Merge tag 'split-asm_system_h-for-linus-20120328' of git://git.kernel.org/pub/scm...
[linux-2.6.git] / drivers / staging / media / lirc / lirc_serial.c
1 /*
2  * lirc_serial.c
3  *
4  * lirc_serial - Device driver that records pulse- and pause-lengths
5  *             (space-lengths) between DDCD event on a serial port.
6  *
7  * Copyright (C) 1996,97 Ralph Metzler <rjkm@thp.uni-koeln.de>
8  * Copyright (C) 1998 Trent Piepho <xyzzy@u.washington.edu>
9  * Copyright (C) 1998 Ben Pfaff <blp@gnu.org>
10  * Copyright (C) 1999 Christoph Bartelmus <lirc@bartelmus.de>
11  * Copyright (C) 2007 Andrei Tanas <andrei@tanas.ca> (suspend/resume support)
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  */
27
28 /*
29  * Steve's changes to improve transmission fidelity:
30  *   - for systems with the rdtsc instruction and the clock counter, a
31  *     send_pule that times the pulses directly using the counter.
32  *     This means that the LIRC_SERIAL_TRANSMITTER_LATENCY fudge is
33  *     not needed. Measurement shows very stable waveform, even where
34  *     PCI activity slows the access to the UART, which trips up other
35  *     versions.
36  *   - For other system, non-integer-microsecond pulse/space lengths,
37  *     done using fixed point binary. So, much more accurate carrier
38  *     frequency.
39  *   - fine tuned transmitter latency, taking advantage of fractional
40  *     microseconds in previous change
41  *   - Fixed bug in the way transmitter latency was accounted for by
42  *     tuning the pulse lengths down - the send_pulse routine ignored
43  *     this overhead as it timed the overall pulse length - so the
44  *     pulse frequency was right but overall pulse length was too
45  *     long. Fixed by accounting for latency on each pulse/space
46  *     iteration.
47  *
48  * Steve Davies <steve@daviesfam.org>  July 2001
49  */
50
51 #include <linux/module.h>
52 #include <linux/errno.h>
53 #include <linux/signal.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/interrupt.h>
57 #include <linux/ioport.h>
58 #include <linux/kernel.h>
59 #include <linux/serial_reg.h>
60 #include <linux/time.h>
61 #include <linux/string.h>
62 #include <linux/types.h>
63 #include <linux/wait.h>
64 #include <linux/mm.h>
65 #include <linux/delay.h>
66 #include <linux/poll.h>
67 #include <linux/platform_device.h>
68
69 #include <linux/io.h>
70 #include <linux/irq.h>
71 #include <linux/fcntl.h>
72 #include <linux/spinlock.h>
73
74 #ifdef CONFIG_LIRC_SERIAL_NSLU2
75 #include <asm/hardware.h>
76 #endif
77 /* From Intel IXP42X Developer's Manual (#252480-005): */
78 /* ftp://download.intel.com/design/network/manuals/25248005.pdf */
79 #define UART_IE_IXP42X_UUE   0x40 /* IXP42X UART Unit enable */
80 #define UART_IE_IXP42X_RTOIE 0x10 /* IXP42X Receiver Data Timeout int.enable */
81
82 #include <media/lirc.h>
83 #include <media/lirc_dev.h>
84
85 #define LIRC_DRIVER_NAME "lirc_serial"
86
87 struct lirc_serial {
88         int signal_pin;
89         int signal_pin_change;
90         u8 on;
91         u8 off;
92         long (*send_pulse)(unsigned long length);
93         void (*send_space)(long length);
94         int features;
95         spinlock_t lock;
96 };
97
98 #define LIRC_HOMEBREW           0
99 #define LIRC_IRDEO              1
100 #define LIRC_IRDEO_REMOTE       2
101 #define LIRC_ANIMAX             3
102 #define LIRC_IGOR               4
103 #define LIRC_NSLU2              5
104
105 /*** module parameters ***/
106 static int type;
107 static int io;
108 static int irq;
109 static bool iommap;
110 static int ioshift;
111 static bool softcarrier = 1;
112 static bool share_irq;
113 static bool debug;
114 static int sense = -1;  /* -1 = auto, 0 = active high, 1 = active low */
115 static bool txsense;    /* 0 = active high, 1 = active low */
116
117 #define dprintk(fmt, args...)                                   \
118         do {                                                    \
119                 if (debug)                                      \
120                         printk(KERN_DEBUG LIRC_DRIVER_NAME ": " \
121                                fmt, ## args);                   \
122         } while (0)
123
124 /* forward declarations */
125 static long send_pulse_irdeo(unsigned long length);
126 static long send_pulse_homebrew(unsigned long length);
127 static void send_space_irdeo(long length);
128 static void send_space_homebrew(long length);
129
130 static struct lirc_serial hardware[] = {
131         [LIRC_HOMEBREW] = {
132                 .signal_pin        = UART_MSR_DCD,
133                 .signal_pin_change = UART_MSR_DDCD,
134                 .on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
135                 .off = (UART_MCR_RTS | UART_MCR_OUT2),
136                 .send_pulse = send_pulse_homebrew,
137                 .send_space = send_space_homebrew,
138 #ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
139                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
140                                 LIRC_CAN_SET_SEND_CARRIER |
141                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
142 #else
143                 .features    = LIRC_CAN_REC_MODE2
144 #endif
145         },
146
147         [LIRC_IRDEO] = {
148                 .signal_pin        = UART_MSR_DSR,
149                 .signal_pin_change = UART_MSR_DDSR,
150                 .on  = UART_MCR_OUT2,
151                 .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
152                 .send_pulse  = send_pulse_irdeo,
153                 .send_space  = send_space_irdeo,
154                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
155                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
156         },
157
158         [LIRC_IRDEO_REMOTE] = {
159                 .signal_pin        = UART_MSR_DSR,
160                 .signal_pin_change = UART_MSR_DDSR,
161                 .on  = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
162                 .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
163                 .send_pulse  = send_pulse_irdeo,
164                 .send_space  = send_space_irdeo,
165                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
166                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
167         },
168
169         [LIRC_ANIMAX] = {
170                 .signal_pin        = UART_MSR_DCD,
171                 .signal_pin_change = UART_MSR_DDCD,
172                 .on  = 0,
173                 .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
174                 .send_pulse = NULL,
175                 .send_space = NULL,
176                 .features   = LIRC_CAN_REC_MODE2
177         },
178
179         [LIRC_IGOR] = {
180                 .signal_pin        = UART_MSR_DSR,
181                 .signal_pin_change = UART_MSR_DDSR,
182                 .on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
183                 .off = (UART_MCR_RTS | UART_MCR_OUT2),
184                 .send_pulse = send_pulse_homebrew,
185                 .send_space = send_space_homebrew,
186 #ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
187                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
188                                 LIRC_CAN_SET_SEND_CARRIER |
189                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
190 #else
191                 .features    = LIRC_CAN_REC_MODE2
192 #endif
193         },
194
195 #ifdef CONFIG_LIRC_SERIAL_NSLU2
196         /*
197          * Modified Linksys Network Storage Link USB 2.0 (NSLU2):
198          * We receive on CTS of the 2nd serial port (R142,LHS), we
199          * transmit with a IR diode between GPIO[1] (green status LED),
200          * and ground (Matthias Goebl <matthias.goebl@goebl.net>).
