target: Fix unsupported WRITE_SAME sense payload
[linux-2.6.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_backend.h>
49 #include <target/target_core_fabric.h>
50 #include <target/target_core_configfs.h>
51
52 #include "target_core_internal.h"
53 #include "target_core_alua.h"
54 #include "target_core_pr.h"
55 #include "target_core_ua.h"
56
57 static int sub_api_initialized;
58
59 static struct workqueue_struct *target_completion_wq;
60 static struct kmem_cache *se_sess_cache;
61 struct kmem_cache *se_tmr_req_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74                 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void transport_generic_request_failure(struct se_cmd *);
81 static void target_complete_ok_work(struct work_struct *work);
82
83 int init_se_kmem_caches(void)
84 {
85         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
86                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
87                         0, NULL);
88         if (!se_tmr_req_cache) {
89                 pr_err("kmem_cache_create() for struct se_tmr_req"
90                                 " failed\n");
91                 goto out;
92         }
93         se_sess_cache = kmem_cache_create("se_sess_cache",
94                         sizeof(struct se_session), __alignof__(struct se_session),
95                         0, NULL);
96         if (!se_sess_cache) {
97                 pr_err("kmem_cache_create() for struct se_session"
98                                 " failed\n");
99                 goto out_free_tmr_req_cache;
100         }
101         se_ua_cache = kmem_cache_create("se_ua_cache",
102                         sizeof(struct se_ua), __alignof__(struct se_ua),
103                         0, NULL);
104         if (!se_ua_cache) {
105                 pr_err("kmem_cache_create() for struct se_ua failed\n");
106                 goto out_free_sess_cache;
107         }
108         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
109                         sizeof(struct t10_pr_registration),
110                         __alignof__(struct t10_pr_registration), 0, NULL);
111         if (!t10_pr_reg_cache) {
112                 pr_err("kmem_cache_create() for struct t10_pr_registration"
113                                 " failed\n");
114                 goto out_free_ua_cache;
115         }
116         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
117                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
118                         0, NULL);
119         if (!t10_alua_lu_gp_cache) {
120                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
121                                 " failed\n");
122                 goto out_free_pr_reg_cache;
123         }
124         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
125                         sizeof(struct t10_alua_lu_gp_member),
126                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
127         if (!t10_alua_lu_gp_mem_cache) {
128                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
129                                 "cache failed\n");
130                 goto out_free_lu_gp_cache;
131         }
132         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
133                         sizeof(struct t10_alua_tg_pt_gp),
134                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
135         if (!t10_alua_tg_pt_gp_cache) {
136                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137                                 "cache failed\n");
138                 goto out_free_lu_gp_mem_cache;
139         }
140         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
141                         "t10_alua_tg_pt_gp_mem_cache",
142                         sizeof(struct t10_alua_tg_pt_gp_member),
143                         __alignof__(struct t10_alua_tg_pt_gp_member),
144                         0, NULL);
145         if (!t10_alua_tg_pt_gp_mem_cache) {
146                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147                                 "mem_t failed\n");
148                 goto out_free_tg_pt_gp_cache;
149         }
150
151         target_completion_wq = alloc_workqueue("target_completion",
152                                                WQ_MEM_RECLAIM, 0);
153         if (!target_completion_wq)
154                 goto out_free_tg_pt_gp_mem_cache;
155
156         return 0;
157
158 out_free_tg_pt_gp_mem_cache:
159         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
160 out_free_tg_pt_gp_cache:
161         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
162 out_free_lu_gp_mem_cache:
163         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 out_free_lu_gp_cache:
165         kmem_cache_destroy(t10_alua_lu_gp_cache);
166 out_free_pr_reg_cache:
167         kmem_cache_destroy(t10_pr_reg_cache);
168 out_free_ua_cache:
169         kmem_cache_destroy(se_ua_cache);
170 out_free_sess_cache:
171         kmem_cache_destroy(se_sess_cache);
172 out_free_tmr_req_cache:
173         kmem_cache_destroy(se_tmr_req_cache);
174 out:
175         return -ENOMEM;
176 }
177
178 void release_se_kmem_caches(void)
179 {
180         destroy_workqueue(target_completion_wq);
181         kmem_cache_destroy(se_tmr_req_cache);
182         kmem_cache_destroy(se_sess_cache);
183         kmem_cache_destroy(se_ua_cache);
184         kmem_cache_destroy(t10_pr_reg_cache);
185         kmem_cache_destroy(t10_alua_lu_gp_cache);
186         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
187         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
188         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
189 }
190
191 /* This code ensures unique mib indexes are handed out. */
192 static DEFINE_SPINLOCK(scsi_mib_index_lock);
193 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
194
195 /*
196  * Allocate a new row index for the entry type specified
197  */
198 u32 scsi_get_new_index(scsi_index_t type)
199 {
200         u32 new_index;
201
202         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
203
204         spin_lock(&scsi_mib_index_lock);
205         new_index = ++scsi_mib_index[type];
206         spin_unlock(&scsi_mib_index_lock);
207
208         return new_index;
209 }
210
211 static void transport_init_queue_obj(struct se_queue_obj *qobj)
212 {
213         atomic_set(&qobj->queue_cnt, 0);
214         INIT_LIST_HEAD(&qobj->qobj_list);
215         init_waitqueue_head(&qobj->thread_wq);
216         spin_lock_init(&qobj->cmd_queue_lock);
217 }
218
219 void transport_subsystem_check_init(void)
220 {
221         int ret;
222
223         if (sub_api_initialized)
224                 return;
225
226         ret = request_module("target_core_iblock");
227         if (ret != 0)
228                 pr_err("Unable to load target_core_iblock\n");
229
230         ret = request_module("target_core_file");
231         if (ret != 0)
232                 pr_err("Unable to load target_core_file\n");
233
234         ret = request_module("target_core_pscsi");
235         if (ret != 0)
236                 pr_err("Unable to load target_core_pscsi\n");
237
238         ret = request_module("target_core_stgt");
239         if (ret != 0)
240                 pr_err("Unable to load target_core_stgt\n");
241
242         sub_api_initialized = 1;
243         return;
244 }
245
246 struct se_session *transport_init_session(void)
247 {
248         struct se_session *se_sess;
249
250         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
251         if (!se_sess) {
252                 pr_err("Unable to allocate struct se_session from"
253                                 " se_sess_cache\n");
254                 return ERR_PTR(-ENOMEM);
255         }
256         INIT_LIST_HEAD(&se_sess->sess_list);
257         INIT_LIST_HEAD(&se_sess->sess_acl_list);
258         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
259         INIT_LIST_HEAD(&se_sess->sess_wait_list);
260         spin_lock_init(&se_sess->sess_cmd_lock);
261
262         return se_sess;
263 }
264 EXPORT_SYMBOL(transport_init_session);
265
266 /*
267  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
268  */
269 void __transport_register_session(
270         struct se_portal_group *se_tpg,
271         struct se_node_acl *se_nacl,
272         struct se_session *se_sess,
273         void *fabric_sess_ptr)
274 {
275         unsigned char buf[PR_REG_ISID_LEN];
276
277         se_sess->se_tpg = se_tpg;
278         se_sess->fabric_sess_ptr = fabric_sess_ptr;
279         /*
280          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
281          *
282          * Only set for struct se_session's that will actually be moving I/O.
283          * eg: *NOT* discovery sessions.
284          */
285         if (se_nacl) {
286                 /*
287                  * If the fabric module supports an ISID based TransportID,
288                  * save this value in binary from the fabric I_T Nexus now.
289                  */
290                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
291                         memset(&buf[0], 0, PR_REG_ISID_LEN);
292                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
293                                         &buf[0], PR_REG_ISID_LEN);
294                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
295                 }
296                 spin_lock_irq(&se_nacl->nacl_sess_lock);
297                 /*
298                  * The se_nacl->nacl_sess pointer will be set to the
299                  * last active I_T Nexus for each struct se_node_acl.
300                  */
301                 se_nacl->nacl_sess = se_sess;
302
303                 list_add_tail(&se_sess->sess_acl_list,
304                               &se_nacl->acl_sess_list);
305                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
306         }
307         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
308
309         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
310                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
311 }
312 EXPORT_SYMBOL(__transport_register_session);
313
314 void transport_register_session(
315         struct se_portal_group *se_tpg,
316         struct se_node_acl *se_nacl,
317         struct se_session *se_sess,
318         void *fabric_sess_ptr)
319 {
320         spin_lock_bh(&se_tpg->session_lock);
321         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
322         spin_unlock_bh(&se_tpg->session_lock);
323 }
324 EXPORT_SYMBOL(transport_register_session);
325
326 void transport_deregister_session_configfs(struct se_session *se_sess)
327 {
328         struct se_node_acl *se_nacl;
329         unsigned long flags;
330         /*
331          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
332          */
333         se_nacl = se_sess->se_node_acl;
334         if (se_nacl) {
335                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
336                 list_del(&se_sess->sess_acl_list);
337                 /*
338                  * If the session list is empty, then clear the pointer.
339                  * Otherwise, set the struct se_session pointer from the tail
340                  * element of the per struct se_node_acl active session list.
341                  */
342                 if (list_empty(&se_nacl->acl_sess_list))
343                         se_nacl->nacl_sess = NULL;
344                 else {
345                         se_nacl->nacl_sess = container_of(
346                                         se_nacl->acl_sess_list.prev,
347                                         struct se_session, sess_acl_list);
348                 }
349                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
350         }
351 }
352 EXPORT_SYMBOL(transport_deregister_session_configfs);
353
354 void transport_free_session(struct se_session *se_sess)
355 {
356         kmem_cache_free(se_sess_cache, se_sess);
357 }
358 EXPORT_SYMBOL(transport_free_session);
359
360 void transport_deregister_session(struct se_session *se_sess)
361 {
362         struct se_portal_group *se_tpg = se_sess->se_tpg;
363         struct se_node_acl *se_nacl;
364         unsigned long flags;
365
366         if (!se_tpg) {
367                 transport_free_session(se_sess);
368                 return;
369         }
370
371         spin_lock_irqsave(&se_tpg->session_lock, flags);
372         list_del(&se_sess->sess_list);
373         se_sess->se_tpg = NULL;
374         se_sess->fabric_sess_ptr = NULL;
375         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
376
377         /*
378          * Determine if we need to do extra work for this initiator node's
379          * struct se_node_acl if it had been previously dynamically generated.
380          */
381         se_nacl = se_sess->se_node_acl;
382         if (se_nacl) {
383                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384                 if (se_nacl->dynamic_node_acl) {
385                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
386                                         se_tpg)) {
387                                 list_del(&se_nacl->acl_list);
388                                 se_tpg->num_node_acls--;
389                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
390
391                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
392                                 core_free_device_list_for_node(se_nacl, se_tpg);
393                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
394                                                 se_nacl);
395                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
396                         }
397                 }
398                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
399         }
400
401         transport_free_session(se_sess);
402
403         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
404                 se_tpg->se_tpg_tfo->get_fabric_name());
405 }
406 EXPORT_SYMBOL(transport_deregister_session);
407
408 /*
409  * Called with cmd->t_state_lock held.
410  */
411 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
412 {
413         struct se_device *dev = cmd->se_dev;
414         struct se_task *task;
415         unsigned long flags;
416
417         if (!dev)
418                 return;
419
420         list_for_each_entry(task, &cmd->t_task_list, t_list) {
421                 if (task->task_flags & TF_ACTIVE)
422                         continue;
423
424                 spin_lock_irqsave(&dev->execute_task_lock, flags);
425                 if (task->t_state_active) {
426                         pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
427                                 cmd->se_tfo->get_task_tag(cmd), dev, task);
428
429                         list_del(&task->t_state_list);
430                         atomic_dec(&cmd->t_task_cdbs_ex_left);
431                         task->t_state_active = false;
432                 }
433                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
434         }
435
436 }
437
438 /*      transport_cmd_check_stop():
439  *
440  *      'transport_off = 1' determines if t_transport_active should be cleared.
441  *      'transport_off = 2' determines if task_dev_state should be removed.
442  *
443  *      A non-zero u8 t_state sets cmd->t_state.
444  *      Returns 1 when command is stopped, else 0.
445  */
446 static int transport_cmd_check_stop(
447         struct se_cmd *cmd,
448         int transport_off,
449         u8 t_state)
450 {
451         unsigned long flags;
452
453         spin_lock_irqsave(&cmd->t_state_lock, flags);
454         /*
455          * Determine if IOCTL context caller in requesting the stopping of this
456          * command for LUN shutdown purposes.
457          */
458         if (atomic_read(&cmd->transport_lun_stop)) {
459                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
460                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
461                         cmd->se_tfo->get_task_tag(cmd));
462
463                 atomic_set(&cmd->t_transport_active, 0);
464                 if (transport_off == 2)
465                         transport_all_task_dev_remove_state(cmd);
466                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
467
468                 complete(&cmd->transport_lun_stop_comp);
469                 return 1;
470         }
471         /*
472          * Determine if frontend context caller is requesting the stopping of
473          * this command for frontend exceptions.
474          */
475         if (atomic_read(&cmd->t_transport_stop)) {
476                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
477                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
478                         cmd->se_tfo->get_task_tag(cmd));
479
480                 if (transport_off == 2)
481                         transport_all_task_dev_remove_state(cmd);
482
483                 /*
484                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
485                  * to FE.
486                  */
487                 if (transport_off == 2)
488                         cmd->se_lun = NULL;
489                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
490
491                 complete(&cmd->t_transport_stop_comp);
492                 return 1;
493         }
494         if (transport_off) {
495                 atomic_set(&cmd->t_transport_active, 0);
496                 if (transport_off == 2) {
497                         transport_all_task_dev_remove_state(cmd);
498                         /*
499                          * Clear struct se_cmd->se_lun before the transport_off == 2
500                          * handoff to fabric module.
501                          */
502                         cmd->se_lun = NULL;
503                         /*
504                          * Some fabric modules like tcm_loop can release
505                          * their internally allocated I/O reference now and
506                          * struct se_cmd now.
507                          *
508                          * Fabric modules are expected to return '1' here if the
509                          * se_cmd being passed is released at this point,
510                          * or zero if not being released.
511                          */
512                         if (cmd->se_tfo->check_stop_free != NULL) {
513                                 spin_unlock_irqrestore(
514                                         &cmd->t_state_lock, flags);
515
516                                 return cmd->se_tfo->check_stop_free(cmd);
517                         }
518                 }
519                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520
521                 return 0;
522         } else if (t_state)
523                 cmd->t_state = t_state;
524         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525
526         return 0;
527 }
528
529 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
530 {
531         return transport_cmd_check_stop(cmd, 2, 0);
532 }
533
534 static void transport_lun_remove_cmd(struct se_cmd *cmd)
535 {
536         struct se_lun *lun = cmd->se_lun;
537         unsigned long flags;
538
539         if (!lun)
540                 return;
541
542         spin_lock_irqsave(&cmd->t_state_lock, flags);
543         if (!atomic_read(&cmd->transport_dev_active)) {
544                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545                 goto check_lun;
546         }
547         atomic_set(&cmd->transport_dev_active, 0);
548         transport_all_task_dev_remove_state(cmd);
549         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550
551
552 check_lun:
553         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
554         if (atomic_read(&cmd->transport_lun_active)) {
555                 list_del(&cmd->se_lun_node);
556                 atomic_set(&cmd->transport_lun_active, 0);
557 #if 0
558                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
559                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
560 #endif
561         }
562         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
563 }
564
565 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
566 {
567         if (!cmd->se_tmr_req)
568                 transport_lun_remove_cmd(cmd);
569
570         if (transport_cmd_check_stop_to_fabric(cmd))
571                 return;
572         if (remove) {
573                 transport_remove_cmd_from_queue(cmd);
574                 transport_put_cmd(cmd);
575         }
576 }
577
578 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
579                 bool at_head)
580 {
581         struct se_device *dev = cmd->se_dev;
582         struct se_queue_obj *qobj = &dev->dev_queue_obj;
583         unsigned long flags;
584
585         if (t_state) {
586                 spin_lock_irqsave(&cmd->t_state_lock, flags);
587                 cmd->t_state = t_state;
588                 atomic_set(&cmd->t_transport_active, 1);
589                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
590         }
591
592         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
593
594         /* If the cmd is already on the list, remove it before we add it */
595         if (!list_empty(&cmd->se_queue_node))
596                 list_del(&cmd->se_queue_node);
597         else
598                 atomic_inc(&qobj->queue_cnt);
599
600         if (at_head)
601                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
602         else
603                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
604         atomic_set(&cmd->t_transport_queue_active, 1);
605         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
606
607         wake_up_interruptible(&qobj->thread_wq);
608 }
609
610 static struct se_cmd *
611 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
612 {
613         struct se_cmd *cmd;
614         unsigned long flags;
615
616         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
617         if (list_empty(&qobj->qobj_list)) {
618                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619                 return NULL;
620         }
621         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
622
623         atomic_set(&cmd->t_transport_queue_active, 0);
624
625         list_del_init(&cmd->se_queue_node);
626         atomic_dec(&qobj->queue_cnt);
627         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
628
629         return cmd;
630 }
631
632 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
633 {
634         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
635         unsigned long flags;
636
637         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
638         if (!atomic_read(&cmd->t_transport_queue_active)) {
639                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640                 return;
641         }
642         atomic_set(&cmd->t_transport_queue_active, 0);
643         atomic_dec(&qobj->queue_cnt);
644         list_del_init(&cmd->se_queue_node);
645         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
646
647         if (atomic_read(&cmd->t_transport_queue_active)) {
648                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
649                         cmd->se_tfo->get_task_tag(cmd),
650                         atomic_read(&cmd->t_transport_queue_active));
651         }
652 }
653
654 /*
655  * Completion function used by TCM subsystem plugins (such as FILEIO)
656  * for queueing up response from struct se_subsystem_api->do_task()
657  */
658 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
659 {
660         struct se_task *task = list_entry(cmd->t_task_list.next,
661                                 struct se_task, t_list);
662
663         if (good) {
664                 cmd->scsi_status = SAM_STAT_GOOD;
665                 task->task_scsi_status = GOOD;
666         } else {
667                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
668                 task->task_se_cmd->scsi_sense_reason =
669                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
670
671         }
672
673         transport_complete_task(task, good);
674 }
675 EXPORT_SYMBOL(transport_complete_sync_cache);
676
677 static void target_complete_failure_work(struct work_struct *work)
678 {
679         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
680
681         transport_generic_request_failure(cmd);
682 }
683
684 /*      transport_complete_task():
685  *
686  *      Called from interrupt and non interrupt context depending
687  *      on the transport plugin.
