[SCSI] libsas: fix domain_device leak
[linux-2.6.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/scsi_transport.h>
32 #include <scsi/scsi_transport_sas.h>
33 #include "../scsi_sas_internal.h"
34
35 static int sas_discover_expander(struct domain_device *dev);
36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
37 static int sas_configure_phy(struct domain_device *dev, int phy_id,
38                              u8 *sas_addr, int include);
39 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
40
41 /* ---------- SMP task management ---------- */
42
43 static void smp_task_timedout(unsigned long _task)
44 {
45         struct sas_task *task = (void *) _task;
46         unsigned long flags;
47
48         spin_lock_irqsave(&task->task_state_lock, flags);
49         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
50                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
51         spin_unlock_irqrestore(&task->task_state_lock, flags);
52
53         complete(&task->completion);
54 }
55
56 static void smp_task_done(struct sas_task *task)
57 {
58         if (!del_timer(&task->timer))
59                 return;
60         complete(&task->completion);
61 }
62
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
65
66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
67                             void *resp, int resp_size)
68 {
69         int res, retry;
70         struct sas_task *task = NULL;
71         struct sas_internal *i =
72                 to_sas_internal(dev->port->ha->core.shost->transportt);
73
74         for (retry = 0; retry < 3; retry++) {
75                 task = sas_alloc_task(GFP_KERNEL);
76                 if (!task)
77                         return -ENOMEM;
78
79                 task->dev = dev;
80                 task->task_proto = dev->tproto;
81                 sg_init_one(&task->smp_task.smp_req, req, req_size);
82                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
83
84                 task->task_done = smp_task_done;
85
86                 task->timer.data = (unsigned long) task;
87                 task->timer.function = smp_task_timedout;
88                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
89                 add_timer(&task->timer);
90
91                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
92
93                 if (res) {
94                         del_timer(&task->timer);
95                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
96                         goto ex_err;
97                 }
98
99                 wait_for_completion(&task->completion);
100                 res = -ECOMM;
101                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
102                         SAS_DPRINTK("smp task timed out or aborted\n");
103                         i->dft->lldd_abort_task(task);
104                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
105                                 SAS_DPRINTK("SMP task aborted and not done\n");
106                                 goto ex_err;
107                         }
108                 }
109                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
110                     task->task_status.stat == SAM_STAT_GOOD) {
111                         res = 0;
112                         break;
113                 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
114                       task->task_status.stat == SAS_DATA_UNDERRUN) {
115                         /* no error, but return the number of bytes of
116                          * underrun */
117                         res = task->task_status.residual;
118                         break;
119                 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
120                       task->task_status.stat == SAS_DATA_OVERRUN) {
121                         res = -EMSGSIZE;
122                         break;
123                 } else {
124                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125                                     "status 0x%x\n", __func__,
126                                     SAS_ADDR(dev->sas_addr),
127                                     task->task_status.resp,
128                                     task->task_status.stat);
129                         sas_free_task(task);
130                         task = NULL;
131                 }
132         }
133 ex_err:
134         BUG_ON(retry == 3 && task != NULL);
135         if (task != NULL) {
136                 sas_free_task(task);
137         }
138         return res;
139 }
140
141 /* ---------- Allocations ---------- */
142
143 static inline void *alloc_smp_req(int size)
144 {
145         u8 *p = kzalloc(size, GFP_KERNEL);
146         if (p)
147                 p[0] = SMP_REQUEST;
148         return p;
149 }
150
151 static inline void *alloc_smp_resp(int size)
152 {
153         return kzalloc(size, GFP_KERNEL);
154 }
155
156 /* ---------- Expander configuration ---------- */
157
158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
159                            void *disc_resp)
160 {
161         struct expander_device *ex = &dev->ex_dev;
162         struct ex_phy *phy = &ex->ex_phy[phy_id];
163         struct smp_resp *resp = disc_resp;
164         struct discover_resp *dr = &resp->disc;
165         struct sas_rphy *rphy = dev->rphy;
166         int rediscover = (phy->phy != NULL);
167
168         if (!rediscover) {
169                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
170
171                 /* FIXME: error_handling */
172                 BUG_ON(!phy->phy);
173         }
174
175         switch (resp->result) {
176         case SMP_RESP_PHY_VACANT:
177                 phy->phy_state = PHY_VACANT;
178                 break;
179         default:
180                 phy->phy_state = PHY_NOT_PRESENT;
181                 break;
182         case SMP_RESP_FUNC_ACC:
183                 phy->phy_state = PHY_EMPTY; /* do not know yet */
184                 break;
185         }
186
187         phy->phy_id = phy_id;
188         phy->attached_dev_type = dr->attached_dev_type;
189         phy->linkrate = dr->linkrate;
190         phy->attached_sata_host = dr->attached_sata_host;
191         phy->attached_sata_dev  = dr->attached_sata_dev;
192         phy->attached_sata_ps   = dr->attached_sata_ps;
193         phy->attached_iproto = dr->iproto << 1;
194         phy->attached_tproto = dr->tproto << 1;
195         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
196         phy->attached_phy_id = dr->attached_phy_id;
197         phy->phy_change_count = dr->change_count;
198         phy->routing_attr = dr->routing_attr;
199         phy->virtual = dr->virtual;
200         phy->last_da_index = -1;
201
202         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
203         phy->phy->identify.device_type = phy->attached_dev_type;
204         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
205         phy->phy->identify.target_port_protocols = phy->attached_tproto;
206         phy->phy->identify.phy_identifier = phy_id;
207         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
208         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
209         phy->phy->minimum_linkrate = dr->pmin_linkrate;
210         phy->phy->maximum_linkrate = dr->pmax_linkrate;
211         phy->phy->negotiated_linkrate = phy->linkrate;
212
213         if (!rediscover)
214                 if (sas_phy_add(phy->phy)) {
215                         sas_phy_free(phy->phy);
216                         return;
217                 }
218
219         SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
220                     SAS_ADDR(dev->sas_addr), phy->phy_id,
221                     phy->routing_attr == TABLE_ROUTING ? 'T' :
222                     phy->routing_attr == DIRECT_ROUTING ? 'D' :
223                     phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
224                     SAS_ADDR(phy->attached_sas_addr));
225
226         return;
227 }
228
229 #define DISCOVER_REQ_SIZE  16
230 #define DISCOVER_RESP_SIZE 56
231
232 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
233                                       u8 *disc_resp, int single)
234 {
235         int i, res;
236
237         disc_req[9] = single;
238         for (i = 1 ; i < 3; i++) {
239                 struct discover_resp *dr;
240
241                 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
242                                        disc_resp, DISCOVER_RESP_SIZE);
243                 if (res)
244                         return res;
245                 /* This is detecting a failure to transmit initial
246                  * dev to host FIS as described in section G.5 of
247                  * sas-2 r 04b */
248                 dr = &((struct smp_resp *)disc_resp)->disc;
249                 if (memcmp(dev->sas_addr, dr->attached_sas_addr,
250                           SAS_ADDR_SIZE) == 0) {
251                         sas_printk("Found loopback topology, just ignore it!\n");
252                         return 0;
253                 }
254                 if (!(dr->attached_dev_type == 0 &&
255                       dr->attached_sata_dev))
256                         break;
257                 /* In order to generate the dev to host FIS, we
258                  * send a link reset to the expander port */
259                 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
260                 /* Wait for the reset to trigger the negotiation */
261                 msleep(500);
262         }
263         sas_set_ex_phy(dev, single, disc_resp);
264         return 0;
265 }
266
267 static int sas_ex_phy_discover(struct domain_device *dev, int single)
268 {
269         struct expander_device *ex = &dev->ex_dev;
270         int  res = 0;
271         u8   *disc_req;
272         u8   *disc_resp;
273
274         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
275         if (!disc_req)
276                 return -ENOMEM;
277
278         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
279         if (!disc_resp) {
280                 kfree(disc_req);
281                 return -ENOMEM;
282         }
283
284         disc_req[1] = SMP_DISCOVER;