201          * See also http://www.nslu2-linux.org for this device
202          */
203         [LIRC_NSLU2] = {
204                 .signal_pin        = UART_MSR_CTS,
205                 .signal_pin_change = UART_MSR_DCTS,
206                 .on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
207                 .off = (UART_MCR_RTS | UART_MCR_OUT2),
208                 .send_pulse = send_pulse_homebrew,
209                 .send_space = send_space_homebrew,
210 #ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
211                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
212                                 LIRC_CAN_SET_SEND_CARRIER |
213                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
214 #else
215                 .features    = LIRC_CAN_REC_MODE2
216 #endif
217         },
218 #endif
219
220 };
221
222 #define RS_ISR_PASS_LIMIT 256
223
224 /*
225  * A long pulse code from a remote might take up to 300 bytes.  The
226  * daemon should read the bytes as soon as they are generated, so take
227  * the number of keys you think you can push before the daemon runs
228  * and multiply by 300.  The driver will warn you if you overrun this
229  * buffer.  If you have a slow computer or non-busmastering IDE disks,
230  * maybe you will need to increase this.
231  */
232
233 /* This MUST be a power of two!  It has to be larger than 1 as well. */
234
235 #define RBUF_LEN 256
236
237 static struct timeval lasttv = {0, 0};
238
239 static struct lirc_buffer rbuf;
240
241 static unsigned int freq = 38000;
242 static unsigned int duty_cycle = 50;
243
244 /* Initialized in init_timing_params() */
245 static unsigned long period;
246 static unsigned long pulse_width;
247 static unsigned long space_width;
248
249 #if defined(__i386__)
250 /*
251  * From:
252  * Linux I/O port programming mini-HOWTO
253  * Author: Riku Saikkonen <Riku.Saikkonen@hut.fi>
254  * v, 28 December 1997
255  *
256  * [...]
257  * Actually, a port I/O instruction on most ports in the 0-0x3ff range
258  * takes almost exactly 1 microsecond, so if you're, for example, using
259  * the parallel port directly, just do additional inb()s from that port
260  * to delay.
261  * [...]
262  */
263 /* transmitter latency 1.5625us 0x1.90 - this figure arrived at from
264  * comment above plus trimming to match actual measured frequency.
265  * This will be sensitive to cpu speed, though hopefully most of the 1.5us
266  * is spent in the uart access.  Still - for reference test machine was a
267  * 1.13GHz Athlon system - Steve
268  */
269
270 /*
271  * changed from 400 to 450 as this works better on slower machines;
272  * faster machines will use the rdtsc code anyway
273  */
274 #define LIRC_SERIAL_TRANSMITTER_LATENCY 450
275
276 #else
277
278 /* does anybody have information on other platforms ? */
279 /* 256 = 1<<8 */
280 #define LIRC_SERIAL_TRANSMITTER_LATENCY 256
281
282 #endif  /* __i386__ */
283 /*
284  * FIXME: should we be using hrtimers instead of this
285  * LIRC_SERIAL_TRANSMITTER_LATENCY nonsense?
