[SCSI] aic94xx SCSI timeout fix: SMP retry fix.
[linux-2.6.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/pci.h>
26 #include <linux/scatterlist.h>
27
28 #include "sas_internal.h"
29
30 #include <scsi/scsi_transport.h>
31 #include <scsi/scsi_transport_sas.h>
32 #include "../scsi_sas_internal.h"
33
34 static int sas_discover_expander(struct domain_device *dev);
35 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
36 static int sas_configure_phy(struct domain_device *dev, int phy_id,
37                              u8 *sas_addr, int include);
38 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
39
40 #if 0
41 /* FIXME: smp needs to migrate into the sas class */
42 static ssize_t smp_portal_read(struct kobject *, char *, loff_t, size_t);
43 static ssize_t smp_portal_write(struct kobject *, char *, loff_t, size_t);
44 #endif
45
46 /* ---------- SMP task management ---------- */
47
48 static void smp_task_timedout(unsigned long _task)
49 {
50         struct sas_task *task = (void *) _task;
51         unsigned long flags;
52
53         spin_lock_irqsave(&task->task_state_lock, flags);
54         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
55                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
56         spin_unlock_irqrestore(&task->task_state_lock, flags);
57
58         complete(&task->completion);
59 }
60
61 static void smp_task_done(struct sas_task *task)
62 {
63         if (!del_timer(&task->timer))
64                 return;
65         complete(&task->completion);
66 }
67
68 /* Give it some long enough timeout. In seconds. */
69 #define SMP_TIMEOUT 10
70
71 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
72                             void *resp, int resp_size)
73 {
74         int res, retry;
75         struct sas_task *task = NULL;
76         struct sas_internal *i =
77                 to_sas_internal(dev->port->ha->core.shost->transportt);
78
79         for (retry = 0; retry < 3; retry++) {
80                 task = sas_alloc_task(GFP_KERNEL);
81                 if (!task)
82                         return -ENOMEM;
83
84                 task->dev = dev;
85                 task->task_proto = dev->tproto;
86                 sg_init_one(&task->smp_task.smp_req, req, req_size);
87                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
88
89                 task->task_done = smp_task_done;
90
91                 task->timer.data = (unsigned long) task;
92                 task->timer.function = smp_task_timedout;
93                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
94                 add_timer(&task->timer);
95
96                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
97
98                 if (res) {
99                         del_timer(&task->timer);
100                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
101                         goto ex_err;
102                 }
103
104                 wait_for_completion(&task->completion);
105                 res = -ETASK;
106                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
107                         SAS_DPRINTK("smp task timed out or aborted\n");
108                         i->dft->lldd_abort_task(task);
109                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
110                                 SAS_DPRINTK("SMP task aborted and not done\n");
111                                 goto ex_err;
112                         }
113                 }
114                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
115                     task->task_status.stat == SAM_GOOD) {
116                         res = 0;
117                         break;
118                 } else {
119                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
120                                     "status 0x%x\n", __FUNCTION__,
121                                     SAS_ADDR(dev->sas_addr),
122                                     task->task_status.resp,
123                                     task->task_status.stat);
124                         sas_free_task(task);
125                         task = NULL;
126                 }
127         }
128 ex_err:
129         BUG_ON(retry == 3 && task != NULL);
130         if (task != NULL) {
131                 sas_free_task(task);
132         }
133         return res;
134 }
135
136 /* ---------- Allocations ---------- */
137
138 static inline void *alloc_smp_req(int size)
139 {
140         u8 *p = kzalloc(size, GFP_KERNEL);
141         if (p)
142                 p[0] = SMP_REQUEST;
143         return p;
144 }
145
146 static inline void *alloc_smp_resp(int size)
147 {
148         return kzalloc(size, GFP_KERNEL);
149 }
150
151 /* ---------- Expander configuration ---------- */
152
153 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
154                            void *disc_resp)
155 {
156         struct expander_device *ex = &dev->ex_dev;
157         struct ex_phy *phy = &ex->ex_phy[phy_id];
158         struct smp_resp *resp = disc_resp;
159         struct discover_resp *dr = &resp->disc;
160         struct sas_rphy *rphy = dev->rphy;
161         int rediscover = (phy->phy != NULL);
162
163         if (!rediscover) {
164                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
165
166                 /* FIXME: error_handling */
167                 BUG_ON(!phy->phy);
168         }
169
170         switch (resp->result) {
171         case SMP_RESP_PHY_VACANT:
172                 phy->phy_state = PHY_VACANT;
173                 return;
174         default:
175                 phy->phy_state = PHY_NOT_PRESENT;
176                 return;
177         case SMP_RESP_FUNC_ACC:
178                 phy->phy_state = PHY_EMPTY; /* do not know yet */
179                 break;
180         }
181
182         phy->phy_id = phy_id;
183         phy->attached_dev_type = dr->attached_dev_type;
184         phy->linkrate = dr->linkrate;
185         phy->attached_sata_host = dr->attached_sata_host;
186         phy->attached_sata_dev  = dr->attached_sata_dev;
187         phy->attached_sata_ps   = dr->attached_sata_ps;
188         phy->attached_iproto = dr->iproto << 1;
189         phy->attached_tproto = dr->tproto << 1;
190         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
191         phy->attached_phy_id = dr->attached_phy_id;
192         phy->phy_change_count = dr->change_count;
193         phy->routing_attr = dr->routing_attr;
194         phy->virtual = dr->virtual;
195         phy->last_da_index = -1;
196
197         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
198         phy->phy->identify.target_port_protocols = phy->attached_tproto;
199         phy->phy->identify.phy_identifier = phy_id;
200         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
201         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
202         phy->phy->minimum_linkrate = dr->pmin_linkrate;
203         phy->phy->maximum_linkrate = dr->pmax_linkrate;
204         phy->phy->negotiated_linkrate = phy->linkrate;
205
206         if (!rediscover)
207                 sas_phy_add(phy->phy);
208
209         SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
210                     SAS_ADDR(dev->sas_addr), phy->phy_id,
211                     phy->routing_attr == TABLE_ROUTING ? 'T' :
212                     phy->routing_attr == DIRECT_ROUTING ? 'D' :
213                     phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
214                     SAS_ADDR(phy->attached_sas_addr));
215
216         return;
217 }
218
219 #define DISCOVER_REQ_SIZE  16
220 #define DISCOVER_RESP_SIZE 56
221
222 static int sas_ex_phy_discover(struct domain_device *dev, int single)
223 {
224         struct expander_device *ex = &dev->ex_dev;
225         int  res = 0;
226         u8   *disc_req;
227         u8   *disc_resp;
228
229         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
230         if (!disc_req)
231                 return -ENOMEM;
232
233         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
234         if (!disc_resp) {
235                 kfree(disc_req);
236                 return -ENOMEM;
237         }
238
239         disc_req[1] = SMP_DISCOVER;
240
241         if (0 <= single && single < ex->num_phys) {
242                 disc_req[9] = single;
243                 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
244                                        disc_resp, DISCOVER_RESP_SIZE);
