]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/staging/media/lirc/lirc_serial.c
[media] staging: lirc_serial: Fix deadlock on resume failure
[linux-2.6.git] / drivers / staging / media / lirc / lirc_serial.c
1 /*
2  * lirc_serial.c
3  *
4  * lirc_serial - Device driver that records pulse- and pause-lengths
5  *             (space-lengths) between DDCD event on a serial port.
6  *
7  * Copyright (C) 1996,97 Ralph Metzler <rjkm@thp.uni-koeln.de>
8  * Copyright (C) 1998 Trent Piepho <xyzzy@u.washington.edu>
9  * Copyright (C) 1998 Ben Pfaff <blp@gnu.org>
10  * Copyright (C) 1999 Christoph Bartelmus <lirc@bartelmus.de>
11  * Copyright (C) 2007 Andrei Tanas <andrei@tanas.ca> (suspend/resume support)
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27
28 /*
29  * Steve's changes to improve transmission fidelity:
30  *   - for systems with the rdtsc instruction and the clock counter, a
31  *     send_pule that times the pulses directly using the counter.
32  *     This means that the LIRC_SERIAL_TRANSMITTER_LATENCY fudge is
33  *     not needed. Measurement shows very stable waveform, even where
34  *     PCI activity slows the access to the UART, which trips up other
35  *     versions.
36  *   - For other system, non-integer-microsecond pulse/space lengths,
37  *     done using fixed point binary. So, much more accurate carrier
38  *     frequency.
39  *   - fine tuned transmitter latency, taking advantage of fractional
40  *     microseconds in previous change
41  *   - Fixed bug in the way transmitter latency was accounted for by
42  *     tuning the pulse lengths down - the send_pulse routine ignored
43  *     this overhead as it timed the overall pulse length - so the
44  *     pulse frequency was right but overall pulse length was too
45  *     long. Fixed by accounting for latency on each pulse/space
46  *     iteration.
47  *
48  * Steve Davies <steve@daviesfam.org>  July 2001
49  */
50
51 #include <linux/module.h>
52 #include <linux/errno.h>
53 #include <linux/signal.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/interrupt.h>
57 #include <linux/ioport.h>
58 #include <linux/kernel.h>
59 #include <linux/serial_reg.h>
60 #include <linux/time.h>
61 #include <linux/string.h>
62 #include <linux/types.h>
63 #include <linux/wait.h>
64 #include <linux/mm.h>
65 #include <linux/delay.h>
66 #include <linux/poll.h>
67 #include <linux/platform_device.h>
68
69 #include <asm/system.h>
70 #include <linux/io.h>
71 #include <linux/irq.h>
72 #include <linux/fcntl.h>
73 #include <linux/spinlock.h>
74
75 #ifdef CONFIG_LIRC_SERIAL_NSLU2
76 #include <asm/hardware.h>
77 #endif
78 /* From Intel IXP42X Developer's Manual (#252480-005): */
79 /* ftp://download.intel.com/design/network/manuals/25248005.pdf */
80 #define UART_IE_IXP42X_UUE   0x40 /* IXP42X UART Unit enable */
81 #define UART_IE_IXP42X_RTOIE 0x10 /* IXP42X Receiver Data Timeout int.enable */
82
83 #include <media/lirc.h>
84 #include <media/lirc_dev.h>
85
86 #define LIRC_DRIVER_NAME "lirc_serial"
87
88 struct lirc_serial {
89         int signal_pin;
90         int signal_pin_change;
91         u8 on;
92         u8 off;
93         long (*send_pulse)(unsigned long length);
94         void (*send_space)(long length);
95         int features;
96         spinlock_t lock;
97 };
98
99 #define LIRC_HOMEBREW           0
100 #define LIRC_IRDEO              1
101 #define LIRC_IRDEO_REMOTE       2
102 #define LIRC_ANIMAX             3
103 #define LIRC_IGOR               4
104 #define LIRC_NSLU2              5
105
106 /*** module parameters ***/
107 static int type;
108 static int io;
109 static int irq;
110 static int iommap;
111 static int ioshift;
112 static int softcarrier = 1;
113 static int share_irq;
114 static int debug;
115 static int sense = -1;  /* -1 = auto, 0 = active high, 1 = active low */
116 static int txsense;     /* 0 = active high, 1 = active low */
117
118 #define dprintk(fmt, args...)                                   \
119         do {                                                    \
120                 if (debug)                                      \
121                         printk(KERN_DEBUG LIRC_DRIVER_NAME ": " \
122                                fmt, ## args);                   \
123         } while (0)
124
125 /* forward declarations */
126 static long send_pulse_irdeo(unsigned long length);
127 static long send_pulse_homebrew(unsigned long length);
128 static void send_space_irdeo(long length);
129 static void send_space_homebrew(long length);
130
131 static struct lirc_serial hardware[] = {
132         [LIRC_HOMEBREW] = {
133                 .signal_pin        = UART_MSR_DCD,
134                 .signal_pin_change = UART_MSR_DDCD,
135                 .on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
136                 .off = (UART_MCR_RTS | UART_MCR_OUT2),
137                 .send_pulse = send_pulse_homebrew,
138                 .send_space = send_space_homebrew,
139 #ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
140                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
141                                 LIRC_CAN_SET_SEND_CARRIER |
142                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
143 #else
144                 .features    = LIRC_CAN_REC_MODE2
145 #endif
146         },
147
148         [LIRC_IRDEO] = {
149                 .signal_pin        = UART_MSR_DSR,
150                 .signal_pin_change = UART_MSR_DDSR,
151                 .on  = UART_MCR_OUT2,
152                 .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
153                 .send_pulse  = send_pulse_irdeo,
154                 .send_space  = send_space_irdeo,
155                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
156                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
157         },
158
159         [LIRC_IRDEO_REMOTE] = {
160                 .signal_pin        = UART_MSR_DSR,
161                 .signal_pin_change = UART_MSR_DDSR,
162                 .on  = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
163                 .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
164                 .send_pulse  = send_pulse_irdeo,
165                 .send_space  = send_space_irdeo,
166                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
167                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
168         },
169
170         [LIRC_ANIMAX] = {
171                 .signal_pin        = UART_MSR_DCD,
172                 .signal_pin_change = UART_MSR_DDCD,
173                 .on  = 0,
174                 .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
175                 .send_pulse = NULL,
176                 .send_space = NULL,
177                 .features   = LIRC_CAN_REC_MODE2
178         },
179
180         [LIRC_IGOR] = {
181                 .signal_pin        = UART_MSR_DSR,
182                 .signal_pin_change = UART_MSR_DDSR,
183                 .on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
184                 .off = (UART_MCR_RTS | UART_MCR_OUT2),
185                 .send_pulse = send_pulse_homebrew,
186                 .send_space = send_space_homebrew,
187 #ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
188                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
189                                 LIRC_CAN_SET_SEND_CARRIER |
190                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
191 #else
192                 .features    = LIRC_CAN_REC_MODE2
193 #endif
194         },
195
196 #ifdef CONFIG_LIRC_SERIAL_NSLU2
197         /*
198          * Modified Linksys Network Storage Link USB 2.0 (NSLU2):
199          * We receive on CTS of the 2nd serial port (R142,LHS), we
200          * transmit with a IR diode between GPIO[1] (green status LED),
201          * and ground (Matthias Goebl <matthias.goebl@goebl.net>).
