[SCSI] libsas: Allow expander T-T attachments
[linux-2.6.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/scsi_transport.h>
32 #include <scsi/scsi_transport_sas.h>
33 #include "../scsi_sas_internal.h"
34
35 static int sas_discover_expander(struct domain_device *dev);
36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
37 static int sas_configure_phy(struct domain_device *dev, int phy_id,
38                              u8 *sas_addr, int include);
39 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
40
41 /* ---------- SMP task management ---------- */
42
43 static void smp_task_timedout(unsigned long _task)
44 {
45         struct sas_task *task = (void *) _task;
46         unsigned long flags;
47
48         spin_lock_irqsave(&task->task_state_lock, flags);
49         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
50                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
51         spin_unlock_irqrestore(&task->task_state_lock, flags);
52
53         complete(&task->completion);
54 }
55
56 static void smp_task_done(struct sas_task *task)
57 {
58         if (!del_timer(&task->timer))
59                 return;
60         complete(&task->completion);
61 }
62
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
65
66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
67                             void *resp, int resp_size)
68 {
69         int res, retry;
70         struct sas_task *task = NULL;
71         struct sas_internal *i =
72                 to_sas_internal(dev->port->ha->core.shost->transportt);
73
74         for (retry = 0; retry < 3; retry++) {
75                 task = sas_alloc_task(GFP_KERNEL);
76                 if (!task)
77                         return -ENOMEM;
78
79                 task->dev = dev;
80                 task->task_proto = dev->tproto;
81                 sg_init_one(&task->smp_task.smp_req, req, req_size);
82                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
83
84                 task->task_done = smp_task_done;
85
86                 task->timer.data = (unsigned long) task;
87                 task->timer.function = smp_task_timedout;
88                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
89                 add_timer(&task->timer);
90
91                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
92
93                 if (res) {
94                         del_timer(&task->timer);
95                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
96                         goto ex_err;
97                 }
98
99                 wait_for_completion(&task->completion);
100                 res = -ECOMM;
101                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
102                         SAS_DPRINTK("smp task timed out or aborted\n");
103                         i->dft->lldd_abort_task(task);
104                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
105                                 SAS_DPRINTK("SMP task aborted and not done\n");
106                                 goto ex_err;
107                         }
108                 }
109                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
110                     task->task_status.stat == SAM_STAT_GOOD) {
111                         res = 0;
112                         break;
113                 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
114                       task->task_status.stat == SAS_DATA_UNDERRUN) {
115                         /* no error, but return the number of bytes of
116                          * underrun */
117                         res = task->task_status.residual;
118                         break;
119                 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
120                       task->task_status.stat == SAS_DATA_OVERRUN) {
121                         res = -EMSGSIZE;
122                         break;
123                 } else {
124                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125                                     "status 0x%x\n", __func__,
126                                     SAS_ADDR(dev->sas_addr),
127                                     task->task_status.resp,
128                                     task->task_status.stat);
129                         sas_free_task(task);
130                         task = NULL;
131                 }
132         }
133 ex_err:
134         BUG_ON(retry == 3 && task != NULL);
135         if (task != NULL) {
136                 sas_free_task(task);
137         }
138         return res;
139 }
140
141 /* ---------- Allocations ---------- */
142
143 static inline void *alloc_smp_req(int size)
144 {
145         u8 *p = kzalloc(size, GFP_KERNEL);
146         if (p)
147                 p[0] = SMP_REQUEST;
148         return p;
149 }
150
151 static inline void *alloc_smp_resp(int size)
152 {
153         return kzalloc(size, GFP_KERNEL);
154 }
155
156 /* ---------- Expander configuration ---------- */
157
158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
159                            void *disc_resp)
160 {
161         struct expander_device *ex = &dev->ex_dev;
162         struct ex_phy *phy = &ex->ex_phy[phy_id];
163         struct smp_resp *resp = disc_resp;
164         struct discover_resp *dr = &resp->disc;
165         struct sas_rphy *rphy = dev->rphy;
166         int rediscover = (phy->phy != NULL);
167
168         if (!rediscover) {
169                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
170
171                 /* FIXME: error_handling */
172                 BUG_ON(!phy->phy);
173         }
174
175         switch (resp->result) {
176         case SMP_RESP_PHY_VACANT:
177                 phy->phy_state = PHY_VACANT;
178                 break;
179         default:
180                 phy->phy_state = PHY_NOT_PRESENT;
181                 break;
182         case SMP_RESP_FUNC_ACC:
183                 phy->phy_state = PHY_EMPTY; /* do not know yet */
184                 break;
185         }
186
187         phy->phy_id = phy_id;
188         phy->attached_dev_type = dr->attached_dev_type;
189         phy->linkrate = dr->linkrate;
190         phy->attached_sata_host = dr->attached_sata_host;
191         phy->attached_sata_dev  = dr->attached_sata_dev;
192         phy->attached_sata_ps   = dr->attached_sata_ps;
193         phy->attached_iproto = dr->iproto << 1;
194         phy->attached_tproto = dr->tproto << 1;
195         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
196         phy->attached_phy_id = dr->attached_phy_id;
197         phy->phy_change_count = dr->change_count;
198         phy->routing_attr = dr->routing_attr;
199         phy->virtual = dr->virtual;
200         phy->last_da_index = -1;
201
202         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
203         phy->phy->identify.target_port_protocols = phy->attached_tproto;
204         phy->phy->identify.phy_identifier = phy_id;
205         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
206         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
207         phy->phy->minimum_linkrate = dr->pmin_linkrate;
208         phy->phy->maximum_linkrate = dr->pmax_linkrate;
209         phy->phy->negotiated_linkrate = phy->linkrate;
210
211         if (!rediscover)
212                 if (sas_phy_add(phy->phy)) {
213                         sas_phy_free(phy->phy);
214                         return;
215                 }
216
217         SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
218                     SAS_ADDR(dev->sas_addr), phy->phy_id,
219                     phy->routing_attr == TABLE_ROUTING ? 'T' :
220                     phy->routing_attr == DIRECT_ROUTING ? 'D' :
221                     phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
222                     SAS_ADDR(phy->attached_sas_addr));
223
224         return;
225 }
226
227 #define DISCOVER_REQ_SIZE  16
228 #define DISCOVER_RESP_SIZE 56
229
230 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
231                                       u8 *disc_resp, int single)
232 {
233         int i, res;
234
235         disc_req[9] = single;
236         for (i = 1 ; i < 3; i++) {
237                 struct discover_resp *dr;
238
239                 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
240                                        disc_resp, DISCOVER_RESP_SIZE);
241                 if (res)
242                         return res;
243                 /* This is detecting a failure to transmit initial
244                  * dev to host FIS as described in section G.5 of
245                  * sas-2 r 04b */
246                 dr = &((struct smp_resp *)disc_resp)->disc;
247                 if (memcmp(dev->sas_addr, dr->attached_sas_addr,
248                           SAS_ADDR_SIZE) == 0) {
249                         sas_printk("Found loopback topology, just ignore it!\n");
250                         return 0;
251                 }
252                 if (!(dr->attached_dev_type == 0 &&
253                       dr->attached_sata_dev))
254                         break;
255                 /* In order to generate the dev to host FIS, we
256                  * send a link reset to the expander port */
257                 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
258                 /* Wait for the reset to trigger the negotiation */
259                 msleep(500);
260         }
261         sas_set_ex_phy(dev, single, disc_resp);
262         return 0;
263 }
264
265 static int sas_ex_phy_discover(struct domain_device *dev, int single)
266 {
267         struct expander_device *ex = &dev->ex_dev;
268         int  res = 0;
269         u8   *disc_req;
270         u8   *disc_resp;
271
272         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
273         if (!disc_req)
274                 return -ENOMEM;
275
276         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
277         if (!disc_resp) {
278                 kfree(disc_req);
279                 return -ENOMEM;
280         }
281
282         disc_req[1] = SMP_DISCOVER;
283
284         if (0 <= single && single < ex->num_phys) {
