122925686de256f153ddf45b8afd6f3f1185592f
[linux-2.6.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_backend.h>
49 #include <target/target_core_fabric.h>
50 #include <target/target_core_configfs.h>
51
52 #include "target_core_internal.h"
53 #include "target_core_alua.h"
54 #include "target_core_pr.h"
55 #include "target_core_ua.h"
56
57 static int sub_api_initialized;
58
59 static struct workqueue_struct *target_completion_wq;
60 static struct kmem_cache *se_sess_cache;
61 struct kmem_cache *se_tmr_req_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74                 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void transport_generic_request_failure(struct se_cmd *);
81 static void target_complete_ok_work(struct work_struct *work);
82
83 int init_se_kmem_caches(void)
84 {
85         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
86                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
87                         0, NULL);
88         if (!se_tmr_req_cache) {
89                 pr_err("kmem_cache_create() for struct se_tmr_req"
90                                 " failed\n");
91                 goto out;
92         }
93         se_sess_cache = kmem_cache_create("se_sess_cache",
94                         sizeof(struct se_session), __alignof__(struct se_session),
95                         0, NULL);
96         if (!se_sess_cache) {
97                 pr_err("kmem_cache_create() for struct se_session"
98                                 " failed\n");
99                 goto out_free_tmr_req_cache;
100         }
101         se_ua_cache = kmem_cache_create("se_ua_cache",
102                         sizeof(struct se_ua), __alignof__(struct se_ua),
103                         0, NULL);
104         if (!se_ua_cache) {
105                 pr_err("kmem_cache_create() for struct se_ua failed\n");
106                 goto out_free_sess_cache;
107         }
108         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
109                         sizeof(struct t10_pr_registration),
110                         __alignof__(struct t10_pr_registration), 0, NULL);
111         if (!t10_pr_reg_cache) {
112                 pr_err("kmem_cache_create() for struct t10_pr_registration"
113                                 " failed\n");
114                 goto out_free_ua_cache;
115         }
116         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
117                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
118                         0, NULL);
119         if (!t10_alua_lu_gp_cache) {
120                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
121                                 " failed\n");
122                 goto out_free_pr_reg_cache;
123         }
124         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
125                         sizeof(struct t10_alua_lu_gp_member),
126                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
127         if (!t10_alua_lu_gp_mem_cache) {
128                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
129                                 "cache failed\n");
130                 goto out_free_lu_gp_cache;
131         }
132         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
133                         sizeof(struct t10_alua_tg_pt_gp),
134                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
135         if (!t10_alua_tg_pt_gp_cache) {
136                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137                                 "cache failed\n");
138                 goto out_free_lu_gp_mem_cache;
139         }
140         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
141                         "t10_alua_tg_pt_gp_mem_cache",
142                         sizeof(struct t10_alua_tg_pt_gp_member),
143                         __alignof__(struct t10_alua_tg_pt_gp_member),
144                         0, NULL);
145         if (!t10_alua_tg_pt_gp_mem_cache) {
146                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147                                 "mem_t failed\n");
148                 goto out_free_tg_pt_gp_cache;
149         }
150
151         target_completion_wq = alloc_workqueue("target_completion",
152                                                WQ_MEM_RECLAIM, 0);
153         if (!target_completion_wq)
154                 goto out_free_tg_pt_gp_mem_cache;
155
156         return 0;
157
158 out_free_tg_pt_gp_mem_cache:
159         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
160 out_free_tg_pt_gp_cache:
161         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
162 out_free_lu_gp_mem_cache:
163         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 out_free_lu_gp_cache:
165         kmem_cache_destroy(t10_alua_lu_gp_cache);
166 out_free_pr_reg_cache:
167         kmem_cache_destroy(t10_pr_reg_cache);
168 out_free_ua_cache:
169         kmem_cache_destroy(se_ua_cache);
170 out_free_sess_cache:
171         kmem_cache_destroy(se_sess_cache);
172 out_free_tmr_req_cache:
173         kmem_cache_destroy(se_tmr_req_cache);
174 out:
175         return -ENOMEM;
176 }
177
178 void release_se_kmem_caches(void)
179 {
180         destroy_workqueue(target_completion_wq);
181         kmem_cache_destroy(se_tmr_req_cache);
182         kmem_cache_destroy(se_sess_cache);
183         kmem_cache_destroy(se_ua_cache);
184         kmem_cache_destroy(t10_pr_reg_cache);
185         kmem_cache_destroy(t10_alua_lu_gp_cache);
186         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
187         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
188         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
189 }
190
191 /* This code ensures unique mib indexes are handed out. */
192 static DEFINE_SPINLOCK(scsi_mib_index_lock);
193 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
194
195 /*
196  * Allocate a new row index for the entry type specified
197  */
198 u32 scsi_get_new_index(scsi_index_t type)
199 {
200         u32 new_index;
201
202         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
203
204         spin_lock(&scsi_mib_index_lock);
205         new_index = ++scsi_mib_index[type];
206         spin_unlock(&scsi_mib_index_lock);
207
208         return new_index;
209 }
210
211 static void transport_init_queue_obj(struct se_queue_obj *qobj)
212 {
213         atomic_set(&qobj->queue_cnt, 0);
214         INIT_LIST_HEAD(&qobj->qobj_list);
215         init_waitqueue_head(&qobj->thread_wq);
216         spin_lock_init(&qobj->cmd_queue_lock);
217 }
218
219 void transport_subsystem_check_init(void)
220 {
221         int ret;
222
223         if (sub_api_initialized)
224                 return;
225
226         ret = request_module("target_core_iblock");
227         if (ret != 0)
228                 pr_err("Unable to load target_core_iblock\n");
229
230         ret = request_module("target_core_file");
231         if (ret != 0)
232                 pr_err("Unable to load target_core_file\n");
233
234         ret = request_module("target_core_pscsi");
235         if (ret != 0)
236                 pr_err("Unable to load target_core_pscsi\n");
237
238         ret = request_module("target_core_stgt");
239         if (ret != 0)
240                 pr_err("Unable to load target_core_stgt\n");
241
242         sub_api_initialized = 1;
243         return;
244 }
245
246 struct se_session *transport_init_session(void)
247 {
248         struct se_session *se_sess;
249
250         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
251         if (!se_sess) {
252                 pr_err("Unable to allocate struct se_session from"
253                                 " se_sess_cache\n");
254                 return ERR_PTR(-ENOMEM);
255         }
256         INIT_LIST_HEAD(&se_sess->sess_list);
257         INIT_LIST_HEAD(&se_sess->sess_acl_list);
258         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
259         INIT_LIST_HEAD(&se_sess->sess_wait_list);
260         spin_lock_init(&se_sess->sess_cmd_lock);
261
262         return se_sess;
263 }
264 EXPORT_SYMBOL(transport_init_session);
265
266 /*
267  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
268  */
269 void __transport_register_session(
270         struct se_portal_group *se_tpg,
271         struct se_node_acl *se_nacl,
272         struct se_session *se_sess,
273         void *fabric_sess_ptr)
274 {
275         unsigned char buf[PR_REG_ISID_LEN];
276
277         se_sess->se_tpg = se_tpg;
278         se_sess->fabric_sess_ptr = fabric_sess_ptr;
279         /*
280          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
281          *
282          * Only set for struct se_session's that will actually be moving I/O.
283          * eg: *NOT* discovery sessions.
284          */
285         if (se_nacl) {
286                 /*
287                  * If the fabric module supports an ISID based TransportID,
288                  * save this value in binary from the fabric I_T Nexus now.
289                  */
290                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
291                         memset(&buf[0], 0, PR_REG_ISID_LEN);
292                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
293                                         &buf[0], PR_REG_ISID_LEN);
294                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
295                 }
296                 spin_lock_irq(&se_nacl->nacl_sess_lock);
297                 /*
298                  * The se_nacl->nacl_sess pointer will be set to the
299                  * last active I_T Nexus for each struct se_node_acl.
300                  */
301                 se_nacl->nacl_sess = se_sess;
302
303                 list_add_tail(&se_sess->sess_acl_list,
304                               &se_nacl->acl_sess_list);
305                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
306         }
307         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
308
309         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
310                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
311 }
312 EXPORT_SYMBOL(__transport_register_session);
313
314 void transport_register_session(
315         struct se_portal_group *se_tpg,
316         struct se_node_acl *se_nacl,
317         struct se_session *se_sess,
318         void *fabric_sess_ptr)
319 {
320         spin_lock_bh(&se_tpg->session_lock);
321         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
322         spin_unlock_bh(&se_tpg->session_lock);
323 }
324 EXPORT_SYMBOL(transport_register_session);
325
326 void transport_deregister_session_configfs(struct se_session *se_sess)
327 {
328         struct se_node_acl *se_nacl;
329         unsigned long flags;
330         /*
331          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
332          */
333         se_nacl = se_sess->se_node_acl;
334         if (se_nacl) {
335                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
336                 list_del(&se_sess->sess_acl_list);
337                 /*
338                  * If the session list is empty, then clear the pointer.
339                  * Otherwise, set the struct se_session pointer from the tail
340                  * element of the per struct se_node_acl active session list.
341                  */
342                 if (list_empty(&se_nacl->acl_sess_list))
343                         se_nacl->nacl_sess = NULL;
344                 else {
345                         se_nacl->nacl_sess = container_of(
346                                         se_nacl->acl_sess_list.prev,
347                                         struct se_session, sess_acl_list);
348                 }
349                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
350         }
351 }
352 EXPORT_SYMBOL(transport_deregister_session_configfs);
353
354 void transport_free_session(struct se_session *se_sess)
355 {
356         kmem_cache_free(se_sess_cache, se_sess);
357 }
358 EXPORT_SYMBOL(transport_free_session);
359
360 void transport_deregister_session(struct se_session *se_sess)
361 {
362         struct se_portal_group *se_tpg = se_sess->se_tpg;
363         struct se_node_acl *se_nacl;
364         unsigned long flags;
365
366         if (!se_tpg) {
367                 transport_free_session(se_sess);
368                 return;
369         }
370
371         spin_lock_irqsave(&se_tpg->session_lock, flags);
372         list_del(&se_sess->sess_list);
373         se_sess->se_tpg = NULL;
374         se_sess->fabric_sess_ptr = NULL;
375         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
376
377         /*
378          * Determine if we need to do extra work for this initiator node's
379          * struct se_node_acl if it had been previously dynamically generated.
380          */
381         se_nacl = se_sess->se_node_acl;
382         if (se_nacl) {
383                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384                 if (se_nacl->dynamic_node_acl) {
385                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
386                                         se_tpg)) {
387                                 list_del(&se_nacl->acl_list);
388                                 se_tpg->num_node_acls--;
389                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
390
391                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
392                                 core_free_device_list_for_node(se_nacl, se_tpg);
393                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
394                                                 se_nacl);
395                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
396                         }
397                 }
398                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
399         }
400
401         transport_free_session(se_sess);
402
403         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
404                 se_tpg->se_tpg_tfo->get_fabric_name());
405 }
406 EXPORT_SYMBOL(transport_deregister_session);
407
408 /*
409  * Called with cmd->t_state_lock held.
410  */
411 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
412 {
413         struct se_device *dev = cmd->se_dev;
414         struct se_task *task;
415         unsigned long flags;
416
417         if (!dev)
418                 return;
419
420         list_for_each_entry(task, &cmd->t_task_list, t_list) {
421                 if (task->task_flags & TF_ACTIVE)
422                         continue;
423
424                 spin_lock_irqsave(&dev->execute_task_lock, flags);
425                 if (task->t_state_active) {
426                         pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
427                                 cmd->se_tfo->get_task_tag(cmd), dev, task);
428
429                         list_del(&task->t_state_list);
430                         atomic_dec(&cmd->t_task_cdbs_ex_left);
431                         task->t_state_active = false;
432                 }
433                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
434         }
435
436 }
437
438 /*      transport_cmd_check_stop():
439  *
440  *      'transport_off = 1' determines if t_transport_active should be cleared.
441  *      'transport_off = 2' determines if task_dev_state should be removed.
442  *
443  *      A non-zero u8 t_state sets cmd->t_state.
444  *      Returns 1 when command is stopped, else 0.
445  */
446 static int transport_cmd_check_stop(
447         struct se_cmd *cmd,
448         int transport_off,
449         u8 t_state)
450 {
451         unsigned long flags;
452
453         spin_lock_irqsave(&cmd->t_state_lock, flags);
454         /*
455          * Determine if IOCTL context caller in requesting the stopping of this
456          * command for LUN shutdown purposes.
457          */
458         if (atomic_read(&cmd->transport_lun_stop)) {
459                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
460                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
461                         cmd->se_tfo->get_task_tag(cmd));
462
463                 atomic_set(&cmd->t_transport_active, 0);
464                 if (transport_off == 2)
465                         transport_all_task_dev_remove_state(cmd);
466                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
467
468                 complete(&cmd->transport_lun_stop_comp);
469                 return 1;
470         }
471         /*
472          * Determine if frontend context caller is requesting the stopping of
473          * this command for frontend exceptions.
474          */
475         if (atomic_read(&cmd->t_transport_stop)) {
476                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
477                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
478                         cmd->se_tfo->get_task_tag(cmd));
479
480                 if (transport_off == 2)
481                         transport_all_task_dev_remove_state(cmd);
482
483                 /*
484                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
485                  * to FE.
486                  */
487                 if (transport_off == 2)
488                         cmd->se_lun = NULL;
489                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
490
491                 complete(&cmd->t_transport_stop_comp);
492                 return 1;
493         }
494         if (transport_off) {
495                 atomic_set(&cmd->t_transport_active, 0);
496                 if (transport_off == 2) {
497                         transport_all_task_dev_remove_state(cmd);
498                         /*
499                          * Clear struct se_cmd->se_lun before the transport_off == 2
500                          * handoff to fabric module.
501                          */
502                         cmd->se_lun = NULL;
503                         /*
504                          * Some fabric modules like tcm_loop can release
505                          * their internally allocated I/O reference now and
506                          * struct se_cmd now.
507                          *
508                          * Fabric modules are expected to return '1' here if the
509                          * se_cmd being passed is released at this point,
510                          * or zero if not being released.
511                          */
512                         if (cmd->se_tfo->check_stop_free != NULL) {
513                                 spin_unlock_irqrestore(
514                                         &cmd->t_state_lock, flags);
515
516                                 return cmd->se_tfo->check_stop_free(cmd);
517                         }
518                 }
519                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520
521                 return 0;
522         } else if (t_state)
523                 cmd->t_state = t_state;
524         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525
526         return 0;
527 }
528
529 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
530 {
531         return transport_cmd_check_stop(cmd, 2, 0);
532 }
533
534 static void transport_lun_remove_cmd(struct se_cmd *cmd)
535 {
536         struct se_lun *lun = cmd->se_lun;
537         unsigned long flags;
538
539         if (!lun)
540                 return;
541
542         spin_lock_irqsave(&cmd->t_state_lock, flags);
543         if (!atomic_read(&cmd->transport_dev_active)) {
544                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545                 goto check_lun;
546         }
547         atomic_set(&cmd->transport_dev_active, 0);
548         transport_all_task_dev_remove_state(cmd);
549         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550
551
552 check_lun:
553         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
554         if (atomic_read(&cmd->transport_lun_active)) {
555                 list_del(&cmd->se_lun_node);
556                 atomic_set(&cmd->transport_lun_active, 0);
557 #if 0
558                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
559                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
560 #endif
561         }
562         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
563 }
564
565 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
566 {
567         if (!cmd->se_tmr_req)
568                 transport_lun_remove_cmd(cmd);
569
570         if (transport_cmd_check_stop_to_fabric(cmd))
571                 return;
572         if (remove) {
573                 transport_remove_cmd_from_queue(cmd);
574                 transport_put_cmd(cmd);
575         }
576 }
577
578 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
579                 bool at_head)
580 {
581         struct se_device *dev = cmd->se_dev;
582         struct se_queue_obj *qobj = &dev->dev_queue_obj;
583         unsigned long flags;
584
585         if (t_state) {
586                 spin_lock_irqsave(&cmd->t_state_lock, flags);
587                 cmd->t_state = t_state;
588                 atomic_set(&cmd->t_transport_active, 1);
589                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
590         }
591
592         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
593
594         /* If the cmd is already on the list, remove it before we add it */
595         if (!list_empty(&cmd->se_queue_node))
596                 list_del(&cmd->se_queue_node);
597         else
598                 atomic_inc(&qobj->queue_cnt);
599
600         if (at_head)
601                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
602         else
603                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
604         atomic_set(&cmd->t_transport_queue_active, 1);
605         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
606
607         wake_up_interruptible(&qobj->thread_wq);
608 }
609
610 static struct se_cmd *
611 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
612 {
613         struct se_cmd *cmd;
614         unsigned long flags;
615
616         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
617         if (list_empty(&qobj->qobj_list)) {
618                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619                 return NULL;
620         }
621         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
622
623         atomic_set(&cmd->t_transport_queue_active, 0);
624
625         list_del_init(&cmd->se_queue_node);
626         atomic_dec(&qobj->queue_cnt);
627         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
628
629         return cmd;
630 }
631
632 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
633 {
634         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
635         unsigned long flags;
636
637         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
638         if (!atomic_read(&cmd->t_transport_queue_active)) {
639                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640                 return;
641         }
642         atomic_set(&cmd->t_transport_queue_active, 0);
643         atomic_dec(&qobj->queue_cnt);
644         list_del_init(&cmd->se_queue_node);
645         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
646
647         if (atomic_read(&cmd->t_transport_queue_active)) {
648                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
649                         cmd->se_tfo->get_task_tag(cmd),
650                         atomic_read(&cmd->t_transport_queue_active));
651         }
652 }
653
654 /*
655  * Completion function used by TCM subsystem plugins (such as FILEIO)
656  * for queueing up response from struct se_subsystem_api->do_task()
657  */
658 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
659 {
660         struct se_task *task = list_entry(cmd->t_task_list.next,
661                                 struct se_task, t_list);
662
663         if (good) {
664                 cmd->scsi_status = SAM_STAT_GOOD;
665                 task->task_scsi_status = GOOD;
666         } else {
667                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
668                 task->task_se_cmd->scsi_sense_reason =
669                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
670
671         }
672
673         transport_complete_task(task, good);
674 }
675 EXPORT_SYMBOL(transport_complete_sync_cache);
676
677 static void target_complete_failure_work(struct work_struct *work)
678 {
679         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
680
681         transport_generic_request_failure(cmd);
682 }
683
684 /*      transport_complete_task():
685  *
686  *      Called from interrupt and non interrupt context depending
687  *      on the transport plugin.
