cmd);
3365                         transport_cmd_check_stop_to_fabric(cmd);
3366                         return;
3367                 }
3368         }
3369         /*
3370          * Check for a callback, used by amongst other things
3371          * XDWRITE_READ_10 emulation.
3372          */
3373         if (cmd->transport_complete_callback)
3374                 cmd->transport_complete_callback(cmd);
3375
3376         switch (cmd->data_direction) {
3377         case DMA_FROM_DEVICE:
3378                 spin_lock(&cmd->se_lun->lun_sep_lock);
3379                 if (cmd->se_lun->lun_sep) {
3380                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3381                                         cmd->data_length;
3382                 }
3383                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3384
3385                 ret = cmd->se_tfo->queue_data_in(cmd);
3386                 if (ret == -EAGAIN || ret == -ENOMEM)
3387                         goto queue_full;
3388                 break;
3389         case DMA_TO_DEVICE:
3390                 spin_lock(&cmd->se_lun->lun_sep_lock);
3391                 if (cmd->se_lun->lun_sep) {
3392                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3393                                 cmd->data_length;
3394                 }
3395                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3396                 /*
3397                  * Check if we need to send READ payload for BIDI-COMMAND
3398                  */
3399                 if (cmd->t_bidi_data_sg) {
3400                         spin_lock(&cmd->se_lun->lun_sep_lock);
3401                         if (cmd->se_lun->lun_sep) {
3402                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3403                                         cmd->data_length;
3404                         }
3405                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3406                         ret = cmd->se_tfo->queue_data_in(cmd);
3407                         if (ret == -EAGAIN || ret == -ENOMEM)
3408                                 goto queue_full;
3409                         break;
3410                 }
3411                 /* Fall through for DMA_TO_DEVICE */
3412         case DMA_NONE:
3413                 ret = cmd->se_tfo->queue_status(cmd);
3414                 if (ret == -EAGAIN || ret == -ENOMEM)
3415                         goto queue_full;
3416                 break;
3417         default:
3418                 break;
3419         }
3420
3421         transport_lun_remove_cmd(cmd);
3422         transport_cmd_check_stop_to_fabric(cmd);
3423         return;
3424
3425 queue_full:
3426         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3427                 " data_direction: %d\n", cmd, cmd->data_direction);
3428         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3429         transport_handle_queue_full(cmd, cmd->se_dev);
3430 }
3431
3432 static void transport_free_dev_tasks(struct se_cmd *cmd)
3433 {
3434         struct se_task *task, *task_tmp;
3435         unsigned long flags;
3436         LIST_HEAD(dispose_list);
3437
3438         spin_lock_irqsave(&cmd->t_state_lock, flags);
3439         list_for_each_entry_safe(task, task_tmp,
3440                                 &cmd->t_task_list, t_list) {
3441                 if (!(task->task_flags & TF_ACTIVE))
3442                         list_move_tail(&task->t_list, &dispose_list);
3443         }
3444         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3445
3446         while (!list_empty(&dispose_list)) {
3447                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3448
3449                 if (task->task_sg != cmd->t_data_sg &&
3450                     task->task_sg != cmd->t_bidi_data_sg)
3451                         kfree(task->task_sg);
3452
3453                 list_del(&task->t_list);
3454
3455                 cmd->se_dev->transport->free_task(task);
3456         }
3457 }
3458
3459 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3460 {
3461         struct scatterlist *sg;
3462         int count;
3463
3464         for_each_sg(sgl, sg, nents, count)
3465                 __free_page(sg_page(sg));
3466
3467         kfree(sgl);
3468 }
3469
3470 static inline void transport_free_pages(struct se_cmd *cmd)
3471 {
3472         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3473                 return;
3474
3475         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3476         cmd->t_data_sg = NULL;
3477         cmd->t_data_nents = 0;
3478
3479         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3480         cmd->t_bidi_data_sg = NULL;
3481         cmd->t_bidi_data_nents = 0;
3482 }
3483
3484 /**
3485  * transport_release_cmd - free a command
3486  * @cmd:       command to free
3487  *
3488  * This routine unconditionally frees a command, and reference counting
3489  * or list removal must be done in the caller.
3490  */
3491 static void transport_release_cmd(struct se_cmd *cmd)
3492 {
3493         BUG_ON(!cmd->se_tfo);
3494
3495         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3496                 core_tmr_release_req(cmd->se_tmr_req);
3497         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3498                 kfree(cmd->t_task_cdb);
3499         /*
3500          * If this cmd has been setup with target_get_sess_cmd(), drop
3501          * the kref and call ->release_cmd() in kref callback.
3502          */
3503          if (cmd->check_release != 0) {
3504                 target_put_sess_cmd(cmd->se_sess, cmd);
3505                 return;
3506         }
3507         cmd->se_tfo->release_cmd(cmd);
3508 }
3509
3510 /**
3511  * transport_put_cmd - release a reference to a command
3512  * @cmd:       command to release
3513  *
3514  * This routine releases our reference to the command and frees it if possible.
3515  */
3516 static void transport_put_cmd(struct se_cmd *cmd)
3517 {
3518         unsigned long flags;
3519         int free_tasks = 0;
3520
3521         spin_lock_irqsave(&cmd->t_state_lock, flags);
3522         if (atomic_read(&cmd->t_fe_count)) {
3523                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3524                         goto out_busy;
3525         }
3526
3527         if (atomic_read(&cmd->t_se_count)) {
3528                 if (!atomic_dec_and_test(&cmd->t_se_count))
3529                         goto out_busy;
3530         }
3531
3532         if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3533                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3534                 transport_all_task_dev_remove_state(cmd);
3535                 free_tasks = 1;
3536         }
3537         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3538
3539         if (free_tasks != 0)
3540                 transport_free_dev_tasks(cmd);
3541
3542         transport_free_pages(cmd);
3543         transport_release_cmd(cmd);
3544         return;
3545 out_busy:
3546         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3547 }
3548
3549 /*
3550  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3551  * allocating in the core.
