PCI: Cleanup the includes of <linux/pci.h>
[linux-2.6.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26
27 #include "sas_internal.h"
28
29 #include <scsi/scsi_transport.h>
30 #include <scsi/scsi_transport_sas.h>
31 #include "../scsi_sas_internal.h"
32
33 static int sas_discover_expander(struct domain_device *dev);
34 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
35 static int sas_configure_phy(struct domain_device *dev, int phy_id,
36                              u8 *sas_addr, int include);
37 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
38
39 #if 0
40 /* FIXME: smp needs to migrate into the sas class */
41 static ssize_t smp_portal_read(struct kobject *, char *, loff_t, size_t);
42 static ssize_t smp_portal_write(struct kobject *, char *, loff_t, size_t);
43 #endif
44
45 /* ---------- SMP task management ---------- */
46
47 static void smp_task_timedout(unsigned long _task)
48 {
49         struct sas_task *task = (void *) _task;
50         unsigned long flags;
51
52         spin_lock_irqsave(&task->task_state_lock, flags);
53         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
54                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
55         spin_unlock_irqrestore(&task->task_state_lock, flags);
56
57         complete(&task->completion);
58 }
59
60 static void smp_task_done(struct sas_task *task)
61 {
62         if (!del_timer(&task->timer))
63                 return;
64         complete(&task->completion);
65 }
66
67 /* Give it some long enough timeout. In seconds. */
68 #define SMP_TIMEOUT 10
69
70 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
71                             void *resp, int resp_size)
72 {
73         int res, retry;
74         struct sas_task *task = NULL;
75         struct sas_internal *i =
76                 to_sas_internal(dev->port->ha->core.shost->transportt);
77
78         for (retry = 0; retry < 3; retry++) {
79                 task = sas_alloc_task(GFP_KERNEL);
80                 if (!task)
81                         return -ENOMEM;
82
83                 task->dev = dev;
84                 task->task_proto = dev->tproto;
85                 sg_init_one(&task->smp_task.smp_req, req, req_size);
86                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
87
88                 task->task_done = smp_task_done;
89
90                 task->timer.data = (unsigned long) task;
91                 task->timer.function = smp_task_timedout;
92                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
93                 add_timer(&task->timer);
94
95                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
96
97                 if (res) {
98                         del_timer(&task->timer);
99                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
100                         goto ex_err;
101                 }
102
103                 wait_for_completion(&task->completion);
104                 res = -ETASK;
105                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
106                         SAS_DPRINTK("smp task timed out or aborted\n");
107                         i->dft->lldd_abort_task(task);
108                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
109                                 SAS_DPRINTK("SMP task aborted and not done\n");
110                                 goto ex_err;
111                         }
112                 }
113                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
114                     task->task_status.stat == SAM_GOOD) {
115                         res = 0;
116                         break;
117                 } else {
118                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
119                                     "status 0x%x\n", __FUNCTION__,
120                                     SAS_ADDR(dev->sas_addr),
121                                     task->task_status.resp,
122                                     task->task_status.stat);
123                         sas_free_task(task);
124                         task = NULL;
125                 }
126         }
127 ex_err:
128         BUG_ON(retry == 3 && task != NULL);
129         if (task != NULL) {
130                 sas_free_task(task);
131         }
132         return res;
133 }
134
135 /* ---------- Allocations ---------- */
136
137 static inline void *alloc_smp_req(int size)
138 {
139         u8 *p = kzalloc(size, GFP_KERNEL);
140         if (p)
141                 p[0] = SMP_REQUEST;
142         return p;
143 }
144
145 static inline void *alloc_smp_resp(int size)
146 {
147         return kzalloc(size, GFP_KERNEL);
148 }
149
150 /* ---------- Expander configuration ---------- */
151
152 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
153                            void *disc_resp)
154 {
155         struct expander_device *ex = &dev->ex_dev;
156         struct ex_phy *phy = &ex->ex_phy[phy_id];
157         struct smp_resp *resp = disc_resp;
158         struct discover_resp *dr = &resp->disc;
159         struct sas_rphy *rphy = dev->rphy;
160         int rediscover = (phy->phy != NULL);
161
162         if (!rediscover) {
163                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
164
165                 /* FIXME: error_handling */
166                 BUG_ON(!phy->phy);
167         }
168
169         switch (resp->result) {
170         case SMP_RESP_PHY_VACANT:
171                 phy->phy_state = PHY_VACANT;
172                 return;
173         default:
174                 phy->phy_state = PHY_NOT_PRESENT;
175                 return;
176         case SMP_RESP_FUNC_ACC:
177                 phy->phy_state = PHY_EMPTY; /* do not know yet */
178                 break;
179         }
180
181         phy->phy_id = phy_id;
182         phy->attached_dev_type = dr->attached_dev_type;
183         phy->linkrate = dr->linkrate;
184         phy->attached_sata_host = dr->attached_sata_host;
185         phy->attached_sata_dev  = dr->attached_sata_dev;
186         phy->attached_sata_ps   = dr->attached_sata_ps;
187         phy->attached_iproto = dr->iproto << 1;
188         phy->attached_tproto = dr->tproto << 1;
189         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
190         phy->attached_phy_id = dr->attached_phy_id;
191         phy->phy_change_count = dr->change_count;
192         phy->routing_attr = dr->routing_attr;
193         phy->virtual = dr->virtual;
194         phy->last_da_index = -1;
195
196         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
197         phy->phy->identify.target_port_protocols = phy->attached_tproto;
198         phy->phy->identify.phy_identifier = phy_id;
199         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
200         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
201         phy->phy->minimum_linkrate = dr->pmin_linkrate;
202         phy->phy->maximum_linkrate = dr->pmax_linkrate;
203         phy->phy->negotiated_linkrate = phy->linkrate;
204
205         if (!rediscover)
206                 sas_phy_add(phy->phy);
207
208         SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
209                     SAS_ADDR(dev->sas_addr), phy->phy_id,
210                     phy->routing_attr == TABLE_ROUTING ? 'T' :
211                     phy->routing_attr == DIRECT_ROUTING ? 'D' :
212                     phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
213                     SAS_ADDR(phy->attached_sas_addr));
214
215         return;
216 }
217
218 #define DISCOVER_REQ_SIZE  16
219 #define DISCOVER_RESP_SIZE 56
220
221 static int sas_ex_phy_discover(struct domain_device *dev, int single)
222 {
223         struct expander_device *ex = &dev->ex_dev;
224         int  res = 0;
225         u8   *disc_req;
226         u8   *disc_resp;
227
228         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
229         if (!disc_req)
230                 return -ENOMEM;
231
232         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
233         if (!disc_resp) {
234                 kfree(disc_req);
235                 return -ENOMEM;
236         }
237
238         disc_req[1] = SMP_DISCOVER;
239
240         if (0 <= single && single < ex->num_phys) {
241                 disc_req[9] = single;
242                 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
243                                        disc_resp, DISCOVER_RESP_SIZE);
244                 if (res)
245                         goto out_err;
246                 sas_set_ex_phy(dev, single, disc_resp);
247         } else {
248                 int i;
249
250                 for (i = 0; i < ex->num_phys; i++) {
251                         disc_req[9] = i;
252                         res = smp_execute_task(dev, disc_req,
253                                                DISCOVER_REQ_SIZE, disc_resp,