285                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
286         } else {
287                 int i;
288
289                 for (i = 0; i < ex->num_phys; i++) {
290                         res = sas_ex_phy_discover_helper(dev, disc_req,
291                                                          disc_resp, i);
292                         if (res)
293                                 goto out_err;
294                 }
295         }
296 out_err:
297         kfree(disc_resp);
298         kfree(disc_req);
299         return res;
300 }
301
302 static int sas_expander_discover(struct domain_device *dev)
303 {
304         struct expander_device *ex = &dev->ex_dev;
305         int res = -ENOMEM;
306
307         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
308         if (!ex->ex_phy)
309                 return -ENOMEM;
310
311         res = sas_ex_phy_discover(dev, -1);
312         if (res)
313                 goto out_err;
314
315         return 0;
316  out_err:
317         kfree(ex->ex_phy);
318         ex->ex_phy = NULL;
319         return res;
320 }
321
322 #define MAX_EXPANDER_PHYS 128
323
324 static void ex_assign_report_general(struct domain_device *dev,
325                                             struct smp_resp *resp)
326 {
327         struct report_general_resp *rg = &resp->rg;
328
329         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
330         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
331         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
332         dev->ex_dev.t2t_supp = rg->t2t_supp;
333         dev->ex_dev.conf_route_table = rg->conf_route_table;
334         dev->ex_dev.configuring = rg->configuring;
335         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
336 }
337
338 #define RG_REQ_SIZE   8
339 #define RG_RESP_SIZE 32
340
341 static int sas_ex_general(struct domain_device *dev)
342 {
343         u8 *rg_req;
344         struct smp_resp *rg_resp;
345         int res;
346         int i;
347
348         rg_req = alloc_smp_req(RG_REQ_SIZE);
349         if (!rg_req)
350                 return -ENOMEM;
351
352         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
353         if (!rg_resp) {
354                 kfree(rg_req);
355                 return -ENOMEM;
356         }
357
358         rg_req[1] = SMP_REPORT_GENERAL;
359
360         for (i = 0; i < 5; i++) {
361                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
362                                        RG_RESP_SIZE);
363
364                 if (res) {
365                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
366                                     SAS_ADDR(dev->sas_addr), res);
367                         goto out;
368                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
369                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
370                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
371                         res = rg_resp->result;
372                         goto out;
373                 }
374
375                 ex_assign_report_general(dev, rg_resp);
376
377                 if (dev->ex_dev.configuring) {
378                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
379                                     SAS_ADDR(dev->sas_addr));
380                         schedule_timeout_interruptible(5*HZ);
381                 } else
382                         break;
383         }
384 out:
385         kfree(rg_req);
386         kfree(rg_resp);
387         return res;
388 }
389
390 static void ex_assign_manuf_info(struct domain_device *dev, void
391                                         *_mi_resp)
392 {
393         u8 *mi_resp = _mi_resp;
394         struct sas_rphy *rphy = dev->rphy;
395         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
396
397         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
398         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
399         memcpy(edev->product_rev, mi_resp + 36,
400                SAS_EXPANDER_PRODUCT_REV_LEN);
401
402         if (mi_resp[8] & 1) {
403                 memcpy(edev->component_vendor_id, mi_resp + 40,
404                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
405                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
406                 edev->component_revision_id = mi_resp[50];
407         }
408 }
409
410 #define MI_REQ_SIZE   8
411 #define MI_RESP_SIZE 64
412
413 static int sas_ex_manuf_info(struct domain_device *dev)
414 {
415         u8 *mi_req;
416         u8 *mi_resp;
417         int res;
418
419         mi_req = alloc_smp_req(MI_REQ_SIZE);
420         if (!mi_req)
421                 return -ENOMEM;
422
423         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
424         if (!mi_resp) {
425                 kfree(mi_req);
426                 return -ENOMEM;
427         }
428
429         mi_req[1] = SMP_REPORT_MANUF_INFO;
430
431         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
432         if (res) {
433                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
434                             SAS_ADDR(dev->sas_addr), res);
435                 goto out;
436         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
437                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
438                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
439                 goto out;
440         }
441
442         ex_assign_manuf_info(dev, mi_resp);
443 out:
444         kfree(mi_req);
445         kfree(mi_resp);
446         return res;
447 }
448
449 #define PC_REQ_SIZE  44
450 #define PC_RESP_SIZE 8
451
452 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
453                         enum phy_func phy_func,
454                         struct sas_phy_linkrates *rates)
455 {
456         u8 *pc_req;
457         u8 *pc_resp;
458         int res;
459
460         pc_req = alloc_smp_req(PC_REQ_SIZE);
461         if (!pc_req)
462                 return -ENOMEM;
463
464         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
465         if (!pc_resp) {
466                 kfree(pc_req);
467                 return -ENOMEM;
468         }
469
470         pc_req[1] = SMP_PHY_CONTROL;
471         pc_req[9] = phy_id;
472         pc_req[10]= phy_func;
473         if (rates) {
474                 pc_req[32] = rates->minimum_linkrate << 4;
475                 pc_req[33] = rates->maximum_linkrate << 4;
476         }
477
478         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
479
480         kfree(pc_resp);
481         kfree(pc_req);
482         return res;
483 }
484
485 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
486 {
487         struct expander_device *ex = &dev->ex_dev;
488         struct ex_phy *phy = &ex->ex_phy[phy_id];
489
490         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
491         phy->linkrate = SAS_PHY_DISABLED;
492 }
493
494 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
495 {
496         struct expander_device *ex = &dev->ex_dev;
497         int i;
498
499         for (i = 0; i < ex->num_phys; i++) {
500                 struct ex_phy *phy = &ex->ex_phy[i];
501
502                 if (phy->phy_state == PHY_VACANT ||
503                     phy->phy_state == PHY_NOT_PRESENT)
504                         continue;
505
506                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
507                         sas_ex_disable_phy(dev, i);
508         }
509 }
510
511 static int sas_dev_present_in_domain(struct asd_sas_port *port,
512                                             u8 *sas_addr)
513 {
514         struct domain_device *dev;
515
516         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
517                 return 1;
518         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
519                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
520                         return 1;
521         }
522         return 0;
523 }
524
525 #define RPEL_REQ_SIZE   16
526 #define RPEL_RESP_SIZE  32
527 int sas_smp_get_phy_events(struct sas_phy *phy)
528 {
529         int res;
530         u8 *req;
531         u8 *resp;
532         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
533         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
534
535         req = alloc_smp_req(RPEL_REQ_SIZE);
536         if (!req)
537                 return -ENOMEM;
538
539         resp = alloc_smp_resp(RPEL_RESP_SIZE);
540         if (!resp) {
541                 kfree(req);
542                 return -ENOMEM;
543         }
544
545         req[1] = SMP_REPORT_PHY_ERR_LOG;
546         req[9] = phy->number;
547
548         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
549                                     resp, RPEL_RESP_SIZE);
550
551         if (!res)
552                 goto out;
553
554         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
555         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
556         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
557         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
558
559  out:
560         kfree(resp);
561         return res;
562
563 }
564
565 #ifdef CONFIG_SCSI_SAS_ATA
566
567 #define RPS_REQ_SIZE  16
568 #define RPS_RESP_SIZE 60
569
570 static int sas_get_report_phy_sata(struct domain_device *dev,
571                                           int phy_id,
572                                           struct smp_resp *rps_resp)
573 {
574         int res;
575         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
576         u8 *resp = (u8 *)rps_resp;
577
578         if (!rps_req)
579                 return -ENOMEM;
580
581         rps_req[1] = SMP_REPORT_PHY_SATA;
582         rps_req[9] = phy_id;
583
584         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
585                                     rps_resp, RPS_RESP_SIZE);
586
587         /* 0x34 is the FIS type for the D2H fis.  There's a potential
588          * standards cockup here.  sas-2 explicitly specifies the FIS
589          * should be encoded so that FIS type is in resp[24].