3552  * @cmd:  Associated se_cmd descriptor
3553  * @mem:  SGL style memory for TCM WRITE / READ
3554  * @sg_mem_num: Number of SGL elements
3555  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3556  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3557  *
3558  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3559  * of parameters.
3560  */
3561 int transport_generic_map_mem_to_cmd(
3562         struct se_cmd *cmd,
3563         struct scatterlist *sgl,
3564         u32 sgl_count,
3565         struct scatterlist *sgl_bidi,
3566         u32 sgl_bidi_count)
3567 {
3568         if (!sgl || !sgl_count)
3569                 return 0;
3570
3571         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3572             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3573                 /*
3574                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3575                  * scatterlists already have been set to follow what the fabric
3576                  * passes for the original expected data transfer length.
3577                  */
3578                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3579                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3580                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3581                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3582                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3583                         return -EINVAL;
3584                 }
3585
3586                 cmd->t_data_sg = sgl;
3587                 cmd->t_data_nents = sgl_count;
3588
3589                 if (sgl_bidi && sgl_bidi_count) {
3590                         cmd->t_bidi_data_sg = sgl_bidi;
3591                         cmd->t_bidi_data_nents = sgl_bidi_count;
3592                 }
3593                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3594         }
3595
3596         return 0;
3597 }
3598 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3599
3600 void *transport_kmap_data_sg(struct se_cmd *cmd)
3601 {
3602         struct scatterlist *sg = cmd->t_data_sg;
3603         struct page **pages;
3604         int i;
3605
3606         BUG_ON(!sg);
3607         /*
3608          * We need to take into account a possible offset here for fabrics like
3609          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3610          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3611          */
3612         if (!cmd->t_data_nents)
3613                 return NULL;
3614         else if (cmd->t_data_nents == 1)
3615                 return kmap(sg_page(sg)) + sg->offset;
3616
3617         /* >1 page. use vmap */
3618         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3619         if (!pages)
3620                 return NULL;
3621
3622         /* convert sg[] to pages[] */
3623         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3624                 pages[i] = sg_page(sg);
3625         }
3626
3627         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
3628         kfree(pages);
3629         if (!cmd->t_data_vmap)
3630                 return NULL;
3631
3632         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3633 }
3634 EXPORT_SYMBOL(transport_kmap_data_sg);
3635
3636 void transport_kunmap_data_sg(struct se_cmd *cmd)
3637 {
3638         if (!cmd->t_data_nents) {
3639                 return;
3640         } else if (cmd->t_data_nents == 1) {
3641                 kunmap(sg_page(cmd->t_data_sg));
3642                 return;
3643         }
3644
3645         vunmap(cmd->t_data_vmap);
3646         cmd->t_data_vmap = NULL;
3647 }
3648 EXPORT_SYMBOL(transport_kunmap_data_sg);
3649
3650 static int
3651 transport_generic_get_mem(struct se_cmd *cmd)
3652 {
3653         u32 length = cmd->data_length;
3654         unsigned int nents;
3655         struct page *page;
3656         gfp_t zero_flag;
3657         int i = 0;
3658
3659         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3660         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3661         if (!cmd->t_data_sg)
3662                 return -ENOMEM;
3663
3664         cmd->t_data_nents = nents;
3665         sg_init_table(cmd->t_data_sg, nents);
3666
3667         zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3668
3669         while (length) {
3670                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3671                 page = alloc_page(GFP_KERNEL | zero_flag);
3672                 if (!page)
3673                         goto out;
3674
3675                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3676                 length -= page_len;
3677                 i++;
3678         }
3679         return 0;
3680
3681 out:
3682         while (i > 0) {
3683                 i--;
3684                 __free_page(sg_page(&cmd->t_data_sg[i]));
3685         }
3686         kfree(cmd->t_data_sg);
3687         cmd->t_data_sg = NULL;
3688         return -ENOMEM;
3689 }
3690
3691 /* Reduce sectors if they are too long for the device */
3692 static inline sector_t transport_limit_task_sectors(
3693         struct se_device *dev,
3694         unsigned long long lba,
3695         sector_t sectors)
3696 {
3697         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3698
3699         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3700                 if ((lba + sectors) > transport_dev_end_lba(dev))
3701                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3702
3703         return sectors;
3704 }
3705
3706
3707 /*
3708  * This function can be used by HW target mode drivers to create a linked
3709  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3710  * This is intended to be called during the completion path by TCM Core
3711  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3712  */
3713 void transport_do_task_sg_chain(struct se_cmd *cmd)
3714 {
3715         struct scatterlist *sg_first = NULL;
3716         struct scatterlist *sg_prev = NULL;
3717         int sg_prev_nents = 0;
3718         struct scatterlist *sg;
3719         struct se_task *task;
3720         u32 chained_nents = 0;
3721         int i;
3722
3723         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3724
3725         /*
3726          * Walk the struct se_task list and setup scatterlist chains
3727          * for each contiguously allocated struct se_task->task_sg[].
3728          */
3729         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3730                 if (!task->task_sg)
3731                         continue;
3732
3733                 if (!sg_first) {
3734                         sg_first = task->task_sg;
3735                         chained_nents = task->task_sg_nents;
3736                 } else {
3737                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3738                         chained_nents += task->task_sg_nents;
3739                 }
3740                 /*
3741                  * For the padded tasks, use the extra SGL vector allocated
3742                  * in transport_allocate_data_tasks() for the sg_prev_nents
3743                  * offset into sg_chain() above.
3744                  *
3745                  * We do not need the padding for the last task (or a single
3746                  * task), but in that case we will never use the sg_prev_nents
3747                  * value below which would be incorrect.