254                                                DISCOVER_RESP_SIZE);
255                         if (res)
256                                 goto out_err;
257                         sas_set_ex_phy(dev, i, disc_resp);
258                 }
259         }
260 out_err:
261         kfree(disc_resp);
262         kfree(disc_req);
263         return res;
264 }
265
266 static int sas_expander_discover(struct domain_device *dev)
267 {
268         struct expander_device *ex = &dev->ex_dev;
269         int res = -ENOMEM;
270
271         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
272         if (!ex->ex_phy)
273                 return -ENOMEM;
274
275         res = sas_ex_phy_discover(dev, -1);
276         if (res)
277                 goto out_err;
278
279         return 0;
280  out_err:
281         kfree(ex->ex_phy);
282         ex->ex_phy = NULL;
283         return res;
284 }
285
286 #define MAX_EXPANDER_PHYS 128
287
288 static void ex_assign_report_general(struct domain_device *dev,
289                                             struct smp_resp *resp)
290 {
291         struct report_general_resp *rg = &resp->rg;
292
293         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
294         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
295         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
296         dev->ex_dev.conf_route_table = rg->conf_route_table;
297         dev->ex_dev.configuring = rg->configuring;
298         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
299 }
300
301 #define RG_REQ_SIZE   8
302 #define RG_RESP_SIZE 32
303
304 static int sas_ex_general(struct domain_device *dev)
305 {
306         u8 *rg_req;
307         struct smp_resp *rg_resp;
308         int res;
309         int i;
310
311         rg_req = alloc_smp_req(RG_REQ_SIZE);
312         if (!rg_req)
313                 return -ENOMEM;
314
315         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
316         if (!rg_resp) {
317                 kfree(rg_req);
318                 return -ENOMEM;
319         }
320
321         rg_req[1] = SMP_REPORT_GENERAL;
322
323         for (i = 0; i < 5; i++) {
324                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
325                                        RG_RESP_SIZE);
326
327                 if (res) {
328                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
329                                     SAS_ADDR(dev->sas_addr), res);
330                         goto out;
331                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
332                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
333                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
334                         res = rg_resp->result;
335                         goto out;
336                 }
337
338                 ex_assign_report_general(dev, rg_resp);
339
340                 if (dev->ex_dev.configuring) {
341                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
342                                     SAS_ADDR(dev->sas_addr));
343                         schedule_timeout_interruptible(5*HZ);
344                 } else
345                         break;
346         }
347 out:
348         kfree(rg_req);
349         kfree(rg_resp);
350         return res;
351 }
352
353 static void ex_assign_manuf_info(struct domain_device *dev, void
354                                         *_mi_resp)
355 {
356         u8 *mi_resp = _mi_resp;
357         struct sas_rphy *rphy = dev->rphy;
358         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
359
360         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
361         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
362         memcpy(edev->product_rev, mi_resp + 36,
363                SAS_EXPANDER_PRODUCT_REV_LEN);
364
365         if (mi_resp[8] & 1) {
366                 memcpy(edev->component_vendor_id, mi_resp + 40,
367                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
368                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
369                 edev->component_revision_id = mi_resp[50];
370         }
371 }
372
373 #define MI_REQ_SIZE   8
374 #define MI_RESP_SIZE 64
375
376 static int sas_ex_manuf_info(struct domain_device *dev)
377 {
378         u8 *mi_req;
379         u8 *mi_resp;
380         int res;
381
382         mi_req = alloc_smp_req(MI_REQ_SIZE);
383         if (!mi_req)
384                 return -ENOMEM;
385
386         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
387         if (!mi_resp) {
388                 kfree(mi_req);
389                 return -ENOMEM;
390         }
391
392         mi_req[1] = SMP_REPORT_MANUF_INFO;
393
394         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
395         if (res) {
396                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
397                             SAS_ADDR(dev->sas_addr), res);
398                 goto out;
399         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
400                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
401                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
402                 goto out;
403         }
404
405         ex_assign_manuf_info(dev, mi_resp);
406 out:
407         kfree(mi_req);
408         kfree(mi_resp);
409         return res;
410 }
411
412 #define PC_REQ_SIZE  44
413 #define PC_RESP_SIZE 8
414
415 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
416                         enum phy_func phy_func,
417                         struct sas_phy_linkrates *rates)
418 {
419         u8 *pc_req;
420         u8 *pc_resp;
421         int res;
422
423         pc_req = alloc_smp_req(PC_REQ_SIZE);
424         if (!pc_req)
425                 return -ENOMEM;
426
427         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
428         if (!pc_resp) {
429                 kfree(pc_req);
430                 return -ENOMEM;
431         }
432
433         pc_req[1] = SMP_PHY_CONTROL;
434         pc_req[9] = phy_id;
435         pc_req[10]= phy_func;
436         if (rates) {
437                 pc_req[32] = rates->minimum_linkrate << 4;
438                 pc_req[33] = rates->maximum_linkrate << 4;
439         }
440
441         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
442
443         kfree(pc_resp);
444         kfree(pc_req);
445         return res;
446 }
447
448 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
449 {
450         struct expander_device *ex = &dev->ex_dev;
451         struct ex_phy *phy = &ex->ex_phy[phy_id];
452
453         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
454         phy->linkrate = SAS_PHY_DISABLED;
455 }
456
457 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
458 {
459         struct expander_device *ex = &dev->ex_dev;
460         int i;
461
462         for (i = 0; i < ex->num_phys; i++) {
463                 struct ex_phy *phy = &ex->ex_phy[i];
464
465                 if (phy->phy_state == PHY_VACANT ||
466                     phy->phy_state == PHY_NOT_PRESENT)
467                         continue;
468
469                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
470                         sas_ex_disable_phy(dev, i);
471         }
472 }
473
474 static int sas_dev_present_in_domain(struct asd_sas_port *port,
475                                             u8 *sas_addr)
476 {
477         struct domain_device *dev;
478
479         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
480                 return 1;
481         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
482                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
483                         return 1;
484         }
485         return 0;
486 }
487
488 #define RPEL_REQ_SIZE   16
489 #define RPEL_RESP_SIZE  32
490 int sas_smp_get_phy_events(struct sas_phy *phy)
491 {
492         int res;
493         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
494         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
495         u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
496         u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
497
498         if (!resp)
499                 return -ENOMEM;
500
501         req[1] = SMP_REPORT_PHY_ERR_LOG;
502         req[9] = phy->number;
503
504         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
505                                     resp, RPEL_RESP_SIZE);
506
507         if (!res)
508                 goto out;
509
510         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
511         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
512         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
513         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