688  */
689 void transport_complete_task(struct se_task *task, int success)
690 {
691         struct se_cmd *cmd = task->task_se_cmd;
692         struct se_device *dev = cmd->se_dev;
693         unsigned long flags;
694 #if 0
695         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
696                         cmd->t_task_cdb[0], dev);
697 #endif
698         if (dev)
699                 atomic_inc(&dev->depth_left);
700
701         spin_lock_irqsave(&cmd->t_state_lock, flags);
702         task->task_flags &= ~TF_ACTIVE;
703
704         /*
705          * See if any sense data exists, if so set the TASK_SENSE flag.
706          * Also check for any other post completion work that needs to be
707          * done by the plugins.
708          */
709         if (dev && dev->transport->transport_complete) {
710                 if (dev->transport->transport_complete(task) != 0) {
711                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
712                         task->task_flags |= TF_HAS_SENSE;
713                         success = 1;
714                 }
715         }
716
717         /*
718          * See if we are waiting for outstanding struct se_task
719          * to complete for an exception condition
720          */
721         if (task->task_flags & TF_REQUEST_STOP) {
722                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
723                 complete(&task->task_stop_comp);
724                 return;
725         }
726
727         if (!success)
728                 cmd->t_tasks_failed = 1;
729
730         /*
731          * Decrement the outstanding t_task_cdbs_left count.  The last
732          * struct se_task from struct se_cmd will complete itself into the
733          * device queue depending upon int success.
734          */
735         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
736                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
737                 return;
738         }
739
740         if (cmd->t_tasks_failed) {
741                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
742                 INIT_WORK(&cmd->work, target_complete_failure_work);
743         } else {
744                 atomic_set(&cmd->t_transport_complete, 1);
745                 INIT_WORK(&cmd->work, target_complete_ok_work);
746         }
747
748         cmd->t_state = TRANSPORT_COMPLETE;
749         atomic_set(&cmd->t_transport_active, 1);
750         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
751
752         queue_work(target_completion_wq, &cmd->work);
753 }
754 EXPORT_SYMBOL(transport_complete_task);
755
756 /*
757  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
758  * struct se_task list are ready to be added to the active execution list
759  * struct se_device
760
761  * Called with se_dev_t->execute_task_lock called.
762  */
763 static inline int transport_add_task_check_sam_attr(
764         struct se_task *task,
765         struct se_task *task_prev,
766         struct se_device *dev)
767 {
768         /*
769          * No SAM Task attribute emulation enabled, add to tail of
770          * execution queue
771          */
772         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
773                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
774                 return 0;
775         }
776         /*
777          * HEAD_OF_QUEUE attribute for received CDB, which means
778          * the first task that is associated with a struct se_cmd goes to
779          * head of the struct se_device->execute_task_list, and task_prev
780          * after that for each subsequent task
781          */
782         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
783                 list_add(&task->t_execute_list,
784                                 (task_prev != NULL) ?
785                                 &task_prev->t_execute_list :
786                                 &dev->execute_task_list);
787
788                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
789                                 " in execution queue\n",
790                                 task->task_se_cmd->t_task_cdb[0]);
791                 return 1;
792         }
793         /*
794          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
795          * transitioned from Dermant -> Active state, and are added to the end
796          * of the struct se_device->execute_task_list
797          */
798         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
799         return 0;
800 }
801
802 /*      __transport_add_task_to_execute_queue():
803  *
804  *      Called with se_dev_t->execute_task_lock called.
805  */
806 static void __transport_add_task_to_execute_queue(
807         struct se_task *task,
808         struct se_task *task_prev,
809         struct se_device *dev)
810 {
811         int head_of_queue;
812
813         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
814         atomic_inc(&dev->execute_tasks);
815
816         if (task->t_state_active)
817                 return;
818         /*
819          * Determine if this task needs to go to HEAD_OF_QUEUE for the
820          * state list as well.  Running with SAM Task Attribute emulation
821          * will always return head_of_queue == 0 here
822          */
823         if (head_of_queue)
824                 list_add(&task->t_state_list, (task_prev) ?
825                                 &task_prev->t_state_list :
826                                 &dev->state_task_list);
827         else
828                 list_add_tail(&task->t_state_list, &dev->state_task_list);
829
830         task->t_state_active = true;
831
832         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
833                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
834                 task, dev);
835 }
836
837 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
838 {
839         struct se_device *dev = cmd->se_dev;
840         struct se_task *task;
841         unsigned long flags;
842
843         spin_lock_irqsave(&cmd->t_state_lock, flags);
844         list_for_each_entry(task, &cmd->t_task_list, t_list) {
845                 spin_lock(&dev->execute_task_lock);
846                 if (!task->t_state_active) {
847                         list_add_tail(&task->t_state_list,
848                                       &dev->state_task_list);
849                         task->t_state_active = true;
850
851                         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
852                                 task->task_se_cmd->se_tfo->get_task_tag(
853                                 task->task_se_cmd), task, dev);
854                 }
855                 spin_unlock(&dev->execute_task_lock);
856         }
857         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
858 }
859
860 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
861 {
862         struct se_device *dev = cmd->se_dev;
863         struct se_task *task, *task_prev = NULL;
864         unsigned long flags;
865
866         spin_lock_irqsave(&dev->execute_task_lock, flags);
867         list_for_each_entry(task, &cmd->t_task_list, t_list) {
868                 if (!list_empty(&task->t_execute_list))
869                         continue;
870                 /*
871                  * __transport_add_task_to_execute_queue() handles the
872                  * SAM Task Attribute emulation if enabled
873                  */
874                 __transport_add_task_to_execute_queue(task, task_prev, dev);
875                 task_prev = task;
876         }
877         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
878 }
879
880 void __transport_remove_task_from_execute_queue(struct se_task *task,
881                 struct se_device *dev)
882 {
883         list_del_init(&task->t_execute_list);
884         atomic_dec(&dev->execute_tasks);
885 }
886
887 static void transport_remove_task_from_execute_queue(
888         struct se_task *task,
889         struct se_device *dev)
890 {
891         unsigned long flags;
892
893         if (WARN_ON(list_empty(&task->t_execute_list)))
894                 return;
895
896         spin_lock_irqsave(&dev->execute_task_lock, flags);
897         __transport_remove_task_from_execute_queue(task, dev);
898         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
899 }
900
901 /*
902  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
903  */
904
905 static void target_qf_do_work(struct work_struct *work)
906 {
907         struct se_device *dev = container_of(work, struct se_device,
908                                         qf_work_queue);
909         LIST_HEAD(qf_cmd_list);
910         struct se_cmd *cmd, *cmd_tmp;
911
912         spin_lock_irq(&dev->qf_cmd_lock);
913         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
914         spin_unlock_irq(&dev->qf_cmd_lock);
915
916         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
917                 list_del(&cmd->se_qf_node);
918                 atomic_dec(&dev->dev_qf_count);
919                 smp_mb__after_atomic_dec();
920
921                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
922                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
923                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
924                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
925                         : "UNKNOWN");
926
927                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
928         }
929 }
930
931 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
932 {
933         switch (cmd->data_direction) {
934         case DMA_NONE:
935                 return "NONE";
936         case DMA_FROM_DEVICE:
937                 return "READ";
938         case DMA_TO_DEVICE:
939                 return "WRITE";
940         case DMA_BIDIRECTIONAL:
941                 return "BIDI";
942         default:
943                 break;
944         }
945
946         return "UNKNOWN";
947 }
948
949 void transport_dump_dev_state(
950         struct se_device *dev,
951         char *b,
952         int *bl)
953 {
954         *bl += sprintf(b + *bl, "Status: ");
955         switch (dev->dev_status) {
956         case TRANSPORT_DEVICE_ACTIVATED:
957                 *bl += sprintf(b + *bl, "ACTIVATED");
958                 break;
959         case TRANSPORT_DEVICE_DEACTIVATED:
960                 *bl += sprintf(b + *bl, "DEACTIVATED");
961                 break;
962         case TRANSPORT_DEVICE_SHUTDOWN:
963                 *bl += sprintf(b + *bl, "SHUTDOWN");
964                 break;
965         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
966         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
967                 *bl += sprintf(b + *bl, "OFFLINE");
968                 break;
969         default:
970                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
971                 break;
972         }
973
974         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
975                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
976                 dev->queue_depth);
977         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
978                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
979         *bl += sprintf(b + *bl, "        ");
980 }
981
982 void transport_dump_vpd_proto_id(
983         struct t10_vpd *vpd,
984         unsigned char *p_buf,
985         int p_buf_len)
986 {
987         unsigned char buf[VPD_TMP_BUF_SIZE];
988         int len;
989
990         memset(buf, 0, VPD_TMP_BUF_SIZE);
991         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
992
993         switch (vpd->protocol_identifier) {
994         case 0x00:
995                 sprintf(buf+len, "Fibre Channel\n");
996                 break;
997         case 0x10:
998                 sprintf(buf+len, "Parallel SCSI\n");
999                 break;
1000         case 0x20:
1001                 sprintf(buf+len, "SSA\n");
1002                 break;
1003         case 0x30:
1004                 sprintf(buf+len, "IEEE 1394\n");
1005                 break;
1006         case 0x40:
1007                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1008                                 " Protocol\n");
1009                 break;
1010         case 0x50:
1011                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1012                 break;
1013         case 0x60:
1014                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1015                 break;
1016         case 0x70:
1017                 sprintf(buf+len, "Automation/Drive Interface Transport"
1018                                 " Protocol\n");
1019                 break;
1020         case 0x80:
1021                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1022                 break;
1023         default:
1024                 sprintf(buf+len, "Unknown 0x%02x\n",
1025                                 vpd->protocol_identifier);
1026                 break;
1027         }
1028
1029         if (p_buf)
1030                 strncpy(p_buf, buf, p_buf_len);
1031         else
1032                 pr_debug("%s", buf);
1033 }
1034
1035 void
1036 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1037 {
1038         /*
1039          * Check if the Protocol Identifier Valid (PIV) bit is set..
1040          *
1041          * from spc3r23.pdf section 7.5.1
1042          */
1043          if (page_83[1] & 0x80) {
1044                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1045                 vpd->protocol_identifier_set = 1;
1046                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1047         }
1048 }
1049 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1050
1051 int transport_dump_vpd_assoc(
1052         struct t10_vpd *vpd,
1053         unsigned char *p_buf,
1054         int p_buf_len)
1055 {
1056         unsigned char buf[VPD_TMP_BUF_SIZE];
1057         int ret = 0;
1058         int len;
1059
1060         memset(buf, 0, VPD_TMP_BUF_SIZE);
1061         len = sprintf(buf, "T10 VPD Identifier Association: ");
1062
1063         switch (vpd->association) {
1064         case 0x00:
1065                 sprintf(buf+len, "addressed logical unit\n");
1066                 break;
1067         case 0x10:
1068                 sprintf(buf+len, "target port\n");
1069                 break;
1070         case 0x20:
1071                 sprintf(buf+len, "SCSI target device\n");
1072                 break;
1073         default:
1074                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1075                 ret = -EINVAL;
1076                 break;
1077         }
1078
1079         if (p_buf)
1080                 strncpy(p_buf, buf, p_buf_len);
1081         else
1082                 pr_debug("%s", buf);
1083
1084         return ret;
1085 }
1086
1087 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1088 {
1089         /*
1090          * The VPD identification association..
1091          *
1092          * from spc3r23.pdf Section 7.6.3.1 Table 297
1093          */
1094         vpd->association = (page_83[1] & 0x30);
1095         return transport_dump_vpd_assoc(vpd, NULL, 0);
1096 }
1097 EXPORT_SYMBOL(transport_set_vpd_assoc);
1098
1099 int transport_dump_vpd_ident_type(
1100         struct t10_vpd *vpd,
1101         unsigned char *p_buf,
1102         int p_buf_len)
1103 {
1104         unsigned char buf[VPD_TMP_BUF_SIZE];
1105         int ret = 0;
1106         int len;
1107
1108         memset(buf, 0, VPD_TMP_BUF_SIZE);
1109         len = sprintf(buf, "T10 VPD Identifier Type: ");
1110
1111         switch (vpd->device_identifier_type) {
1112         case 0x00:
1113                 sprintf(buf+len, "Vendor specific\n");
1114                 break;
1115         case 0x01:
1116                 sprintf(buf+len, "T10 Vendor ID based\n");
1117                 break;
1118         case 0x02:
1119                 sprintf(buf+len, "EUI-64 based\n");
1120                 break;
1121         case 0x03:
1122                 sprintf(buf+len, "NAA\n");
1123                 break;
1124         case 0x04:
1125                 sprintf(buf+len, "Relative target port identifier\n");
1126                 break;
1127         case 0x08:
1128                 sprintf(buf+len, "SCSI name string\n");
1129                 break;
1130         default:
1131                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1132                                 vpd->device_identifier_type);
1133                 ret = -EINVAL;
1134                 break;
1135         }
1136
1137         if (p_buf) {
1138                 if (p_buf_len < strlen(buf)+1)
1139                         return -EINVAL;
1140                 strncpy(p_buf, buf, p_buf_len);
1141         } else {
1142                 pr_debug("%s", buf);
1143         }
1144
1145         return ret;
1146 }
1147
1148 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1149 {
1150         /*
1151          * The VPD identifier type..
1152          *
1153          * from spc3r23.pdf Section 7.6.3.1 Table 298
1154          */
1155         vpd->device_identifier_type = (page_83[1] & 0x0f);
1156         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1157 }
1158 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1159
1160 int transport_dump_vpd_ident(
1161         struct t10_vpd *vpd,
1162         unsigned char *p_buf,
1163         int p_buf_len)
1164 {
1165         unsigned char buf[VPD_TMP_BUF_SIZE];
1166         int ret = 0;
1167
1168         memset(buf, 0, VPD_TMP_BUF_SIZE);
1169
1170         switch (vpd->device_identifier_code_set) {
1171         case 0x01: /* Binary */
1172                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1173                         &vpd->device_identifier[0]);
1174                 break;
1175         case 0x02: /* ASCII */
1176                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1177                         &vpd->device_identifier[0]);
1178                 break;
1179         case 0x03: /* UTF-8 */
1180                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1181                         &vpd->device_identifier[0]);
1182                 break;
1183         default:
1184                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1185                         " 0x%02x", vpd->device_identifier_code_set);
1186                 ret = -EINVAL;
1187                 break;
1188         }
1189
1190         if (p_buf)
1191                 strncpy(p_buf, buf, p_buf_len);
1192         else
1193                 pr_debug("%s", buf);
1194
1195         return ret;
1196 }
1197
1198 int
1199 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1200 {
1201         static const char hex_str[] = "0123456789abcdef";
1202         int j = 0, i = 4; /* offset to start of the identifer */
1203
1204         /*
1205          * The VPD Code Set (encoding)
1206          *
1207          * from spc3r23.pdf Section 7.6.3.1 Table 296
1208          */
1209         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1210         switch (vpd->device_identifier_code_set) {
1211         case 0x01: /* Binary */
1212                 vpd->device_identifier[j++] =
1213                                 hex_str[vpd->device_identifier_type];
1214                 while (i < (4 + page_83[3])) {
1215                         vpd->device_identifier[j++] =
1216                                 hex_str[(page_83[i] & 0xf0) >> 4];
1217                         vpd->device_identifier[j++] =
1218                                 hex_str[page_83[i] & 0x0f];
1219                         i++;
1220                 }
1221                 break;
1222         case 0x02: /* ASCII */
1223         case 0x03: /* UTF-8 */
1224                 while (i < (4 + page_83[3]))
1225                         vpd->device_identifier[j++] = page_83[i++];
1226                 break;
1227         default:
1228                 break;
1229         }
1230
1231         return transport_dump_vpd_ident(vpd, NULL, 0);
1232 }
1233 EXPORT_SYMBOL(transport_set_vpd_ident);
1234
1235 static void core_setup_task_attr_emulation(struct se_device *dev)
1236 {
1237         /*
1238          * If this device is from Target_Core_Mod/pSCSI, disable the
1239          * SAM Task Attribute emulation.