286  */
287
288 /* fetch serial input packet (1 byte) from register offset */
289 static u8 sinp(int offset)
290 {
291         if (iommap != 0)
292                 /* the register is memory-mapped */
293                 offset <<= ioshift;
294
295         return inb(io + offset);
296 }
297
298 /* write serial output packet (1 byte) of value to register offset */
299 static void soutp(int offset, u8 value)
300 {
301         if (iommap != 0)
302                 /* the register is memory-mapped */
303                 offset <<= ioshift;
304
305         outb(value, io + offset);
306 }
307
308 static void on(void)
309 {
310 #ifdef CONFIG_LIRC_SERIAL_NSLU2
311         /*
312          * On NSLU2, we put the transmit diode between the output of the green
313          * status LED and ground
314          */
315         if (type == LIRC_NSLU2) {
316                 gpio_line_set(NSLU2_LED_GRN, IXP4XX_GPIO_LOW);
317                 return;
318         }
319 #endif
320         if (txsense)
321                 soutp(UART_MCR, hardware[type].off);
322         else
323                 soutp(UART_MCR, hardware[type].on);
324 }
325
326 static void off(void)
327 {
328 #ifdef CONFIG_LIRC_SERIAL_NSLU2
329         if (type == LIRC_NSLU2) {
330                 gpio_line_set(NSLU2_LED_GRN, IXP4XX_GPIO_HIGH);
331                 return;
332         }
333 #endif
334         if (txsense)
335                 soutp(UART_MCR, hardware[type].on);
336         else
337                 soutp(UART_MCR, hardware[type].off);
338 }
339
340 #ifndef MAX_UDELAY_MS
341 #define MAX_UDELAY_US 5000
342 #else
343 #define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
344 #endif
345
346 static void safe_udelay(unsigned long usecs)
347 {
348         while (usecs > MAX_UDELAY_US) {
349                 udelay(MAX_UDELAY_US);
350                 usecs -= MAX_UDELAY_US;
351         }
352         udelay(usecs);
353 }
354
355 #ifdef USE_RDTSC
356 /*
357  * This is an overflow/precision juggle, complicated in that we can't
358  * do long long divide in the kernel
359  */
360
361 /*
362  * When we use the rdtsc instruction to measure clocks, we keep the
363  * pulse and space widths as clock cycles.  As this is CPU speed
364  * dependent, the widths must be calculated in init_port and ioctl
365  * time
366  */
367
368 /* So send_pulse can quickly convert microseconds to clocks */
369 static unsigned long conv_us_to_clocks;
370
371 static int init_timing_params(unsigned int new_duty_cycle,
372                 unsigned int new_freq)
373 {
374         __u64 loops_per_sec, work;
375
376         duty_cycle = new_duty_cycle;
377         freq = new_freq;
378
379         loops_per_sec = __this_cpu_read(cpu.info.loops_per_jiffy);
380         loops_per_sec *= HZ;
381
382         /* How many clocks in a microsecond?, avoiding long long divide */
383         work = loops_per_sec;
384         work *= 4295;  /* 4295 = 2^32 / 1e6 */
385         conv_us_to_clocks = (work >> 32);
386
387         /*
388          * Carrier period in clocks, approach good up to 32GHz clock,
389          * gets carrier frequency within 8Hz
390          */
391         period = loops_per_sec >> 3;
392         period /= (freq >> 3);
393
394         /* Derive pulse and space from the period */
395         pulse_width = period * duty_cycle / 100;
396         space_width = period - pulse_width;
397         dprintk("in init_timing_params, freq=%d, duty_cycle=%d, "
398                 "clk/jiffy=%ld, pulse=%ld, space=%ld, "
399                 "conv_us_to_clocks=%ld\n",
400                 freq, duty_cycle, __this_cpu_read(cpu_info.loops_per_jiffy),
401                 pulse_width, space_width, conv_us_to_clocks);
402         return 0;
403 }
404 #else /* ! USE_RDTSC */
405 static int init_timing_params(unsigned int new_duty_cycle,
406                 unsigned int new_freq)
407 {
408 /*
409  * period, pulse/space width are kept with 8 binary places -
410  * IE multiplied by 256.
411  */
412         if (256 * 1000000L / new_freq * new_duty_cycle / 100 <=
413             LIRC_SERIAL_TRANSMITTER_LATENCY)
414                 return -EINVAL;
415         if (256 * 1000000L / new_freq * (100 - new_duty_cycle) / 100 <=
416             LIRC_SERIAL_TRANSMITTER_LATENCY)
417                 return -EINVAL;
418         duty_cycle = new_duty_cycle;
419         freq = new_freq;
420         period = 256 * 1000000L / freq;
421         pulse_width = period * duty_cycle / 100;
422         space_width = period - pulse_width;
423         dprintk("in init_timing_params, freq=%d pulse=%ld, "
424                 "space=%ld\n", freq, pulse_width, space_width);
425         return 0;
426 }
427 #endif /* USE_RDTSC */
428
429
430 /* return value: space length delta */
431
432 static long send_pulse_irdeo(unsigned long length)
433 {
434         long rawbits, ret;
435         int i;
436         unsigned char output;
437         unsigned char chunk, shifted;
438
439         /* how many bits have to be sent ? */
440         rawbits = length * 1152 / 10000;
441         if (duty_cycle > 50)
442                 chunk = 3;
443         else
444                 chunk = 1;
445         for (i = 0, output = 0x7f; rawbits > 0; rawbits -= 3) {
446                 shifted = chunk << (i * 3);
447                 shifted >>= 1;
448                 output &= (~shifted);
449                 i++;
450                 if (i == 3) {
451                         soutp(UART_TX, output);
452                         while (!(sinp(UART_LSR) & UART_LSR_THRE))
453                                 ;
454                         output = 0x7f;
455                         i = 0;
456                 }
457         }
458         if (i != 0) {
459                 soutp(UART_TX, output);
460                 while (!(sinp(UART_LSR) & UART_LSR_TEMT))
461                         ;
462         }
463
464         if (i == 0)
465                 ret = (-rawbits) * 10000 / 1152;
466         else
467                 ret = (3 - i) * 3 * 10000 / 1152 + (-rawbits) * 10000 / 1152;
468
469         return ret;
470 }
471
472 #ifdef USE_RDTSC
473 /* Version that uses Pentium rdtsc instruction to measure clocks */
474
475 /*
476  * This version does sub-microsecond timing using rdtsc instruction,
477  * and does away with the fudged LIRC_SERIAL_TRANSMITTER_LATENCY
478  * Implicitly i586 architecture...  - Steve
479  */
480
481 static long send_pulse_homebrew_softcarrier(unsigned long length)
482 {
483         int flag;
484         unsigned long target, start, now;
485
486         /* Get going quick as we can */
487         rdtscl(start);
488         on();
489         /* Convert length from microseconds to clocks */
490         length *= conv_us_to_clocks;
491         /* And loop till time is up - flipping at right intervals */
492         now = start;
493         target = pulse_width;
494         flag = 1;
495         /*
496          * FIXME: This looks like a hard busy wait, without even an occasional,
497          * polite, cpu_relax() call.  There's got to be a better way?