514
515  out:
516         kfree(resp);
517         return res;
518
519 }
520
521 #define RPS_REQ_SIZE  16
522 #define RPS_RESP_SIZE 60
523
524 static int sas_get_report_phy_sata(struct domain_device *dev,
525                                           int phy_id,
526                                           struct smp_resp *rps_resp)
527 {
528         int res;
529         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
530
531         if (!rps_req)
532                 return -ENOMEM;
533
534         rps_req[1] = SMP_REPORT_PHY_SATA;
535         rps_req[9] = phy_id;
536
537         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
538                                     rps_resp, RPS_RESP_SIZE);
539
540         kfree(rps_req);
541         return 0;
542 }
543
544 static void sas_ex_get_linkrate(struct domain_device *parent,
545                                        struct domain_device *child,
546                                        struct ex_phy *parent_phy)
547 {
548         struct expander_device *parent_ex = &parent->ex_dev;
549         struct sas_port *port;
550         int i;
551
552         child->pathways = 0;
553
554         port = parent_phy->port;
555
556         for (i = 0; i < parent_ex->num_phys; i++) {
557                 struct ex_phy *phy = &parent_ex->ex_phy[i];
558
559                 if (phy->phy_state == PHY_VACANT ||
560                     phy->phy_state == PHY_NOT_PRESENT)
561                         continue;
562
563                 if (SAS_ADDR(phy->attached_sas_addr) ==
564                     SAS_ADDR(child->sas_addr)) {
565
566                         child->min_linkrate = min(parent->min_linkrate,
567                                                   phy->linkrate);
568                         child->max_linkrate = max(parent->max_linkrate,
569                                                   phy->linkrate);
570                         child->pathways++;
571                         sas_port_add_phy(port, phy->phy);
572                 }
573         }
574         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
575         child->pathways = min(child->pathways, parent->pathways);
576 }
577
578 static struct domain_device *sas_ex_discover_end_dev(
579         struct domain_device *parent, int phy_id)
580 {
581         struct expander_device *parent_ex = &parent->ex_dev;
582         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
583         struct domain_device *child = NULL;
584         struct sas_rphy *rphy;
585         int res;
586
587         if (phy->attached_sata_host || phy->attached_sata_ps)
588                 return NULL;
589
590         child = kzalloc(sizeof(*child), GFP_KERNEL);
591         if (!child)
592                 return NULL;
593
594         child->parent = parent;
595         child->port   = parent->port;
596         child->iproto = phy->attached_iproto;
597         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
598         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
599         if (!phy->port) {
600                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
601                 if (unlikely(!phy->port))
602                         goto out_err;
603                 if (unlikely(sas_port_add(phy->port) != 0)) {
604                         sas_port_free(phy->port);
605                         goto out_err;
606                 }
607         }
608         sas_ex_get_linkrate(parent, child, phy);
609
610         if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
611                 child->dev_type = SATA_DEV;
612                 if (phy->attached_tproto & SAS_PROTO_STP)
613                         child->tproto = phy->attached_tproto;
614                 if (phy->attached_sata_dev)
615                         child->tproto |= SATA_DEV;
616                 res = sas_get_report_phy_sata(parent, phy_id,
617                                               &child->sata_dev.rps_resp);
618                 if (res) {
619                         SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
620                                     "0x%x\n", SAS_ADDR(parent->sas_addr),
621                                     phy_id, res);
622                         goto out_free;
623                 }
624                 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
625                        sizeof(struct dev_to_host_fis));
626                 sas_init_dev(child);
627                 res = sas_discover_sata(child);
628                 if (res) {
629                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
630                                     "%016llx:0x%x returned 0x%x\n",
631                                     SAS_ADDR(child->sas_addr),
632                                     SAS_ADDR(parent->sas_addr), phy_id, res);
633                         goto out_free;
634                 }
635         } else if (phy->attached_tproto & SAS_PROTO_SSP) {
636                 child->dev_type = SAS_END_DEV;
637                 rphy = sas_end_device_alloc(phy->port);
638                 /* FIXME: error handling */
639                 if (unlikely(!rphy))
640                         goto out_free;
641                 child->tproto = phy->attached_tproto;
642                 sas_init_dev(child);
643
644                 child->rphy = rphy;
645                 sas_fill_in_rphy(child, rphy);
646
647                 spin_lock(&parent->port->dev_list_lock);
648                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
649                 spin_unlock(&parent->port->dev_list_lock);
650
651                 res = sas_discover_end_dev(child);
652                 if (res) {
653                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
654                                     "at %016llx:0x%x returned 0x%x\n",
655                                     SAS_ADDR(child->sas_addr),
656                                     SAS_ADDR(parent->sas_addr), phy_id, res);
657                         goto out_list_del;
658                 }
659         } else {
660                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
661                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
662                             phy_id);
663         }
664
665         list_add_tail(&child->siblings, &parent_ex->children);
666         return child;
667
668  out_list_del:
669         sas_rphy_free(child->rphy);
670         child->rphy = NULL;
671         list_del(&child->dev_list_node);
672  out_free:
673         sas_port_delete(phy->port);
674  out_err:
675         phy->port = NULL;
676         kfree(child);
677         return NULL;
678 }
679
680 /* See if this phy is part of a wide port */
681 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
682 {
683         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
684         int i;
685
686         for (i = 0; i < parent->ex_dev.num_phys; i++) {
687                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
688
689                 if (ephy == phy)
690                         continue;
691
692                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
693                             SAS_ADDR_SIZE) && ephy->port) {
694                         sas_port_add_phy(ephy->port, phy->phy);
695                         phy->phy_state = PHY_DEVICE_DISCOVERED;
696                         return 0;
697                 }
698         }
699
700         return -ENODEV;
701 }
702
703 static struct domain_device *sas_ex_discover_expander(
704         struct domain_device *parent, int phy_id)
705 {
706         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
707         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
708         struct domain_device *child = NULL;
709         struct sas_rphy *rphy;
710         struct sas_expander_device *edev;
711         struct asd_sas_port *port;
712         int res;
713
714         if (phy->routing_attr == DIRECT_ROUTING) {
715                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
716                             "allowed\n",
717                             SAS_ADDR(parent->sas_addr), phy_id,
718                             SAS_ADDR(phy->attached_sas_addr),
719                             phy->attached_phy_id);
720                 return NULL;
721         }
722         child = kzalloc(sizeof(*child), GFP_KERNEL);
723         if (!child)
724                 return NULL;
725
726         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
727         /* FIXME: better error handling */
728         BUG_ON(sas_port_add(phy->port) != 0);
729
730
731         switch (phy->attached_dev_type) {
732         case EDGE_DEV:
733                 rphy = sas_expander_alloc(phy->port,
734                                           SAS_EDGE_EXPANDER_DEVICE);
735                 break;