1240          *
1241          * This is currently not available in upsream Linux/SCSI Target
1242          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1243          */
1244         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1245                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1246                 return;
1247         }
1248
1249         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1250         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1251                 " device\n", dev->transport->name,
1252                 dev->transport->get_device_rev(dev));
1253 }
1254
1255 static void scsi_dump_inquiry(struct se_device *dev)
1256 {
1257         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1258         int i, device_type;
1259         /*
1260          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1261          */
1262         pr_debug("  Vendor: ");
1263         for (i = 0; i < 8; i++)
1264                 if (wwn->vendor[i] >= 0x20)
1265                         pr_debug("%c", wwn->vendor[i]);
1266                 else
1267                         pr_debug(" ");
1268
1269         pr_debug("  Model: ");
1270         for (i = 0; i < 16; i++)
1271                 if (wwn->model[i] >= 0x20)
1272                         pr_debug("%c", wwn->model[i]);
1273                 else
1274                         pr_debug(" ");
1275
1276         pr_debug("  Revision: ");
1277         for (i = 0; i < 4; i++)
1278                 if (wwn->revision[i] >= 0x20)
1279                         pr_debug("%c", wwn->revision[i]);
1280                 else
1281                         pr_debug(" ");
1282
1283         pr_debug("\n");
1284
1285         device_type = dev->transport->get_device_type(dev);
1286         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1287         pr_debug("                 ANSI SCSI revision: %02x\n",
1288                                 dev->transport->get_device_rev(dev));
1289 }
1290
1291 struct se_device *transport_add_device_to_core_hba(
1292         struct se_hba *hba,
1293         struct se_subsystem_api *transport,
1294         struct se_subsystem_dev *se_dev,
1295         u32 device_flags,
1296         void *transport_dev,
1297         struct se_dev_limits *dev_limits,
1298         const char *inquiry_prod,
1299         const char *inquiry_rev)
1300 {
1301         int force_pt;
1302         struct se_device  *dev;
1303
1304         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1305         if (!dev) {
1306                 pr_err("Unable to allocate memory for se_dev_t\n");
1307                 return NULL;
1308         }
1309
1310         transport_init_queue_obj(&dev->dev_queue_obj);
1311         dev->dev_flags          = device_flags;
1312         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1313         dev->dev_ptr            = transport_dev;
1314         dev->se_hba             = hba;
1315         dev->se_sub_dev         = se_dev;
1316         dev->transport          = transport;
1317         INIT_LIST_HEAD(&dev->dev_list);
1318         INIT_LIST_HEAD(&dev->dev_sep_list);
1319         INIT_LIST_HEAD(&dev->dev_tmr_list);
1320         INIT_LIST_HEAD(&dev->execute_task_list);
1321         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1322         INIT_LIST_HEAD(&dev->state_task_list);
1323         INIT_LIST_HEAD(&dev->qf_cmd_list);
1324         spin_lock_init(&dev->execute_task_lock);
1325         spin_lock_init(&dev->delayed_cmd_lock);
1326         spin_lock_init(&dev->dev_reservation_lock);
1327         spin_lock_init(&dev->dev_status_lock);
1328         spin_lock_init(&dev->se_port_lock);
1329         spin_lock_init(&dev->se_tmr_lock);
1330         spin_lock_init(&dev->qf_cmd_lock);
1331
1332         dev->queue_depth        = dev_limits->queue_depth;
1333         atomic_set(&dev->depth_left, dev->queue_depth);
1334         atomic_set(&dev->dev_ordered_id, 0);
1335
1336         se_dev_set_default_attribs(dev, dev_limits);
1337
1338         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1339         dev->creation_time = get_jiffies_64();
1340         spin_lock_init(&dev->stats_lock);
1341
1342         spin_lock(&hba->device_lock);
1343         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1344         hba->dev_count++;
1345         spin_unlock(&hba->device_lock);
1346         /*
1347          * Setup the SAM Task Attribute emulation for struct se_device
1348          */
1349         core_setup_task_attr_emulation(dev);
1350         /*
1351          * Force PR and ALUA passthrough emulation with internal object use.
1352          */
1353         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1354         /*
1355          * Setup the Reservations infrastructure for struct se_device
1356          */
1357         core_setup_reservations(dev, force_pt);
1358         /*
1359          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1360          */
1361         if (core_setup_alua(dev, force_pt) < 0)
1362                 goto out;
1363
1364         /*
1365          * Startup the struct se_device processing thread
1366          */
1367         dev->process_thread = kthread_run(transport_processing_thread, dev,
1368                                           "LIO_%s", dev->transport->name);
1369         if (IS_ERR(dev->process_thread)) {
1370                 pr_err("Unable to create kthread: LIO_%s\n",
1371                         dev->transport->name);
1372                 goto out;
1373         }
1374         /*
1375          * Setup work_queue for QUEUE_FULL
1376          */
1377         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1378         /*
1379          * Preload the initial INQUIRY const values if we are doing
1380          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1381          * passthrough because this is being provided by the backend LLD.
1382          * This is required so that transport_get_inquiry() copies these
1383          * originals once back into DEV_T10_WWN(dev) for the virtual device
1384          * setup.
1385          */
1386         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1387                 if (!inquiry_prod || !inquiry_rev) {
1388                         pr_err("All non TCM/pSCSI plugins require"
1389                                 " INQUIRY consts\n");
1390                         goto out;
1391                 }
1392
1393                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1394                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1395                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1396         }
1397         scsi_dump_inquiry(dev);
1398
1399         return dev;
1400 out:
1401         kthread_stop(dev->process_thread);
1402
1403         spin_lock(&hba->device_lock);
1404         list_del(&dev->dev_list);
1405         hba->dev_count--;
1406         spin_unlock(&hba->device_lock);
1407
1408         se_release_vpd_for_dev(dev);
1409
1410         kfree(dev);
1411
1412         return NULL;
1413 }
1414 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1415
1416 /*      transport_generic_prepare_cdb():
1417  *
1418  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1419  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1420  *      The point of this is since we are mapping iSCSI LUNs to
1421  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1422  *      devices and HBAs for a loop.
1423  */
1424 static inline void transport_generic_prepare_cdb(
1425         unsigned char *cdb)
1426 {
1427         switch (cdb[0]) {
1428         case READ_10: /* SBC - RDProtect */
1429         case READ_12: /* SBC - RDProtect */
1430         case READ_16: /* SBC - RDProtect */
1431         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1432         case VERIFY: /* SBC - VRProtect */
1433         case VERIFY_16: /* SBC - VRProtect */
1434         case WRITE_VERIFY: /* SBC - VRProtect */
1435         case WRITE_VERIFY_12: /* SBC - VRProtect */
1436                 break;
1437         default:
1438                 cdb[1] &= 0x1f; /* clear logical unit number */
1439                 break;
1440         }
1441 }
1442
1443 static struct se_task *
1444 transport_generic_get_task(struct se_cmd *cmd,
1445                 enum dma_data_direction data_direction)
1446 {
1447         struct se_task *task;
1448         struct se_device *dev = cmd->se_dev;
1449
1450         task = dev->transport->alloc_task(cmd->t_task_cdb);
1451         if (!task) {
1452                 pr_err("Unable to allocate struct se_task\n");
1453                 return NULL;
1454         }
1455
1456         INIT_LIST_HEAD(&task->t_list);
1457         INIT_LIST_HEAD(&task->t_execute_list);
1458         INIT_LIST_HEAD(&task->t_state_list);
1459         init_completion(&task->task_stop_comp);
1460         task->task_se_cmd = cmd;
1461         task->task_data_direction = data_direction;
1462
1463         return task;
1464 }
1465
1466 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1467
1468 /*
1469  * Used by fabric modules containing a local struct se_cmd within their
1470  * fabric dependent per I/O descriptor.
1471  */
1472 void transport_init_se_cmd(
1473         struct se_cmd *cmd,
1474         struct target_core_fabric_ops *tfo,
1475         struct se_session *se_sess,
1476         u32 data_length,
1477         int data_direction,
1478         int task_attr,
1479         unsigned char *sense_buffer)
1480 {
1481         INIT_LIST_HEAD(&cmd->se_lun_node);
1482         INIT_LIST_HEAD(&cmd->se_delayed_node);
1483         INIT_LIST_HEAD(&cmd->se_qf_node);
1484         INIT_LIST_HEAD(&cmd->se_queue_node);
1485         INIT_LIST_HEAD(&cmd->se_cmd_list);
1486         INIT_LIST_HEAD(&cmd->t_task_list);
1487         init_completion(&cmd->transport_lun_fe_stop_comp);
1488         init_completion(&cmd->transport_lun_stop_comp);
1489         init_completion(&cmd->t_transport_stop_comp);
1490         init_completion(&cmd->cmd_wait_comp);
1491         spin_lock_init(&cmd->t_state_lock);
1492         atomic_set(&cmd->transport_dev_active, 1);
1493
1494         cmd->se_tfo = tfo;
1495         cmd->se_sess = se_sess;
1496         cmd->data_length = data_length;
1497         cmd->data_direction = data_direction;
1498         cmd->sam_task_attr = task_attr;
1499         cmd->sense_buffer = sense_buffer;
1500 }
1501 EXPORT_SYMBOL(transport_init_se_cmd);
1502
1503 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1504 {
1505         /*
1506          * Check if SAM Task Attribute emulation is enabled for this
1507          * struct se_device storage object
1508          */
1509         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1510                 return 0;
1511
1512         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1513                 pr_debug("SAM Task Attribute ACA"
1514                         " emulation is not supported\n");
1515                 return -EINVAL;
1516         }
1517         /*
1518          * Used to determine when ORDERED commands should go from
1519          * Dormant to Active status.
1520          */
1521         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1522         smp_mb__after_atomic_inc();
1523         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1524                         cmd->se_ordered_id, cmd->sam_task_attr,
1525                         cmd->se_dev->transport->name);
1526         return 0;
1527 }
1528
1529 /*      transport_generic_allocate_tasks():
1530  *
1531  *      Called from fabric RX Thread.
1532  */
1533 int transport_generic_allocate_tasks(
1534         struct se_cmd *cmd,
1535         unsigned char *cdb)
1536 {
1537         int ret;
1538
1539         transport_generic_prepare_cdb(cdb);
1540         /*
1541          * Ensure that the received CDB is less than the max (252 + 8) bytes
1542          * for VARIABLE_LENGTH_CMD
1543          */
1544         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1545                 pr_err("Received SCSI CDB with command_size: %d that"
1546                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1547                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1548                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1549                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1550                 return -EINVAL;
1551         }
1552         /*
1553          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1554          * allocate the additional extended CDB buffer now..  Otherwise
1555          * setup the pointer from __t_task_cdb to t_task_cdb.
1556          */
1557         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1558                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1559                                                 GFP_KERNEL);
1560                 if (!cmd->t_task_cdb) {
1561                         pr_err("Unable to allocate cmd->t_task_cdb"
1562                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1563                                 scsi_command_size(cdb),
1564                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1565                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1566                         cmd->scsi_sense_reason =
1567                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1568                         return -ENOMEM;
1569                 }
1570         } else
1571                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1572         /*
1573          * Copy the original CDB into cmd->
1574          */
1575         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1576         /*
1577          * Setup the received CDB based on SCSI defined opcodes and
1578          * perform unit attention, persistent reservations and ALUA
1579          * checks for virtual device backends.  The cmd->t_task_cdb
1580          * pointer is expected to be setup before we reach this point.
1581          */
1582         ret = transport_generic_cmd_sequencer(cmd, cdb);
1583         if (ret < 0)
1584                 return ret;
1585         /*
1586          * Check for SAM Task Attribute Emulation
1587          */
1588         if (transport_check_alloc_task_attr(cmd) < 0) {
1589                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1590                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1591                 return -EINVAL;
1592         }
1593         spin_lock(&cmd->se_lun->lun_sep_lock);
1594         if (cmd->se_lun->lun_sep)
1595                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1596         spin_unlock(&cmd->se_lun->lun_sep_lock);
1597         return 0;
1598 }
1599 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1600
1601 /*
1602  * Used by fabric module frontends to queue tasks directly.
1603  * Many only be used from process context only
1604  */
1605 int transport_handle_cdb_direct(
1606         struct se_cmd *cmd)
1607 {
1608         int ret;
1609
1610         if (!cmd->se_lun) {
1611                 dump_stack();
1612                 pr_err("cmd->se_lun is NULL\n");
1613                 return -EINVAL;
1614         }
1615         if (in_interrupt()) {
1616                 dump_stack();
1617                 pr_err("transport_generic_handle_cdb cannot be called"
1618                                 " from interrupt context\n");
1619                 return -EINVAL;
1620         }
1621         /*
1622          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1623          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1624          * in existing usage to ensure that outstanding descriptors are handled
1625          * correctly during shutdown via transport_wait_for_tasks()
1626          *
1627          * Also, we don't take cmd->t_state_lock here as we only expect
1628          * this to be called for initial descriptor submission.
1629          */
1630         cmd->t_state = TRANSPORT_NEW_CMD;
1631         atomic_set(&cmd->t_transport_active, 1);
1632         /*
1633          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1634          * so follow TRANSPORT_NEW_CMD processing thread context usage
1635          * and call transport_generic_request_failure() if necessary..
1636          */
1637         ret = transport_generic_new_cmd(cmd);
1638         if (ret < 0)
1639                 transport_generic_request_failure(cmd);
1640
1641         return 0;
1642 }
1643 EXPORT_SYMBOL(transport_handle_cdb_direct);
1644
1645 /*
1646  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1647  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1648  * complete setup in TCM process context w/ TFO->new_cmd_map().
1649  */
1650 int transport_generic_handle_cdb_map(
1651         struct se_cmd *cmd)
1652 {
1653         if (!cmd->se_lun) {
1654                 dump_stack();
1655                 pr_err("cmd->se_lun is NULL\n");
1656                 return -EINVAL;
1657         }
1658
1659         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1660         return 0;
1661 }
1662 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1663
1664 /*      transport_generic_handle_data():
1665  *
1666  *
1667  */
1668 int transport_generic_handle_data(
1669         struct se_cmd *cmd)
1670 {
1671         /*
1672          * For the software fabric case, then we assume the nexus is being
1673          * failed/shutdown when signals are pending from the kthread context
1674          * caller, so we return a failure.  For the HW target mode case running
1675          * in interrupt code, the signal_pending() check is skipped.
1676          */
1677         if (!in_interrupt() && signal_pending(current))
1678                 return -EPERM;
1679         /*
1680          * If the received CDB has aleady been ABORTED by the generic
1681          * target engine, we now call transport_check_aborted_status()
1682          * to queue any delated TASK_ABORTED status for the received CDB to the
1683          * fabric module as we are expecting no further incoming DATA OUT
1684          * sequences at this point.
1685          */
1686         if (transport_check_aborted_status(cmd, 1) != 0)
1687                 return 0;
1688
1689         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1690         return 0;
1691 }
1692 EXPORT_SYMBOL(transport_generic_handle_data);
1693
1694 /*      transport_generic_handle_tmr():
1695  *
1696  *
1697  */
1698 int transport_generic_handle_tmr(
1699         struct se_cmd *cmd)
1700 {
1701         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1702         return 0;
1703 }
1704 EXPORT_SYMBOL(transport_generic_handle_tmr);
1705
1706 /*
1707  * If the task is active, request it to be stopped and sleep until it
1708  * has completed.
1709  */
1710 bool target_stop_task(struct se_task *task, unsigned long *flags)
1711 {
1712         struct se_cmd *cmd = task->task_se_cmd;
1713         bool was_active = false;
1714
1715         if (task->task_flags & TF_ACTIVE) {
1716                 task->task_flags |= TF_REQUEST_STOP;
1717                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1718
1719                 pr_debug("Task %p waiting to complete\n", task);
1720                 wait_for_completion(&task->task_stop_comp);
1721                 pr_debug("Task %p stopped successfully\n", task);
1722
1723                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1724                 atomic_dec(&cmd->t_task_cdbs_left);
1725                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1726                 was_active = true;
1727         }
1728
1729         return was_active;
1730 }
1731
1732 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1733 {
1734         struct se_task *task, *task_tmp;
1735         unsigned long flags;
1736         int ret = 0;
1737
1738         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1739                 cmd->se_tfo->get_task_tag(cmd));
1740
1741         /*
1742          * No tasks remain in the execution queue
1743          */
1744         spin_lock_irqsave(&cmd->t_state_lock, flags);
1745         list_for_each_entry_safe(task, task_tmp,
1746                                 &cmd->t_task_list, t_list) {
1747                 pr_debug("Processing task %p\n", task);
1748                 /*
1749                  * If the struct se_task has not been sent and is not active,
1750                  * remove the struct se_task from the execution queue.
1751                  */
1752                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1753                         spin_unlock_irqrestore(&cmd->t_state_lock,
1754                                         flags);
1755                         transport_remove_task_from_execute_queue(task,
1756                                         cmd->se_dev);
1757
1758                         pr_debug("Task %p removed from execute queue\n", task);
1759                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1760                         continue;
1761                 }
1762
1763                 if (!target_stop_task(task, &flags)) {
1764                         pr_debug("Task %p - did nothing\n", task);
1765                         ret++;
1766                 }
1767         }
1768         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1769
1770         return ret;
1771 }
1772
1773 /*
1774  * Handle SAM-esque emulation for generic transport request failures.