590          * However, some expanders endian reverse this.  Undo the
591          * reversal here */
592         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
593                 int i;
594
595                 for (i = 0; i < 5; i++) {
596                         int j = 24 + (i*4);
597                         u8 a, b;
598                         a = resp[j + 0];
599                         b = resp[j + 1];
600                         resp[j + 0] = resp[j + 3];
601                         resp[j + 1] = resp[j + 2];
602                         resp[j + 2] = b;
603                         resp[j + 3] = a;
604                 }
605         }
606
607         kfree(rps_req);
608         return res;
609 }
610 #endif
611
612 static void sas_ex_get_linkrate(struct domain_device *parent,
613                                        struct domain_device *child,
614                                        struct ex_phy *parent_phy)
615 {
616         struct expander_device *parent_ex = &parent->ex_dev;
617         struct sas_port *port;
618         int i;
619
620         child->pathways = 0;
621
622         port = parent_phy->port;
623
624         for (i = 0; i < parent_ex->num_phys; i++) {
625                 struct ex_phy *phy = &parent_ex->ex_phy[i];
626
627                 if (phy->phy_state == PHY_VACANT ||
628                     phy->phy_state == PHY_NOT_PRESENT)
629                         continue;
630
631                 if (SAS_ADDR(phy->attached_sas_addr) ==
632                     SAS_ADDR(child->sas_addr)) {
633
634                         child->min_linkrate = min(parent->min_linkrate,
635                                                   phy->linkrate);
636                         child->max_linkrate = max(parent->max_linkrate,
637                                                   phy->linkrate);
638                         child->pathways++;
639                         sas_port_add_phy(port, phy->phy);
640                 }
641         }
642         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
643         child->pathways = min(child->pathways, parent->pathways);
644 }
645
646 static struct domain_device *sas_ex_discover_end_dev(
647         struct domain_device *parent, int phy_id)
648 {
649         struct expander_device *parent_ex = &parent->ex_dev;
650         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
651         struct domain_device *child = NULL;
652         struct sas_rphy *rphy;
653         int res;
654
655         if (phy->attached_sata_host || phy->attached_sata_ps)
656                 return NULL;
657
658         child = kzalloc(sizeof(*child), GFP_KERNEL);
659         if (!child)
660                 return NULL;
661
662         child->parent = parent;
663         child->port   = parent->port;
664         child->iproto = phy->attached_iproto;
665         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
666         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
667         if (!phy->port) {
668                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
669                 if (unlikely(!phy->port))
670                         goto out_err;
671                 if (unlikely(sas_port_add(phy->port) != 0)) {
672                         sas_port_free(phy->port);
673                         goto out_err;
674                 }
675         }
676         sas_ex_get_linkrate(parent, child, phy);
677
678 #ifdef CONFIG_SCSI_SAS_ATA
679         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
680                 child->dev_type = SATA_DEV;
681                 if (phy->attached_tproto & SAS_PROTOCOL_STP)
682                         child->tproto = phy->attached_tproto;
683                 if (phy->attached_sata_dev)
684                         child->tproto |= SATA_DEV;
685                 res = sas_get_report_phy_sata(parent, phy_id,
686                                               &child->sata_dev.rps_resp);
687                 if (res) {
688                         SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
689                                     "0x%x\n", SAS_ADDR(parent->sas_addr),
690                                     phy_id, res);
691                         goto out_free;
692                 }
693                 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
694                        sizeof(struct dev_to_host_fis));
695
696                 rphy = sas_end_device_alloc(phy->port);
697                 if (unlikely(!rphy))
698                         goto out_free;
699
700                 sas_init_dev(child);
701
702                 child->rphy = rphy;
703
704                 spin_lock_irq(&parent->port->dev_list_lock);
705                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
706                 spin_unlock_irq(&parent->port->dev_list_lock);
707
708                 res = sas_discover_sata(child);
709                 if (res) {
710                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
711                                     "%016llx:0x%x returned 0x%x\n",
712                                     SAS_ADDR(child->sas_addr),
713                                     SAS_ADDR(parent->sas_addr), phy_id, res);
714                         goto out_list_del;
715                 }
716         } else
717 #endif
718           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
719                 child->dev_type = SAS_END_DEV;
720                 rphy = sas_end_device_alloc(phy->port);
721                 /* FIXME: error handling */
722                 if (unlikely(!rphy))
723                         goto out_free;
724                 child->tproto = phy->attached_tproto;
725                 sas_init_dev(child);
726
727                 child->rphy = rphy;
728                 sas_fill_in_rphy(child, rphy);
729
730                 spin_lock_irq(&parent->port->dev_list_lock);
731                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
732                 spin_unlock_irq(&parent->port->dev_list_lock);
733
734                 res = sas_discover_end_dev(child);
735                 if (res) {
736                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
737                                     "at %016llx:0x%x returned 0x%x\n",
738                                     SAS_ADDR(child->sas_addr),
739                                     SAS_ADDR(parent->sas_addr), phy_id, res);
740                         goto out_list_del;
741                 }
742         } else {
743                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
744                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
745                             phy_id);
746                 goto out_free;
747         }
748
749         list_add_tail(&child->siblings, &parent_ex->children);
750         return child;
751
752  out_list_del:
753         sas_rphy_free(child->rphy);
754         child->rphy = NULL;
755         list_del(&child->dev_list_node);
756  out_free:
757         sas_port_delete(phy->port);
758  out_err:
759         phy->port = NULL;
760         kfree(child);
761         return NULL;
762 }
763
764 /* See if this phy is part of a wide port */
765 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
766 {
767         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
768         int i;
769
770         for (i = 0; i < parent->ex_dev.num_phys; i++) {
771                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
772
773                 if (ephy == phy)
774                         continue;
775
776                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
777                             SAS_ADDR_SIZE) && ephy->port) {
778                         sas_port_add_phy(ephy->port, phy->phy);
779                         phy->port = ephy->port;
780                         phy->phy_state = PHY_DEVICE_DISCOVERED;
781                         return 0;
782                 }
783         }
784
785         return -ENODEV;
786 }
787
788 static struct domain_device *sas_ex_discover_expander(
789         struct domain_device *parent, int phy_id)
790 {
791         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
792         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
793         struct domain_device *child = NULL;
794         struct sas_rphy *rphy;
795         struct sas_expander_device *edev;
796         struct asd_sas_port *port;
797         int res;
798
799         if (phy->routing_attr == DIRECT_ROUTING) {
800                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
801                             "allowed\n",
802                             SAS_ADDR(parent->sas_addr), phy_id,
803                             SAS_ADDR(phy->attached_sas_addr),
804                             phy->attached_phy_id);
805                 return NULL;
806         }
807         child = kzalloc(sizeof(*child), GFP_KERNEL);
808         if (!child)
809                 return NULL;
810
811         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
812         /* FIXME: better error handling */
813         BUG_ON(sas_port_add(phy->port) != 0);
814
815
816         switch (phy->attached_dev_type) {
817         case EDGE_DEV:
818                 rphy = sas_expander_alloc(phy->port,
819                                           SAS_EDGE_EXPANDER_DEVICE);
820                 break;
821         case FANOUT_DEV:
822                 rphy = sas_expander_alloc(phy->port,
823                                           SAS_FANOUT_EXPANDER_DEVICE);