736         case FANOUT_DEV:
737                 rphy = sas_expander_alloc(phy->port,
738                                           SAS_FANOUT_EXPANDER_DEVICE);
739                 break;
740         default:
741                 rphy = NULL;    /* shut gcc up */
742                 BUG();
743         }
744         port = parent->port;
745         child->rphy = rphy;
746         edev = rphy_to_expander_device(rphy);
747         child->dev_type = phy->attached_dev_type;
748         child->parent = parent;
749         child->port = port;
750         child->iproto = phy->attached_iproto;
751         child->tproto = phy->attached_tproto;
752         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
753         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
754         sas_ex_get_linkrate(parent, child, phy);
755         edev->level = parent_ex->level + 1;
756         parent->port->disc.max_level = max(parent->port->disc.max_level,
757                                            edev->level);
758         sas_init_dev(child);
759         sas_fill_in_rphy(child, rphy);
760         sas_rphy_add(rphy);
761
762         spin_lock(&parent->port->dev_list_lock);
763         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
764         spin_unlock(&parent->port->dev_list_lock);
765
766         res = sas_discover_expander(child);
767         if (res) {
768                 kfree(child);
769                 return NULL;
770         }
771         list_add_tail(&child->siblings, &parent->ex_dev.children);
772         return child;
773 }
774
775 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
776 {
777         struct expander_device *ex = &dev->ex_dev;
778         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
779         struct domain_device *child = NULL;
780         int res = 0;
781
782         /* Phy state */
783         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
784                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
785                         res = sas_ex_phy_discover(dev, phy_id);
786                 if (res)
787                         return res;
788         }
789
790         /* Parent and domain coherency */
791         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
792                              SAS_ADDR(dev->port->sas_addr))) {
793                 sas_add_parent_port(dev, phy_id);
794                 return 0;
795         }
796         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
797                             SAS_ADDR(dev->parent->sas_addr))) {
798                 sas_add_parent_port(dev, phy_id);
799                 if (ex_phy->routing_attr == TABLE_ROUTING)
800                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
801                 return 0;
802         }
803
804         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
805                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
806
807         if (ex_phy->attached_dev_type == NO_DEVICE) {
808                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
809                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
810                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
811                 }
812                 return 0;
813         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
814                 return 0;
815
816         if (ex_phy->attached_dev_type != SAS_END_DEV &&
817             ex_phy->attached_dev_type != FANOUT_DEV &&
818             ex_phy->attached_dev_type != EDGE_DEV) {
819                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
820                             "phy 0x%x\n", ex_phy->attached_dev_type,
821                             SAS_ADDR(dev->sas_addr),
822                             phy_id);
823                 return 0;
824         }
825
826         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
827         if (res) {
828                 SAS_DPRINTK("configure routing for dev %016llx "
829                             "reported 0x%x. Forgotten\n",
830                             SAS_ADDR(ex_phy->attached_sas_addr), res);
831                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
832                 return res;
833         }
834
835         res = sas_ex_join_wide_port(dev, phy_id);
836         if (!res) {
837                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
838                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
839                 return res;
840         }
841
842         switch (ex_phy->attached_dev_type) {
843         case SAS_END_DEV:
844                 child = sas_ex_discover_end_dev(dev, phy_id);
845                 break;
846         case FANOUT_DEV:
847                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
848                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
849                                     "attached to ex %016llx phy 0x%x\n",
850                                     SAS_ADDR(ex_phy->attached_sas_addr),
851                                     ex_phy->attached_phy_id,
852                                     SAS_ADDR(dev->sas_addr),
853                                     phy_id);
854                         sas_ex_disable_phy(dev, phy_id);
855                         break;
856                 } else
857                         memcpy(dev->port->disc.fanout_sas_addr,
858                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
859                 /* fallthrough */
860         case EDGE_DEV:
861                 child = sas_ex_discover_expander(dev, phy_id);
862                 break;
863         default:
864                 break;
865         }
866
867         if (child) {
868                 int i;
869
870                 for (i = 0; i < ex->num_phys; i++) {
871                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
872                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
873                                 continue;
874
875                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
876                             SAS_ADDR(child->sas_addr))
877                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
878                 }
879         }
880
881         return res;
882 }
883
884 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
885 {
886         struct expander_device *ex = &dev->ex_dev;
887         int i;
888
889         for (i = 0; i < ex->num_phys; i++) {
890                 struct ex_phy *phy = &ex->ex_phy[i];
891
892                 if (phy->phy_state == PHY_VACANT ||
893                     phy->phy_state == PHY_NOT_PRESENT)
894                         continue;
895
896                 if ((phy->attached_dev_type == EDGE_DEV ||
897                      phy->attached_dev_type == FANOUT_DEV) &&
898                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
899
900                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
901
902                         return 1;
903                 }
904         }
905         return 0;
906 }
907
908 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
909 {
910         struct expander_device *ex = &dev->ex_dev;
911         struct domain_device *child;
912         u8 sub_addr[8] = {0, };
913
914         list_for_each_entry(child, &ex->children, siblings) {
915                 if (child->dev_type != EDGE_DEV &&
916                     child->dev_type != FANOUT_DEV)
917                         continue;
918                 if (sub_addr[0] == 0) {
919                         sas_find_sub_addr(child, sub_addr);
920                         continue;
921                 } else {
922                         u8 s2[8];
923
924                         if (sas_find_sub_addr(child, s2) &&
925                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
926
927                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
928                                             "diverges from subtractive "
929                                             "boundary %016llx\n",
930                                             SAS_ADDR(dev->sas_addr),
931                                             SAS_ADDR(child->sas_addr),
932                                             SAS_ADDR(s2),
933                                             SAS_ADDR(sub_addr));
934
935                                 sas_ex_disable_port(child, s2);
936                         }
937                 }
938         }
939         return 0;
940 }
941 /**
942  * sas_ex_discover_devices -- discover devices attached to this expander
943  * dev: pointer to the expander domain device
944  * single: if you want to do a single phy, else set to -1;
945  *
946  * Configure this expander for use with its devices and register the
947  * devices of this expander.