1775  */
1776 static void transport_generic_request_failure(struct se_cmd *cmd)
1777 {
1778         int ret = 0;
1779
1780         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1781                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1782                 cmd->t_task_cdb[0]);
1783         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1784                 cmd->se_tfo->get_cmd_state(cmd),
1785                 cmd->t_state, cmd->scsi_sense_reason);
1786         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1787                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1788                 " t_transport_active: %d t_transport_stop: %d"
1789                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1790                 atomic_read(&cmd->t_task_cdbs_left),
1791                 atomic_read(&cmd->t_task_cdbs_sent),
1792                 atomic_read(&cmd->t_task_cdbs_ex_left),
1793                 atomic_read(&cmd->t_transport_active),
1794                 atomic_read(&cmd->t_transport_stop),
1795                 atomic_read(&cmd->t_transport_sent));
1796
1797         /*
1798          * For SAM Task Attribute emulation for failed struct se_cmd
1799          */
1800         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1801                 transport_complete_task_attr(cmd);
1802
1803         switch (cmd->scsi_sense_reason) {
1804         case TCM_NON_EXISTENT_LUN:
1805         case TCM_UNSUPPORTED_SCSI_OPCODE:
1806         case TCM_INVALID_CDB_FIELD:
1807         case TCM_INVALID_PARAMETER_LIST:
1808         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1809         case TCM_UNKNOWN_MODE_PAGE:
1810         case TCM_WRITE_PROTECTED:
1811         case TCM_CHECK_CONDITION_ABORT_CMD:
1812         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1813         case TCM_CHECK_CONDITION_NOT_READY:
1814                 break;
1815         case TCM_RESERVATION_CONFLICT:
1816                 /*
1817                  * No SENSE Data payload for this case, set SCSI Status
1818                  * and queue the response to $FABRIC_MOD.
1819                  *
1820                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1821                  */
1822                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1823                 /*
1824                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1825                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1826                  * CONFLICT STATUS.
1827                  *
1828                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1829                  */
1830                 if (cmd->se_sess &&
1831                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1832                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1833                                 cmd->orig_fe_lun, 0x2C,
1834                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1835
1836                 ret = cmd->se_tfo->queue_status(cmd);
1837                 if (ret == -EAGAIN || ret == -ENOMEM)
1838                         goto queue_full;
1839                 goto check_stop;
1840         default:
1841                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1842                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1843                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1844                 break;
1845         }
1846         /*
1847          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1848          * make the call to transport_send_check_condition_and_sense()
1849          * directly.  Otherwise expect the fabric to make the call to
1850          * transport_send_check_condition_and_sense() after handling
1851          * possible unsoliticied write data payloads.
1852          */
1853         ret = transport_send_check_condition_and_sense(cmd,
1854                         cmd->scsi_sense_reason, 0);
1855         if (ret == -EAGAIN || ret == -ENOMEM)
1856                 goto queue_full;
1857
1858 check_stop:
1859         transport_lun_remove_cmd(cmd);
1860         if (!transport_cmd_check_stop_to_fabric(cmd))
1861                 ;
1862         return;
1863
1864 queue_full:
1865         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1866         transport_handle_queue_full(cmd, cmd->se_dev);
1867 }
1868
1869 static inline u32 transport_lba_21(unsigned char *cdb)
1870 {
1871         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1872 }
1873
1874 static inline u32 transport_lba_32(unsigned char *cdb)
1875 {
1876         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1877 }
1878
1879 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1880 {
1881         unsigned int __v1, __v2;
1882
1883         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1884         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1885
1886         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1887 }
1888
1889 /*
1890  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1891  */
1892 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1893 {
1894         unsigned int __v1, __v2;
1895
1896         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1897         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1898
1899         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1900 }
1901
1902 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1903 {
1904         unsigned long flags;
1905
1906         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1907         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1908         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1909 }
1910
1911 static inline int transport_tcq_window_closed(struct se_device *dev)
1912 {
1913         if (dev->dev_tcq_window_closed++ <
1914                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
1915                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
1916         } else
1917                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
1918
1919         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
1920         return 0;
1921 }
1922
1923 /*
1924  * Called from Fabric Module context from transport_execute_tasks()
1925  *
1926  * The return of this function determins if the tasks from struct se_cmd
1927  * get added to the execution queue in transport_execute_tasks(),
1928  * or are added to the delayed or ordered lists here.
1929  */
1930 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1931 {
1932         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1933                 return 1;
1934         /*
1935          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1936          * to allow the passed struct se_cmd list of tasks to the front of the list.
1937          */
1938          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1939                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
1940                         " 0x%02x, se_ordered_id: %u\n",
1941                         cmd->t_task_cdb[0],
1942                         cmd->se_ordered_id);
1943                 return 1;
1944         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1945                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
1946                 smp_mb__after_atomic_inc();
1947
1948                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
1949                                 " list, se_ordered_id: %u\n",
1950                                 cmd->t_task_cdb[0],
1951                                 cmd->se_ordered_id);
1952                 /*
1953                  * Add ORDERED command to tail of execution queue if
1954                  * no other older commands exist that need to be
1955                  * completed first.
1956                  */
1957                 if (!atomic_read(&cmd->se_dev->simple_cmds))
1958                         return 1;
1959         } else {
1960                 /*
1961                  * For SIMPLE and UNTAGGED Task Attribute commands
1962                  */
1963                 atomic_inc(&cmd->se_dev->simple_cmds);
1964                 smp_mb__after_atomic_inc();
1965         }
1966         /*
1967          * Otherwise if one or more outstanding ORDERED task attribute exist,
1968          * add the dormant task(s) built for the passed struct se_cmd to the
1969          * execution queue and become in Active state for this struct se_device.
1970          */
1971         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
1972                 /*
1973                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
1974                  * will be drained upon completion of HEAD_OF_QUEUE task.
1975                  */
1976                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
1977                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
1978                 list_add_tail(&cmd->se_delayed_node,
1979                                 &cmd->se_dev->delayed_cmd_list);
1980                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
1981
1982                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1983                         " delayed CMD list, se_ordered_id: %u\n",
1984                         cmd->t_task_cdb[0], cmd->sam_task_attr,
1985                         cmd->se_ordered_id);
1986                 /*
1987                  * Return zero to let transport_execute_tasks() know
1988                  * not to add the delayed tasks to the execution list.
1989                  */
1990                 return 0;
1991         }
1992         /*
1993          * Otherwise, no ORDERED task attributes exist..
1994          */
1995         return 1;
1996 }
1997
1998 /*
1999  * Called from fabric module context in transport_generic_new_cmd() and
2000  * transport_generic_process_write()
2001  */
2002 static int transport_execute_tasks(struct se_cmd *cmd)
2003 {
2004         int add_tasks;
2005
2006         if (se_dev_check_online(cmd->se_dev) != 0) {
2007                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2008                 transport_generic_request_failure(cmd);
2009                 return 0;
2010         }
2011
2012         /*
2013          * Call transport_cmd_check_stop() to see if a fabric exception
2014          * has occurred that prevents execution.
2015          */
2016         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2017                 /*
2018                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2019                  * attribute for the tasks of the received struct se_cmd CDB
2020                  */
2021                 add_tasks = transport_execute_task_attr(cmd);
2022                 if (!add_tasks)
2023                         goto execute_tasks;
2024                 /*
2025                  * This calls transport_add_tasks_from_cmd() to handle
2026                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2027                  * (if enabled) in __transport_add_task_to_execute_queue() and
2028                  * transport_add_task_check_sam_attr().
2029                  */
2030                 transport_add_tasks_from_cmd(cmd);
2031         }
2032         /*
2033          * Kick the execution queue for the cmd associated struct se_device
2034          * storage object.
2035          */
2036 execute_tasks:
2037         __transport_execute_tasks(cmd->se_dev);
2038         return 0;
2039 }
2040
2041 /*
2042  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2043  * from struct se_device->execute_task_list and
2044  *
2045  * Called from transport_processing_thread()
2046  */
2047 static int __transport_execute_tasks(struct se_device *dev)
2048 {
2049         int error;
2050         struct se_cmd *cmd = NULL;
2051         struct se_task *task = NULL;
2052         unsigned long flags;
2053
2054         /*
2055          * Check if there is enough room in the device and HBA queue to send
2056          * struct se_tasks to the selected transport.
2057          */
2058 check_depth:
2059         if (!atomic_read(&dev->depth_left))
2060                 return transport_tcq_window_closed(dev);
2061
2062         dev->dev_tcq_window_closed = 0;
2063
2064         spin_lock_irq(&dev->execute_task_lock);
2065         if (list_empty(&dev->execute_task_list)) {
2066                 spin_unlock_irq(&dev->execute_task_lock);
2067                 return 0;
2068         }
2069         task = list_first_entry(&dev->execute_task_list,
2070                                 struct se_task, t_execute_list);
2071         __transport_remove_task_from_execute_queue(task, dev);
2072         spin_unlock_irq(&dev->execute_task_lock);
2073
2074         atomic_dec(&dev->depth_left);
2075
2076         cmd = task->task_se_cmd;
2077
2078         spin_lock_irqsave(&cmd->t_state_lock, flags);
2079         task->task_flags |= (TF_ACTIVE | TF_SENT);
2080         atomic_inc(&cmd->t_task_cdbs_sent);
2081
2082         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2083             cmd->t_task_list_num)
2084                 atomic_set(&cmd->t_transport_sent, 1);
2085
2086         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2087
2088         if (cmd->execute_task)
2089                 error = cmd->execute_task(task);
2090         else
2091                 error = dev->transport->do_task(task);
2092         if (error != 0) {
2093                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2094                 task->task_flags &= ~TF_ACTIVE;
2095                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2096                 atomic_set(&cmd->t_transport_sent, 0);
2097                 transport_stop_tasks_for_cmd(cmd);
2098                 atomic_inc(&dev->depth_left);
2099                 transport_generic_request_failure(cmd);
2100         }
2101
2102         goto check_depth;
2103
2104         return 0;
2105 }
2106
2107 static inline u32 transport_get_sectors_6(
2108         unsigned char *cdb,
2109         struct se_cmd *cmd,
2110         int *ret)
2111 {
2112         struct se_device *dev = cmd->se_dev;
2113
2114         /*
2115          * Assume TYPE_DISK for non struct se_device objects.
2116          * Use 8-bit sector value.
2117          */
2118         if (!dev)
2119                 goto type_disk;
2120
2121         /*
2122          * Use 24-bit allocation length for TYPE_TAPE.
2123          */
2124         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2125                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2126
2127         /*
2128          * Everything else assume TYPE_DISK Sector CDB location.
2129          * Use 8-bit sector value.  SBC-3 says:
2130          *
2131          *   A TRANSFER LENGTH field set to zero specifies that 256
2132          *   logical blocks shall be written.  Any other value
2133          *   specifies the number of logical blocks that shall be
2134          *   written.
2135          */
2136 type_disk:
2137         return cdb[4] ? : 256;
2138 }
2139
2140 static inline u32 transport_get_sectors_10(
2141         unsigned char *cdb,
2142         struct se_cmd *cmd,
2143         int *ret)
2144 {
2145         struct se_device *dev = cmd->se_dev;
2146
2147         /*
2148          * Assume TYPE_DISK for non struct se_device objects.
2149          * Use 16-bit sector value.
2150          */
2151         if (!dev)
2152                 goto type_disk;
2153
2154         /*
2155          * XXX_10 is not defined in SSC, throw an exception
2156          */
2157         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2158                 *ret = -EINVAL;
2159                 return 0;
2160         }
2161
2162         /*
2163          * Everything else assume TYPE_DISK Sector CDB location.
2164          * Use 16-bit sector value.
2165          */
2166 type_disk:
2167         return (u32)(cdb[7] << 8) + cdb[8];
2168 }
2169
2170 static inline u32 transport_get_sectors_12(
2171         unsigned char *cdb,
2172         struct se_cmd *cmd,
2173         int *ret)
2174 {
2175         struct se_device *dev = cmd->se_dev;
2176
2177         /*
2178          * Assume TYPE_DISK for non struct se_device objects.
2179          * Use 32-bit sector value.
2180          */
2181         if (!dev)
2182                 goto type_disk;
2183
2184         /*
2185          * XXX_12 is not defined in SSC, throw an exception
2186          */
2187         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2188                 *ret = -EINVAL;
2189                 return 0;
2190         }
2191
2192         /*
2193          * Everything else assume TYPE_DISK Sector CDB location.
2194          * Use 32-bit sector value.
2195          */
2196 type_disk:
2197         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2198 }
2199
2200 static inline u32 transport_get_sectors_16(
2201         unsigned char *cdb,
2202         struct se_cmd *cmd,
2203         int *ret)
2204 {
2205         struct se_device *dev = cmd->se_dev;
2206
2207         /*
2208          * Assume TYPE_DISK for non struct se_device objects.
2209          * Use 32-bit sector value.
2210          */
2211         if (!dev)
2212                 goto type_disk;
2213
2214         /*
2215          * Use 24-bit allocation length for TYPE_TAPE.
2216          */
2217         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2218                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2219
2220 type_disk:
2221         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2222                     (cdb[12] << 8) + cdb[13];
2223 }
2224
2225 /*
2226  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2227  */
2228 static inline u32 transport_get_sectors_32(
2229         unsigned char *cdb,
2230         struct se_cmd *cmd,
2231         int *ret)
2232 {
2233         /*
2234          * Assume TYPE_DISK for non struct se_device objects.
2235          * Use 32-bit sector value.
2236          */
2237         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2238                     (cdb[30] << 8) + cdb[31];
2239
2240 }
2241
2242 static inline u32 transport_get_size(
2243         u32 sectors,
2244         unsigned char *cdb,
2245         struct se_cmd *cmd)
2246 {
2247         struct se_device *dev = cmd->se_dev;
2248
2249         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2250                 if (cdb[1] & 1) { /* sectors */
2251                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2252                 } else /* bytes */
2253                         return sectors;
2254         }
2255 #if 0
2256         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2257                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2258                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2259                         dev->transport->name);
2260 #endif
2261         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2262 }
2263
2264 static void transport_xor_callback(struct se_cmd *cmd)
2265 {
2266         unsigned char *buf, *addr;
2267         struct scatterlist *sg;
2268         unsigned int offset;
2269         int i;
2270         int count;
2271         /*
2272          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2273          *
2274          * 1) read the specified logical block(s);
2275          * 2) transfer logical blocks from the data-out buffer;
2276          * 3) XOR the logical blocks transferred from the data-out buffer with
2277          *    the logical blocks read, storing the resulting XOR data in a buffer;
2278          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2279          *    blocks transferred from the data-out buffer; and
2280          * 5) transfer the resulting XOR data to the data-in buffer.
2281          */
2282         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2283         if (!buf) {
2284                 pr_err("Unable to allocate xor_callback buf\n");
2285                 return;
2286         }
2287         /*
2288          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2289          * into the locally allocated *buf
2290          */
2291         sg_copy_to_buffer(cmd->t_data_sg,
2292                           cmd->t_data_nents,
2293                           buf,
2294                           cmd->data_length);
2295
2296         /*
2297          * Now perform the XOR against the BIDI read memory located at
2298          * cmd->t_mem_bidi_list
2299          */
2300
2301         offset = 0;
2302         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2303                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2304                 if (!addr)
2305                         goto out;
2306
2307                 for (i = 0; i < sg->length; i++)
2308                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2309
2310                 offset += sg->length;
2311                 kunmap_atomic(addr, KM_USER0);
2312         }
2313
2314 out:
2315         kfree(buf);
2316 }
2317
2318 /*
2319  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2320  */
2321 static int transport_get_sense_data(struct se_cmd *cmd)
2322 {
2323         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2324         struct se_device *dev = cmd->se_dev;
2325         struct se_task *task = NULL, *task_tmp;
2326         unsigned long flags;
2327         u32 offset = 0;
2328
2329         WARN_ON(!cmd->se_lun);
2330
2331         if (!dev)
2332                 return 0;
2333
2334         spin_lock_irqsave(&cmd->t_state_lock, flags);
2335         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2336                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2337                 return 0;
2338         }
2339
2340         list_for_each_entry_safe(task, task_tmp,
2341                                 &cmd->t_task_list, t_list) {
2342                 if (!(task->task_flags & TF_HAS_SENSE))
2343                         continue;
2344
2345                 if (!dev->transport->get_sense_buffer) {
2346                         pr_err("dev->transport->get_sense_buffer"
2347                                         " is NULL\n");
2348                         continue;
2349                 }
2350
2351                 sense_buffer = dev->transport->get_sense_buffer(task);
2352                 if (!sense_buffer) {
2353                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2354                                 " sense buffer for task with sense\n",
2355                                 cmd->se_tfo->get_task_tag(cmd), task);
2356                         continue;
2357                 }
2358                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2359
2360                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2361                                 TRANSPORT_SENSE_BUFFER);
2362
2363                 memcpy(&buffer[offset], sense_buffer,
2364                                 TRANSPORT_SENSE_BUFFER);
2365                 cmd->scsi_status = task->task_scsi_status;
2366                 /* Automatically padded */
2367                 cmd->scsi_sense_length =
2368                                 (TRANSPORT_SENSE_BUFFER + offset);
2369
2370                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2371                                 " and sense\n",
2372                         dev->se_hba->hba_id, dev->transport->name,
2373                                 cmd->scsi_status);
2374                 return 0;
2375         }
2376         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2377
2378         return -1;
2379 }
2380
2381 static inline long long transport_dev_end_lba(struct se_device *dev)
2382 {
2383         return dev->transport->get_blocks(dev) + 1;
2384 }
2385
2386 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2387 {
2388         struct se_device *dev = cmd->se_dev;
2389         u32 sectors;
2390
2391         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2392                 return 0;
2393
2394         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2395
2396         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2397                 pr_err("LBA: %llu Sectors: %u exceeds"
2398                         " transport_dev_end_lba(): %llu\n",
2399                         cmd->t_task_lba, sectors,
2400                         transport_dev_end_lba(dev));
2401                 return -EINVAL;
2402         }
2403
2404         return 0;
2405 }
2406
2407 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2408 {
2409         /*
2410          * Determine if the received WRITE_SAME is used to for direct
2411          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2412          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2413          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2414          */
2415         int passthrough = (dev->transport->transport_type ==
2416                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2417
2418         if (!passthrough) {
2419                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2420                         pr_err("WRITE_SAME PBDATA and LBDATA"
2421                                 " bits not supported for Block Discard"
2422                                 " Emulation\n");
2423                         return -ENOSYS;
2424                 }
2425                 /*
2426                  * Currently for the emulated case we only accept
2427                  * tpws with the UNMAP=1 bit set.