202          * See also http://www.nslu2-linux.org for this device
203          */
204         [LIRC_NSLU2] = {
205                 .signal_pin        = UART_MSR_CTS,
206                 .signal_pin_change = UART_MSR_DCTS,
207                 .on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
208                 .off = (UART_MCR_RTS | UART_MCR_OUT2),
209                 .send_pulse = send_pulse_homebrew,
210                 .send_space = send_space_homebrew,
211 #ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
212                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
213                                 LIRC_CAN_SET_SEND_CARRIER |
214                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
215 #else
216                 .features    = LIRC_CAN_REC_MODE2
217 #endif
218         },
219 #endif
220
221 };
222
223 #define RS_ISR_PASS_LIMIT 256
224
225 /*
226  * A long pulse code from a remote might take up to 300 bytes.  The
227  * daemon should read the bytes as soon as they are generated, so take
228  * the number of keys you think you can push before the daemon runs
229  * and multiply by 300.  The driver will warn you if you overrun this
230  * buffer.  If you have a slow computer or non-busmastering IDE disks,
231  * maybe you will need to increase this.
232  */
233
234 /* This MUST be a power of two!  It has to be larger than 1 as well. */
235
236 #define RBUF_LEN 256
237
238 static struct timeval lasttv = {0, 0};
239
240 static struct lirc_buffer rbuf;
241
242 static unsigned int freq = 38000;
243 static unsigned int duty_cycle = 50;
244
245 /* Initialized in init_timing_params() */
246 static unsigned long period;
247 static unsigned long pulse_width;
248 static unsigned long space_width;
249
250 #if defined(__i386__)
251 /*
252  * From:
253  * Linux I/O port programming mini-HOWTO
254  * Author: Riku Saikkonen <Riku.Saikkonen@hut.fi>
255  * v, 28 December 1997
256  *
257  * [...]
258  * Actually, a port I/O instruction on most ports in the 0-0x3ff range
259  * takes almost exactly 1 microsecond, so if you're, for example, using
260  * the parallel port directly, just do additional inb()s from that port
261  * to delay.
262  * [...]
263  */
264 /* transmitter latency 1.5625us 0x1.90 - this figure arrived at from
265  * comment above plus trimming to match actual measured frequency.
266  * This will be sensitive to cpu speed, though hopefully most of the 1.5us
267  * is spent in the uart access.  Still - for reference test machine was a
268  * 1.13GHz Athlon system - Steve
269  */
270
271 /*
272  * changed from 400 to 450 as this works better on slower machines;
273  * faster machines will use the rdtsc code anyway
274  */
275 #define LIRC_SERIAL_TRANSMITTER_LATENCY 450
276
277 #else
278
279 /* does anybody have information on other platforms ? */
280 /* 256 = 1<<8 */
281 #define LIRC_SERIAL_TRANSMITTER_LATENCY 256
282
283 #endif  /* __i386__ */
284 /*
285  * FIXME: should we be using hrtimers instead of this
286  * LIRC_SERIAL_TRANSMITTER_LATENCY nonsense?