285
286         if (0 <= single && single < ex->num_phys) {
287                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
288         } else {
289                 int i;
290
291                 for (i = 0; i < ex->num_phys; i++) {
292                         res = sas_ex_phy_discover_helper(dev, disc_req,
293                                                          disc_resp, i);
294                         if (res)
295                                 goto out_err;
296                 }
297         }
298 out_err:
299         kfree(disc_resp);
300         kfree(disc_req);
301         return res;
302 }
303
304 static int sas_expander_discover(struct domain_device *dev)
305 {
306         struct expander_device *ex = &dev->ex_dev;
307         int res = -ENOMEM;
308
309         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
310         if (!ex->ex_phy)
311                 return -ENOMEM;
312
313         res = sas_ex_phy_discover(dev, -1);
314         if (res)
315                 goto out_err;
316
317         return 0;
318  out_err:
319         kfree(ex->ex_phy);
320         ex->ex_phy = NULL;
321         return res;
322 }
323
324 #define MAX_EXPANDER_PHYS 128
325
326 static void ex_assign_report_general(struct domain_device *dev,
327                                             struct smp_resp *resp)
328 {
329         struct report_general_resp *rg = &resp->rg;
330
331         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
332         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
333         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
334         dev->ex_dev.t2t_supp = rg->t2t_supp;
335         dev->ex_dev.conf_route_table = rg->conf_route_table;
336         dev->ex_dev.configuring = rg->configuring;
337         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
338 }
339
340 #define RG_REQ_SIZE   8
341 #define RG_RESP_SIZE 32
342
343 static int sas_ex_general(struct domain_device *dev)
344 {
345         u8 *rg_req;
346         struct smp_resp *rg_resp;
347         int res;
348         int i;
349
350         rg_req = alloc_smp_req(RG_REQ_SIZE);
351         if (!rg_req)
352                 return -ENOMEM;
353
354         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
355         if (!rg_resp) {
356                 kfree(rg_req);
357                 return -ENOMEM;
358         }
359
360         rg_req[1] = SMP_REPORT_GENERAL;
361
362         for (i = 0; i < 5; i++) {
363                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
364                                        RG_RESP_SIZE);
365
366                 if (res) {
367                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
368                                     SAS_ADDR(dev->sas_addr), res);
369                         goto out;
370                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
371                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
372                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
373                         res = rg_resp->result;
374                         goto out;
375                 }
376
377                 ex_assign_report_general(dev, rg_resp);
378
379                 if (dev->ex_dev.configuring) {
380                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
381                                     SAS_ADDR(dev->sas_addr));
382                         schedule_timeout_interruptible(5*HZ);
383                 } else
384                         break;
385         }
386 out:
387         kfree(rg_req);
388         kfree(rg_resp);
389         return res;
390 }
391
392 static void ex_assign_manuf_info(struct domain_device *dev, void
393                                         *_mi_resp)
394 {
395         u8 *mi_resp = _mi_resp;
396         struct sas_rphy *rphy = dev->rphy;
397         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
398
399         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
400         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
401         memcpy(edev->product_rev, mi_resp + 36,
402                SAS_EXPANDER_PRODUCT_REV_LEN);
403
404         if (mi_resp[8] & 1) {
405                 memcpy(edev->component_vendor_id, mi_resp + 40,
406                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
407                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
408                 edev->component_revision_id = mi_resp[50];
409         }
410 }
411
412 #define MI_REQ_SIZE   8
413 #define MI_RESP_SIZE 64
414
415 static int sas_ex_manuf_info(struct domain_device *dev)
416 {
417         u8 *mi_req;
418         u8 *mi_resp;
419         int res;
420
421         mi_req = alloc_smp_req(MI_REQ_SIZE);
422         if (!mi_req)
423                 return -ENOMEM;
424
425         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
426         if (!mi_resp) {
427                 kfree(mi_req);
428                 return -ENOMEM;
429         }
430
431         mi_req[1] = SMP_REPORT_MANUF_INFO;
432
433         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
434         if (res) {
435                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
436                             SAS_ADDR(dev->sas_addr), res);
437                 goto out;
438         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
439                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
440                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
441                 goto out;
442         }
443
444         ex_assign_manuf_info(dev, mi_resp);
445 out:
446         kfree(mi_req);
447         kfree(mi_resp);
448         return res;
449 }
450
451 #define PC_REQ_SIZE  44
452 #define PC_RESP_SIZE 8
453
454 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
455                         enum phy_func phy_func,
456                         struct sas_phy_linkrates *rates)
457 {
458         u8 *pc_req;
459         u8 *pc_resp;
460         int res;
461
462         pc_req = alloc_smp_req(PC_REQ_SIZE);
463         if (!pc_req)
464                 return -ENOMEM;
465
466         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
467         if (!pc_resp) {
468                 kfree(pc_req);
469                 return -ENOMEM;
470         }
471
472         pc_req[1] = SMP_PHY_CONTROL;
473         pc_req[9] = phy_id;
474         pc_req[10]= phy_func;
475         if (rates) {
476                 pc_req[32] = rates->minimum_linkrate << 4;
477                 pc_req[33] = rates->maximum_linkrate << 4;
478         }
479
480         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
481
482         kfree(pc_resp);
483         kfree(pc_req);
484         return res;
485 }
486
487 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
488 {
489         struct expander_device *ex = &dev->ex_dev;
490         struct ex_phy *phy = &ex->ex_phy[phy_id];
491
492         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
493         phy->linkrate = SAS_PHY_DISABLED;
494 }
495
496 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
497 {
498         struct expander_device *ex = &dev->ex_dev;
499         int i;
500
501         for (i = 0; i < ex->num_phys; i++) {
502                 struct ex_phy *phy = &ex->ex_phy[i];
503
504                 if (phy->phy_state == PHY_VACANT ||
505                     phy->phy_state == PHY_NOT_PRESENT)
506                         continue;
507
508                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
509                         sas_ex_disable_phy(dev, i);
510         }
511 }
512
513 static int sas_dev_present_in_domain(struct asd_sas_port *port,
514                                             u8 *sas_addr)
515 {
516         struct domain_device *dev;
517
518         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
519                 return 1;
520         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
521                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
522                         return 1;
523         }
524         return 0;
525 }
526
527 #define RPEL_REQ_SIZE   16
528 #define RPEL_RESP_SIZE  32
529 int sas_smp_get_phy_events(struct sas_phy *phy)
530 {
531         int res;
532         u8 *req;
533         u8 *resp;
534         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
535         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
536
537         req = alloc_smp_req(RPEL_REQ_SIZE);
538         if (!req)
539                 return -ENOMEM;
540
541         resp = alloc_smp_resp(RPEL_RESP_SIZE);
542         if (!resp) {
543                 kfree(req);
544                 return -ENOMEM;
545         }
546
547         req[1] = SMP_REPORT_PHY_ERR_LOG;
548         req[9] = phy->number;
549
550         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
551                                     resp, RPEL_RESP_SIZE);
552
553         if (!res)
554                 goto out;
555
556         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
557         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
558         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
559         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
560
561  out:
562         kfree(resp);
563         return res;
564
565 }
566
567 #ifdef CONFIG_SCSI_SAS_ATA
568
569 #define RPS_REQ_SIZE  16
570 #define RPS_RESP_SIZE 60
571
572 static int sas_get_report_phy_sata(struct domain_device *dev,
573                                           int phy_id,
574                                           struct smp_resp *rps_resp)
575 {
576         int res;
577         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
578         u8 *resp = (u8 *)rps_resp;
579
580         if (!rps_req)
581                 return -ENOMEM;
582
583         rps_req[1] = SMP_REPORT_PHY_SATA;
584         rps_req[9] = phy_id;
585
586         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
587                                     rps_resp, RPS_RESP_SIZE);
588
589         /* 0x34 is the FIS type for the D2H fis.  There's a potential
590          * standards cockup here.  sas-2 explicitly specifies the FIS
591          * should be encoded so that FIS type is in resp[24].