824                 break;
825         default:
826                 rphy = NULL;    /* shut gcc up */
827                 BUG();
828         }
829         port = parent->port;
830         child->rphy = rphy;
831         edev = rphy_to_expander_device(rphy);
832         child->dev_type = phy->attached_dev_type;
833         child->parent = parent;
834         child->port = port;
835         child->iproto = phy->attached_iproto;
836         child->tproto = phy->attached_tproto;
837         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
838         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
839         sas_ex_get_linkrate(parent, child, phy);
840         edev->level = parent_ex->level + 1;
841         parent->port->disc.max_level = max(parent->port->disc.max_level,
842                                            edev->level);
843         sas_init_dev(child);
844         sas_fill_in_rphy(child, rphy);
845         sas_rphy_add(rphy);
846
847         spin_lock_irq(&parent->port->dev_list_lock);
848         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
849         spin_unlock_irq(&parent->port->dev_list_lock);
850
851         res = sas_discover_expander(child);
852         if (res) {
853                 spin_lock_irq(&parent->port->dev_list_lock);
854                 list_del(&child->dev_list_node);
855                 spin_unlock_irq(&parent->port->dev_list_lock);
856                 kfree(child);
857                 return NULL;
858         }
859         list_add_tail(&child->siblings, &parent->ex_dev.children);
860         return child;
861 }
862
863 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
864 {
865         struct expander_device *ex = &dev->ex_dev;
866         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
867         struct domain_device *child = NULL;
868         int res = 0;
869
870         /* Phy state */
871         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
872                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
873                         res = sas_ex_phy_discover(dev, phy_id);
874                 if (res)
875                         return res;
876         }
877
878         /* Parent and domain coherency */
879         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
880                              SAS_ADDR(dev->port->sas_addr))) {
881                 sas_add_parent_port(dev, phy_id);
882                 return 0;
883         }
884         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
885                             SAS_ADDR(dev->parent->sas_addr))) {
886                 sas_add_parent_port(dev, phy_id);
887                 if (ex_phy->routing_attr == TABLE_ROUTING)
888                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
889                 return 0;
890         }
891
892         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
893                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
894
895         if (ex_phy->attached_dev_type == NO_DEVICE) {
896                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
897                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
898                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
899                 }
900                 return 0;
901         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
902                 return 0;
903
904         if (ex_phy->attached_dev_type != SAS_END_DEV &&
905             ex_phy->attached_dev_type != FANOUT_DEV &&
906             ex_phy->attached_dev_type != EDGE_DEV) {
907                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
908                             "phy 0x%x\n", ex_phy->attached_dev_type,
909                             SAS_ADDR(dev->sas_addr),
910                             phy_id);
911                 return 0;
912         }
913
914         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
915         if (res) {
916                 SAS_DPRINTK("configure routing for dev %016llx "
917                             "reported 0x%x. Forgotten\n",
918                             SAS_ADDR(ex_phy->attached_sas_addr), res);
919                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
920                 return res;
921         }
922
923         res = sas_ex_join_wide_port(dev, phy_id);
924         if (!res) {
925                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
926                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
927                 return res;
928         }
929
930         switch (ex_phy->attached_dev_type) {
931         case SAS_END_DEV:
932                 child = sas_ex_discover_end_dev(dev, phy_id);
933                 break;
934         case FANOUT_DEV:
935                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
936                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
937                                     "attached to ex %016llx phy 0x%x\n",
938                                     SAS_ADDR(ex_phy->attached_sas_addr),
939                                     ex_phy->attached_phy_id,
940                                     SAS_ADDR(dev->sas_addr),
941                                     phy_id);
942                         sas_ex_disable_phy(dev, phy_id);
943                         break;
944                 } else
945                         memcpy(dev->port->disc.fanout_sas_addr,
946                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
947                 /* fallthrough */
948         case EDGE_DEV:
949                 child = sas_ex_discover_expander(dev, phy_id);
950                 break;
951         default:
952                 break;
953         }
954
955         if (child) {
956                 int i;
957
958                 for (i = 0; i < ex->num_phys; i++) {
959                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
960                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
961                                 continue;
962                         /*
963                          * Due to races, the phy might not get added to the
964                          * wide port, so we add the phy to the wide port here.
965                          */
966                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
967                             SAS_ADDR(child->sas_addr)) {
968                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
969                                 res = sas_ex_join_wide_port(dev, i);
970                                 if (!res)
971                                         SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
972                                                     i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
973
974                         }
975                 }
976         }
977
978         return res;
979 }
980
981 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
982 {
983         struct expander_device *ex = &dev->ex_dev;
984         int i;
985
986         for (i = 0; i < ex->num_phys; i++) {
987                 struct ex_phy *phy = &ex->ex_phy[i];
988
989                 if (phy->phy_state == PHY_VACANT ||
990                     phy->phy_state == PHY_NOT_PRESENT)
991                         continue;
992
993                 if ((phy->attached_dev_type == EDGE_DEV ||
994                      phy->attached_dev_type == FANOUT_DEV) &&
995                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
996
997                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
998
999                         return 1;
1000                 }
1001         }
1002         return 0;
1003 }
1004
1005 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1006 {
1007         struct expander_device *ex = &dev->ex_dev;
1008         struct domain_device *child;
1009         u8 sub_addr[8] = {0, };
1010
1011         list_for_each_entry(child, &ex->children, siblings) {
1012                 if (child->dev_type != EDGE_DEV &&
1013                     child->dev_type != FANOUT_DEV)
1014                         continue;
1015                 if (sub_addr[0] == 0) {
1016                         sas_find_sub_addr(child, sub_addr);
1017                         continue;
1018                 } else {
1019                         u8 s2[8];
1020
1021                         if (sas_find_sub_addr(child, s2) &&
1022                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1023
1024                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1025                                             "diverges from subtractive "
1026                                             "boundary %016llx\n",
1027                                             SAS_ADDR(dev->sas_addr),
1028                                             SAS_ADDR(child->sas_addr),
1029                                             SAS_ADDR(s2),
1030                                             SAS_ADDR(sub_addr));
1031
1032                                 sas_ex_disable_port(child, s2);
1033                         }
1034                 }
1035         }
1036         return 0;
1037 }
1038 /**
1039  * sas_ex_discover_devices -- discover devices attached to this expander
1040  * dev: pointer to the expander domain device
1041  * single: if you want to do a single phy, else set to -1;
1042  *
1043  * Configure this expander for use with its devices and register the
1044  * devices of this expander.
