d63f0fbcd10383219cef6c61dec16d2d62d4a41a
[linux-2.6.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39                              u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41
42 /* ---------- SMP task management ---------- */
43
44 static void smp_task_timedout(unsigned long _task)
45 {
46         struct sas_task *task = (void *) _task;
47         unsigned long flags;
48
49         spin_lock_irqsave(&task->task_state_lock, flags);
50         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52         spin_unlock_irqrestore(&task->task_state_lock, flags);
53
54         complete(&task->completion);
55 }
56
57 static void smp_task_done(struct sas_task *task)
58 {
59         if (!del_timer(&task->timer))
60                 return;
61         complete(&task->completion);
62 }
63
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
66
67 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68                             void *resp, int resp_size)
69 {
70         int res, retry;
71         struct sas_task *task = NULL;
72         struct sas_internal *i =
73                 to_sas_internal(dev->port->ha->core.shost->transportt);
74
75         mutex_lock(&dev->ex_dev.cmd_mutex);
76         for (retry = 0; retry < 3; retry++) {
77                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
78                         res = -ECOMM;
79                         break;
80                 }
81
82                 task = sas_alloc_task(GFP_KERNEL);
83                 if (!task) {
84                         res = -ENOMEM;
85                         break;
86                 }
87                 task->dev = dev;
88                 task->task_proto = dev->tproto;
89                 sg_init_one(&task->smp_task.smp_req, req, req_size);
90                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
91
92                 task->task_done = smp_task_done;
93
94                 task->timer.data = (unsigned long) task;
95                 task->timer.function = smp_task_timedout;
96                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97                 add_timer(&task->timer);
98
99                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
100
101                 if (res) {
102                         del_timer(&task->timer);
103                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
104                         break;
105                 }
106
107                 wait_for_completion(&task->completion);
108                 res = -ECOMM;
109                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110                         SAS_DPRINTK("smp task timed out or aborted\n");
111                         i->dft->lldd_abort_task(task);
112                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113                                 SAS_DPRINTK("SMP task aborted and not done\n");
114                                 break;
115                         }
116                 }
117                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118                     task->task_status.stat == SAM_STAT_GOOD) {
119                         res = 0;
120                         break;
121                 }
122                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123                     task->task_status.stat == SAS_DATA_UNDERRUN) {
124                         /* no error, but return the number of bytes of
125                          * underrun */
126                         res = task->task_status.residual;
127                         break;
128                 }
129                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130                     task->task_status.stat == SAS_DATA_OVERRUN) {
131                         res = -EMSGSIZE;
132                         break;
133                 }
134                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
136                         break;
137                 else {
138                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139                                     "status 0x%x\n", __func__,
140                                     SAS_ADDR(dev->sas_addr),
141                                     task->task_status.resp,
142                                     task->task_status.stat);
143                         sas_free_task(task);
144                         task = NULL;
145                 }
146         }
147         mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149         BUG_ON(retry == 3 && task != NULL);
150         sas_free_task(task);
151         return res;
152 }
153
154 /* ---------- Allocations ---------- */
155
156 static inline void *alloc_smp_req(int size)
157 {
158         u8 *p = kzalloc(size, GFP_KERNEL);
159         if (p)
160                 p[0] = SMP_REQUEST;
161         return p;
162 }
163
164 static inline void *alloc_smp_resp(int size)
165 {
166         return kzalloc(size, GFP_KERNEL);
167 }
168
169 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170 {
171         switch (phy->routing_attr) {
172         case TABLE_ROUTING:
173                 if (dev->ex_dev.t2t_supp)
174                         return 'U';
175                 else
176                         return 'T';