287  */
288
289 /* fetch serial input packet (1 byte) from register offset */
290 static u8 sinp(int offset)
291 {
292         if (iommap != 0)
293                 /* the register is memory-mapped */
294                 offset <<= ioshift;
295
296         return inb(io + offset);
297 }
298
299 /* write serial output packet (1 byte) of value to register offset */
300 static void soutp(int offset, u8 value)
301 {
302         if (iommap != 0)
303                 /* the register is memory-mapped */
304                 offset <<= ioshift;
305
306         outb(value, io + offset);
307 }
308
309 static void on(void)
310 {
311 #ifdef CONFIG_LIRC_SERIAL_NSLU2
312         /*
313          * On NSLU2, we put the transmit diode between the output of the green
314          * status LED and ground
315          */
316         if (type == LIRC_NSLU2) {
317                 gpio_line_set(NSLU2_LED_GRN, IXP4XX_GPIO_LOW);
318                 return;
319         }
320 #endif
321         if (txsense)
322                 soutp(UART_MCR, hardware[type].off);
323         else
324                 soutp(UART_MCR, hardware[type].on);
325 }
326
327 static void off(void)
328 {
329 #ifdef CONFIG_LIRC_SERIAL_NSLU2
330         if (type == LIRC_NSLU2) {
331                 gpio_line_set(NSLU2_LED_GRN, IXP4XX_GPIO_HIGH);
332                 return;
333         }
334 #endif
335         if (txsense)
336                 soutp(UART_MCR, hardware[type].on);
337         else
338                 soutp(UART_MCR, hardware[type].off);
339 }
340
341 #ifndef MAX_UDELAY_MS
342 #define MAX_UDELAY_US 5000
343 #else
344 #define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
345 #endif
346
347 static void safe_udelay(unsigned long usecs)
348 {
349         while (usecs > MAX_UDELAY_US) {
350                 udelay(MAX_UDELAY_US);
351                 usecs -= MAX_UDELAY_US;
352         }
353         udelay(usecs);
354 }
355
356 #ifdef USE_RDTSC
357 /*
358  * This is an overflow/precision juggle, complicated in that we can't
359  * do long long divide in the kernel
360  */
361
362 /*
363  * When we use the rdtsc instruction to measure clocks, we keep the
364  * pulse and space widths as clock cycles.  As this is CPU speed
365  * dependent, the widths must be calculated in init_port and ioctl
366  * time
367  */
368
369 /* So send_pulse can quickly convert microseconds to clocks */
370 static unsigned long conv_us_to_clocks;
371
372 static int init_timing_params(unsigned int new_duty_cycle,
373                 unsigned int new_freq)
374 {
375         __u64 loops_per_sec, work;
376
377         duty_cycle = new_duty_cycle;
378         freq = new_freq;
379
380         loops_per_sec = __this_cpu_read(cpu.info.loops_per_jiffy);
381         loops_per_sec *= HZ;
382
383         /* How many clocks in a microsecond?, avoiding long long divide */
384         work = loops_per_sec;
385         work *= 4295;  /* 4295 = 2^32 / 1e6 */
386         conv_us_to_clocks = (work >> 32);
387
388         /*
389          * Carrier period in clocks, approach good up to 32GHz clock,
390          * gets carrier frequency within 8Hz
391          */
392         period = loops_per_sec >> 3;
393         period /= (freq >> 3);
394
395         /* Derive pulse and space from the period */
396         pulse_width = period * duty_cycle / 100;
397         space_width = period - pulse_width;
398         dprintk("in init_timing_params, freq=%d, duty_cycle=%d, "
399                 "clk/jiffy=%ld, pulse=%ld, space=%ld, "
400                 "conv_us_to_clocks=%ld\n",
401                 freq, duty_cycle, __this_cpu_read(cpu_info.loops_per_jiffy),
402                 pulse_width, space_width, conv_us_to_clocks);
403         return 0;
404 }
405 #else /* ! USE_RDTSC */
406 static int init_timing_params(unsigned int new_duty_cycle,
407                 unsigned int new_freq)
408 {
409 /*
410  * period, pulse/space width are kept with 8 binary places -
411  * IE multiplied by 256.
412  */
413         if (256 * 1000000L / new_freq * new_duty_cycle / 100 <=
414             LIRC_SERIAL_TRANSMITTER_LATENCY)
415                 return -EINVAL;
416         if (256 * 1000000L / new_freq * (100 - new_duty_cycle) / 100 <=
417             LIRC_SERIAL_TRANSMITTER_LATENCY)
418                 return -EINVAL;
419         duty_cycle = new_duty_cycle;
420         freq = new_freq;
421         period = 256 * 1000000L / freq;
422         pulse_width = period * duty_cycle / 100;
423         space_width = period - pulse_width;
424         dprintk("in init_timing_params, freq=%d pulse=%ld, "
425                 "space=%ld\n", freq, pulse_width, space_width);
426         return 0;
427 }
428 #endif /* USE_RDTSC */
429
430
431 /* return value: space length delta */
432
433 static long send_pulse_irdeo(unsigned long length)
434 {
435         long rawbits, ret;
436         int i;
437         unsigned char output;
438         unsigned char chunk, shifted;
439
440         /* how many bits have to be sent ? */
441         rawbits = length * 1152 / 10000;
442         if (duty_cycle > 50)
443                 chunk = 3;
444         else
445                 chunk = 1;
446         for (i = 0, output = 0x7f; rawbits > 0; rawbits -= 3) {
447                 shifted = chunk << (i * 3);
448                 shifted >>= 1;
449                 output &= (~shifted);
450                 i++;
451                 if (i == 3) {
452                         soutp(UART_TX, output);
453                         while (!(sinp(UART_LSR) & UART_LSR_THRE))
454                                 ;
455                         output = 0x7f;
456                         i = 0;
457                 }
458         }
459         if (i != 0) {
460                 soutp(UART_TX, output);
461                 while (!(sinp(UART_LSR) & UART_LSR_TEMT))
462                         ;
463         }
464
465         if (i == 0)
466                 ret = (-rawbits) * 10000 / 1152;
467         else
468                 ret = (3 - i) * 3 * 10000 / 1152 + (-rawbits) * 10000 / 1152;
469
470         return ret;
471 }
472
473 #ifdef USE_RDTSC
474 /* Version that uses Pentium rdtsc instruction to measure clocks */
475
476 /*
477  * This version does sub-microsecond timing using rdtsc instruction,
478  * and does away with the fudged LIRC_SERIAL_TRANSMITTER_LATENCY
479  * Implicitly i586 architecture...  - Steve
480  */
481
482 static long send_pulse_homebrew_softcarrier(unsigned long length)
483 {
484         int flag;
485         unsigned long target, start, now;
486
487         /* Get going quick as we can */
488         rdtscl(start);
489         on();
490         /* Convert length from microseconds to clocks */
491         length *= conv_us_to_clocks;
492         /* And loop till time is up - flipping at right intervals */
493         now = start;
494         target = pulse_width;
495         flag = 1;
496         /*
497          * FIXME: This looks like a hard busy wait, without even an occasional,
498          * polite, cpu_relax() call.  There's got to be a better way?