688  */
689 void transport_complete_task(struct se_task *task, int success)
690 {
691         struct se_cmd *cmd = task->task_se_cmd;
692         struct se_device *dev = cmd->se_dev;
693         unsigned long flags;
694
695         spin_lock_irqsave(&cmd->t_state_lock, flags);
696         task->task_flags &= ~TF_ACTIVE;
697
698         /*
699          * See if any sense data exists, if so set the TASK_SENSE flag.
700          * Also check for any other post completion work that needs to be
701          * done by the plugins.
702          */
703         if (dev && dev->transport->transport_complete) {
704                 if (dev->transport->transport_complete(task) != 0) {
705                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
706                         task->task_flags |= TF_HAS_SENSE;
707                         success = 1;
708                 }
709         }
710
711         /*
712          * See if we are waiting for outstanding struct se_task
713          * to complete for an exception condition
714          */
715         if (task->task_flags & TF_REQUEST_STOP) {
716                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
717                 complete(&task->task_stop_comp);
718                 return;
719         }
720
721         if (!success)
722                 cmd->t_tasks_failed = 1;
723
724         /*
725          * Decrement the outstanding t_task_cdbs_left count.  The last
726          * struct se_task from struct se_cmd will complete itself into the
727          * device queue depending upon int success.
728          */
729         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
730                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
731                 return;
732         }
733
734         if (cmd->t_tasks_failed) {
735                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
736                 INIT_WORK(&cmd->work, target_complete_failure_work);
737         } else {
738                 atomic_set(&cmd->t_transport_complete, 1);
739                 INIT_WORK(&cmd->work, target_complete_ok_work);
740         }
741
742         cmd->t_state = TRANSPORT_COMPLETE;
743         atomic_set(&cmd->t_transport_active, 1);
744         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
745
746         queue_work(target_completion_wq, &cmd->work);
747 }
748 EXPORT_SYMBOL(transport_complete_task);
749
750 /*
751  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
752  * struct se_task list are ready to be added to the active execution list
753  * struct se_device
754
755  * Called with se_dev_t->execute_task_lock called.
756  */
757 static inline int transport_add_task_check_sam_attr(
758         struct se_task *task,
759         struct se_task *task_prev,
760         struct se_device *dev)
761 {
762         /*
763          * No SAM Task attribute emulation enabled, add to tail of
764          * execution queue
765          */
766         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
767                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
768                 return 0;
769         }
770         /*
771          * HEAD_OF_QUEUE attribute for received CDB, which means
772          * the first task that is associated with a struct se_cmd goes to
773          * head of the struct se_device->execute_task_list, and task_prev
774          * after that for each subsequent task
775          */
776         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
777                 list_add(&task->t_execute_list,
778                                 (task_prev != NULL) ?
779                                 &task_prev->t_execute_list :
780                                 &dev->execute_task_list);
781
782                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
783                                 " in execution queue\n",
784                                 task->task_se_cmd->t_task_cdb[0]);
785                 return 1;
786         }
787         /*
788          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
789          * transitioned from Dermant -> Active state, and are added to the end
790          * of the struct se_device->execute_task_list
791          */
792         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793         return 0;
794 }
795
796 /*      __transport_add_task_to_execute_queue():
797  *
798  *      Called with se_dev_t->execute_task_lock called.
799  */
800 static void __transport_add_task_to_execute_queue(
801         struct se_task *task,
802         struct se_task *task_prev,
803         struct se_device *dev)
804 {
805         int head_of_queue;
806
807         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
808         atomic_inc(&dev->execute_tasks);
809
810         if (task->t_state_active)
811                 return;
812         /*
813          * Determine if this task needs to go to HEAD_OF_QUEUE for the
814          * state list as well.  Running with SAM Task Attribute emulation
815          * will always return head_of_queue == 0 here
816          */
817         if (head_of_queue)
818                 list_add(&task->t_state_list, (task_prev) ?
819                                 &task_prev->t_state_list :
820                                 &dev->state_task_list);
821         else
822                 list_add_tail(&task->t_state_list, &dev->state_task_list);
823
824         task->t_state_active = true;
825
826         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
827                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
828                 task, dev);
829 }
830
831 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
832 {
833         struct se_device *dev = cmd->se_dev;
834         struct se_task *task;
835         unsigned long flags;
836
837         spin_lock_irqsave(&cmd->t_state_lock, flags);
838         list_for_each_entry(task, &cmd->t_task_list, t_list) {
839                 spin_lock(&dev->execute_task_lock);
840                 if (!task->t_state_active) {
841                         list_add_tail(&task->t_state_list,
842                                       &dev->state_task_list);
843                         task->t_state_active = true;
844
845                         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
846                                 task->task_se_cmd->se_tfo->get_task_tag(
847                                 task->task_se_cmd), task, dev);
848                 }
849                 spin_unlock(&dev->execute_task_lock);
850         }
851         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
852 }
853
854 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
855 {
856         struct se_device *dev = cmd->se_dev;
857         struct se_task *task, *task_prev = NULL;
858
859         list_for_each_entry(task, &cmd->t_task_list, t_list) {
860                 if (!list_empty(&task->t_execute_list))
861                         continue;
862                 /*
863                  * __transport_add_task_to_execute_queue() handles the
864                  * SAM Task Attribute emulation if enabled
865                  */
866                 __transport_add_task_to_execute_queue(task, task_prev, dev);
867                 task_prev = task;
868         }
869 }
870
871 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
872 {
873         unsigned long flags;
874         struct se_device *dev = cmd->se_dev;
875
876         spin_lock_irqsave(&dev->execute_task_lock, flags);
877         __transport_add_tasks_from_cmd(cmd);
878         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
879 }
880
881 void __transport_remove_task_from_execute_queue(struct se_task *task,
882                 struct se_device *dev)
883 {
884         list_del_init(&task->t_execute_list);
885         atomic_dec(&dev->execute_tasks);
886 }
887
888 static void transport_remove_task_from_execute_queue(
889         struct se_task *task,
890         struct se_device *dev)
891 {
892         unsigned long flags;
893
894         if (WARN_ON(list_empty(&task->t_execute_list)))
895                 return;
896
897         spin_lock_irqsave(&dev->execute_task_lock, flags);
898         __transport_remove_task_from_execute_queue(task, dev);
899         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
900 }
901
902 /*
903  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
904  */
905
906 static void target_qf_do_work(struct work_struct *work)
907 {
908         struct se_device *dev = container_of(work, struct se_device,
909                                         qf_work_queue);
910         LIST_HEAD(qf_cmd_list);
911         struct se_cmd *cmd, *cmd_tmp;
912
913         spin_lock_irq(&dev->qf_cmd_lock);
914         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
915         spin_unlock_irq(&dev->qf_cmd_lock);
916
917         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
918                 list_del(&cmd->se_qf_node);
919                 atomic_dec(&dev->dev_qf_count);
920                 smp_mb__after_atomic_dec();
921
922                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
923                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
924                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
925                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
926                         : "UNKNOWN");
927
928                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
929         }
930 }
931
932 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
933 {
934         switch (cmd->data_direction) {
935         case DMA_NONE:
936                 return "NONE";
937         case DMA_FROM_DEVICE:
938                 return "READ";
939         case DMA_TO_DEVICE:
940                 return "WRITE";
941         case DMA_BIDIRECTIONAL:
942                 return "BIDI";
943         default:
944                 break;
945         }
946
947         return "UNKNOWN";
948 }
949
950 void transport_dump_dev_state(
951         struct se_device *dev,
952         char *b,
953         int *bl)
954 {
955         *bl += sprintf(b + *bl, "Status: ");
956         switch (dev->dev_status) {
957         case TRANSPORT_DEVICE_ACTIVATED:
958                 *bl += sprintf(b + *bl, "ACTIVATED");
959                 break;
960         case TRANSPORT_DEVICE_DEACTIVATED:
961                 *bl += sprintf(b + *bl, "DEACTIVATED");
962                 break;
963         case TRANSPORT_DEVICE_SHUTDOWN:
964                 *bl += sprintf(b + *bl, "SHUTDOWN");
965                 break;
966         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
967         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
968                 *bl += sprintf(b + *bl, "OFFLINE");
969                 break;
970         default:
971                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
972                 break;
973         }
974
975         *bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
976                 atomic_read(&dev->execute_tasks), dev->queue_depth);
977         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
978                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
979         *bl += sprintf(b + *bl, "        ");
980 }
981
982 void transport_dump_vpd_proto_id(
983         struct t10_vpd *vpd,
984         unsigned char *p_buf,
985         int p_buf_len)
986 {
987         unsigned char buf[VPD_TMP_BUF_SIZE];
988         int len;
989
990         memset(buf, 0, VPD_TMP_BUF_SIZE);
991         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
992
993         switch (vpd->protocol_identifier) {
994         case 0x00:
995                 sprintf(buf+len, "Fibre Channel\n");
996                 break;
997         case 0x10:
998                 sprintf(buf+len, "Parallel SCSI\n");
999                 break;
1000         case 0x20:
1001                 sprintf(buf+len, "SSA\n");
1002                 break;
1003         case 0x30:
1004                 sprintf(buf+len, "IEEE 1394\n");
1005                 break;
1006         case 0x40:
1007                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1008                                 " Protocol\n");
1009                 break;
1010         case 0x50:
1011                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1012                 break;
1013         case 0x60:
1014                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1015                 break;
1016         case 0x70:
1017                 sprintf(buf+len, "Automation/Drive Interface Transport"
1018                                 " Protocol\n");
1019                 break;
1020         case 0x80:
1021                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1022                 break;
1023         default:
1024                 sprintf(buf+len, "Unknown 0x%02x\n",
1025                                 vpd->protocol_identifier);
1026                 break;
1027         }
1028
1029         if (p_buf)
1030                 strncpy(p_buf, buf, p_buf_len);
1031         else
1032                 pr_debug("%s", buf);
1033 }
1034
1035 void
1036 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1037 {
1038         /*
1039          * Check if the Protocol Identifier Valid (PIV) bit is set..
1040          *
1041          * from spc3r23.pdf section 7.5.1
1042          */
1043          if (page_83[1] & 0x80) {
1044                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1045                 vpd->protocol_identifier_set = 1;
1046                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1047         }
1048 }
1049 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1050
1051 int transport_dump_vpd_assoc(
1052         struct t10_vpd *vpd,
1053         unsigned char *p_buf,
1054         int p_buf_len)
1055 {
1056         unsigned char buf[VPD_TMP_BUF_SIZE];
1057         int ret = 0;
1058         int len;
1059
1060         memset(buf, 0, VPD_TMP_BUF_SIZE);
1061         len = sprintf(buf, "T10 VPD Identifier Association: ");
1062
1063         switch (vpd->association) {
1064         case 0x00:
1065                 sprintf(buf+len, "addressed logical unit\n");
1066                 break;
1067         case 0x10:
1068                 sprintf(buf+len, "target port\n");
1069                 break;
1070         case 0x20:
1071                 sprintf(buf+len, "SCSI target device\n");
1072                 break;
1073         default:
1074                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1075                 ret = -EINVAL;
1076                 break;
1077         }
1078
1079         if (p_buf)
1080                 strncpy(p_buf, buf, p_buf_len);
1081         else
1082                 pr_debug("%s", buf);
1083
1084         return ret;
1085 }
1086
1087 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1088 {
1089         /*
1090          * The VPD identification association..
1091          *
1092          * from spc3r23.pdf Section 7.6.3.1 Table 297
1093          */
1094         vpd->association = (page_83[1] & 0x30);
1095         return transport_dump_vpd_assoc(vpd, NULL, 0);
1096 }
1097 EXPORT_SYMBOL(transport_set_vpd_assoc);
1098
1099 int transport_dump_vpd_ident_type(
1100         struct t10_vpd *vpd,
1101         unsigned char *p_buf,
1102         int p_buf_len)
1103 {
1104         unsigned char buf[VPD_TMP_BUF_SIZE];
1105         int ret = 0;
1106         int len;
1107
1108         memset(buf, 0, VPD_TMP_BUF_SIZE);
1109         len = sprintf(buf, "T10 VPD Identifier Type: ");
1110
1111         switch (vpd->device_identifier_type) {
1112         case 0x00:
1113                 sprintf(buf+len, "Vendor specific\n");
1114                 break;
1115         case 0x01:
1116                 sprintf(buf+len, "T10 Vendor ID based\n");
1117                 break;
1118         case 0x02:
1119                 sprintf(buf+len, "EUI-64 based\n");
1120                 break;
1121         case 0x03:
1122                 sprintf(buf+len, "NAA\n");
1123                 break;
1124         case 0x04:
1125                 sprintf(buf+len, "Relative target port identifier\n");
1126                 break;
1127         case 0x08:
1128                 sprintf(buf+len, "SCSI name string\n");
1129                 break;
1130         default:
1131                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1132                                 vpd->device_identifier_type);
1133                 ret = -EINVAL;
1134                 break;
1135         }
1136
1137         if (p_buf) {
1138                 if (p_buf_len < strlen(buf)+1)
1139                         return -EINVAL;
1140                 strncpy(p_buf, buf, p_buf_len);
1141         } else {
1142                 pr_debug("%s", buf);
1143         }
1144
1145         return ret;
1146 }
1147
1148 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1149 {
1150         /*
1151          * The VPD identifier type..
1152          *
1153          * from spc3r23.pdf Section 7.6.3.1 Table 298
1154          */
1155         vpd->device_identifier_type = (page_83[1] & 0x0f);
1156         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1157 }
1158 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1159
1160 int transport_dump_vpd_ident(
1161         struct t10_vpd *vpd,
1162         unsigned char *p_buf,
1163         int p_buf_len)
1164 {
1165         unsigned char buf[VPD_TMP_BUF_SIZE];
1166         int ret = 0;
1167
1168         memset(buf, 0, VPD_TMP_BUF_SIZE);
1169
1170         switch (vpd->device_identifier_code_set) {
1171         case 0x01: /* Binary */
1172                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1173                         &vpd->device_identifier[0]);
1174                 break;
1175         case 0x02: /* ASCII */
1176                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1177                         &vpd->device_identifier[0]);
1178                 break;
1179         case 0x03: /* UTF-8 */
1180                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1181                         &vpd->device_identifier[0]);
1182                 break;
1183         default:
1184                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1185                         " 0x%02x", vpd->device_identifier_code_set);
1186                 ret = -EINVAL;
1187                 break;
1188         }
1189
1190         if (p_buf)
1191                 strncpy(p_buf, buf, p_buf_len);
1192         else
1193                 pr_debug("%s", buf);
1194
1195         return ret;
1196 }
1197
1198 int
1199 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1200 {
1201         static const char hex_str[] = "0123456789abcdef";
1202         int j = 0, i = 4; /* offset to start of the identifer */
1203
1204         /*
1205          * The VPD Code Set (encoding)
1206          *
1207          * from spc3r23.pdf Section 7.6.3.1 Table 296
1208          */
1209         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1210         switch (vpd->device_identifier_code_set) {
1211         case 0x01: /* Binary */
1212                 vpd->device_identifier[j++] =
1213                                 hex_str[vpd->device_identifier_type];
1214                 while (i < (4 + page_83[3])) {
1215                         vpd->device_identifier[j++] =
1216                                 hex_str[(page_83[i] & 0xf0) >> 4];
1217                         vpd->device_identifier[j++] =
1218                                 hex_str[page_83[i] & 0x0f];
1219                         i++;
1220                 }
1221                 break;
1222         case 0x02: /* ASCII */
1223         case 0x03: /* UTF-8 */
1224                 while (i < (4 + page_83[3]))
1225                         vpd->device_identifier[j++] = page_83[i++];
1226                 break;
1227         default:
1228                 break;
1229         }
1230
1231         return transport_dump_vpd_ident(vpd, NULL, 0);
1232 }
1233 EXPORT_SYMBOL(transport_set_vpd_ident);
1234
1235 static void core_setup_task_attr_emulation(struct se_device *dev)
1236 {
1237         /*
1238          * If this device is from Target_Core_Mod/pSCSI, disable the
1239          * SAM Task Attribute emulation.