3748                  */
3749                 sg_prev_nents = (task->task_sg_nents + 1);
3750                 sg_prev = task->task_sg;
3751         }
3752         /*
3753          * Setup the starting pointer and total t_tasks_sg_linked_no including
3754          * padding SGs for linking and to mark the end.
3755          */
3756         cmd->t_tasks_sg_chained = sg_first;
3757         cmd->t_tasks_sg_chained_no = chained_nents;
3758
3759         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3760                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3761                 cmd->t_tasks_sg_chained_no);
3762
3763         for_each_sg(cmd->t_tasks_sg_chained, sg,
3764                         cmd->t_tasks_sg_chained_no, i) {
3765
3766                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3767                         i, sg, sg_page(sg), sg->length, sg->offset);
3768                 if (sg_is_chain(sg))
3769                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3770                 if (sg_is_last(sg))
3771                         pr_debug("SG: %p sg_is_last=1\n", sg);
3772         }
3773 }
3774 EXPORT_SYMBOL(transport_do_task_sg_chain);
3775
3776 /*
3777  * Break up cmd into chunks transport can handle
3778  */
3779 static int
3780 transport_allocate_data_tasks(struct se_cmd *cmd,
3781         enum dma_data_direction data_direction,
3782         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3783 {
3784         struct se_device *dev = cmd->se_dev;
3785         int task_count, i;
3786         unsigned long long lba;
3787         sector_t sectors, dev_max_sectors;
3788         u32 sector_size;
3789
3790         if (transport_cmd_get_valid_sectors(cmd) < 0)
3791                 return -EINVAL;
3792
3793         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3794         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3795
3796         WARN_ON(cmd->data_length % sector_size);
3797
3798         lba = cmd->t_task_lba;
3799         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3800         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3801
3802         /*
3803          * If we need just a single task reuse the SG list in the command
3804          * and avoid a lot of work.
3805          */
3806         if (task_count == 1) {
3807                 struct se_task *task;
3808                 unsigned long flags;
3809
3810                 task = transport_generic_get_task(cmd, data_direction);
3811                 if (!task)
3812                         return -ENOMEM;
3813
3814                 task->task_sg = cmd_sg;
3815                 task->task_sg_nents = sgl_nents;
3816
3817                 task->task_lba = lba;
3818                 task->task_sectors = sectors;
3819                 task->task_size = task->task_sectors * sector_size;
3820
3821                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3822                 list_add_tail(&task->t_list, &cmd->t_task_list);
3823                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3824
3825                 return task_count;
3826         }
3827
3828         for (i = 0; i < task_count; i++) {
3829                 struct se_task *task;
3830                 unsigned int task_size, task_sg_nents_padded;
3831                 struct scatterlist *sg;
3832                 unsigned long flags;
3833                 int count;
3834
3835                 task = transport_generic_get_task(cmd, data_direction);
3836                 if (!task)
3837                         return -ENOMEM;
3838
3839                 task->task_lba = lba;
3840                 task->task_sectors = min(sectors, dev_max_sectors);
3841                 task->task_size = task->task_sectors * sector_size;
3842
3843                 /*
3844                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3845                  * in order to calculate the number per task SGL entries
3846                  */
3847                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3848                 /*
3849                  * Check if the fabric module driver is requesting that all
3850                  * struct se_task->task_sg[] be chained together..  If so,
3851                  * then allocate an extra padding SG entry for linking and
3852                  * marking the end of the chained SGL for every task except
3853                  * the last one for (task_count > 1) operation, or skipping
3854                  * the extra padding for the (task_count == 1) case.
3855                  */
3856                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3857                         task_sg_nents_padded = (task->task_sg_nents + 1);
3858                 } else
3859                         task_sg_nents_padded = task->task_sg_nents;
3860
3861                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3862                                         task_sg_nents_padded, GFP_KERNEL);
3863                 if (!task->task_sg) {
3864                         cmd->se_dev->transport->free_task(task);
3865                         return -ENOMEM;
3866                 }
3867
3868                 sg_init_table(task->task_sg, task_sg_nents_padded);
3869
3870                 task_size = task->task_size;
3871
3872                 /* Build new sgl, only up to task_size */
3873                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3874                         if (cmd_sg->length > task_size)
3875                                 break;
3876
3877                         *sg = *cmd_sg;
3878                         task_size -= cmd_sg->length;
3879                         cmd_sg = sg_next(cmd_sg);
3880                 }
3881
3882                 lba += task->task_sectors;
3883                 sectors -= task->task_sectors;
3884
3885                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3886                 list_add_tail(&task->t_list, &cmd->t_task_list);
3887                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3888         }
3889
3890         return task_count;
3891 }
3892
3893 static int
3894 transport_allocate_control_task(struct se_cmd *cmd)
3895 {
3896         struct se_task *task;
3897         unsigned long flags;
3898
3899         /* Workaround for handling zero-length control CDBs */
3900         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3901             !cmd->data_length)
3902                 return 0;
3903
3904         task = transport_generic_get_task(cmd, cmd->data_direction);
3905         if (!task)
3906                 return -ENOMEM;
3907
3908         task->task_sg = cmd->t_data_sg;
3909         task->task_size = cmd->data_length;
3910         task->task_sg_nents = cmd->t_data_nents;
3911
3912         spin_lock_irqsave(&cmd->t_state_lock, flags);
3913         list_add_tail(&task->t_list, &cmd->t_task_list);
3914         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3915
3916         /* Success! Return number of tasks allocated */
3917         return 1;
3918 }
3919
3920 /*
3921  * Allocate any required ressources to execute the command, and either place
3922  * it on the execution queue if possible.  For writes we might not have the
3923  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3924  */
3925 int transport_generic_new_cmd(struct se_cmd *cmd)
3926 {
3927         struct se_device *dev = cmd->se_dev;
3928         int task_cdbs, task_cdbs_bidi = 0;
3929         int set_counts = 1;
3930         int ret = 0;
3931
3932         /*
3933          * Determine is the TCM fabric module has already allocated physical
3934          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3935          * beforehand.