245                 if (res)
246                         goto out_err;
247                 sas_set_ex_phy(dev, single, disc_resp);
248         } else {
249                 int i;
250
251                 for (i = 0; i < ex->num_phys; i++) {
252                         disc_req[9] = i;
253                         res = smp_execute_task(dev, disc_req,
254                                                DISCOVER_REQ_SIZE, disc_resp,
255                                                DISCOVER_RESP_SIZE);
256                         if (res)
257                                 goto out_err;
258                         sas_set_ex_phy(dev, i, disc_resp);
259                 }
260         }
261 out_err:
262         kfree(disc_resp);
263         kfree(disc_req);
264         return res;
265 }
266
267 static int sas_expander_discover(struct domain_device *dev)
268 {
269         struct expander_device *ex = &dev->ex_dev;
270         int res = -ENOMEM;
271
272         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
273         if (!ex->ex_phy)
274                 return -ENOMEM;
275
276         res = sas_ex_phy_discover(dev, -1);
277         if (res)
278                 goto out_err;
279
280         return 0;
281  out_err:
282         kfree(ex->ex_phy);
283         ex->ex_phy = NULL;
284         return res;
285 }
286
287 #define MAX_EXPANDER_PHYS 128
288
289 static void ex_assign_report_general(struct domain_device *dev,
290                                             struct smp_resp *resp)
291 {
292         struct report_general_resp *rg = &resp->rg;
293
294         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
295         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
296         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
297         dev->ex_dev.conf_route_table = rg->conf_route_table;
298         dev->ex_dev.configuring = rg->configuring;
299         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
300 }
301
302 #define RG_REQ_SIZE   8
303 #define RG_RESP_SIZE 32
304
305 static int sas_ex_general(struct domain_device *dev)
306 {
307         u8 *rg_req;
308         struct smp_resp *rg_resp;
309         int res;
310         int i;
311
312         rg_req = alloc_smp_req(RG_REQ_SIZE);
313         if (!rg_req)
314                 return -ENOMEM;
315
316         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
317         if (!rg_resp) {
318                 kfree(rg_req);
319                 return -ENOMEM;
320         }
321
322         rg_req[1] = SMP_REPORT_GENERAL;
323
324         for (i = 0; i < 5; i++) {
325                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
326                                        RG_RESP_SIZE);
327
328                 if (res) {
329                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
330                                     SAS_ADDR(dev->sas_addr), res);
331                         goto out;
332                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
333                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
334                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
335                         res = rg_resp->result;
336                         goto out;
337                 }
338
339                 ex_assign_report_general(dev, rg_resp);
340
341                 if (dev->ex_dev.configuring) {
342                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
343                                     SAS_ADDR(dev->sas_addr));
344                         schedule_timeout_interruptible(5*HZ);
345                 } else
346                         break;
347         }
348 out:
349         kfree(rg_req);
350         kfree(rg_resp);
351         return res;
352 }
353
354 static void ex_assign_manuf_info(struct domain_device *dev, void
355                                         *_mi_resp)
356 {
357         u8 *mi_resp = _mi_resp;
358         struct sas_rphy *rphy = dev->rphy;
359         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
360
361         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
362         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
363         memcpy(edev->product_rev, mi_resp + 36,
364                SAS_EXPANDER_PRODUCT_REV_LEN);
365
366         if (mi_resp[8] & 1) {
367                 memcpy(edev->component_vendor_id, mi_resp + 40,
368                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
369                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
370                 edev->component_revision_id = mi_resp[50];
371         }
372 }
373
374 #define MI_REQ_SIZE   8
375 #define MI_RESP_SIZE 64
376
377 static int sas_ex_manuf_info(struct domain_device *dev)
378 {
379         u8 *mi_req;
380         u8 *mi_resp;
381         int res;
382
383         mi_req = alloc_smp_req(MI_REQ_SIZE);
384         if (!mi_req)
385                 return -ENOMEM;
386
387         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
388         if (!mi_resp) {
389                 kfree(mi_req);
390                 return -ENOMEM;
391         }
392
393         mi_req[1] = SMP_REPORT_MANUF_INFO;
394
395         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
396         if (res) {
397                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
398                             SAS_ADDR(dev->sas_addr), res);
399                 goto out;
400         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
401                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
402                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
403                 goto out;
404         }
405
406         ex_assign_manuf_info(dev, mi_resp);
407 out:
408         kfree(mi_req);
409         kfree(mi_resp);
410         return res;
411 }
412
413 #define PC_REQ_SIZE  44
414 #define PC_RESP_SIZE 8
415
416 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
417                         enum phy_func phy_func,
418                         struct sas_phy_linkrates *rates)
419 {
420         u8 *pc_req;
421         u8 *pc_resp;
422         int res;
423
424         pc_req = alloc_smp_req(PC_REQ_SIZE);
425         if (!pc_req)
426                 return -ENOMEM;
427
428         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
429         if (!pc_resp) {
430                 kfree(pc_req);
431                 return -ENOMEM;
432         }
433
434         pc_req[1] = SMP_PHY_CONTROL;
435         pc_req[9] = phy_id;
436         pc_req[10]= phy_func;
437         if (rates) {
438                 pc_req[32] = rates->minimum_linkrate << 4;
439                 pc_req[33] = rates->maximum_linkrate << 4;
440         }
441
442         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
443
444         kfree(pc_resp);
445         kfree(pc_req);
446         return res;
447 }
448
449 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
450 {
451         struct expander_device *ex = &dev->ex_dev;
452         struct ex_phy *phy = &ex->ex_phy[phy_id];
453
454         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
455         phy->linkrate = SAS_PHY_DISABLED;
456 }
457
458 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
459 {
460         struct expander_device *ex = &dev->ex_dev;
461         int i;
462
463         for (i = 0; i < ex->num_phys; i++) {
464                 struct ex_phy *phy = &ex->ex_phy[i];
465
466                 if (phy->phy_state == PHY_VACANT ||
467                     phy->phy_state == PHY_NOT_PRESENT)
468                         continue;
469
470                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
471                         sas_ex_disable_phy(dev, i);
472         }
473 }
474
475 static int sas_dev_present_in_domain(struct asd_sas_port *port,
476                                             u8 *sas_addr)
477 {
478         struct domain_device *dev;
479
480         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
481                 return 1;
482         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
483                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
484                         return 1;
485         }
486         return 0;
487 }
488
489 #define RPEL_REQ_SIZE   16
490 #define RPEL_RESP_SIZE  32
491 int sas_smp_get_phy_events(struct sas_phy *phy)
492 {
493         int res;
494         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
495         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