2428                  */
2429                 if (!(flags[0] & 0x08)) {
2430                         pr_err("WRITE_SAME w/o UNMAP bit not"
2431                                 " supported for Block Discard Emulation\n");
2432                         return -ENOSYS;
2433                 }
2434         }
2435
2436         return 0;
2437 }
2438
2439 /*      transport_generic_cmd_sequencer():
2440  *
2441  *      Generic Command Sequencer that should work for most DAS transport
2442  *      drivers.
2443  *
2444  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2445  *      RX Thread.
2446  *
2447  *      FIXME: Need to support other SCSI OPCODES where as well.
2448  */
2449 static int transport_generic_cmd_sequencer(
2450         struct se_cmd *cmd,
2451         unsigned char *cdb)
2452 {
2453         struct se_device *dev = cmd->se_dev;
2454         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2455         int ret = 0, sector_ret = 0, passthrough;
2456         u32 sectors = 0, size = 0, pr_reg_type = 0;
2457         u16 service_action;
2458         u8 alua_ascq = 0;
2459         /*
2460          * Check for an existing UNIT ATTENTION condition
2461          */
2462         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2463                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2464                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2465                 return -EINVAL;
2466         }
2467         /*
2468          * Check status of Asymmetric Logical Unit Assignment port
2469          */
2470         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2471         if (ret != 0) {
2472                 /*
2473                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2474                  * The ALUA additional sense code qualifier (ASCQ) is determined
2475                  * by the ALUA primary or secondary access state..
2476                  */
2477                 if (ret > 0) {
2478 #if 0
2479                         pr_debug("[%s]: ALUA TG Port not available,"
2480                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2481                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2482 #endif
2483                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2484                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2485                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2486                         return -EINVAL;
2487                 }
2488                 goto out_invalid_cdb_field;
2489         }
2490         /*
2491          * Check status for SPC-3 Persistent Reservations
2492          */
2493         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2494                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2495                                         cmd, cdb, pr_reg_type) != 0) {
2496                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2497                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2498                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2499                         return -EBUSY;
2500                 }
2501                 /*
2502                  * This means the CDB is allowed for the SCSI Initiator port
2503                  * when said port is *NOT* holding the legacy SPC-2 or
2504                  * SPC-3 Persistent Reservation.
2505                  */
2506         }
2507
2508         /*
2509          * If we operate in passthrough mode we skip most CDB emulation and
2510          * instead hand the commands down to the physical SCSI device.
2511          */
2512         passthrough =
2513                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2514
2515         switch (cdb[0]) {
2516         case READ_6:
2517                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2518                 if (sector_ret)
2519                         goto out_unsupported_cdb;
2520                 size = transport_get_size(sectors, cdb, cmd);
2521                 cmd->t_task_lba = transport_lba_21(cdb);
2522                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2523                 break;
2524         case READ_10:
2525                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2526                 if (sector_ret)
2527                         goto out_unsupported_cdb;
2528                 size = transport_get_size(sectors, cdb, cmd);
2529                 cmd->t_task_lba = transport_lba_32(cdb);
2530                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2531                 break;
2532         case READ_12:
2533                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2534                 if (sector_ret)
2535                         goto out_unsupported_cdb;
2536                 size = transport_get_size(sectors, cdb, cmd);
2537                 cmd->t_task_lba = transport_lba_32(cdb);
2538                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2539                 break;
2540         case READ_16:
2541                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2542                 if (sector_ret)
2543                         goto out_unsupported_cdb;
2544                 size = transport_get_size(sectors, cdb, cmd);
2545                 cmd->t_task_lba = transport_lba_64(cdb);
2546                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2547                 break;
2548         case WRITE_6:
2549                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2550                 if (sector_ret)
2551                         goto out_unsupported_cdb;
2552                 size = transport_get_size(sectors, cdb, cmd);
2553                 cmd->t_task_lba = transport_lba_21(cdb);
2554                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2555                 break;
2556         case WRITE_10:
2557                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2558                 if (sector_ret)
2559                         goto out_unsupported_cdb;
2560                 size = transport_get_size(sectors, cdb, cmd);
2561                 cmd->t_task_lba = transport_lba_32(cdb);
2562                 if (cdb[1] & 0x8)
2563                         cmd->se_cmd_flags |= SCF_FUA;
2564                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2565                 break;
2566         case WRITE_12:
2567                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2568                 if (sector_ret)
2569                         goto out_unsupported_cdb;
2570                 size = transport_get_size(sectors, cdb, cmd);
2571                 cmd->t_task_lba = transport_lba_32(cdb);
2572                 if (cdb[1] & 0x8)
2573                         cmd->se_cmd_flags |= SCF_FUA;
2574                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2575                 break;
2576         case WRITE_16:
2577                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2578                 if (sector_ret)
2579                         goto out_unsupported_cdb;
2580                 size = transport_get_size(sectors, cdb, cmd);
2581                 cmd->t_task_lba = transport_lba_64(cdb);
2582                 if (cdb[1] & 0x8)
2583                         cmd->se_cmd_flags |= SCF_FUA;
2584                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2585                 break;
2586         case XDWRITEREAD_10:
2587                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2588                     !(cmd->se_cmd_flags & SCF_BIDI))
2589                         goto out_invalid_cdb_field;
2590                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2591                 if (sector_ret)
2592                         goto out_unsupported_cdb;
2593                 size = transport_get_size(sectors, cdb, cmd);
2594                 cmd->t_task_lba = transport_lba_32(cdb);
2595                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2596
2597                 /*
2598                  * Do now allow BIDI commands for passthrough mode.
2599                  */
2600                 if (passthrough)
2601                         goto out_unsupported_cdb;
2602
2603                 /*
2604                  * Setup BIDI XOR callback to be run after I/O completion.
2605                  */
2606                 cmd->transport_complete_callback = &transport_xor_callback;
2607                 if (cdb[1] & 0x8)
2608                         cmd->se_cmd_flags |= SCF_FUA;
2609                 break;
2610         case VARIABLE_LENGTH_CMD:
2611                 service_action = get_unaligned_be16(&cdb[8]);
2612                 switch (service_action) {
2613                 case XDWRITEREAD_32:
2614                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2615                         if (sector_ret)
2616                                 goto out_unsupported_cdb;
2617                         size = transport_get_size(sectors, cdb, cmd);
2618                         /*
2619                          * Use WRITE_32 and READ_32 opcodes for the emulated
2620                          * XDWRITE_READ_32 logic.
2621                          */
2622                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2623                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2624
2625                         /*
2626                          * Do now allow BIDI commands for passthrough mode.
2627                          */
2628                         if (passthrough)
2629                                 goto out_unsupported_cdb;
2630
2631                         /*
2632                          * Setup BIDI XOR callback to be run during after I/O
2633                          * completion.
2634                          */
2635                         cmd->transport_complete_callback = &transport_xor_callback;
2636                         if (cdb[1] & 0x8)
2637                                 cmd->se_cmd_flags |= SCF_FUA;
2638                         break;
2639                 case WRITE_SAME_32:
2640                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2641                         if (sector_ret)
2642                                 goto out_unsupported_cdb;
2643
2644                         if (sectors)
2645                                 size = transport_get_size(1, cdb, cmd);
2646                         else {
2647                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2648                                        " supported\n");
2649                                 goto out_invalid_cdb_field;
2650                         }
2651
2652                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2653                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2654
2655                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2656                                 goto out_invalid_cdb_field;
2657                         if (!passthrough)
2658                                 cmd->execute_task = target_emulate_write_same;
2659                         break;
2660                 default:
2661                         pr_err("VARIABLE_LENGTH_CMD service action"
2662                                 " 0x%04x not supported\n", service_action);
2663                         goto out_unsupported_cdb;
2664                 }
2665                 break;
2666         case MAINTENANCE_IN:
2667                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2668                         /* MAINTENANCE_IN from SCC-2 */
2669                         /*
2670                          * Check for emulated MI_REPORT_TARGET_PGS.
2671                          */
2672                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2673                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2674                                 cmd->execute_task =
2675                                         target_emulate_report_target_port_groups;
2676                         }
2677                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2678                                (cdb[8] << 8) | cdb[9];
2679                 } else {
2680                         /* GPCMD_SEND_KEY from multi media commands */
2681                         size = (cdb[8] << 8) + cdb[9];
2682                 }
2683                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2684                 break;
2685         case MODE_SELECT:
2686                 size = cdb[4];
2687                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2688                 break;
2689         case MODE_SELECT_10:
2690                 size = (cdb[7] << 8) + cdb[8];
2691                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2692                 break;
2693         case MODE_SENSE:
2694                 size = cdb[4];
2695                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2696                 if (!passthrough)
2697                         cmd->execute_task = target_emulate_modesense;
2698                 break;
2699         case MODE_SENSE_10:
2700                 size = (cdb[7] << 8) + cdb[8];
2701                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2702                 if (!passthrough)
2703                         cmd->execute_task = target_emulate_modesense;
2704                 break;
2705         case GPCMD_READ_BUFFER_CAPACITY:
2706         case GPCMD_SEND_OPC:
2707         case LOG_SELECT:
2708         case LOG_SENSE:
2709                 size = (cdb[7] << 8) + cdb[8];
2710                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2711                 break;
2712         case READ_BLOCK_LIMITS:
2713                 size = READ_BLOCK_LEN;
2714                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2715                 break;
2716         case GPCMD_GET_CONFIGURATION:
2717         case GPCMD_READ_FORMAT_CAPACITIES:
2718         case GPCMD_READ_DISC_INFO:
2719         case GPCMD_READ_TRACK_RZONE_INFO:
2720                 size = (cdb[7] << 8) + cdb[8];
2721                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2722                 break;
2723         case PERSISTENT_RESERVE_IN:
2724                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2725                         cmd->execute_task = target_scsi3_emulate_pr_in;
2726                 size = (cdb[7] << 8) + cdb[8];
2727                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2728                 break;
2729         case PERSISTENT_RESERVE_OUT:
2730                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2731                         cmd->execute_task = target_scsi3_emulate_pr_out;
2732                 size = (cdb[7] << 8) + cdb[8];
2733                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2734                 break;
2735         case GPCMD_MECHANISM_STATUS:
2736         case GPCMD_READ_DVD_STRUCTURE:
2737                 size = (cdb[8] << 8) + cdb[9];
2738                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2739                 break;
2740         case READ_POSITION:
2741                 size = READ_POSITION_LEN;
2742                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2743                 break;
2744         case MAINTENANCE_OUT:
2745                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2746                         /* MAINTENANCE_OUT from SCC-2
2747                          *
2748                          * Check for emulated MO_SET_TARGET_PGS.
2749                          */
2750                         if (cdb[1] == MO_SET_TARGET_PGS &&
2751                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2752                                 cmd->execute_task =
2753                                         target_emulate_set_target_port_groups;
2754                         }
2755
2756                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2757                                (cdb[8] << 8) | cdb[9];
2758                 } else  {
2759                         /* GPCMD_REPORT_KEY from multi media commands */
2760                         size = (cdb[8] << 8) + cdb[9];
2761                 }
2762                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2763                 break;
2764         case INQUIRY:
2765                 size = (cdb[3] << 8) + cdb[4];
2766                 /*
2767                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2768                  * See spc4r17 section 5.3
2769                  */
2770                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2771                         cmd->sam_task_attr = MSG_HEAD_TAG;
2772                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2773                 if (!passthrough)
2774                         cmd->execute_task = target_emulate_inquiry;
2775                 break;
2776         case READ_BUFFER:
2777                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2778                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2779                 break;
2780         case READ_CAPACITY:
2781                 size = READ_CAP_LEN;
2782                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2783                 if (!passthrough)
2784                         cmd->execute_task = target_emulate_readcapacity;
2785                 break;
2786         case READ_MEDIA_SERIAL_NUMBER:
2787         case SECURITY_PROTOCOL_IN:
2788         case SECURITY_PROTOCOL_OUT:
2789                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2790                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2791                 break;
2792         case SERVICE_ACTION_IN:
2793                 switch (cmd->t_task_cdb[1] & 0x1f) {
2794                 case SAI_READ_CAPACITY_16:
2795                         if (!passthrough)
2796                                 cmd->execute_task =
2797                                         target_emulate_readcapacity_16;
2798                         break;
2799                 default:
2800                         if (passthrough)
2801                                 break;
2802
2803                         pr_err("Unsupported SA: 0x%02x\n",
2804                                 cmd->t_task_cdb[1] & 0x1f);
2805                         goto out_unsupported_cdb;
2806                 }
2807                 /*FALLTHROUGH*/
2808         case ACCESS_CONTROL_IN:
2809         case ACCESS_CONTROL_OUT:
2810         case EXTENDED_COPY:
2811         case READ_ATTRIBUTE:
2812         case RECEIVE_COPY_RESULTS:
2813         case WRITE_ATTRIBUTE:
2814                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2815                        (cdb[12] << 8) | cdb[13];
2816                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2817                 break;
2818         case RECEIVE_DIAGNOSTIC:
2819         case SEND_DIAGNOSTIC:
2820                 size = (cdb[3] << 8) | cdb[4];
2821                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2822                 break;
2823 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2824 #if 0
2825         case GPCMD_READ_CD:
2826                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2827                 size = (2336 * sectors);
2828                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2829                 break;
2830 #endif
2831         case READ_TOC:
2832                 size = cdb[8];
2833                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2834                 break;
2835         case REQUEST_SENSE:
2836                 size = cdb[4];
2837                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2838                 if (!passthrough)
2839                         cmd->execute_task = target_emulate_request_sense;
2840                 break;
2841         case READ_ELEMENT_STATUS:
2842                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2843                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2844                 break;
2845         case WRITE_BUFFER:
2846                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2847                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2848                 break;
2849         case RESERVE:
2850         case RESERVE_10:
2851                 /*
2852                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2853                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2854                  */
2855                 if (cdb[0] == RESERVE_10)
2856                         size = (cdb[7] << 8) | cdb[8];
2857                 else
2858                         size = cmd->data_length;
2859
2860                 /*
2861                  * Setup the legacy emulated handler for SPC-2 and
2862                  * >= SPC-3 compatible reservation handling (CRH=1)
2863                  * Otherwise, we assume the underlying SCSI logic is
2864                  * is running in SPC_PASSTHROUGH, and wants reservations
2865                  * emulation disabled.