948  */
949 static int sas_ex_discover_devices(struct domain_device *dev, int single)
950 {
951         struct expander_device *ex = &dev->ex_dev;
952         int i = 0, end = ex->num_phys;
953         int res = 0;
954
955         if (0 <= single && single < end) {
956                 i = single;
957                 end = i+1;
958         }
959
960         for ( ; i < end; i++) {
961                 struct ex_phy *ex_phy = &ex->ex_phy[i];
962
963                 if (ex_phy->phy_state == PHY_VACANT ||
964                     ex_phy->phy_state == PHY_NOT_PRESENT ||
965                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
966                         continue;
967
968                 switch (ex_phy->linkrate) {
969                 case SAS_PHY_DISABLED:
970                 case SAS_PHY_RESET_PROBLEM:
971                 case SAS_SATA_PORT_SELECTOR:
972                         continue;
973                 default:
974                         res = sas_ex_discover_dev(dev, i);
975                         if (res)
976                                 break;
977                         continue;
978                 }
979         }
980
981         if (!res)
982                 sas_check_level_subtractive_boundary(dev);
983
984         return res;
985 }
986
987 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
988 {
989         struct expander_device *ex = &dev->ex_dev;
990         int i;
991         u8  *sub_sas_addr = NULL;
992
993         if (dev->dev_type != EDGE_DEV)
994                 return 0;
995
996         for (i = 0; i < ex->num_phys; i++) {
997                 struct ex_phy *phy = &ex->ex_phy[i];
998
999                 if (phy->phy_state == PHY_VACANT ||
1000                     phy->phy_state == PHY_NOT_PRESENT)
1001                         continue;
1002
1003                 if ((phy->attached_dev_type == FANOUT_DEV ||
1004                      phy->attached_dev_type == EDGE_DEV) &&
1005                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1006
1007                         if (!sub_sas_addr)
1008                                 sub_sas_addr = &phy->attached_sas_addr[0];
1009                         else if (SAS_ADDR(sub_sas_addr) !=
1010                                  SAS_ADDR(phy->attached_sas_addr)) {
1011
1012                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1013                                             "diverges(%016llx) on subtractive "
1014                                             "boundary(%016llx). Disabled\n",
1015                                             SAS_ADDR(dev->sas_addr), i,
1016                                             SAS_ADDR(phy->attached_sas_addr),
1017                                             SAS_ADDR(sub_sas_addr));
1018                                 sas_ex_disable_phy(dev, i);
1019                         }
1020                 }
1021         }
1022         return 0;
1023 }
1024
1025 static void sas_print_parent_topology_bug(struct domain_device *child,
1026                                                  struct ex_phy *parent_phy,
1027                                                  struct ex_phy *child_phy)
1028 {
1029         static const char ra_char[] = {
1030                 [DIRECT_ROUTING] = 'D',
1031                 [SUBTRACTIVE_ROUTING] = 'S',
1032                 [TABLE_ROUTING] = 'T',
1033         };
1034         static const char *ex_type[] = {
1035                 [EDGE_DEV] = "edge",
1036                 [FANOUT_DEV] = "fanout",
1037         };
1038         struct domain_device *parent = child->parent;
1039
1040         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1041                    "has %c:%c routing link!\n",
1042
1043                    ex_type[parent->dev_type],
1044                    SAS_ADDR(parent->sas_addr),
1045                    parent_phy->phy_id,
1046
1047                    ex_type[child->dev_type],
1048                    SAS_ADDR(child->sas_addr),
1049                    child_phy->phy_id,
1050
1051                    ra_char[parent_phy->routing_attr],
1052                    ra_char[child_phy->routing_attr]);
1053 }
1054
1055 static int sas_check_eeds(struct domain_device *child,
1056                                  struct ex_phy *parent_phy,
1057                                  struct ex_phy *child_phy)
1058 {
1059         int res = 0;
1060         struct domain_device *parent = child->parent;
1061
1062         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1063                 res = -ENODEV;
1064                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1065                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1066                             SAS_ADDR(parent->sas_addr),
1067                             parent_phy->phy_id,
1068                             SAS_ADDR(child->sas_addr),
1069                             child_phy->phy_id,
1070                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1071         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1072                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1073                        SAS_ADDR_SIZE);
1074                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1075                        SAS_ADDR_SIZE);
1076         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1077                     SAS_ADDR(parent->sas_addr)) ||
1078                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1079                     SAS_ADDR(child->sas_addr)))
1080                    &&
1081                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1082                      SAS_ADDR(parent->sas_addr)) ||
1083                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1084                      SAS_ADDR(child->sas_addr))))
1085                 ;
1086         else {
1087                 res = -ENODEV;
1088                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1089                             "phy 0x%x link forms a third EEDS!\n",
1090                             SAS_ADDR(parent->sas_addr),
1091                             parent_phy->phy_id,
1092                             SAS_ADDR(child->sas_addr),
1093                             child_phy->phy_id);
1094         }
1095
1096         return res;
1097 }
1098
1099 /* Here we spill over 80 columns.  It is intentional.
1100  */
1101 static int sas_check_parent_topology(struct domain_device *child)
1102 {
1103         struct expander_device *child_ex = &child->ex_dev;
1104         struct expander_device *parent_ex;
1105         int i;
1106         int res = 0;
1107
1108         if (!child->parent)
1109                 return 0;
1110
1111         if (child->parent->dev_type != EDGE_DEV &&
1112             child->parent->dev_type != FANOUT_DEV)
1113                 return 0;
1114
1115         parent_ex = &child->parent->ex_dev;
1116
1117         for (i = 0; i < parent_ex->num_phys; i++) {
1118                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1119                 struct ex_phy *child_phy;
1120
1121                 if (parent_phy->phy_state == PHY_VACANT ||
1122                     parent_phy->phy_state == PHY_NOT_PRESENT)
1123                         continue;
1124
1125                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1126                         continue;
1127
1128                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1129
1130                 switch (child->parent->dev_type) {
1131                 case EDGE_DEV:
1132                         if (child->dev_type == FANOUT_DEV) {
1133                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1134                                     child_phy->routing_attr != TABLE_ROUTING) {
1135                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1136                                         res = -ENODEV;
1137                                 }
1138                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1139                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1140                                         res = sas_check_eeds(child, parent_phy, child_phy);
1141                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1142                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1143                                         res = -ENODEV;
1144                                 }
1145                         } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1146                                    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1147                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1148                                 res = -ENODEV;
1149                         }