498          *
499          * The i2c code has the result of a lot of bit-banging work, I wonder if
500          * there's something there which could be helpful here.
501          */
502         while ((now - start) < length) {
503                 /* Delay till flip time */
504                 do {
505                         rdtscl(now);
506                 } while ((now - start) < target);
507
508                 /* flip */
509                 if (flag) {
510                         rdtscl(now);
511                         off();
512                         target += space_width;
513                 } else {
514                         rdtscl(now); on();
515                         target += pulse_width;
516                 }
517                 flag = !flag;
518         }
519         rdtscl(now);
520         return ((now - start) - length) / conv_us_to_clocks;
521 }
522 #else /* ! USE_RDTSC */
523 /* Version using udelay() */
524
525 /*
526  * here we use fixed point arithmetic, with 8
527  * fractional bits.  that gets us within 0.1% or so of the right average
528  * frequency, albeit with some jitter in pulse length - Steve
529  */
530
531 /* To match 8 fractional bits used for pulse/space length */
532
533 static long send_pulse_homebrew_softcarrier(unsigned long length)
534 {
535         int flag;
536         unsigned long actual, target, d;
537         length <<= 8;
538
539         actual = 0; target = 0; flag = 0;
540         while (actual < length) {
541                 if (flag) {
542                         off();
543                         target += space_width;
544                 } else {
545                         on();
546                         target += pulse_width;
547                 }
548                 d = (target - actual -
549                      LIRC_SERIAL_TRANSMITTER_LATENCY + 128) >> 8;
550                 /*
551                  * Note - we've checked in ioctl that the pulse/space
552                  * widths are big enough so that d is > 0
553                  */
554                 udelay(d);
555                 actual += (d << 8) + LIRC_SERIAL_TRANSMITTER_LATENCY;
556                 flag = !flag;
557         }
558         return (actual-length) >> 8;
559 }
560 #endif /* USE_RDTSC */
561
562 static long send_pulse_homebrew(unsigned long length)
563 {
564         if (length <= 0)
565                 return 0;
566
567         if (softcarrier)
568                 return send_pulse_homebrew_softcarrier(length);
569         else {
570                 on();
571                 safe_udelay(length);
572                 return 0;
573         }
574 }
575
576 static void send_space_irdeo(long length)
577 {
578         if (length <= 0)
579                 return;
580
581         safe_udelay(length);
582 }
583
584 static void send_space_homebrew(long length)
585 {
586         off();
587         if (length <= 0)
588                 return;
589         safe_udelay(length);
590 }
591
592 static void rbwrite(int l)
593 {
594         if (lirc_buffer_full(&rbuf)) {
595                 /* no new signals will be accepted */
596                 dprintk("Buffer overrun\n");
597                 return;
598         }
599         lirc_buffer_write(&rbuf, (void *)&l);
600 }
601
602 static void frbwrite(int l)
603 {
604         /* simple noise filter */
605         static int pulse, space;
606         static unsigned int ptr;
607
608         if (ptr > 0 && (l & PULSE_BIT)) {
609                 pulse += l & PULSE_MASK;
610                 if (pulse > 250) {
611                         rbwrite(space);
612                         rbwrite(pulse | PULSE_BIT);
613                         ptr = 0;
614                         pulse = 0;
615                 }
616                 return;
617         }
618         if (!(l & PULSE_BIT)) {
619                 if (ptr == 0) {
620                         if (l > 20000) {
621                                 space = l;
622                                 ptr++;
623                                 return;
624                         }
625                 } else {
626                         if (l > 20000) {
627                                 space += pulse;
628                                 if (space > PULSE_MASK)
629                                         space = PULSE_MASK;
630                                 space += l;
631                                 if (space > PULSE_MASK)
632                                         space = PULSE_MASK;
633                                 pulse = 0;
634                                 return;
635                         }
636                         rbwrite(space);
637                         rbwrite(pulse | PULSE_BIT);
638                         ptr = 0;
639                         pulse = 0;
640                 }
641         }
642         rbwrite(l);
643 }
644
645 static irqreturn_t irq_handler(int i, void *blah)
646 {
647         struct timeval tv;
648         int counter, dcd;
649         u8 status;
650         long deltv;
651         int data;
652         static int last_dcd = -1;
653
654         if ((sinp(UART_IIR) & UART_IIR_NO_INT)) {
655                 /* not our interrupt */
656                 return IRQ_NONE;
657         }
658
659         counter = 0;
660         do {
661                 counter++;
662                 status = sinp(UART_MSR);
663                 if (counter > RS_ISR_PASS_LIMIT) {
664                         printk(KERN_WARNING LIRC_DRIVER_NAME ": AIEEEE: "
665                                "We're caught!\n");
666                         break;
667                 }
668                 if ((status & hardware[type].signal_pin_change)
669                     && sense != -1) {
670                         /* get current time */
671                         do_gettimeofday(&tv);
672
673                         /* New mode, written by Trent Piepho
674                            <xyzzy@u.washington.edu>. */
675
676                         /*
677                          * The old format was not very portable.
678                          * We now use an int to pass pulses
679                          * and spaces to user space.