2866                  */
2867                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2868                         cmd->execute_task = target_scsi2_reservation_reserve;
2869                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2870                 break;
2871         case RELEASE:
2872         case RELEASE_10:
2873                 /*
2874                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2875                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2876                 */
2877                 if (cdb[0] == RELEASE_10)
2878                         size = (cdb[7] << 8) | cdb[8];
2879                 else
2880                         size = cmd->data_length;
2881
2882                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2883                         cmd->execute_task = target_scsi2_reservation_release;
2884                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2885                 break;
2886         case SYNCHRONIZE_CACHE:
2887         case 0x91: /* SYNCHRONIZE_CACHE_16: */
2888                 /*
2889                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2890                  */
2891                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2892                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2893                         cmd->t_task_lba = transport_lba_32(cdb);
2894                 } else {
2895                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2896                         cmd->t_task_lba = transport_lba_64(cdb);
2897                 }
2898                 if (sector_ret)
2899                         goto out_unsupported_cdb;
2900
2901                 size = transport_get_size(sectors, cdb, cmd);
2902                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2903
2904                 if (passthrough)
2905                         break;
2906
2907                 /*
2908                  * Check to ensure that LBA + Range does not exceed past end of
2909                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2910                  */
2911                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2912                         if (transport_cmd_get_valid_sectors(cmd) < 0)
2913                                 goto out_invalid_cdb_field;
2914                 }
2915                 cmd->execute_task = target_emulate_synchronize_cache;
2916                 break;
2917         case UNMAP:
2918                 size = get_unaligned_be16(&cdb[7]);
2919                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2920                 if (!passthrough)
2921                         cmd->execute_task = target_emulate_unmap;
2922                 break;
2923         case WRITE_SAME_16:
2924                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2925                 if (sector_ret)
2926                         goto out_unsupported_cdb;
2927
2928                 if (sectors)
2929                         size = transport_get_size(1, cdb, cmd);
2930                 else {
2931                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2932                         goto out_invalid_cdb_field;
2933                 }
2934
2935                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2936                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2937
2938                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2939                         goto out_invalid_cdb_field;
2940                 if (!passthrough)
2941                         cmd->execute_task = target_emulate_write_same;
2942                 break;
2943         case WRITE_SAME:
2944                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2945                 if (sector_ret)
2946                         goto out_unsupported_cdb;
2947
2948                 if (sectors)
2949                         size = transport_get_size(1, cdb, cmd);
2950                 else {
2951                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2952                         goto out_invalid_cdb_field;
2953                 }
2954
2955                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2956                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2957                 /*
2958                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
2959                  * of byte 1 bit 3 UNMAP instead of original reserved field
2960                  */
2961                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2962                         goto out_invalid_cdb_field;
2963                 if (!passthrough)
2964                         cmd->execute_task = target_emulate_write_same;
2965                 break;
2966         case ALLOW_MEDIUM_REMOVAL:
2967         case ERASE:
2968         case REZERO_UNIT:
2969         case SEEK_10:
2970         case SPACE:
2971         case START_STOP:
2972         case TEST_UNIT_READY:
2973         case VERIFY:
2974         case WRITE_FILEMARKS:
2975                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2976                 if (!passthrough)
2977                         cmd->execute_task = target_emulate_noop;
2978                 break;
2979         case GPCMD_CLOSE_TRACK:
2980         case INITIALIZE_ELEMENT_STATUS:
2981         case GPCMD_LOAD_UNLOAD:
2982         case GPCMD_SET_SPEED:
2983         case MOVE_MEDIUM:
2984                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2985                 break;
2986         case REPORT_LUNS:
2987                 cmd->execute_task = target_report_luns;
2988                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2989                 /*
2990                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
2991                  * See spc4r17 section 5.3
2992                  */
2993                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2994                         cmd->sam_task_attr = MSG_HEAD_TAG;
2995                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2996                 break;
2997         default:
2998                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
2999                         " 0x%02x, sending CHECK_CONDITION.\n",
3000                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3001                 goto out_unsupported_cdb;
3002         }
3003
3004         if (size != cmd->data_length) {
3005                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3006                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3007                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3008                                 cmd->data_length, size, cdb[0]);
3009
3010                 cmd->cmd_spdtl = size;
3011
3012                 if (cmd->data_direction == DMA_TO_DEVICE) {
3013                         pr_err("Rejecting underflow/overflow"
3014                                         " WRITE data\n");
3015                         goto out_invalid_cdb_field;
3016                 }
3017                 /*
3018                  * Reject READ_* or WRITE_* with overflow/underflow for
3019                  * type SCF_SCSI_DATA_SG_IO_CDB.
3020                  */
3021                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3022                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3023                                 " CDB on non 512-byte sector setup subsystem"
3024                                 " plugin: %s\n", dev->transport->name);
3025                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3026                         goto out_invalid_cdb_field;
3027                 }
3028
3029                 if (size > cmd->data_length) {
3030                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3031                         cmd->residual_count = (size - cmd->data_length);
3032                 } else {
3033                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3034                         cmd->residual_count = (cmd->data_length - size);
3035                 }
3036                 cmd->data_length = size;
3037         }
3038
3039         /* reject any command that we don't have a handler for */
3040         if (!(passthrough || cmd->execute_task ||
3041              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3042                 goto out_unsupported_cdb;
3043
3044         /* Let's limit control cdbs to a page, for simplicity's sake. */
3045         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3046             size > PAGE_SIZE)
3047                 goto out_invalid_cdb_field;
3048
3049         transport_set_supported_SAM_opcode(cmd);
3050         return ret;
3051
3052 out_unsupported_cdb:
3053         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3054         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3055         return -EINVAL;
3056 out_invalid_cdb_field:
3057         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3058         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3059         return -EINVAL;
3060 }
3061
3062 /*
3063  * Called from I/O completion to determine which dormant/delayed
3064  * and ordered cmds need to have their tasks added to the execution queue.
3065  */
3066 static void transport_complete_task_attr(struct se_cmd *cmd)
3067 {
3068         struct se_device *dev = cmd->se_dev;
3069         struct se_cmd *cmd_p, *cmd_tmp;
3070         int new_active_tasks = 0;
3071
3072         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3073                 atomic_dec(&dev->simple_cmds);
3074                 smp_mb__after_atomic_dec();
3075                 dev->dev_cur_ordered_id++;
3076                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3077                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3078                         cmd->se_ordered_id);
3079         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3080                 dev->dev_cur_ordered_id++;
3081                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3082                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3083                         cmd->se_ordered_id);
3084         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3085                 atomic_dec(&dev->dev_ordered_sync);
3086                 smp_mb__after_atomic_dec();
3087
3088                 dev->dev_cur_ordered_id++;
3089                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3090                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3091         }
3092         /*
3093          * Process all commands up to the last received
3094          * ORDERED task attribute which requires another blocking
3095          * boundary
3096          */
3097         spin_lock(&dev->delayed_cmd_lock);
3098         list_for_each_entry_safe(cmd_p, cmd_tmp,
3099                         &dev->delayed_cmd_list, se_delayed_node) {
3100
3101                 list_del(&cmd_p->se_delayed_node);
3102                 spin_unlock(&dev->delayed_cmd_lock);
3103
3104                 pr_debug("Calling add_tasks() for"
3105                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3106                         " Dormant -> Active, se_ordered_id: %u\n",
3107                         cmd_p->t_task_cdb[0],
3108                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3109
3110                 transport_add_tasks_from_cmd(cmd_p);
3111                 new_active_tasks++;
3112
3113                 spin_lock(&dev->delayed_cmd_lock);
3114                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3115                         break;
3116         }
3117         spin_unlock(&dev->delayed_cmd_lock);
3118         /*
3119          * If new tasks have become active, wake up the transport thread
3120          * to do the processing of the Active tasks.
3121          */
3122         if (new_active_tasks != 0)
3123                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3124 }
3125
3126 static void transport_complete_qf(struct se_cmd *cmd)
3127 {
3128         int ret = 0;
3129
3130         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3131                 transport_complete_task_attr(cmd);
3132
3133         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3134                 ret = cmd->se_tfo->queue_status(cmd);
3135                 if (ret)
3136                         goto out;
3137         }
3138
3139         switch (cmd->data_direction) {
3140         case DMA_FROM_DEVICE:
3141                 ret = cmd->se_tfo->queue_data_in(cmd);
3142                 break;
3143         case DMA_TO_DEVICE:
3144                 if (cmd->t_bidi_data_sg) {
3145                         ret = cmd->se_tfo->queue_data_in(cmd);
3146                         if (ret < 0)
3147                                 break;
3148                 }
3149                 /* Fall through for DMA_TO_DEVICE */
3150         case DMA_NONE:
3151                 ret = cmd->se_tfo->queue_status(cmd);
3152                 break;
3153         default:
3154                 break;
3155         }
3156
3157 out:
3158         if (ret < 0) {
3159                 transport_handle_queue_full(cmd, cmd->se_dev);
3160                 return;
3161         }
3162         transport_lun_remove_cmd(cmd);
3163         transport_cmd_check_stop_to_fabric(cmd);
3164 }
3165
3166 static void transport_handle_queue_full(
3167         struct se_cmd *cmd,
3168         struct se_device *dev)
3169 {
3170         spin_lock_irq(&dev->qf_cmd_lock);
3171         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3172         atomic_inc(&dev->dev_qf_count);
3173         smp_mb__after_atomic_inc();
3174         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3175
3176         schedule_work(&cmd->se_dev->qf_work_queue);
3177 }
3178
3179 static void target_complete_ok_work(struct work_struct *work)
3180 {
3181         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3182         int reason = 0, ret;
3183
3184         /*
3185          * Check if we need to move delayed/dormant tasks from cmds on the
3186          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3187          * Attribute.
3188          */
3189         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3190                 transport_complete_task_attr(cmd);
3191         /*
3192          * Check to schedule QUEUE_FULL work, or execute an existing
3193          * cmd->transport_qf_callback()
3194          */
3195         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3196                 schedule_work(&cmd->se_dev->qf_work_queue);
3197
3198         /*
3199          * Check if we need to retrieve a sense buffer from
3200          * the struct se_cmd in question.
3201          */
3202         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3203                 if (transport_get_sense_data(cmd) < 0)
3204                         reason = TCM_NON_EXISTENT_LUN;
3205
3206                 /*
3207                  * Only set when an struct se_task->task_scsi_status returned
3208                  * a non GOOD status.
3209                  */
3210                 if (cmd->scsi_status) {
3211                         ret = transport_send_check_condition_and_sense(
3212                                         cmd, reason, 1);
3213                         if (ret == -EAGAIN || ret == -ENOMEM)
3214                                 goto queue_full;
3215
3216                         transport_lun_remove_cmd(cmd);
3217                         transport_cmd_check_stop_to_fabric(cmd);
3218                         return;
3219                 }
3220         }
3221         /*
3222          * Check for a callback, used by amongst other things
3223          * XDWRITE_READ_10 emulation.
3224          */
3225         if (cmd->transport_complete_callback)
3226                 cmd->transport_complete_callback(cmd);
3227
3228         switch (cmd->data_direction) {
3229         case DMA_FROM_DEVICE:
3230                 spin_lock(&cmd->se_lun->lun_sep_lock);
3231                 if (cmd->se_lun->lun_sep) {
3232                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3233                                         cmd->data_length;
3234                 }
3235                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3236
3237                 ret = cmd->se_tfo->queue_data_in(cmd);
3238                 if (ret == -EAGAIN || ret == -ENOMEM)
3239                         goto queue_full;
3240                 break;
3241         case DMA_TO_DEVICE:
3242                 spin_lock(&cmd->se_lun->lun_sep_lock);
3243                 if (cmd->se_lun->lun_sep) {
3244                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3245                                 cmd->data_length;
3246                 }
3247                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3248                 /*
3249                  * Check if we need to send READ payload for BIDI-COMMAND
3250                  */
3251                 if (cmd->t_bidi_data_sg) {
3252                         spin_lock(&cmd->se_lun->lun_sep_lock);
3253                         if (cmd->se_lun->lun_sep) {
3254                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3255                                         cmd->data_length;
3256                         }
3257                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3258                         ret = cmd->se_tfo->queue_data_in(cmd);
3259                         if (ret == -EAGAIN || ret == -ENOMEM)
3260                                 goto queue_full;
3261                         break;
3262                 }
3263                 /* Fall through for DMA_TO_DEVICE */
3264         case DMA_NONE:
3265                 ret = cmd->se_tfo->queue_status(cmd);
3266                 if (ret == -EAGAIN || ret == -ENOMEM)
3267                         goto queue_full;
3268                 break;
3269         default:
3270                 break;
3271         }
3272
3273         transport_lun_remove_cmd(cmd);
3274         transport_cmd_check_stop_to_fabric(cmd);
3275         return;
3276
3277 queue_full:
3278         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3279                 " data_direction: %d\n", cmd, cmd->data_direction);
3280         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3281         transport_handle_queue_full(cmd, cmd->se_dev);
3282 }
3283
3284 static void transport_free_dev_tasks(struct se_cmd *cmd)
3285 {
3286         struct se_task *task, *task_tmp;
3287         unsigned long flags;
3288         LIST_HEAD(dispose_list);
3289
3290         spin_lock_irqsave(&cmd->t_state_lock, flags);
3291         list_for_each_entry_safe(task, task_tmp,
3292                                 &cmd->t_task_list, t_list) {
3293                 if (!(task->task_flags & TF_ACTIVE))
3294                         list_move_tail(&task->t_list, &dispose_list);
3295         }
3296         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3297
3298         while (!list_empty(&dispose_list)) {
3299                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3300
3301                 if (task->task_sg != cmd->t_data_sg &&
3302                     task->task_sg != cmd->t_bidi_data_sg)
3303                         kfree(task->task_sg);
3304
3305                 list_del(&task->t_list);
3306
3307                 cmd->se_dev->transport->free_task(task);
3308         }
3309 }
3310
3311 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3312 {
3313         struct scatterlist *sg;
3314         int count;
3315
3316         for_each_sg(sgl, sg, nents, count)
3317                 __free_page(sg_page(sg));
3318
3319         kfree(sgl);
3320 }
3321
3322 static inline void transport_free_pages(struct se_cmd *cmd)
3323 {
3324         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3325                 return;
3326
3327         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3328         cmd->t_data_sg = NULL;
3329         cmd->t_data_nents = 0;
3330
3331         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3332         cmd->t_bidi_data_sg = NULL;
3333         cmd->t_bidi_data_nents = 0;
3334 }
3335
3336 /**
3337  * transport_release_cmd - free a command
3338  * @cmd:       command to free
3339  *
3340  * This routine unconditionally frees a command, and reference counting
3341  * or list removal must be done in the caller.
3342  */
3343 static void transport_release_cmd(struct se_cmd *cmd)
3344 {
3345         BUG_ON(!cmd->se_tfo);
3346
3347         if (cmd->se_tmr_req)
3348                 core_tmr_release_req(cmd->se_tmr_req);
3349         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3350                 kfree(cmd->t_task_cdb);
3351         /*
3352          * Check if target_wait_for_sess_cmds() is expecting to
3353          * release se_cmd directly here..
3354          */
3355         if (cmd->check_release != 0 && cmd->se_tfo->check_release_cmd)
3356                 if (cmd->se_tfo->check_release_cmd(cmd) != 0)
3357                         return;
3358
3359         cmd->se_tfo->release_cmd(cmd);
3360 }
3361
3362 /**
3363  * transport_put_cmd - release a reference to a command
3364  * @cmd:       command to release
3365  *
3366  * This routine releases our reference to the command and frees it if possible.
3367  */
3368 static void transport_put_cmd(struct se_cmd *cmd)
3369 {
3370         unsigned long flags;
3371         int free_tasks = 0;
3372
3373         spin_lock_irqsave(&cmd->t_state_lock, flags);
3374         if (atomic_read(&cmd->t_fe_count)) {
3375                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3376                         goto out_busy;
3377         }
3378
3379         if (atomic_read(&cmd->t_se_count)) {
3380                 if (!atomic_dec_and_test(&cmd->t_se_count))
3381                         goto out_busy;
3382         }
3383
3384         if (atomic_read(&cmd->transport_dev_active)) {
3385                 atomic_set(&cmd->transport_dev_active, 0);
3386                 transport_all_task_dev_remove_state(cmd);
3387                 free_tasks = 1;
3388         }
3389         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3390
3391         if (free_tasks != 0)
3392                 transport_free_dev_tasks(cmd);
3393
3394         transport_free_pages(cmd);
3395         transport_release_cmd(cmd);
3396         return;
3397 out_busy:
3398         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3399 }
3400
3401 /*
3402  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3403  * allocating in the core.
3404  * @cmd:  Associated se_cmd descriptor
3405  * @mem:  SGL style memory for TCM WRITE / READ
3406  * @sg_mem_num: Number of SGL elements
3407  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3408  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3409  *
3410  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3411  * of parameters.
3412  */
3413 int transport_generic_map_mem_to_cmd(
3414         struct se_cmd *cmd,
3415         struct scatterlist *sgl,
3416         u32 sgl_count,
3417         struct scatterlist *sgl_bidi,
3418         u32 sgl_bidi_count)
3419 {
3420         if (!sgl || !sgl_count)
3421                 return 0;
3422
3423         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3424             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3425                 /*
3426                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3427                  * scatterlists already have been set to follow what the fabric
3428                  * passes for the original expected data transfer length.
3429                  */
3430                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3431                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3432                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3433                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3434                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3435                         return -EINVAL;
3436                 }
3437
3438                 cmd->t_data_sg = sgl;
3439                 cmd->t_data_nents = sgl_count;
3440
3441                 if (sgl_bidi && sgl_bidi_count) {
3442                         cmd->t_bidi_data_sg = sgl_bidi;
3443                         cmd->t_bidi_data_nents = sgl_bidi_count;
3444                 }
3445                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3446         }
3447
3448         return 0;
3449 }
3450 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3451
3452 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3453 {
3454         struct scatterlist *sg = cmd->t_data_sg;
3455
3456         BUG_ON(!sg);
3457         /*
3458          * We need to take into account a possible offset here for fabrics like
3459          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3460          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3461          */
3462         return kmap(sg_page(sg)) + sg->offset;
3463 }
3464 EXPORT_SYMBOL(transport_kmap_first_data_page);
3465
3466 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3467 {
3468         kunmap(sg_page(cmd->t_data_sg));
3469 }
3470 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3471
3472 static int
3473 transport_generic_get_mem(struct se_cmd *cmd)
3474 {
3475         u32 length = cmd->data_length;
3476         unsigned int nents;
3477         struct page *page;
3478         int i = 0;
3479
3480         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3481         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3482         if (!cmd->t_data_sg)
3483                 return -ENOMEM;
3484
3485         cmd->t_data_nents = nents;
3486         sg_init_table(cmd->t_data_sg, nents);
3487
3488         while (length) {
3489                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3490                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3491                 if (!page)
3492                         goto out;
3493
3494                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3495                 length -= page_len;
3496                 i++;
3497         }
3498         return 0;
3499
3500 out:
3501         while (i >= 0) {
3502                 __free_page(sg_page(&cmd->t_data_sg[i]));
3503                 i--;
3504         }
3505         kfree(cmd->t_data_sg);
3506         cmd->t_data_sg = NULL;
3507         return -ENOMEM;
3508 }
3509
3510 /* Reduce sectors if they are too long for the device */
3511 static inline sector_t transport_limit_task_sectors(
3512         struct se_device *dev,
3513         unsigned long long lba,
3514         sector_t sectors)
3515 {
3516         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3517
3518         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3519                 if ((lba + sectors) > transport_dev_end_lba(dev))
3520                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3521
3522         return sectors;
3523 }
3524
3525
3526 /*
3527  * This function can be used by HW target mode drivers to create a linked
3528  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3529  * This is intended to be called during the completion path by TCM Core
3530  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3531  */
3532 void transport_do_task_sg_chain(struct se_cmd *cmd)
3533 {
3534         struct scatterlist *sg_first = NULL;
3535         struct scatterlist *sg_prev = NULL;
3536         int sg_prev_nents = 0;
3537         struct scatterlist *sg;
3538         struct se_task *task;
3539         u32 chained_nents = 0;
3540         int i;
3541
3542         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3543
3544         /*
3545          * Walk the struct se_task list and setup scatterlist chains
3546          * for each contiguously allocated struct se_task->task_sg[].