1150                         break;
1151                 case FANOUT_DEV:
1152                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1153                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1154                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1155                                 res = -ENODEV;
1156                         }
1157                         break;
1158                 default:
1159                         break;
1160                 }
1161         }
1162
1163         return res;
1164 }
1165
1166 #define RRI_REQ_SIZE  16
1167 #define RRI_RESP_SIZE 44
1168
1169 static int sas_configure_present(struct domain_device *dev, int phy_id,
1170                                  u8 *sas_addr, int *index, int *present)
1171 {
1172         int i, res = 0;
1173         struct expander_device *ex = &dev->ex_dev;
1174         struct ex_phy *phy = &ex->ex_phy[phy_id];
1175         u8 *rri_req;
1176         u8 *rri_resp;
1177
1178         *present = 0;
1179         *index = 0;
1180
1181         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1182         if (!rri_req)
1183                 return -ENOMEM;
1184
1185         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1186         if (!rri_resp) {
1187                 kfree(rri_req);
1188                 return -ENOMEM;
1189         }
1190
1191         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1192         rri_req[9] = phy_id;
1193
1194         for (i = 0; i < ex->max_route_indexes ; i++) {
1195                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1196                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1197                                        RRI_RESP_SIZE);
1198                 if (res)
1199                         goto out;
1200                 res = rri_resp[2];
1201                 if (res == SMP_RESP_NO_INDEX) {
1202                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1203                                     "phy 0x%x index 0x%x\n",
1204                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1205                         goto out;
1206                 } else if (res != SMP_RESP_FUNC_ACC) {
1207                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1208                                     "result 0x%x\n", __FUNCTION__,
1209                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1210                         goto out;
1211                 }
1212                 if (SAS_ADDR(sas_addr) != 0) {
1213                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1214                                 *index = i;
1215                                 if ((rri_resp[12] & 0x80) == 0x80)
1216                                         *present = 0;
1217                                 else
1218                                         *present = 1;
1219                                 goto out;
1220                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1221                                 *index = i;
1222                                 *present = 0;
1223                                 goto out;
1224                         }
1225                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1226                            phy->last_da_index < i) {
1227                         phy->last_da_index = i;
1228                         *index = i;
1229                         *present = 0;
1230                         goto out;
1231                 }
1232         }
1233         res = -1;
1234 out:
1235         kfree(rri_req);
1236         kfree(rri_resp);
1237         return res;
1238 }
1239
1240 #define CRI_REQ_SIZE  44
1241 #define CRI_RESP_SIZE  8
1242
1243 static int sas_configure_set(struct domain_device *dev, int phy_id,
1244                              u8 *sas_addr, int index, int include)
1245 {
1246         int res;
1247         u8 *cri_req;
1248         u8 *cri_resp;
1249
1250         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1251         if (!cri_req)
1252                 return -ENOMEM;
1253
1254         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1255         if (!cri_resp) {
1256                 kfree(cri_req);
1257                 return -ENOMEM;
1258         }
1259
1260         cri_req[1] = SMP_CONF_ROUTE_INFO;
1261         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1262         cri_req[9] = phy_id;
1263         if (SAS_ADDR(sas_addr) == 0 || !include)
1264                 cri_req[12] |= 0x80;
1265         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1266
1267         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1268                                CRI_RESP_SIZE);
1269         if (res)
1270                 goto out;
1271         res = cri_resp[2];
1272         if (res == SMP_RESP_NO_INDEX) {
1273                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1274                             "index 0x%x\n",
1275                             SAS_ADDR(dev->sas_addr), phy_id, index);
1276         }
1277 out:
1278         kfree(cri_req);
1279         kfree(cri_resp);
1280         return res;
1281 }
1282
1283 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1284                                     u8 *sas_addr, int include)
1285 {
1286         int index;
1287         int present;
1288         int res;
1289
1290         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1291         if (res)
1292                 return res;
1293         if (include ^ present)
1294                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1295
1296         return res;
1297 }
1298
1299 /**
1300  * sas_configure_parent -- configure routing table of parent
1301  * parent: parent expander
1302  * child: child expander
1303  * sas_addr: SAS port identifier of device directly attached to child
1304  */
1305 static int sas_configure_parent(struct domain_device *parent,
1306                                 struct domain_device *child,
1307                                 u8 *sas_addr, int include)
1308 {
1309         struct expander_device *ex_parent = &parent->ex_dev;
1310         int res = 0;
1311         int i;
1312
1313         if (parent->parent) {
1314                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1315                                            include);
1316                 if (res)
1317                         return res;
1318         }
1319
1320         if (ex_parent->conf_route_table == 0) {
1321                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1322                             SAS_ADDR(parent->sas_addr));
1323                 return 0;
1324         }
1325
1326         for (i = 0; i < ex_parent->num_phys; i++) {
1327                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1328
1329                 if ((phy->routing_attr == TABLE_ROUTING) &&
1330                     (SAS_ADDR(phy->attached_sas_addr) ==
1331                      SAS_ADDR(child->sas_addr))) {
1332                         res = sas_configure_phy(parent, i, sas_addr, include);
1333                         if (res)
1334                                 return res;
1335                 }
1336         }
1337
1338         return res;
1339 }
1340
1341 /**
1342  * sas_configure_routing -- configure routing
1343  * dev: expander device
1344  * sas_addr: port identifier of device directly attached to the expander device
1345  */
1346 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1347 {
1348         if (dev->parent)
1349                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1350         return 0;
1351 }
1352
1353 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1354 {
1355         if (dev->parent)
1356                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1357         return 0;
1358 }
1359
1360 #if 0
1361 #define SMP_BIN_ATTR_NAME "smp_portal"
1362
1363 static void sas_ex_smp_hook(struct domain_device *dev)
1364 {
1365         struct expander_device *ex_dev = &dev->ex_dev;
1366         struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;
1367
1368         memset(bin_attr, 0, sizeof(*bin_attr));
1369
1370         bin_attr->attr.name = SMP_BIN_ATTR_NAME;
1371         bin_attr->attr.owner = THIS_MODULE;
1372         bin_attr->attr.mode = 0600;
1373
1374         bin_attr->size = 0;
1375         bin_attr->private = NULL;
1376         bin_attr->read = smp_portal_read;
1377         bin_attr->write= smp_portal_write;
1378         bin_attr->mmap = NULL;
1379
1380         ex_dev->smp_portal_pid = -1;
1381         init_MUTEX(&ex_dev->smp_sema);
1382 }
1383 #endif
1384
1385 /**
1386  * sas_discover_expander -- expander discovery
1387  * @ex: pointer to expander domain device
1388  *
1389  * See comment in sas_discover_sata().