592          * However, some expanders endian reverse this.  Undo the
593          * reversal here */
594         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
595                 int i;
596
597                 for (i = 0; i < 5; i++) {
598                         int j = 24 + (i*4);
599                         u8 a, b;
600                         a = resp[j + 0];
601                         b = resp[j + 1];
602                         resp[j + 0] = resp[j + 3];
603                         resp[j + 1] = resp[j + 2];
604                         resp[j + 2] = b;
605                         resp[j + 3] = a;
606                 }
607         }
608
609         kfree(rps_req);
610         return res;
611 }
612 #endif
613
614 static void sas_ex_get_linkrate(struct domain_device *parent,
615                                        struct domain_device *child,
616                                        struct ex_phy *parent_phy)
617 {
618         struct expander_device *parent_ex = &parent->ex_dev;
619         struct sas_port *port;
620         int i;
621
622         child->pathways = 0;
623
624         port = parent_phy->port;
625
626         for (i = 0; i < parent_ex->num_phys; i++) {
627                 struct ex_phy *phy = &parent_ex->ex_phy[i];
628
629                 if (phy->phy_state == PHY_VACANT ||
630                     phy->phy_state == PHY_NOT_PRESENT)
631                         continue;
632
633                 if (SAS_ADDR(phy->attached_sas_addr) ==
634                     SAS_ADDR(child->sas_addr)) {
635
636                         child->min_linkrate = min(parent->min_linkrate,
637                                                   phy->linkrate);
638                         child->max_linkrate = max(parent->max_linkrate,
639                                                   phy->linkrate);
640                         child->pathways++;
641                         sas_port_add_phy(port, phy->phy);
642                 }
643         }
644         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
645         child->pathways = min(child->pathways, parent->pathways);
646 }
647
648 static struct domain_device *sas_ex_discover_end_dev(
649         struct domain_device *parent, int phy_id)
650 {
651         struct expander_device *parent_ex = &parent->ex_dev;
652         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
653         struct domain_device *child = NULL;
654         struct sas_rphy *rphy;
655         int res;
656
657         if (phy->attached_sata_host || phy->attached_sata_ps)
658                 return NULL;
659
660         child = sas_alloc_device();
661         if (!child)
662                 return NULL;
663
664         kref_get(&parent->kref);
665         child->parent = parent;
666         child->port   = parent->port;
667         child->iproto = phy->attached_iproto;
668         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
669         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
670         if (!phy->port) {
671                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
672                 if (unlikely(!phy->port))
673                         goto out_err;
674                 if (unlikely(sas_port_add(phy->port) != 0)) {
675                         sas_port_free(phy->port);
676                         goto out_err;
677                 }
678         }
679         sas_ex_get_linkrate(parent, child, phy);
680
681 #ifdef CONFIG_SCSI_SAS_ATA
682         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
683                 child->dev_type = SATA_DEV;
684                 if (phy->attached_tproto & SAS_PROTOCOL_STP)
685                         child->tproto = phy->attached_tproto;
686                 if (phy->attached_sata_dev)
687                         child->tproto |= SATA_DEV;
688                 res = sas_get_report_phy_sata(parent, phy_id,
689                                               &child->sata_dev.rps_resp);
690                 if (res) {
691                         SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
692                                     "0x%x\n", SAS_ADDR(parent->sas_addr),
693                                     phy_id, res);
694                         goto out_free;
695                 }
696                 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
697                        sizeof(struct dev_to_host_fis));
698
699                 rphy = sas_end_device_alloc(phy->port);
700                 if (unlikely(!rphy))
701                         goto out_free;
702
703                 sas_init_dev(child);
704
705                 child->rphy = rphy;
706
707                 spin_lock_irq(&parent->port->dev_list_lock);
708                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
709                 spin_unlock_irq(&parent->port->dev_list_lock);
710
711                 res = sas_discover_sata(child);
712                 if (res) {
713                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
714                                     "%016llx:0x%x returned 0x%x\n",
715                                     SAS_ADDR(child->sas_addr),
716                                     SAS_ADDR(parent->sas_addr), phy_id, res);
717                         goto out_list_del;
718                 }
719         } else
720 #endif
721           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
722                 child->dev_type = SAS_END_DEV;
723                 rphy = sas_end_device_alloc(phy->port);
724                 /* FIXME: error handling */
725                 if (unlikely(!rphy))
726                         goto out_free;
727                 child->tproto = phy->attached_tproto;
728                 sas_init_dev(child);
729
730                 child->rphy = rphy;
731                 sas_fill_in_rphy(child, rphy);
732
733                 spin_lock_irq(&parent->port->dev_list_lock);
734                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
735                 spin_unlock_irq(&parent->port->dev_list_lock);
736
737                 res = sas_discover_end_dev(child);
738                 if (res) {
739                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
740                                     "at %016llx:0x%x returned 0x%x\n",
741                                     SAS_ADDR(child->sas_addr),
742                                     SAS_ADDR(parent->sas_addr), phy_id, res);
743                         goto out_list_del;
744                 }
745         } else {
746                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
747                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
748                             phy_id);
749                 goto out_free;
750         }
751
752         list_add_tail(&child->siblings, &parent_ex->children);
753         return child;
754
755  out_list_del:
756         sas_rphy_free(child->rphy);
757         child->rphy = NULL;
758
759         spin_lock_irq(&parent->port->dev_list_lock);
760         list_del(&child->dev_list_node);
761         spin_unlock_irq(&parent->port->dev_list_lock);
762  out_free:
763         sas_port_delete(phy->port);
764  out_err:
765         phy->port = NULL;
766         sas_put_device(child);
767         return NULL;
768 }
769
770 /* See if this phy is part of a wide port */
771 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
772 {
773         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
774         int i;
775
776         for (i = 0; i < parent->ex_dev.num_phys; i++) {
777                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
778
779                 if (ephy == phy)
780                         continue;
781
782                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
783                             SAS_ADDR_SIZE) && ephy->port) {
784                         sas_port_add_phy(ephy->port, phy->phy);
785                         phy->port = ephy->port;
786                         phy->phy_state = PHY_DEVICE_DISCOVERED;
787                         return 0;
788                 }
789         }
790
791         return -ENODEV;
792 }
793
794 static struct domain_device *sas_ex_discover_expander(
795         struct domain_device *parent, int phy_id)
796 {
797         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
798         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
799         struct domain_device *child = NULL;
800         struct sas_rphy *rphy;
801         struct sas_expander_device *edev;
802         struct asd_sas_port *port;
803         int res;
804
805         if (phy->routing_attr == DIRECT_ROUTING) {
806                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
807                             "allowed\n",
808                             SAS_ADDR(parent->sas_addr), phy_id,
809                             SAS_ADDR(phy->attached_sas_addr),
810                             phy->attached_phy_id);
811                 return NULL;
812         }
813         child = sas_alloc_device();
814         if (!child)
815                 return NULL;
816
817         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
818         /* FIXME: better error handling */
819         BUG_ON(sas_port_add(phy->port) != 0);
820
821
822         switch (phy->attached_dev_type) {
823         case EDGE_DEV:
824                 rphy = sas_expander_alloc(phy->port,
825                                           SAS_EDGE_EXPANDER_DEVICE);
826                 break;
827         case FANOUT_DEV:
828                 rphy = sas_expander_alloc(phy->port,