177         case DIRECT_ROUTING:
178                 return 'D';
179         case SUBTRACTIVE_ROUTING:
180                 return 'S';
181         default:
182                 return '?';
183         }
184 }
185
186 static enum sas_dev_type to_dev_type(struct discover_resp *dr)
187 {
188         /* This is detecting a failure to transmit initial dev to host
189          * FIS as described in section J.5 of sas-2 r16
190          */
191         if (dr->attached_dev_type == NO_DEVICE && dr->attached_sata_dev &&
192             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193                 return SATA_PENDING;
194         else
195                 return dr->attached_dev_type;
196 }
197
198 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199 {
200         enum sas_dev_type dev_type;
201         enum sas_linkrate linkrate;
202         u8 sas_addr[SAS_ADDR_SIZE];
203         struct smp_resp *resp = rsp;
204         struct discover_resp *dr = &resp->disc;
205         struct expander_device *ex = &dev->ex_dev;
206         struct ex_phy *phy = &ex->ex_phy[phy_id];
207         struct sas_rphy *rphy = dev->rphy;
208         bool new_phy = !phy->phy;
209         char *type;
210
211         if (new_phy) {
212                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
213
214                 /* FIXME: error_handling */
215                 BUG_ON(!phy->phy);
216         }
217
218         switch (resp->result) {
219         case SMP_RESP_PHY_VACANT:
220                 phy->phy_state = PHY_VACANT;
221                 break;
222         default:
223                 phy->phy_state = PHY_NOT_PRESENT;
224                 break;
225         case SMP_RESP_FUNC_ACC:
226                 phy->phy_state = PHY_EMPTY; /* do not know yet */
227                 break;
228         }
229
230         /* check if anything important changed to squelch debug */
231         dev_type = phy->attached_dev_type;
232         linkrate  = phy->linkrate;
233         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
234
235         phy->attached_dev_type = to_dev_type(dr);
236         phy->phy_id = phy_id;
237         phy->linkrate = dr->linkrate;
238         phy->attached_sata_host = dr->attached_sata_host;
239         phy->attached_sata_dev  = dr->attached_sata_dev;
240         phy->attached_sata_ps   = dr->attached_sata_ps;
241         phy->attached_iproto = dr->iproto << 1;
242         phy->attached_tproto = dr->tproto << 1;
243         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
244         phy->attached_phy_id = dr->attached_phy_id;
245         phy->phy_change_count = dr->change_count;
246         phy->routing_attr = dr->routing_attr;
247         phy->virtual = dr->virtual;
248         phy->last_da_index = -1;
249
250         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
251         phy->phy->identify.device_type = dr->attached_dev_type;
252         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
253         phy->phy->identify.target_port_protocols = phy->attached_tproto;
254         phy->phy->identify.phy_identifier = phy_id;
255         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
256         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
257         phy->phy->minimum_linkrate = dr->pmin_linkrate;
258         phy->phy->maximum_linkrate = dr->pmax_linkrate;
259         phy->phy->negotiated_linkrate = phy->linkrate;
260
261         if (new_phy)
262                 if (sas_phy_add(phy->phy)) {
263                         sas_phy_free(phy->phy);
264                         return;
265                 }
266
267         switch (phy->attached_dev_type) {
268         case SATA_PENDING:
269                 type = "stp pending";
270                 break;
271         case NO_DEVICE:
272                 type = "no device";
273                 break;
274         case SAS_END_DEV:
275                 if (phy->attached_iproto) {
276                         if (phy->attached_tproto)
277                                 type = "host+target";
278                         else
279                                 type = "host";
280                 } else {
281                         if (dr->attached_sata_dev)
282                                 type = "stp";
283                         else
284                                 type = "ssp";
285                 }
286                 break;
287         case EDGE_DEV:
288         case FANOUT_DEV:
289                 type = "smp";
290                 break;
291         default:
292                 type = "unknown";
293         }
294
295         /* this routine is polled by libata error recovery so filter
296          * unimportant messages
297          */
298         if (new_phy || phy->attached_dev_type != dev_type ||
299             phy->linkrate != linkrate ||
300             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
301                 /* pass */;
302         else
303                 return;
304
305         SAS_DPRINTK("ex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
306                     SAS_ADDR(dev->sas_addr), phy->phy_id,
307                     sas_route_char(dev, phy), phy->linkrate,
308                     SAS_ADDR(phy->attached_sas_addr), type);
309 }
310