499          *
500          * The i2c code has the result of a lot of bit-banging work, I wonder if
501          * there's something there which could be helpful here.
502          */
503         while ((now - start) < length) {
504                 /* Delay till flip time */
505                 do {
506                         rdtscl(now);
507                 } while ((now - start) < target);
508
509                 /* flip */
510                 if (flag) {
511                         rdtscl(now);
512                         off();
513                         target += space_width;
514                 } else {
515                         rdtscl(now); on();
516                         target += pulse_width;
517                 }
518                 flag = !flag;
519         }
520         rdtscl(now);
521         return ((now - start) - length) / conv_us_to_clocks;
522 }
523 #else /* ! USE_RDTSC */
524 /* Version using udelay() */
525
526 /*
527  * here we use fixed point arithmetic, with 8
528  * fractional bits.  that gets us within 0.1% or so of the right average
529  * frequency, albeit with some jitter in pulse length - Steve
530  */
531
532 /* To match 8 fractional bits used for pulse/space length */
533
534 static long send_pulse_homebrew_softcarrier(unsigned long length)
535 {
536         int flag;
537         unsigned long actual, target, d;
538         length <<= 8;
539
540         actual = 0; target = 0; flag = 0;
541         while (actual < length) {
542                 if (flag) {
543                         off();
544                         target += space_width;
545                 } else {
546                         on();
547                         target += pulse_width;
548                 }
549                 d = (target - actual -
550                      LIRC_SERIAL_TRANSMITTER_LATENCY + 128) >> 8;
551                 /*
552                  * Note - we've checked in ioctl that the pulse/space
553                  * widths are big enough so that d is > 0
554                  */
555                 udelay(d);
556                 actual += (d << 8) + LIRC_SERIAL_TRANSMITTER_LATENCY;
557                 flag = !flag;
558         }
559         return (actual-length) >> 8;
560 }
561 #endif /* USE_RDTSC */
562
563 static long send_pulse_homebrew(unsigned long length)
564 {
565         if (length <= 0)
566                 return 0;
567
568         if (softcarrier)
569                 return send_pulse_homebrew_softcarrier(length);
570         else {
571                 on();
572                 safe_udelay(length);
573                 return 0;
574         }
575 }
576
577 static void send_space_irdeo(long length)
578 {
579         if (length <= 0)
580                 return;
581
582         safe_udelay(length);
583 }
584
585 static void send_space_homebrew(long length)
586 {
587         off();
588         if (length <= 0)
589                 return;
590         safe_udelay(length);
591 }
592
593 static void rbwrite(int l)
594 {
595         if (lirc_buffer_full(&rbuf)) {
596                 /* no new signals will be accepted */
597                 dprintk("Buffer overrun\n");
598                 return;
599         }
600         lirc_buffer_write(&rbuf, (void *)&l);
601 }
602
603 static void frbwrite(int l)
604 {
605         /* simple noise filter */
606         static int pulse, space;
607         static unsigned int ptr;
608
609         if (ptr > 0 && (l & PULSE_BIT)) {
610                 pulse += l & PULSE_MASK;
611                 if (pulse > 250) {
612                         rbwrite(space);
613                         rbwrite(pulse | PULSE_BIT);
614                         ptr = 0;
615                         pulse = 0;
616                 }
617                 return;
618         }
619         if (!(l & PULSE_BIT)) {
620                 if (ptr == 0) {
621                         if (l > 20000) {
622                                 space = l;
623                                 ptr++;
624                                 return;
625                         }
626                 } else {
627                         if (l > 20000) {
628                                 space += pulse;
629                                 if (space > PULSE_MASK)
630                                         space = PULSE_MASK;
631                                 space += l;
632                                 if (space > PULSE_MASK)
633                                         space = PULSE_MASK;
634                                 pulse = 0;
635                                 return;
636                         }
637                         rbwrite(space);
638                         rbwrite(pulse | PULSE_BIT);
639                         ptr = 0;
640                         pulse = 0;
641                 }
642         }
643         rbwrite(l);
644 }
645
646 static irqreturn_t irq_handler(int i, void *blah)
647 {
648         struct timeval tv;
649         int counter, dcd;
650         u8 status;
651         long deltv;
652         int data;
653         static int last_dcd = -1;
654
655         if ((sinp(UART_IIR) & UART_IIR_NO_INT)) {
656                 /* not our interrupt */
657                 return IRQ_NONE;
658         }
659
660         counter = 0;
661         do {
662                 counter++;
663                 status = sinp(UART_MSR);
664                 if (counter > RS_ISR_PASS_LIMIT) {
665                         printk(KERN_WARNING LIRC_DRIVER_NAME ": AIEEEE: "
666                                "We're caught!\n");
667                         break;
668                 }
669                 if ((status & hardware[type].signal_pin_change)
670                     && sense != -1) {
671                         /* get current time */
672                         do_gettimeofday(&tv);
673
674                         /* New mode, written by Trent Piepho
675                            <xyzzy@u.washington.edu>. */
676
677                         /*
678                          * The old format was not very portable.
679                          * We now use an int to pass pulses
680                          * and spaces to user space.
