]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/spi/spi-topcliff-pch.c
spi-topcliff-pch: Fix SSN Control issue
[linux-2.6.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
33
34 /* Register offsets */
35 #define PCH_SPCR                0x00    /* SPI control register */
36 #define PCH_SPBRR               0x04    /* SPI baud rate register */
37 #define PCH_SPSR                0x08    /* SPI status register */
38 #define PCH_SPDWR               0x0C    /* SPI write data register */
39 #define PCH_SPDRR               0x10    /* SPI read data register */
40 #define PCH_SSNXCR              0x18    /* SSN Expand Control Register */
41 #define PCH_SRST                0x1C    /* SPI reset register */
42 #define PCH_ADDRESS_SIZE        0x20
43
44 #define PCH_SPSR_TFD            0x000007C0
45 #define PCH_SPSR_RFD            0x0000F800
46
47 #define PCH_READABLE(x)         (((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x)         (((x) & PCH_SPSR_TFD)>>6)
49
50 #define PCH_RX_THOLD            7
51 #define PCH_RX_THOLD_MAX        15
52
53 #define PCH_MAX_BAUDRATE        5000000
54 #define PCH_MAX_FIFO_DEPTH      16
55
56 #define STATUS_RUNNING          1
57 #define STATUS_EXITING          2
58 #define PCH_SLEEP_TIME          10
59
60 #define SSN_LOW                 0x02U
61 #define SSN_HIGH                0x03U
62 #define SSN_NO_CONTROL          0x00U
63 #define PCH_MAX_CS              0xFF
64 #define PCI_DEVICE_ID_GE_SPI    0x8816
65
66 #define SPCR_SPE_BIT            (1 << 0)
67 #define SPCR_MSTR_BIT           (1 << 1)
68 #define SPCR_LSBF_BIT           (1 << 4)
69 #define SPCR_CPHA_BIT           (1 << 5)
70 #define SPCR_CPOL_BIT           (1 << 6)
71 #define SPCR_TFIE_BIT           (1 << 8)
72 #define SPCR_RFIE_BIT           (1 << 9)
73 #define SPCR_FIE_BIT            (1 << 10)
74 #define SPCR_ORIE_BIT           (1 << 11)
75 #define SPCR_MDFIE_BIT          (1 << 12)
76 #define SPCR_FICLR_BIT          (1 << 24)
77 #define SPSR_TFI_BIT            (1 << 0)
78 #define SPSR_RFI_BIT            (1 << 1)
79 #define SPSR_FI_BIT             (1 << 2)
80 #define SPSR_ORF_BIT            (1 << 3)
81 #define SPBRR_SIZE_BIT          (1 << 10)
82
83 #define PCH_ALL                 (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
84                                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
85
86 #define SPCR_RFIC_FIELD         20
87 #define SPCR_TFIC_FIELD         16
88
89 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
90 #define MASK_RFIC_SPCR_BITS     (0xf << SPCR_RFIC_FIELD)
91 #define MASK_TFIC_SPCR_BITS     (0xf << SPCR_TFIC_FIELD)
92
93 #define PCH_CLOCK_HZ            50000000
94 #define PCH_MAX_SPBR            1023
95
96 /* Definition for ML7213 by OKI SEMICONDUCTOR */
97 #define PCI_VENDOR_ID_ROHM              0x10DB
98 #define PCI_DEVICE_ID_ML7213_SPI        0x802c
99 #define PCI_DEVICE_ID_ML7223_SPI        0x800F
100
101 /*
102  * Set the number of SPI instance max
103  * Intel EG20T PCH :            1ch
104  * OKI SEMICONDUCTOR ML7213 IOH :       2ch
105  * OKI SEMICONDUCTOR ML7223 IOH :       1ch
106 */
107 #define PCH_SPI_MAX_DEV                 2
108
109 #define PCH_BUF_SIZE            4096
110 #define PCH_DMA_TRANS_SIZE      12
111
112 static int use_dma = 1;
113
114 struct pch_spi_dma_ctrl {
115         struct dma_async_tx_descriptor  *desc_tx;
116         struct dma_async_tx_descriptor  *desc_rx;
117         struct pch_dma_slave            param_tx;
118         struct pch_dma_slave            param_rx;
119         struct dma_chan         *chan_tx;
120         struct dma_chan         *chan_rx;
121         struct scatterlist              *sg_tx_p;
122         struct scatterlist              *sg_rx_p;
123         struct scatterlist              sg_tx;
124         struct scatterlist              sg_rx;
125         int                             nent;
126         void                            *tx_buf_virt;
127         void                            *rx_buf_virt;
128         dma_addr_t                      tx_buf_dma;
129         dma_addr_t                      rx_buf_dma;
130 };
131 /**
132  * struct pch_spi_data - Holds the SPI channel specific details
133  * @io_remap_addr:              The remapped PCI base address
134  * @master:                     Pointer to the SPI master structure
135  * @work:                       Reference to work queue handler
136  * @wk:                         Workqueue for carrying out execution of the
137  *                              requests
138  * @wait:                       Wait queue for waking up upon receiving an
139  *                              interrupt.
140  * @transfer_complete:          Status of SPI Transfer
141  * @bcurrent_msg_processing:    Status flag for message processing
142  * @lock:                       Lock for protecting this structure
143  * @queue:                      SPI Message queue
144  * @status:                     Status of the SPI driver
145  * @bpw_len:                    Length of data to be transferred in bits per
146  *                              word
147  * @transfer_active:            Flag showing active transfer
148  * @tx_index:                   Transmit data count; for bookkeeping during
149  *                              transfer
150  * @rx_index:                   Receive data count; for bookkeeping during
151  *                              transfer
152  * @tx_buff:                    Buffer for data to be transmitted
153  * @rx_index:                   Buffer for Received data
154  * @n_curnt_chip:               The chip number that this SPI driver currently
155  *                              operates on
156  * @current_chip:               Reference to the current chip that this SPI
157  *                              driver currently operates on
158  * @current_msg:                The current message that this SPI driver is
159  *                              handling
160  * @cur_trans:                  The current transfer that this SPI driver is
161  *                              handling
162  * @board_dat:                  Reference to the SPI device data structure
163  * @plat_dev:                   platform_device structure
164  * @ch:                         SPI channel number
165  * @irq_reg_sts:                Status of IRQ registration
166  */
167 struct pch_spi_data {
168         void __iomem *io_remap_addr;
169         unsigned long io_base_addr;
170         struct spi_master *master;
171         struct work_struct work;
172         struct workqueue_struct *wk;
173         wait_queue_head_t wait;
174         u8 transfer_complete;
175         u8 bcurrent_msg_processing;
176         spinlock_t lock;
177         struct list_head queue;
178         u8 status;
179         u32 bpw_len;
180         u8 transfer_active;
181         u32 tx_index;
182         u32 rx_index;
183         u16 *pkt_tx_buff;
184         u16 *pkt_rx_buff;
185         u8 n_curnt_chip;
186         struct spi_device *current_chip;
187         struct spi_message *current_msg;
188         struct spi_transfer *cur_trans;
189         struct pch_spi_board_data *board_dat;
190         struct platform_device  *plat_dev;
191         int ch;
192         struct pch_spi_dma_ctrl dma;
193         int use_dma;
194         u8 irq_reg_sts;
195 };
196
197 /**
198  * struct pch_spi_board_data - Holds the SPI device specific details
199  * @pdev:               Pointer to the PCI device
200  * @suspend_sts:        Status of suspend
201  * @num:                The number of SPI device instance
202  */
203 struct pch_spi_board_data {
204         struct pci_dev *pdev;
205         u8 suspend_sts;
206         int num;
207 };
208
209 struct pch_pd_dev_save {
210         int num;
211         struct platform_device *pd_save[PCH_SPI_MAX_DEV];
212         struct pch_spi_board_data *board_dat;
213 };
214
215 static struct pci_device_id pch_spi_pcidev_id[] = {
216         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
217         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
218         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
219         { }
220 };
221
222 /**
223  * pch_spi_writereg() - Performs  register writes
224  * @master:     Pointer to struct spi_master.