1045  */
1046 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1047 {
1048         struct expander_device *ex = &dev->ex_dev;
1049         int i = 0, end = ex->num_phys;
1050         int res = 0;
1051
1052         if (0 <= single && single < end) {
1053                 i = single;
1054                 end = i+1;
1055         }
1056
1057         for ( ; i < end; i++) {
1058                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1059
1060                 if (ex_phy->phy_state == PHY_VACANT ||
1061                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1062                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1063                         continue;
1064
1065                 switch (ex_phy->linkrate) {
1066                 case SAS_PHY_DISABLED:
1067                 case SAS_PHY_RESET_PROBLEM:
1068                 case SAS_SATA_PORT_SELECTOR:
1069                         continue;
1070                 default:
1071                         res = sas_ex_discover_dev(dev, i);
1072                         if (res)
1073                                 break;
1074                         continue;
1075                 }
1076         }
1077
1078         if (!res)
1079                 sas_check_level_subtractive_boundary(dev);
1080
1081         return res;
1082 }
1083
1084 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1085 {
1086         struct expander_device *ex = &dev->ex_dev;
1087         int i;
1088         u8  *sub_sas_addr = NULL;
1089
1090         if (dev->dev_type != EDGE_DEV)
1091                 return 0;
1092
1093         for (i = 0; i < ex->num_phys; i++) {
1094                 struct ex_phy *phy = &ex->ex_phy[i];
1095
1096                 if (phy->phy_state == PHY_VACANT ||
1097                     phy->phy_state == PHY_NOT_PRESENT)
1098                         continue;
1099
1100                 if ((phy->attached_dev_type == FANOUT_DEV ||
1101                      phy->attached_dev_type == EDGE_DEV) &&
1102                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1103
1104                         if (!sub_sas_addr)
1105                                 sub_sas_addr = &phy->attached_sas_addr[0];
1106                         else if (SAS_ADDR(sub_sas_addr) !=
1107                                  SAS_ADDR(phy->attached_sas_addr)) {
1108
1109                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1110                                             "diverges(%016llx) on subtractive "
1111                                             "boundary(%016llx). Disabled\n",
1112                                             SAS_ADDR(dev->sas_addr), i,
1113                                             SAS_ADDR(phy->attached_sas_addr),
1114                                             SAS_ADDR(sub_sas_addr));
1115                                 sas_ex_disable_phy(dev, i);
1116                         }
1117                 }
1118         }
1119         return 0;
1120 }
1121
1122 static void sas_print_parent_topology_bug(struct domain_device *child,
1123                                                  struct ex_phy *parent_phy,
1124                                                  struct ex_phy *child_phy)
1125 {
1126         static const char ra_char[] = {
1127                 [DIRECT_ROUTING] = 'D',
1128                 [SUBTRACTIVE_ROUTING] = 'S',
1129                 [TABLE_ROUTING] = 'T',
1130         };
1131         static const char *ex_type[] = {
1132                 [EDGE_DEV] = "edge",
1133                 [FANOUT_DEV] = "fanout",
1134         };
1135         struct domain_device *parent = child->parent;
1136
1137         sas_printk("%s ex %016llx (T2T supp:%d) phy 0x%x <--> %s ex %016llx "
1138                    "(T2T supp:%d) phy 0x%x has %c:%c routing link!\n",
1139
1140                    ex_type[parent->dev_type],
1141                    SAS_ADDR(parent->sas_addr),
1142                    parent->ex_dev.t2t_supp,
1143                    parent_phy->phy_id,
1144
1145                    ex_type[child->dev_type],
1146                    SAS_ADDR(child->sas_addr),
1147                    child->ex_dev.t2t_supp,
1148                    child_phy->phy_id,
1149
1150                    ra_char[parent_phy->routing_attr],
1151                    ra_char[child_phy->routing_attr]);
1152 }
1153
1154 static int sas_check_eeds(struct domain_device *child,
1155                                  struct ex_phy *parent_phy,
1156                                  struct ex_phy *child_phy)
1157 {
1158         int res = 0;
1159         struct domain_device *parent = child->parent;
1160
1161         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1162                 res = -ENODEV;
1163                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1164                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1165                             SAS_ADDR(parent->sas_addr),
1166                             parent_phy->phy_id,
1167                             SAS_ADDR(child->sas_addr),
1168                             child_phy->phy_id,
1169                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1170         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1171                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1172                        SAS_ADDR_SIZE);
1173                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1174                        SAS_ADDR_SIZE);
1175         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1176                     SAS_ADDR(parent->sas_addr)) ||
1177                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1178                     SAS_ADDR(child->sas_addr)))
1179                    &&
1180                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1181                      SAS_ADDR(parent->sas_addr)) ||
1182                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1183                      SAS_ADDR(child->sas_addr))))
1184                 ;
1185         else {
1186                 res = -ENODEV;
1187                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1188                             "phy 0x%x link forms a third EEDS!\n",
1189                             SAS_ADDR(parent->sas_addr),
1190                             parent_phy->phy_id,
1191                             SAS_ADDR(child->sas_addr),
1192                             child_phy->phy_id);
1193         }
1194
1195         return res;
1196 }
1197
1198 /* Here we spill over 80 columns.  It is intentional.