3936          */
3937         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3938             cmd->data_length) {
3939                 ret = transport_generic_get_mem(cmd);
3940                 if (ret < 0)
3941                         goto out_fail;
3942         }
3943
3944         /*
3945          * For BIDI command set up the read tasks first.
3946          */
3947         if (cmd->t_bidi_data_sg &&
3948             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3949                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3950
3951                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3952                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3953                                 cmd->t_bidi_data_nents);
3954                 if (task_cdbs_bidi <= 0)
3955                         goto out_fail;
3956
3957                 atomic_inc(&cmd->t_fe_count);
3958                 atomic_inc(&cmd->t_se_count);
3959                 set_counts = 0;
3960         }
3961
3962         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3963                 task_cdbs = transport_allocate_data_tasks(cmd,
3964                                         cmd->data_direction, cmd->t_data_sg,
3965                                         cmd->t_data_nents);
3966         } else {
3967                 task_cdbs = transport_allocate_control_task(cmd);
3968         }
3969
3970         if (task_cdbs < 0)
3971                 goto out_fail;
3972         else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3973                 spin_lock_irq(&cmd->t_state_lock);
3974                 cmd->t_state = TRANSPORT_COMPLETE;
3975                 cmd->transport_state |= CMD_T_ACTIVE;
3976                 spin_unlock_irq(&cmd->t_state_lock);
3977
3978                 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3979                         u8 ua_asc = 0, ua_ascq = 0;
3980
3981                         core_scsi3_ua_clear_for_request_sense(cmd,
3982                                         &ua_asc, &ua_ascq);
3983                 }
3984
3985                 INIT_WORK(&cmd->work, target_complete_ok_work);
3986                 queue_work(target_completion_wq, &cmd->work);
3987                 return 0;
3988         }
3989
3990         if (set_counts) {
3991                 atomic_inc(&cmd->t_fe_count);
3992                 atomic_inc(&cmd->t_se_count);
3993         }
3994
3995         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3996         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3997         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3998
3999         /*
4000          * For WRITEs, let the fabric know its buffer is ready..
4001          * This WRITE struct se_cmd (and all of its associated struct se_task's)
4002          * will be added to the struct se_device execution queue after its WRITE
4003          * data has arrived. (ie: It gets handled by the transport processing
4004          * thread a second time)
4005          */
4006         if (cmd->data_direction == DMA_TO_DEVICE) {
4007                 transport_add_tasks_to_state_queue(cmd);
4008                 return transport_generic_write_pending(cmd);
4009         }
4010         /*
4011          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4012          * to the execution queue.
4013          */
4014         transport_execute_tasks(cmd);
4015         return 0;
4016
4017 out_fail:
4018         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
4019         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
4020         return -EINVAL;
4021 }
4022 EXPORT_SYMBOL(transport_generic_new_cmd);
4023
4024 /*      transport_generic_process_write():
4025  *
4026  *
4027  */
4028 void transport_generic_process_write(struct se_cmd *cmd)
4029 {
4030         transport_execute_tasks(cmd);
4031 }
4032 EXPORT_SYMBOL(transport_generic_process_write);
4033
4034 static void transport_write_pending_qf(struct se_cmd *cmd)
4035 {
4036         int ret;
4037
4038         ret = cmd->se_tfo->write_pending(cmd);
4039         if (ret == -EAGAIN || ret == -ENOMEM) {
4040                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4041                          cmd);
4042                 transport_handle_queue_full(cmd, cmd->se_dev);
4043         }
4044 }
4045
4046 static int transport_generic_write_pending(struct se_cmd *cmd)
4047 {
4048         unsigned long flags;
4049         int ret;
4050
4051         spin_lock_irqsave(&cmd->t_state_lock, flags);
4052         cmd->t_state = TRANSPORT_WRITE_PENDING;
4053         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4054
4055         /*
4056          * Clear the se_cmd for WRITE_PENDING status in order to set
4057          * CMD_T_ACTIVE so that transport_generic_handle_data can be called
4058          * from HW target mode interrupt code.  This is safe to be called
4059          * with transport_off=1 before the cmd->se_tfo->write_pending
4060          * because the se_cmd->se_lun pointer is not being cleared.
4061          */
4062         transport_cmd_check_stop(cmd, 1, 0);
4063
4064         /*
4065          * Call the fabric write_pending function here to let the
4066          * frontend know that WRITE buffers are ready.
4067          */
4068         ret = cmd->se_tfo->write_pending(cmd);
4069         if (ret == -EAGAIN || ret == -ENOMEM)
4070                 goto queue_full;
4071         else if (ret < 0)
4072                 return ret;
4073
4074         return 1;
4075
4076 queue_full:
4077         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4078         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4079         transport_handle_queue_full(cmd, cmd->se_dev);
4080         return 0;
4081 }
4082
4083 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4084 {
4085         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4086                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
4087                          transport_wait_for_tasks(cmd);
4088
4089                 transport_release_cmd(cmd);
4090         } else {
4091                 if (wait_for_tasks)
4092                         transport_wait_for_tasks(cmd);
4093
4094                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4095
4096                 if (cmd->se_lun)
4097                         transport_lun_remove_cmd(cmd);
4098
4099                 transport_free_dev_tasks(cmd);
4100
4101                 transport_put_cmd(cmd);
4102         }
4103 }
4104 EXPORT_SYMBOL(transport_generic_free_cmd);
4105
4106 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
4107  * @se_sess:    session to reference
4108  * @se_cmd:     command descriptor to add
4109  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
4110  */
4111 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
4112                         bool ack_kref)
4113 {
4114         unsigned long flags;
4115
4116         kref_init(&se_cmd->cmd_kref);
4117         /*
4118          * Add a second kref if the fabric caller is expecting to handle
4119          * fabric acknowledgement that requires two target_put_sess_cmd()
4120          * invocations before se_cmd descriptor release.