225  * @idx:        Register offset.
226  * @val:        Value to be written to register.
227  */
228 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
229 {
230         struct pch_spi_data *data = spi_master_get_devdata(master);
231         iowrite32(val, (data->io_remap_addr + idx));
232 }
233
234 /**
235  * pch_spi_readreg() - Performs register reads
236  * @master:     Pointer to struct spi_master.
237  * @idx:        Register offset.
238  */
239 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
240 {
241         struct pch_spi_data *data = spi_master_get_devdata(master);
242         return ioread32(data->io_remap_addr + idx);
243 }
244
245 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
246                                       u32 set, u32 clr)
247 {
248         u32 tmp = pch_spi_readreg(master, idx);
249         tmp = (tmp & ~clr) | set;
250         pch_spi_writereg(master, idx, tmp);
251 }
252
253 static void pch_spi_set_master_mode(struct spi_master *master)
254 {
255         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
256 }
257
258 /**
259  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
260  * @master:     Pointer to struct spi_master.
261  */
262 static void pch_spi_clear_fifo(struct spi_master *master)
263 {
264         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
265         pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
266 }
267
268 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
269                                 void __iomem *io_remap_addr)
270 {
271         u32 n_read, tx_index, rx_index, bpw_len;
272         u16 *pkt_rx_buffer, *pkt_tx_buff;
273         int read_cnt;
274         u32 reg_spcr_val;
275         void __iomem *spsr;
276         void __iomem *spdrr;
277         void __iomem *spdwr;
278
279         spsr = io_remap_addr + PCH_SPSR;
280         iowrite32(reg_spsr_val, spsr);
281
282         if (data->transfer_active) {
283                 rx_index = data->rx_index;
284                 tx_index = data->tx_index;
285                 bpw_len = data->bpw_len;
286                 pkt_rx_buffer = data->pkt_rx_buff;
287                 pkt_tx_buff = data->pkt_tx_buff;
288
289                 spdrr = io_remap_addr + PCH_SPDRR;
290                 spdwr = io_remap_addr + PCH_SPDWR;
291
292                 n_read = PCH_READABLE(reg_spsr_val);
293
294                 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
295                         pkt_rx_buffer[rx_index++] = ioread32(spdrr);
296                         if (tx_index < bpw_len)
297                                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
298                 }
299
300                 /* disable RFI if not needed */
301                 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
302                         reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
303                         reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
304
305                         /* reset rx threshold */
306                         reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
307                         reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
308
309                         iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
310                 }
311
312                 /* update counts */
313                 data->tx_index = tx_index;
314                 data->rx_index = rx_index;
315
316         }
317
318         /* if transfer complete interrupt */
319         if (reg_spsr_val & SPSR_FI_BIT) {
320                 if (tx_index < bpw_len)
321                         dev_err(&data->master->dev,
322                                 "%s : Transfer is not completed", __func__);
323                 /* disable interrupts */
324                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
325
326                 /* transfer is completed;inform pch_spi_process_messages */
327                 data->transfer_complete = true;
328                 data->transfer_active = false;
329                 wake_up(&data->wait);
330         }
331 }
332
333 /**
334  * pch_spi_handler() - Interrupt handler
335  * @irq:        The interrupt number.
336  * @dev_id:     Pointer to struct pch_spi_board_data.
337  */
338 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
339 {
340         u32 reg_spsr_val;
341         void __iomem *spsr;
342         void __iomem *io_remap_addr;
343         irqreturn_t ret = IRQ_NONE;
344         struct pch_spi_data *data = dev_id;
345         struct pch_spi_board_data *board_dat = data->board_dat;
346
347         if (board_dat->suspend_sts) {
348                 dev_dbg(&board_dat->pdev->dev,
349                         "%s returning due to suspend\n", __func__);
350                 return IRQ_NONE;
351         }
352         if (data->use_dma)
353                 return IRQ_NONE;
354
355         io_remap_addr = data->io_remap_addr;
356         spsr = io_remap_addr + PCH_SPSR;
357
358         reg_spsr_val = ioread32(spsr);
359
360         if (reg_spsr_val & SPSR_ORF_BIT)
361                 dev_err(&board_dat->pdev->dev, "%s Over run error", __func__);
362
363         /* Check if the interrupt is for SPI device */
364         if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
365                 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
366                 ret = IRQ_HANDLED;
367         }
368
369         dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
370                 __func__, ret);
371
372         return ret;
373 }
374
375 /**
376  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
377  * @master:     Pointer to struct spi_master.
378  * @speed_hz:   Baud rate.
379  */
380 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
381 {
382         u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
383
384         /* if baud rate is less than we can support limit it */
385         if (n_spbr > PCH_MAX_SPBR)
386                 n_spbr = PCH_MAX_SPBR;
387
388         pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
389 }
390
391 /**
392  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
393  * @master:             Pointer to struct spi_master.
394  * @bits_per_word:      Bits per word for SPI transfer.
395  */
396 static void pch_spi_set_bits_per_word(struct spi_master *master,
397                                       u8 bits_per_word)
398 {
399         if (bits_per_word == 8)
400                 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
401         else
402                 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
403 }
404
405 /**
406  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
407  * @spi:        Pointer to struct spi_device.
408  */
409 static void pch_spi_setup_transfer(struct spi_device *spi)
410 {
411         u32 flags = 0;
412
413         dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
414                 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
415                 spi->max_speed_hz);
416         pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
417
418         /* set bits per word */
419         pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
420
421         if (!(spi->mode & SPI_LSB_FIRST))
422                 flags |= SPCR_LSBF_BIT;
423         if (spi->mode & SPI_CPOL)
424                 flags |= SPCR_CPOL_BIT;
425         if (spi->mode & SPI_CPHA)
426                 flags |= SPCR_CPHA_BIT;
427         pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
428                            (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
429
430         /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
431         pch_spi_clear_fifo(spi->master);
432 }
433
434 /**
435  * pch_spi_reset() - Clears SPI registers
436  * @master:     Pointer to struct spi_master.