829                                           SAS_FANOUT_EXPANDER_DEVICE);
830                 break;
831         default:
832                 rphy = NULL;    /* shut gcc up */
833                 BUG();
834         }
835         port = parent->port;
836         child->rphy = rphy;
837         edev = rphy_to_expander_device(rphy);
838         child->dev_type = phy->attached_dev_type;
839         kref_get(&parent->kref);
840         child->parent = parent;
841         child->port = port;
842         child->iproto = phy->attached_iproto;
843         child->tproto = phy->attached_tproto;
844         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
845         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
846         sas_ex_get_linkrate(parent, child, phy);
847         edev->level = parent_ex->level + 1;
848         parent->port->disc.max_level = max(parent->port->disc.max_level,
849                                            edev->level);
850         sas_init_dev(child);
851         sas_fill_in_rphy(child, rphy);
852         sas_rphy_add(rphy);
853
854         spin_lock_irq(&parent->port->dev_list_lock);
855         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
856         spin_unlock_irq(&parent->port->dev_list_lock);
857
858         res = sas_discover_expander(child);
859         if (res) {
860                 spin_lock_irq(&parent->port->dev_list_lock);
861                 list_del(&child->dev_list_node);
862                 spin_unlock_irq(&parent->port->dev_list_lock);
863                 sas_put_device(child);
864                 return NULL;
865         }
866         list_add_tail(&child->siblings, &parent->ex_dev.children);
867         return child;
868 }
869
870 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
871 {
872         struct expander_device *ex = &dev->ex_dev;
873         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
874         struct domain_device *child = NULL;
875         int res = 0;
876
877         /* Phy state */
878         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
879                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
880                         res = sas_ex_phy_discover(dev, phy_id);
881                 if (res)
882                         return res;
883         }
884
885         /* Parent and domain coherency */
886         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
887                              SAS_ADDR(dev->port->sas_addr))) {
888                 sas_add_parent_port(dev, phy_id);
889                 return 0;
890         }
891         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
892                             SAS_ADDR(dev->parent->sas_addr))) {
893                 sas_add_parent_port(dev, phy_id);
894                 if (ex_phy->routing_attr == TABLE_ROUTING)
895                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
896                 return 0;
897         }
898
899         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
900                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
901
902         if (ex_phy->attached_dev_type == NO_DEVICE) {
903                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
904                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
905                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
906                 }
907                 return 0;
908         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
909                 return 0;
910
911         if (ex_phy->attached_dev_type != SAS_END_DEV &&
912             ex_phy->attached_dev_type != FANOUT_DEV &&
913             ex_phy->attached_dev_type != EDGE_DEV) {
914                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
915                             "phy 0x%x\n", ex_phy->attached_dev_type,
916                             SAS_ADDR(dev->sas_addr),
917                             phy_id);
918                 return 0;
919         }
920
921         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
922         if (res) {
923                 SAS_DPRINTK("configure routing for dev %016llx "
924                             "reported 0x%x. Forgotten\n",
925                             SAS_ADDR(ex_phy->attached_sas_addr), res);
926                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
927                 return res;
928         }
929
930         res = sas_ex_join_wide_port(dev, phy_id);
931         if (!res) {
932                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
933                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
934                 return res;
935         }
936
937         switch (ex_phy->attached_dev_type) {
938         case SAS_END_DEV:
939                 child = sas_ex_discover_end_dev(dev, phy_id);
940                 break;
941         case FANOUT_DEV:
942                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
943                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
944                                     "attached to ex %016llx phy 0x%x\n",
945                                     SAS_ADDR(ex_phy->attached_sas_addr),
946                                     ex_phy->attached_phy_id,
947                                     SAS_ADDR(dev->sas_addr),
948                                     phy_id);
949                         sas_ex_disable_phy(dev, phy_id);
950                         break;
951                 } else
952                         memcpy(dev->port->disc.fanout_sas_addr,
953                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
954                 /* fallthrough */
955         case EDGE_DEV:
956                 child = sas_ex_discover_expander(dev, phy_id);
957                 break;
958         default:
959                 break;
960         }
961
962         if (child) {
963                 int i;
964
965                 for (i = 0; i < ex->num_phys; i++) {
966                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
967                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
968                                 continue;
969                         /*
970                          * Due to races, the phy might not get added to the
971                          * wide port, so we add the phy to the wide port here.
972                          */
973                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
974                             SAS_ADDR(child->sas_addr)) {
975                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
976                                 res = sas_ex_join_wide_port(dev, i);
977                                 if (!res)
978                                         SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
979                                                     i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
980
981                         }
982                 }
983         }
984
985         return res;
986 }
987
988 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
989 {
990         struct expander_device *ex = &dev->ex_dev;
991         int i;
992
993         for (i = 0; i < ex->num_phys; i++) {
994                 struct ex_phy *phy = &ex->ex_phy[i];
995
996                 if (phy->phy_state == PHY_VACANT ||
997                     phy->phy_state == PHY_NOT_PRESENT)
998                         continue;
999
1000                 if ((phy->attached_dev_type == EDGE_DEV ||
1001                      phy->attached_dev_type == FANOUT_DEV) &&
1002                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1003
1004                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1005
1006                         return 1;
1007                 }
1008         }
1009         return 0;
1010 }
1011
1012 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1013 {
1014         struct expander_device *ex = &dev->ex_dev;
1015         struct domain_device *child;
1016         u8 sub_addr[8] = {0, };
1017
1018         list_for_each_entry(child, &ex->children, siblings) {
1019                 if (child->dev_type != EDGE_DEV &&
1020                     child->dev_type != FANOUT_DEV)
1021                         continue;
1022                 if (sub_addr[0] == 0) {
1023                         sas_find_sub_addr(child, sub_addr);
1024                         continue;
1025                 } else {
1026                         u8 s2[8];
1027
1028                         if (sas_find_sub_addr(child, s2) &&
1029                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1030
1031                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1032                                             "diverges from subtractive "
1033                                             "boundary %016llx\n",
1034                                             SAS_ADDR(dev->sas_addr),
1035                                             SAS_ADDR(child->sas_addr),
1036                                             SAS_ADDR(s2),
1037                                             SAS_ADDR(sub_addr));
1038
1039                                 sas_ex_disable_port(child, s2);
1040                         }
1041                 }
1042         }
1043         return 0;
1044 }
1045 /**
1046  * sas_ex_discover_devices -- discover devices attached to this expander
1047  * dev: pointer to the expander domain device
1048  * single: if you want to do a single phy, else set to -1;
1049  *
1050  * Configure this expander for use with its devices and register the
1051  * devices of this expander.