311 /* check if we have an existing attached ata device on this expander phy */
312 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
313 {
314         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
315         struct domain_device *dev;
316         struct sas_rphy *rphy;
317
318         if (!ex_phy->port)
319                 return NULL;
320
321         rphy = ex_phy->port->rphy;
322         if (!rphy)
323                 return NULL;
324
325         dev = sas_find_dev_by_rphy(rphy);
326
327         if (dev && dev_is_sata(dev))
328                 return dev;
329
330         return NULL;
331 }
332
333 #define DISCOVER_REQ_SIZE  16
334 #define DISCOVER_RESP_SIZE 56
335
336 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
337                                       u8 *disc_resp, int single)
338 {
339         struct discover_resp *dr;
340         int res;
341
342         disc_req[9] = single;
343
344         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
345                                disc_resp, DISCOVER_RESP_SIZE);
346         if (res)
347                 return res;
348         dr = &((struct smp_resp *)disc_resp)->disc;
349         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
350                 sas_printk("Found loopback topology, just ignore it!\n");
351                 return 0;
352         }
353         sas_set_ex_phy(dev, single, disc_resp);
354         return 0;
355 }
356
357 int sas_ex_phy_discover(struct domain_device *dev, int single)
358 {
359         struct expander_device *ex = &dev->ex_dev;
360         int  res = 0;
361         u8   *disc_req;
362         u8   *disc_resp;
363
364         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
365         if (!disc_req)
366                 return -ENOMEM;
367
368         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
369         if (!disc_resp) {
370                 kfree(disc_req);
371                 return -ENOMEM;
372         }
373
374         disc_req[1] = SMP_DISCOVER;
375
376         if (0 <= single && single < ex->num_phys) {
377                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
378         } else {
379                 int i;
380
381                 for (i = 0; i < ex->num_phys; i++) {
382                         res = sas_ex_phy_discover_helper(dev, disc_req,
383                                                          disc_resp, i);
384                         if (res)
385                                 goto out_err;
386                 }
387         }
388 out_err:
389         kfree(disc_resp);
390         kfree(disc_req);
391         return res;
392 }
393
394 static int sas_expander_discover(struct domain_device *dev)
395 {
396         struct expander_device *ex = &dev->ex_dev;
397         int res = -ENOMEM;
398
399         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
400         if (!ex->ex_phy)
401                 return -ENOMEM;
402
403         res = sas_ex_phy_discover(dev, -1);
404         if (res)
405                 goto out_err;
406
407         return 0;
408  out_err:
409         kfree(ex->ex_phy);
410         ex->ex_phy = NULL;
411         return res;
412 }
413
414 #define MAX_EXPANDER_PHYS 128
415
416 static void ex_assign_report_general(struct domain_device *dev,
417                                             struct smp_resp *resp)
418 {
419         struct report_general_resp *rg = &resp->rg;
420
421         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
422         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
423         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
424         dev->ex_dev.t2t_supp = rg->t2t_supp;
425         dev->ex_dev.conf_route_table = rg->conf_route_table;
426         dev->ex_dev.configuring = rg->configuring;
427         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
428 }
429
430 #define RG_REQ_SIZE   8
431 #define RG_RESP_SIZE 32
432
433 static int sas_ex_general(struct domain_device *dev)
434 {
435         u8 *rg_req;
436         struct smp_resp *rg_resp;
437         int res;
438         int i;
439
440         rg_req = alloc_smp_req(RG_REQ_SIZE);
441         if (!rg_req)
442                 return -ENOMEM;
443
444         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
445         if (!rg_resp) {
446                 kfree(rg_req);
447                 return -ENOMEM;
448         }
449
450         rg_req[1] = SMP_REPORT_GENERAL;
451
452         for (i = 0; i < 5; i++) {
453                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
454                                        RG_RESP_SIZE);
455
456                 if (res) {
457                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
458                                     SAS_ADDR(dev->sas_addr), res);
459                         goto out;
460                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
461                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
462                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
463                         res = rg_resp->result;
464                         goto out;
465                 }
466
467                 ex_assign_report_general(dev, rg_resp);
468
469                 if (dev->ex_dev.configuring) {
470                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