437  */
438 static void pch_spi_reset(struct spi_master *master)
439 {
440         /* write 1 to reset SPI */
441         pch_spi_writereg(master, PCH_SRST, 0x1);
442
443         /* clear reset */
444         pch_spi_writereg(master, PCH_SRST, 0x0);
445 }
446
447 static int pch_spi_setup(struct spi_device *pspi)
448 {
449         /* check bits per word */
450         if (pspi->bits_per_word == 0) {
451                 pspi->bits_per_word = 8;
452                 dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
453         }
454
455         if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
456                 dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
457                 return -EINVAL;
458         }
459
460         /* Check baud rate setting */
461         /* if baud rate of chip is greater than
462            max we can support,return error */
463         if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
464                 pspi->max_speed_hz = PCH_MAX_BAUDRATE;
465
466         dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
467                 (pspi->mode) & (SPI_CPOL | SPI_CPHA));
468
469         return 0;
470 }
471
472 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
473 {
474
475         struct spi_transfer *transfer;
476         struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
477         int retval;
478         unsigned long flags;
479
480         /* validate spi message and baud rate */
481         if (unlikely(list_empty(&pmsg->transfers) == 1)) {
482                 dev_err(&pspi->dev, "%s list empty\n", __func__);
483                 retval = -EINVAL;
484                 goto err_out;
485         }
486
487         if (unlikely(pspi->max_speed_hz == 0)) {
488                 dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
489                         __func__, pspi->max_speed_hz);
490                 retval = -EINVAL;
491                 goto err_out;
492         }
493
494         dev_dbg(&pspi->dev, "%s Transfer List not empty. "
495                 "Transfer Speed is set.\n", __func__);
496
497         spin_lock_irqsave(&data->lock, flags);
498         /* validate Tx/Rx buffers and Transfer length */
499         list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
500                 if (!transfer->tx_buf && !transfer->rx_buf) {
501                         dev_err(&pspi->dev,
502                                 "%s Tx and Rx buffer NULL\n", __func__);
503                         retval = -EINVAL;
504                         goto err_return_spinlock;
505                 }
506
507                 if (!transfer->len) {
508                         dev_err(&pspi->dev, "%s Transfer length invalid\n",
509                                 __func__);
510                         retval = -EINVAL;
511                         goto err_return_spinlock;
512                 }
513
514                 dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
515                         " valid\n", __func__);
516
517                 /* if baud rate has been specified validate the same */
518                 if (transfer->speed_hz > PCH_MAX_BAUDRATE)
519                         transfer->speed_hz = PCH_MAX_BAUDRATE;
520
521                 /* if bits per word has been specified validate the same */
522                 if (transfer->bits_per_word) {
523                         if ((transfer->bits_per_word != 8)
524                             && (transfer->bits_per_word != 16)) {
525                                 retval = -EINVAL;
526                                 dev_err(&pspi->dev,
527                                         "%s Invalid bits per word\n", __func__);
528                                 goto err_return_spinlock;
529                         }
530                 }
531         }
532         spin_unlock_irqrestore(&data->lock, flags);
533
534         /* We won't process any messages if we have been asked to terminate */
535         if (data->status == STATUS_EXITING) {
536                 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
537                 retval = -ESHUTDOWN;
538                 goto err_out;
539         }
540
541         /* If suspended ,return -EINVAL */
542         if (data->board_dat->suspend_sts) {
543                 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
544                 retval = -EINVAL;
545                 goto err_out;
546         }
547
548         /* set status of message */
549         pmsg->actual_length = 0;
550         dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
551
552         pmsg->status = -EINPROGRESS;
553         spin_lock_irqsave(&data->lock, flags);
554         /* add message to queue */
555         list_add_tail(&pmsg->queue, &data->queue);
556         spin_unlock_irqrestore(&data->lock, flags);
557
558         dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
559
560         /* schedule work queue to run */
561         queue_work(data->wk, &data->work);
562         dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
563
564         retval = 0;
565
566 err_out:
567         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
568         return retval;
569 err_return_spinlock:
570         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
571         spin_unlock_irqrestore(&data->lock, flags);
572         return retval;
573 }
574
575 static inline void pch_spi_select_chip(struct pch_spi_data *data,
576                                        struct spi_device *pspi)
577 {
578         if (data->current_chip != NULL) {
579                 if (pspi->chip_select != data->n_curnt_chip) {
580                         dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
581                         data->current_chip = NULL;
582                 }
583         }
584
585         data->current_chip = pspi;
586
587         data->n_curnt_chip = data->current_chip->chip_select;
588
589         dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
590         pch_spi_setup_transfer(pspi);
591 }
592
593 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
594 {
595         int size;
596         u32 n_writes;
597         int j;
598         struct spi_message *pmsg;
599         const u8 *tx_buf;
600         const u16 *tx_sbuf;
601
602         /* set baud rate if needed */
603         if (data->cur_trans->speed_hz) {
604                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
605                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
606         }
607
608         /* set bits per word if needed */
609         if (data->cur_trans->bits_per_word &&
610             (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
611                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
612                 pch_spi_set_bits_per_word(data->master,
613                                           data->cur_trans->bits_per_word);
614                 *bpw = data->cur_trans->bits_per_word;
615         } else {
616                 *bpw = data->current_msg->spi->bits_per_word;
617         }
618
619         /* reset Tx/Rx index */
620         data->tx_index = 0;
621         data->rx_index = 0;
622
623         data->bpw_len = data->cur_trans->len / (*bpw / 8);
624
625         /* find alloc size */
626         size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
627
628         /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
629         data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
630         if (data->pkt_tx_buff != NULL) {
631                 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
632                 if (!data->pkt_rx_buff)
633                         kfree(data->pkt_tx_buff);
634         }
635
636         if (!data->pkt_rx_buff) {
637                 /* flush queue and set status of all transfers to -ENOMEM */
638                 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
639                 list_for_each_entry(pmsg, data->queue.next, queue) {
640                         pmsg->status = -ENOMEM;
641
642                         if (pmsg->complete != 0)
643                                 pmsg->complete(pmsg->context);
644
645                         /* delete from queue */
646                         list_del_init(&pmsg->queue);
647                 }
648                 return;
649         }
650
651         /* copy Tx Data */
652         if (data->cur_trans->tx_buf != NULL) {