1052  */
1053 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1054 {
1055         struct expander_device *ex = &dev->ex_dev;
1056         int i = 0, end = ex->num_phys;
1057         int res = 0;
1058
1059         if (0 <= single && single < end) {
1060                 i = single;
1061                 end = i+1;
1062         }
1063
1064         for ( ; i < end; i++) {
1065                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1066
1067                 if (ex_phy->phy_state == PHY_VACANT ||
1068                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1069                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1070                         continue;
1071
1072                 switch (ex_phy->linkrate) {
1073                 case SAS_PHY_DISABLED:
1074                 case SAS_PHY_RESET_PROBLEM:
1075                 case SAS_SATA_PORT_SELECTOR:
1076                         continue;
1077                 default:
1078                         res = sas_ex_discover_dev(dev, i);
1079                         if (res)
1080                                 break;
1081                         continue;
1082                 }
1083         }
1084
1085         if (!res)
1086                 sas_check_level_subtractive_boundary(dev);
1087
1088         return res;
1089 }
1090
1091 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1092 {
1093         struct expander_device *ex = &dev->ex_dev;
1094         int i;
1095         u8  *sub_sas_addr = NULL;
1096
1097         if (dev->dev_type != EDGE_DEV)
1098                 return 0;
1099
1100         for (i = 0; i < ex->num_phys; i++) {
1101                 struct ex_phy *phy = &ex->ex_phy[i];
1102
1103                 if (phy->phy_state == PHY_VACANT ||
1104                     phy->phy_state == PHY_NOT_PRESENT)
1105                         continue;
1106
1107                 if ((phy->attached_dev_type == FANOUT_DEV ||
1108                      phy->attached_dev_type == EDGE_DEV) &&
1109                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1110
1111                         if (!sub_sas_addr)
1112                                 sub_sas_addr = &phy->attached_sas_addr[0];
1113                         else if (SAS_ADDR(sub_sas_addr) !=
1114                                  SAS_ADDR(phy->attached_sas_addr)) {
1115
1116                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1117                                             "diverges(%016llx) on subtractive "
1118                                             "boundary(%016llx). Disabled\n",
1119                                             SAS_ADDR(dev->sas_addr), i,
1120                                             SAS_ADDR(phy->attached_sas_addr),
1121                                             SAS_ADDR(sub_sas_addr));
1122                                 sas_ex_disable_phy(dev, i);
1123                         }
1124                 }
1125         }
1126         return 0;
1127 }
1128
1129 static void sas_print_parent_topology_bug(struct domain_device *child,
1130                                                  struct ex_phy *parent_phy,
1131                                                  struct ex_phy *child_phy)
1132 {
1133         static const char ra_char[] = {
1134                 [DIRECT_ROUTING] = 'D',
1135                 [SUBTRACTIVE_ROUTING] = 'S',
1136                 [TABLE_ROUTING] = 'T',
1137         };
1138         static const char *ex_type[] = {
1139                 [EDGE_DEV] = "edge",
1140                 [FANOUT_DEV] = "fanout",
1141         };
1142         struct domain_device *parent = child->parent;
1143
1144         sas_printk("%s ex %016llx (T2T supp:%d) phy 0x%x <--> %s ex %016llx "
1145                    "(T2T supp:%d) phy 0x%x has %c:%c routing link!\n",
1146
1147                    ex_type[parent->dev_type],
1148                    SAS_ADDR(parent->sas_addr),
1149                    parent->ex_dev.t2t_supp,
1150                    parent_phy->phy_id,
1151
1152                    ex_type[child->dev_type],
1153                    SAS_ADDR(child->sas_addr),
1154                    child->ex_dev.t2t_supp,
1155                    child_phy->phy_id,
1156
1157                    ra_char[parent_phy->routing_attr],
1158                    ra_char[child_phy->routing_attr]);
1159 }
1160
1161 static int sas_check_eeds(struct domain_device *child,
1162                                  struct ex_phy *parent_phy,
1163                                  struct ex_phy *child_phy)
1164 {
1165         int res = 0;
1166         struct domain_device *parent = child->parent;
1167
1168         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1169                 res = -ENODEV;
1170                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1171                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1172                             SAS_ADDR(parent->sas_addr),
1173                             parent_phy->phy_id,
1174                             SAS_ADDR(child->sas_addr),
1175                             child_phy->phy_id,
1176                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1177         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1178                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1179                        SAS_ADDR_SIZE);
1180                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1181                        SAS_ADDR_SIZE);
1182         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1183                     SAS_ADDR(parent->sas_addr)) ||
1184                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1185                     SAS_ADDR(child->sas_addr)))
1186                    &&
1187                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1188                      SAS_ADDR(parent->sas_addr)) ||
1189                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1190                      SAS_ADDR(child->sas_addr))))
1191                 ;
1192         else {
1193                 res = -ENODEV;
1194                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1195                             "phy 0x%x link forms a third EEDS!\n",
1196                             SAS_ADDR(parent->sas_addr),
1197                             parent_phy->phy_id,
1198                             SAS_ADDR(child->sas_addr),
1199                             child_phy->phy_id);
1200         }
1201
1202         return res;
1203 }
1204
1205 /* Here we spill over 80 columns.  It is intentional.