3547          */
3548         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3549                 if (!task->task_sg)
3550                         continue;
3551
3552                 if (!sg_first) {
3553                         sg_first = task->task_sg;
3554                         chained_nents = task->task_sg_nents;
3555                 } else {
3556                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3557                         chained_nents += task->task_sg_nents;
3558                 }
3559                 /*
3560                  * For the padded tasks, use the extra SGL vector allocated
3561                  * in transport_allocate_data_tasks() for the sg_prev_nents
3562                  * offset into sg_chain() above.
3563                  *
3564                  * We do not need the padding for the last task (or a single
3565                  * task), but in that case we will never use the sg_prev_nents
3566                  * value below which would be incorrect.
3567                  */
3568                 sg_prev_nents = (task->task_sg_nents + 1);
3569                 sg_prev = task->task_sg;
3570         }
3571         /*
3572          * Setup the starting pointer and total t_tasks_sg_linked_no including
3573          * padding SGs for linking and to mark the end.
3574          */
3575         cmd->t_tasks_sg_chained = sg_first;
3576         cmd->t_tasks_sg_chained_no = chained_nents;
3577
3578         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3579                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3580                 cmd->t_tasks_sg_chained_no);
3581
3582         for_each_sg(cmd->t_tasks_sg_chained, sg,
3583                         cmd->t_tasks_sg_chained_no, i) {
3584
3585                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3586                         i, sg, sg_page(sg), sg->length, sg->offset);
3587                 if (sg_is_chain(sg))
3588                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3589                 if (sg_is_last(sg))
3590                         pr_debug("SG: %p sg_is_last=1\n", sg);
3591         }
3592 }
3593 EXPORT_SYMBOL(transport_do_task_sg_chain);
3594
3595 /*
3596  * Break up cmd into chunks transport can handle
3597  */
3598 static int
3599 transport_allocate_data_tasks(struct se_cmd *cmd,
3600         enum dma_data_direction data_direction,
3601         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3602 {
3603         struct se_device *dev = cmd->se_dev;
3604         int task_count, i;
3605         unsigned long long lba;
3606         sector_t sectors, dev_max_sectors;
3607         u32 sector_size;
3608
3609         if (transport_cmd_get_valid_sectors(cmd) < 0)
3610                 return -EINVAL;
3611
3612         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3613         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3614
3615         WARN_ON(cmd->data_length % sector_size);
3616
3617         lba = cmd->t_task_lba;
3618         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3619         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3620
3621         /*
3622          * If we need just a single task reuse the SG list in the command
3623          * and avoid a lot of work.
3624          */
3625         if (task_count == 1) {
3626                 struct se_task *task;
3627                 unsigned long flags;
3628
3629                 task = transport_generic_get_task(cmd, data_direction);
3630                 if (!task)
3631                         return -ENOMEM;
3632
3633                 task->task_sg = cmd_sg;
3634                 task->task_sg_nents = sgl_nents;
3635
3636                 task->task_lba = lba;
3637                 task->task_sectors = sectors;
3638                 task->task_size = task->task_sectors * sector_size;
3639
3640                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3641                 list_add_tail(&task->t_list, &cmd->t_task_list);
3642                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3643
3644                 return task_count;
3645         }
3646
3647         for (i = 0; i < task_count; i++) {
3648                 struct se_task *task;
3649                 unsigned int task_size, task_sg_nents_padded;
3650                 struct scatterlist *sg;
3651                 unsigned long flags;
3652                 int count;
3653
3654                 task = transport_generic_get_task(cmd, data_direction);
3655                 if (!task)
3656                         return -ENOMEM;
3657
3658                 task->task_lba = lba;
3659                 task->task_sectors = min(sectors, dev_max_sectors);
3660                 task->task_size = task->task_sectors * sector_size;
3661
3662                 /*
3663                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3664                  * in order to calculate the number per task SGL entries
3665                  */
3666                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3667                 /*
3668                  * Check if the fabric module driver is requesting that all
3669                  * struct se_task->task_sg[] be chained together..  If so,
3670                  * then allocate an extra padding SG entry for linking and
3671                  * marking the end of the chained SGL for every task except
3672                  * the last one for (task_count > 1) operation, or skipping
3673                  * the extra padding for the (task_count == 1) case.
3674                  */
3675                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3676                         task_sg_nents_padded = (task->task_sg_nents + 1);
3677                 } else
3678                         task_sg_nents_padded = task->task_sg_nents;
3679
3680                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3681                                         task_sg_nents_padded, GFP_KERNEL);
3682                 if (!task->task_sg) {
3683                         cmd->se_dev->transport->free_task(task);
3684                         return -ENOMEM;
3685                 }
3686
3687                 sg_init_table(task->task_sg, task_sg_nents_padded);
3688
3689                 task_size = task->task_size;
3690
3691                 /* Build new sgl, only up to task_size */
3692                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3693                         if (cmd_sg->length > task_size)
3694                                 break;
3695
3696                         *sg = *cmd_sg;
3697                         task_size -= cmd_sg->length;
3698                         cmd_sg = sg_next(cmd_sg);
3699                 }
3700
3701                 lba += task->task_sectors;
3702                 sectors -= task->task_sectors;
3703
3704                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3705                 list_add_tail(&task->t_list, &cmd->t_task_list);
3706                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3707         }
3708
3709         return task_count;
3710 }
3711
3712 static int
3713 transport_allocate_control_task(struct se_cmd *cmd)
3714 {
3715         struct se_task *task;
3716         unsigned long flags;
3717
3718         task = transport_generic_get_task(cmd, cmd->data_direction);
3719         if (!task)
3720                 return -ENOMEM;
3721
3722         task->task_sg = cmd->t_data_sg;
3723         task->task_size = cmd->data_length;
3724         task->task_sg_nents = cmd->t_data_nents;
3725
3726         spin_lock_irqsave(&cmd->t_state_lock, flags);
3727         list_add_tail(&task->t_list, &cmd->t_task_list);
3728         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3729
3730         /* Success! Return number of tasks allocated */
3731         return 1;
3732 }
3733
3734 /*
3735  * Allocate any required ressources to execute the command, and either place
3736  * it on the execution queue if possible.  For writes we might not have the
3737  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3738  */
3739 int transport_generic_new_cmd(struct se_cmd *cmd)
3740 {
3741         struct se_device *dev = cmd->se_dev;
3742         int task_cdbs, task_cdbs_bidi = 0;
3743         int set_counts = 1;
3744         int ret = 0;
3745
3746         /*
3747          * Determine is the TCM fabric module has already allocated physical
3748          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3749          * beforehand.
3750          */
3751         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3752             cmd->data_length) {
3753                 ret = transport_generic_get_mem(cmd);
3754                 if (ret < 0)
3755                         goto out_fail;
3756         }
3757
3758         /*
3759          * For BIDI command set up the read tasks first.
3760          */
3761         if (cmd->t_bidi_data_sg &&
3762             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3763                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3764
3765                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3766                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3767                                 cmd->t_bidi_data_nents);
3768                 if (task_cdbs_bidi <= 0)
3769                         goto out_fail;
3770
3771                 atomic_inc(&cmd->t_fe_count);
3772                 atomic_inc(&cmd->t_se_count);
3773                 set_counts = 0;
3774         }
3775
3776         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3777                 task_cdbs = transport_allocate_data_tasks(cmd,
3778                                         cmd->data_direction, cmd->t_data_sg,
3779                                         cmd->t_data_nents);
3780         } else {
3781                 task_cdbs = transport_allocate_control_task(cmd);
3782         }
3783
3784         if (task_cdbs < 0)
3785                 goto out_fail;
3786         else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3787                 cmd->t_state = TRANSPORT_COMPLETE;
3788                 atomic_set(&cmd->t_transport_active, 1);
3789                 INIT_WORK(&cmd->work, target_complete_ok_work);
3790                 queue_work(target_completion_wq, &cmd->work);
3791                 return 0;
3792         }
3793
3794         if (set_counts) {
3795                 atomic_inc(&cmd->t_fe_count);
3796                 atomic_inc(&cmd->t_se_count);
3797         }
3798
3799         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3800         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3801         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3802
3803         /*
3804          * For WRITEs, let the fabric know its buffer is ready..
3805          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3806          * will be added to the struct se_device execution queue after its WRITE
3807          * data has arrived. (ie: It gets handled by the transport processing
3808          * thread a second time)
3809          */
3810         if (cmd->data_direction == DMA_TO_DEVICE) {
3811                 transport_add_tasks_to_state_queue(cmd);
3812                 return transport_generic_write_pending(cmd);
3813         }
3814         /*
3815          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3816          * to the execution queue.
3817          */
3818         transport_execute_tasks(cmd);
3819         return 0;
3820
3821 out_fail:
3822         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3823         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3824         return -EINVAL;
3825 }
3826 EXPORT_SYMBOL(transport_generic_new_cmd);
3827
3828 /*      transport_generic_process_write():
3829  *
3830  *
3831  */
3832 void transport_generic_process_write(struct se_cmd *cmd)
3833 {
3834         transport_execute_tasks(cmd);
3835 }
3836 EXPORT_SYMBOL(transport_generic_process_write);
3837
3838 static void transport_write_pending_qf(struct se_cmd *cmd)
3839 {
3840         int ret;
3841
3842         ret = cmd->se_tfo->write_pending(cmd);
3843         if (ret == -EAGAIN || ret == -ENOMEM) {
3844                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3845                          cmd);
3846                 transport_handle_queue_full(cmd, cmd->se_dev);
3847         }
3848 }
3849
3850 static int transport_generic_write_pending(struct se_cmd *cmd)
3851 {
3852         unsigned long flags;
3853         int ret;
3854
3855         spin_lock_irqsave(&cmd->t_state_lock, flags);
3856         cmd->t_state = TRANSPORT_WRITE_PENDING;
3857         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3858
3859         /*
3860          * Clear the se_cmd for WRITE_PENDING status in order to set
3861          * cmd->t_transport_active=0 so that transport_generic_handle_data
3862          * can be called from HW target mode interrupt code.  This is safe
3863          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3864          * because the se_cmd->se_lun pointer is not being cleared.
3865          */
3866         transport_cmd_check_stop(cmd, 1, 0);
3867
3868         /*
3869          * Call the fabric write_pending function here to let the
3870          * frontend know that WRITE buffers are ready.
3871          */
3872         ret = cmd->se_tfo->write_pending(cmd);
3873         if (ret == -EAGAIN || ret == -ENOMEM)
3874                 goto queue_full;
3875         else if (ret < 0)
3876                 return ret;
3877
3878         return 1;
3879
3880 queue_full:
3881         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3882         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3883         transport_handle_queue_full(cmd, cmd->se_dev);
3884         return 0;
3885 }
3886
3887 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3888 {
3889         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3890                 if (wait_for_tasks && cmd->se_tmr_req)
3891                          transport_wait_for_tasks(cmd);
3892
3893                 transport_release_cmd(cmd);
3894         } else {
3895                 if (wait_for_tasks)
3896                         transport_wait_for_tasks(cmd);
3897
3898                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3899
3900                 if (cmd->se_lun)
3901                         transport_lun_remove_cmd(cmd);
3902
3903                 transport_free_dev_tasks(cmd);
3904
3905                 transport_put_cmd(cmd);
3906         }
3907 }
3908 EXPORT_SYMBOL(transport_generic_free_cmd);
3909
3910 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3911  * @se_sess:    session to reference
3912  * @se_cmd:     command descriptor to add
3913  */
3914 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3915 {
3916         unsigned long flags;
3917
3918         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3919         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3920         se_cmd->check_release = 1;
3921         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3922 }
3923 EXPORT_SYMBOL(target_get_sess_cmd);
3924
3925 /* target_put_sess_cmd - Check for active I/O shutdown or list delete
3926  * @se_sess:    session to reference
3927  * @se_cmd:     command descriptor to drop
3928  */
3929 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3930 {
3931         unsigned long flags;
3932
3933         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3934         if (list_empty(&se_cmd->se_cmd_list)) {
3935                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3936                 WARN_ON(1);
3937                 return 0;
3938         }
3939
3940         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
3941                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3942                 complete(&se_cmd->cmd_wait_comp);
3943                 return 1;
3944         }
3945         list_del(&se_cmd->se_cmd_list);
3946         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3947
3948         return 0;
3949 }
3950 EXPORT_SYMBOL(target_put_sess_cmd);
3951
3952 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
3953  * @se_sess:    session to split
3954  */
3955 void target_splice_sess_cmd_list(struct se_session *se_sess)
3956 {
3957         struct se_cmd *se_cmd;
3958         unsigned long flags;
3959
3960         WARN_ON(!list_empty(&se_sess->sess_wait_list));
3961         INIT_LIST_HEAD(&se_sess->sess_wait_list);
3962
3963         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3964         se_sess->sess_tearing_down = 1;
3965
3966         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
3967
3968         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
3969                 se_cmd->cmd_wait_set = 1;
3970
3971         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3972 }
3973 EXPORT_SYMBOL(target_splice_sess_cmd_list);
3974
3975 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
3976  * @se_sess:    session to wait for active I/O
3977  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
3978  */
3979 void target_wait_for_sess_cmds(
3980         struct se_session *se_sess,
3981         int wait_for_tasks)
3982 {
3983         struct se_cmd *se_cmd, *tmp_cmd;
3984         bool rc = false;
3985
3986         list_for_each_entry_safe(se_cmd, tmp_cmd,
3987                                 &se_sess->sess_wait_list, se_cmd_list) {
3988                 list_del(&se_cmd->se_cmd_list);
3989
3990                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
3991                         " %d\n", se_cmd, se_cmd->t_state,
3992                         se_cmd->se_tfo->get_cmd_state(se_cmd));
3993
3994                 if (wait_for_tasks) {
3995                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
3996                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
3997                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
3998
3999                         rc = transport_wait_for_tasks(se_cmd);
4000
4001                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4002                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4003                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4004                 }
4005
4006                 if (!rc) {
4007                         wait_for_completion(&se_cmd->cmd_wait_comp);
4008                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4009                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4010                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4011                 }
4012
4013                 se_cmd->se_tfo->release_cmd(se_cmd);
4014         }
4015 }
4016 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4017
4018 /*      transport_lun_wait_for_tasks():
4019  *
4020  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4021  *      an struct se_lun to be successfully shutdown.
4022  */
4023 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4024 {
4025         unsigned long flags;
4026         int ret;
4027         /*
4028          * If the frontend has already requested this struct se_cmd to
4029          * be stopped, we can safely ignore this struct se_cmd.
4030          */
4031         spin_lock_irqsave(&cmd->t_state_lock, flags);
4032         if (atomic_read(&cmd->t_transport_stop)) {
4033                 atomic_set(&cmd->transport_lun_stop, 0);
4034                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4035                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4036                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4037                 transport_cmd_check_stop(cmd, 1, 0);
4038                 return -EPERM;
4039         }
4040         atomic_set(&cmd->transport_lun_fe_stop, 1);
4041         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4042
4043         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4044
4045         ret = transport_stop_tasks_for_cmd(cmd);
4046
4047         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4048                         " %d\n", cmd, cmd->t_task_list_num, ret);
4049         if (!ret) {
4050                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4051                                 cmd->se_tfo->get_task_tag(cmd));
4052                 wait_for_completion(&cmd->transport_lun_stop_comp);
4053                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4054                                 cmd->se_tfo->get_task_tag(cmd));
4055         }
4056         transport_remove_cmd_from_queue(cmd);
4057
4058         return 0;
4059 }
4060
4061 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4062 {
4063         struct se_cmd *cmd = NULL;
4064         unsigned long lun_flags, cmd_flags;
4065         /*
4066          * Do exception processing and return CHECK_CONDITION status to the
4067          * Initiator Port.
4068          */
4069         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4070         while (!list_empty(&lun->lun_cmd_list)) {
4071                 cmd = list_first_entry(&lun->lun_cmd_list,
4072                        struct se_cmd, se_lun_node);
4073                 list_del(&cmd->se_lun_node);
4074
4075                 atomic_set(&cmd->transport_lun_active, 0);
4076                 /*
4077                  * This will notify iscsi_target_transport.c:
4078                  * transport_cmd_check_stop() that a LUN shutdown is in
4079                  * progress for the iscsi_cmd_t.