653                 if (*bpw == 8) {
654                         tx_buf = data->cur_trans->tx_buf;
655                         for (j = 0; j < data->bpw_len; j++)
656                                 data->pkt_tx_buff[j] = *tx_buf++;
657                 } else {
658                         tx_sbuf = data->cur_trans->tx_buf;
659                         for (j = 0; j < data->bpw_len; j++)
660                                 data->pkt_tx_buff[j] = *tx_sbuf++;
661                 }
662         }
663
664         /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
665         n_writes = data->bpw_len;
666         if (n_writes > PCH_MAX_FIFO_DEPTH)
667                 n_writes = PCH_MAX_FIFO_DEPTH;
668
669         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
670                 "0x2 to SSNXCR\n", __func__);
671         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
672
673         for (j = 0; j < n_writes; j++)
674                 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
675
676         /* update tx_index */
677         data->tx_index = j;
678
679         /* reset transfer complete flag */
680         data->transfer_complete = false;
681         data->transfer_active = true;
682 }
683
684 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
685 {
686         struct spi_message *pmsg;
687         dev_dbg(&data->master->dev, "%s called\n", __func__);
688         /* Invoke complete callback
689          * [To the spi core..indicating end of transfer] */
690         data->current_msg->status = 0;
691
692         if (data->current_msg->complete != 0) {
693                 dev_dbg(&data->master->dev,
694                         "%s:Invoking callback of SPI core\n", __func__);
695                 data->current_msg->complete(data->current_msg->context);
696         }
697
698         /* update status in global variable */
699         data->bcurrent_msg_processing = false;
700
701         dev_dbg(&data->master->dev,
702                 "%s:data->bcurrent_msg_processing = false\n", __func__);
703
704         data->current_msg = NULL;
705         data->cur_trans = NULL;
706
707         /* check if we have items in list and not suspending
708          * return 1 if list empty */
709         if ((list_empty(&data->queue) == 0) &&
710             (!data->board_dat->suspend_sts) &&
711             (data->status != STATUS_EXITING)) {
712                 /* We have some more work to do (either there is more tranint
713                  * bpw;sfer requests in the current message or there are
714                  *more messages)
715                  */
716                 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
717                 queue_work(data->wk, &data->work);
718         } else if (data->board_dat->suspend_sts ||
719                    data->status == STATUS_EXITING) {
720                 dev_dbg(&data->master->dev,
721                         "%s suspend/remove initiated, flushing queue\n",
722                         __func__);
723                 list_for_each_entry(pmsg, data->queue.next, queue) {
724                         pmsg->status = -EIO;
725
726                         if (pmsg->complete)
727                                 pmsg->complete(pmsg->context);
728
729                         /* delete from queue */
730                         list_del_init(&pmsg->queue);
731                 }
732         }
733 }
734
735 static void pch_spi_set_ir(struct pch_spi_data *data)
736 {
737         /* enable interrupts, set threshold, enable SPI */
738         if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
739                 /* set receive threshold to PCH_RX_THOLD */
740                 pch_spi_setclr_reg(data->master, PCH_SPCR,
741                                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
742                                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
743                                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
744                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
745         else
746                 /* set receive threshold to maximum */
747                 pch_spi_setclr_reg(data->master, PCH_SPCR,
748                                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
749                                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
750                                    SPCR_SPE_BIT,
751                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
752
753         /* Wait until the transfer completes; go to sleep after
754                                  initiating the transfer. */
755         dev_dbg(&data->master->dev,
756                 "%s:waiting for transfer to get over\n", __func__);
757
758         wait_event_interruptible(data->wait, data->transfer_complete);
759
760         /* clear all interrupts */
761         pch_spi_writereg(data->master, PCH_SPSR,
762                          pch_spi_readreg(data->master, PCH_SPSR));
763         /* Disable interrupts and SPI transfer */
764         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
765         /* clear FIFO */
766         pch_spi_clear_fifo(data->master);
767 }
768
769 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
770 {
771         int j;
772         u8 *rx_buf;
773         u16 *rx_sbuf;
774
775         /* copy Rx Data */
776         if (!data->cur_trans->rx_buf)
777                 return;
778
779         if (bpw == 8) {
780                 rx_buf = data->cur_trans->rx_buf;
781                 for (j = 0; j < data->bpw_len; j++)
782                         *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
783         } else {
784                 rx_sbuf = data->cur_trans->rx_buf;
785                 for (j = 0; j < data->bpw_len; j++)
786                         *rx_sbuf++ = data->pkt_rx_buff[j];
787         }
788 }
789
790 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
791 {
792         int j;
793         u8 *rx_buf;
794         u16 *rx_sbuf;
795         const u8 *rx_dma_buf;
796         const u16 *rx_dma_sbuf;
797
798         /* copy Rx Data */
799         if (!data->cur_trans->rx_buf)
800                 return;
801
802         if (bpw == 8) {
803                 rx_buf = data->cur_trans->rx_buf;
804                 rx_dma_buf = data->dma.rx_buf_virt;
805                 for (j = 0; j < data->bpw_len; j++)
806                         *rx_buf++ = *rx_dma_buf++ & 0xFF;
807         } else {
808                 rx_sbuf = data->cur_trans->rx_buf;
809                 rx_dma_sbuf = data->dma.rx_buf_virt;
810                 for (j = 0; j < data->bpw_len; j++)
811                         *rx_sbuf++ = *rx_dma_sbuf++;
812         }
813 }
814
815 static void pch_spi_start_transfer(struct pch_spi_data *data)
816 {
817         struct pch_spi_dma_ctrl *dma;
818         unsigned long flags;
819
820         dma = &data->dma;
821
822         spin_lock_irqsave(&data->lock, flags);
823
824         /* disable interrupts, SPI set enable */
825         pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
826
827         spin_unlock_irqrestore(&data->lock, flags);
828
829         /* Wait until the transfer completes; go to sleep after
830                                  initiating the transfer. */
831         dev_dbg(&data->master->dev,
832                 "%s:waiting for transfer to get over\n", __func__);
833         wait_event_interruptible(data->wait, data->transfer_complete);
834
835         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
836                             DMA_FROM_DEVICE);
837
838         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
839                             DMA_FROM_DEVICE);
840         memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
841
842         async_tx_ack(dma->desc_rx);
843         async_tx_ack(dma->desc_tx);
844         kfree(dma->sg_tx_p);
845         kfree(dma->sg_rx_p);
846
847         spin_lock_irqsave(&data->lock, flags);
848
849         /* clear fifo threshold, disable interrupts, disable SPI transfer */
850         pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
851                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
852                            SPCR_SPE_BIT);
853         /* clear all interrupts */
854         pch_spi_writereg(data->master, PCH_SPSR,
855                          pch_spi_readreg(data->master, PCH_SPSR));