1199  */
1200 static int sas_check_parent_topology(struct domain_device *child)
1201 {
1202         struct expander_device *child_ex = &child->ex_dev;
1203         struct expander_device *parent_ex;
1204         int i;
1205         int res = 0;
1206
1207         if (!child->parent)
1208                 return 0;
1209
1210         if (child->parent->dev_type != EDGE_DEV &&
1211             child->parent->dev_type != FANOUT_DEV)
1212                 return 0;
1213
1214         parent_ex = &child->parent->ex_dev;
1215
1216         for (i = 0; i < parent_ex->num_phys; i++) {
1217                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1218                 struct ex_phy *child_phy;
1219
1220                 if (parent_phy->phy_state == PHY_VACANT ||
1221                     parent_phy->phy_state == PHY_NOT_PRESENT)
1222                         continue;
1223
1224                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1225                         continue;
1226
1227                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1228
1229                 switch (child->parent->dev_type) {
1230                 case EDGE_DEV:
1231                         if (child->dev_type == FANOUT_DEV) {
1232                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1233                                     child_phy->routing_attr != TABLE_ROUTING) {
1234                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1235                                         res = -ENODEV;
1236                                 }
1237                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1238                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1239                                         res = sas_check_eeds(child, parent_phy, child_phy);
1240                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1241                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1242                                         res = -ENODEV;
1243                                 }
1244                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1245                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1246                                     (child_phy->routing_attr == TABLE_ROUTING &&
1247                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1248                                         /* All good */;
1249                                 } else {
1250                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1251                                         res = -ENODEV;
1252                                 }
1253                         }
1254                         break;
1255                 case FANOUT_DEV:
1256                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1257                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1258                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1259                                 res = -ENODEV;
1260                         }
1261                         break;
1262                 default:
1263                         break;
1264                 }
1265         }
1266
1267         return res;
1268 }
1269
1270 #define RRI_REQ_SIZE  16
1271 #define RRI_RESP_SIZE 44
1272
1273 static int sas_configure_present(struct domain_device *dev, int phy_id,
1274                                  u8 *sas_addr, int *index, int *present)
1275 {
1276         int i, res = 0;
1277         struct expander_device *ex = &dev->ex_dev;
1278         struct ex_phy *phy = &ex->ex_phy[phy_id];
1279         u8 *rri_req;
1280         u8 *rri_resp;
1281
1282         *present = 0;
1283         *index = 0;
1284
1285         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1286         if (!rri_req)
1287                 return -ENOMEM;
1288
1289         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1290         if (!rri_resp) {
1291                 kfree(rri_req);
1292                 return -ENOMEM;
1293         }
1294
1295         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1296         rri_req[9] = phy_id;
1297
1298         for (i = 0; i < ex->max_route_indexes ; i++) {
1299                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1300                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1301                                        RRI_RESP_SIZE);
1302                 if (res)
1303                         goto out;
1304                 res = rri_resp[2];
1305                 if (res == SMP_RESP_NO_INDEX) {
1306                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1307                                     "phy 0x%x index 0x%x\n",
1308                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1309                         goto out;
1310                 } else if (res != SMP_RESP_FUNC_ACC) {
1311                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1312                                     "result 0x%x\n", __func__,
1313                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1314                         goto out;
1315                 }
1316                 if (SAS_ADDR(sas_addr) != 0) {
1317                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1318                                 *index = i;
1319                                 if ((rri_resp[12] & 0x80) == 0x80)
1320                                         *present = 0;
1321                                 else
1322                                         *present = 1;
1323                                 goto out;
1324                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1325                                 *index = i;
1326                                 *present = 0;
1327                                 goto out;
1328                         }
1329                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1330                            phy->last_da_index < i) {
1331                         phy->last_da_index = i;
1332                         *index = i;
1333                         *present = 0;
1334                         goto out;
1335                 }
1336         }
1337         res = -1;
1338 out:
1339         kfree(rri_req);
1340         kfree(rri_resp);
1341         return res;
1342 }
1343
1344 #define CRI_REQ_SIZE  44
1345 #define CRI_RESP_SIZE  8
1346
1347 static int sas_configure_set(struct domain_device *dev, int phy_id,
1348                              u8 *sas_addr, int index, int include)
1349 {
1350         int res;
1351         u8 *cri_req;
1352         u8 *cri_resp;
1353
1354         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1355         if (!cri_req)
1356                 return -ENOMEM;
1357
1358         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1359         if (!cri_resp) {
1360                 kfree(cri_req);
1361                 return -ENOMEM;
1362         }
1363
1364         cri_req[1] = SMP_CONF_ROUTE_INFO;
1365         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1366         cri_req[9] = phy_id;
1367         if (SAS_ADDR(sas_addr) == 0 || !include)
1368                 cri_req[12] |= 0x80;
1369         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1370
1371         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1372                                CRI_RESP_SIZE);
1373         if (res)
1374                 goto out;
1375         res = cri_resp[2];
1376         if (res == SMP_RESP_NO_INDEX) {
1377                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1378                             "index 0x%x\n",
1379                             SAS_ADDR(dev->sas_addr), phy_id, index);
1380         }
1381 out:
1382         kfree(cri_req);
1383         kfree(cri_resp);
1384         return res;
1385 }
1386
1387 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1388                                     u8 *sas_addr, int include)
1389 {
1390         int index;
1391         int present;
1392         int res;
1393
1394         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1395         if (res)
1396                 return res;
1397         if (include ^ present)
1398                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1399
1400         return res;
1401 }
1402
1403 /**
1404  * sas_configure_parent -- configure routing table of parent
1405  * parent: parent expander
1406  * child: child expander
1407  * sas_addr: SAS port identifier of device directly attached to child
1408  */
1409 static int sas_configure_parent(struct domain_device *parent,
1410                                 struct domain_device *child,
1411                                 u8 *sas_addr, int include)
1412 {
1413         struct expander_device *ex_parent = &parent->ex_dev;
1414         int res = 0;
1415         int i;
1416
1417         if (parent->parent) {
1418                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1419                                            include);
1420                 if (res)
1421                         return res;
1422         }
1423
1424         if (ex_parent->conf_route_table == 0) {
1425                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1426                             SAS_ADDR(parent->sas_addr));
1427                 return 0;
1428         }
1429
1430         for (i = 0; i < ex_parent->num_phys; i++) {
1431                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1432
1433                 if ((phy->routing_attr == TABLE_ROUTING) &&
1434                     (SAS_ADDR(phy->attached_sas_addr) ==
1435                      SAS_ADDR(child->sas_addr))) {
1436                         res = sas_configure_phy(parent, i, sas_addr, include);
1437                         if (res)
1438                                 return res;
1439                 }
1440         }
1441
1442         return res;
1443 }
1444
1445 /**
1446  * sas_configure_routing -- configure routing
1447  * dev: expander device
1448  * sas_addr: port identifier of device directly attached to the expander device
1449  */
1450 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1451 {
1452         if (dev->parent)
1453                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1454         return 0;
1455 }
1456
1457 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1458 {
1459         if (dev->parent)
1460                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1461         return 0;
1462 }
1463
1464 /**
1465  * sas_discover_expander -- expander discovery
1466  * @ex: pointer to expander domain device
1467  *
1468  * See comment in sas_discover_sata().