496         u8 *req = alloc_smp_req(RPEL_REQ_SIZE);
497         u8 *resp = kzalloc(RPEL_RESP_SIZE, GFP_KERNEL);
498
499         if (!resp)
500                 return -ENOMEM;
501
502         req[1] = SMP_REPORT_PHY_ERR_LOG;
503         req[9] = phy->number;
504
505         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
506                                     resp, RPEL_RESP_SIZE);
507
508         if (!res)
509                 goto out;
510
511         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
512         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
513         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
514         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
515
516  out:
517         kfree(resp);
518         return res;
519
520 }
521
522 #define RPS_REQ_SIZE  16
523 #define RPS_RESP_SIZE 60
524
525 static int sas_get_report_phy_sata(struct domain_device *dev,
526                                           int phy_id,
527                                           struct smp_resp *rps_resp)
528 {
529         int res;
530         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
531
532         if (!rps_req)
533                 return -ENOMEM;
534
535         rps_req[1] = SMP_REPORT_PHY_SATA;
536         rps_req[9] = phy_id;
537
538         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
539                                     rps_resp, RPS_RESP_SIZE);
540
541         kfree(rps_req);
542         return 0;
543 }
544
545 static void sas_ex_get_linkrate(struct domain_device *parent,
546                                        struct domain_device *child,
547                                        struct ex_phy *parent_phy)
548 {
549         struct expander_device *parent_ex = &parent->ex_dev;
550         struct sas_port *port;
551         int i;
552
553         child->pathways = 0;
554
555         port = parent_phy->port;
556
557         for (i = 0; i < parent_ex->num_phys; i++) {
558                 struct ex_phy *phy = &parent_ex->ex_phy[i];
559
560                 if (phy->phy_state == PHY_VACANT ||
561                     phy->phy_state == PHY_NOT_PRESENT)
562                         continue;
563
564                 if (SAS_ADDR(phy->attached_sas_addr) ==
565                     SAS_ADDR(child->sas_addr)) {
566
567                         child->min_linkrate = min(parent->min_linkrate,
568                                                   phy->linkrate);
569                         child->max_linkrate = max(parent->max_linkrate,
570                                                   phy->linkrate);
571                         child->pathways++;
572                         sas_port_add_phy(port, phy->phy);
573                 }
574         }
575         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
576         child->pathways = min(child->pathways, parent->pathways);
577 }
578
579 static struct domain_device *sas_ex_discover_end_dev(
580         struct domain_device *parent, int phy_id)
581 {
582         struct expander_device *parent_ex = &parent->ex_dev;
583         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
584         struct domain_device *child = NULL;
585         struct sas_rphy *rphy;
586         int res;
587
588         if (phy->attached_sata_host || phy->attached_sata_ps)
589                 return NULL;
590
591         child = kzalloc(sizeof(*child), GFP_KERNEL);
592         if (!child)
593                 return NULL;
594
595         child->parent = parent;
596         child->port   = parent->port;
597         child->iproto = phy->attached_iproto;
598         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
599         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
600         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
601         BUG_ON(!phy->port);
602         /* FIXME: better error handling*/
603         BUG_ON(sas_port_add(phy->port) != 0);
604         sas_ex_get_linkrate(parent, child, phy);
605
606         if ((phy->attached_tproto & SAS_PROTO_STP) || phy->attached_sata_dev) {
607                 child->dev_type = SATA_DEV;
608                 if (phy->attached_tproto & SAS_PROTO_STP)
609                         child->tproto = phy->attached_tproto;
610                 if (phy->attached_sata_dev)
611                         child->tproto |= SATA_DEV;
612                 res = sas_get_report_phy_sata(parent, phy_id,
613                                               &child->sata_dev.rps_resp);
614                 if (res) {
615                         SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
616                                     "0x%x\n", SAS_ADDR(parent->sas_addr),
617                                     phy_id, res);
618                         kfree(child);
619                         return NULL;
620                 }
621                 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
622                        sizeof(struct dev_to_host_fis));
623                 sas_init_dev(child);
624                 res = sas_discover_sata(child);
625                 if (res) {
626                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
627                                     "%016llx:0x%x returned 0x%x\n",
628                                     SAS_ADDR(child->sas_addr),
629                                     SAS_ADDR(parent->sas_addr), phy_id, res);
630                         kfree(child);
631                         return NULL;
632                 }
633         } else if (phy->attached_tproto & SAS_PROTO_SSP) {
634                 child->dev_type = SAS_END_DEV;
635                 rphy = sas_end_device_alloc(phy->port);
636                 /* FIXME: error handling */
637                 BUG_ON(!rphy);
638                 child->tproto = phy->attached_tproto;
639                 sas_init_dev(child);
640
641                 child->rphy = rphy;
642                 sas_fill_in_rphy(child, rphy);
643
644                 spin_lock(&parent->port->dev_list_lock);
645                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
646                 spin_unlock(&parent->port->dev_list_lock);
647
648                 res = sas_discover_end_dev(child);
649                 if (res) {
650                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
651                                     "at %016llx:0x%x returned 0x%x\n",
652                                     SAS_ADDR(child->sas_addr),
653                                     SAS_ADDR(parent->sas_addr), phy_id, res);
654                         /* FIXME: this kfrees list elements without removing them */
655                         //kfree(child);
656                         return NULL;
657                 }
658         } else {
659                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
660                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
661                             phy_id);
662         }
663
664         list_add_tail(&child->siblings, &parent_ex->children);
665         return child;
666 }
667
668 static struct domain_device *sas_ex_discover_expander(
669         struct domain_device *parent, int phy_id)
670 {
671         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
672         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
673         struct domain_device *child = NULL;
674         struct sas_rphy *rphy;
675         struct sas_expander_device *edev;
676         struct asd_sas_port *port;
677         int res;
678
679         if (phy->routing_attr == DIRECT_ROUTING) {
680                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
681                             "allowed\n",
682                             SAS_ADDR(parent->sas_addr), phy_id,
683                             SAS_ADDR(phy->attached_sas_addr),
684                             phy->attached_phy_id);
685                 return NULL;
686         }
687         child = kzalloc(sizeof(*child), GFP_KERNEL);
688         if (!child)
689                 return NULL;
690
691         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
692         /* FIXME: better error handling */
693         BUG_ON(sas_port_add(phy->port) != 0);
694
695
696         switch (phy->attached_dev_type) {
697         case EDGE_DEV:
698                 rphy = sas_expander_alloc(phy->port,
699                                           SAS_EDGE_EXPANDER_DEVICE);
700                 break;
701         case FANOUT_DEV:
702                 rphy = sas_expander_alloc(phy->port,