856         /* clear FIFO */
857         pch_spi_clear_fifo(data->master);
858
859         spin_unlock_irqrestore(&data->lock, flags);
860 }
861
862 static void pch_dma_rx_complete(void *arg)
863 {
864         struct pch_spi_data *data = arg;
865
866         /* transfer is completed;inform pch_spi_process_messages_dma */
867         data->transfer_complete = true;
868         wake_up_interruptible(&data->wait);
869 }
870
871 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
872 {
873         struct pch_dma_slave *param = slave;
874
875         if ((chan->chan_id == param->chan_id) &&
876             (param->dma_dev == chan->device->dev)) {
877                 chan->private = param;
878                 return true;
879         } else {
880                 return false;
881         }
882 }
883
884 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
885 {
886         dma_cap_mask_t mask;
887         struct dma_chan *chan;
888         struct pci_dev *dma_dev;
889         struct pch_dma_slave *param;
890         struct pch_spi_dma_ctrl *dma;
891         unsigned int width;
892
893         if (bpw == 8)
894                 width = PCH_DMA_WIDTH_1_BYTE;
895         else
896                 width = PCH_DMA_WIDTH_2_BYTES;
897
898         dma = &data->dma;
899         dma_cap_zero(mask);
900         dma_cap_set(DMA_SLAVE, mask);
901
902         /* Get DMA's dev information */
903         dma_dev = pci_get_bus_and_slot(2, PCI_DEVFN(12, 0));
904
905         /* Set Tx DMA */
906         param = &dma->param_tx;
907         param->dma_dev = &dma_dev->dev;
908         param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
909         param->tx_reg = data->io_base_addr + PCH_SPDWR;
910         param->width = width;
911         chan = dma_request_channel(mask, pch_spi_filter, param);
912         if (!chan) {
913                 dev_err(&data->master->dev,
914                         "ERROR: dma_request_channel FAILS(Tx)\n");
915                 data->use_dma = 0;
916                 return;
917         }
918         dma->chan_tx = chan;
919
920         /* Set Rx DMA */
921         param = &dma->param_rx;
922         param->dma_dev = &dma_dev->dev;
923         param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
924         param->rx_reg = data->io_base_addr + PCH_SPDRR;
925         param->width = width;
926         chan = dma_request_channel(mask, pch_spi_filter, param);
927         if (!chan) {
928                 dev_err(&data->master->dev,
929                         "ERROR: dma_request_channel FAILS(Rx)\n");
930                 dma_release_channel(dma->chan_tx);
931                 dma->chan_tx = NULL;
932                 data->use_dma = 0;
933                 return;
934         }
935         dma->chan_rx = chan;
936 }
937
938 static void pch_spi_release_dma(struct pch_spi_data *data)
939 {
940         struct pch_spi_dma_ctrl *dma;
941
942         dma = &data->dma;
943         if (dma->chan_tx) {
944                 dma_release_channel(dma->chan_tx);
945                 dma->chan_tx = NULL;
946         }
947         if (dma->chan_rx) {
948                 dma_release_channel(dma->chan_rx);
949                 dma->chan_rx = NULL;
950         }
951         return;
952 }
953
954 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
955 {
956         const u8 *tx_buf;
957         const u16 *tx_sbuf;
958         u8 *tx_dma_buf;
959         u16 *tx_dma_sbuf;
960         struct scatterlist *sg;
961         struct dma_async_tx_descriptor *desc_tx;
962         struct dma_async_tx_descriptor *desc_rx;
963         int num;
964         int i;
965         int size;
966         int rem;
967         unsigned long flags;
968         struct pch_spi_dma_ctrl *dma;
969
970         dma = &data->dma;
971
972         /* set baud rate if needed */
973         if (data->cur_trans->speed_hz) {
974                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
975                 spin_lock_irqsave(&data->lock, flags);
976                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
977                 spin_unlock_irqrestore(&data->lock, flags);
978         }
979
980         /* set bits per word if needed */
981         if (data->cur_trans->bits_per_word &&
982             (data->current_msg->spi->bits_per_word !=
983              data->cur_trans->bits_per_word)) {
984                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
985                 spin_lock_irqsave(&data->lock, flags);
986                 pch_spi_set_bits_per_word(data->master,
987                                           data->cur_trans->bits_per_word);
988                 spin_unlock_irqrestore(&data->lock, flags);
989                 *bpw = data->cur_trans->bits_per_word;
990         } else {
991                 *bpw = data->current_msg->spi->bits_per_word;
992         }
993         data->bpw_len = data->cur_trans->len / (*bpw / 8);
994
995         /* copy Tx Data */
996         if (data->cur_trans->tx_buf != NULL) {
997                 if (*bpw == 8) {
998                         tx_buf = data->cur_trans->tx_buf;
999                         tx_dma_buf = dma->tx_buf_virt;
1000                         for (i = 0; i < data->bpw_len; i++)
1001                                 *tx_dma_buf++ = *tx_buf++;
1002                 } else {
1003                         tx_sbuf = data->cur_trans->tx_buf;
1004                         tx_dma_sbuf = dma->tx_buf_virt;
1005                         for (i = 0; i < data->bpw_len; i++)
1006                                 *tx_dma_sbuf++ = *tx_sbuf++;
1007                 }
1008         }
1009         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1010                 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1011                 size = PCH_DMA_TRANS_SIZE;
1012                 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1013         } else {
1014                 num = 1;
1015                 size = data->bpw_len;
1016                 rem = data->bpw_len;
1017         }
1018         dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1019                 __func__, num, size, rem);
1020         spin_lock_irqsave(&data->lock, flags);
1021
1022         /* set receive fifo threshold and transmit fifo threshold */
1023         pch_spi_setclr_reg(data->master, PCH_SPCR,
1024                            ((size - 1) << SPCR_RFIC_FIELD) |
1025                            ((PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE) <<
1026                             SPCR_TFIC_FIELD),
1027                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1028
1029         spin_unlock_irqrestore(&data->lock, flags);
1030
1031         /* RX */
1032         dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1033         sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1034         /* offset, length setting */
1035         sg = dma->sg_rx_p;
1036         for (i = 0; i < num; i++, sg++) {
1037                 if (i == 0) {
1038                         sg->offset = 0;
1039                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1040                                     sg->offset);
1041                         sg_dma_len(sg) = rem;
1042                 } else {
1043                         sg->offset = rem + size * (i - 1);
1044                         sg->offset = sg->offset * (*bpw / 8);
1045                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1046                                     sg->offset);
1047                         sg_dma_len(sg) = size;
1048                 }
1049                 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1050         }
1051         sg = dma->sg_rx_p;
1052         desc_rx = dma->chan_rx->device->device_prep_slave_sg(dma->chan_rx, sg,
1053                                         num, DMA_FROM_DEVICE,
1054                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1055         if (!desc_rx) {
1056                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1057                         __func__);
1058                 return;
1059         }
1060         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1061         desc_rx->callback = pch_dma_rx_complete;
1062         desc_rx->callback_param = data;
1063         dma->nent = num;
1064         dma->desc_rx = desc_rx;
1065
1066         /* TX */