4121          */
4122         if (ack_kref == true) {
4123                 kref_get(&se_cmd->cmd_kref);
4124                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
4125         }
4126
4127         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4128         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4129         se_cmd->check_release = 1;
4130         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4131 }
4132 EXPORT_SYMBOL(target_get_sess_cmd);
4133
4134 static void target_release_cmd_kref(struct kref *kref)
4135 {
4136         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4137         struct se_session *se_sess = se_cmd->se_sess;
4138         unsigned long flags;
4139
4140         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4141         if (list_empty(&se_cmd->se_cmd_list)) {
4142                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4143                 se_cmd->se_tfo->release_cmd(se_cmd);
4144                 return;
4145         }
4146         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4147                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4148                 complete(&se_cmd->cmd_wait_comp);
4149                 return;
4150         }
4151         list_del(&se_cmd->se_cmd_list);
4152         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4153
4154         se_cmd->se_tfo->release_cmd(se_cmd);
4155 }
4156
4157 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4158  * @se_sess:    session to reference
4159  * @se_cmd:     command descriptor to drop
4160  */
4161 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4162 {
4163         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4164 }
4165 EXPORT_SYMBOL(target_put_sess_cmd);
4166
4167 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4168  * @se_sess:    session to split
4169  */
4170 void target_splice_sess_cmd_list(struct se_session *se_sess)
4171 {
4172         struct se_cmd *se_cmd;
4173         unsigned long flags;
4174
4175         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4176         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4177
4178         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4179         se_sess->sess_tearing_down = 1;
4180
4181         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4182
4183         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4184                 se_cmd->cmd_wait_set = 1;
4185
4186         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4187 }
4188 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4189
4190 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4191  * @se_sess:    session to wait for active I/O
4192  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4193  */
4194 void target_wait_for_sess_cmds(
4195         struct se_session *se_sess,
4196         int wait_for_tasks)
4197 {
4198         struct se_cmd *se_cmd, *tmp_cmd;
4199         bool rc = false;
4200
4201         list_for_each_entry_safe(se_cmd, tmp_cmd,
4202                                 &se_sess->sess_wait_list, se_cmd_list) {
4203                 list_del(&se_cmd->se_cmd_list);
4204
4205                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4206                         " %d\n", se_cmd, se_cmd->t_state,
4207                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4208
4209                 if (wait_for_tasks) {
4210                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4211                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4212                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4213
4214                         rc = transport_wait_for_tasks(se_cmd);
4215
4216                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4217                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4218                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4219                 }
4220
4221                 if (!rc) {
4222                         wait_for_completion(&se_cmd->cmd_wait_comp);
4223                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4224                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4225                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4226                 }
4227
4228                 se_cmd->se_tfo->release_cmd(se_cmd);
4229         }
4230 }
4231 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4232
4233 /*      transport_lun_wait_for_tasks():
4234  *
4235  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4236  *      an struct se_lun to be successfully shutdown.
4237  */
4238 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4239 {
4240         unsigned long flags;
4241         int ret;
4242         /*
4243          * If the frontend has already requested this struct se_cmd to
4244          * be stopped, we can safely ignore this struct se_cmd.
4245          */
4246         spin_lock_irqsave(&cmd->t_state_lock, flags);
4247         if (cmd->transport_state & CMD_T_STOP) {
4248                 cmd->transport_state &= ~CMD_T_LUN_STOP;
4249
4250                 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
4251                          cmd->se_tfo->get_task_tag(cmd));
4252                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4253                 transport_cmd_check_stop(cmd, 1, 0);
4254                 return -EPERM;
4255         }
4256         cmd->transport_state |= CMD_T_LUN_FE_STOP;
4257         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4258
4259         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4260
4261         ret = transport_stop_tasks_for_cmd(cmd);
4262
4263         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4264                         " %d\n", cmd, cmd->t_task_list_num, ret);
4265         if (!ret) {
4266                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4267                                 cmd->se_tfo->get_task_tag(cmd));
4268                 wait_for_completion(&cmd->transport_lun_stop_comp);
4269                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4270                                 cmd->se_tfo->get_task_tag(cmd));
4271         }
4272         transport_remove_cmd_from_queue(cmd);
4273
4274         return 0;
4275 }
4276
4277 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4278 {
4279         struct se_cmd *cmd = NULL;
4280         unsigned long lun_flags, cmd_flags;
4281         /*
4282          * Do exception processing and return CHECK_CONDITION status to the
4283          * Initiator Port.
4284          */
4285         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4286         while (!list_empty(&lun->lun_cmd_list)) {
4287                 cmd = list_first_entry(&lun->lun_cmd_list,
4288                        struct se_cmd, se_lun_node);
4289                 list_del_init(&cmd->se_lun_node);
4290
4291                 /*
4292                  * This will notify iscsi_target_transport.c:
4293                  * transport_cmd_check_stop() that a LUN shutdown is in
4294                  * progress for the iscsi_cmd_t.
4295                  */
4296                 spin_lock(&cmd->t_state_lock);
4297                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4298                         "_lun_stop for  ITT: 0x%08x\n",
4299                         cmd->se_lun->unpacked_lun,
4300                         cmd->se_tfo->get_task_tag(cmd));
4301                 cmd->transport_state |= CMD_T_LUN_STOP;
4302                 spin_unlock(&cmd->t_state_lock);
4303
4304                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4305
4306                 if (!cmd->se_lun) {
4307                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4308                                 cmd->se_tfo->get_task_tag(cmd),
4309                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4310                         BUG();
4311                 }
4312                 /*
4313                  * If the Storage engine still owns the iscsi_cmd_t, determine
4314                  * and/or stop its context.