1469  */
1470 static int sas_discover_expander(struct domain_device *dev)
1471 {
1472         int res;
1473
1474         res = sas_notify_lldd_dev_found(dev);
1475         if (res)
1476                 return res;
1477
1478         res = sas_ex_general(dev);
1479         if (res)
1480                 goto out_err;
1481         res = sas_ex_manuf_info(dev);
1482         if (res)
1483                 goto out_err;
1484
1485         res = sas_expander_discover(dev);
1486         if (res) {
1487                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1488                             SAS_ADDR(dev->sas_addr), res);
1489                 goto out_err;
1490         }
1491
1492         sas_check_ex_subtractive_boundary(dev);
1493         res = sas_check_parent_topology(dev);
1494         if (res)
1495                 goto out_err;
1496         return 0;
1497 out_err:
1498         sas_notify_lldd_dev_gone(dev);
1499         return res;
1500 }
1501
1502 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1503 {
1504         int res = 0;
1505         struct domain_device *dev;
1506
1507         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1508                 if (dev->dev_type == EDGE_DEV ||
1509                     dev->dev_type == FANOUT_DEV) {
1510                         struct sas_expander_device *ex =
1511                                 rphy_to_expander_device(dev->rphy);
1512
1513                         if (level == ex->level)
1514                                 res = sas_ex_discover_devices(dev, -1);
1515                         else if (level > 0)
1516                                 res = sas_ex_discover_devices(port->port_dev, -1);
1517
1518                 }
1519         }
1520
1521         return res;
1522 }
1523
1524 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1525 {
1526         int res;
1527         int level;
1528
1529         do {
1530                 level = port->disc.max_level;
1531                 res = sas_ex_level_discovery(port, level);
1532                 mb();
1533         } while (level < port->disc.max_level);
1534
1535         return res;
1536 }
1537
1538 int sas_discover_root_expander(struct domain_device *dev)
1539 {
1540         int res;
1541         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1542
1543         res = sas_rphy_add(dev->rphy);
1544         if (res)
1545                 goto out_err;
1546
1547         ex->level = dev->port->disc.max_level; /* 0 */
1548         res = sas_discover_expander(dev);
1549         if (res)
1550                 goto out_err2;
1551
1552         sas_ex_bfs_disc(dev->port);
1553
1554         return res;
1555
1556 out_err2:
1557         sas_rphy_remove(dev->rphy);
1558 out_err:
1559         return res;
1560 }
1561
1562 /* ---------- Domain revalidation ---------- */
1563
1564 static int sas_get_phy_discover(struct domain_device *dev,
1565                                 int phy_id, struct smp_resp *disc_resp)
1566 {
1567         int res;
1568         u8 *disc_req;
1569
1570         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1571         if (!disc_req)
1572                 return -ENOMEM;
1573
1574         disc_req[1] = SMP_DISCOVER;
1575         disc_req[9] = phy_id;
1576
1577         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1578                                disc_resp, DISCOVER_RESP_SIZE);
1579         if (res)
1580                 goto out;
1581         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1582                 res = disc_resp->result;
1583                 goto out;
1584         }
1585 out:
1586         kfree(disc_req);
1587         return res;
1588 }
1589
1590 static int sas_get_phy_change_count(struct domain_device *dev,
1591                                     int phy_id, int *pcc)
1592 {
1593         int res;
1594         struct smp_resp *disc_resp;
1595
1596         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1597         if (!disc_resp)
1598                 return -ENOMEM;
1599
1600         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1601         if (!res)
1602                 *pcc = disc_resp->disc.change_count;
1603
1604         kfree(disc_resp);
1605         return res;
1606 }
1607
1608 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1609                                          int phy_id, u8 *attached_sas_addr)
1610 {
1611         int res;
1612         struct smp_resp *disc_resp;
1613         struct discover_resp *dr;
1614
1615         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1616         if (!disc_resp)
1617                 return -ENOMEM;
1618         dr = &disc_resp->disc;
1619
1620         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1621         if (!res) {
1622                 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1623                 if (dr->attached_dev_type == 0)
1624                         memset(attached_sas_addr, 0, 8);
1625         }
1626         kfree(disc_resp);
1627         return res;
1628 }
1629
1630 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1631                               int from_phy, bool update)
1632 {
1633         struct expander_device *ex = &dev->ex_dev;
1634         int res = 0;
1635         int i;
1636
1637         for (i = from_phy; i < ex->num_phys; i++) {
1638                 int phy_change_count = 0;
1639
1640                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1641                 if (res)
1642                         goto out;
1643                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1644                         if (update)
1645                                 ex->ex_phy[i].phy_change_count =
1646                                         phy_change_count;
1647                         *phy_id = i;
1648                         return 0;
1649                 }
1650         }
1651 out:
1652         return res;
1653 }
1654
1655 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1656 {
1657         int res;
1658         u8  *rg_req;
1659         struct smp_resp  *rg_resp;
1660
1661         rg_req = alloc_smp_req(RG_REQ_SIZE);
1662         if (!rg_req)
1663                 return -ENOMEM;
1664
1665         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1666         if (!rg_resp) {
1667                 kfree(rg_req);
1668                 return -ENOMEM;
1669         }
1670
1671         rg_req[1] = SMP_REPORT_GENERAL;
1672
1673         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1674                                RG_RESP_SIZE);
1675         if (res)
1676                 goto out;
1677         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1678                 res = rg_resp->result;
1679                 goto out;
1680         }
1681
1682         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1683 out:
1684         kfree(rg_resp);
1685         kfree(rg_req);
1686         return res;
1687 }
1688 /**
1689  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1690  * @dev:domain device to be detect.
1691  * @src_dev: the device which originated BROADCAST(CHANGE).
1692  *
1693  * Add self-configuration expander suport. Suppose two expander cascading,
1694  * when the first level expander is self-configuring, hotplug the disks in
1695  * second level expander, BROADCAST(CHANGE) will not only be originated
1696  * in the second level expander, but also be originated in the first level
1697  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1698  * expander changed count in two level expanders will all increment at least
1699  * once, but the phy which chang count has changed is the source device which
1700  * we concerned.
1701  */
1702
1703 static int sas_find_bcast_dev(struct domain_device *dev,
1704                               struct domain_device **src_dev)
1705 {
1706         struct expander_device *ex = &dev->ex_dev;
1707         int ex_change_count = -1;
1708         int phy_id = -1;
1709         int res;
1710         struct domain_device *ch;
1711
1712         res = sas_get_ex_change_count(dev, &ex_change_count);
1713         if (res)
1714                 goto out;
1715         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1716                 /* Just detect if this expander phys phy change count changed,
1717                 * in order to determine if this expander originate BROADCAST,
1718                 * and do not update phy change count field in our structure.
1719                 */
1720                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1721                 if (phy_id != -1) {
1722                         *src_dev = dev;
1723                         ex->ex_change_count = ex_change_count;
1724                         SAS_DPRINTK("Expander phy change count has changed\n");
1725                         return res;
1726                 } else
1727                         SAS_DPRINTK("Expander phys DID NOT change\n");
1728         }
1729         list_for_each_entry(ch, &ex->children, siblings) {
1730                 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1731                         res = sas_find_bcast_dev(ch, src_dev);
1732                         if (src_dev)
1733                                 return res;
1734                 }
1735         }
1736 out:
1737         return res;
1738 }
1739
1740 static void sas_unregister_ex_tree(struct domain_device *dev)
1741 {
1742         struct expander_device *ex = &dev->ex_dev;
1743         struct domain_device *child, *n;
1744
1745         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1746                 child->gone = 1;
1747                 if (child->dev_type == EDGE_DEV ||
1748                     child->dev_type == FANOUT_DEV)
1749                         sas_unregister_ex_tree(child);
1750                 else
1751                         sas_unregister_dev(child);
1752         }
1753         sas_unregister_dev(dev);
1754 }
1755
1756 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1757                                          int phy_id, bool last)
1758 {
1759         struct expander_device *ex_dev = &parent->ex_dev;
1760         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1761         struct domain_device *child, *n;
1762         if (last) {
1763                 list_for_each_entry_safe(child, n,
1764                         &ex_dev->children, siblings) {
1765                         if (SAS_ADDR(child->sas_addr) ==
1766                             SAS_ADDR(phy->attached_sas_addr)) {
1767                                 child->gone = 1;
1768                                 if (child->dev_type == EDGE_DEV ||
1769                                     child->dev_type == FANOUT_DEV)
1770                                         sas_unregister_ex_tree(child);