1240          *
1241          * This is currently not available in upsream Linux/SCSI Target
1242          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1243          */
1244         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1245                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1246                 return;
1247         }
1248
1249         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1250         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1251                 " device\n", dev->transport->name,
1252                 dev->transport->get_device_rev(dev));
1253 }
1254
1255 static void scsi_dump_inquiry(struct se_device *dev)
1256 {
1257         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1258         char buf[17];
1259         int i, device_type;
1260         /*
1261          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1262          */
1263         for (i = 0; i < 8; i++)
1264                 if (wwn->vendor[i] >= 0x20)
1265                         buf[i] = wwn->vendor[i];
1266                 else
1267                         buf[i] = ' ';
1268         buf[i] = '\0';
1269         pr_debug("  Vendor: %s\n", buf);
1270
1271         for (i = 0; i < 16; i++)
1272                 if (wwn->model[i] >= 0x20)
1273                         buf[i] = wwn->model[i];
1274                 else
1275                         buf[i] = ' ';
1276         buf[i] = '\0';
1277         pr_debug("  Model: %s\n", buf);
1278
1279         for (i = 0; i < 4; i++)
1280                 if (wwn->revision[i] >= 0x20)
1281                         buf[i] = wwn->revision[i];
1282                 else
1283                         buf[i] = ' ';
1284         buf[i] = '\0';
1285         pr_debug("  Revision: %s\n", buf);
1286
1287         device_type = dev->transport->get_device_type(dev);
1288         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1289         pr_debug("                 ANSI SCSI revision: %02x\n",
1290                                 dev->transport->get_device_rev(dev));
1291 }
1292
1293 struct se_device *transport_add_device_to_core_hba(
1294         struct se_hba *hba,
1295         struct se_subsystem_api *transport,
1296         struct se_subsystem_dev *se_dev,
1297         u32 device_flags,
1298         void *transport_dev,
1299         struct se_dev_limits *dev_limits,
1300         const char *inquiry_prod,
1301         const char *inquiry_rev)
1302 {
1303         int force_pt;
1304         struct se_device  *dev;
1305
1306         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1307         if (!dev) {
1308                 pr_err("Unable to allocate memory for se_dev_t\n");
1309                 return NULL;
1310         }
1311
1312         transport_init_queue_obj(&dev->dev_queue_obj);
1313         dev->dev_flags          = device_flags;
1314         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1315         dev->dev_ptr            = transport_dev;
1316         dev->se_hba             = hba;
1317         dev->se_sub_dev         = se_dev;
1318         dev->transport          = transport;
1319         INIT_LIST_HEAD(&dev->dev_list);
1320         INIT_LIST_HEAD(&dev->dev_sep_list);
1321         INIT_LIST_HEAD(&dev->dev_tmr_list);
1322         INIT_LIST_HEAD(&dev->execute_task_list);
1323         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1324         INIT_LIST_HEAD(&dev->state_task_list);
1325         INIT_LIST_HEAD(&dev->qf_cmd_list);
1326         spin_lock_init(&dev->execute_task_lock);
1327         spin_lock_init(&dev->delayed_cmd_lock);
1328         spin_lock_init(&dev->dev_reservation_lock);
1329         spin_lock_init(&dev->dev_status_lock);
1330         spin_lock_init(&dev->se_port_lock);
1331         spin_lock_init(&dev->se_tmr_lock);
1332         spin_lock_init(&dev->qf_cmd_lock);
1333         atomic_set(&dev->dev_ordered_id, 0);
1334
1335         se_dev_set_default_attribs(dev, dev_limits);
1336
1337         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1338         dev->creation_time = get_jiffies_64();
1339         spin_lock_init(&dev->stats_lock);
1340
1341         spin_lock(&hba->device_lock);
1342         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1343         hba->dev_count++;
1344         spin_unlock(&hba->device_lock);
1345         /*
1346          * Setup the SAM Task Attribute emulation for struct se_device
1347          */
1348         core_setup_task_attr_emulation(dev);
1349         /*
1350          * Force PR and ALUA passthrough emulation with internal object use.
1351          */
1352         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1353         /*
1354          * Setup the Reservations infrastructure for struct se_device
1355          */
1356         core_setup_reservations(dev, force_pt);
1357         /*
1358          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1359          */
1360         if (core_setup_alua(dev, force_pt) < 0)
1361                 goto out;
1362
1363         /*
1364          * Startup the struct se_device processing thread
1365          */
1366         dev->process_thread = kthread_run(transport_processing_thread, dev,
1367                                           "LIO_%s", dev->transport->name);
1368         if (IS_ERR(dev->process_thread)) {
1369                 pr_err("Unable to create kthread: LIO_%s\n",
1370                         dev->transport->name);
1371                 goto out;
1372         }
1373         /*
1374          * Setup work_queue for QUEUE_FULL
1375          */
1376         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1377         /*
1378          * Preload the initial INQUIRY const values if we are doing
1379          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1380          * passthrough because this is being provided by the backend LLD.
1381          * This is required so that transport_get_inquiry() copies these
1382          * originals once back into DEV_T10_WWN(dev) for the virtual device
1383          * setup.
1384          */
1385         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1386                 if (!inquiry_prod || !inquiry_rev) {
1387                         pr_err("All non TCM/pSCSI plugins require"
1388                                 " INQUIRY consts\n");
1389                         goto out;
1390                 }
1391
1392                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1393                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1394                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1395         }
1396         scsi_dump_inquiry(dev);
1397
1398         return dev;
1399 out:
1400         kthread_stop(dev->process_thread);
1401
1402         spin_lock(&hba->device_lock);
1403         list_del(&dev->dev_list);
1404         hba->dev_count--;
1405         spin_unlock(&hba->device_lock);
1406
1407         se_release_vpd_for_dev(dev);
1408
1409         kfree(dev);
1410
1411         return NULL;
1412 }
1413 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1414
1415 /*      transport_generic_prepare_cdb():
1416  *
1417  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1418  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1419  *      The point of this is since we are mapping iSCSI LUNs to
1420  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1421  *      devices and HBAs for a loop.
1422  */
1423 static inline void transport_generic_prepare_cdb(
1424         unsigned char *cdb)
1425 {
1426         switch (cdb[0]) {
1427         case READ_10: /* SBC - RDProtect */
1428         case READ_12: /* SBC - RDProtect */
1429         case READ_16: /* SBC - RDProtect */
1430         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1431         case VERIFY: /* SBC - VRProtect */
1432         case VERIFY_16: /* SBC - VRProtect */
1433         case WRITE_VERIFY: /* SBC - VRProtect */
1434         case WRITE_VERIFY_12: /* SBC - VRProtect */
1435                 break;
1436         default:
1437                 cdb[1] &= 0x1f; /* clear logical unit number */
1438                 break;
1439         }
1440 }
1441
1442 static struct se_task *
1443 transport_generic_get_task(struct se_cmd *cmd,
1444                 enum dma_data_direction data_direction)
1445 {
1446         struct se_task *task;
1447         struct se_device *dev = cmd->se_dev;
1448
1449         task = dev->transport->alloc_task(cmd->t_task_cdb);
1450         if (!task) {
1451                 pr_err("Unable to allocate struct se_task\n");
1452                 return NULL;
1453         }
1454
1455         INIT_LIST_HEAD(&task->t_list);
1456         INIT_LIST_HEAD(&task->t_execute_list);
1457         INIT_LIST_HEAD(&task->t_state_list);
1458         init_completion(&task->task_stop_comp);
1459         task->task_se_cmd = cmd;
1460         task->task_data_direction = data_direction;
1461
1462         return task;
1463 }
1464
1465 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1466
1467 /*
1468  * Used by fabric modules containing a local struct se_cmd within their
1469  * fabric dependent per I/O descriptor.
1470  */
1471 void transport_init_se_cmd(
1472         struct se_cmd *cmd,
1473         struct target_core_fabric_ops *tfo,
1474         struct se_session *se_sess,
1475         u32 data_length,
1476         int data_direction,
1477         int task_attr,
1478         unsigned char *sense_buffer)
1479 {
1480         INIT_LIST_HEAD(&cmd->se_lun_node);
1481         INIT_LIST_HEAD(&cmd->se_delayed_node);
1482         INIT_LIST_HEAD(&cmd->se_qf_node);
1483         INIT_LIST_HEAD(&cmd->se_queue_node);
1484         INIT_LIST_HEAD(&cmd->se_cmd_list);
1485         INIT_LIST_HEAD(&cmd->t_task_list);
1486         init_completion(&cmd->transport_lun_fe_stop_comp);
1487         init_completion(&cmd->transport_lun_stop_comp);
1488         init_completion(&cmd->t_transport_stop_comp);
1489         init_completion(&cmd->cmd_wait_comp);
1490         spin_lock_init(&cmd->t_state_lock);
1491         atomic_set(&cmd->transport_dev_active, 1);
1492
1493         cmd->se_tfo = tfo;
1494         cmd->se_sess = se_sess;
1495         cmd->data_length = data_length;
1496         cmd->data_direction = data_direction;
1497         cmd->sam_task_attr = task_attr;
1498         cmd->sense_buffer = sense_buffer;
1499 }
1500 EXPORT_SYMBOL(transport_init_se_cmd);
1501
1502 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1503 {
1504         /*
1505          * Check if SAM Task Attribute emulation is enabled for this
1506          * struct se_device storage object
1507          */
1508         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1509                 return 0;
1510
1511         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1512                 pr_debug("SAM Task Attribute ACA"
1513                         " emulation is not supported\n");
1514                 return -EINVAL;
1515         }
1516         /*
1517          * Used to determine when ORDERED commands should go from
1518          * Dormant to Active status.
1519          */
1520         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1521         smp_mb__after_atomic_inc();
1522         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1523                         cmd->se_ordered_id, cmd->sam_task_attr,
1524                         cmd->se_dev->transport->name);
1525         return 0;
1526 }
1527
1528 /*      transport_generic_allocate_tasks():
1529  *
1530  *      Called from fabric RX Thread.
1531  */
1532 int transport_generic_allocate_tasks(
1533         struct se_cmd *cmd,
1534         unsigned char *cdb)
1535 {
1536         int ret;
1537
1538         transport_generic_prepare_cdb(cdb);
1539         /*
1540          * Ensure that the received CDB is less than the max (252 + 8) bytes
1541          * for VARIABLE_LENGTH_CMD
1542          */
1543         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1544                 pr_err("Received SCSI CDB with command_size: %d that"
1545                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1546                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1547                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1548                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1549                 return -EINVAL;
1550         }
1551         /*
1552          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1553          * allocate the additional extended CDB buffer now..  Otherwise
1554          * setup the pointer from __t_task_cdb to t_task_cdb.
1555          */
1556         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1557                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1558                                                 GFP_KERNEL);
1559                 if (!cmd->t_task_cdb) {
1560                         pr_err("Unable to allocate cmd->t_task_cdb"
1561                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1562                                 scsi_command_size(cdb),
1563                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1564                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1565                         cmd->scsi_sense_reason =
1566                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1567                         return -ENOMEM;
1568                 }
1569         } else
1570                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1571         /*
1572          * Copy the original CDB into cmd->
1573          */
1574         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1575         /*
1576          * Setup the received CDB based on SCSI defined opcodes and
1577          * perform unit attention, persistent reservations and ALUA
1578          * checks for virtual device backends.  The cmd->t_task_cdb
1579          * pointer is expected to be setup before we reach this point.
1580          */
1581         ret = transport_generic_cmd_sequencer(cmd, cdb);
1582         if (ret < 0)
1583                 return ret;
1584         /*
1585          * Check for SAM Task Attribute Emulation
1586          */
1587         if (transport_check_alloc_task_attr(cmd) < 0) {
1588                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1589                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1590                 return -EINVAL;
1591         }
1592         spin_lock(&cmd->se_lun->lun_sep_lock);
1593         if (cmd->se_lun->lun_sep)
1594                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1595         spin_unlock(&cmd->se_lun->lun_sep_lock);
1596         return 0;
1597 }
1598 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1599
1600 /*
1601  * Used by fabric module frontends to queue tasks directly.
1602  * Many only be used from process context only
1603  */
1604 int transport_handle_cdb_direct(
1605         struct se_cmd *cmd)
1606 {
1607         int ret;
1608
1609         if (!cmd->se_lun) {
1610                 dump_stack();
1611                 pr_err("cmd->se_lun is NULL\n");
1612                 return -EINVAL;
1613         }
1614         if (in_interrupt()) {
1615                 dump_stack();
1616                 pr_err("transport_generic_handle_cdb cannot be called"
1617                                 " from interrupt context\n");
1618                 return -EINVAL;
1619         }
1620         /*
1621          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1622          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1623          * in existing usage to ensure that outstanding descriptors are handled
1624          * correctly during shutdown via transport_wait_for_tasks()
1625          *
1626          * Also, we don't take cmd->t_state_lock here as we only expect
1627          * this to be called for initial descriptor submission.
1628          */
1629         cmd->t_state = TRANSPORT_NEW_CMD;
1630         atomic_set(&cmd->t_transport_active, 1);
1631         /*
1632          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1633          * so follow TRANSPORT_NEW_CMD processing thread context usage
1634          * and call transport_generic_request_failure() if necessary..
1635          */
1636         ret = transport_generic_new_cmd(cmd);
1637         if (ret < 0)
1638                 transport_generic_request_failure(cmd);
1639
1640         return 0;
1641 }
1642 EXPORT_SYMBOL(transport_handle_cdb_direct);
1643
1644 /**
1645  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1646  *
1647  * @se_cmd: command descriptor to submit
1648  * @se_sess: associated se_sess for endpoint
1649  * @cdb: pointer to SCSI CDB
1650  * @sense: pointer to SCSI sense buffer
1651  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1652  * @data_length: fabric expected data transfer length
1653  * @task_addr: SAM task attribute
1654  * @data_dir: DMA data direction
1655  * @flags: flags for command submission from target_sc_flags_tables
1656  *
1657  * This may only be called from process context, and also currently
1658  * assumes internal allocation of fabric payload buffer by target-core.
1659  **/
1660 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1661                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1662                 u32 data_length, int task_attr, int data_dir, int flags)
1663 {
1664         struct se_portal_group *se_tpg;
1665         int rc;
1666
1667         se_tpg = se_sess->se_tpg;
1668         BUG_ON(!se_tpg);
1669         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1670         BUG_ON(in_interrupt());
1671         /*
1672          * Initialize se_cmd for target operation.  From this point
1673          * exceptions are handled by sending exception status via
1674          * target_core_fabric_ops->queue_status() callback
1675          */
1676         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1677                                 data_length, data_dir, task_attr, sense);
1678         /*
1679          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1680          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1681          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1682          * kref_put() to happen during fabric packet acknowledgement.
1683          */
1684         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1685         /*
1686          * Signal bidirectional data payloads to target-core
1687          */
1688         if (flags & TARGET_SCF_BIDI_OP)
1689                 se_cmd->se_cmd_flags |= SCF_BIDI;
1690         /*
1691          * Locate se_lun pointer and attach it to struct se_cmd
1692          */
1693         if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1694                 transport_send_check_condition_and_sense(se_cmd,
1695                                 se_cmd->scsi_sense_reason, 0);
1696                 target_put_sess_cmd(se_sess, se_cmd);
1697                 return;
1698         }
1699         /*
1700          * Sanitize CDBs via transport_generic_cmd_sequencer() and
1701          * allocate the necessary tasks to complete the received CDB+data
1702          */
1703         rc = transport_generic_allocate_tasks(se_cmd, cdb);
1704         if (rc != 0) {
1705                 transport_generic_request_failure(se_cmd);
1706                 return;
1707         }
1708         /*
1709          * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1710          * for immediate execution of READs, otherwise wait for
1711          * transport_generic_handle_data() to be called for WRITEs
1712          * when fabric has filled the incoming buffer.
1713          */
1714         transport_handle_cdb_direct(se_cmd);
1715         return;
1716 }
1717 EXPORT_SYMBOL(target_submit_cmd);
1718
1719 /*
1720  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1721  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1722  * complete setup in TCM process context w/ TFO->new_cmd_map().
1723  */
1724 int transport_generic_handle_cdb_map(
1725         struct se_cmd *cmd)
1726 {
1727         if (!cmd->se_lun) {
1728                 dump_stack();
1729                 pr_err("cmd->se_lun is NULL\n");
1730                 return -EINVAL;
1731         }
1732
1733         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1734         return 0;
1735 }
1736 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1737
1738 /*      transport_generic_handle_data():
1739  *
1740  *
1741  */
1742 int transport_generic_handle_data(
1743         struct se_cmd *cmd)
1744 {
1745         /*
1746          * For the software fabric case, then we assume the nexus is being
1747          * failed/shutdown when signals are pending from the kthread context
1748          * caller, so we return a failure.  For the HW target mode case running
1749          * in interrupt code, the signal_pending() check is skipped.
1750          */
1751         if (!in_interrupt() && signal_pending(current))
1752                 return -EPERM;
1753         /*
1754          * If the received CDB has aleady been ABORTED by the generic
1755          * target engine, we now call transport_check_aborted_status()
1756          * to queue any delated TASK_ABORTED status for the received CDB to the
1757          * fabric module as we are expecting no further incoming DATA OUT
1758          * sequences at this point.
1759          */
1760         if (transport_check_aborted_status(cmd, 1) != 0)
1761                 return 0;
1762
1763         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1764         return 0;
1765 }
1766 EXPORT_SYMBOL(transport_generic_handle_data);
1767
1768 /*      transport_generic_handle_tmr():
1769  *
1770  *
1771  */
1772 int transport_generic_handle_tmr(
1773         struct se_cmd *cmd)
1774 {
1775         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1776         return 0;
1777 }
1778 EXPORT_SYMBOL(transport_generic_handle_tmr);
1779
1780 /*
1781  * If the task is active, request it to be stopped and sleep until it
1782  * has completed.
1783  */
1784 bool target_stop_task(struct se_task *task, unsigned long *flags)
1785 {
1786         struct se_cmd *cmd = task->task_se_cmd;
1787         bool was_active = false;
1788
1789         if (task->task_flags & TF_ACTIVE) {
1790                 task->task_flags |= TF_REQUEST_STOP;
1791                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1792
1793                 pr_debug("Task %p waiting to complete\n", task);
1794                 wait_for_completion(&task->task_stop_comp);
1795                 pr_debug("Task %p stopped successfully\n", task);
1796
1797                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1798                 atomic_dec(&cmd->t_task_cdbs_left);
1799                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1800                 was_active = true;
1801         }
1802
1803         return was_active;
1804 }
1805
1806 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1807 {
1808         struct se_task *task, *task_tmp;
1809         unsigned long flags;
1810         int ret = 0;
1811
1812         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1813                 cmd->se_tfo->get_task_tag(cmd));
1814
1815         /*
1816          * No tasks remain in the execution queue
1817          */
1818         spin_lock_irqsave(&cmd->t_state_lock, flags);
1819         list_for_each_entry_safe(task, task_tmp,
1820                                 &cmd->t_task_list, t_list) {
1821                 pr_debug("Processing task %p\n", task);
1822                 /*
1823                  * If the struct se_task has not been sent and is not active,
1824                  * remove the struct se_task from the execution queue.