4315                  */
4316                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4317                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4318                         cmd->se_tfo->get_task_tag(cmd));
4319
4320                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4321                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4322                         continue;
4323                 }
4324
4325                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4326                         "_wait_for_tasks(): SUCCESS\n",
4327                         cmd->se_lun->unpacked_lun,
4328                         cmd->se_tfo->get_task_tag(cmd));
4329
4330                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4331                 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
4332                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4333                         goto check_cond;
4334                 }
4335                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
4336                 transport_all_task_dev_remove_state(cmd);
4337                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4338
4339                 transport_free_dev_tasks(cmd);
4340                 /*
4341                  * The Storage engine stopped this struct se_cmd before it was
4342                  * send to the fabric frontend for delivery back to the
4343                  * Initiator Node.  Return this SCSI CDB back with an
4344                  * CHECK_CONDITION status.
4345                  */
4346 check_cond:
4347                 transport_send_check_condition_and_sense(cmd,
4348                                 TCM_NON_EXISTENT_LUN, 0);
4349                 /*
4350                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4351                  * be released, notify the waiting thread now that LU has
4352                  * finished accessing it.
4353                  */
4354                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4355                 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
4356                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4357                                 " struct se_cmd: %p ITT: 0x%08x\n",
4358                                 lun->unpacked_lun,
4359                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4360
4361                         spin_unlock_irqrestore(&cmd->t_state_lock,
4362                                         cmd_flags);
4363                         transport_cmd_check_stop(cmd, 1, 0);
4364                         complete(&cmd->transport_lun_fe_stop_comp);
4365                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4366                         continue;
4367                 }
4368                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4369                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4370
4371                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4372                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4373         }
4374         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4375 }
4376
4377 static int transport_clear_lun_thread(void *p)
4378 {
4379         struct se_lun *lun = p;
4380
4381         __transport_clear_lun_from_sessions(lun);
4382         complete(&lun->lun_shutdown_comp);
4383
4384         return 0;
4385 }
4386
4387 int transport_clear_lun_from_sessions(struct se_lun *lun)
4388 {
4389         struct task_struct *kt;
4390
4391         kt = kthread_run(transport_clear_lun_thread, lun,
4392                         "tcm_cl_%u", lun->unpacked_lun);
4393         if (IS_ERR(kt)) {
4394                 pr_err("Unable to start clear_lun thread\n");
4395                 return PTR_ERR(kt);
4396         }
4397         wait_for_completion(&lun->lun_shutdown_comp);
4398
4399         return 0;
4400 }
4401
4402 /**
4403  * transport_wait_for_tasks - wait for completion to occur
4404  * @cmd:        command to wait
4405  *
4406  * Called from frontend fabric context to wait for storage engine
4407  * to pause and/or release frontend generated struct se_cmd.
4408  */
4409 bool transport_wait_for_tasks(struct se_cmd *cmd)
4410 {
4411         unsigned long flags;
4412
4413         spin_lock_irqsave(&cmd->t_state_lock, flags);
4414         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
4415             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4416                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4417                 return false;
4418         }
4419         /*
4420          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4421          * has been set in transport_set_supported_SAM_opcode().
4422          */
4423         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
4424             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4425                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4426                 return false;
4427         }
4428         /*
4429          * If we are already stopped due to an external event (ie: LUN shutdown)
4430          * sleep until the connection can have the passed struct se_cmd back.
4431          * The cmd->transport_lun_stopped_sem will be upped by
4432          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4433          * has completed its operation on the struct se_cmd.
4434          */
4435         if (cmd->transport_state & CMD_T_LUN_STOP) {
4436                 pr_debug("wait_for_tasks: Stopping"
4437                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4438                         "_stop_comp); for ITT: 0x%08x\n",
4439                         cmd->se_tfo->get_task_tag(cmd));
4440                 /*
4441                  * There is a special case for WRITES where a FE exception +
4442                  * LUN shutdown means ConfigFS context is still sleeping on
4443                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4444                  * We go ahead and up transport_lun_stop_comp just to be sure
4445                  * here.
4446                  */
4447                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4448                 complete(&cmd->transport_lun_stop_comp);
4449                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4450                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4451
4452                 transport_all_task_dev_remove_state(cmd);
4453                 /*
4454                  * At this point, the frontend who was the originator of this
4455                  * struct se_cmd, now owns the structure and can be released through
4456                  * normal means below.
4457                  */
4458                 pr_debug("wait_for_tasks: Stopped"
4459                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4460                         "stop_comp); for ITT: 0x%08x\n",
4461                         cmd->se_tfo->get_task_tag(cmd));
4462
4463                 cmd->transport_state &= ~CMD_T_LUN_STOP;
4464         }
4465
4466         if (!(cmd->transport_state & CMD_T_ACTIVE)) {
4467                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4468                 return false;
4469         }
4470
4471         cmd->transport_state |= CMD_T_STOP;
4472
4473         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4474                 " i_state: %d, t_state: %d, CMD_T_STOP\n",
4475                 cmd, cmd->se_tfo->get_task_tag(cmd),
4476                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4477
4478         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4479
4480         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4481
4482         wait_for_completion(&cmd->t_transport_stop_comp);
4483
4484         spin_lock_irqsave(&cmd->t_state_lock, flags);
4485         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4486
4487         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4488                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4489                 cmd->se_tfo->get_task_tag(cmd));
4490
4491         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4492
4493         return true;
4494 }
4495 EXPORT_SYMBOL(transport_wait_for_tasks);
4496
4497 static int transport_get_sense_codes(
4498         struct se_cmd *cmd,
4499         u8 *asc,
4500         u8 *ascq)
4501 {
4502         *asc = cmd->scsi_asc;
4503         *ascq = cmd->scsi_ascq;
4504
4505         return 0;
4506 }
4507
4508 static int transport_set_sense_codes(
4509         struct se_cmd *cmd,
4510         u8 asc,
4511         u8 ascq)
4512 {
4513         cmd->scsi_asc = asc;
4514         cmd->scsi_ascq = ascq;
4515
4516         return 0;
4517 }
4518
4519 int transport_send_check_condition_and_sense(
4520         struct se_cmd *cmd,
4521         u8 reason,
4522         int from_transport)
4523 {
4524         unsigned char *buffer = cmd->sense_buffer;
4525         unsigned long flags;
4526         int offset;
4527         u8 asc = 0, ascq = 0;
4528
4529         spin_lock_irqsave(&cmd->t_state_lock, flags);
4530         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4531                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4532                 return 0;
4533         }
4534         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4535         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4536
4537         if (!reason && from_transport)
4538                 goto after_reason;
4539
4540         if (!from_transport)
4541                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4542         /*
4543          * Data Segment and SenseLength of the fabric response PDU.