703                                           SAS_FANOUT_EXPANDER_DEVICE);
704                 break;
705         default:
706                 rphy = NULL;    /* shut gcc up */
707                 BUG();
708         }
709         port = parent->port;
710         child->rphy = rphy;
711         edev = rphy_to_expander_device(rphy);
712         child->dev_type = phy->attached_dev_type;
713         child->parent = parent;
714         child->port = port;
715         child->iproto = phy->attached_iproto;
716         child->tproto = phy->attached_tproto;
717         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
718         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
719         sas_ex_get_linkrate(parent, child, phy);
720         edev->level = parent_ex->level + 1;
721         parent->port->disc.max_level = max(parent->port->disc.max_level,
722                                            edev->level);
723         sas_init_dev(child);
724         sas_fill_in_rphy(child, rphy);
725         sas_rphy_add(rphy);
726
727         spin_lock(&parent->port->dev_list_lock);
728         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
729         spin_unlock(&parent->port->dev_list_lock);
730
731         res = sas_discover_expander(child);
732         if (res) {
733                 kfree(child);
734                 return NULL;
735         }
736         list_add_tail(&child->siblings, &parent->ex_dev.children);
737         return child;
738 }
739
740 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
741 {
742         struct expander_device *ex = &dev->ex_dev;
743         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
744         struct domain_device *child = NULL;
745         int res = 0;
746
747         /* Phy state */
748         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
749                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
750                         res = sas_ex_phy_discover(dev, phy_id);
751                 if (res)
752                         return res;
753         }
754
755         /* Parent and domain coherency */
756         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
757                              SAS_ADDR(dev->port->sas_addr))) {
758                 sas_add_parent_port(dev, phy_id);
759                 return 0;
760         }
761         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
762                             SAS_ADDR(dev->parent->sas_addr))) {
763                 sas_add_parent_port(dev, phy_id);
764                 if (ex_phy->routing_attr == TABLE_ROUTING)
765                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
766                 return 0;
767         }
768
769         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
770                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
771
772         if (ex_phy->attached_dev_type == NO_DEVICE) {
773                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
774                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
775                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
776                 }
777                 return 0;
778         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
779                 return 0;
780
781         if (ex_phy->attached_dev_type != SAS_END_DEV &&
782             ex_phy->attached_dev_type != FANOUT_DEV &&
783             ex_phy->attached_dev_type != EDGE_DEV) {
784                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
785                             "phy 0x%x\n", ex_phy->attached_dev_type,
786                             SAS_ADDR(dev->sas_addr),
787                             phy_id);
788                 return 0;
789         }
790
791         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
792         if (res) {
793                 SAS_DPRINTK("configure routing for dev %016llx "
794                             "reported 0x%x. Forgotten\n",
795                             SAS_ADDR(ex_phy->attached_sas_addr), res);
796                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
797                 return res;
798         }
799
800         switch (ex_phy->attached_dev_type) {
801         case SAS_END_DEV:
802                 child = sas_ex_discover_end_dev(dev, phy_id);
803                 break;
804         case FANOUT_DEV:
805                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
806                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
807                                     "attached to ex %016llx phy 0x%x\n",
808                                     SAS_ADDR(ex_phy->attached_sas_addr),
809                                     ex_phy->attached_phy_id,
810                                     SAS_ADDR(dev->sas_addr),
811                                     phy_id);
812                         sas_ex_disable_phy(dev, phy_id);
813                         break;
814                 } else
815                         memcpy(dev->port->disc.fanout_sas_addr,
816                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
817                 /* fallthrough */
818         case EDGE_DEV:
819                 child = sas_ex_discover_expander(dev, phy_id);
820                 break;
821         default:
822                 break;
823         }
824
825         if (child) {
826                 int i;
827
828                 for (i = 0; i < ex->num_phys; i++) {
829                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
830                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
831                                 continue;
832
833                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
834                             SAS_ADDR(child->sas_addr))
835                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
836                 }
837         }
838
839         return res;
840 }
841
842 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
843 {
844         struct expander_device *ex = &dev->ex_dev;
845         int i;
846
847         for (i = 0; i < ex->num_phys; i++) {
848                 struct ex_phy *phy = &ex->ex_phy[i];
849
850                 if (phy->phy_state == PHY_VACANT ||
851                     phy->phy_state == PHY_NOT_PRESENT)
852                         continue;
853
854                 if ((phy->attached_dev_type == EDGE_DEV ||
855                      phy->attached_dev_type == FANOUT_DEV) &&
856                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
857
858                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
859
860                         return 1;
861                 }
862         }
863         return 0;
864 }
865
866 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
867 {
868         struct expander_device *ex = &dev->ex_dev;
869         struct domain_device *child;
870         u8 sub_addr[8] = {0, };
871
872         list_for_each_entry(child, &ex->children, siblings) {
873                 if (child->dev_type != EDGE_DEV &&
874                     child->dev_type != FANOUT_DEV)
875                         continue;
876                 if (sub_addr[0] == 0) {
877                         sas_find_sub_addr(child, sub_addr);
878                         continue;
879                 } else {
880                         u8 s2[8];
881
882                         if (sas_find_sub_addr(child, s2) &&
883                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
884
885                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
886                                             "diverges from subtractive "
887                                             "boundary %016llx\n",
888                                             SAS_ADDR(dev->sas_addr),
889                                             SAS_ADDR(child->sas_addr),
890                                             SAS_ADDR(s2),
891                                             SAS_ADDR(sub_addr));
892
893                                 sas_ex_disable_port(child, s2);
894                         }
895                 }
896         }
897         return 0;
898 }
899 /**
900  * sas_ex_discover_devices -- discover devices attached to this expander
901  * dev: pointer to the expander domain device
902  * single: if you want to do a single phy, else set to -1;
903  *
904  * Configure this expander for use with its devices and register the
905  * devices of this expander.