1825                  */
1826                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1827                         spin_unlock_irqrestore(&cmd->t_state_lock,
1828                                         flags);
1829                         transport_remove_task_from_execute_queue(task,
1830                                         cmd->se_dev);
1831
1832                         pr_debug("Task %p removed from execute queue\n", task);
1833                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1834                         continue;
1835                 }
1836
1837                 if (!target_stop_task(task, &flags)) {
1838                         pr_debug("Task %p - did nothing\n", task);
1839                         ret++;
1840                 }
1841         }
1842         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1843
1844         return ret;
1845 }
1846
1847 /*
1848  * Handle SAM-esque emulation for generic transport request failures.
1849  */
1850 static void transport_generic_request_failure(struct se_cmd *cmd)
1851 {
1852         int ret = 0;
1853
1854         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1855                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1856                 cmd->t_task_cdb[0]);
1857         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1858                 cmd->se_tfo->get_cmd_state(cmd),
1859                 cmd->t_state, cmd->scsi_sense_reason);
1860         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1861                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1862                 " t_transport_active: %d t_transport_stop: %d"
1863                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1864                 atomic_read(&cmd->t_task_cdbs_left),
1865                 atomic_read(&cmd->t_task_cdbs_sent),
1866                 atomic_read(&cmd->t_task_cdbs_ex_left),
1867                 atomic_read(&cmd->t_transport_active),
1868                 atomic_read(&cmd->t_transport_stop),
1869                 atomic_read(&cmd->t_transport_sent));
1870
1871         /*
1872          * For SAM Task Attribute emulation for failed struct se_cmd
1873          */
1874         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1875                 transport_complete_task_attr(cmd);
1876
1877         switch (cmd->scsi_sense_reason) {
1878         case TCM_NON_EXISTENT_LUN:
1879         case TCM_UNSUPPORTED_SCSI_OPCODE:
1880         case TCM_INVALID_CDB_FIELD:
1881         case TCM_INVALID_PARAMETER_LIST:
1882         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1883         case TCM_UNKNOWN_MODE_PAGE:
1884         case TCM_WRITE_PROTECTED:
1885         case TCM_CHECK_CONDITION_ABORT_CMD:
1886         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1887         case TCM_CHECK_CONDITION_NOT_READY:
1888                 break;
1889         case TCM_RESERVATION_CONFLICT:
1890                 /*
1891                  * No SENSE Data payload for this case, set SCSI Status
1892                  * and queue the response to $FABRIC_MOD.
1893                  *
1894                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1895                  */
1896                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1897                 /*
1898                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1899                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1900                  * CONFLICT STATUS.
1901                  *
1902                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1903                  */
1904                 if (cmd->se_sess &&
1905                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1906                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1907                                 cmd->orig_fe_lun, 0x2C,
1908                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1909
1910                 ret = cmd->se_tfo->queue_status(cmd);
1911                 if (ret == -EAGAIN || ret == -ENOMEM)
1912                         goto queue_full;
1913                 goto check_stop;
1914         default:
1915                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1916                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1917                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1918                 break;
1919         }
1920         /*
1921          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1922          * make the call to transport_send_check_condition_and_sense()
1923          * directly.  Otherwise expect the fabric to make the call to
1924          * transport_send_check_condition_and_sense() after handling
1925          * possible unsoliticied write data payloads.
1926          */
1927         ret = transport_send_check_condition_and_sense(cmd,
1928                         cmd->scsi_sense_reason, 0);
1929         if (ret == -EAGAIN || ret == -ENOMEM)
1930                 goto queue_full;
1931
1932 check_stop:
1933         transport_lun_remove_cmd(cmd);
1934         if (!transport_cmd_check_stop_to_fabric(cmd))
1935                 ;
1936         return;
1937
1938 queue_full:
1939         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1940         transport_handle_queue_full(cmd, cmd->se_dev);
1941 }
1942
1943 static inline u32 transport_lba_21(unsigned char *cdb)
1944 {
1945         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1946 }
1947
1948 static inline u32 transport_lba_32(unsigned char *cdb)
1949 {
1950         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1951 }
1952
1953 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1954 {
1955         unsigned int __v1, __v2;
1956
1957         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1958         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1959
1960         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1961 }
1962
1963 /*
1964  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1965  */
1966 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1967 {
1968         unsigned int __v1, __v2;
1969
1970         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1971         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1972
1973         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1974 }
1975
1976 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1977 {
1978         unsigned long flags;
1979
1980         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1981         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1982         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1983 }
1984
1985 /*
1986  * Called from Fabric Module context from transport_execute_tasks()
1987  *
1988  * The return of this function determins if the tasks from struct se_cmd
1989  * get added to the execution queue in transport_execute_tasks(),
1990  * or are added to the delayed or ordered lists here.
1991  */
1992 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1993 {
1994         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1995                 return 1;
1996         /*
1997          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1998          * to allow the passed struct se_cmd list of tasks to the front of the list.
1999          */
2000          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2001                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2002                         " 0x%02x, se_ordered_id: %u\n",
2003                         cmd->t_task_cdb[0],
2004                         cmd->se_ordered_id);
2005                 return 1;
2006         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2007                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2008                 smp_mb__after_atomic_inc();
2009
2010                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2011                                 " list, se_ordered_id: %u\n",
2012                                 cmd->t_task_cdb[0],
2013                                 cmd->se_ordered_id);
2014                 /*
2015                  * Add ORDERED command to tail of execution queue if
2016                  * no other older commands exist that need to be
2017                  * completed first.
2018                  */
2019                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2020                         return 1;
2021         } else {
2022                 /*
2023                  * For SIMPLE and UNTAGGED Task Attribute commands
2024                  */
2025                 atomic_inc(&cmd->se_dev->simple_cmds);
2026                 smp_mb__after_atomic_inc();
2027         }
2028         /*
2029          * Otherwise if one or more outstanding ORDERED task attribute exist,
2030          * add the dormant task(s) built for the passed struct se_cmd to the
2031          * execution queue and become in Active state for this struct se_device.
2032          */
2033         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2034                 /*
2035                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2036                  * will be drained upon completion of HEAD_OF_QUEUE task.
2037                  */
2038                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2039                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2040                 list_add_tail(&cmd->se_delayed_node,
2041                                 &cmd->se_dev->delayed_cmd_list);
2042                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2043
2044                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2045                         " delayed CMD list, se_ordered_id: %u\n",
2046                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2047                         cmd->se_ordered_id);
2048                 /*
2049                  * Return zero to let transport_execute_tasks() know
2050                  * not to add the delayed tasks to the execution list.
2051                  */
2052                 return 0;
2053         }
2054         /*
2055          * Otherwise, no ORDERED task attributes exist..
2056          */
2057         return 1;
2058 }
2059
2060 /*
2061  * Called from fabric module context in transport_generic_new_cmd() and
2062  * transport_generic_process_write()
2063  */
2064 static int transport_execute_tasks(struct se_cmd *cmd)
2065 {
2066         int add_tasks;
2067         struct se_device *se_dev = cmd->se_dev;
2068         /*
2069          * Call transport_cmd_check_stop() to see if a fabric exception
2070          * has occurred that prevents execution.
2071          */
2072         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2073                 /*
2074                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2075                  * attribute for the tasks of the received struct se_cmd CDB
2076                  */
2077                 add_tasks = transport_execute_task_attr(cmd);
2078                 if (!add_tasks)
2079                         goto execute_tasks;
2080                 /*
2081                  * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2082                  * adds associated se_tasks while holding dev->execute_task_lock
2083                  * before I/O dispath to avoid a double spinlock access.
2084                  */
2085                 __transport_execute_tasks(se_dev, cmd);
2086                 return 0;
2087         }
2088
2089 execute_tasks:
2090         __transport_execute_tasks(se_dev, NULL);
2091         return 0;
2092 }
2093
2094 /*
2095  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2096  * from struct se_device->execute_task_list and
2097  *
2098  * Called from transport_processing_thread()
2099  */
2100 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2101 {
2102         int error;
2103         struct se_cmd *cmd = NULL;
2104         struct se_task *task = NULL;
2105         unsigned long flags;
2106
2107 check_depth:
2108         spin_lock_irq(&dev->execute_task_lock);
2109         if (new_cmd != NULL)
2110                 __transport_add_tasks_from_cmd(new_cmd);
2111
2112         if (list_empty(&dev->execute_task_list)) {
2113                 spin_unlock_irq(&dev->execute_task_lock);
2114                 return 0;
2115         }
2116         task = list_first_entry(&dev->execute_task_list,
2117                                 struct se_task, t_execute_list);
2118         __transport_remove_task_from_execute_queue(task, dev);
2119         spin_unlock_irq(&dev->execute_task_lock);
2120
2121         cmd = task->task_se_cmd;
2122         spin_lock_irqsave(&cmd->t_state_lock, flags);
2123         task->task_flags |= (TF_ACTIVE | TF_SENT);
2124         atomic_inc(&cmd->t_task_cdbs_sent);
2125
2126         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2127             cmd->t_task_list_num)
2128                 atomic_set(&cmd->t_transport_sent, 1);
2129
2130         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2131
2132         if (cmd->execute_task)
2133                 error = cmd->execute_task(task);
2134         else
2135                 error = dev->transport->do_task(task);
2136         if (error != 0) {
2137                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2138                 task->task_flags &= ~TF_ACTIVE;
2139                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2140                 atomic_set(&cmd->t_transport_sent, 0);
2141                 transport_stop_tasks_for_cmd(cmd);
2142                 transport_generic_request_failure(cmd);
2143         }
2144
2145         new_cmd = NULL;
2146         goto check_depth;
2147
2148         return 0;
2149 }
2150
2151 static inline u32 transport_get_sectors_6(
2152         unsigned char *cdb,
2153         struct se_cmd *cmd,
2154         int *ret)
2155 {
2156         struct se_device *dev = cmd->se_dev;
2157
2158         /*
2159          * Assume TYPE_DISK for non struct se_device objects.
2160          * Use 8-bit sector value.
2161          */
2162         if (!dev)
2163                 goto type_disk;
2164
2165         /*
2166          * Use 24-bit allocation length for TYPE_TAPE.
2167          */
2168         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2169                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2170
2171         /*
2172          * Everything else assume TYPE_DISK Sector CDB location.
2173          * Use 8-bit sector value.  SBC-3 says:
2174          *
2175          *   A TRANSFER LENGTH field set to zero specifies that 256
2176          *   logical blocks shall be written.  Any other value
2177          *   specifies the number of logical blocks that shall be
2178          *   written.
2179          */
2180 type_disk:
2181         return cdb[4] ? : 256;
2182 }
2183
2184 static inline u32 transport_get_sectors_10(
2185         unsigned char *cdb,
2186         struct se_cmd *cmd,
2187         int *ret)
2188 {
2189         struct se_device *dev = cmd->se_dev;
2190
2191         /*
2192          * Assume TYPE_DISK for non struct se_device objects.
2193          * Use 16-bit sector value.
2194          */
2195         if (!dev)
2196                 goto type_disk;
2197
2198         /*
2199          * XXX_10 is not defined in SSC, throw an exception
2200          */
2201         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2202                 *ret = -EINVAL;
2203                 return 0;
2204         }
2205
2206         /*
2207          * Everything else assume TYPE_DISK Sector CDB location.
2208          * Use 16-bit sector value.
2209          */
2210 type_disk:
2211         return (u32)(cdb[7] << 8) + cdb[8];
2212 }
2213
2214 static inline u32 transport_get_sectors_12(
2215         unsigned char *cdb,
2216         struct se_cmd *cmd,
2217         int *ret)
2218 {
2219         struct se_device *dev = cmd->se_dev;
2220
2221         /*
2222          * Assume TYPE_DISK for non struct se_device objects.
2223          * Use 32-bit sector value.
2224          */
2225         if (!dev)
2226                 goto type_disk;
2227
2228         /*
2229          * XXX_12 is not defined in SSC, throw an exception
2230          */
2231         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2232                 *ret = -EINVAL;
2233                 return 0;
2234         }
2235
2236         /*
2237          * Everything else assume TYPE_DISK Sector CDB location.
2238          * Use 32-bit sector value.
2239          */
2240 type_disk:
2241         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2242 }
2243
2244 static inline u32 transport_get_sectors_16(
2245         unsigned char *cdb,
2246         struct se_cmd *cmd,
2247         int *ret)
2248 {
2249         struct se_device *dev = cmd->se_dev;
2250
2251         /*
2252          * Assume TYPE_DISK for non struct se_device objects.
2253          * Use 32-bit sector value.
2254          */
2255         if (!dev)
2256                 goto type_disk;
2257
2258         /*
2259          * Use 24-bit allocation length for TYPE_TAPE.
2260          */
2261         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2262                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2263
2264 type_disk:
2265         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2266                     (cdb[12] << 8) + cdb[13];
2267 }
2268
2269 /*
2270  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2271  */
2272 static inline u32 transport_get_sectors_32(
2273         unsigned char *cdb,
2274         struct se_cmd *cmd,
2275         int *ret)
2276 {
2277         /*
2278          * Assume TYPE_DISK for non struct se_device objects.
2279          * Use 32-bit sector value.
2280          */
2281         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2282                     (cdb[30] << 8) + cdb[31];
2283
2284 }
2285
2286 static inline u32 transport_get_size(
2287         u32 sectors,
2288         unsigned char *cdb,
2289         struct se_cmd *cmd)
2290 {
2291         struct se_device *dev = cmd->se_dev;
2292
2293         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2294                 if (cdb[1] & 1) { /* sectors */
2295                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2296                 } else /* bytes */
2297                         return sectors;
2298         }
2299 #if 0
2300         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2301                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2302                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2303                         dev->transport->name);
2304 #endif
2305         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2306 }
2307
2308 static void transport_xor_callback(struct se_cmd *cmd)
2309 {
2310         unsigned char *buf, *addr;
2311         struct scatterlist *sg;
2312         unsigned int offset;
2313         int i;
2314         int count;
2315         /*
2316          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2317          *
2318          * 1) read the specified logical block(s);
2319          * 2) transfer logical blocks from the data-out buffer;
2320          * 3) XOR the logical blocks transferred from the data-out buffer with
2321          *    the logical blocks read, storing the resulting XOR data in a buffer;
2322          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2323          *    blocks transferred from the data-out buffer; and
2324          * 5) transfer the resulting XOR data to the data-in buffer.
2325          */
2326         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2327         if (!buf) {
2328                 pr_err("Unable to allocate xor_callback buf\n");
2329                 return;
2330         }
2331         /*
2332          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2333          * into the locally allocated *buf
2334          */
2335         sg_copy_to_buffer(cmd->t_data_sg,
2336                           cmd->t_data_nents,
2337                           buf,
2338                           cmd->data_length);
2339
2340         /*
2341          * Now perform the XOR against the BIDI read memory located at
2342          * cmd->t_mem_bidi_list
2343          */
2344
2345         offset = 0;
2346         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2347                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2348                 if (!addr)
2349                         goto out;
2350
2351                 for (i = 0; i < sg->length; i++)
2352                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2353
2354                 offset += sg->length;
2355                 kunmap_atomic(addr, KM_USER0);
2356         }
2357
2358 out:
2359         kfree(buf);
2360 }
2361
2362 /*
2363  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2364  */
2365 static int transport_get_sense_data(struct se_cmd *cmd)
2366 {
2367         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2368         struct se_device *dev = cmd->se_dev;
2369         struct se_task *task = NULL, *task_tmp;
2370         unsigned long flags;
2371         u32 offset = 0;
2372
2373         WARN_ON(!cmd->se_lun);
2374
2375         if (!dev)
2376                 return 0;
2377
2378         spin_lock_irqsave(&cmd->t_state_lock, flags);
2379         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2380                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2381                 return 0;
2382         }
2383
2384         list_for_each_entry_safe(task, task_tmp,
2385                                 &cmd->t_task_list, t_list) {
2386                 if (!(task->task_flags & TF_HAS_SENSE))
2387                         continue;
2388
2389                 if (!dev->transport->get_sense_buffer) {
2390                         pr_err("dev->transport->get_sense_buffer"
2391                                         " is NULL\n");
2392                         continue;
2393                 }
2394
2395                 sense_buffer = dev->transport->get_sense_buffer(task);
2396                 if (!sense_buffer) {
2397                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2398                                 " sense buffer for task with sense\n",
2399                                 cmd->se_tfo->get_task_tag(cmd), task);
2400                         continue;
2401                 }
2402                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2403
2404                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2405                                 TRANSPORT_SENSE_BUFFER);
2406
2407                 memcpy(&buffer[offset], sense_buffer,
2408                                 TRANSPORT_SENSE_BUFFER);
2409                 cmd->scsi_status = task->task_scsi_status;
2410                 /* Automatically padded */
2411                 cmd->scsi_sense_length =
2412                                 (TRANSPORT_SENSE_BUFFER + offset);
2413
2414                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2415                                 " and sense\n",
2416                         dev->se_hba->hba_id, dev->transport->name,
2417                                 cmd->scsi_status);
2418                 return 0;
2419         }
2420         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2421
2422         return -1;
2423 }
2424
2425 static inline long long transport_dev_end_lba(struct se_device *dev)
2426 {
2427         return dev->transport->get_blocks(dev) + 1;
2428 }
2429
2430 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2431 {
2432         struct se_device *dev = cmd->se_dev;
2433         u32 sectors;
2434
2435         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2436                 return 0;
2437
2438         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2439
2440         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2441                 pr_err("LBA: %llu Sectors: %u exceeds"
2442                         " transport_dev_end_lba(): %llu\n",
2443                         cmd->t_task_lba, sectors,
2444                         transport_dev_end_lba(dev));
2445                 return -EINVAL;
2446         }
2447
2448         return 0;
2449 }
2450
2451 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2452 {
2453         /*
2454          * Determine if the received WRITE_SAME is used to for direct
2455          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2456          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2457          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2458          */
2459         int passthrough = (dev->transport->transport_type ==
2460                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2461
2462         if (!passthrough) {
2463                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2464                         pr_err("WRITE_SAME PBDATA and LBDATA"
2465                                 " bits not supported for Block Discard"
2466                                 " Emulation\n");
2467                         return -ENOSYS;
2468                 }
2469                 /*
2470                  * Currently for the emulated case we only accept
2471                  * tpws with the UNMAP=1 bit set.