471                                     SAS_ADDR(dev->sas_addr));
472                         schedule_timeout_interruptible(5*HZ);
473                 } else
474                         break;
475         }
476 out:
477         kfree(rg_req);
478         kfree(rg_resp);
479         return res;
480 }
481
482 static void ex_assign_manuf_info(struct domain_device *dev, void
483                                         *_mi_resp)
484 {
485         u8 *mi_resp = _mi_resp;
486         struct sas_rphy *rphy = dev->rphy;
487         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
488
489         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
490         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
491         memcpy(edev->product_rev, mi_resp + 36,
492                SAS_EXPANDER_PRODUCT_REV_LEN);
493
494         if (mi_resp[8] & 1) {
495                 memcpy(edev->component_vendor_id, mi_resp + 40,
496                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
497                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
498                 edev->component_revision_id = mi_resp[50];
499         }
500 }
501
502 #define MI_REQ_SIZE   8
503 #define MI_RESP_SIZE 64
504
505 static int sas_ex_manuf_info(struct domain_device *dev)
506 {
507         u8 *mi_req;
508         u8 *mi_resp;
509         int res;
510
511         mi_req = alloc_smp_req(MI_REQ_SIZE);
512         if (!mi_req)
513                 return -ENOMEM;
514
515         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
516         if (!mi_resp) {
517                 kfree(mi_req);
518                 return -ENOMEM;
519         }
520
521         mi_req[1] = SMP_REPORT_MANUF_INFO;
522
523         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
524         if (res) {
525                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
526                             SAS_ADDR(dev->sas_addr), res);
527                 goto out;
528         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
529                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
530                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
531                 goto out;
532         }
533
534         ex_assign_manuf_info(dev, mi_resp);
535 out:
536         kfree(mi_req);
537         kfree(mi_resp);
538         return res;
539 }
540
541 #define PC_REQ_SIZE  44
542 #define PC_RESP_SIZE 8
543
544 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
545                         enum phy_func phy_func,
546                         struct sas_phy_linkrates *rates)
547 {
548         u8 *pc_req;
549         u8 *pc_resp;
550         int res;
551
552         pc_req = alloc_smp_req(PC_REQ_SIZE);
553         if (!pc_req)
554                 return -ENOMEM;
555
556         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
557         if (!pc_resp) {
558                 kfree(pc_req);
559                 return -ENOMEM;
560         }
561
562         pc_req[1] = SMP_PHY_CONTROL;
563         pc_req[9] = phy_id;
564         pc_req[10]= phy_func;
565         if (rates) {
566                 pc_req[32] = rates->minimum_linkrate << 4;
567                 pc_req[33] = rates->maximum_linkrate << 4;
568         }
569
570         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
571
572         kfree(pc_resp);
573         kfree(pc_req);
574         return res;
575 }
576
577 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
578 {
579         struct expander_device *ex = &dev->ex_dev;
580         struct ex_phy *phy = &ex->ex_phy[phy_id];
581
582         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
583         phy->linkrate = SAS_PHY_DISABLED;
584 }
585
586 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
587 {
588         struct expander_device *ex = &dev->ex_dev;
589         int i;
590
591         for (i = 0; i < ex->num_phys; i++) {
592                 struct ex_phy *phy = &ex->ex_phy[i];
593
594                 if (phy->phy_state == PHY_VACANT ||
595                     phy->phy_state == PHY_NOT_PRESENT)
596                         continue;
597
598                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
599                         sas_ex_disable_phy(dev, i);
600         }
601 }
602
603 static int sas_dev_present_in_domain(struct asd_sas_port *port,
604                                             u8 *sas_addr)
605 {
606         struct domain_device *dev;
607
608         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
609                 return 1;
610         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
611                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
612                         return 1;
613         }
614         return 0;
615 }
616
617 #define RPEL_REQ_SIZE   16
618 #define RPEL_RESP_SIZE  32
619 int sas_smp_get_phy_events(struct sas_phy *phy)
620 {
621         int res;
622         u8 *req;
623         u8 *resp;
624         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
625         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
626
627         req = alloc_smp_req(RPEL_REQ_SIZE);
628         if (!req)
629                 return -ENOMEM;
630
631         resp = alloc_smp_resp(RPEL_RESP_SIZE);