1067         dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1068         sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1069         /* offset, length setting */
1070         sg = dma->sg_tx_p;
1071         for (i = 0; i < num; i++, sg++) {
1072                 if (i == 0) {
1073                         sg->offset = 0;
1074                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1075                                     sg->offset);
1076                         sg_dma_len(sg) = rem;
1077                 } else {
1078                         sg->offset = rem + size * (i - 1);
1079                         sg->offset = sg->offset * (*bpw / 8);
1080                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1081                                     sg->offset);
1082                         sg_dma_len(sg) = size;
1083                 }
1084                 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1085         }
1086         sg = dma->sg_tx_p;
1087         desc_tx = dma->chan_tx->device->device_prep_slave_sg(dma->chan_tx,
1088                                         sg, num, DMA_TO_DEVICE,
1089                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1090         if (!desc_tx) {
1091                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1092                         __func__);
1093                 return;
1094         }
1095         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1096         desc_tx->callback = NULL;
1097         desc_tx->callback_param = data;
1098         dma->nent = num;
1099         dma->desc_tx = desc_tx;
1100
1101         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1102                 "0x2 to SSNXCR\n", __func__);
1103
1104         spin_lock_irqsave(&data->lock, flags);
1105         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1106         desc_rx->tx_submit(desc_rx);
1107         desc_tx->tx_submit(desc_tx);
1108         spin_unlock_irqrestore(&data->lock, flags);
1109
1110         /* reset transfer complete flag */
1111         data->transfer_complete = false;
1112 }
1113
1114 static void pch_spi_process_messages(struct work_struct *pwork)
1115 {
1116         struct spi_message *pmsg;
1117         struct pch_spi_data *data;
1118         int bpw;
1119
1120         data = container_of(pwork, struct pch_spi_data, work);
1121         dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1122
1123         spin_lock(&data->lock);
1124         /* check if suspend has been initiated;if yes flush queue */
1125         if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1126                 dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
1127                         "flushing queue\n", __func__);
1128                 list_for_each_entry(pmsg, data->queue.next, queue) {
1129                         pmsg->status = -EIO;
1130
1131                         if (pmsg->complete != 0) {
1132                                 spin_unlock(&data->lock);
1133                                 pmsg->complete(pmsg->context);
1134                                 spin_lock(&data->lock);
1135                         }
1136
1137                         /* delete from queue */
1138                         list_del_init(&pmsg->queue);
1139                 }
1140
1141                 spin_unlock(&data->lock);
1142                 return;
1143         }
1144
1145         data->bcurrent_msg_processing = true;
1146         dev_dbg(&data->master->dev,
1147                 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1148
1149         /* Get the message from the queue and delete it from there. */
1150         data->current_msg = list_entry(data->queue.next, struct spi_message,
1151                                         queue);
1152
1153         list_del_init(&data->current_msg->queue);
1154
1155         data->current_msg->status = 0;
1156
1157         pch_spi_select_chip(data, data->current_msg->spi);
1158
1159         spin_unlock(&data->lock);
1160
1161         if (data->use_dma)
1162                 pch_spi_request_dma(data,
1163                                     data->current_msg->spi->bits_per_word);
1164         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1165         do {
1166                 /* If we are already processing a message get the next
1167                 transfer structure from the message otherwise retrieve
1168                 the 1st transfer request from the message. */
1169                 spin_lock(&data->lock);
1170                 if (data->cur_trans == NULL) {
1171                         data->cur_trans =
1172                                 list_entry(data->current_msg->transfers.next,
1173                                            struct spi_transfer, transfer_list);
1174                         dev_dbg(&data->master->dev, "%s "
1175                                 ":Getting 1st transfer message\n", __func__);
1176                 } else {
1177                         data->cur_trans =
1178                                 list_entry(data->cur_trans->transfer_list.next,
1179                                            struct spi_transfer, transfer_list);
1180                         dev_dbg(&data->master->dev, "%s "
1181                                 ":Getting next transfer message\n", __func__);
1182                 }
1183                 spin_unlock(&data->lock);
1184
1185                 if (data->use_dma) {
1186                         pch_spi_handle_dma(data, &bpw);
1187                         pch_spi_start_transfer(data);
1188                         pch_spi_copy_rx_data_for_dma(data, bpw);
1189                 } else {
1190                         pch_spi_set_tx(data, &bpw);
1191                         pch_spi_set_ir(data);
1192                         pch_spi_copy_rx_data(data, bpw);
1193                         kfree(data->pkt_rx_buff);
1194                         data->pkt_rx_buff = NULL;
1195                         kfree(data->pkt_tx_buff);
1196                         data->pkt_tx_buff = NULL;
1197                 }
1198                 /* increment message count */
1199                 data->current_msg->actual_length += data->cur_trans->len;
1200
1201                 dev_dbg(&data->master->dev,
1202                         "%s:data->current_msg->actual_length=%d\n",
1203                         __func__, data->current_msg->actual_length);
1204
1205                 /* check for delay */
1206                 if (data->cur_trans->delay_usecs) {
1207                         dev_dbg(&data->master->dev, "%s:"
1208                                 "delay in usec=%d\n", __func__,
1209                                 data->cur_trans->delay_usecs);
1210                         udelay(data->cur_trans->delay_usecs);
1211                 }
1212
1213                 spin_lock(&data->lock);
1214
1215                 /* No more transfer in this message. */
1216                 if ((data->cur_trans->transfer_list.next) ==
1217                     &(data->current_msg->transfers)) {
1218                         pch_spi_nomore_transfer(data);
1219                 }
1220
1221                 spin_unlock(&data->lock);
1222
1223         } while (data->cur_trans != NULL);
1224
1225         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1226         if (data->use_dma)
1227                 pch_spi_release_dma(data);
1228 }
1229
1230 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1231                                    struct pch_spi_data *data)
1232 {
1233         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1234
1235         /* free workqueue */
1236         if (data->wk != NULL) {
1237                 destroy_workqueue(data->wk);
1238                 data->wk = NULL;
1239                 dev_dbg(&board_dat->pdev->dev,
1240                         "%s destroy_workqueue invoked successfully\n",
1241                         __func__);
1242         }
1243 }
1244
1245 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1246                                  struct pch_spi_data *data)
1247 {
1248         int retval = 0;
1249
1250         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1251
1252         /* create workqueue */
1253         data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1254         if (!data->wk) {
1255                 dev_err(&board_dat->pdev->dev,
1256                         "%s create_singlet hread_workqueue failed\n", __func__);
1257                 retval = -EBUSY;