681                          *
682                          * If PULSE_BIT is set a pulse has been
683                          * received, otherwise a space has been
684                          * received.  The driver needs to know if your
685                          * receiver is active high or active low, or
686                          * the space/pulse sense could be
687                          * inverted. The bits denoted by PULSE_MASK are
688                          * the length in microseconds. Lengths greater
689                          * than or equal to 16 seconds are clamped to
690                          * PULSE_MASK.  All other bits are unused.
691                          * This is a much simpler interface for user
692                          * programs, as well as eliminating "out of
693                          * phase" errors with space/pulse
694                          * autodetection.
695                          */
696
697                         /* calc time since last interrupt in microseconds */
698                         dcd = (status & hardware[type].signal_pin) ? 1 : 0;
699
700                         if (dcd == last_dcd) {
701                                 printk(KERN_WARNING LIRC_DRIVER_NAME
702                                 ": ignoring spike: %d %d %lx %lx %lx %lx\n",
703                                 dcd, sense,
704                                 tv.tv_sec, lasttv.tv_sec,
705                                 tv.tv_usec, lasttv.tv_usec);
706                                 continue;
707                         }
708
709                         deltv = tv.tv_sec-lasttv.tv_sec;
710                         if (tv.tv_sec < lasttv.tv_sec ||
711                             (tv.tv_sec == lasttv.tv_sec &&
712                              tv.tv_usec < lasttv.tv_usec)) {
713                                 printk(KERN_WARNING LIRC_DRIVER_NAME
714                                        ": AIEEEE: your clock just jumped "
715                                        "backwards\n");
716                                 printk(KERN_WARNING LIRC_DRIVER_NAME
717                                        ": %d %d %lx %lx %lx %lx\n",
718                                        dcd, sense,
719                                        tv.tv_sec, lasttv.tv_sec,
720                                        tv.tv_usec, lasttv.tv_usec);
721                                 data = PULSE_MASK;
722                         } else if (deltv > 15) {
723                                 data = PULSE_MASK; /* really long time */
724                                 if (!(dcd^sense)) {
725                                         /* sanity check */
726                                         printk(KERN_WARNING LIRC_DRIVER_NAME
727                                                ": AIEEEE: "
728                                                "%d %d %lx %lx %lx %lx\n",
729                                                dcd, sense,
730                                                tv.tv_sec, lasttv.tv_sec,
731                                                tv.tv_usec, lasttv.tv_usec);
732                                         /*
733                                          * detecting pulse while this
734                                          * MUST be a space!
735                                          */
736                                         sense = sense ? 0 : 1;
737                                 }
738                         } else
739                                 data = (int) (deltv*1000000 +
740                                                tv.tv_usec -
741                                                lasttv.tv_usec);
742                         frbwrite(dcd^sense ? data : (data|PULSE_BIT));
743                         lasttv = tv;
744                         last_dcd = dcd;
745                         wake_up_interruptible(&rbuf.wait_poll);
746                 }
747         } while (!(sinp(UART_IIR) & UART_IIR_NO_INT)); /* still pending ? */
748         return IRQ_HANDLED;
749 }
750
751
752 static int hardware_init_port(void)
753 {
754         u8 scratch, scratch2, scratch3;
755
756         /*
757          * This is a simple port existence test, borrowed from the autoconfig
758          * function in drivers/serial/8250.c
759          */
760         scratch = sinp(UART_IER);
761         soutp(UART_IER, 0);
762 #ifdef __i386__
763         outb(0xff, 0x080);
764 #endif
765         scratch2 = sinp(UART_IER) & 0x0f;
766         soutp(UART_IER, 0x0f);
767 #ifdef __i386__
768         outb(0x00, 0x080);
769 #endif
770         scratch3 = sinp(UART_IER) & 0x0f;
771         soutp(UART_IER, scratch);
772         if (scratch2 != 0 || scratch3 != 0x0f) {
773                 /* we fail, there's nothing here */
774                 printk(KERN_ERR LIRC_DRIVER_NAME ": port existence test "
775                        "failed, cannot continue\n");
776                 return -EINVAL;
777         }
778
779
780
781         /* Set DLAB 0. */
782         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
783
784         /* First of all, disable all interrupts */
785         soutp(UART_IER, sinp(UART_IER) &
786               (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
787
788         /* Clear registers. */
789         sinp(UART_LSR);
790         sinp(UART_RX);
791         sinp(UART_IIR);
792         sinp(UART_MSR);
793
794 #ifdef CONFIG_LIRC_SERIAL_NSLU2
795         if (type == LIRC_NSLU2) {
796                 /* Setup NSLU2 UART */
797
798                 /* Enable UART */
799                 soutp(UART_IER, sinp(UART_IER) | UART_IE_IXP42X_UUE);
800                 /* Disable Receiver data Time out interrupt */
801                 soutp(UART_IER, sinp(UART_IER) & ~UART_IE_IXP42X_RTOIE);
802                 /* set out2 = interrupt unmask; off() doesn't set MCR
803                    on NSLU2 */
804                 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
805         }
806 #endif
807
808         /* Set line for power source */
809         off();
810
811         /* Clear registers again to be sure. */
812         sinp(UART_LSR);
813         sinp(UART_RX);
814         sinp(UART_IIR);
815         sinp(UART_MSR);
816
817         switch (type) {
818         case LIRC_IRDEO:
819         case LIRC_IRDEO_REMOTE:
820                 /* setup port to 7N1 @ 115200 Baud */
821                 /* 7N1+start = 9 bits at 115200 ~ 3 bits at 38kHz */
822
823                 /* Set DLAB 1. */
824                 soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
825                 /* Set divisor to 1 => 115200 Baud */
826                 soutp(UART_DLM, 0);
827                 soutp(UART_DLL, 1);
828                 /* Set DLAB 0 +  7N1 */
829                 soutp(UART_LCR, UART_LCR_WLEN7);
830                 /* THR interrupt already disabled at this point */
831                 break;
832         default:
833                 break;
834         }
835
836         return 0;
837 }
838
839 static int __devinit lirc_serial_probe(struct platform_device *dev)
840 {
841         int i, nlow, nhigh, result;
842
843         result = request_irq(irq, irq_handler,
844                              (share_irq ? IRQF_SHARED : 0),
845                              LIRC_DRIVER_NAME, (void *)&hardware);
846
847         switch (result) {
848         case -EBUSY:
849                 printk(KERN_ERR LIRC_DRIVER_NAME ": IRQ %d busy\n", irq);
850                 return -EBUSY;
851         case -EINVAL:
852                 printk(KERN_ERR LIRC_DRIVER_NAME
853                        ": Bad irq number or handler\n");
854                 return -EINVAL;
855         default:
856                 break;
857         };
858
859         /* Reserve io region. */
860         /*
861          * Future MMAP-Developers: Attention!