906  */
907 static int sas_ex_discover_devices(struct domain_device *dev, int single)
908 {
909         struct expander_device *ex = &dev->ex_dev;
910         int i = 0, end = ex->num_phys;
911         int res = 0;
912
913         if (0 <= single && single < end) {
914                 i = single;
915                 end = i+1;
916         }
917
918         for ( ; i < end; i++) {
919                 struct ex_phy *ex_phy = &ex->ex_phy[i];
920
921                 if (ex_phy->phy_state == PHY_VACANT ||
922                     ex_phy->phy_state == PHY_NOT_PRESENT ||
923                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
924                         continue;
925
926                 switch (ex_phy->linkrate) {
927                 case SAS_PHY_DISABLED:
928                 case SAS_PHY_RESET_PROBLEM:
929                 case SAS_SATA_PORT_SELECTOR:
930                         continue;
931                 default:
932                         res = sas_ex_discover_dev(dev, i);
933                         if (res)
934                                 break;
935                         continue;
936                 }
937         }
938
939         if (!res)
940                 sas_check_level_subtractive_boundary(dev);
941
942         return res;
943 }
944
945 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
946 {
947         struct expander_device *ex = &dev->ex_dev;
948         int i;
949         u8  *sub_sas_addr = NULL;
950
951         if (dev->dev_type != EDGE_DEV)
952                 return 0;
953
954         for (i = 0; i < ex->num_phys; i++) {
955                 struct ex_phy *phy = &ex->ex_phy[i];
956
957                 if (phy->phy_state == PHY_VACANT ||
958                     phy->phy_state == PHY_NOT_PRESENT)
959                         continue;
960
961                 if ((phy->attached_dev_type == FANOUT_DEV ||
962                      phy->attached_dev_type == EDGE_DEV) &&
963                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
964
965                         if (!sub_sas_addr)
966                                 sub_sas_addr = &phy->attached_sas_addr[0];
967                         else if (SAS_ADDR(sub_sas_addr) !=
968                                  SAS_ADDR(phy->attached_sas_addr)) {
969
970                                 SAS_DPRINTK("ex %016llx phy 0x%x "
971                                             "diverges(%016llx) on subtractive "
972                                             "boundary(%016llx). Disabled\n",
973                                             SAS_ADDR(dev->sas_addr), i,
974                                             SAS_ADDR(phy->attached_sas_addr),
975                                             SAS_ADDR(sub_sas_addr));
976                                 sas_ex_disable_phy(dev, i);
977                         }
978                 }
979         }
980         return 0;
981 }
982
983 static void sas_print_parent_topology_bug(struct domain_device *child,
984                                                  struct ex_phy *parent_phy,
985                                                  struct ex_phy *child_phy)
986 {
987         static const char ra_char[] = {
988                 [DIRECT_ROUTING] = 'D',
989                 [SUBTRACTIVE_ROUTING] = 'S',
990                 [TABLE_ROUTING] = 'T',
991         };
992         static const char *ex_type[] = {
993                 [EDGE_DEV] = "edge",
994                 [FANOUT_DEV] = "fanout",
995         };
996         struct domain_device *parent = child->parent;
997
998         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
999                    "has %c:%c routing link!\n",
1000
1001                    ex_type[parent->dev_type],
1002                    SAS_ADDR(parent->sas_addr),
1003                    parent_phy->phy_id,
1004
1005                    ex_type[child->dev_type],
1006                    SAS_ADDR(child->sas_addr),
1007                    child_phy->phy_id,
1008
1009                    ra_char[parent_phy->routing_attr],
1010                    ra_char[child_phy->routing_attr]);
1011 }
1012
1013 static int sas_check_eeds(struct domain_device *child,
1014                                  struct ex_phy *parent_phy,
1015                                  struct ex_phy *child_phy)
1016 {
1017         int res = 0;
1018         struct domain_device *parent = child->parent;
1019
1020         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1021                 res = -ENODEV;
1022                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1023                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1024                             SAS_ADDR(parent->sas_addr),
1025                             parent_phy->phy_id,
1026                             SAS_ADDR(child->sas_addr),
1027                             child_phy->phy_id,
1028                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1029         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1030                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1031                        SAS_ADDR_SIZE);
1032                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1033                        SAS_ADDR_SIZE);
1034         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1035                     SAS_ADDR(parent->sas_addr)) ||
1036                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1037                     SAS_ADDR(child->sas_addr)))
1038                    &&
1039                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1040                      SAS_ADDR(parent->sas_addr)) ||
1041                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1042                      SAS_ADDR(child->sas_addr))))
1043                 ;
1044         else {
1045                 res = -ENODEV;
1046                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1047                             "phy 0x%x link forms a third EEDS!\n",
1048                             SAS_ADDR(parent->sas_addr),
1049                             parent_phy->phy_id,
1050                             SAS_ADDR(child->sas_addr),
1051                             child_phy->phy_id);
1052         }
1053
1054         return res;
1055 }
1056
1057 /* Here we spill over 80 columns.  It is intentional.
1058  */
1059 static int sas_check_parent_topology(struct domain_device *child)
1060 {
1061         struct expander_device *child_ex = &child->ex_dev;
1062         struct expander_device *parent_ex;
1063         int i;
1064         int res = 0;
1065
1066         if (!child->parent)
1067                 return 0;
1068
1069         if (child->parent->dev_type != EDGE_DEV &&
1070             child->parent->dev_type != FANOUT_DEV)
1071                 return 0;
1072
1073         parent_ex = &child->parent->ex_dev;
1074
1075         for (i = 0; i < parent_ex->num_phys; i++) {
1076                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1077                 struct ex_phy *child_phy;
1078
1079                 if (parent_phy->phy_state == PHY_VACANT ||
1080                     parent_phy->phy_state == PHY_NOT_PRESENT)
1081                         continue;
1082
1083                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1084                         continue;
1085
1086                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1087
1088                 switch (child->parent->dev_type) {
1089                 case EDGE_DEV:
1090                         if (child->dev_type == FANOUT_DEV) {
1091                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1092                                     child_phy->routing_attr != TABLE_ROUTING) {
1093                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1094                                         res = -ENODEV;
1095                                 }
1096                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1097                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1098                                         res = sas_check_eeds(child, parent_phy, child_phy);
1099                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1100                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1101                                         res = -ENODEV;
1102                                 }
1103                         } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1104                                    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1105                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1106                                 res = -ENODEV;
1107                         }
1108                         break;