1390  */
1391 static int sas_discover_expander(struct domain_device *dev)
1392 {
1393         int res;
1394
1395         res = sas_notify_lldd_dev_found(dev);
1396         if (res)
1397                 return res;
1398
1399         res = sas_ex_general(dev);
1400         if (res)
1401                 goto out_err;
1402         res = sas_ex_manuf_info(dev);
1403         if (res)
1404                 goto out_err;
1405
1406         res = sas_expander_discover(dev);
1407         if (res) {
1408                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1409                             SAS_ADDR(dev->sas_addr), res);
1410                 goto out_err;
1411         }
1412
1413         sas_check_ex_subtractive_boundary(dev);
1414         res = sas_check_parent_topology(dev);
1415         if (res)
1416                 goto out_err;
1417         return 0;
1418 out_err:
1419         sas_notify_lldd_dev_gone(dev);
1420         return res;
1421 }
1422
1423 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1424 {
1425         int res = 0;
1426         struct domain_device *dev;
1427
1428         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1429                 if (dev->dev_type == EDGE_DEV ||
1430                     dev->dev_type == FANOUT_DEV) {
1431                         struct sas_expander_device *ex =
1432                                 rphy_to_expander_device(dev->rphy);
1433
1434                         if (level == ex->level)
1435                                 res = sas_ex_discover_devices(dev, -1);
1436                         else if (level > 0)
1437                                 res = sas_ex_discover_devices(port->port_dev, -1);
1438
1439                 }
1440         }
1441
1442         return res;
1443 }
1444
1445 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1446 {
1447         int res;
1448         int level;
1449
1450         do {
1451                 level = port->disc.max_level;
1452                 res = sas_ex_level_discovery(port, level);
1453                 mb();
1454         } while (level < port->disc.max_level);
1455
1456         return res;
1457 }
1458
1459 int sas_discover_root_expander(struct domain_device *dev)
1460 {
1461         int res;
1462         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1463
1464         res = sas_rphy_add(dev->rphy);
1465         if (res)
1466                 goto out_err;
1467
1468         ex->level = dev->port->disc.max_level; /* 0 */
1469         res = sas_discover_expander(dev);
1470         if (res)
1471                 goto out_err2;
1472
1473         sas_ex_bfs_disc(dev->port);
1474
1475         return res;
1476
1477 out_err2:
1478         sas_rphy_remove(dev->rphy);
1479 out_err:
1480         return res;
1481 }
1482
1483 /* ---------- Domain revalidation ---------- */
1484
1485 static int sas_get_phy_discover(struct domain_device *dev,
1486                                 int phy_id, struct smp_resp *disc_resp)
1487 {
1488         int res;
1489         u8 *disc_req;
1490
1491         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1492         if (!disc_req)
1493                 return -ENOMEM;
1494
1495         disc_req[1] = SMP_DISCOVER;
1496         disc_req[9] = phy_id;
1497
1498         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1499                                disc_resp, DISCOVER_RESP_SIZE);
1500         if (res)
1501                 goto out;
1502         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1503                 res = disc_resp->result;
1504                 goto out;
1505         }
1506 out:
1507         kfree(disc_req);
1508         return res;
1509 }
1510
1511 static int sas_get_phy_change_count(struct domain_device *dev,
1512                                     int phy_id, int *pcc)
1513 {
1514         int res;
1515         struct smp_resp *disc_resp;
1516
1517         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1518         if (!disc_resp)
1519                 return -ENOMEM;
1520
1521         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1522         if (!res)
1523                 *pcc = disc_resp->disc.change_count;
1524
1525         kfree(disc_resp);
1526         return res;
1527 }
1528
1529 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1530                                          int phy_id, u8 *attached_sas_addr)
1531 {
1532         int res;
1533         struct smp_resp *disc_resp;
1534         struct discover_resp *dr;
1535
1536         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1537         if (!disc_resp)
1538                 return -ENOMEM;
1539         dr = &disc_resp->disc;
1540
1541         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1542         if (!res) {
1543                 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1544                 if (dr->attached_dev_type == 0)
1545                         memset(attached_sas_addr, 0, 8);
1546         }
1547         kfree(disc_resp);
1548         return res;
1549 }
1550
1551 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1552                               int from_phy)
1553 {
1554         struct expander_device *ex = &dev->ex_dev;
1555         int res = 0;
1556         int i;
1557
1558         for (i = from_phy; i < ex->num_phys; i++) {
1559                 int phy_change_count = 0;
1560
1561                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1562                 if (res)
1563                         goto out;
1564                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1565                         ex->ex_phy[i].phy_change_count = phy_change_count;
1566                         *phy_id = i;
1567                         return 0;
1568                 }
1569         }
1570 out:
1571         return res;
1572 }
1573
1574 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1575 {
1576         int res;
1577         u8  *rg_req;
1578         struct smp_resp  *rg_resp;
1579
1580         rg_req = alloc_smp_req(RG_REQ_SIZE);
1581         if (!rg_req)
1582                 return -ENOMEM;
1583
1584         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1585         if (!rg_resp) {
1586                 kfree(rg_req);
1587                 return -ENOMEM;
1588         }
1589
1590         rg_req[1] = SMP_REPORT_GENERAL;
1591
1592         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1593                                RG_RESP_SIZE);
1594         if (res)
1595                 goto out;
1596         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1597                 res = rg_resp->result;
1598                 goto out;
1599         }
1600
1601         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1602 out:
1603         kfree(rg_resp);
1604         kfree(rg_req);
1605         return res;
1606 }
1607
1608 static int sas_find_bcast_dev(struct domain_device *dev,
1609                               struct domain_device **src_dev)
1610 {
1611         struct expander_device *ex = &dev->ex_dev;
1612         int ex_change_count = -1;
1613         int res;
1614
1615         res = sas_get_ex_change_count(dev, &ex_change_count);
1616         if (res)
1617                 goto out;
1618         if (ex_change_count != -1 &&
1619             ex_change_count != ex->ex_change_count) {
1620                 *src_dev = dev;
1621                 ex->ex_change_count = ex_change_count;
1622         } else {
1623                 struct domain_device *ch;
1624
1625                 list_for_each_entry(ch, &ex->children, siblings) {
1626                         if (ch->dev_type == EDGE_DEV ||
1627                             ch->dev_type == FANOUT_DEV) {
1628                                 res = sas_find_bcast_dev(ch, src_dev);
1629                                 if (src_dev)
1630                                         return res;
1631                         }
1632                 }
1633         }
1634 out:
1635         return res;
1636 }
1637
1638 static void sas_unregister_ex_tree(struct domain_device *dev)
1639 {
1640         struct expander_device *ex = &dev->ex_dev;
1641         struct domain_device *child, *n;
1642
1643         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1644                 if (child->dev_type == EDGE_DEV ||
1645                     child->dev_type == FANOUT_DEV)
1646                         sas_unregister_ex_tree(child);
1647                 else
1648                         sas_unregister_dev(child);
1649         }
1650         sas_unregister_dev(dev);
1651 }
1652
1653 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1654                                          int phy_id)
1655 {
1656         struct expander_device *ex_dev = &parent->ex_dev;
1657         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1658         struct domain_device *child, *n;
1659
1660         list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1661                 if (SAS_ADDR(child->sas_addr) ==
1662                     SAS_ADDR(phy->attached_sas_addr)) {
1663                         if (child->dev_type == EDGE_DEV ||
1664                             child->dev_type == FANOUT_DEV)
1665                                 sas_unregister_ex_tree(child);
1666                         else