632         if (!resp) {
633                 kfree(req);
634                 return -ENOMEM;
635         }
636
637         req[1] = SMP_REPORT_PHY_ERR_LOG;
638         req[9] = phy->number;
639
640         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
641                                     resp, RPEL_RESP_SIZE);
642
643         if (!res)
644                 goto out;
645
646         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
647         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
648         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
649         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
650
651  out:
652         kfree(resp);
653         return res;
654
655 }
656
657 #ifdef CONFIG_SCSI_SAS_ATA
658
659 #define RPS_REQ_SIZE  16
660 #define RPS_RESP_SIZE 60
661
662 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
663                             struct smp_resp *rps_resp)
664 {
665         int res;
666         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
667         u8 *resp = (u8 *)rps_resp;
668
669         if (!rps_req)
670                 return -ENOMEM;
671
672         rps_req[1] = SMP_REPORT_PHY_SATA;
673         rps_req[9] = phy_id;
674
675         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
676                                     rps_resp, RPS_RESP_SIZE);
677
678         /* 0x34 is the FIS type for the D2H fis.  There's a potential
679          * standards cockup here.  sas-2 explicitly specifies the FIS
680          * should be encoded so that FIS type is in resp[24].
681          * However, some expanders endian reverse this.  Undo the
682          * reversal here */
683         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
684                 int i;
685
686                 for (i = 0; i < 5; i++) {
687                         int j = 24 + (i*4);
688                         u8 a, b;
689                         a = resp[j + 0];
690                         b = resp[j + 1];
691                         resp[j + 0] = resp[j + 3];
692                         resp[j + 1] = resp[j + 2];
693                         resp[j + 2] = b;
694                         resp[j + 3] = a;
695                 }
696         }
697
698         kfree(rps_req);
699         return res;
700 }
701 #endif
702
703 static void sas_ex_get_linkrate(struct domain_device *parent,
704                                        struct domain_device *child,
705                                        struct ex_phy *parent_phy)
706 {
707         struct expander_device *parent_ex = &parent->ex_dev;
708         struct sas_port *port;
709         int i;
710
711         child->pathways = 0;
712
713         port = parent_phy->port;
714
715         for (i = 0; i < parent_ex->num_phys; i++) {
716                 struct ex_phy *phy = &parent_ex->ex_phy[i];
717
718                 if (phy->phy_state == PHY_VACANT ||
719                     phy->phy_state == PHY_NOT_PRESENT)
720                         continue;
721
722                 if (SAS_ADDR(phy->attached_sas_addr) ==
723                     SAS_ADDR(child->sas_addr)) {
724
725                         child->min_linkrate = min(parent->min_linkrate,
726                                                   phy->linkrate);
727                         child->max_linkrate = max(parent->max_linkrate,
728                                                   phy->linkrate);
729                         child->pathways++;
730                         sas_port_add_phy(port, phy->phy);
731                 }
732         }
733         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
734         child->pathways = min(child->pathways, parent->pathways);
735 }
736
737 static struct domain_device *sas_ex_discover_end_dev(
738         struct domain_device *parent, int phy_id)
739 {
740         struct expander_device *parent_ex = &parent->ex_dev;
741         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
742         struct domain_device *child = NULL;
743         struct sas_rphy *rphy;
744         int res;
745
746         if (phy->attached_sata_host || phy->attached_sata_ps)
747                 return NULL;
748
749         child = sas_alloc_device();
750         if (!child)
751                 return NULL;
752
753         kref_get(&parent->kref);
754         child->parent = parent;
755         child->port   = parent->port;
756         child->iproto = phy->attached_iproto;
757         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
758         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
759         if (!phy->port) {
760                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
761                 if (unlikely(!phy->port))
762                         goto out_err;
763                 if (unlikely(sas_port_add(phy->port) != 0)) {
764                         sas_port_free(phy->port);
765                         goto out_err;
766                 }
767         }
768         sas_ex_get_linkrate(parent, child, phy);
769         sas_device_set_phy(child, phy->port);
770
771 #ifdef CONFIG_SCSI_SAS_ATA
772         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
773                 res = sas_get_ata_info(child, phy);
774                 if (res)