862          * For memory mapped I/O you *might* need to use ioremap() first,
863          * for the NSLU2 it's done in boot code.
864          */
865         if (((iommap != 0)
866              && (request_mem_region(iommap, 8 << ioshift,
867                                     LIRC_DRIVER_NAME) == NULL))
868            || ((iommap == 0)
869                && (request_region(io, 8, LIRC_DRIVER_NAME) == NULL))) {
870                 printk(KERN_ERR  LIRC_DRIVER_NAME
871                        ": port %04x already in use\n", io);
872                 printk(KERN_WARNING LIRC_DRIVER_NAME
873                        ": use 'setserial /dev/ttySX uart none'\n");
874                 printk(KERN_WARNING LIRC_DRIVER_NAME
875                        ": or compile the serial port driver as module and\n");
876                 printk(KERN_WARNING LIRC_DRIVER_NAME
877                        ": make sure this module is loaded first\n");
878                 result = -EBUSY;
879                 goto exit_free_irq;
880         }
881
882         if (hardware_init_port() < 0) {
883                 result = -EINVAL;
884                 goto exit_release_region;
885         }
886
887         /* Initialize pulse/space widths */
888         init_timing_params(duty_cycle, freq);
889
890         /* If pin is high, then this must be an active low receiver. */
891         if (sense == -1) {
892                 /* wait 1/2 sec for the power supply */
893                 msleep(500);
894
895                 /*
896                  * probe 9 times every 0.04s, collect "votes" for
897                  * active high/low
898                  */
899                 nlow = 0;
900                 nhigh = 0;
901                 for (i = 0; i < 9; i++) {
902                         if (sinp(UART_MSR) & hardware[type].signal_pin)
903                                 nlow++;
904                         else
905                                 nhigh++;
906                         msleep(40);
907                 }
908                 sense = (nlow >= nhigh ? 1 : 0);
909                 printk(KERN_INFO LIRC_DRIVER_NAME  ": auto-detected active "
910                        "%s receiver\n", sense ? "low" : "high");
911         } else
912                 printk(KERN_INFO LIRC_DRIVER_NAME  ": Manually using active "
913                        "%s receiver\n", sense ? "low" : "high");
914
915         dprintk("Interrupt %d, port %04x obtained\n", irq, io);
916         return 0;
917
918 exit_release_region:
919         if (iommap != 0)
920                 release_mem_region(iommap, 8 << ioshift);
921         else
922                 release_region(io, 8);
923 exit_free_irq:
924         free_irq(irq, (void *)&hardware);
925
926         return result;
927 }
928
929 static int __devexit lirc_serial_remove(struct platform_device *dev)
930 {
931         free_irq(irq, (void *)&hardware);
932
933         if (iommap != 0)
934                 release_mem_region(iommap, 8 << ioshift);
935         else
936                 release_region(io, 8);
937
938         return 0;
939 }
940
941 static int set_use_inc(void *data)
942 {
943         unsigned long flags;
944
945         /* initialize timestamp */
946         do_gettimeofday(&lasttv);
947
948         spin_lock_irqsave(&hardware[type].lock, flags);
949
950         /* Set DLAB 0. */
951         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
952
953         soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
954
955         spin_unlock_irqrestore(&hardware[type].lock, flags);
956
957         return 0;
958 }
959
960 static void set_use_dec(void *data)
961 {       unsigned long flags;
962
963         spin_lock_irqsave(&hardware[type].lock, flags);
964
965         /* Set DLAB 0. */
966         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
967
968         /* First of all, disable all interrupts */
969         soutp(UART_IER, sinp(UART_IER) &
970               (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
971         spin_unlock_irqrestore(&hardware[type].lock, flags);
972 }
973
974 static ssize_t lirc_write(struct file *file, const char *buf,
975                          size_t n, loff_t *ppos)
976 {
977         int i, count;
978         unsigned long flags;
979         long delta = 0;
980         int *wbuf;
981
982         if (!(hardware[type].features & LIRC_CAN_SEND_PULSE))
983                 return -EBADF;
984
985         count = n / sizeof(int);
986         if (n % sizeof(int) || count % 2 == 0)
987                 return -EINVAL;
988         wbuf = memdup_user(buf, n);
989         if (IS_ERR(wbuf))
990                 return PTR_ERR(wbuf);
991         spin_lock_irqsave(&hardware[type].lock, flags);
992         if (type == LIRC_IRDEO) {
993                 /* DTR, RTS down */
994                 on();
995         }
996         for (i = 0; i < count; i++) {
997                 if (i%2)
998                         hardware[type].send_space(wbuf[i] - delta);
999                 else
1000                         delta = hardware[type].send_pulse(wbuf[i]);
1001         }
1002         off();
1003         spin_unlock_irqrestore(&hardware[type].lock, flags);
1004         kfree(wbuf);
1005         return n;
1006 }
1007
1008 static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1009 {
1010         int result;
1011         __u32 value;
1012
1013         switch (cmd) {