1258                 goto err_return;
1259         }
1260
1261         /* reset PCH SPI h/w */
1262         pch_spi_reset(data->master);
1263         dev_dbg(&board_dat->pdev->dev,
1264                 "%s pch_spi_reset invoked successfully\n", __func__);
1265
1266         dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1267
1268 err_return:
1269         if (retval != 0) {
1270                 dev_err(&board_dat->pdev->dev,
1271                         "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1272                 pch_spi_free_resources(board_dat, data);
1273         }
1274
1275         dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1276
1277         return retval;
1278 }
1279
1280 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1281                              struct pch_spi_data *data)
1282 {
1283         struct pch_spi_dma_ctrl *dma;
1284
1285         dma = &data->dma;
1286         if (dma->tx_buf_dma)
1287                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1288                                   dma->tx_buf_virt, dma->tx_buf_dma);
1289         if (dma->rx_buf_dma)
1290                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1291                                   dma->rx_buf_virt, dma->rx_buf_dma);
1292         return;
1293 }
1294
1295 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1296                               struct pch_spi_data *data)
1297 {
1298         struct pch_spi_dma_ctrl *dma;
1299
1300         dma = &data->dma;
1301         /* Get Consistent memory for Tx DMA */
1302         dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1303                                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1304         /* Get Consistent memory for Rx DMA */
1305         dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1306                                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1307 }
1308
1309 static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
1310 {
1311         int ret;
1312         struct spi_master *master;
1313         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1314         struct pch_spi_data *data;
1315
1316         dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1317
1318         master = spi_alloc_master(&board_dat->pdev->dev,
1319                                   sizeof(struct pch_spi_data));
1320         if (!master) {
1321                 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1322                         plat_dev->id);
1323                 return -ENOMEM;
1324         }
1325
1326         data = spi_master_get_devdata(master);
1327         data->master = master;
1328
1329         platform_set_drvdata(plat_dev, data);
1330
1331         /* baseaddress + address offset) */
1332         data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1333                                          PCH_ADDRESS_SIZE * plat_dev->id;
1334         data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
1335                                          PCH_ADDRESS_SIZE * plat_dev->id;
1336         if (!data->io_remap_addr) {
1337                 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1338                 ret = -ENOMEM;
1339                 goto err_pci_iomap;
1340         }
1341
1342         dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1343                 plat_dev->id, data->io_remap_addr);
1344
1345         /* initialize members of SPI master */
1346         master->bus_num = -1;
1347         master->num_chipselect = PCH_MAX_CS;
1348         master->setup = pch_spi_setup;
1349         master->transfer = pch_spi_transfer;
1350
1351         data->board_dat = board_dat;
1352         data->plat_dev = plat_dev;
1353         data->n_curnt_chip = 255;
1354         data->status = STATUS_RUNNING;
1355         data->ch = plat_dev->id;
1356         data->use_dma = use_dma;
1357
1358         INIT_LIST_HEAD(&data->queue);
1359         spin_lock_init(&data->lock);
1360         INIT_WORK(&data->work, pch_spi_process_messages);
1361         init_waitqueue_head(&data->wait);
1362
1363         ret = pch_spi_get_resources(board_dat, data);
1364         if (ret) {
1365                 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1366                 goto err_spi_get_resources;
1367         }
1368
1369         ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1370                           IRQF_SHARED, KBUILD_MODNAME, data);
1371         if (ret) {
1372                 dev_err(&plat_dev->dev,
1373                         "%s request_irq failed\n", __func__);
1374                 goto err_request_irq;
1375         }
1376         data->irq_reg_sts = true;
1377
1378         pch_spi_set_master_mode(master);
1379
1380         ret = spi_register_master(master);
1381         if (ret != 0) {
1382                 dev_err(&plat_dev->dev,
1383                         "%s spi_register_master FAILED\n", __func__);
1384                 goto err_spi_register_master;
1385         }
1386
1387         if (use_dma) {
1388                 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1389                 pch_alloc_dma_buf(board_dat, data);
1390         }
1391
1392         return 0;
1393
1394 err_spi_register_master:
1395         free_irq(board_dat->pdev->irq, board_dat);
1396 err_request_irq:
1397         pch_spi_free_resources(board_dat, data);
1398 err_spi_get_resources:
1399         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1400 err_pci_iomap:
1401         spi_master_put(master);
1402
1403         return ret;
1404 }
1405
1406 static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
1407 {
1408         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1409         struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1410         int count;
1411         unsigned long flags;
1412
1413         dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1414                 __func__, plat_dev->id, board_dat->pdev->irq);
1415
1416         if (use_dma)
1417                 pch_free_dma_buf(board_dat, data);
1418
1419         /* check for any pending messages; no action is taken if the queue
1420          * is still full; but at least we tried.  Unload anyway */
1421         count = 500;
1422         spin_lock_irqsave(&data->lock, flags);
1423         data->status = STATUS_EXITING;
1424         while ((list_empty(&data->queue) == 0) && --count) {
1425                 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1426                         __func__);
1427                 spin_unlock_irqrestore(&data->lock, flags);
1428                 msleep(PCH_SLEEP_TIME);
1429                 spin_lock_irqsave(&data->lock, flags);
1430         }
1431         spin_unlock_irqrestore(&data->lock, flags);
1432
1433         pch_spi_free_resources(board_dat, data);
1434         /* disable interrupts & free IRQ */
1435         if (data->irq_reg_sts) {
1436                 /* disable interrupts */
1437                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1438                 data->irq_reg_sts = false;
1439                 free_irq(board_dat->pdev->irq, data);
1440         }
1441
1442         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1443         spi_unregister_master(data->master);
1444         spi_master_put(data->master);
1445         platform_set_drvdata(plat_dev, NULL);
1446
1447         return 0;
1448 }
1449 #ifdef CONFIG_PM
1450 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1451                               pm_message_t state)
1452 {
1453         u8 count;
1454         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1455         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1456
1457         dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1458
1459         if (!board_dat) {
1460                 dev_err(&pd_dev->dev,
1461                         "%s pci_get_drvdata returned NULL\n", __func__);
1462                 return -EFAULT;
1463         }
1464
1465         /* check if the current message is processed:
1466            Only after thats done the transfer will be suspended */
1467         count = 255;
1468         while ((--count) > 0) {
1469                 if (!(data->bcurrent_msg_processing))
1470                         break;
1471                 msleep(PCH_SLEEP_TIME);
1472         }
1473
1474         /* Free IRQ */
1475         if (data->irq_reg_sts) {