775                         goto out_free;
776
777                 rphy = sas_end_device_alloc(phy->port);
778                 if (unlikely(!rphy))
779                         goto out_free;
780
781                 sas_init_dev(child);
782
783                 child->rphy = rphy;
784
785                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
786
787                 res = sas_discover_sata(child);
788                 if (res) {
789                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
790                                     "%016llx:0x%x returned 0x%x\n",
791                                     SAS_ADDR(child->sas_addr),
792                                     SAS_ADDR(parent->sas_addr), phy_id, res);
793                         goto out_list_del;
794                 }
795         } else
796 #endif
797           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
798                 child->dev_type = SAS_END_DEV;
799                 rphy = sas_end_device_alloc(phy->port);
800                 /* FIXME: error handling */
801                 if (unlikely(!rphy))
802                         goto out_free;
803                 child->tproto = phy->attached_tproto;
804                 sas_init_dev(child);
805
806                 child->rphy = rphy;
807                 sas_fill_in_rphy(child, rphy);
808
809                 spin_lock_irq(&parent->port->dev_list_lock);
810                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
811                 spin_unlock_irq(&parent->port->dev_list_lock);
812
813                 res = sas_discover_end_dev(child);
814                 if (res) {
815                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
816                                     "at %016llx:0x%x returned 0x%x\n",
817                                     SAS_ADDR(child->sas_addr),
818                                     SAS_ADDR(parent->sas_addr), phy_id, res);
819                         goto out_list_del;
820                 }
821         } else {
822                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
823                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
824                             phy_id);
825                 goto out_free;
826         }
827
828         list_add_tail(&child->siblings, &parent_ex->children);
829         return child;
830
831  out_list_del:
832         sas_rphy_free(child->rphy);
833         child->rphy = NULL;
834
835         list_del(&child->disco_list_node);
836         spin_lock_irq(&parent->port->dev_list_lock);
837         list_del(&child->dev_list_node);
838         spin_unlock_irq(&parent->port->dev_list_lock);
839  out_free:
840         sas_port_delete(phy->port);
841  out_err:
842         phy->port = NULL;
843         sas_put_device(child);
844         return NULL;
845 }
846
847 /* See if this phy is part of a wide port */
848 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
849 {
850         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
851         int i;
852
853         for (i = 0; i < parent->ex_dev.num_phys; i++) {
854                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
855
856                 if (ephy == phy)
857                         continue;
858
859                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
860                             SAS_ADDR_SIZE) && ephy->port) {
861                         sas_port_add_phy(ephy->port, phy->phy);
862                         phy->port = ephy->port;
863                         phy->phy_state = PHY_DEVICE_DISCOVERED;
864                         return 0;
865                 }
866         }
867
868         return -ENODEV;
869 }
870
871 static struct domain_device *sas_ex_discover_expander(
872         struct domain_device *parent, int phy_id)
873 {
874         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
875         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
876         struct domain_device *child = NULL;
877         struct sas_rphy *rphy;
878         struct sas_expander_device *edev;
879         struct asd_sas_port *port;
880         int res;
881
882         if (phy->routing_attr == DIRECT_ROUTING) {
883                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
884                             "allowed\n",
885                             SAS_ADDR(parent->sas_addr), phy_id,
886                             SAS_ADDR(phy->attached_sas_addr),
887                             phy->attached_phy_id);
888                 return NULL;
889         }
890         child = sas_alloc_device();
891         if (!child)
892                 return NULL;
893
894         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
895         /* FIXME: better error handling */
896         BUG_ON(sas_port_add(phy->port) != 0);
897
898
899         switch (phy->attached_dev_type) {
900         case EDGE_DEV:
901                 rphy = sas_expander_alloc(phy->port,
902                                           SAS_EDGE_EXPANDER_DEVICE);
903                 break;
904         case FANOUT_DEV:
905                 rphy = sas_expander_alloc(phy->port,
906                                           SAS_FANOUT_EXPANDER_DEVICE);
907                 break;
908         default:
909                 rphy = NULL;    /* shut gcc up */