1667                                 sas_unregister_dev(child);
1668                         break;
1669                 }
1670         }
1671         sas_disable_routing(parent, phy->attached_sas_addr);
1672         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1673         sas_port_delete_phy(phy->port, phy->phy);
1674         if (phy->port->num_phys == 0)
1675                 sas_port_delete(phy->port);
1676         phy->port = NULL;
1677 }
1678
1679 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1680                                           const int level)
1681 {
1682         struct expander_device *ex_root = &root->ex_dev;
1683         struct domain_device *child;
1684         int res = 0;
1685
1686         list_for_each_entry(child, &ex_root->children, siblings) {
1687                 if (child->dev_type == EDGE_DEV ||
1688                     child->dev_type == FANOUT_DEV) {
1689                         struct sas_expander_device *ex =
1690                                 rphy_to_expander_device(child->rphy);
1691
1692                         if (level > ex->level)
1693                                 res = sas_discover_bfs_by_root_level(child,
1694                                                                      level);
1695                         else if (level == ex->level)
1696                                 res = sas_ex_discover_devices(child, -1);
1697                 }
1698         }
1699         return res;
1700 }
1701
1702 static int sas_discover_bfs_by_root(struct domain_device *dev)
1703 {
1704         int res;
1705         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1706         int level = ex->level+1;
1707
1708         res = sas_ex_discover_devices(dev, -1);
1709         if (res)
1710                 goto out;
1711         do {
1712                 res = sas_discover_bfs_by_root_level(dev, level);
1713                 mb();
1714                 level += 1;
1715         } while (level <= dev->port->disc.max_level);
1716 out:
1717         return res;
1718 }
1719
1720 static int sas_discover_new(struct domain_device *dev, int phy_id)
1721 {
1722         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1723         struct domain_device *child;
1724         int res;
1725
1726         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1727                     SAS_ADDR(dev->sas_addr), phy_id);
1728         res = sas_ex_phy_discover(dev, phy_id);
1729         if (res)
1730                 goto out;
1731         res = sas_ex_discover_devices(dev, phy_id);
1732         if (res)
1733                 goto out;
1734         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1735                 if (SAS_ADDR(child->sas_addr) ==
1736                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1737                         if (child->dev_type == EDGE_DEV ||
1738                             child->dev_type == FANOUT_DEV)
1739                                 res = sas_discover_bfs_by_root(child);
1740                         break;
1741                 }
1742         }
1743 out:
1744         return res;
1745 }
1746
1747 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1748 {
1749         struct expander_device *ex = &dev->ex_dev;
1750         struct ex_phy *phy = &ex->ex_phy[phy_id];
1751         u8 attached_sas_addr[8];
1752         int res;
1753
1754         res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1755         switch (res) {
1756         case SMP_RESP_NO_PHY:
1757                 phy->phy_state = PHY_NOT_PRESENT;
1758                 sas_unregister_devs_sas_addr(dev, phy_id);
1759                 goto out; break;
1760         case SMP_RESP_PHY_VACANT:
1761                 phy->phy_state = PHY_VACANT;
1762                 sas_unregister_devs_sas_addr(dev, phy_id);
1763                 goto out; break;
1764         case SMP_RESP_FUNC_ACC:
1765                 break;
1766         }
1767
1768         if (SAS_ADDR(attached_sas_addr) == 0) {
1769                 phy->phy_state = PHY_EMPTY;
1770                 sas_unregister_devs_sas_addr(dev, phy_id);
1771         } else if (SAS_ADDR(attached_sas_addr) ==
1772                    SAS_ADDR(phy->attached_sas_addr)) {
1773                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1774                             SAS_ADDR(dev->sas_addr), phy_id);
1775                 sas_ex_phy_discover(dev, phy_id);
1776         } else
1777                 res = sas_discover_new(dev, phy_id);
1778 out:
1779         return res;
1780 }
1781
1782 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1783 {
1784         struct expander_device *ex = &dev->ex_dev;
1785         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1786         int res = 0;
1787         int i;
1788
1789         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1790                     SAS_ADDR(dev->sas_addr), phy_id);
1791
1792         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1793                 for (i = 0; i < ex->num_phys; i++) {
1794                         struct ex_phy *phy = &ex->ex_phy[i];
1795
1796                         if (i == phy_id)
1797                                 continue;
1798                         if (SAS_ADDR(phy->attached_sas_addr) ==
1799                             SAS_ADDR(changed_phy->attached_sas_addr)) {
1800                                 SAS_DPRINTK("phy%d part of wide port with "
1801                                             "phy%d\n", phy_id, i);
1802                                 goto out;
1803                         }
1804                 }
1805                 res = sas_rediscover_dev(dev, phy_id);
1806         } else
1807                 res = sas_discover_new(dev, phy_id);
1808 out:
1809         return res;
1810 }
1811
1812 /**
1813  * sas_revalidate_domain -- revalidate the domain
1814  * @port: port to the domain of interest
1815  *
1816  * NOTE: this process _must_ quit (return) as soon as any connection
1817  * errors are encountered.  Connection recovery is done elsewhere.
1818  * Discover process only interrogates devices in order to discover the
1819  * domain.
1820  */
1821 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1822 {
1823         int res;
1824         struct domain_device *dev = NULL;
1825
1826         res = sas_find_bcast_dev(port_dev, &dev);
1827         if (res)
1828                 goto out;
1829         if (dev) {
1830                 struct expander_device *ex = &dev->ex_dev;
1831                 int i = 0, phy_id;
1832
1833                 do {
1834                         phy_id = -1;
1835                         res = sas_find_bcast_phy(dev, &phy_id, i);
1836                         if (phy_id == -1)
1837                                 break;
1838                         res = sas_rediscover(dev, phy_id);
1839                         i = phy_id + 1;
1840                 } while (i < ex->num_phys);
1841         }
1842 out:
1843         return res;
1844 }
1845
1846 #if 0
1847 /* ---------- SMP portal ---------- */
1848
1849 static ssize_t smp_portal_write(struct kobject *kobj, char *buf, loff_t offs,
1850                                 size_t size)
1851 {
1852         struct domain_device *dev = to_dom_device(kobj);
1853         struct expander_device *ex = &dev->ex_dev;
1854
1855         if (offs != 0)
1856                 return -EFBIG;
1857         else if (size == 0)
1858                 return 0;
1859
1860         down_interruptible(&ex->smp_sema);
1861         if (ex->smp_req)
1862                 kfree(ex->smp_req);
1863         ex->smp_req = kzalloc(size, GFP_USER);
1864         if (!ex->smp_req) {
1865                 up(&ex->smp_sema);
1866                 return -ENOMEM;
1867         }
1868         memcpy(ex->smp_req, buf, size);
1869         ex->smp_req_size = size;
1870         ex->smp_portal_pid = current->pid;
1871         up(&ex->smp_sema);
1872
1873         return size;
1874 }
1875
1876 static ssize_t smp_portal_read(struct kobject *kobj, char *buf, loff_t offs,
1877                                size_t size)
1878 {
1879         struct domain_device *dev = to_dom_device(kobj);
1880         struct expander_device *ex = &dev->ex_dev;
1881         u8 *smp_resp;
1882         int res = -EINVAL;
1883
1884         /* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
1885          *  it should be 0.
1886          */
1887
1888         down_interruptible(&ex->smp_sema);
1889         if (!ex->smp_req || ex->smp_portal_pid != current->pid)
1890                 goto out;
1891
1892         res = 0;
1893         if (size == 0)
1894                 goto out;
1895
1896         res = -ENOMEM;
1897         smp_resp = alloc_smp_resp(size);
1898         if (!smp_resp)
1899                 goto out;
1900         res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
1901                                smp_resp, size);
1902         if (!res) {
1903                 memcpy(buf, smp_resp, size);
1904                 res = size;
1905         }
1906
1907         kfree(smp_resp);
1908 out:
1909         kfree(ex->smp_req);
1910         ex->smp_req = NULL;
1911         ex->smp_req_size = 0;
1912         ex->smp_portal_pid = -1;
1913         up(&ex->smp_sema);
1914         return res;
1915 }
1916 #endif