1476                 /* disable all interrupts */
1477                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1478                 pch_spi_reset(data->master);
1479                 free_irq(board_dat->pdev->irq, data);
1480
1481                 data->irq_reg_sts = false;
1482                 dev_dbg(&pd_dev->dev,
1483                         "%s free_irq invoked successfully.\n", __func__);
1484         }
1485
1486         return 0;
1487 }
1488
1489 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1490 {
1491         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1492         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1493         int retval;
1494
1495         if (!board_dat) {
1496                 dev_err(&pd_dev->dev,
1497                         "%s pci_get_drvdata returned NULL\n", __func__);
1498                 return -EFAULT;
1499         }
1500
1501         if (!data->irq_reg_sts) {
1502                 /* register IRQ */
1503                 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1504                                      IRQF_SHARED, KBUILD_MODNAME, data);
1505                 if (retval < 0) {
1506                         dev_err(&pd_dev->dev,
1507                                 "%s request_irq failed\n", __func__);
1508                         return retval;
1509                 }
1510
1511                 /* reset PCH SPI h/w */
1512                 pch_spi_reset(data->master);
1513                 pch_spi_set_master_mode(data->master);
1514                 data->irq_reg_sts = true;
1515         }
1516         return 0;
1517 }
1518 #else
1519 #define pch_spi_pd_suspend NULL
1520 #define pch_spi_pd_resume NULL
1521 #endif
1522
1523 static struct platform_driver pch_spi_pd_driver = {
1524         .driver = {
1525                 .name = "pch-spi",
1526                 .owner = THIS_MODULE,
1527         },
1528         .probe = pch_spi_pd_probe,
1529         .remove = __devexit_p(pch_spi_pd_remove),
1530         .suspend = pch_spi_pd_suspend,
1531         .resume = pch_spi_pd_resume
1532 };
1533
1534 static int __devinit pch_spi_probe(struct pci_dev *pdev,
1535                                    const struct pci_device_id *id)
1536 {
1537         struct pch_spi_board_data *board_dat;
1538         struct platform_device *pd_dev = NULL;
1539         int retval;
1540         int i;
1541         struct pch_pd_dev_save *pd_dev_save;
1542
1543         pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1544         if (!pd_dev_save) {
1545                 dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1546                 return -ENOMEM;
1547         }
1548
1549         board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1550         if (!board_dat) {
1551                 dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1552                 retval = -ENOMEM;
1553                 goto err_no_mem;
1554         }
1555
1556         retval = pci_request_regions(pdev, KBUILD_MODNAME);
1557         if (retval) {
1558                 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1559                 goto pci_request_regions;
1560         }
1561
1562         board_dat->pdev = pdev;
1563         board_dat->num = id->driver_data;
1564         pd_dev_save->num = id->driver_data;
1565         pd_dev_save->board_dat = board_dat;
1566
1567         retval = pci_enable_device(pdev);
1568         if (retval) {
1569                 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1570                 goto pci_enable_device;
1571         }
1572
1573         for (i = 0; i < board_dat->num; i++) {
1574                 pd_dev = platform_device_alloc("pch-spi", i);
1575                 if (!pd_dev) {
1576                         dev_err(&pdev->dev, "platform_device_alloc failed\n");
1577                         goto err_platform_device;
1578                 }
1579                 pd_dev_save->pd_save[i] = pd_dev;
1580                 pd_dev->dev.parent = &pdev->dev;
1581
1582                 retval = platform_device_add_data(pd_dev, board_dat,
1583                                                   sizeof(*board_dat));
1584                 if (retval) {
1585                         dev_err(&pdev->dev,
1586                                 "platform_device_add_data failed\n");
1587                         platform_device_put(pd_dev);
1588                         goto err_platform_device;
1589                 }
1590
1591                 retval = platform_device_add(pd_dev);
1592                 if (retval) {
1593                         dev_err(&pdev->dev, "platform_device_add failed\n");
1594                         platform_device_put(pd_dev);
1595                         goto err_platform_device;
1596                 }
1597         }
1598
1599         pci_set_drvdata(pdev, pd_dev_save);
1600
1601         return 0;
1602
1603 err_platform_device:
1604         pci_disable_device(pdev);
1605 pci_enable_device:
1606         pci_release_regions(pdev);
1607 pci_request_regions:
1608         kfree(board_dat);
1609 err_no_mem:
1610         kfree(pd_dev_save);
1611
1612         return retval;
1613 }
1614
1615 static void __devexit pch_spi_remove(struct pci_dev *pdev)
1616 {
1617         int i;
1618         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1619
1620         dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1621
1622         for (i = 0; i < pd_dev_save->num; i++)
1623                 platform_device_unregister(pd_dev_save->pd_save[i]);
1624
1625         pci_disable_device(pdev);
1626         pci_release_regions(pdev);
1627         kfree(pd_dev_save->board_dat);
1628         kfree(pd_dev_save);
1629 }
1630
1631 #ifdef CONFIG_PM
1632 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1633 {
1634         int retval;
1635         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1636
1637         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1638
1639         pd_dev_save->board_dat->suspend_sts = true;
1640
1641         /* save config space */
1642         retval = pci_save_state(pdev);
1643         if (retval == 0) {
1644                 pci_enable_wake(pdev, PCI_D3hot, 0);
1645                 pci_disable_device(pdev);
1646                 pci_set_power_state(pdev, PCI_D3hot);
1647         } else {
1648                 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1649         }
1650
1651         return retval;
1652 }
1653
1654 static int pch_spi_resume(struct pci_dev *pdev)
1655 {
1656         int retval;
1657         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1658         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1659
1660         pci_set_power_state(pdev, PCI_D0);
1661         pci_restore_state(pdev);
1662
1663         retval = pci_enable_device(pdev);
1664         if (retval < 0) {
1665                 dev_err(&pdev->dev,
1666                         "%s pci_enable_device failed\n", __func__);
1667         } else {
1668                 pci_enable_wake(pdev, PCI_D3hot, 0);
1669
1670                 /* set suspend status to false */
1671                 pd_dev_save->board_dat->suspend_sts = false;
1672         }
1673
1674         return retval;
1675 }
1676 #else
1677 #define pch_spi_suspend NULL
1678 #define pch_spi_resume NULL
1679
1680 #endif
1681
1682 static struct pci_driver pch_spi_pcidev = {
1683         .name = "pch_spi",
1684         .id_table = pch_spi_pcidev_id,
1685         .probe = pch_spi_probe,
1686         .remove = pch_spi_remove,
1687         .suspend = pch_spi_suspend,
1688         .resume = pch_spi_resume,
1689 };
1690
1691 static int __init pch_spi_init(void)
1692 {
1693         int ret;
1694         ret = platform_driver_register(&pch_spi_pd_driver);
1695         if (ret)
1696                 return ret;
1697
1698         ret = pci_register_driver(&pch_spi_pcidev);
1699         if (ret)
1700                 return ret;
1701
1702         return 0;
1703 }
1704 module_init(pch_spi_init);
1705
1706 static void __exit pch_spi_exit(void)
1707 {
1708         pci_unregister_driver(&pch_spi_pcidev);
1709         platform_driver_unregister(&pch_spi_pd_driver);
1710 }
1711 module_exit(pch_spi_exit);
1712
1713 module_param(use_dma, int, 0644);
1714 MODULE_PARM_DESC(use_dma,
1715                  "to use DMA for data transfers pass 1 else 0; default 1");
1716
1717 MODULE_LICENSE("GPL");
1718 MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7xxx IOH SPI Driver");