2472                  */
2473                 if (!(flags[0] & 0x08)) {
2474                         pr_err("WRITE_SAME w/o UNMAP bit not"
2475                                 " supported for Block Discard Emulation\n");
2476                         return -ENOSYS;
2477                 }
2478         }
2479
2480         return 0;
2481 }
2482
2483 /*      transport_generic_cmd_sequencer():
2484  *
2485  *      Generic Command Sequencer that should work for most DAS transport
2486  *      drivers.
2487  *
2488  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2489  *      RX Thread.
2490  *
2491  *      FIXME: Need to support other SCSI OPCODES where as well.
2492  */
2493 static int transport_generic_cmd_sequencer(
2494         struct se_cmd *cmd,
2495         unsigned char *cdb)
2496 {
2497         struct se_device *dev = cmd->se_dev;
2498         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2499         int ret = 0, sector_ret = 0, passthrough;
2500         u32 sectors = 0, size = 0, pr_reg_type = 0;
2501         u16 service_action;
2502         u8 alua_ascq = 0;
2503         /*
2504          * Check for an existing UNIT ATTENTION condition
2505          */
2506         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2507                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2508                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2509                 return -EINVAL;
2510         }
2511         /*
2512          * Check status of Asymmetric Logical Unit Assignment port
2513          */
2514         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2515         if (ret != 0) {
2516                 /*
2517                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2518                  * The ALUA additional sense code qualifier (ASCQ) is determined
2519                  * by the ALUA primary or secondary access state..
2520                  */
2521                 if (ret > 0) {
2522 #if 0
2523                         pr_debug("[%s]: ALUA TG Port not available,"
2524                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2525                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2526 #endif
2527                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2528                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2529                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2530                         return -EINVAL;
2531                 }
2532                 goto out_invalid_cdb_field;
2533         }
2534         /*
2535          * Check status for SPC-3 Persistent Reservations
2536          */
2537         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2538                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2539                                         cmd, cdb, pr_reg_type) != 0) {
2540                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2541                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2542                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2543                         return -EBUSY;
2544                 }
2545                 /*
2546                  * This means the CDB is allowed for the SCSI Initiator port
2547                  * when said port is *NOT* holding the legacy SPC-2 or
2548                  * SPC-3 Persistent Reservation.
2549                  */
2550         }
2551
2552         /*
2553          * If we operate in passthrough mode we skip most CDB emulation and
2554          * instead hand the commands down to the physical SCSI device.
2555          */
2556         passthrough =
2557                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2558
2559         switch (cdb[0]) {
2560         case READ_6:
2561                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2562                 if (sector_ret)
2563                         goto out_unsupported_cdb;
2564                 size = transport_get_size(sectors, cdb, cmd);
2565                 cmd->t_task_lba = transport_lba_21(cdb);
2566                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2567                 break;
2568         case READ_10:
2569                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2570                 if (sector_ret)
2571                         goto out_unsupported_cdb;
2572                 size = transport_get_size(sectors, cdb, cmd);
2573                 cmd->t_task_lba = transport_lba_32(cdb);
2574                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2575                 break;
2576         case READ_12:
2577                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2578                 if (sector_ret)
2579                         goto out_unsupported_cdb;
2580                 size = transport_get_size(sectors, cdb, cmd);
2581                 cmd->t_task_lba = transport_lba_32(cdb);
2582                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2583                 break;
2584         case READ_16:
2585                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2586                 if (sector_ret)
2587                         goto out_unsupported_cdb;
2588                 size = transport_get_size(sectors, cdb, cmd);
2589                 cmd->t_task_lba = transport_lba_64(cdb);
2590                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2591                 break;
2592         case WRITE_6:
2593                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2594                 if (sector_ret)
2595                         goto out_unsupported_cdb;
2596                 size = transport_get_size(sectors, cdb, cmd);
2597                 cmd->t_task_lba = transport_lba_21(cdb);
2598                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2599                 break;
2600         case WRITE_10:
2601                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2602                 if (sector_ret)
2603                         goto out_unsupported_cdb;
2604                 size = transport_get_size(sectors, cdb, cmd);
2605                 cmd->t_task_lba = transport_lba_32(cdb);
2606                 if (cdb[1] & 0x8)
2607                         cmd->se_cmd_flags |= SCF_FUA;
2608                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2609                 break;
2610         case WRITE_12:
2611                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2612                 if (sector_ret)
2613                         goto out_unsupported_cdb;
2614                 size = transport_get_size(sectors, cdb, cmd);
2615                 cmd->t_task_lba = transport_lba_32(cdb);
2616                 if (cdb[1] & 0x8)
2617                         cmd->se_cmd_flags |= SCF_FUA;
2618                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2619                 break;
2620         case WRITE_16:
2621                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2622                 if (sector_ret)
2623                         goto out_unsupported_cdb;
2624                 size = transport_get_size(sectors, cdb, cmd);
2625                 cmd->t_task_lba = transport_lba_64(cdb);
2626                 if (cdb[1] & 0x8)
2627                         cmd->se_cmd_flags |= SCF_FUA;
2628                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2629                 break;
2630         case XDWRITEREAD_10:
2631                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2632                     !(cmd->se_cmd_flags & SCF_BIDI))
2633                         goto out_invalid_cdb_field;
2634                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2635                 if (sector_ret)
2636                         goto out_unsupported_cdb;
2637                 size = transport_get_size(sectors, cdb, cmd);
2638                 cmd->t_task_lba = transport_lba_32(cdb);
2639                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2640
2641                 /*
2642                  * Do now allow BIDI commands for passthrough mode.
2643                  */
2644                 if (passthrough)
2645                         goto out_unsupported_cdb;
2646
2647                 /*
2648                  * Setup BIDI XOR callback to be run after I/O completion.
2649                  */
2650                 cmd->transport_complete_callback = &transport_xor_callback;
2651                 if (cdb[1] & 0x8)
2652                         cmd->se_cmd_flags |= SCF_FUA;
2653                 break;
2654         case VARIABLE_LENGTH_CMD:
2655                 service_action = get_unaligned_be16(&cdb[8]);
2656                 switch (service_action) {
2657                 case XDWRITEREAD_32:
2658                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2659                         if (sector_ret)
2660                                 goto out_unsupported_cdb;
2661                         size = transport_get_size(sectors, cdb, cmd);
2662                         /*
2663                          * Use WRITE_32 and READ_32 opcodes for the emulated
2664                          * XDWRITE_READ_32 logic.
2665                          */
2666                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2667                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2668
2669                         /*
2670                          * Do now allow BIDI commands for passthrough mode.
2671                          */
2672                         if (passthrough)
2673                                 goto out_unsupported_cdb;
2674
2675                         /*
2676                          * Setup BIDI XOR callback to be run during after I/O
2677                          * completion.
2678                          */
2679                         cmd->transport_complete_callback = &transport_xor_callback;
2680                         if (cdb[1] & 0x8)
2681                                 cmd->se_cmd_flags |= SCF_FUA;
2682                         break;
2683                 case WRITE_SAME_32:
2684                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2685                         if (sector_ret)
2686                                 goto out_unsupported_cdb;
2687
2688                         if (sectors)
2689                                 size = transport_get_size(1, cdb, cmd);
2690                         else {
2691                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2692                                        " supported\n");
2693                                 goto out_invalid_cdb_field;
2694                         }
2695
2696                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2697                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2698
2699                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2700                                 goto out_unsupported_cdb;
2701                         if (!passthrough)
2702                                 cmd->execute_task = target_emulate_write_same;
2703                         break;
2704                 default:
2705                         pr_err("VARIABLE_LENGTH_CMD service action"
2706                                 " 0x%04x not supported\n", service_action);
2707                         goto out_unsupported_cdb;
2708                 }
2709                 break;
2710         case MAINTENANCE_IN:
2711                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2712                         /* MAINTENANCE_IN from SCC-2 */
2713                         /*
2714                          * Check for emulated MI_REPORT_TARGET_PGS.
2715                          */
2716                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2717                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2718                                 cmd->execute_task =
2719                                         target_emulate_report_target_port_groups;
2720                         }
2721                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2722                                (cdb[8] << 8) | cdb[9];
2723                 } else {
2724                         /* GPCMD_SEND_KEY from multi media commands */
2725                         size = (cdb[8] << 8) + cdb[9];
2726                 }
2727                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2728                 break;
2729         case MODE_SELECT:
2730                 size = cdb[4];
2731                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2732                 break;
2733         case MODE_SELECT_10:
2734                 size = (cdb[7] << 8) + cdb[8];
2735                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2736                 break;
2737         case MODE_SENSE:
2738                 size = cdb[4];
2739                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2740                 if (!passthrough)
2741                         cmd->execute_task = target_emulate_modesense;
2742                 break;
2743         case MODE_SENSE_10:
2744                 size = (cdb[7] << 8) + cdb[8];
2745                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2746                 if (!passthrough)
2747                         cmd->execute_task = target_emulate_modesense;
2748                 break;
2749         case GPCMD_READ_BUFFER_CAPACITY:
2750         case GPCMD_SEND_OPC:
2751         case LOG_SELECT:
2752         case LOG_SENSE:
2753                 size = (cdb[7] << 8) + cdb[8];
2754                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2755                 break;
2756         case READ_BLOCK_LIMITS:
2757                 size = READ_BLOCK_LEN;
2758                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2759                 break;
2760         case GPCMD_GET_CONFIGURATION:
2761         case GPCMD_READ_FORMAT_CAPACITIES:
2762         case GPCMD_READ_DISC_INFO:
2763         case GPCMD_READ_TRACK_RZONE_INFO:
2764                 size = (cdb[7] << 8) + cdb[8];
2765                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2766                 break;
2767         case PERSISTENT_RESERVE_IN:
2768                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2769                         cmd->execute_task = target_scsi3_emulate_pr_in;
2770                 size = (cdb[7] << 8) + cdb[8];
2771                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2772                 break;
2773         case PERSISTENT_RESERVE_OUT:
2774                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2775                         cmd->execute_task = target_scsi3_emulate_pr_out;
2776                 size = (cdb[7] << 8) + cdb[8];
2777                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2778                 break;
2779         case GPCMD_MECHANISM_STATUS:
2780         case GPCMD_READ_DVD_STRUCTURE:
2781                 size = (cdb[8] << 8) + cdb[9];
2782                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2783                 break;
2784         case READ_POSITION:
2785                 size = READ_POSITION_LEN;
2786                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2787                 break;
2788         case MAINTENANCE_OUT:
2789                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2790                         /* MAINTENANCE_OUT from SCC-2
2791                          *
2792                          * Check for emulated MO_SET_TARGET_PGS.
2793                          */
2794                         if (cdb[1] == MO_SET_TARGET_PGS &&
2795                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2796                                 cmd->execute_task =
2797                                         target_emulate_set_target_port_groups;
2798                         }
2799
2800                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2801                                (cdb[8] << 8) | cdb[9];
2802                 } else  {
2803                         /* GPCMD_REPORT_KEY from multi media commands */
2804                         size = (cdb[8] << 8) + cdb[9];
2805                 }
2806                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2807                 break;
2808         case INQUIRY:
2809                 size = (cdb[3] << 8) + cdb[4];
2810                 /*
2811                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2812                  * See spc4r17 section 5.3
2813                  */
2814                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2815                         cmd->sam_task_attr = MSG_HEAD_TAG;
2816                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2817                 if (!passthrough)
2818                         cmd->execute_task = target_emulate_inquiry;
2819                 break;
2820         case READ_BUFFER:
2821                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2822                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2823                 break;
2824         case READ_CAPACITY:
2825                 size = READ_CAP_LEN;
2826                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2827                 if (!passthrough)
2828                         cmd->execute_task = target_emulate_readcapacity;
2829                 break;
2830         case READ_MEDIA_SERIAL_NUMBER:
2831         case SECURITY_PROTOCOL_IN:
2832         case SECURITY_PROTOCOL_OUT:
2833                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2834                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2835                 break;
2836         case SERVICE_ACTION_IN:
2837                 switch (cmd->t_task_cdb[1] & 0x1f) {
2838                 case SAI_READ_CAPACITY_16:
2839                         if (!passthrough)
2840                                 cmd->execute_task =
2841                                         target_emulate_readcapacity_16;
2842                         break;
2843                 default:
2844                         if (passthrough)
2845                                 break;
2846
2847                         pr_err("Unsupported SA: 0x%02x\n",
2848                                 cmd->t_task_cdb[1] & 0x1f);
2849                         goto out_unsupported_cdb;
2850                 }
2851                 /*FALLTHROUGH*/
2852         case ACCESS_CONTROL_IN:
2853         case ACCESS_CONTROL_OUT:
2854         case EXTENDED_COPY:
2855         case READ_ATTRIBUTE:
2856         case RECEIVE_COPY_RESULTS:
2857         case WRITE_ATTRIBUTE:
2858                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2859                        (cdb[12] << 8) | cdb[13];
2860                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2861                 break;
2862         case RECEIVE_DIAGNOSTIC:
2863         case SEND_DIAGNOSTIC:
2864                 size = (cdb[3] << 8) | cdb[4];
2865                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2866                 break;
2867 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2868 #if 0
2869         case GPCMD_READ_CD:
2870                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2871                 size = (2336 * sectors);
2872                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2873                 break;
2874 #endif
2875         case READ_TOC:
2876                 size = cdb[8];
2877                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2878                 break;
2879         case REQUEST_SENSE:
2880                 size = cdb[4];
2881                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2882                 if (!passthrough)
2883                         cmd->execute_task = target_emulate_request_sense;
2884                 break;
2885         case READ_ELEMENT_STATUS:
2886                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2887                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2888                 break;
2889         case WRITE_BUFFER:
2890                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2891                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2892                 break;
2893         case RESERVE:
2894         case RESERVE_10:
2895                 /*
2896                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2897                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2898                  */
2899                 if (cdb[0] == RESERVE_10)
2900                         size = (cdb[7] << 8) | cdb[8];
2901                 else
2902                         size = cmd->data_length;
2903
2904                 /*
2905                  * Setup the legacy emulated handler for SPC-2 and
2906                  * >= SPC-3 compatible reservation handling (CRH=1)
2907                  * Otherwise, we assume the underlying SCSI logic is
2908                  * is running in SPC_PASSTHROUGH, and wants reservations
2909                  * emulation disabled.
2910                  */
2911                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2912                         cmd->execute_task = target_scsi2_reservation_reserve;
2913                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2914                 break;
2915         case RELEASE:
2916         case RELEASE_10:
2917                 /*
2918                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2919                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2920                 */
2921                 if (cdb[0] == RELEASE_10)
2922                         size = (cdb[7] << 8) | cdb[8];
2923                 else
2924                         size = cmd->data_length;
2925
2926                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2927                         cmd->execute_task = target_scsi2_reservation_release;
2928                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2929                 break;
2930         case SYNCHRONIZE_CACHE:
2931         case 0x91: /* SYNCHRONIZE_CACHE_16: */
2932                 /*
2933                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2934                  */
2935                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2936                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2937                         cmd->t_task_lba = transport_lba_32(cdb);
2938                 } else {
2939                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2940                         cmd->t_task_lba = transport_lba_64(cdb);
2941                 }
2942                 if (sector_ret)
2943                         goto out_unsupported_cdb;
2944
2945                 size = transport_get_size(sectors, cdb, cmd);
2946                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2947
2948                 if (passthrough)
2949                         break;
2950
2951                 /*
2952                  * Check to ensure that LBA + Range does not exceed past end of
2953                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2954                  */
2955                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2956                         if (transport_cmd_get_valid_sectors(cmd) < 0)
2957                                 goto out_invalid_cdb_field;
2958                 }
2959                 cmd->execute_task = target_emulate_synchronize_cache;
2960                 break;
2961         case UNMAP:
2962                 size = get_unaligned_be16(&cdb[7]);
2963                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2964                 if (!passthrough)
2965                         cmd->execute_task = target_emulate_unmap;
2966                 break;
2967         case WRITE_SAME_16:
2968                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2969                 if (sector_ret)
2970                         goto out_unsupported_cdb;
2971
2972                 if (sectors)
2973                         size = transport_get_size(1, cdb, cmd);
2974                 else {
2975                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2976                         goto out_invalid_cdb_field;
2977                 }
2978
2979                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2980                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2981
2982                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2983                         goto out_unsupported_cdb;
2984                 if (!passthrough)
2985                         cmd->execute_task = target_emulate_write_same;
2986                 break;
2987         case WRITE_SAME:
2988                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2989                 if (sector_ret)
2990                         goto out_unsupported_cdb;
2991
2992                 if (sectors)
2993                         size = transport_get_size(1, cdb, cmd);
2994                 else {
2995                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2996                         goto out_invalid_cdb_field;
2997                 }
2998
2999                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3000                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3001                 /*
3002                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3003                  * of byte 1 bit 3 UNMAP instead of original reserved field
3004                  */
3005                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3006                         goto out_unsupported_cdb;
3007                 if (!passthrough)
3008                         cmd->execute_task = target_emulate_write_same;
3009                 break;
3010         case ALLOW_MEDIUM_REMOVAL:
3011         case ERASE:
3012         case REZERO_UNIT:
3013         case SEEK_10:
3014         case SPACE:
3015         case START_STOP:
3016         case TEST_UNIT_READY:
3017         case VERIFY:
3018         case WRITE_FILEMARKS:
3019                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3020                 if (!passthrough)
3021                         cmd->execute_task = target_emulate_noop;
3022                 break;
3023         case GPCMD_CLOSE_TRACK:
3024         case INITIALIZE_ELEMENT_STATUS:
3025         case GPCMD_LOAD_UNLOAD:
3026         case GPCMD_SET_SPEED:
3027         case MOVE_MEDIUM:
3028                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3029                 break;
3030         case REPORT_LUNS:
3031                 cmd->execute_task = target_report_luns;
3032                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3033                 /*
3034                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3035                  * See spc4r17 section 5.3
3036                  */
3037                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3038                         cmd->sam_task_attr = MSG_HEAD_TAG;
3039                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3040                 break;
3041         default:
3042                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3043                         " 0x%02x, sending CHECK_CONDITION.\n",
3044                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3045                 goto out_unsupported_cdb;
3046         }
3047
3048         if (size != cmd->data_length) {
3049                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3050                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3051                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3052                                 cmd->data_length, size, cdb[0]);
3053
3054                 cmd->cmd_spdtl = size;
3055
3056                 if (cmd->data_direction == DMA_TO_DEVICE) {
3057                         pr_err("Rejecting underflow/overflow"
3058                                         " WRITE data\n");
3059                         goto out_invalid_cdb_field;
3060                 }
3061                 /*
3062                  * Reject READ_* or WRITE_* with overflow/underflow for
3063                  * type SCF_SCSI_DATA_SG_IO_CDB.