1014         case LIRC_GET_SEND_MODE:
1015                 if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
1016                         return -ENOIOCTLCMD;
1017
1018                 result = put_user(LIRC_SEND2MODE
1019                                   (hardware[type].features&LIRC_CAN_SEND_MASK),
1020                                   (__u32 *) arg);
1021                 if (result)
1022                         return result;
1023                 break;
1024
1025         case LIRC_SET_SEND_MODE:
1026                 if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
1027                         return -ENOIOCTLCMD;
1028
1029                 result = get_user(value, (__u32 *) arg);
1030                 if (result)
1031                         return result;
1032                 /* only LIRC_MODE_PULSE supported */
1033                 if (value != LIRC_MODE_PULSE)
1034                         return -ENOSYS;
1035                 break;
1036
1037         case LIRC_GET_LENGTH:
1038                 return -ENOSYS;
1039                 break;
1040
1041         case LIRC_SET_SEND_DUTY_CYCLE:
1042                 dprintk("SET_SEND_DUTY_CYCLE\n");
1043                 if (!(hardware[type].features&LIRC_CAN_SET_SEND_DUTY_CYCLE))
1044                         return -ENOIOCTLCMD;
1045
1046                 result = get_user(value, (__u32 *) arg);
1047                 if (result)
1048                         return result;
1049                 if (value <= 0 || value > 100)
1050                         return -EINVAL;
1051                 return init_timing_params(value, freq);
1052                 break;
1053
1054         case LIRC_SET_SEND_CARRIER:
1055                 dprintk("SET_SEND_CARRIER\n");
1056                 if (!(hardware[type].features&LIRC_CAN_SET_SEND_CARRIER))
1057                         return -ENOIOCTLCMD;
1058
1059                 result = get_user(value, (__u32 *) arg);
1060                 if (result)
1061                         return result;
1062                 if (value > 500000 || value < 20000)
1063                         return -EINVAL;
1064                 return init_timing_params(duty_cycle, value);
1065                 break;
1066
1067         default:
1068                 return lirc_dev_fop_ioctl(filep, cmd, arg);
1069         }
1070         return 0;
1071 }
1072
1073 static const struct file_operations lirc_fops = {
1074         .owner          = THIS_MODULE,
1075         .write          = lirc_write,
1076         .unlocked_ioctl = lirc_ioctl,
1077 #ifdef CONFIG_COMPAT
1078         .compat_ioctl   = lirc_ioctl,
1079 #endif
1080         .read           = lirc_dev_fop_read,
1081         .poll           = lirc_dev_fop_poll,
1082         .open           = lirc_dev_fop_open,
1083         .release        = lirc_dev_fop_close,
1084         .llseek         = no_llseek,
1085 };
1086
1087 static struct lirc_driver driver = {
1088         .name           = LIRC_DRIVER_NAME,
1089         .minor          = -1,
1090         .code_length    = 1,
1091         .sample_rate    = 0,
1092         .data           = NULL,
1093         .add_to_buf     = NULL,
1094         .rbuf           = &rbuf,
1095         .set_use_inc    = set_use_inc,
1096         .set_use_dec    = set_use_dec,
1097         .fops           = &lirc_fops,
1098         .dev            = NULL,
1099         .owner          = THIS_MODULE,
1100 };
1101
1102 static struct platform_device *lirc_serial_dev;
1103
1104 static int lirc_serial_suspend(struct platform_device *dev,
1105                                pm_message_t state)
1106 {
1107         /* Set DLAB 0. */
1108         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
1109
1110         /* Disable all interrupts */
1111         soutp(UART_IER, sinp(UART_IER) &
1112               (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
1113
1114         /* Clear registers. */
1115         sinp(UART_LSR);
1116         sinp(UART_RX);
1117         sinp(UART_IIR);
1118         sinp(UART_MSR);
1119
1120         return 0;
1121 }
1122
1123 /* twisty maze... need a forward-declaration here... */
1124 static void lirc_serial_exit(void);
1125
1126 static int lirc_serial_resume(struct platform_device *dev)
1127 {
1128         unsigned long flags;
1129
1130         if (hardware_init_port() < 0)
1131                 return -EINVAL;
1132
1133         spin_lock_irqsave(&hardware[type].lock, flags);
1134         /* Enable Interrupt */
1135         do_gettimeofday(&lasttv);
1136         soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
1137         off();
1138
1139         lirc_buffer_clear(&rbuf);
1140
1141         spin_unlock_irqrestore(&hardware[type].lock, flags);
1142
1143         return 0;
1144 }
1145
1146 static struct platform_driver lirc_serial_driver = {
1147         .probe          = lirc_serial_probe,
1148         .remove         = __devexit_p(lirc_serial_remove),
1149         .suspend        = lirc_serial_suspend,
1150         .resume         = lirc_serial_resume,
1151         .driver         = {
1152                 .name   = "lirc_serial",
1153                 .owner  = THIS_MODULE,
1154         },
1155 };
1156
1157 static int __init lirc_serial_init(void)
1158 {
1159         int result;
1160
1161         /* Init read buffer. */
1162         result = lirc_buffer_init(&rbuf, sizeof(int), RBUF_LEN);
1163         if (result < 0)
1164                 return -ENOMEM;