1206  */
1207 static int sas_check_parent_topology(struct domain_device *child)
1208 {
1209         struct expander_device *child_ex = &child->ex_dev;
1210         struct expander_device *parent_ex;
1211         int i;
1212         int res = 0;
1213
1214         if (!child->parent)
1215                 return 0;
1216
1217         if (child->parent->dev_type != EDGE_DEV &&
1218             child->parent->dev_type != FANOUT_DEV)
1219                 return 0;
1220
1221         parent_ex = &child->parent->ex_dev;
1222
1223         for (i = 0; i < parent_ex->num_phys; i++) {
1224                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1225                 struct ex_phy *child_phy;
1226
1227                 if (parent_phy->phy_state == PHY_VACANT ||
1228                     parent_phy->phy_state == PHY_NOT_PRESENT)
1229                         continue;
1230
1231                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1232                         continue;
1233
1234                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1235
1236                 switch (child->parent->dev_type) {
1237                 case EDGE_DEV:
1238                         if (child->dev_type == FANOUT_DEV) {
1239                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1240                                     child_phy->routing_attr != TABLE_ROUTING) {
1241                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1242                                         res = -ENODEV;
1243                                 }
1244                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1245                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1246                                         res = sas_check_eeds(child, parent_phy, child_phy);
1247                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1248                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1249                                         res = -ENODEV;
1250                                 }
1251                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1252                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1253                                     (child_phy->routing_attr == TABLE_ROUTING &&
1254                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1255                                         /* All good */;
1256                                 } else {
1257                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1258                                         res = -ENODEV;
1259                                 }
1260                         }
1261                         break;
1262                 case FANOUT_DEV:
1263                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1264                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1265                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1266                                 res = -ENODEV;
1267                         }
1268                         break;
1269                 default:
1270                         break;
1271                 }
1272         }
1273
1274         return res;
1275 }
1276
1277 #define RRI_REQ_SIZE  16
1278 #define RRI_RESP_SIZE 44
1279
1280 static int sas_configure_present(struct domain_device *dev, int phy_id,
1281                                  u8 *sas_addr, int *index, int *present)
1282 {
1283         int i, res = 0;
1284         struct expander_device *ex = &dev->ex_dev;
1285         struct ex_phy *phy = &ex->ex_phy[phy_id];
1286         u8 *rri_req;
1287         u8 *rri_resp;
1288
1289         *present = 0;
1290         *index = 0;
1291
1292         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1293         if (!rri_req)
1294                 return -ENOMEM;
1295
1296         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1297         if (!rri_resp) {
1298                 kfree(rri_req);
1299                 return -ENOMEM;
1300         }
1301
1302         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1303         rri_req[9] = phy_id;
1304
1305         for (i = 0; i < ex->max_route_indexes ; i++) {
1306                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1307                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1308                                        RRI_RESP_SIZE);
1309                 if (res)
1310                         goto out;
1311                 res = rri_resp[2];
1312                 if (res == SMP_RESP_NO_INDEX) {
1313                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1314                                     "phy 0x%x index 0x%x\n",
1315                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1316                         goto out;
1317                 } else if (res != SMP_RESP_FUNC_ACC) {
1318                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1319                                     "result 0x%x\n", __func__,
1320                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1321                         goto out;
1322                 }
1323                 if (SAS_ADDR(sas_addr) != 0) {
1324                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1325                                 *index = i;
1326                                 if ((rri_resp[12] & 0x80) == 0x80)
1327                                         *present = 0;
1328                                 else
1329                                         *present = 1;
1330                                 goto out;
1331                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1332                                 *index = i;
1333                                 *present = 0;
1334                                 goto out;
1335                         }
1336                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1337                            phy->last_da_index < i) {
1338                         phy->last_da_index = i;
1339                         *index = i;
1340                         *present = 0;
1341                         goto out;
1342                 }
1343         }
1344         res = -1;
1345 out:
1346         kfree(rri_req);
1347         kfree(rri_resp);
1348         return res;
1349 }
1350
1351 #define CRI_REQ_SIZE  44
1352 #define CRI_RESP_SIZE  8
1353
1354 static int sas_configure_set(struct domain_device *dev, int phy_id,
1355                              u8 *sas_addr, int index, int include)
1356 {
1357         int res;
1358         u8 *cri_req;
1359         u8 *cri_resp;
1360
1361         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1362         if (!cri_req)
1363                 return -ENOMEM;
1364
1365         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1366         if (!cri_resp) {
1367                 kfree(cri_req);
1368                 return -ENOMEM;
1369         }
1370
1371         cri_req[1] = SMP_CONF_ROUTE_INFO;
1372         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1373         cri_req[9] = phy_id;
1374         if (SAS_ADDR(sas_addr) == 0 || !include)
1375                 cri_req[12] |= 0x80;
1376         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1377
1378         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1379                                CRI_RESP_SIZE);
1380         if (res)
1381                 goto out;
1382         res = cri_resp[2];
1383         if (res == SMP_RESP_NO_INDEX) {
1384                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1385                             "index 0x%x\n",
1386                             SAS_ADDR(dev->sas_addr), phy_id, index);
1387         }
1388 out:
1389         kfree(cri_req);
1390         kfree(cri_resp);
1391         return res;
1392 }
1393
1394 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1395                                     u8 *sas_addr, int include)
1396 {
1397         int index;
1398         int present;
1399         int res;
1400
1401         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1402         if (res)
1403                 return res;
1404         if (include ^ present)
1405                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1406
1407         return res;
1408 }
1409
1410 /**
1411  * sas_configure_parent -- configure routing table of parent
1412  * parent: parent expander
1413  * child: child expander
1414  * sas_addr: SAS port identifier of device directly attached to child
1415  */
1416 static int sas_configure_parent(struct domain_device *parent,
1417                                 struct domain_device *child,
1418                                 u8 *sas_addr, int include)
1419 {
1420         struct expander_device *ex_parent = &parent->ex_dev;
1421         int res = 0;
1422         int i;
1423
1424         if (parent->parent) {
1425                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1426                                            include);
1427                 if (res)
1428                         return res;
1429         }
1430
1431         if (ex_parent->conf_route_table == 0) {
1432                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1433                             SAS_ADDR(parent->sas_addr));
1434                 return 0;
1435         }
1436
1437         for (i = 0; i < ex_parent->num_phys; i++) {
1438                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1439
1440                 if ((phy->routing_attr == TABLE_ROUTING) &&
1441                     (SAS_ADDR(phy->attached_sas_addr) ==
1442                      SAS_ADDR(child->sas_addr))) {
1443                         res = sas_configure_phy(parent, i, sas_addr, include);
1444                         if (res)
1445                                 return res;
1446                 }
1447         }
1448
1449         return res;
1450 }
1451
1452 /**
1453  * sas_configure_routing -- configure routing
1454  * dev: expander device
1455  * sas_addr: port identifier of device directly attached to the expander device
1456  */
1457 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1458 {
1459         if (dev->parent)
1460                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1461         return 0;
1462 }
1463
1464 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1465 {
1466         if (dev->parent)
1467                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1468         return 0;
1469 }
1470
1471 /**
1472  * sas_discover_expander -- expander discovery
1473  * @ex: pointer to expander domain device
1474  *
1475  * See comment in sas_discover_sata().