1109                 case FANOUT_DEV:
1110                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1111                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1112                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1113                                 res = -ENODEV;
1114                         }
1115                         break;
1116                 default:
1117                         break;
1118                 }
1119         }
1120
1121         return res;
1122 }
1123
1124 #define RRI_REQ_SIZE  16
1125 #define RRI_RESP_SIZE 44
1126
1127 static int sas_configure_present(struct domain_device *dev, int phy_id,
1128                                  u8 *sas_addr, int *index, int *present)
1129 {
1130         int i, res = 0;
1131         struct expander_device *ex = &dev->ex_dev;
1132         struct ex_phy *phy = &ex->ex_phy[phy_id];
1133         u8 *rri_req;
1134         u8 *rri_resp;
1135
1136         *present = 0;
1137         *index = 0;
1138
1139         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1140         if (!rri_req)
1141                 return -ENOMEM;
1142
1143         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1144         if (!rri_resp) {
1145                 kfree(rri_req);
1146                 return -ENOMEM;
1147         }
1148
1149         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1150         rri_req[9] = phy_id;
1151
1152         for (i = 0; i < ex->max_route_indexes ; i++) {
1153                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1154                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1155                                        RRI_RESP_SIZE);
1156                 if (res)
1157                         goto out;
1158                 res = rri_resp[2];
1159                 if (res == SMP_RESP_NO_INDEX) {
1160                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1161                                     "phy 0x%x index 0x%x\n",
1162                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1163                         goto out;
1164                 } else if (res != SMP_RESP_FUNC_ACC) {
1165                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1166                                     "result 0x%x\n", __FUNCTION__,
1167                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1168                         goto out;
1169                 }
1170                 if (SAS_ADDR(sas_addr) != 0) {
1171                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1172                                 *index = i;
1173                                 if ((rri_resp[12] & 0x80) == 0x80)
1174                                         *present = 0;
1175                                 else
1176                                         *present = 1;
1177                                 goto out;
1178                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1179                                 *index = i;
1180                                 *present = 0;
1181                                 goto out;
1182                         }
1183                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1184                            phy->last_da_index < i) {
1185                         phy->last_da_index = i;
1186                         *index = i;
1187                         *present = 0;
1188                         goto out;
1189                 }
1190         }
1191         res = -1;
1192 out:
1193         kfree(rri_req);
1194         kfree(rri_resp);
1195         return res;
1196 }
1197
1198 #define CRI_REQ_SIZE  44
1199 #define CRI_RESP_SIZE  8
1200
1201 static int sas_configure_set(struct domain_device *dev, int phy_id,
1202                              u8 *sas_addr, int index, int include)
1203 {
1204         int res;
1205         u8 *cri_req;
1206         u8 *cri_resp;
1207
1208         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1209         if (!cri_req)
1210                 return -ENOMEM;
1211
1212         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1213         if (!cri_resp) {
1214                 kfree(cri_req);
1215                 return -ENOMEM;
1216         }
1217
1218         cri_req[1] = SMP_CONF_ROUTE_INFO;
1219         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1220         cri_req[9] = phy_id;
1221         if (SAS_ADDR(sas_addr) == 0 || !include)
1222                 cri_req[12] |= 0x80;
1223         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1224
1225         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1226                                CRI_RESP_SIZE);
1227         if (res)
1228                 goto out;
1229         res = cri_resp[2];
1230         if (res == SMP_RESP_NO_INDEX) {
1231                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1232                             "index 0x%x\n",
1233                             SAS_ADDR(dev->sas_addr), phy_id, index);
1234         }
1235 out:
1236         kfree(cri_req);
1237         kfree(cri_resp);
1238         return res;
1239 }
1240
1241 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1242                                     u8 *sas_addr, int include)
1243 {
1244         int index;
1245         int present;
1246         int res;
1247
1248         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1249         if (res)
1250                 return res;
1251         if (include ^ present)
1252                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1253
1254         return res;
1255 }
1256
1257 /**
1258  * sas_configure_parent -- configure routing table of parent
1259  * parent: parent expander
1260  * child: child expander
1261  * sas_addr: SAS port identifier of device directly attached to child
1262  */
1263 static int sas_configure_parent(struct domain_device *parent,
1264                                 struct domain_device *child,
1265                                 u8 *sas_addr, int include)
1266 {
1267         struct expander_device *ex_parent = &parent->ex_dev;
1268         int res = 0;
1269         int i;
1270
1271         if (parent->parent) {
1272                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1273                                            include);
1274                 if (res)
1275                         return res;
1276         }
1277
1278         if (ex_parent->conf_route_table == 0) {
1279                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1280                             SAS_ADDR(parent->sas_addr));
1281                 return 0;
1282         }
1283
1284         for (i = 0; i < ex_parent->num_phys; i++) {
1285                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1286
1287                 if ((phy->routing_attr == TABLE_ROUTING) &&
1288                     (SAS_ADDR(phy->attached_sas_addr) ==
1289                      SAS_ADDR(child->sas_addr))) {
1290                         res = sas_configure_phy(parent, i, sas_addr, include);
1291                         if (res)
1292                                 return res;
1293                 }
1294         }
1295
1296         return res;
1297 }
1298
1299 /**
1300  * sas_configure_routing -- configure routing
1301  * dev: expander device
1302  * sas_addr: port identifier of device directly attached to the expander device
1303  */
1304 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1305 {
1306         if (dev->parent)
1307                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1308         return 0;
1309 }
1310
1311 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1312 {
1313         if (dev->parent)
1314                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1315         return 0;
1316 }
1317
1318 #if 0
1319 #define SMP_BIN_ATTR_NAME "smp_portal"
1320
1321 static void sas_ex_smp_hook(struct domain_device *dev)
1322 {
1323         struct expander_device *ex_dev = &dev->ex_dev;
1324         struct bin_attribute *bin_attr = &ex_dev->smp_bin_attr;
1325
1326         memset(bin_attr, 0, sizeof(*bin_attr));
1327
1328         bin_attr->attr.name = SMP_BIN_ATTR_NAME;
1329         bin_attr->attr.owner = THIS_MODULE;
1330         bin_attr->attr.mode = 0600;
1331
1332         bin_attr->size = 0;
1333         bin_attr->private = NULL;
1334         bin_attr->read = smp_portal_read;
1335         bin_attr->write= smp_portal_write;
1336         bin_attr->mmap = NULL;
1337
1338         ex_dev->smp_portal_pid = -1;
1339         init_MUTEX(&ex_dev->smp_sema);
1340 }
1341 #endif
1342
1343 /**
1344  * sas_discover_expander -- expander discovery
1345  * @ex: pointer to expander domain device
1346  *
1347  * See comment in sas_discover_sata().