3064                  */
3065                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3066                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3067                                 " CDB on non 512-byte sector setup subsystem"
3068                                 " plugin: %s\n", dev->transport->name);
3069                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3070                         goto out_invalid_cdb_field;
3071                 }
3072
3073                 if (size > cmd->data_length) {
3074                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3075                         cmd->residual_count = (size - cmd->data_length);
3076                 } else {
3077                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3078                         cmd->residual_count = (cmd->data_length - size);
3079                 }
3080                 cmd->data_length = size;
3081         }
3082
3083         /* reject any command that we don't have a handler for */
3084         if (!(passthrough || cmd->execute_task ||
3085              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3086                 goto out_unsupported_cdb;
3087
3088         transport_set_supported_SAM_opcode(cmd);
3089         return ret;
3090
3091 out_unsupported_cdb:
3092         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3093         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3094         return -EINVAL;
3095 out_invalid_cdb_field:
3096         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3097         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3098         return -EINVAL;
3099 }
3100
3101 /*
3102  * Called from I/O completion to determine which dormant/delayed
3103  * and ordered cmds need to have their tasks added to the execution queue.
3104  */
3105 static void transport_complete_task_attr(struct se_cmd *cmd)
3106 {
3107         struct se_device *dev = cmd->se_dev;
3108         struct se_cmd *cmd_p, *cmd_tmp;
3109         int new_active_tasks = 0;
3110
3111         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3112                 atomic_dec(&dev->simple_cmds);
3113                 smp_mb__after_atomic_dec();
3114                 dev->dev_cur_ordered_id++;
3115                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3116                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3117                         cmd->se_ordered_id);
3118         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3119                 dev->dev_cur_ordered_id++;
3120                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3121                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3122                         cmd->se_ordered_id);
3123         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3124                 atomic_dec(&dev->dev_ordered_sync);
3125                 smp_mb__after_atomic_dec();
3126
3127                 dev->dev_cur_ordered_id++;
3128                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3129                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3130         }
3131         /*
3132          * Process all commands up to the last received
3133          * ORDERED task attribute which requires another blocking
3134          * boundary
3135          */
3136         spin_lock(&dev->delayed_cmd_lock);
3137         list_for_each_entry_safe(cmd_p, cmd_tmp,
3138                         &dev->delayed_cmd_list, se_delayed_node) {
3139
3140                 list_del(&cmd_p->se_delayed_node);
3141                 spin_unlock(&dev->delayed_cmd_lock);
3142
3143                 pr_debug("Calling add_tasks() for"
3144                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3145                         " Dormant -> Active, se_ordered_id: %u\n",
3146                         cmd_p->t_task_cdb[0],
3147                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3148
3149                 transport_add_tasks_from_cmd(cmd_p);
3150                 new_active_tasks++;
3151
3152                 spin_lock(&dev->delayed_cmd_lock);
3153                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3154                         break;
3155         }
3156         spin_unlock(&dev->delayed_cmd_lock);
3157         /*
3158          * If new tasks have become active, wake up the transport thread
3159          * to do the processing of the Active tasks.
3160          */
3161         if (new_active_tasks != 0)
3162                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3163 }
3164
3165 static void transport_complete_qf(struct se_cmd *cmd)
3166 {
3167         int ret = 0;
3168
3169         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3170                 transport_complete_task_attr(cmd);
3171
3172         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3173                 ret = cmd->se_tfo->queue_status(cmd);
3174                 if (ret)
3175                         goto out;
3176         }
3177
3178         switch (cmd->data_direction) {
3179         case DMA_FROM_DEVICE:
3180                 ret = cmd->se_tfo->queue_data_in(cmd);
3181                 break;
3182         case DMA_TO_DEVICE:
3183                 if (cmd->t_bidi_data_sg) {
3184                         ret = cmd->se_tfo->queue_data_in(cmd);
3185                         if (ret < 0)
3186                                 break;
3187                 }
3188                 /* Fall through for DMA_TO_DEVICE */
3189         case DMA_NONE:
3190                 ret = cmd->se_tfo->queue_status(cmd);
3191                 break;
3192         default:
3193                 break;
3194         }
3195
3196 out:
3197         if (ret < 0) {
3198                 transport_handle_queue_full(cmd, cmd->se_dev);
3199                 return;
3200         }
3201         transport_lun_remove_cmd(cmd);
3202         transport_cmd_check_stop_to_fabric(cmd);
3203 }
3204
3205 static void transport_handle_queue_full(
3206         struct se_cmd *cmd,
3207         struct se_device *dev)
3208 {
3209         spin_lock_irq(&dev->qf_cmd_lock);
3210         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3211         atomic_inc(&dev->dev_qf_count);
3212         smp_mb__after_atomic_inc();
3213         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3214
3215         schedule_work(&cmd->se_dev->qf_work_queue);
3216 }
3217
3218 static void target_complete_ok_work(struct work_struct *work)
3219 {
3220         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3221         int reason = 0, ret;
3222
3223         /*
3224          * Check if we need to move delayed/dormant tasks from cmds on the
3225          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3226          * Attribute.
3227          */
3228         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3229                 transport_complete_task_attr(cmd);
3230         /*
3231          * Check to schedule QUEUE_FULL work, or execute an existing
3232          * cmd->transport_qf_callback()
3233          */
3234         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3235                 schedule_work(&cmd->se_dev->qf_work_queue);
3236
3237         /*
3238          * Check if we need to retrieve a sense buffer from
3239          * the struct se_cmd in question.
3240          */
3241         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3242                 if (transport_get_sense_data(cmd) < 0)
3243                         reason = TCM_NON_EXISTENT_LUN;
3244
3245                 /*
3246                  * Only set when an struct se_task->task_scsi_status returned
3247                  * a non GOOD status.
3248                  */
3249                 if (cmd->scsi_status) {
3250                         ret = transport_send_check_condition_and_sense(
3251                                         cmd, reason, 1);
3252                         if (ret == -EAGAIN || ret == -ENOMEM)
3253                                 goto queue_full;
3254
3255                         transport_lun_remove_cmd(cmd);
3256                         transport_cmd_check_stop_to_fabric(cmd);
3257                         return;
3258                 }
3259         }
3260         /*
3261          * Check for a callback, used by amongst other things
3262          * XDWRITE_READ_10 emulation.
3263          */
3264         if (cmd->transport_complete_callback)
3265                 cmd->transport_complete_callback(cmd);
3266
3267         switch (cmd->data_direction) {
3268         case DMA_FROM_DEVICE:
3269                 spin_lock(&cmd->se_lun->lun_sep_lock);
3270                 if (cmd->se_lun->lun_sep) {
3271                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3272                                         cmd->data_length;
3273                 }
3274                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3275
3276                 ret = cmd->se_tfo->queue_data_in(cmd);
3277                 if (ret == -EAGAIN || ret == -ENOMEM)
3278                         goto queue_full;
3279                 break;
3280         case DMA_TO_DEVICE:
3281                 spin_lock(&cmd->se_lun->lun_sep_lock);
3282                 if (cmd->se_lun->lun_sep) {
3283                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3284                                 cmd->data_length;
3285                 }
3286                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3287                 /*
3288                  * Check if we need to send READ payload for BIDI-COMMAND
3289                  */
3290                 if (cmd->t_bidi_data_sg) {
3291                         spin_lock(&cmd->se_lun->lun_sep_lock);
3292                         if (cmd->se_lun->lun_sep) {
3293                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3294                                         cmd->data_length;
3295                         }
3296                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3297                         ret = cmd->se_tfo->queue_data_in(cmd);
3298                         if (ret == -EAGAIN || ret == -ENOMEM)
3299                                 goto queue_full;
3300                         break;
3301                 }
3302                 /* Fall through for DMA_TO_DEVICE */
3303         case DMA_NONE:
3304                 ret = cmd->se_tfo->queue_status(cmd);
3305                 if (ret == -EAGAIN || ret == -ENOMEM)
3306                         goto queue_full;
3307                 break;
3308         default:
3309                 break;
3310         }
3311
3312         transport_lun_remove_cmd(cmd);
3313         transport_cmd_check_stop_to_fabric(cmd);
3314         return;
3315
3316 queue_full:
3317         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3318                 " data_direction: %d\n", cmd, cmd->data_direction);
3319         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3320         transport_handle_queue_full(cmd, cmd->se_dev);
3321 }
3322
3323 static void transport_free_dev_tasks(struct se_cmd *cmd)
3324 {
3325         struct se_task *task, *task_tmp;
3326         unsigned long flags;
3327         LIST_HEAD(dispose_list);
3328
3329         spin_lock_irqsave(&cmd->t_state_lock, flags);
3330         list_for_each_entry_safe(task, task_tmp,
3331                                 &cmd->t_task_list, t_list) {
3332                 if (!(task->task_flags & TF_ACTIVE))
3333                         list_move_tail(&task->t_list, &dispose_list);
3334         }
3335         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3336
3337         while (!list_empty(&dispose_list)) {
3338                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3339
3340                 if (task->task_sg != cmd->t_data_sg &&
3341                     task->task_sg != cmd->t_bidi_data_sg)
3342                         kfree(task->task_sg);
3343
3344                 list_del(&task->t_list);
3345
3346                 cmd->se_dev->transport->free_task(task);
3347         }
3348 }
3349
3350 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3351 {
3352         struct scatterlist *sg;
3353         int count;
3354
3355         for_each_sg(sgl, sg, nents, count)
3356                 __free_page(sg_page(sg));
3357
3358         kfree(sgl);
3359 }
3360
3361 static inline void transport_free_pages(struct se_cmd *cmd)
3362 {
3363         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3364                 return;
3365
3366         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3367         cmd->t_data_sg = NULL;
3368         cmd->t_data_nents = 0;
3369
3370         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3371         cmd->t_bidi_data_sg = NULL;
3372         cmd->t_bidi_data_nents = 0;
3373 }
3374
3375 /**
3376  * transport_release_cmd - free a command
3377  * @cmd:       command to free
3378  *
3379  * This routine unconditionally frees a command, and reference counting
3380  * or list removal must be done in the caller.
3381  */
3382 static void transport_release_cmd(struct se_cmd *cmd)
3383 {
3384         BUG_ON(!cmd->se_tfo);
3385
3386         if (cmd->se_tmr_req)
3387                 core_tmr_release_req(cmd->se_tmr_req);
3388         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3389                 kfree(cmd->t_task_cdb);
3390         /*
3391          * If this cmd has been setup with target_get_sess_cmd(), drop
3392          * the kref and call ->release_cmd() in kref callback.
3393          */
3394          if (cmd->check_release != 0) {
3395                 target_put_sess_cmd(cmd->se_sess, cmd);
3396                 return;
3397         }
3398         cmd->se_tfo->release_cmd(cmd);
3399 }
3400
3401 /**
3402  * transport_put_cmd - release a reference to a command
3403  * @cmd:       command to release
3404  *
3405  * This routine releases our reference to the command and frees it if possible.
3406  */
3407 static void transport_put_cmd(struct se_cmd *cmd)
3408 {
3409         unsigned long flags;
3410         int free_tasks = 0;
3411
3412         spin_lock_irqsave(&cmd->t_state_lock, flags);
3413         if (atomic_read(&cmd->t_fe_count)) {
3414                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3415                         goto out_busy;
3416         }
3417
3418         if (atomic_read(&cmd->t_se_count)) {
3419                 if (!atomic_dec_and_test(&cmd->t_se_count))
3420                         goto out_busy;
3421         }
3422
3423         if (atomic_read(&cmd->transport_dev_active)) {
3424                 atomic_set(&cmd->transport_dev_active, 0);
3425                 transport_all_task_dev_remove_state(cmd);
3426                 free_tasks = 1;
3427         }
3428         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3429
3430         if (free_tasks != 0)
3431                 transport_free_dev_tasks(cmd);
3432
3433         transport_free_pages(cmd);
3434         transport_release_cmd(cmd);
3435         return;
3436 out_busy:
3437         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3438 }
3439
3440 /*
3441  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3442  * allocating in the core.
3443  * @cmd:  Associated se_cmd descriptor
3444  * @mem:  SGL style memory for TCM WRITE / READ
3445  * @sg_mem_num: Number of SGL elements
3446  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3447  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3448  *
3449  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3450  * of parameters.
3451  */
3452 int transport_generic_map_mem_to_cmd(
3453         struct se_cmd *cmd,
3454         struct scatterlist *sgl,
3455         u32 sgl_count,
3456         struct scatterlist *sgl_bidi,
3457         u32 sgl_bidi_count)
3458 {
3459         if (!sgl || !sgl_count)
3460                 return 0;
3461
3462         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3463             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3464                 /*
3465                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3466                  * scatterlists already have been set to follow what the fabric
3467                  * passes for the original expected data transfer length.
3468                  */
3469                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3470                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3471                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3472                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3473                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3474                         return -EINVAL;
3475                 }
3476
3477                 cmd->t_data_sg = sgl;
3478                 cmd->t_data_nents = sgl_count;
3479
3480                 if (sgl_bidi && sgl_bidi_count) {
3481                         cmd->t_bidi_data_sg = sgl_bidi;
3482                         cmd->t_bidi_data_nents = sgl_bidi_count;
3483                 }
3484                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3485         }
3486
3487         return 0;
3488 }
3489 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3490
3491 void *transport_kmap_data_sg(struct se_cmd *cmd)
3492 {
3493         struct scatterlist *sg = cmd->t_data_sg;
3494         struct page **pages;
3495         int i;
3496
3497         BUG_ON(!sg);
3498         /*
3499          * We need to take into account a possible offset here for fabrics like
3500          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3501          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3502          */
3503         if (!cmd->t_data_nents)
3504                 return NULL;
3505         else if (cmd->t_data_nents == 1)
3506                 return kmap(sg_page(sg)) + sg->offset;
3507
3508         /* >1 page. use vmap */
3509         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3510         if (!pages)
3511                 return NULL;
3512
3513         /* convert sg[] to pages[] */
3514         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3515                 pages[i] = sg_page(sg);
3516         }
3517
3518         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
3519         kfree(pages);
3520         if (!cmd->t_data_vmap)
3521                 return NULL;
3522
3523         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3524 }
3525 EXPORT_SYMBOL(transport_kmap_data_sg);
3526
3527 void transport_kunmap_data_sg(struct se_cmd *cmd)
3528 {
3529         if (!cmd->t_data_nents)
3530                 return;
3531         else if (cmd->t_data_nents == 1)
3532                 kunmap(sg_page(cmd->t_data_sg));
3533
3534         vunmap(cmd->t_data_vmap);
3535         cmd->t_data_vmap = NULL;
3536 }
3537 EXPORT_SYMBOL(transport_kunmap_data_sg);
3538
3539 static int
3540 transport_generic_get_mem(struct se_cmd *cmd)
3541 {
3542         u32 length = cmd->data_length;
3543         unsigned int nents;
3544         struct page *page;
3545         gfp_t zero_flag;
3546         int i = 0;
3547
3548         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3549         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3550         if (!cmd->t_data_sg)
3551                 return -ENOMEM;
3552
3553         cmd->t_data_nents = nents;
3554         sg_init_table(cmd->t_data_sg, nents);
3555
3556         zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3557
3558         while (length) {
3559                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3560                 page = alloc_page(GFP_KERNEL | zero_flag);
3561                 if (!page)
3562                         goto out;
3563
3564                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3565                 length -= page_len;
3566                 i++;
3567         }
3568         return 0;
3569
3570 out:
3571         while (i >= 0) {
3572                 __free_page(sg_page(&cmd->t_data_sg[i]));
3573                 i--;
3574         }
3575         kfree(cmd->t_data_sg);
3576         cmd->t_data_sg = NULL;
3577         return -ENOMEM;
3578 }
3579
3580 /* Reduce sectors if they are too long for the device */
3581 static inline sector_t transport_limit_task_sectors(
3582         struct se_device *dev,
3583         unsigned long long lba,
3584         sector_t sectors)
3585 {
3586         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3587
3588         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3589                 if ((lba + sectors) > transport_dev_end_lba(dev))
3590                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3591
3592         return sectors;
3593 }
3594
3595
3596 /*
3597  * This function can be used by HW target mode drivers to create a linked
3598  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3599  * This is intended to be called during the completion path by TCM Core
3600  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3601  */
3602 void transport_do_task_sg_chain(struct se_cmd *cmd)
3603 {
3604         struct scatterlist *sg_first = NULL;
3605         struct scatterlist *sg_prev = NULL;
3606         int sg_prev_nents = 0;
3607         struct scatterlist *sg;
3608         struct se_task *task;
3609         u32 chained_nents = 0;
3610         int i;
3611
3612         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3613
3614         /*
3615          * Walk the struct se_task list and setup scatterlist chains
3616          * for each contiguously allocated struct se_task->task_sg[].