680                          *
681                          * If PULSE_BIT is set a pulse has been
682                          * received, otherwise a space has been
683                          * received.  The driver needs to know if your
684                          * receiver is active high or active low, or
685                          * the space/pulse sense could be
686                          * inverted. The bits denoted by PULSE_MASK are
687                          * the length in microseconds. Lengths greater
688                          * than or equal to 16 seconds are clamped to
689                          * PULSE_MASK.  All other bits are unused.
690                          * This is a much simpler interface for user
691                          * programs, as well as eliminating "out of
692                          * phase" errors with space/pulse
693                          * autodetection.
694                          */
695
696                         /* calc time since last interrupt in microseconds */
697                         dcd = (status & hardware[type].signal_pin) ? 1 : 0;
698
699                         if (dcd == last_dcd) {
700                                 printk(KERN_WARNING LIRC_DRIVER_NAME
701                                 ": ignoring spike: %d %d %lx %lx %lx %lx\n",
702                                 dcd, sense,
703                                 tv.tv_sec, lasttv.tv_sec,
704                                 tv.tv_usec, lasttv.tv_usec);
705                                 continue;
706                         }
707
708                         deltv = tv.tv_sec-lasttv.tv_sec;
709                         if (tv.tv_sec < lasttv.tv_sec ||
710                             (tv.tv_sec == lasttv.tv_sec &&
711                              tv.tv_usec < lasttv.tv_usec)) {
712                                 printk(KERN_WARNING LIRC_DRIVER_NAME
713                                        ": AIEEEE: your clock just jumped "
714                                        "backwards\n");
715                                 printk(KERN_WARNING LIRC_DRIVER_NAME
716                                        ": %d %d %lx %lx %lx %lx\n",
717                                        dcd, sense,
718                                        tv.tv_sec, lasttv.tv_sec,
719                                        tv.tv_usec, lasttv.tv_usec);
720                                 data = PULSE_MASK;
721                         } else if (deltv > 15) {
722                                 data = PULSE_MASK; /* really long time */
723                                 if (!(dcd^sense)) {
724                                         /* sanity check */
725                                         printk(KERN_WARNING LIRC_DRIVER_NAME
726                                                ": AIEEEE: "
727                                                "%d %d %lx %lx %lx %lx\n",
728                                                dcd, sense,
729                                                tv.tv_sec, lasttv.tv_sec,
730                                                tv.tv_usec, lasttv.tv_usec);
731                                         /*
732                                          * detecting pulse while this
733                                          * MUST be a space!
734                                          */
735                                         sense = sense ? 0 : 1;
736                                 }
737                         } else
738                                 data = (int) (deltv*1000000 +
739                                                tv.tv_usec -
740                                                lasttv.tv_usec);
741                         frbwrite(dcd^sense ? data : (data|PULSE_BIT));
742                         lasttv = tv;
743                         last_dcd = dcd;
744                         wake_up_interruptible(&rbuf.wait_poll);
745                 }
746         } while (!(sinp(UART_IIR) & UART_IIR_NO_INT)); /* still pending ? */
747         return IRQ_HANDLED;
748 }
749
750
751 static int hardware_init_port(void)
752 {
753         u8 scratch, scratch2, scratch3;
754
755         /*
756          * This is a simple port existence test, borrowed from the autoconfig
757          * function in drivers/serial/8250.c
758          */
759         scratch = sinp(UART_IER);
760         soutp(UART_IER, 0);
761 #ifdef __i386__
762         outb(0xff, 0x080);
763 #endif
764         scratch2 = sinp(UART_IER) & 0x0f;
765         soutp(UART_IER, 0x0f);
766 #ifdef __i386__
767         outb(0x00, 0x080);
768 #endif
769         scratch3 = sinp(UART_IER) & 0x0f;
770         soutp(UART_IER, scratch);
771         if (scratch2 != 0 || scratch3 != 0x0f) {
772                 /* we fail, there's nothing here */
773                 printk(KERN_ERR LIRC_DRIVER_NAME ": port existence test "
774                        "failed, cannot continue\n");
775                 return -ENODEV;
776         }
777
778
779
780         /* Set DLAB 0. */
781         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
782
783         /* First of all, disable all interrupts */
784         soutp(UART_IER, sinp(UART_IER) &
785               (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
786
787         /* Clear registers. */
788         sinp(UART_LSR);
789         sinp(UART_RX);
790         sinp(UART_IIR);
791         sinp(UART_MSR);
792
793 #ifdef CONFIG_LIRC_SERIAL_NSLU2
794         if (type == LIRC_NSLU2) {
795                 /* Setup NSLU2 UART */
796
797                 /* Enable UART */
798                 soutp(UART_IER, sinp(UART_IER) | UART_IE_IXP42X_UUE);
799                 /* Disable Receiver data Time out interrupt */
800                 soutp(UART_IER, sinp(UART_IER) & ~UART_IE_IXP42X_RTOIE);
801                 /* set out2 = interrupt unmask; off() doesn't set MCR
802                    on NSLU2 */
803                 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
804         }
805 #endif
806
807         /* Set line for power source */
808         off();
809
810         /* Clear registers again to be sure. */
811         sinp(UART_LSR);
812         sinp(UART_RX);
813         sinp(UART_IIR);
814         sinp(UART_MSR);
815
816         switch (type) {
817         case LIRC_IRDEO:
818         case LIRC_IRDEO_REMOTE:
819                 /* setup port to 7N1 @ 115200 Baud */
820                 /* 7N1+start = 9 bits at 115200 ~ 3 bits at 38kHz */
821
822                 /* Set DLAB 1. */
823                 soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
824                 /* Set divisor to 1 => 115200 Baud */
825                 soutp(UART_DLM, 0);
826                 soutp(UART_DLL, 1);
827                 /* Set DLAB 0 +  7N1 */
828                 soutp(UART_LCR, UART_LCR_WLEN7);
829                 /* THR interrupt already disabled at this point */
830                 break;
831         default:
832                 break;
833         }
834
835         return 0;
836 }
837
838 static int __devinit lirc_serial_probe(struct platform_device *dev)
839 {
840         int i, nlow, nhigh, result;
841
842         result = request_irq(irq, irq_handler,
843                              (share_irq ? IRQF_SHARED : 0),
844                              LIRC_DRIVER_NAME, (void *)&hardware);
845         if (result < 0) {
846                 if (result == -EBUSY)
847                         printk(KERN_ERR LIRC_DRIVER_NAME ": IRQ %d busy\n",
848                                irq);
849                 else if (result == -EINVAL)
850                         printk(KERN_ERR LIRC_DRIVER_NAME
851                                ": Bad irq number or handler\n");
852                 return result;
853         }
854
855         /* Reserve io region. */
856         /*
857          * Future MMAP-Developers: Attention!