1348  */
1349 static int sas_discover_expander(struct domain_device *dev)
1350 {
1351         int res;
1352
1353         res = sas_notify_lldd_dev_found(dev);
1354         if (res)
1355                 return res;
1356
1357         res = sas_ex_general(dev);
1358         if (res)
1359                 goto out_err;
1360         res = sas_ex_manuf_info(dev);
1361         if (res)
1362                 goto out_err;
1363
1364         res = sas_expander_discover(dev);
1365         if (res) {
1366                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1367                             SAS_ADDR(dev->sas_addr), res);
1368                 goto out_err;
1369         }
1370
1371         sas_check_ex_subtractive_boundary(dev);
1372         res = sas_check_parent_topology(dev);
1373         if (res)
1374                 goto out_err;
1375         return 0;
1376 out_err:
1377         sas_notify_lldd_dev_gone(dev);
1378         return res;
1379 }
1380
1381 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1382 {
1383         int res = 0;
1384         struct domain_device *dev;
1385
1386         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1387                 if (dev->dev_type == EDGE_DEV ||
1388                     dev->dev_type == FANOUT_DEV) {
1389                         struct sas_expander_device *ex =
1390                                 rphy_to_expander_device(dev->rphy);
1391
1392                         if (level == ex->level)
1393                                 res = sas_ex_discover_devices(dev, -1);
1394                         else if (level > 0)
1395                                 res = sas_ex_discover_devices(port->port_dev, -1);
1396
1397                 }
1398         }
1399
1400         return res;
1401 }
1402
1403 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1404 {
1405         int res;
1406         int level;
1407
1408         do {
1409                 level = port->disc.max_level;
1410                 res = sas_ex_level_discovery(port, level);
1411                 mb();
1412         } while (level < port->disc.max_level);
1413
1414         return res;
1415 }
1416
1417 int sas_discover_root_expander(struct domain_device *dev)
1418 {
1419         int res;
1420         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1421
1422         sas_rphy_add(dev->rphy);
1423
1424         ex->level = dev->port->disc.max_level; /* 0 */
1425         res = sas_discover_expander(dev);
1426         if (!res)
1427                 sas_ex_bfs_disc(dev->port);
1428
1429         return res;
1430 }
1431
1432 /* ---------- Domain revalidation ---------- */
1433
1434 static int sas_get_phy_discover(struct domain_device *dev,
1435                                 int phy_id, struct smp_resp *disc_resp)
1436 {
1437         int res;
1438         u8 *disc_req;
1439
1440         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1441         if (!disc_req)
1442                 return -ENOMEM;
1443
1444         disc_req[1] = SMP_DISCOVER;
1445         disc_req[9] = phy_id;
1446
1447         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1448                                disc_resp, DISCOVER_RESP_SIZE);
1449         if (res)
1450                 goto out;
1451         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1452                 res = disc_resp->result;
1453                 goto out;
1454         }
1455 out:
1456         kfree(disc_req);
1457         return res;
1458 }
1459
1460 static int sas_get_phy_change_count(struct domain_device *dev,
1461                                     int phy_id, int *pcc)
1462 {
1463         int res;
1464         struct smp_resp *disc_resp;
1465
1466         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1467         if (!disc_resp)
1468                 return -ENOMEM;
1469
1470         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1471         if (!res)
1472                 *pcc = disc_resp->disc.change_count;
1473
1474         kfree(disc_resp);
1475         return res;
1476 }
1477
1478 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1479                                          int phy_id, u8 *attached_sas_addr)
1480 {
1481         int res;
1482         struct smp_resp *disc_resp;
1483         struct discover_resp *dr;
1484
1485         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1486         if (!disc_resp)
1487                 return -ENOMEM;
1488         dr = &disc_resp->disc;
1489
1490         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1491         if (!res) {
1492                 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1493                 if (dr->attached_dev_type == 0)
1494                         memset(attached_sas_addr, 0, 8);
1495         }
1496         kfree(disc_resp);
1497         return res;
1498 }
1499
1500 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1501                               int from_phy)
1502 {
1503         struct expander_device *ex = &dev->ex_dev;
1504         int res = 0;
1505         int i;
1506
1507         for (i = from_phy; i < ex->num_phys; i++) {
1508                 int phy_change_count = 0;
1509
1510                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1511                 if (res)
1512                         goto out;
1513                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1514                         ex->ex_phy[i].phy_change_count = phy_change_count;
1515                         *phy_id = i;
1516                         return 0;
1517                 }
1518         }
1519 out:
1520         return res;
1521 }
1522
1523 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1524 {
1525         int res;
1526         u8  *rg_req;
1527         struct smp_resp  *rg_resp;
1528
1529         rg_req = alloc_smp_req(RG_REQ_SIZE);
1530         if (!rg_req)
1531                 return -ENOMEM;
1532
1533         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1534         if (!rg_resp) {
1535                 kfree(rg_req);
1536                 return -ENOMEM;
1537         }
1538
1539         rg_req[1] = SMP_REPORT_GENERAL;
1540
1541         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1542                                RG_RESP_SIZE);
1543         if (res)
1544                 goto out;
1545         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1546                 res = rg_resp->result;
1547                 goto out;
1548         }
1549
1550         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1551 out:
1552         kfree(rg_resp);
1553         kfree(rg_req);
1554         return res;
1555 }
1556
1557 static int sas_find_bcast_dev(struct domain_device *dev,
1558                               struct domain_device **src_dev)
1559 {
1560         struct expander_device *ex = &dev->ex_dev;
1561         int ex_change_count = -1;
1562         int res;
1563
1564         res = sas_get_ex_change_count(dev, &ex_change_count);
1565         if (res)
1566                 goto out;
1567         if (ex_change_count != -1 &&
1568             ex_change_count != ex->ex_change_count) {
1569                 *src_dev = dev;
1570                 ex->ex_change_count = ex_change_count;
1571         } else {
1572                 struct domain_device *ch;
1573
1574                 list_for_each_entry(ch, &ex->children, siblings) {
1575                         if (ch->dev_type == EDGE_DEV ||
1576                             ch->dev_type == FANOUT_DEV) {
1577                                 res = sas_find_bcast_dev(ch, src_dev);
1578                                 if (src_dev)
1579                                         return res;
1580                         }
1581                 }
1582         }
1583 out:
1584         return res;
1585 }
1586
1587 static void sas_unregister_ex_tree(struct domain_device *dev)
1588 {
1589         struct expander_device *ex = &dev->ex_dev;
1590         struct domain_device *child, *n;
1591
1592         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1593                 if (child->dev_type == EDGE_DEV ||
1594                     child->dev_type == FANOUT_DEV)
1595                         sas_unregister_ex_tree(child);
1596                 else
1597                         sas_unregister_dev(child);
1598         }
1599         sas_unregister_dev(dev);
1600 }
1601
1602 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1603                                          int phy_id)
1604 {
1605         struct expander_device *ex_dev = &parent->ex_dev;
1606         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1607         struct domain_device *child, *n;
1608
1609         list_for_each_entry_safe(child, n, &ex_dev->children, siblings) {
1610                 if (SAS_ADDR(child->sas_addr) ==
1611                     SAS_ADDR(phy->attached_sas_addr)) {
1612                         if (child->dev_type == EDGE_DEV ||
1613                             child->dev_type == FANOUT_DEV)
1614                                 sas_unregister_ex_tree(child);
1615                         else
1616                                 sas_unregister_dev(child);
1617                         break;