1165
1166         result = platform_driver_register(&lirc_serial_driver);
1167         if (result) {
1168                 printk("lirc register returned %d\n", result);
1169                 goto exit_buffer_free;
1170         }
1171
1172         lirc_serial_dev = platform_device_alloc("lirc_serial", 0);
1173         if (!lirc_serial_dev) {
1174                 result = -ENOMEM;
1175                 goto exit_driver_unregister;
1176         }
1177
1178         result = platform_device_add(lirc_serial_dev);
1179         if (result)
1180                 goto exit_device_put;
1181
1182         return 0;
1183
1184 exit_device_put:
1185         platform_device_put(lirc_serial_dev);
1186 exit_driver_unregister:
1187         platform_driver_unregister(&lirc_serial_driver);
1188 exit_buffer_free:
1189         lirc_buffer_free(&rbuf);
1190         return result;
1191 }
1192
1193 static void lirc_serial_exit(void)
1194 {
1195         platform_device_unregister(lirc_serial_dev);
1196         platform_driver_unregister(&lirc_serial_driver);
1197         lirc_buffer_free(&rbuf);
1198 }
1199
1200 static int __init lirc_serial_init_module(void)
1201 {
1202         int result;
1203
1204         switch (type) {
1205         case LIRC_HOMEBREW:
1206         case LIRC_IRDEO:
1207         case LIRC_IRDEO_REMOTE:
1208         case LIRC_ANIMAX:
1209         case LIRC_IGOR:
1210                 /* if nothing specified, use ttyS0/com1 and irq 4 */
1211                 io = io ? io : 0x3f8;
1212                 irq = irq ? irq : 4;
1213                 break;
1214 #ifdef CONFIG_LIRC_SERIAL_NSLU2
1215         case LIRC_NSLU2:
1216                 io = io ? io : IRQ_IXP4XX_UART2;
1217                 irq = irq ? irq : (IXP4XX_UART2_BASE_VIRT + REG_OFFSET);
1218                 iommap = iommap ? iommap : IXP4XX_UART2_BASE_PHYS;
1219                 ioshift = ioshift ? ioshift : 2;
1220                 break;
1221 #endif
1222         default:
1223                 return -EINVAL;
1224         }
1225         if (!softcarrier) {
1226                 switch (type) {
1227                 case LIRC_HOMEBREW:
1228                 case LIRC_IGOR:
1229 #ifdef CONFIG_LIRC_SERIAL_NSLU2
1230                 case LIRC_NSLU2:
1231 #endif
1232                         hardware[type].features &=
1233                                 ~(LIRC_CAN_SET_SEND_DUTY_CYCLE|
1234                                   LIRC_CAN_SET_SEND_CARRIER);
1235                         break;
1236                 }
1237         }
1238
1239         result = lirc_serial_init();
1240         if (result)
1241                 return result;
1242
1243         driver.features = hardware[type].features;
1244         driver.dev = &lirc_serial_dev->dev;
1245         driver.minor = lirc_register_driver(&driver);
1246         if (driver.minor < 0) {
1247                 printk(KERN_ERR  LIRC_DRIVER_NAME
1248                        ": register_chrdev failed!\n");
1249                 lirc_serial_exit();
1250                 return -EIO;
1251         }
1252         return 0;
1253 }
1254
1255 static void __exit lirc_serial_exit_module(void)
1256 {
1257         lirc_unregister_driver(driver.minor);
1258         lirc_serial_exit();
1259         dprintk("cleaned up module\n");
1260 }
1261
1262
1263 module_init(lirc_serial_init_module);
1264 module_exit(lirc_serial_exit_module);
1265
1266 MODULE_DESCRIPTION("Infra-red receiver driver for serial ports.");
1267 MODULE_AUTHOR("Ralph Metzler, Trent Piepho, Ben Pfaff, "
1268               "Christoph Bartelmus, Andrei Tanas");
1269 MODULE_LICENSE("GPL");
1270
1271 module_param(type, int, S_IRUGO);
1272 MODULE_PARM_DESC(type, "Hardware type (0 = home-brew, 1 = IRdeo,"
1273                  " 2 = IRdeo Remote, 3 = AnimaX, 4 = IgorPlug,"
1274                  " 5 = NSLU2 RX:CTS2/TX:GreenLED)");
1275
1276 module_param(io, int, S_IRUGO);
1277 MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
1278
1279 /* some architectures (e.g. intel xscale) have memory mapped registers */
1280 module_param(iommap, bool, S_IRUGO);
1281 MODULE_PARM_DESC(iommap, "physical base for memory mapped I/O"
1282                 " (0 = no memory mapped io)");
1283
1284 /*
1285  * some architectures (e.g. intel xscale) align the 8bit serial registers
1286  * on 32bit word boundaries.
1287  * See linux-kernel/serial/8250.c serial_in()/out()
1288  */
1289 module_param(ioshift, int, S_IRUGO);
1290 MODULE_PARM_DESC(ioshift, "shift I/O register offset (0 = no shift)");
1291
1292 module_param(irq, int, S_IRUGO);
1293 MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
1294
1295 module_param(share_irq, bool, S_IRUGO);
1296 MODULE_PARM_DESC(share_irq, "Share interrupts (0 = off, 1 = on)");
1297
1298 module_param(sense, bool, S_IRUGO);
1299 MODULE_PARM_DESC(sense, "Override autodetection of IR receiver circuit"
1300                  " (0 = active high, 1 = active low )");
1301
1302 #ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
1303 module_param(txsense, bool, S_IRUGO);
1304 MODULE_PARM_DESC(txsense, "Sense of transmitter circuit"
1305                  " (0 = active high, 1 = active low )");
1306 #endif
1307
1308 module_param(softcarrier, bool, S_IRUGO);
1309 MODULE_PARM_DESC(softcarrier, "Software carrier (0 = off, 1 = on, default on)");
1310
1311 module_param(debug, bool, S_IRUGO | S_IWUSR);
1312 MODULE_PARM_DESC(debug, "Enable debugging messages");