858          * For memory mapped I/O you *might* need to use ioremap() first,
859          * for the NSLU2 it's done in boot code.
860          */
861         if (((iommap != 0)
862              && (request_mem_region(iommap, 8 << ioshift,
863                                     LIRC_DRIVER_NAME) == NULL))
864            || ((iommap == 0)
865                && (request_region(io, 8, LIRC_DRIVER_NAME) == NULL))) {
866                 printk(KERN_ERR  LIRC_DRIVER_NAME
867                        ": port %04x already in use\n", io);
868                 printk(KERN_WARNING LIRC_DRIVER_NAME
869                        ": use 'setserial /dev/ttySX uart none'\n");
870                 printk(KERN_WARNING LIRC_DRIVER_NAME
871                        ": or compile the serial port driver as module and\n");
872                 printk(KERN_WARNING LIRC_DRIVER_NAME
873                        ": make sure this module is loaded first\n");
874                 result = -EBUSY;
875                 goto exit_free_irq;
876         }
877
878         result = hardware_init_port();
879         if (result < 0)
880                 goto exit_release_region;
881
882         /* Initialize pulse/space widths */
883         init_timing_params(duty_cycle, freq);
884
885         /* If pin is high, then this must be an active low receiver. */
886         if (sense == -1) {
887                 /* wait 1/2 sec for the power supply */
888                 msleep(500);
889
890                 /*
891                  * probe 9 times every 0.04s, collect "votes" for
892                  * active high/low
893                  */
894                 nlow = 0;
895                 nhigh = 0;
896                 for (i = 0; i < 9; i++) {
897                         if (sinp(UART_MSR) & hardware[type].signal_pin)
898                                 nlow++;
899                         else
900                                 nhigh++;
901                         msleep(40);
902                 }
903                 sense = (nlow >= nhigh ? 1 : 0);
904                 printk(KERN_INFO LIRC_DRIVER_NAME  ": auto-detected active "
905                        "%s receiver\n", sense ? "low" : "high");
906         } else
907                 printk(KERN_INFO LIRC_DRIVER_NAME  ": Manually using active "
908                        "%s receiver\n", sense ? "low" : "high");
909
910         dprintk("Interrupt %d, port %04x obtained\n", irq, io);
911         return 0;
912
913 exit_release_region:
914         if (iommap != 0)
915                 release_mem_region(iommap, 8 << ioshift);
916         else
917                 release_region(io, 8);
918 exit_free_irq:
919         free_irq(irq, (void *)&hardware);
920
921         return result;
922 }
923
924 static int __devexit lirc_serial_remove(struct platform_device *dev)
925 {
926         free_irq(irq, (void *)&hardware);
927
928         if (iommap != 0)
929                 release_mem_region(iommap, 8 << ioshift);
930         else
931                 release_region(io, 8);
932
933         return 0;
934 }
935
936 static int set_use_inc(void *data)
937 {
938         unsigned long flags;
939
940         /* initialize timestamp */
941         do_gettimeofday(&lasttv);
942
943         spin_lock_irqsave(&hardware[type].lock, flags);
944
945         /* Set DLAB 0. */
946         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
947
948         soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
949
950         spin_unlock_irqrestore(&hardware[type].lock, flags);
951
952         return 0;
953 }
954
955 static void set_use_dec(void *data)
956 {       unsigned long flags;
957
958         spin_lock_irqsave(&hardware[type].lock, flags);
959
960         /* Set DLAB 0. */
961         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
962
963         /* First of all, disable all interrupts */
964         soutp(UART_IER, sinp(UART_IER) &
965               (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
966         spin_unlock_irqrestore(&hardware[type].lock, flags);
967 }
968
969 static ssize_t lirc_write(struct file *file, const char *buf,
970                          size_t n, loff_t *ppos)
971 {
972         int i, count;
973         unsigned long flags;
974         long delta = 0;
975         int *wbuf;
976
977         if (!(hardware[type].features & LIRC_CAN_SEND_PULSE))
978                 return -EPERM;
979
980         count = n / sizeof(int);
981         if (n % sizeof(int) || count % 2 == 0)
982                 return -EINVAL;
983         wbuf = memdup_user(buf, n);
984         if (IS_ERR(wbuf))
985                 return PTR_ERR(wbuf);
986         spin_lock_irqsave(&hardware[type].lock, flags);
987         if (type == LIRC_IRDEO) {
988                 /* DTR, RTS down */
989                 on();
990         }
991         for (i = 0; i < count; i++) {
992                 if (i%2)
993                         hardware[type].send_space(wbuf[i] - delta);
994                 else
995                         delta = hardware[type].send_pulse(wbuf[i]);
996         }
997         off();
998         spin_unlock_irqrestore(&hardware[type].lock, flags);
999         kfree(wbuf);
1000         return n;
1001 }
1002
1003 static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1004 {
1005         int result;
1006         __u32 value;
1007
1008         switch (cmd) {
1009         case LIRC_GET_SEND_MODE:
1010                 if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
1011                         return -ENOIOCTLCMD;
1012
1013                 result = put_user(LIRC_SEND2MODE
1014                                   (hardware[type].features&LIRC_CAN_SEND_MASK),
1015                                   (__u32 *) arg);
1016                 if (result)
1017                         return result;
1018                 break;
1019
1020         case LIRC_SET_SEND_MODE:
1021                 if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
1022                         return -ENOIOCTLCMD;
1023
1024                 result = get_user(value, (__u32 *) arg);
1025                 if (result)
1026                         return result;
1027                 /* only LIRC_MODE_PULSE supported */
1028                 if (value != LIRC_MODE_PULSE)
1029                         return -EINVAL;
1030                 break;
1031
1032         case LIRC_GET_LENGTH:
1033                 return -ENOIOCTLCMD;
1034                 break;
1035
1036         case LIRC_SET_SEND_DUTY_CYCLE:
1037                 dprintk("SET_SEND_DUTY_CYCLE\n");
1038                 if (!(hardware[type].features&LIRC_CAN_SET_SEND_DUTY_CYCLE))
1039                         return -ENOIOCTLCMD;
1040
1041                 result = get_user(value, (__u32 *) arg);
1042                 if (result)
1043                         return result;
1044                 if (value <= 0 || value > 100)
1045                         return -EINVAL;
1046                 return init_timing_params(value, freq);
1047                 break;
1048
1049         case LIRC_SET_SEND_CARRIER:
1050                 dprintk("SET_SEND_CARRIER\n");
1051                 if (!(hardware[type].features&LIRC_CAN_SET_SEND_CARRIER))
1052                         return -ENOIOCTLCMD;
1053
1054                 result = get_user(value, (__u32 *) arg);
1055                 if (result)
1056                         return result;
1057                 if (value > 500000 || value < 20000)
1058                         return -EINVAL;
1059                 return init_timing_params(duty_cycle, value);
1060                 break;
1061
1062         default:
1063                 return lirc_dev_fop_ioctl(filep, cmd, arg);
1064         }
1065         return 0;
1066 }
1067
1068 static const struct file_operations lirc_fops = {
1069         .owner          = THIS_MODULE,
1070         .write          = lirc_write,
1071         .unlocked_ioctl = lirc_ioctl,
1072 #ifdef CONFIG_COMPAT
1073         .compat_ioctl   = lirc_ioctl,
1074 #endif
1075         .read           = lirc_dev_fop_read,
1076         .poll           = lirc_dev_fop_poll,
1077         .open           = lirc_dev_fop_open,
1078         .release        = lirc_dev_fop_close,
1079         .llseek         = no_llseek,
1080 };
1081
1082 static struct lirc_driver driver = {
1083         .name           = LIRC_DRIVER_NAME,
1084         .minor          = -1,
1085         .code_length    = 1,
1086         .sample_rate    = 0,
1087         .data           = NULL,
1088         .add_to_buf     = NULL,
1089         .rbuf           = &rbuf,
1090         .set_use_inc    = set_use_inc,
1091         .set_use_dec    = set_use_dec,
1092         .fops           = &lirc_fops,
1093         .dev            = NULL,
1094         .owner          = THIS_MODULE,
1095 };
1096
1097 static struct platform_device *lirc_serial_dev;
1098
1099 static int lirc_serial_suspend(struct platform_device *dev,
1100                                pm_message_t state)
1101 {
1102         /* Set DLAB 0. */
1103         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
1104
1105         /* Disable all interrupts */
1106         soutp(UART_IER, sinp(UART_IER) &
1107               (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
1108
1109         /* Clear registers. */
1110         sinp(UART_LSR);
1111         sinp(UART_RX);
1112         sinp(UART_IIR);
1113         sinp(UART_MSR);
1114
1115         return 0;
1116 }
1117
1118 /* twisty maze... need a forward-declaration here... */
1119 static void lirc_serial_exit(void);
1120
1121 static int lirc_serial_resume(struct platform_device *dev)
1122 {
1123         unsigned long flags;
1124         int result;
1125
1126         result = hardware_init_port();
1127         if (result < 0)
1128                 return result;
1129
1130         spin_lock_irqsave(&hardware[type].lock, flags);
1131         /* Enable Interrupt */
1132         do_gettimeofday(&lasttv);
1133         soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
1134         off();
1135
1136         lirc_buffer_clear(&rbuf);
1137
1138         spin_unlock_irqrestore(&hardware[type].lock, flags);
1139
1140         return 0;
1141 }
1142
1143 static struct platform_driver lirc_serial_driver = {
1144         .probe          = lirc_serial_probe,
1145         .remove         = __devexit_p(lirc_serial_remove),
1146         .suspend        = lirc_serial_suspend,
1147         .resume         = lirc_serial_resume,
1148         .driver         = {
1149                 .name   = "lirc_serial",
1150                 .owner  = THIS_MODULE,
1151         },
1152 };
1153
1154 static int __init lirc_serial_init(void)
1155 {
1156         int result;
1157
1158         /* Init read buffer. */
1159         result = lirc_buffer_init(&rbuf, sizeof(int), RBUF_LEN);
1160         if (result < 0)
1161                 return result;