1618                 }
1619         }
1620         sas_disable_routing(parent, phy->attached_sas_addr);
1621         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1622         sas_port_delete_phy(phy->port, phy->phy);
1623         if (phy->port->num_phys == 0)
1624                 sas_port_delete(phy->port);
1625         phy->port = NULL;
1626 }
1627
1628 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1629                                           const int level)
1630 {
1631         struct expander_device *ex_root = &root->ex_dev;
1632         struct domain_device *child;
1633         int res = 0;
1634
1635         list_for_each_entry(child, &ex_root->children, siblings) {
1636                 if (child->dev_type == EDGE_DEV ||
1637                     child->dev_type == FANOUT_DEV) {
1638                         struct sas_expander_device *ex =
1639                                 rphy_to_expander_device(child->rphy);
1640
1641                         if (level > ex->level)
1642                                 res = sas_discover_bfs_by_root_level(child,
1643                                                                      level);
1644                         else if (level == ex->level)
1645                                 res = sas_ex_discover_devices(child, -1);
1646                 }
1647         }
1648         return res;
1649 }
1650
1651 static int sas_discover_bfs_by_root(struct domain_device *dev)
1652 {
1653         int res;
1654         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1655         int level = ex->level+1;
1656
1657         res = sas_ex_discover_devices(dev, -1);
1658         if (res)
1659                 goto out;
1660         do {
1661                 res = sas_discover_bfs_by_root_level(dev, level);
1662                 mb();
1663                 level += 1;
1664         } while (level <= dev->port->disc.max_level);
1665 out:
1666         return res;
1667 }
1668
1669 static int sas_discover_new(struct domain_device *dev, int phy_id)
1670 {
1671         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1672         struct domain_device *child;
1673         int res;
1674
1675         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1676                     SAS_ADDR(dev->sas_addr), phy_id);
1677         res = sas_ex_phy_discover(dev, phy_id);
1678         if (res)
1679                 goto out;
1680         res = sas_ex_discover_devices(dev, phy_id);
1681         if (res)
1682                 goto out;
1683         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1684                 if (SAS_ADDR(child->sas_addr) ==
1685                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1686                         if (child->dev_type == EDGE_DEV ||
1687                             child->dev_type == FANOUT_DEV)
1688                                 res = sas_discover_bfs_by_root(child);
1689                         break;
1690                 }
1691         }
1692 out:
1693         return res;
1694 }
1695
1696 static int sas_rediscover_dev(struct domain_device *dev, int phy_id)
1697 {
1698         struct expander_device *ex = &dev->ex_dev;
1699         struct ex_phy *phy = &ex->ex_phy[phy_id];
1700         u8 attached_sas_addr[8];
1701         int res;
1702
1703         res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1704         switch (res) {
1705         case SMP_RESP_NO_PHY:
1706                 phy->phy_state = PHY_NOT_PRESENT;
1707                 sas_unregister_devs_sas_addr(dev, phy_id);
1708                 goto out; break;
1709         case SMP_RESP_PHY_VACANT:
1710                 phy->phy_state = PHY_VACANT;
1711                 sas_unregister_devs_sas_addr(dev, phy_id);
1712                 goto out; break;
1713         case SMP_RESP_FUNC_ACC:
1714                 break;
1715         }
1716
1717         if (SAS_ADDR(attached_sas_addr) == 0) {
1718                 phy->phy_state = PHY_EMPTY;
1719                 sas_unregister_devs_sas_addr(dev, phy_id);
1720         } else if (SAS_ADDR(attached_sas_addr) ==
1721                    SAS_ADDR(phy->attached_sas_addr)) {
1722                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1723                             SAS_ADDR(dev->sas_addr), phy_id);
1724                 sas_ex_phy_discover(dev, phy_id);
1725         } else
1726                 res = sas_discover_new(dev, phy_id);
1727 out:
1728         return res;
1729 }
1730
1731 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1732 {
1733         struct expander_device *ex = &dev->ex_dev;
1734         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1735         int res = 0;
1736         int i;
1737
1738         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1739                     SAS_ADDR(dev->sas_addr), phy_id);
1740
1741         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1742                 for (i = 0; i < ex->num_phys; i++) {
1743                         struct ex_phy *phy = &ex->ex_phy[i];
1744
1745                         if (i == phy_id)
1746                                 continue;
1747                         if (SAS_ADDR(phy->attached_sas_addr) ==
1748                             SAS_ADDR(changed_phy->attached_sas_addr)) {
1749                                 SAS_DPRINTK("phy%d part of wide port with "
1750                                             "phy%d\n", phy_id, i);
1751                                 goto out;
1752                         }
1753                 }
1754                 res = sas_rediscover_dev(dev, phy_id);
1755         } else
1756                 res = sas_discover_new(dev, phy_id);
1757 out:
1758         return res;
1759 }
1760
1761 /**
1762  * sas_revalidate_domain -- revalidate the domain
1763  * @port: port to the domain of interest
1764  *
1765  * NOTE: this process _must_ quit (return) as soon as any connection
1766  * errors are encountered.  Connection recovery is done elsewhere.
1767  * Discover process only interrogates devices in order to discover the
1768  * domain.
1769  */
1770 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1771 {
1772         int res;
1773         struct domain_device *dev = NULL;
1774
1775         res = sas_find_bcast_dev(port_dev, &dev);
1776         if (res)
1777                 goto out;
1778         if (dev) {
1779                 struct expander_device *ex = &dev->ex_dev;
1780                 int i = 0, phy_id;
1781
1782                 do {
1783                         phy_id = -1;
1784                         res = sas_find_bcast_phy(dev, &phy_id, i);
1785                         if (phy_id == -1)
1786                                 break;
1787                         res = sas_rediscover(dev, phy_id);
1788                         i = phy_id + 1;
1789                 } while (i < ex->num_phys);
1790         }
1791 out:
1792         return res;
1793 }
1794
1795 #if 0
1796 /* ---------- SMP portal ---------- */
1797
1798 static ssize_t smp_portal_write(struct kobject *kobj, char *buf, loff_t offs,
1799                                 size_t size)
1800 {
1801         struct domain_device *dev = to_dom_device(kobj);
1802         struct expander_device *ex = &dev->ex_dev;
1803
1804         if (offs != 0)
1805                 return -EFBIG;
1806         else if (size == 0)
1807                 return 0;
1808
1809         down_interruptible(&ex->smp_sema);
1810         if (ex->smp_req)
1811                 kfree(ex->smp_req);
1812         ex->smp_req = kzalloc(size, GFP_USER);
1813         if (!ex->smp_req) {
1814                 up(&ex->smp_sema);
1815                 return -ENOMEM;
1816         }
1817         memcpy(ex->smp_req, buf, size);
1818         ex->smp_req_size = size;
1819         ex->smp_portal_pid = current->pid;
1820         up(&ex->smp_sema);
1821
1822         return size;
1823 }
1824
1825 static ssize_t smp_portal_read(struct kobject *kobj, char *buf, loff_t offs,
1826                                size_t size)
1827 {
1828         struct domain_device *dev = to_dom_device(kobj);
1829         struct expander_device *ex = &dev->ex_dev;
1830         u8 *smp_resp;
1831         int res = -EINVAL;
1832
1833         /* XXX: sysfs gives us an offset of 0x10 or 0x8 while in fact
1834          *  it should be 0.
1835          */
1836
1837         down_interruptible(&ex->smp_sema);
1838         if (!ex->smp_req || ex->smp_portal_pid != current->pid)
1839                 goto out;
1840
1841         res = 0;
1842         if (size == 0)
1843                 goto out;
1844
1845         res = -ENOMEM;
1846         smp_resp = alloc_smp_resp(size);
1847         if (!smp_resp)
1848                 goto out;
1849         res = smp_execute_task(dev, ex->smp_req, ex->smp_req_size,
1850                                smp_resp, size);
1851         if (!res) {
1852                 memcpy(buf, smp_resp, size);
1853                 res = size;
1854         }
1855
1856         kfree(smp_resp);
1857 out:
1858         kfree(ex->smp_req);
1859         ex->smp_req = NULL;
1860         ex->smp_req_size = 0;
1861         ex->smp_portal_pid = -1;
1862         up(&ex->smp_sema);
1863         return res;
1864 }
1865 #endif