4080                  */
4081                 spin_lock(&cmd->t_state_lock);
4082                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4083                         "_lun_stop for  ITT: 0x%08x\n",
4084                         cmd->se_lun->unpacked_lun,
4085                         cmd->se_tfo->get_task_tag(cmd));
4086                 atomic_set(&cmd->transport_lun_stop, 1);
4087                 spin_unlock(&cmd->t_state_lock);
4088
4089                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4090
4091                 if (!cmd->se_lun) {
4092                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4093                                 cmd->se_tfo->get_task_tag(cmd),
4094                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4095                         BUG();
4096                 }
4097                 /*
4098                  * If the Storage engine still owns the iscsi_cmd_t, determine
4099                  * and/or stop its context.
4100                  */
4101                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4102                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4103                         cmd->se_tfo->get_task_tag(cmd));
4104
4105                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4106                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4107                         continue;
4108                 }
4109
4110                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4111                         "_wait_for_tasks(): SUCCESS\n",
4112                         cmd->se_lun->unpacked_lun,
4113                         cmd->se_tfo->get_task_tag(cmd));
4114
4115                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4116                 if (!atomic_read(&cmd->transport_dev_active)) {
4117                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4118                         goto check_cond;
4119                 }
4120                 atomic_set(&cmd->transport_dev_active, 0);
4121                 transport_all_task_dev_remove_state(cmd);
4122                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4123
4124                 transport_free_dev_tasks(cmd);
4125                 /*
4126                  * The Storage engine stopped this struct se_cmd before it was
4127                  * send to the fabric frontend for delivery back to the
4128                  * Initiator Node.  Return this SCSI CDB back with an
4129                  * CHECK_CONDITION status.
4130                  */
4131 check_cond:
4132                 transport_send_check_condition_and_sense(cmd,
4133                                 TCM_NON_EXISTENT_LUN, 0);
4134                 /*
4135                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4136                  * be released, notify the waiting thread now that LU has
4137                  * finished accessing it.
4138                  */
4139                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4140                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4141                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4142                                 " struct se_cmd: %p ITT: 0x%08x\n",
4143                                 lun->unpacked_lun,
4144                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4145
4146                         spin_unlock_irqrestore(&cmd->t_state_lock,
4147                                         cmd_flags);
4148                         transport_cmd_check_stop(cmd, 1, 0);
4149                         complete(&cmd->transport_lun_fe_stop_comp);
4150                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4151                         continue;
4152                 }
4153                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4154                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4155
4156                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4157                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4158         }
4159         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4160 }
4161
4162 static int transport_clear_lun_thread(void *p)
4163 {
4164         struct se_lun *lun = p;
4165
4166         __transport_clear_lun_from_sessions(lun);
4167         complete(&lun->lun_shutdown_comp);
4168
4169         return 0;
4170 }
4171
4172 int transport_clear_lun_from_sessions(struct se_lun *lun)
4173 {
4174         struct task_struct *kt;
4175
4176         kt = kthread_run(transport_clear_lun_thread, lun,
4177                         "tcm_cl_%u", lun->unpacked_lun);
4178         if (IS_ERR(kt)) {
4179                 pr_err("Unable to start clear_lun thread\n");
4180                 return PTR_ERR(kt);
4181         }
4182         wait_for_completion(&lun->lun_shutdown_comp);
4183
4184         return 0;
4185 }
4186
4187 /**
4188  * transport_wait_for_tasks - wait for completion to occur
4189  * @cmd:        command to wait
4190  *
4191  * Called from frontend fabric context to wait for storage engine
4192  * to pause and/or release frontend generated struct se_cmd.
4193  */
4194 bool transport_wait_for_tasks(struct se_cmd *cmd)
4195 {
4196         unsigned long flags;
4197
4198         spin_lock_irqsave(&cmd->t_state_lock, flags);
4199         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4200                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4201                 return false;
4202         }
4203         /*
4204          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4205          * has been set in transport_set_supported_SAM_opcode().
4206          */
4207         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4208                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4209                 return false;
4210         }
4211         /*
4212          * If we are already stopped due to an external event (ie: LUN shutdown)
4213          * sleep until the connection can have the passed struct se_cmd back.
4214          * The cmd->transport_lun_stopped_sem will be upped by
4215          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4216          * has completed its operation on the struct se_cmd.
4217          */
4218         if (atomic_read(&cmd->transport_lun_stop)) {
4219
4220                 pr_debug("wait_for_tasks: Stopping"
4221                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4222                         "_stop_comp); for ITT: 0x%08x\n",
4223                         cmd->se_tfo->get_task_tag(cmd));
4224                 /*
4225                  * There is a special case for WRITES where a FE exception +
4226                  * LUN shutdown means ConfigFS context is still sleeping on
4227                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4228                  * We go ahead and up transport_lun_stop_comp just to be sure
4229                  * here.
4230                  */
4231                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4232                 complete(&cmd->transport_lun_stop_comp);
4233                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4234                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4235
4236                 transport_all_task_dev_remove_state(cmd);
4237                 /*
4238                  * At this point, the frontend who was the originator of this
4239                  * struct se_cmd, now owns the structure and can be released through
4240                  * normal means below.
4241                  */
4242                 pr_debug("wait_for_tasks: Stopped"
4243                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4244                         "stop_comp); for ITT: 0x%08x\n",
4245                         cmd->se_tfo->get_task_tag(cmd));
4246
4247                 atomic_set(&cmd->transport_lun_stop, 0);
4248         }
4249         if (!atomic_read(&cmd->t_transport_active) ||
4250              atomic_read(&cmd->t_transport_aborted)) {
4251                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4252                 return false;
4253         }
4254
4255         atomic_set(&cmd->t_transport_stop, 1);
4256
4257         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4258                 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4259                 cmd, cmd->se_tfo->get_task_tag(cmd),
4260                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4261
4262         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4263
4264         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4265
4266         wait_for_completion(&cmd->t_transport_stop_comp);
4267
4268         spin_lock_irqsave(&cmd->t_state_lock, flags);
4269         atomic_set(&cmd->t_transport_active, 0);
4270         atomic_set(&cmd->t_transport_stop, 0);
4271
4272         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4273                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4274                 cmd->se_tfo->get_task_tag(cmd));
4275
4276         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4277
4278         return true;
4279 }
4280 EXPORT_SYMBOL(transport_wait_for_tasks);
4281
4282 static int transport_get_sense_codes(
4283         struct se_cmd *cmd,
4284         u8 *asc,
4285         u8 *ascq)
4286 {
4287         *asc = cmd->scsi_asc;
4288         *ascq = cmd->scsi_ascq;
4289
4290         return 0;
4291 }
4292
4293 static int transport_set_sense_codes(
4294         struct se_cmd *cmd,
4295         u8 asc,
4296         u8 ascq)
4297 {
4298         cmd->scsi_asc = asc;
4299         cmd->scsi_ascq = ascq;
4300
4301         return 0;
4302 }
4303
4304 int transport_send_check_condition_and_sense(
4305         struct se_cmd *cmd,
4306         u8 reason,
4307         int from_transport)
4308 {
4309         unsigned char *buffer = cmd->sense_buffer;
4310         unsigned long flags;
4311         int offset;
4312         u8 asc = 0, ascq = 0;
4313
4314         spin_lock_irqsave(&cmd->t_state_lock, flags);
4315         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4316                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4317                 return 0;
4318         }
4319         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4320         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4321
4322         if (!reason && from_transport)
4323                 goto after_reason;
4324
4325         if (!from_transport)
4326                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4327         /*
4328          * Data Segment and SenseLength of the fabric response PDU.
4329          *
4330          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4331          * from include/scsi/scsi_cmnd.h
4332          */
4333         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4334                                 TRANSPORT_SENSE_BUFFER);
4335         /*
4336          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4337          * SENSE KEY values from include/scsi/scsi.h
4338          */
4339         switch (reason) {
4340         case TCM_NON_EXISTENT_LUN:
4341                 /* CURRENT ERROR */
4342                 buffer[offset] = 0x70;
4343                 /* ILLEGAL REQUEST */
4344                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4345                 /* LOGICAL UNIT NOT SUPPORTED */
4346                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4347                 break;
4348         case TCM_UNSUPPORTED_SCSI_OPCODE:
4349         case TCM_SECTOR_COUNT_TOO_MANY:
4350                 /* CURRENT ERROR */
4351                 buffer[offset] = 0x70;
4352                 /* ILLEGAL REQUEST */
4353                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4354                 /* INVALID COMMAND OPERATION CODE */
4355                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4356                 break;
4357         case TCM_UNKNOWN_MODE_PAGE:
4358                 /* CURRENT ERROR */
4359                 buffer[offset] = 0x70;
4360                 /* ILLEGAL REQUEST */
4361                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4362                 /* INVALID FIELD IN CDB */
4363                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4364                 break;
4365         case TCM_CHECK_CONDITION_ABORT_CMD:
4366                 /* CURRENT ERROR */
4367                 buffer[offset] = 0x70;
4368                 /* ABORTED COMMAND */
4369                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4370                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4371                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4372                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4373                 break;
4374         case TCM_INCORRECT_AMOUNT_OF_DATA:
4375                 /* CURRENT ERROR */
4376                 buffer[offset] = 0x70;
4377                 /* ABORTED COMMAND */
4378                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4379                 /* WRITE ERROR */
4380                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4381                 /* NOT ENOUGH UNSOLICITED DATA */
4382                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4383                 break;
4384         case TCM_INVALID_CDB_FIELD:
4385                 /* CURRENT ERROR */
4386                 buffer[offset] = 0x70;
4387                 /* ABORTED COMMAND */
4388                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4389                 /* INVALID FIELD IN CDB */
4390                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4391                 break;
4392         case TCM_INVALID_PARAMETER_LIST:
4393                 /* CURRENT ERROR */
4394                 buffer[offset] = 0x70;
4395                 /* ABORTED COMMAND */
4396                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4397                 /* INVALID FIELD IN PARAMETER LIST */
4398                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4399                 break;
4400         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4401                 /* CURRENT ERROR */
4402                 buffer[offset] = 0x70;
4403                 /* ABORTED COMMAND */
4404                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4405                 /* WRITE ERROR */
4406                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4407                 /* UNEXPECTED_UNSOLICITED_DATA */
4408                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4409                 break;
4410         case TCM_SERVICE_CRC_ERROR:
4411                 /* CURRENT ERROR */
4412                 buffer[offset] = 0x70;
4413                 /* ABORTED COMMAND */
4414                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4415                 /* PROTOCOL SERVICE CRC ERROR */
4416                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4417                 /* N/A */
4418                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4419                 break;
4420         case TCM_SNACK_REJECTED:
4421                 /* CURRENT ERROR */
4422                 buffer[offset] = 0x70;
4423                 /* ABORTED COMMAND */
4424                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4425                 /* READ ERROR */
4426                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4427                 /* FAILED RETRANSMISSION REQUEST */
4428                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4429                 break;
4430         case TCM_WRITE_PROTECTED:
4431                 /* CURRENT ERROR */
4432                 buffer[offset] = 0x70;
4433                 /* DATA PROTECT */
4434                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4435                 /* WRITE PROTECTED */
4436                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4437                 break;
4438         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4439                 /* CURRENT ERROR */
4440                 buffer[offset] = 0x70;
4441                 /* UNIT ATTENTION */
4442                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4443                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4444                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4445                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4446                 break;
4447         case TCM_CHECK_CONDITION_NOT_READY:
4448                 /* CURRENT ERROR */
4449                 buffer[offset] = 0x70;
4450                 /* Not Ready */
4451                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4452                 transport_get_sense_codes(cmd, &asc, &ascq);
4453                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4454                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4455                 break;
4456         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4457         default:
4458                 /* CURRENT ERROR */
4459                 buffer[offset] = 0x70;
4460                 /* ILLEGAL REQUEST */
4461                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4462                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4463                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4464                 break;
4465         }
4466         /*
4467          * This code uses linux/include/scsi/scsi.h SAM status codes!
4468          */
4469         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4470         /*
4471          * Automatically padded, this value is encoded in the fabric's
4472          * data_length response PDU containing the SCSI defined sense data.
4473          */
4474         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4475
4476 after_reason:
4477         return cmd->se_tfo->queue_status(cmd);
4478 }
4479 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4480
4481 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4482 {
4483         int ret = 0;
4484
4485         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4486                 if (!send_status ||
4487                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4488                         return 1;
4489 #if 0
4490                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4491                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4492                         cmd->t_task_cdb[0],
4493                         cmd->se_tfo->get_task_tag(cmd));
4494 #endif
4495                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4496                 cmd->se_tfo->queue_status(cmd);
4497                 ret = 1;
4498         }
4499         return ret;
4500 }
4501 EXPORT_SYMBOL(transport_check_aborted_status);
4502
4503 void transport_send_task_abort(struct se_cmd *cmd)
4504 {
4505         unsigned long flags;
4506
4507         spin_lock_irqsave(&cmd->t_state_lock, flags);
4508         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4509                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4510                 return;
4511         }
4512         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4513
4514         /*
4515          * If there are still expected incoming fabric WRITEs, we wait
4516          * until until they have completed before sending a TASK_ABORTED
4517          * response.  This response with TASK_ABORTED status will be
4518          * queued back to fabric module by transport_check_aborted_status().
4519          */
4520         if (cmd->data_direction == DMA_TO_DEVICE) {
4521                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4522                         atomic_inc(&cmd->t_transport_aborted);
4523                         smp_mb__after_atomic_inc();
4524                 }
4525         }
4526         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4527 #if 0
4528         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4529                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4530                 cmd->se_tfo->get_task_tag(cmd));
4531 #endif
4532         cmd->se_tfo->queue_status(cmd);
4533 }
4534
4535 static int transport_generic_do_tmr(struct se_cmd *cmd)
4536 {
4537         struct se_device *dev = cmd->se_dev;
4538         struct se_tmr_req *tmr = cmd->se_tmr_req;
4539         int ret;
4540
4541         switch (tmr->function) {
4542         case TMR_ABORT_TASK:
4543                 tmr->response = TMR_FUNCTION_REJECTED;
4544                 break;
4545         case TMR_ABORT_TASK_SET:
4546         case TMR_CLEAR_ACA:
4547         case TMR_CLEAR_TASK_SET:
4548                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4549                 break;
4550         case TMR_LUN_RESET:
4551                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4552                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4553                                          TMR_FUNCTION_REJECTED;
4554                 break;
4555         case TMR_TARGET_WARM_RESET:
4556                 tmr->response = TMR_FUNCTION_REJECTED;
4557                 break;
4558         case TMR_TARGET_COLD_RESET:
4559                 tmr->response = TMR_FUNCTION_REJECTED;
4560                 break;
4561         default:
4562                 pr_err("Uknown TMR function: 0x%02x.\n",
4563                                 tmr->function);
4564                 tmr->response = TMR_FUNCTION_REJECTED;
4565                 break;
4566         }
4567
4568         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4569         cmd->se_tfo->queue_tm_rsp(cmd);
4570
4571         transport_cmd_check_stop_to_fabric(cmd);
4572         return 0;
4573 }
4574
4575 /*      transport_processing_thread():
4576  *
4577  *
4578  */
4579 static int transport_processing_thread(void *param)
4580 {
4581         int ret;
4582         struct se_cmd *cmd;
4583         struct se_device *dev = param;
4584
4585         while (!kthread_should_stop()) {
4586                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4587                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4588                                 kthread_should_stop());
4589                 if (ret < 0)
4590                         goto out;
4591
4592 get_cmd:
4593                 __transport_execute_tasks(dev);
4594
4595                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4596                 if (!cmd)
4597                         continue;
4598
4599                 switch (cmd->t_state) {
4600                 case TRANSPORT_NEW_CMD:
4601                         BUG();
4602                         break;
4603                 case TRANSPORT_NEW_CMD_MAP:
4604                         if (!cmd->se_tfo->new_cmd_map) {
4605                                 pr_err("cmd->se_tfo->new_cmd_map is"
4606                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4607                                 BUG();
4608                         }
4609                         ret = cmd->se_tfo->new_cmd_map(cmd);
4610                         if (ret < 0) {
4611                                 transport_generic_request_failure(cmd);
4612                                 break;
4613                         }
4614                         ret = transport_generic_new_cmd(cmd);
4615                         if (ret < 0) {
4616                                 transport_generic_request_failure(cmd);
4617                                 break;
4618                         }
4619                         break;
4620                 case TRANSPORT_PROCESS_WRITE:
4621                         transport_generic_process_write(cmd);
4622                         break;
4623                 case TRANSPORT_PROCESS_TMR:
4624                         transport_generic_do_tmr(cmd);
4625                         break;
4626                 case TRANSPORT_COMPLETE_QF_WP:
4627                         transport_write_pending_qf(cmd);
4628                         break;
4629                 case TRANSPORT_COMPLETE_QF_OK:
4630                         transport_complete_qf(cmd);
4631                         break;
4632                 default:
4633                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4634                                 "i_state: %d on SE LUN: %u\n",
4635                                 cmd->t_state,
4636                                 cmd->se_tfo->get_task_tag(cmd),
4637                                 cmd->se_tfo->get_cmd_state(cmd),
4638                                 cmd->se_lun->unpacked_lun);
4639                         BUG();
4640                 }
4641
4642                 goto get_cmd;
4643         }
4644
4645 out:
4646         WARN_ON(!list_empty(&dev->state_task_list));
4647         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4648         dev->process_thread = NULL;
4649         return 0;
4650 }