3617          */
3618         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3619                 if (!task->task_sg)
3620                         continue;
3621
3622                 if (!sg_first) {
3623                         sg_first = task->task_sg;
3624                         chained_nents = task->task_sg_nents;
3625                 } else {
3626                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3627                         chained_nents += task->task_sg_nents;
3628                 }
3629                 /*
3630                  * For the padded tasks, use the extra SGL vector allocated
3631                  * in transport_allocate_data_tasks() for the sg_prev_nents
3632                  * offset into sg_chain() above.
3633                  *
3634                  * We do not need the padding for the last task (or a single
3635                  * task), but in that case we will never use the sg_prev_nents
3636                  * value below which would be incorrect.
3637                  */
3638                 sg_prev_nents = (task->task_sg_nents + 1);
3639                 sg_prev = task->task_sg;
3640         }
3641         /*
3642          * Setup the starting pointer and total t_tasks_sg_linked_no including
3643          * padding SGs for linking and to mark the end.
3644          */
3645         cmd->t_tasks_sg_chained = sg_first;
3646         cmd->t_tasks_sg_chained_no = chained_nents;
3647
3648         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3649                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3650                 cmd->t_tasks_sg_chained_no);
3651
3652         for_each_sg(cmd->t_tasks_sg_chained, sg,
3653                         cmd->t_tasks_sg_chained_no, i) {
3654
3655                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3656                         i, sg, sg_page(sg), sg->length, sg->offset);
3657                 if (sg_is_chain(sg))
3658                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3659                 if (sg_is_last(sg))
3660                         pr_debug("SG: %p sg_is_last=1\n", sg);
3661         }
3662 }
3663 EXPORT_SYMBOL(transport_do_task_sg_chain);
3664
3665 /*
3666  * Break up cmd into chunks transport can handle
3667  */
3668 static int
3669 transport_allocate_data_tasks(struct se_cmd *cmd,
3670         enum dma_data_direction data_direction,
3671         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3672 {
3673         struct se_device *dev = cmd->se_dev;
3674         int task_count, i;
3675         unsigned long long lba;
3676         sector_t sectors, dev_max_sectors;
3677         u32 sector_size;
3678
3679         if (transport_cmd_get_valid_sectors(cmd) < 0)
3680                 return -EINVAL;
3681
3682         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3683         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3684
3685         WARN_ON(cmd->data_length % sector_size);
3686
3687         lba = cmd->t_task_lba;
3688         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3689         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3690
3691         /*
3692          * If we need just a single task reuse the SG list in the command
3693          * and avoid a lot of work.
3694          */
3695         if (task_count == 1) {
3696                 struct se_task *task;
3697                 unsigned long flags;
3698
3699                 task = transport_generic_get_task(cmd, data_direction);
3700                 if (!task)
3701                         return -ENOMEM;
3702
3703                 task->task_sg = cmd_sg;
3704                 task->task_sg_nents = sgl_nents;
3705
3706                 task->task_lba = lba;
3707                 task->task_sectors = sectors;
3708                 task->task_size = task->task_sectors * sector_size;
3709
3710                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3711                 list_add_tail(&task->t_list, &cmd->t_task_list);
3712                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3713
3714                 return task_count;
3715         }
3716
3717         for (i = 0; i < task_count; i++) {
3718                 struct se_task *task;
3719                 unsigned int task_size, task_sg_nents_padded;
3720                 struct scatterlist *sg;
3721                 unsigned long flags;
3722                 int count;
3723
3724                 task = transport_generic_get_task(cmd, data_direction);
3725                 if (!task)
3726                         return -ENOMEM;
3727
3728                 task->task_lba = lba;
3729                 task->task_sectors = min(sectors, dev_max_sectors);
3730                 task->task_size = task->task_sectors * sector_size;
3731
3732                 /*
3733                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3734                  * in order to calculate the number per task SGL entries
3735                  */
3736                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3737                 /*
3738                  * Check if the fabric module driver is requesting that all
3739                  * struct se_task->task_sg[] be chained together..  If so,
3740                  * then allocate an extra padding SG entry for linking and
3741                  * marking the end of the chained SGL for every task except
3742                  * the last one for (task_count > 1) operation, or skipping
3743                  * the extra padding for the (task_count == 1) case.
3744                  */
3745                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3746                         task_sg_nents_padded = (task->task_sg_nents + 1);
3747                 } else
3748                         task_sg_nents_padded = task->task_sg_nents;
3749
3750                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3751                                         task_sg_nents_padded, GFP_KERNEL);
3752                 if (!task->task_sg) {
3753                         cmd->se_dev->transport->free_task(task);
3754                         return -ENOMEM;
3755                 }
3756
3757                 sg_init_table(task->task_sg, task_sg_nents_padded);
3758
3759                 task_size = task->task_size;
3760
3761                 /* Build new sgl, only up to task_size */
3762                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3763                         if (cmd_sg->length > task_size)
3764                                 break;
3765
3766                         *sg = *cmd_sg;
3767                         task_size -= cmd_sg->length;
3768                         cmd_sg = sg_next(cmd_sg);
3769                 }
3770
3771                 lba += task->task_sectors;
3772                 sectors -= task->task_sectors;
3773
3774                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3775                 list_add_tail(&task->t_list, &cmd->t_task_list);
3776                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3777         }
3778
3779         return task_count;
3780 }
3781
3782 static int
3783 transport_allocate_control_task(struct se_cmd *cmd)
3784 {
3785         struct se_task *task;
3786         unsigned long flags;
3787
3788         /* Workaround for handling zero-length control CDBs */
3789         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3790             !cmd->data_length)
3791                 return 0;
3792
3793         task = transport_generic_get_task(cmd, cmd->data_direction);
3794         if (!task)
3795                 return -ENOMEM;
3796
3797         task->task_sg = cmd->t_data_sg;
3798         task->task_size = cmd->data_length;
3799         task->task_sg_nents = cmd->t_data_nents;
3800
3801         spin_lock_irqsave(&cmd->t_state_lock, flags);
3802         list_add_tail(&task->t_list, &cmd->t_task_list);
3803         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3804
3805         /* Success! Return number of tasks allocated */
3806         return 1;
3807 }
3808
3809 /*
3810  * Allocate any required ressources to execute the command, and either place
3811  * it on the execution queue if possible.  For writes we might not have the
3812  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3813  */
3814 int transport_generic_new_cmd(struct se_cmd *cmd)
3815 {
3816         struct se_device *dev = cmd->se_dev;
3817         int task_cdbs, task_cdbs_bidi = 0;
3818         int set_counts = 1;
3819         int ret = 0;
3820
3821         /*
3822          * Determine is the TCM fabric module has already allocated physical
3823          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3824          * beforehand.
3825          */
3826         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3827             cmd->data_length) {
3828                 ret = transport_generic_get_mem(cmd);
3829                 if (ret < 0)
3830                         goto out_fail;
3831         }
3832
3833         /*
3834          * For BIDI command set up the read tasks first.
3835          */
3836         if (cmd->t_bidi_data_sg &&
3837             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3838                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3839
3840                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3841                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3842                                 cmd->t_bidi_data_nents);
3843                 if (task_cdbs_bidi <= 0)
3844                         goto out_fail;
3845
3846                 atomic_inc(&cmd->t_fe_count);
3847                 atomic_inc(&cmd->t_se_count);
3848                 set_counts = 0;
3849         }
3850
3851         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3852                 task_cdbs = transport_allocate_data_tasks(cmd,
3853                                         cmd->data_direction, cmd->t_data_sg,
3854                                         cmd->t_data_nents);
3855         } else {
3856                 task_cdbs = transport_allocate_control_task(cmd);
3857         }
3858
3859         if (task_cdbs < 0)
3860                 goto out_fail;
3861         else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3862                 cmd->t_state = TRANSPORT_COMPLETE;
3863                 atomic_set(&cmd->t_transport_active, 1);
3864
3865                 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3866                         u8 ua_asc = 0, ua_ascq = 0;
3867
3868                         core_scsi3_ua_clear_for_request_sense(cmd,
3869                                         &ua_asc, &ua_ascq);
3870                 }
3871
3872                 INIT_WORK(&cmd->work, target_complete_ok_work);
3873                 queue_work(target_completion_wq, &cmd->work);
3874                 return 0;
3875         }
3876
3877         if (set_counts) {
3878                 atomic_inc(&cmd->t_fe_count);
3879                 atomic_inc(&cmd->t_se_count);
3880         }
3881
3882         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3883         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3884         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3885
3886         /*
3887          * For WRITEs, let the fabric know its buffer is ready..
3888          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3889          * will be added to the struct se_device execution queue after its WRITE
3890          * data has arrived. (ie: It gets handled by the transport processing
3891          * thread a second time)
3892          */
3893         if (cmd->data_direction == DMA_TO_DEVICE) {
3894                 transport_add_tasks_to_state_queue(cmd);
3895                 return transport_generic_write_pending(cmd);
3896         }
3897         /*
3898          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3899          * to the execution queue.
3900          */
3901         transport_execute_tasks(cmd);
3902         return 0;
3903
3904 out_fail:
3905         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3906         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3907         return -EINVAL;
3908 }
3909 EXPORT_SYMBOL(transport_generic_new_cmd);
3910
3911 /*      transport_generic_process_write():
3912  *
3913  *
3914  */
3915 void transport_generic_process_write(struct se_cmd *cmd)
3916 {
3917         transport_execute_tasks(cmd);
3918 }
3919 EXPORT_SYMBOL(transport_generic_process_write);
3920
3921 static void transport_write_pending_qf(struct se_cmd *cmd)
3922 {
3923         int ret;
3924
3925         ret = cmd->se_tfo->write_pending(cmd);
3926         if (ret == -EAGAIN || ret == -ENOMEM) {
3927                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3928                          cmd);
3929                 transport_handle_queue_full(cmd, cmd->se_dev);
3930         }
3931 }
3932
3933 static int transport_generic_write_pending(struct se_cmd *cmd)
3934 {
3935         unsigned long flags;
3936         int ret;
3937
3938         spin_lock_irqsave(&cmd->t_state_lock, flags);
3939         cmd->t_state = TRANSPORT_WRITE_PENDING;
3940         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3941
3942         /*
3943          * Clear the se_cmd for WRITE_PENDING status in order to set
3944          * cmd->t_transport_active=0 so that transport_generic_handle_data
3945          * can be called from HW target mode interrupt code.  This is safe
3946          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3947          * because the se_cmd->se_lun pointer is not being cleared.
3948          */
3949         transport_cmd_check_stop(cmd, 1, 0);
3950
3951         /*
3952          * Call the fabric write_pending function here to let the
3953          * frontend know that WRITE buffers are ready.
3954          */
3955         ret = cmd->se_tfo->write_pending(cmd);
3956         if (ret == -EAGAIN || ret == -ENOMEM)
3957                 goto queue_full;
3958         else if (ret < 0)
3959                 return ret;
3960
3961         return 1;
3962
3963 queue_full:
3964         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3965         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3966         transport_handle_queue_full(cmd, cmd->se_dev);
3967         return 0;
3968 }
3969
3970 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3971 {
3972         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3973                 if (wait_for_tasks && cmd->se_tmr_req)
3974                          transport_wait_for_tasks(cmd);
3975
3976                 transport_release_cmd(cmd);
3977         } else {
3978                 if (wait_for_tasks)
3979                         transport_wait_for_tasks(cmd);
3980
3981                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3982
3983                 if (cmd->se_lun)
3984                         transport_lun_remove_cmd(cmd);
3985
3986                 transport_free_dev_tasks(cmd);
3987
3988                 transport_put_cmd(cmd);
3989         }
3990 }
3991 EXPORT_SYMBOL(transport_generic_free_cmd);
3992
3993 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3994  * @se_sess:    session to reference
3995  * @se_cmd:     command descriptor to add
3996  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
3997  */
3998 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
3999                         bool ack_kref)
4000 {
4001         unsigned long flags;
4002
4003         kref_init(&se_cmd->cmd_kref);
4004         /*
4005          * Add a second kref if the fabric caller is expecting to handle
4006          * fabric acknowledgement that requires two target_put_sess_cmd()
4007          * invocations before se_cmd descriptor release.
4008          */
4009         if (ack_kref == true)
4010                 kref_get(&se_cmd->cmd_kref);
4011
4012         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4013         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4014         se_cmd->check_release = 1;
4015         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4016 }
4017 EXPORT_SYMBOL(target_get_sess_cmd);
4018
4019 static void target_release_cmd_kref(struct kref *kref)
4020 {
4021         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4022         struct se_session *se_sess = se_cmd->se_sess;
4023         unsigned long flags;
4024
4025         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4026         if (list_empty(&se_cmd->se_cmd_list)) {
4027                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4028                 WARN_ON(1);
4029                 return;
4030         }
4031         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4032                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4033                 complete(&se_cmd->cmd_wait_comp);
4034                 return;
4035         }
4036         list_del(&se_cmd->se_cmd_list);
4037         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4038
4039         se_cmd->se_tfo->release_cmd(se_cmd);
4040 }
4041
4042 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4043  * @se_sess:    session to reference
4044  * @se_cmd:     command descriptor to drop
4045  */
4046 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4047 {
4048         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4049 }
4050 EXPORT_SYMBOL(target_put_sess_cmd);
4051
4052 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4053  * @se_sess:    session to split
4054  */
4055 void target_splice_sess_cmd_list(struct se_session *se_sess)
4056 {
4057         struct se_cmd *se_cmd;
4058         unsigned long flags;
4059
4060         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4061         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4062
4063         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4064         se_sess->sess_tearing_down = 1;
4065
4066         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4067
4068         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4069                 se_cmd->cmd_wait_set = 1;
4070
4071         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4072 }
4073 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4074
4075 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4076  * @se_sess:    session to wait for active I/O
4077  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4078  */
4079 void target_wait_for_sess_cmds(
4080         struct se_session *se_sess,
4081         int wait_for_tasks)
4082 {
4083         struct se_cmd *se_cmd, *tmp_cmd;
4084         bool rc = false;
4085
4086         list_for_each_entry_safe(se_cmd, tmp_cmd,
4087                                 &se_sess->sess_wait_list, se_cmd_list) {
4088                 list_del(&se_cmd->se_cmd_list);
4089
4090                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4091                         " %d\n", se_cmd, se_cmd->t_state,
4092                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4093
4094                 if (wait_for_tasks) {
4095                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4096                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4097                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4098
4099                         rc = transport_wait_for_tasks(se_cmd);
4100
4101                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4102                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4103                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4104                 }
4105
4106                 if (!rc) {
4107                         wait_for_completion(&se_cmd->cmd_wait_comp);
4108                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4109                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4110                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4111                 }
4112
4113                 se_cmd->se_tfo->release_cmd(se_cmd);
4114         }
4115 }
4116 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4117
4118 /*      transport_lun_wait_for_tasks():
4119  *
4120  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4121  *      an struct se_lun to be successfully shutdown.
4122  */
4123 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4124 {
4125         unsigned long flags;
4126         int ret;
4127         /*
4128          * If the frontend has already requested this struct se_cmd to
4129          * be stopped, we can safely ignore this struct se_cmd.
4130          */
4131         spin_lock_irqsave(&cmd->t_state_lock, flags);
4132         if (atomic_read(&cmd->t_transport_stop)) {
4133                 atomic_set(&cmd->transport_lun_stop, 0);
4134                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4135                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4136                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4137                 transport_cmd_check_stop(cmd, 1, 0);
4138                 return -EPERM;
4139         }
4140         atomic_set(&cmd->transport_lun_fe_stop, 1);
4141         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4142
4143         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4144
4145         ret = transport_stop_tasks_for_cmd(cmd);
4146
4147         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4148                         " %d\n", cmd, cmd->t_task_list_num, ret);
4149         if (!ret) {
4150                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4151                                 cmd->se_tfo->get_task_tag(cmd));
4152                 wait_for_completion(&cmd->transport_lun_stop_comp);
4153                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4154                                 cmd->se_tfo->get_task_tag(cmd));
4155         }
4156         transport_remove_cmd_from_queue(cmd);
4157
4158         return 0;
4159 }
4160
4161 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4162 {
4163         struct se_cmd *cmd = NULL;
4164         unsigned long lun_flags, cmd_flags;
4165         /*
4166          * Do exception processing and return CHECK_CONDITION status to the
4167          * Initiator Port.
4168          */
4169         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4170         while (!list_empty(&lun->lun_cmd_list)) {
4171                 cmd = list_first_entry(&lun->lun_cmd_list,
4172                        struct se_cmd, se_lun_node);
4173                 list_del(&cmd->se_lun_node);
4174
4175                 atomic_set(&cmd->transport_lun_active, 0);
4176                 /*
4177                  * This will notify iscsi_target_transport.c:
4178                  * transport_cmd_check_stop() that a LUN shutdown is in
4179                  * progress for the iscsi_cmd_t.