4544          *
4545          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4546          * from include/scsi/scsi_cmnd.h
4547          */
4548         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4549                                 TRANSPORT_SENSE_BUFFER);
4550         /*
4551          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4552          * SENSE KEY values from include/scsi/scsi.h
4553          */
4554         switch (reason) {
4555         case TCM_NON_EXISTENT_LUN:
4556                 /* CURRENT ERROR */
4557                 buffer[offset] = 0x70;
4558                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4559                 /* ILLEGAL REQUEST */
4560                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4561                 /* LOGICAL UNIT NOT SUPPORTED */
4562                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4563                 break;
4564         case TCM_UNSUPPORTED_SCSI_OPCODE:
4565         case TCM_SECTOR_COUNT_TOO_MANY:
4566                 /* CURRENT ERROR */
4567                 buffer[offset] = 0x70;
4568                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4569                 /* ILLEGAL REQUEST */
4570                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4571                 /* INVALID COMMAND OPERATION CODE */
4572                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4573                 break;
4574         case TCM_UNKNOWN_MODE_PAGE:
4575                 /* CURRENT ERROR */
4576                 buffer[offset] = 0x70;
4577                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4578                 /* ILLEGAL REQUEST */
4579                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4580                 /* INVALID FIELD IN CDB */
4581                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4582                 break;
4583         case TCM_CHECK_CONDITION_ABORT_CMD:
4584                 /* CURRENT ERROR */
4585                 buffer[offset] = 0x70;
4586                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4587                 /* ABORTED COMMAND */
4588                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4589                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4590                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4591                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4592                 break;
4593         case TCM_INCORRECT_AMOUNT_OF_DATA:
4594                 /* CURRENT ERROR */
4595                 buffer[offset] = 0x70;
4596                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4597                 /* ABORTED COMMAND */
4598                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4599                 /* WRITE ERROR */
4600                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4601                 /* NOT ENOUGH UNSOLICITED DATA */
4602                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4603                 break;
4604         case TCM_INVALID_CDB_FIELD:
4605                 /* CURRENT ERROR */
4606                 buffer[offset] = 0x70;
4607                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4608                 /* ILLEGAL REQUEST */
4609                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4610                 /* INVALID FIELD IN CDB */
4611                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4612                 break;
4613         case TCM_INVALID_PARAMETER_LIST:
4614                 /* CURRENT ERROR */
4615                 buffer[offset] = 0x70;
4616                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4617                 /* ILLEGAL REQUEST */
4618                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4619                 /* INVALID FIELD IN PARAMETER LIST */
4620                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4621                 break;
4622         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4623                 /* CURRENT ERROR */
4624                 buffer[offset] = 0x70;
4625                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4626                 /* ABORTED COMMAND */
4627                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4628                 /* WRITE ERROR */
4629                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4630                 /* UNEXPECTED_UNSOLICITED_DATA */
4631                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4632                 break;
4633         case TCM_SERVICE_CRC_ERROR:
4634                 /* CURRENT ERROR */
4635                 buffer[offset] = 0x70;
4636                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4637                 /* ABORTED COMMAND */
4638                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4639                 /* PROTOCOL SERVICE CRC ERROR */
4640                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4641                 /* N/A */
4642                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4643                 break;
4644         case TCM_SNACK_REJECTED:
4645                 /* CURRENT ERROR */
4646                 buffer[offset] = 0x70;
4647                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4648                 /* ABORTED COMMAND */
4649                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4650                 /* READ ERROR */
4651                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4652                 /* FAILED RETRANSMISSION REQUEST */
4653                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4654                 break;
4655         case TCM_WRITE_PROTECTED:
4656                 /* CURRENT ERROR */
4657                 buffer[offset] = 0x70;
4658                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4659                 /* DATA PROTECT */
4660                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4661                 /* WRITE PROTECTED */
4662                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4663                 break;
4664         case TCM_ADDRESS_OUT_OF_RANGE:
4665                 /* CURRENT ERROR */
4666                 buffer[offset] = 0x70;
4667                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4668                 /* ILLEGAL REQUEST */
4669                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4670                 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
4671                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x21;
4672                 break;
4673         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4674                 /* CURRENT ERROR */
4675                 buffer[offset] = 0x70;
4676                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4677                 /* UNIT ATTENTION */
4678                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4679                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4680                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4681                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4682                 break;
4683         case TCM_CHECK_CONDITION_NOT_READY:
4684                 /* CURRENT ERROR */
4685                 buffer[offset] = 0x70;
4686                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4687                 /* Not Ready */
4688                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4689                 transport_get_sense_codes(cmd, &asc, &ascq);
4690                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4691                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4692                 break;
4693         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4694         default:
4695                 /* CURRENT ERROR */
4696                 buffer[offset] = 0x70;
4697                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4698                 /* ILLEGAL REQUEST */
4699                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4700                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4701                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4702                 break;
4703         }
4704         /*
4705          * This code uses linux/include/scsi/scsi.h SAM status codes!