1771                                 else
1772                                         sas_unregister_dev(child);
1773                                 break;
1774                         }
1775                 }
1776                 parent->gone = 1;
1777                 sas_disable_routing(parent, phy->attached_sas_addr);
1778         }
1779         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1780         sas_port_delete_phy(phy->port, phy->phy);
1781         if (phy->port->num_phys == 0)
1782                 sas_port_delete(phy->port);
1783         phy->port = NULL;
1784 }
1785
1786 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1787                                           const int level)
1788 {
1789         struct expander_device *ex_root = &root->ex_dev;
1790         struct domain_device *child;
1791         int res = 0;
1792
1793         list_for_each_entry(child, &ex_root->children, siblings) {
1794                 if (child->dev_type == EDGE_DEV ||
1795                     child->dev_type == FANOUT_DEV) {
1796                         struct sas_expander_device *ex =
1797                                 rphy_to_expander_device(child->rphy);
1798
1799                         if (level > ex->level)
1800                                 res = sas_discover_bfs_by_root_level(child,
1801                                                                      level);
1802                         else if (level == ex->level)
1803                                 res = sas_ex_discover_devices(child, -1);
1804                 }
1805         }
1806         return res;
1807 }
1808
1809 static int sas_discover_bfs_by_root(struct domain_device *dev)
1810 {
1811         int res;
1812         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1813         int level = ex->level+1;
1814
1815         res = sas_ex_discover_devices(dev, -1);
1816         if (res)
1817                 goto out;
1818         do {
1819                 res = sas_discover_bfs_by_root_level(dev, level);
1820                 mb();
1821                 level += 1;
1822         } while (level <= dev->port->disc.max_level);
1823 out:
1824         return res;
1825 }
1826
1827 static int sas_discover_new(struct domain_device *dev, int phy_id)
1828 {
1829         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1830         struct domain_device *child;
1831         bool found = false;
1832         int res, i;
1833
1834         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1835                     SAS_ADDR(dev->sas_addr), phy_id);
1836         res = sas_ex_phy_discover(dev, phy_id);
1837         if (res)
1838                 goto out;
1839         /* to support the wide port inserted */
1840         for (i = 0; i < dev->ex_dev.num_phys; i++) {
1841                 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1842                 if (i == phy_id)
1843                         continue;
1844                 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1845                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1846                         found = true;
1847                         break;
1848                 }
1849         }
1850         if (found) {
1851                 sas_ex_join_wide_port(dev, phy_id);
1852                 return 0;
1853         }
1854         res = sas_ex_discover_devices(dev, phy_id);
1855         if (!res)
1856                 goto out;
1857         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1858                 if (SAS_ADDR(child->sas_addr) ==
1859                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1860                         if (child->dev_type == EDGE_DEV ||
1861                             child->dev_type == FANOUT_DEV)
1862                                 res = sas_discover_bfs_by_root(child);
1863                         break;
1864                 }
1865         }
1866 out:
1867         return res;
1868 }
1869
1870 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1871 {
1872         struct expander_device *ex = &dev->ex_dev;
1873         struct ex_phy *phy = &ex->ex_phy[phy_id];
1874         u8 attached_sas_addr[8];
1875         int res;
1876
1877         res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1878         switch (res) {
1879         case SMP_RESP_NO_PHY:
1880                 phy->phy_state = PHY_NOT_PRESENT;
1881                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1882                 goto out; break;
1883         case SMP_RESP_PHY_VACANT:
1884                 phy->phy_state = PHY_VACANT;
1885                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1886                 goto out; break;
1887         case SMP_RESP_FUNC_ACC:
1888                 break;
1889         }
1890
1891         if (SAS_ADDR(attached_sas_addr) == 0) {
1892                 phy->phy_state = PHY_EMPTY;
1893                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1894         } else if (SAS_ADDR(attached_sas_addr) ==
1895                    SAS_ADDR(phy->attached_sas_addr)) {
1896                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1897                             SAS_ADDR(dev->sas_addr), phy_id);
1898                 sas_ex_phy_discover(dev, phy_id);
1899         } else
1900                 res = sas_discover_new(dev, phy_id);
1901 out:
1902         return res;
1903 }
1904
1905 /**
1906  * sas_rediscover - revalidate the domain.
1907  * @dev:domain device to be detect.
1908  * @phy_id: the phy id will be detected.
1909  *
1910  * NOTE: this process _must_ quit (return) as soon as any connection
1911  * errors are encountered.  Connection recovery is done elsewhere.
1912  * Discover process only interrogates devices in order to discover the
1913  * domain.For plugging out, we un-register the device only when it is
1914  * the last phy in the port, for other phys in this port, we just delete it
1915  * from the port.For inserting, we do discovery when it is the
1916  * first phy,for other phys in this port, we add it to the port to
1917  * forming the wide-port.
1918  */
1919 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1920 {
1921         struct expander_device *ex = &dev->ex_dev;
1922         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1923         int res = 0;
1924         int i;
1925         bool last = true;       /* is this the last phy of the port */
1926
1927         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1928                     SAS_ADDR(dev->sas_addr), phy_id);
1929
1930         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1931                 for (i = 0; i < ex->num_phys; i++) {
1932                         struct ex_phy *phy = &ex->ex_phy[i];
1933
1934                         if (i == phy_id)
1935                                 continue;
1936                         if (SAS_ADDR(phy->attached_sas_addr) ==
1937                             SAS_ADDR(changed_phy->attached_sas_addr)) {
1938                                 SAS_DPRINTK("phy%d part of wide port with "
1939                                             "phy%d\n", phy_id, i);
1940                                 last = false;
1941                                 break;
1942                         }
1943                 }
1944                 res = sas_rediscover_dev(dev, phy_id, last);
1945         } else
1946                 res = sas_discover_new(dev, phy_id);
1947         return res;
1948 }
1949
1950 /**
1951  * sas_revalidate_domain -- revalidate the domain
1952  * @port: port to the domain of interest
1953  *
1954  * NOTE: this process _must_ quit (return) as soon as any connection
1955  * errors are encountered.  Connection recovery is done elsewhere.
1956  * Discover process only interrogates devices in order to discover the
1957  * domain.
1958  */
1959 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1960 {
1961         int res;
1962         struct domain_device *dev = NULL;
1963
1964         res = sas_find_bcast_dev(port_dev, &dev);
1965         if (res)
1966                 goto out;
1967         if (dev) {
1968                 struct expander_device *ex = &dev->ex_dev;
1969                 int i = 0, phy_id;
1970
1971                 do {
1972                         phy_id = -1;
1973                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
1974                         if (phy_id == -1)
1975                                 break;
1976                         res = sas_rediscover(dev, phy_id);
1977                         i = phy_id + 1;
1978                 } while (i < ex->num_phys);
1979         }
1980 out:
1981         return res;
1982 }
1983
1984 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1985                     struct request *req)
1986 {
1987         struct domain_device *dev;
1988         int ret, type;
1989         struct request *rsp = req->next_rq;
1990
1991         if (!rsp) {
1992                 printk("%s: space for a smp response is missing\n",
1993                        __func__);
1994                 return -EINVAL;
1995         }
1996
1997         /* no rphy means no smp target support (ie aic94xx host) */
1998         if (!rphy)
1999                 return sas_smp_host_handler(shost, req, rsp);
2000
2001         type = rphy->identify.device_type;
2002
2003         if (type != SAS_EDGE_EXPANDER_DEVICE &&
2004             type != SAS_FANOUT_EXPANDER_DEVICE) {
2005                 printk("%s: can we send a smp request to a device?\n",
2006                        __func__);
2007                 return -EINVAL;
2008         }
2009
2010         dev = sas_find_dev_by_rphy(rphy);
2011         if (!dev) {
2012                 printk("%s: fail to find a domain_device?\n", __func__);
2013                 return -EINVAL;
2014         }
2015
2016         /* do we need to support multiple segments? */
2017         if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2018                 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2019                        __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2020                        rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2021                 return -EINVAL;
2022         }
2023
2024         ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2025                                bio_data(rsp->bio), blk_rq_bytes(rsp));
2026         if (ret > 0) {
2027                 /* positive number is the untransferred residual */
2028                 rsp->resid_len = ret;
2029                 req->resid_len = 0;
2030                 ret = 0;
2031         } else if (ret == 0) {
2032                 rsp->resid_len = 0;
2033                 req->resid_len = 0;
2034         }
2035
2036         return ret;
2037 }