1476  */
1477 static int sas_discover_expander(struct domain_device *dev)
1478 {
1479         int res;
1480
1481         res = sas_notify_lldd_dev_found(dev);
1482         if (res)
1483                 return res;
1484
1485         res = sas_ex_general(dev);
1486         if (res)
1487                 goto out_err;
1488         res = sas_ex_manuf_info(dev);
1489         if (res)
1490                 goto out_err;
1491
1492         res = sas_expander_discover(dev);
1493         if (res) {
1494                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1495                             SAS_ADDR(dev->sas_addr), res);
1496                 goto out_err;
1497         }
1498
1499         sas_check_ex_subtractive_boundary(dev);
1500         res = sas_check_parent_topology(dev);
1501         if (res)
1502                 goto out_err;
1503         return 0;
1504 out_err:
1505         sas_notify_lldd_dev_gone(dev);
1506         return res;
1507 }
1508
1509 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1510 {
1511         int res = 0;
1512         struct domain_device *dev;
1513
1514         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1515                 if (dev->dev_type == EDGE_DEV ||
1516                     dev->dev_type == FANOUT_DEV) {
1517                         struct sas_expander_device *ex =
1518                                 rphy_to_expander_device(dev->rphy);
1519
1520                         if (level == ex->level)
1521                                 res = sas_ex_discover_devices(dev, -1);
1522                         else if (level > 0)
1523                                 res = sas_ex_discover_devices(port->port_dev, -1);
1524
1525                 }
1526         }
1527
1528         return res;
1529 }
1530
1531 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1532 {
1533         int res;
1534         int level;
1535
1536         do {
1537                 level = port->disc.max_level;
1538                 res = sas_ex_level_discovery(port, level);
1539                 mb();
1540         } while (level < port->disc.max_level);
1541
1542         return res;
1543 }
1544
1545 int sas_discover_root_expander(struct domain_device *dev)
1546 {
1547         int res;
1548         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1549
1550         res = sas_rphy_add(dev->rphy);
1551         if (res)
1552                 goto out_err;
1553
1554         ex->level = dev->port->disc.max_level; /* 0 */
1555         res = sas_discover_expander(dev);
1556         if (res)
1557                 goto out_err2;
1558
1559         sas_ex_bfs_disc(dev->port);
1560
1561         return res;
1562
1563 out_err2:
1564         sas_rphy_remove(dev->rphy);
1565 out_err:
1566         return res;
1567 }
1568
1569 /* ---------- Domain revalidation ---------- */
1570
1571 static int sas_get_phy_discover(struct domain_device *dev,
1572                                 int phy_id, struct smp_resp *disc_resp)
1573 {
1574         int res;
1575         u8 *disc_req;
1576
1577         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1578         if (!disc_req)
1579                 return -ENOMEM;
1580
1581         disc_req[1] = SMP_DISCOVER;
1582         disc_req[9] = phy_id;
1583
1584         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1585                                disc_resp, DISCOVER_RESP_SIZE);
1586         if (res)
1587                 goto out;
1588         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1589                 res = disc_resp->result;
1590                 goto out;
1591         }
1592 out:
1593         kfree(disc_req);
1594         return res;
1595 }
1596
1597 static int sas_get_phy_change_count(struct domain_device *dev,
1598                                     int phy_id, int *pcc)
1599 {
1600         int res;
1601         struct smp_resp *disc_resp;
1602
1603         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1604         if (!disc_resp)
1605                 return -ENOMEM;
1606
1607         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1608         if (!res)
1609                 *pcc = disc_resp->disc.change_count;
1610
1611         kfree(disc_resp);
1612         return res;
1613 }
1614
1615 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1616                                          int phy_id, u8 *attached_sas_addr)
1617 {
1618         int res;
1619         struct smp_resp *disc_resp;
1620         struct discover_resp *dr;
1621
1622         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1623         if (!disc_resp)
1624                 return -ENOMEM;
1625         dr = &disc_resp->disc;
1626
1627         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1628         if (!res) {
1629                 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1630                 if (dr->attached_dev_type == 0)
1631                         memset(attached_sas_addr, 0, 8);
1632         }
1633         kfree(disc_resp);
1634         return res;
1635 }
1636
1637 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1638                               int from_phy, bool update)
1639 {
1640         struct expander_device *ex = &dev->ex_dev;
1641         int res = 0;
1642         int i;
1643
1644         for (i = from_phy; i < ex->num_phys; i++) {
1645                 int phy_change_count = 0;
1646
1647                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1648                 if (res)
1649                         goto out;
1650                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1651                         if (update)
1652                                 ex->ex_phy[i].phy_change_count =
1653                                         phy_change_count;
1654                         *phy_id = i;
1655                         return 0;
1656                 }
1657         }
1658 out:
1659         return res;
1660 }
1661
1662 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1663 {
1664         int res;
1665         u8  *rg_req;
1666         struct smp_resp  *rg_resp;
1667
1668         rg_req = alloc_smp_req(RG_REQ_SIZE);
1669         if (!rg_req)
1670                 return -ENOMEM;
1671
1672         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1673         if (!rg_resp) {
1674                 kfree(rg_req);
1675                 return -ENOMEM;
1676         }
1677
1678         rg_req[1] = SMP_REPORT_GENERAL;
1679
1680         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1681                                RG_RESP_SIZE);
1682         if (res)
1683                 goto out;
1684         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1685                 res = rg_resp->result;
1686                 goto out;
1687         }
1688
1689         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1690 out:
1691         kfree(rg_resp);
1692         kfree(rg_req);
1693         return res;
1694 }
1695 /**
1696  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1697  * @dev:domain device to be detect.
1698  * @src_dev: the device which originated BROADCAST(CHANGE).
1699  *
1700  * Add self-configuration expander suport. Suppose two expander cascading,
1701  * when the first level expander is self-configuring, hotplug the disks in
1702  * second level expander, BROADCAST(CHANGE) will not only be originated
1703  * in the second level expander, but also be originated in the first level
1704  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1705  * expander changed count in two level expanders will all increment at least
1706  * once, but the phy which chang count has changed is the source device which
1707  * we concerned.
1708  */
1709
1710 static int sas_find_bcast_dev(struct domain_device *dev,
1711                               struct domain_device **src_dev)
1712 {
1713         struct expander_device *ex = &dev->ex_dev;
1714         int ex_change_count = -1;
1715         int phy_id = -1;
1716         int res;
1717         struct domain_device *ch;
1718
1719         res = sas_get_ex_change_count(dev, &ex_change_count);
1720         if (res)
1721                 goto out;
1722         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1723                 /* Just detect if this expander phys phy change count changed,
1724                 * in order to determine if this expander originate BROADCAST,
1725                 * and do not update phy change count field in our structure.
1726                 */
1727                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1728                 if (phy_id != -1) {
1729                         *src_dev = dev;
1730                         ex->ex_change_count = ex_change_count;
1731                         SAS_DPRINTK("Expander phy change count has changed\n");
1732                         return res;
1733                 } else
1734                         SAS_DPRINTK("Expander phys DID NOT change\n");
1735         }
1736         list_for_each_entry(ch, &ex->children, siblings) {
1737                 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1738                         res = sas_find_bcast_dev(ch, src_dev);
1739                         if (*src_dev)
1740                                 return res;
1741                 }
1742         }
1743 out:
1744         return res;
1745 }
1746
1747 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1748 {
1749         struct expander_device *ex = &dev->ex_dev;
1750         struct domain_device *child, *n;
1751
1752         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1753                 child->gone = 1;
1754                 if (child->dev_type == EDGE_DEV ||
1755                     child->dev_type == FANOUT_DEV)
1756                         sas_unregister_ex_tree(port, child);
1757                 else
1758                         sas_unregister_dev(port, child);
1759         }
1760         sas_unregister_dev(port, dev);
1761 }
1762
1763 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1764                                          int phy_id, bool last)
1765 {
1766         struct expander_device *ex_dev = &parent->ex_dev;
1767         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1768         struct domain_device *child, *n;
1769         if (last) {
1770                 list_for_each_entry_safe(child, n,
1771                         &ex_dev->children, siblings) {
1772                         if (SAS_ADDR(child->sas_addr) ==
1773                             SAS_ADDR(phy->attached_sas_addr)) {
1774                                 child->gone = 1;
1775                                 if (child->dev_type == EDGE_DEV ||
1776                                     child->dev_type == FANOUT_DEV)
1777                                         sas_unregister_ex_tree(parent->port, child);