1162
1163         result = platform_driver_register(&lirc_serial_driver);
1164         if (result) {
1165                 printk("lirc register returned %d\n", result);
1166                 goto exit_buffer_free;
1167         }
1168
1169         lirc_serial_dev = platform_device_alloc("lirc_serial", 0);
1170         if (!lirc_serial_dev) {
1171                 result = -ENOMEM;
1172                 goto exit_driver_unregister;
1173         }
1174
1175         result = platform_device_add(lirc_serial_dev);
1176         if (result)
1177                 goto exit_device_put;
1178
1179         return 0;
1180
1181 exit_device_put:
1182         platform_device_put(lirc_serial_dev);
1183 exit_driver_unregister:
1184         platform_driver_unregister(&lirc_serial_driver);
1185 exit_buffer_free:
1186         lirc_buffer_free(&rbuf);
1187         return result;
1188 }
1189
1190 static void lirc_serial_exit(void)
1191 {
1192         platform_device_unregister(lirc_serial_dev);
1193         platform_driver_unregister(&lirc_serial_driver);
1194         lirc_buffer_free(&rbuf);
1195 }
1196
1197 static int __init lirc_serial_init_module(void)
1198 {
1199         int result;
1200
1201         switch (type) {
1202         case LIRC_HOMEBREW:
1203         case LIRC_IRDEO:
1204         case LIRC_IRDEO_REMOTE:
1205         case LIRC_ANIMAX:
1206         case LIRC_IGOR:
1207                 /* if nothing specified, use ttyS0/com1 and irq 4 */
1208                 io = io ? io : 0x3f8;
1209                 irq = irq ? irq : 4;
1210                 break;
1211 #ifdef CONFIG_LIRC_SERIAL_NSLU2
1212         case LIRC_NSLU2:
1213                 io = io ? io : IRQ_IXP4XX_UART2;
1214                 irq = irq ? irq : (IXP4XX_UART2_BASE_VIRT + REG_OFFSET);
1215                 iommap = iommap ? iommap : IXP4XX_UART2_BASE_PHYS;
1216                 ioshift = ioshift ? ioshift : 2;
1217                 break;
1218 #endif
1219         default:
1220                 return -EINVAL;
1221         }
1222         if (!softcarrier) {
1223                 switch (type) {
1224                 case LIRC_HOMEBREW:
1225                 case LIRC_IGOR:
1226 #ifdef CONFIG_LIRC_SERIAL_NSLU2
1227                 case LIRC_NSLU2:
1228 #endif
1229                         hardware[type].features &=
1230                                 ~(LIRC_CAN_SET_SEND_DUTY_CYCLE|
1231                                   LIRC_CAN_SET_SEND_CARRIER);
1232                         break;
1233                 }
1234         }
1235
1236         result = lirc_serial_init();
1237         if (result)
1238                 return result;
1239
1240         driver.features = hardware[type].features;
1241         driver.dev = &lirc_serial_dev->dev;
1242         driver.minor = lirc_register_driver(&driver);
1243         if (driver.minor < 0) {
1244                 printk(KERN_ERR  LIRC_DRIVER_NAME
1245                        ": register_chrdev failed!\n");
1246                 lirc_serial_exit();
1247                 return driver.minor;
1248         }
1249         return 0;
1250 }
1251
1252 static void __exit lirc_serial_exit_module(void)
1253 {
1254         lirc_unregister_driver(driver.minor);
1255         lirc_serial_exit();
1256         dprintk("cleaned up module\n");
1257 }
1258
1259
1260 module_init(lirc_serial_init_module);
1261 module_exit(lirc_serial_exit_module);
1262
1263 MODULE_DESCRIPTION("Infra-red receiver driver for serial ports.");
1264 MODULE_AUTHOR("Ralph Metzler, Trent Piepho, Ben Pfaff, "
1265               "Christoph Bartelmus, Andrei Tanas");
1266 MODULE_LICENSE("GPL");
1267
1268 module_param(type, int, S_IRUGO);
1269 MODULE_PARM_DESC(type, "Hardware type (0 = home-brew, 1 = IRdeo,"
1270                  " 2 = IRdeo Remote, 3 = AnimaX, 4 = IgorPlug,"
1271                  " 5 = NSLU2 RX:CTS2/TX:GreenLED)");
1272
1273 module_param(io, int, S_IRUGO);
1274 MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
1275
1276 /* some architectures (e.g. intel xscale) have memory mapped registers */
1277 module_param(iommap, bool, S_IRUGO);
1278 MODULE_PARM_DESC(iommap, "physical base for memory mapped I/O"
1279                 " (0 = no memory mapped io)");
1280
1281 /*
1282  * some architectures (e.g. intel xscale) align the 8bit serial registers
1283  * on 32bit word boundaries.
1284  * See linux-kernel/drivers/tty/serial/8250/8250.c serial_in()/out()
1285  */
1286 module_param(ioshift, int, S_IRUGO);
1287 MODULE_PARM_DESC(ioshift, "shift I/O register offset (0 = no shift)");
1288
1289 module_param(irq, int, S_IRUGO);
1290 MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
1291
1292 module_param(share_irq, bool, S_IRUGO);
1293 MODULE_PARM_DESC(share_irq, "Share interrupts (0 = off, 1 = on)");
1294
1295 module_param(sense, bool, S_IRUGO);
1296 MODULE_PARM_DESC(sense, "Override autodetection of IR receiver circuit"
1297                  " (0 = active high, 1 = active low )");
1298
1299 #ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
1300 module_param(txsense, bool, S_IRUGO);
1301 MODULE_PARM_DESC(txsense, "Sense of transmitter circuit"
1302                  " (0 = active high, 1 = active low )");
1303 #endif
1304
1305 module_param(softcarrier, bool, S_IRUGO);
1306 MODULE_PARM_DESC(softcarrier, "Software carrier (0 = off, 1 = on, default on)");
1307
1308 module_param(debug, bool, S_IRUGO | S_IWUSR);
1309 MODULE_PARM_DESC(debug, "Enable debugging messages");