4180                  */
4181                 spin_lock(&cmd->t_state_lock);
4182                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4183                         "_lun_stop for  ITT: 0x%08x\n",
4184                         cmd->se_lun->unpacked_lun,
4185                         cmd->se_tfo->get_task_tag(cmd));
4186                 atomic_set(&cmd->transport_lun_stop, 1);
4187                 spin_unlock(&cmd->t_state_lock);
4188
4189                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4190
4191                 if (!cmd->se_lun) {
4192                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4193                                 cmd->se_tfo->get_task_tag(cmd),
4194                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4195                         BUG();
4196                 }
4197                 /*
4198                  * If the Storage engine still owns the iscsi_cmd_t, determine
4199                  * and/or stop its context.
4200                  */
4201                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4202                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4203                         cmd->se_tfo->get_task_tag(cmd));
4204
4205                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4206                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4207                         continue;
4208                 }
4209
4210                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4211                         "_wait_for_tasks(): SUCCESS\n",
4212                         cmd->se_lun->unpacked_lun,
4213                         cmd->se_tfo->get_task_tag(cmd));
4214
4215                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4216                 if (!atomic_read(&cmd->transport_dev_active)) {
4217                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4218                         goto check_cond;
4219                 }
4220                 atomic_set(&cmd->transport_dev_active, 0);
4221                 transport_all_task_dev_remove_state(cmd);
4222                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4223
4224                 transport_free_dev_tasks(cmd);
4225                 /*
4226                  * The Storage engine stopped this struct se_cmd before it was
4227                  * send to the fabric frontend for delivery back to the
4228                  * Initiator Node.  Return this SCSI CDB back with an
4229                  * CHECK_CONDITION status.
4230                  */
4231 check_cond:
4232                 transport_send_check_condition_and_sense(cmd,
4233                                 TCM_NON_EXISTENT_LUN, 0);
4234                 /*
4235                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4236                  * be released, notify the waiting thread now that LU has
4237                  * finished accessing it.
4238                  */
4239                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4240                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4241                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4242                                 " struct se_cmd: %p ITT: 0x%08x\n",
4243                                 lun->unpacked_lun,
4244                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4245
4246                         spin_unlock_irqrestore(&cmd->t_state_lock,
4247                                         cmd_flags);
4248                         transport_cmd_check_stop(cmd, 1, 0);
4249                         complete(&cmd->transport_lun_fe_stop_comp);
4250                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4251                         continue;
4252                 }
4253                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4254                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4255
4256                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4257                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4258         }
4259         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4260 }
4261
4262 static int transport_clear_lun_thread(void *p)
4263 {
4264         struct se_lun *lun = p;
4265
4266         __transport_clear_lun_from_sessions(lun);
4267         complete(&lun->lun_shutdown_comp);
4268
4269         return 0;
4270 }
4271
4272 int transport_clear_lun_from_sessions(struct se_lun *lun)
4273 {
4274         struct task_struct *kt;
4275
4276         kt = kthread_run(transport_clear_lun_thread, lun,
4277                         "tcm_cl_%u", lun->unpacked_lun);
4278         if (IS_ERR(kt)) {
4279                 pr_err("Unable to start clear_lun thread\n");
4280                 return PTR_ERR(kt);
4281         }
4282         wait_for_completion(&lun->lun_shutdown_comp);
4283
4284         return 0;
4285 }
4286
4287 /**
4288  * transport_wait_for_tasks - wait for completion to occur
4289  * @cmd:        command to wait
4290  *
4291  * Called from frontend fabric context to wait for storage engine
4292  * to pause and/or release frontend generated struct se_cmd.
4293  */
4294 bool transport_wait_for_tasks(struct se_cmd *cmd)
4295 {
4296         unsigned long flags;
4297
4298         spin_lock_irqsave(&cmd->t_state_lock, flags);
4299         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4300                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4301                 return false;
4302         }
4303         /*
4304          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4305          * has been set in transport_set_supported_SAM_opcode().
4306          */
4307         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4308                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4309                 return false;
4310         }
4311         /*
4312          * If we are already stopped due to an external event (ie: LUN shutdown)
4313          * sleep until the connection can have the passed struct se_cmd back.
4314          * The cmd->transport_lun_stopped_sem will be upped by
4315          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4316          * has completed its operation on the struct se_cmd.
4317          */
4318         if (atomic_read(&cmd->transport_lun_stop)) {
4319
4320                 pr_debug("wait_for_tasks: Stopping"
4321                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4322                         "_stop_comp); for ITT: 0x%08x\n",
4323                         cmd->se_tfo->get_task_tag(cmd));
4324                 /*
4325                  * There is a special case for WRITES where a FE exception +
4326                  * LUN shutdown means ConfigFS context is still sleeping on
4327                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4328                  * We go ahead and up transport_lun_stop_comp just to be sure
4329                  * here.
4330                  */
4331                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4332                 complete(&cmd->transport_lun_stop_comp);
4333                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4334                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4335
4336                 transport_all_task_dev_remove_state(cmd);
4337                 /*
4338                  * At this point, the frontend who was the originator of this
4339                  * struct se_cmd, now owns the structure and can be released through
4340                  * normal means below.
4341                  */
4342                 pr_debug("wait_for_tasks: Stopped"
4343                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4344                         "stop_comp); for ITT: 0x%08x\n",
4345                         cmd->se_tfo->get_task_tag(cmd));
4346
4347                 atomic_set(&cmd->transport_lun_stop, 0);
4348         }
4349         if (!atomic_read(&cmd->t_transport_active) ||
4350              atomic_read(&cmd->t_transport_aborted)) {
4351                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4352                 return false;
4353         }
4354
4355         atomic_set(&cmd->t_transport_stop, 1);
4356
4357         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4358                 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4359                 cmd, cmd->se_tfo->get_task_tag(cmd),
4360                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4361
4362         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4363
4364         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4365
4366         wait_for_completion(&cmd->t_transport_stop_comp);
4367
4368         spin_lock_irqsave(&cmd->t_state_lock, flags);
4369         atomic_set(&cmd->t_transport_active, 0);
4370         atomic_set(&cmd->t_transport_stop, 0);
4371
4372         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4373                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4374                 cmd->se_tfo->get_task_tag(cmd));
4375
4376         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4377
4378         return true;
4379 }
4380 EXPORT_SYMBOL(transport_wait_for_tasks);
4381
4382 static int transport_get_sense_codes(
4383         struct se_cmd *cmd,
4384         u8 *asc,
4385         u8 *ascq)
4386 {
4387         *asc = cmd->scsi_asc;
4388         *ascq = cmd->scsi_ascq;
4389
4390         return 0;
4391 }
4392
4393 static int transport_set_sense_codes(
4394         struct se_cmd *cmd,
4395         u8 asc,
4396         u8 ascq)
4397 {
4398         cmd->scsi_asc = asc;
4399         cmd->scsi_ascq = ascq;
4400
4401         return 0;
4402 }
4403
4404 int transport_send_check_condition_and_sense(
4405         struct se_cmd *cmd,
4406         u8 reason,
4407         int from_transport)
4408 {
4409         unsigned char *buffer = cmd->sense_buffer;
4410         unsigned long flags;
4411         int offset;
4412         u8 asc = 0, ascq = 0;
4413
4414         spin_lock_irqsave(&cmd->t_state_lock, flags);
4415         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4416                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4417                 return 0;
4418         }
4419         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4420         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4421
4422         if (!reason && from_transport)
4423                 goto after_reason;
4424
4425         if (!from_transport)
4426                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4427         /*
4428          * Data Segment and SenseLength of the fabric response PDU.
4429          *
4430          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4431          * from include/scsi/scsi_cmnd.h
4432          */
4433         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4434                                 TRANSPORT_SENSE_BUFFER);
4435         /*
4436          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4437          * SENSE KEY values from include/scsi/scsi.h
4438          */
4439         switch (reason) {
4440         case TCM_NON_EXISTENT_LUN:
4441                 /* CURRENT ERROR */
4442                 buffer[offset] = 0x70;
4443                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4444                 /* ILLEGAL REQUEST */
4445                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4446                 /* LOGICAL UNIT NOT SUPPORTED */
4447                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4448                 break;
4449         case TCM_UNSUPPORTED_SCSI_OPCODE:
4450         case TCM_SECTOR_COUNT_TOO_MANY:
4451                 /* CURRENT ERROR */
4452                 buffer[offset] = 0x70;
4453                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4454                 /* ILLEGAL REQUEST */
4455                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4456                 /* INVALID COMMAND OPERATION CODE */
4457                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4458                 break;
4459         case TCM_UNKNOWN_MODE_PAGE:
4460                 /* CURRENT ERROR */
4461                 buffer[offset] = 0x70;
4462                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4463                 /* ILLEGAL REQUEST */
4464                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4465                 /* INVALID FIELD IN CDB */
4466                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4467                 break;
4468         case TCM_CHECK_CONDITION_ABORT_CMD:
4469                 /* CURRENT ERROR */
4470                 buffer[offset] = 0x70;
4471                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4472                 /* ABORTED COMMAND */
4473                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4474                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4475                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4476                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4477                 break;
4478         case TCM_INCORRECT_AMOUNT_OF_DATA:
4479                 /* CURRENT ERROR */
4480                 buffer[offset] = 0x70;
4481                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4482                 /* ABORTED COMMAND */
4483                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4484                 /* WRITE ERROR */
4485                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4486                 /* NOT ENOUGH UNSOLICITED DATA */
4487                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4488                 break;
4489         case TCM_INVALID_CDB_FIELD:
4490                 /* CURRENT ERROR */
4491                 buffer[offset] = 0x70;
4492                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4493                 /* ILLEGAL REQUEST */
4494                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4495                 /* INVALID FIELD IN CDB */
4496                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4497                 break;
4498         case TCM_INVALID_PARAMETER_LIST:
4499                 /* CURRENT ERROR */
4500                 buffer[offset] = 0x70;
4501                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4502                 /* ILLEGAL REQUEST */
4503                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4504                 /* INVALID FIELD IN PARAMETER LIST */
4505                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4506                 break;
4507         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4508                 /* CURRENT ERROR */
4509                 buffer[offset] = 0x70;
4510                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4511                 /* ABORTED COMMAND */
4512                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4513                 /* WRITE ERROR */
4514                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4515                 /* UNEXPECTED_UNSOLICITED_DATA */
4516                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4517                 break;
4518         case TCM_SERVICE_CRC_ERROR:
4519                 /* CURRENT ERROR */
4520                 buffer[offset] = 0x70;
4521                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4522                 /* ABORTED COMMAND */
4523                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4524                 /* PROTOCOL SERVICE CRC ERROR */
4525                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4526                 /* N/A */
4527                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4528                 break;
4529         case TCM_SNACK_REJECTED:
4530                 /* CURRENT ERROR */
4531                 buffer[offset] = 0x70;
4532                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4533                 /* ABORTED COMMAND */
4534                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4535                 /* READ ERROR */
4536                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4537                 /* FAILED RETRANSMISSION REQUEST */
4538                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4539                 break;
4540         case TCM_WRITE_PROTECTED:
4541                 /* CURRENT ERROR */
4542                 buffer[offset] = 0x70;
4543                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4544                 /* DATA PROTECT */
4545                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4546                 /* WRITE PROTECTED */
4547                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4548                 break;
4549         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4550                 /* CURRENT ERROR */
4551                 buffer[offset] = 0x70;
4552                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4553                 /* UNIT ATTENTION */
4554                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4555                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4556                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4557                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4558                 break;
4559         case TCM_CHECK_CONDITION_NOT_READY:
4560                 /* CURRENT ERROR */
4561                 buffer[offset] = 0x70;
4562                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4563                 /* Not Ready */
4564                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4565                 transport_get_sense_codes(cmd, &asc, &ascq);
4566                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4567                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4568                 break;
4569         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4570         default:
4571                 /* CURRENT ERROR */
4572                 buffer[offset] = 0x70;
4573                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4574                 /* ILLEGAL REQUEST */
4575                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4576                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4577                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4578                 break;
4579         }
4580         /*
4581          * This code uses linux/include/scsi/scsi.h SAM status codes!
4582          */
4583         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4584         /*
4585          * Automatically padded, this value is encoded in the fabric's
4586          * data_length response PDU containing the SCSI defined sense data.
4587          */
4588         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4589
4590 after_reason:
4591         return cmd->se_tfo->queue_status(cmd);
4592 }
4593 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4594
4595 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4596 {
4597         int ret = 0;
4598
4599         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4600                 if (!send_status ||
4601                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4602                         return 1;
4603 #if 0
4604                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4605                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4606                         cmd->t_task_cdb[0],
4607                         cmd->se_tfo->get_task_tag(cmd));
4608 #endif
4609                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4610                 cmd->se_tfo->queue_status(cmd);
4611                 ret = 1;
4612         }
4613         return ret;
4614 }
4615 EXPORT_SYMBOL(transport_check_aborted_status);
4616
4617 void transport_send_task_abort(struct se_cmd *cmd)
4618 {
4619         unsigned long flags;
4620
4621         spin_lock_irqsave(&cmd->t_state_lock, flags);
4622         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4623                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4624                 return;
4625         }
4626         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4627
4628         /*
4629          * If there are still expected incoming fabric WRITEs, we wait
4630          * until until they have completed before sending a TASK_ABORTED
4631          * response.  This response with TASK_ABORTED status will be
4632          * queued back to fabric module by transport_check_aborted_status().
4633          */
4634         if (cmd->data_direction == DMA_TO_DEVICE) {
4635                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4636                         atomic_inc(&cmd->t_transport_aborted);
4637                         smp_mb__after_atomic_inc();
4638                 }
4639         }
4640         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4641 #if 0
4642         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4643                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4644                 cmd->se_tfo->get_task_tag(cmd));
4645 #endif
4646         cmd->se_tfo->queue_status(cmd);
4647 }
4648
4649 static int transport_generic_do_tmr(struct se_cmd *cmd)
4650 {
4651         struct se_device *dev = cmd->se_dev;
4652         struct se_tmr_req *tmr = cmd->se_tmr_req;
4653         int ret;
4654
4655         switch (tmr->function) {
4656         case TMR_ABORT_TASK:
4657                 tmr->response = TMR_FUNCTION_REJECTED;
4658                 break;
4659         case TMR_ABORT_TASK_SET:
4660         case TMR_CLEAR_ACA:
4661         case TMR_CLEAR_TASK_SET:
4662                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4663                 break;
4664         case TMR_LUN_RESET:
4665                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4666                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4667                                          TMR_FUNCTION_REJECTED;
4668                 break;
4669         case TMR_TARGET_WARM_RESET:
4670                 tmr->response = TMR_FUNCTION_REJECTED;
4671                 break;
4672         case TMR_TARGET_COLD_RESET:
4673                 tmr->response = TMR_FUNCTION_REJECTED;
4674                 break;
4675         default:
4676                 pr_err("Uknown TMR function: 0x%02x.\n",
4677                                 tmr->function);
4678                 tmr->response = TMR_FUNCTION_REJECTED;
4679                 break;
4680         }
4681
4682         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4683         cmd->se_tfo->queue_tm_rsp(cmd);
4684
4685         transport_cmd_check_stop_to_fabric(cmd);
4686         return 0;
4687 }
4688
4689 /*      transport_processing_thread():
4690  *
4691  *
4692  */
4693 static int transport_processing_thread(void *param)
4694 {
4695         int ret;
4696         struct se_cmd *cmd;
4697         struct se_device *dev = param;
4698
4699         while (!kthread_should_stop()) {
4700                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4701                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4702                                 kthread_should_stop());
4703                 if (ret < 0)
4704                         goto out;
4705
4706 get_cmd:
4707                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4708                 if (!cmd)
4709                         continue;
4710
4711                 switch (cmd->t_state) {
4712                 case TRANSPORT_NEW_CMD:
4713                         BUG();
4714                         break;
4715                 case TRANSPORT_NEW_CMD_MAP:
4716                         if (!cmd->se_tfo->new_cmd_map) {
4717                                 pr_err("cmd->se_tfo->new_cmd_map is"
4718                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4719                                 BUG();
4720                         }
4721                         ret = cmd->se_tfo->new_cmd_map(cmd);
4722                         if (ret < 0) {
4723                                 transport_generic_request_failure(cmd);
4724                                 break;
4725                         }
4726                         ret = transport_generic_new_cmd(cmd);
4727                         if (ret < 0) {
4728                                 transport_generic_request_failure(cmd);
4729                                 break;
4730                         }
4731                         break;
4732                 case TRANSPORT_PROCESS_WRITE:
4733                         transport_generic_process_write(cmd);
4734                         break;
4735                 case TRANSPORT_PROCESS_TMR:
4736                         transport_generic_do_tmr(cmd);
4737                         break;
4738                 case TRANSPORT_COMPLETE_QF_WP:
4739                         transport_write_pending_qf(cmd);
4740                         break;
4741                 case TRANSPORT_COMPLETE_QF_OK:
4742                         transport_complete_qf(cmd);
4743                         break;
4744                 default:
4745                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4746                                 "i_state: %d on SE LUN: %u\n",
4747                                 cmd->t_state,
4748                                 cmd->se_tfo->get_task_tag(cmd),
4749                                 cmd->se_tfo->get_cmd_state(cmd),
4750                                 cmd->se_lun->unpacked_lun);
4751                         BUG();
4752                 }
4753
4754                 goto get_cmd;
4755         }
4756
4757 out:
4758         WARN_ON(!list_empty(&dev->state_task_list));
4759         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4760         dev->process_thread = NULL;
4761         return 0;
4762 }