1778                                 else
1779                                         sas_unregister_dev(parent->port, child);
1780                                 break;
1781                         }
1782                 }
1783                 parent->gone = 1;
1784                 sas_disable_routing(parent, phy->attached_sas_addr);
1785         }
1786         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1787         if (phy->port) {
1788                 sas_port_delete_phy(phy->port, phy->phy);
1789                 if (phy->port->num_phys == 0)
1790                         sas_port_delete(phy->port);
1791                 phy->port = NULL;
1792         }
1793 }
1794
1795 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1796                                           const int level)
1797 {
1798         struct expander_device *ex_root = &root->ex_dev;
1799         struct domain_device *child;
1800         int res = 0;
1801
1802         list_for_each_entry(child, &ex_root->children, siblings) {
1803                 if (child->dev_type == EDGE_DEV ||
1804                     child->dev_type == FANOUT_DEV) {
1805                         struct sas_expander_device *ex =
1806                                 rphy_to_expander_device(child->rphy);
1807
1808                         if (level > ex->level)
1809                                 res = sas_discover_bfs_by_root_level(child,
1810                                                                      level);
1811                         else if (level == ex->level)
1812                                 res = sas_ex_discover_devices(child, -1);
1813                 }
1814         }
1815         return res;
1816 }
1817
1818 static int sas_discover_bfs_by_root(struct domain_device *dev)
1819 {
1820         int res;
1821         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1822         int level = ex->level+1;
1823
1824         res = sas_ex_discover_devices(dev, -1);
1825         if (res)
1826                 goto out;
1827         do {
1828                 res = sas_discover_bfs_by_root_level(dev, level);
1829                 mb();
1830                 level += 1;
1831         } while (level <= dev->port->disc.max_level);
1832 out:
1833         return res;
1834 }
1835
1836 static int sas_discover_new(struct domain_device *dev, int phy_id)
1837 {
1838         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1839         struct domain_device *child;
1840         bool found = false;
1841         int res, i;
1842
1843         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1844                     SAS_ADDR(dev->sas_addr), phy_id);
1845         res = sas_ex_phy_discover(dev, phy_id);
1846         if (res)
1847                 goto out;
1848         /* to support the wide port inserted */
1849         for (i = 0; i < dev->ex_dev.num_phys; i++) {
1850                 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1851                 if (i == phy_id)
1852                         continue;
1853                 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1854                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1855                         found = true;
1856                         break;
1857                 }
1858         }
1859         if (found) {
1860                 sas_ex_join_wide_port(dev, phy_id);
1861                 return 0;
1862         }
1863         res = sas_ex_discover_devices(dev, phy_id);
1864         if (!res)
1865                 goto out;
1866         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1867                 if (SAS_ADDR(child->sas_addr) ==
1868                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1869                         if (child->dev_type == EDGE_DEV ||
1870                             child->dev_type == FANOUT_DEV)
1871                                 res = sas_discover_bfs_by_root(child);
1872                         break;
1873                 }
1874         }
1875 out:
1876         return res;
1877 }
1878
1879 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1880 {
1881         struct expander_device *ex = &dev->ex_dev;
1882         struct ex_phy *phy = &ex->ex_phy[phy_id];
1883         u8 attached_sas_addr[8];
1884         int res;
1885
1886         res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1887         switch (res) {
1888         case SMP_RESP_NO_PHY:
1889                 phy->phy_state = PHY_NOT_PRESENT;
1890                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1891                 goto out; break;
1892         case SMP_RESP_PHY_VACANT:
1893                 phy->phy_state = PHY_VACANT;
1894                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1895                 goto out; break;
1896         case SMP_RESP_FUNC_ACC:
1897                 break;
1898         }
1899
1900         if (SAS_ADDR(attached_sas_addr) == 0) {
1901                 phy->phy_state = PHY_EMPTY;
1902                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1903         } else if (SAS_ADDR(attached_sas_addr) ==
1904                    SAS_ADDR(phy->attached_sas_addr)) {
1905                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1906                             SAS_ADDR(dev->sas_addr), phy_id);
1907                 sas_ex_phy_discover(dev, phy_id);
1908         } else
1909                 res = sas_discover_new(dev, phy_id);
1910 out:
1911         return res;
1912 }
1913
1914 /**
1915  * sas_rediscover - revalidate the domain.
1916  * @dev:domain device to be detect.
1917  * @phy_id: the phy id will be detected.
1918  *
1919  * NOTE: this process _must_ quit (return) as soon as any connection
1920  * errors are encountered.  Connection recovery is done elsewhere.
1921  * Discover process only interrogates devices in order to discover the
1922  * domain.For plugging out, we un-register the device only when it is
1923  * the last phy in the port, for other phys in this port, we just delete it
1924  * from the port.For inserting, we do discovery when it is the
1925  * first phy,for other phys in this port, we add it to the port to
1926  * forming the wide-port.
1927  */
1928 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1929 {
1930         struct expander_device *ex = &dev->ex_dev;
1931         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1932         int res = 0;
1933         int i;
1934         bool last = true;       /* is this the last phy of the port */
1935
1936         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1937                     SAS_ADDR(dev->sas_addr), phy_id);
1938
1939         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1940                 for (i = 0; i < ex->num_phys; i++) {
1941                         struct ex_phy *phy = &ex->ex_phy[i];
1942
1943                         if (i == phy_id)
1944                                 continue;
1945                         if (SAS_ADDR(phy->attached_sas_addr) ==
1946                             SAS_ADDR(changed_phy->attached_sas_addr)) {
1947                                 SAS_DPRINTK("phy%d part of wide port with "
1948                                             "phy%d\n", phy_id, i);
1949                                 last = false;
1950                                 break;
1951                         }
1952                 }
1953                 res = sas_rediscover_dev(dev, phy_id, last);
1954         } else
1955                 res = sas_discover_new(dev, phy_id);
1956         return res;
1957 }
1958
1959 /**
1960  * sas_revalidate_domain -- revalidate the domain
1961  * @port: port to the domain of interest
1962  *
1963  * NOTE: this process _must_ quit (return) as soon as any connection
1964  * errors are encountered.  Connection recovery is done elsewhere.
1965  * Discover process only interrogates devices in order to discover the
1966  * domain.
1967  */
1968 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1969 {
1970         int res;
1971         struct domain_device *dev = NULL;
1972
1973         res = sas_find_bcast_dev(port_dev, &dev);
1974         if (res)
1975                 goto out;
1976         if (dev) {
1977                 struct expander_device *ex = &dev->ex_dev;
1978                 int i = 0, phy_id;
1979
1980                 do {
1981                         phy_id = -1;
1982                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
1983                         if (phy_id == -1)
1984                                 break;
1985                         res = sas_rediscover(dev, phy_id);
1986                         i = phy_id + 1;
1987                 } while (i < ex->num_phys);
1988         }
1989 out:
1990         return res;
1991 }
1992
1993 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1994                     struct request *req)
1995 {
1996         struct domain_device *dev;
1997         int ret, type;
1998         struct request *rsp = req->next_rq;
1999
2000         if (!rsp) {
2001                 printk("%s: space for a smp response is missing\n",
2002                        __func__);
2003                 return -EINVAL;
2004         }
2005
2006         /* no rphy means no smp target support (ie aic94xx host) */
2007         if (!rphy)
2008                 return sas_smp_host_handler(shost, req, rsp);
2009
2010         type = rphy->identify.device_type;
2011
2012         if (type != SAS_EDGE_EXPANDER_DEVICE &&
2013             type != SAS_FANOUT_EXPANDER_DEVICE) {
2014                 printk("%s: can we send a smp request to a device?\n",
2015                        __func__);
2016                 return -EINVAL;
2017         }
2018
2019         dev = sas_find_dev_by_rphy(rphy);
2020         if (!dev) {
2021                 printk("%s: fail to find a domain_device?\n", __func__);
2022                 return -EINVAL;
2023         }
2024
2025         /* do we need to support multiple segments? */
2026         if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2027                 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2028                        __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2029                        rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2030                 return -EINVAL;
2031         }
2032
2033         ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2034                                bio_data(rsp->bio), blk_rq_bytes(rsp));
2035         if (ret > 0) {
2036                 /* positive number is the untransferred residual */
2037                 rsp->resid_len = ret;
2038                 req->resid_len = 0;
2039                 ret = 0;
2040         } else if (ret == 0) {
2041                 rsp->resid_len = 0;
2042                 req->resid_len = 0;
2043         }
2044
2045         return ret;
2046 }