4706          */
4707         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4708         /*
4709          * Automatically padded, this value is encoded in the fabric's
4710          * data_length response PDU containing the SCSI defined sense data.
4711          */
4712         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4713
4714 after_reason:
4715         return cmd->se_tfo->queue_status(cmd);
4716 }
4717 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4718
4719 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4720 {
4721         int ret = 0;
4722
4723         if (cmd->transport_state & CMD_T_ABORTED) {
4724                 if (!send_status ||
4725                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4726                         return 1;
4727 #if 0
4728                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4729                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4730                         cmd->t_task_cdb[0],
4731                         cmd->se_tfo->get_task_tag(cmd));
4732 #endif
4733                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4734                 cmd->se_tfo->queue_status(cmd);
4735                 ret = 1;
4736         }
4737         return ret;
4738 }
4739 EXPORT_SYMBOL(transport_check_aborted_status);
4740
4741 void transport_send_task_abort(struct se_cmd *cmd)
4742 {
4743         unsigned long flags;
4744
4745         spin_lock_irqsave(&cmd->t_state_lock, flags);
4746         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4747                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4748                 return;
4749         }
4750         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4751
4752         /*
4753          * If there are still expected incoming fabric WRITEs, we wait
4754          * until until they have completed before sending a TASK_ABORTED
4755          * response.  This response with TASK_ABORTED status will be
4756          * queued back to fabric module by transport_check_aborted_status().
4757          */
4758         if (cmd->data_direction == DMA_TO_DEVICE) {
4759                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4760                         cmd->transport_state |= CMD_T_ABORTED;
4761                         smp_mb__after_atomic_inc();
4762                 }
4763         }
4764         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4765 #if 0
4766         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4767                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4768                 cmd->se_tfo->get_task_tag(cmd));
4769 #endif
4770         cmd->se_tfo->queue_status(cmd);
4771 }
4772
4773 static int transport_generic_do_tmr(struct se_cmd *cmd)
4774 {
4775         struct se_device *dev = cmd->se_dev;
4776         struct se_tmr_req *tmr = cmd->se_tmr_req;
4777         int ret;
4778
4779         switch (tmr->function) {
4780         case TMR_ABORT_TASK:
4781                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
4782                 break;
4783         case TMR_ABORT_TASK_SET:
4784         case TMR_CLEAR_ACA:
4785         case TMR_CLEAR_TASK_SET:
4786                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4787                 break;
4788         case TMR_LUN_RESET:
4789                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4790                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4791                                          TMR_FUNCTION_REJECTED;
4792                 break;
4793         case TMR_TARGET_WARM_RESET:
4794                 tmr->response = TMR_FUNCTION_REJECTED;
4795                 break;
4796         case TMR_TARGET_COLD_RESET:
4797                 tmr->response = TMR_FUNCTION_REJECTED;
4798                 break;
4799         default:
4800                 pr_err("Uknown TMR function: 0x%02x.\n",
4801                                 tmr->function);
4802                 tmr->response = TMR_FUNCTION_REJECTED;
4803                 break;
4804         }
4805
4806         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4807         cmd->se_tfo->queue_tm_rsp(cmd);
4808
4809         transport_cmd_check_stop_to_fabric(cmd);
4810         return 0;
4811 }
4812
4813 /*      transport_processing_thread():
4814  *
4815  *
4816  */
4817 static int transport_processing_thread(void *param)
4818 {
4819         int ret;
4820         struct se_cmd *cmd;
4821         struct se_device *dev = param;
4822
4823         while (!kthread_should_stop()) {
4824                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4825                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4826                                 kthread_should_stop());
4827                 if (ret < 0)
4828                         goto out;
4829
4830 get_cmd:
4831                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4832                 if (!cmd)
4833                         continue;
4834
4835                 switch (cmd->t_state) {
4836                 case TRANSPORT_NEW_CMD:
4837                         BUG();
4838                         break;
4839                 case TRANSPORT_NEW_CMD_MAP:
4840                         if (!cmd->se_tfo->new_cmd_map) {
4841                                 pr_err("cmd->se_tfo->new_cmd_map is"
4842                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4843                                 BUG();
4844                         }
4845                         ret = cmd->se_tfo->new_cmd_map(cmd);
4846                         if (ret < 0) {
4847                                 transport_generic_request_failure(cmd);
4848                                 break;
4849                         }
4850                         ret = transport_generic_new_cmd(cmd);
4851                         if (ret < 0) {
4852                                 transport_generic_request_failure(cmd);
4853                                 break;
4854                         }
4855                         break;
4856                 case TRANSPORT_PROCESS_WRITE:
4857                         transport_generic_process_write(cmd);
4858                         break;
4859                 case TRANSPORT_PROCESS_TMR:
4860                         transport_generic_do_tmr(cmd);
4861                         break;
4862                 case TRANSPORT_COMPLETE_QF_WP:
4863                         transport_write_pending_qf(cmd);
4864                         break;
4865                 case TRANSPORT_COMPLETE_QF_OK:
4866                         transport_complete_qf(cmd);
4867                         break;
4868                 default:
4869                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4870                                 "i_state: %d on SE LUN: %u\n",
4871                                 cmd->t_state,
4872                                 cmd->se_tfo->get_task_tag(cmd),
4873                                 cmd->se_tfo->get_cmd_state(cmd),
4874                                 cmd->se_lun->unpacked_lun);
4875                         BUG();
4876                 }
4877
4878                 goto get_cmd;
4879         }
4880
4881 out:
4882         WARN_ON(!list_empty(&dev->state_task_list));
4883         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4884         dev->process_thread = NULL;
4885         return 0;
4886 }