910                 BUG();
911         }
912         port = parent->port;
913         child->rphy = rphy;
914         edev = rphy_to_expander_device(rphy);
915         child->dev_type = phy->attached_dev_type;
916         kref_get(&parent->kref);
917         child->parent = parent;
918         child->port = port;
919         child->iproto = phy->attached_iproto;
920         child->tproto = phy->attached_tproto;
921         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
922         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
923         sas_ex_get_linkrate(parent, child, phy);
924         edev->level = parent_ex->level + 1;
925         parent->port->disc.max_level = max(parent->port->disc.max_level,
926                                            edev->level);
927         sas_init_dev(child);
928         sas_fill_in_rphy(child, rphy);
929         sas_rphy_add(rphy);
930
931         spin_lock_irq(&parent->port->dev_list_lock);
932         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
933         spin_unlock_irq(&parent->port->dev_list_lock);
934
935         res = sas_discover_expander(child);
936         if (res) {
937                 spin_lock_irq(&parent->port->dev_list_lock);
938                 list_del(&child->dev_list_node);
939                 spin_unlock_irq(&parent->port->dev_list_lock);
940                 sas_put_device(child);
941                 return NULL;
942         }
943         list_add_tail(&child->siblings, &parent->ex_dev.children);
944         return child;
945 }
946
947 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
948 {
949         struct expander_device *ex = &dev->ex_dev;
950         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
951         struct domain_device *child = NULL;
952         int res = 0;
953
954         /* Phy state */
955         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
956                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
957                         res = sas_ex_phy_discover(dev, phy_id);
958                 if (res)
959                         return res;
960         }
961
962         /* Parent and domain coherency */
963         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
964                              SAS_ADDR(dev->port->sas_addr))) {
965                 sas_add_parent_port(dev, phy_id);
966                 return 0;
967         }
968         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
969                             SAS_ADDR(dev->parent->sas_addr))) {
970                 sas_add_parent_port(dev, phy_id);
971                 if (ex_phy->routing_attr == TABLE_ROUTING)
972                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
973                 return 0;
974         }
975
976         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
977                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
978
979         if (ex_phy->attached_dev_type == NO_DEVICE) {
980                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
981                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
982                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
983                 }
984                 return 0;
985         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
986                 return 0;
987
988         if (ex_phy->attached_dev_type != SAS_END_DEV &&
989             ex_phy->attached_dev_type != FANOUT_DEV &&
990             ex_phy->attached_dev_type != EDGE_DEV &&
991             ex_phy->attached_dev_type != SATA_PENDING) {
992                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
993                             "phy 0x%x\n", ex_phy->attached_dev_type,
994                             SAS_ADDR(dev->sas_addr),
995                             phy_id);
996                 return 0;
997         }
998
999         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1000         if (res) {
1001                 SAS_DPRINTK("configure routing for dev %016llx "
1002                             "reported 0x%x. Forgotten\n",
1003                             SAS_ADDR(ex_phy->attached_sas_addr), res);
1004                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1005                 return res;
1006         }
1007
1008         res = sas_ex_join_wide_port(dev, phy_id);
1009         if (!res) {
1010                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1011                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1012                 return res;
1013         }
1014
1015         switch (ex_phy->attached_dev_type) {
1016         case SAS_END_DEV:
1017         case SATA_PENDING:
1018                 child = sas_ex_discover_end_dev(dev, phy_id);
1019                 break;
1020         case FANOUT_DEV:
1021                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1022                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1023                                     "attached to ex %016llx phy 0x%x\n",
1024                                     SAS_ADDR(ex_phy->attached_sas_addr),
1025                                     ex_phy->attached_phy_id,
1026                                     SAS_ADDR(dev->sas_addr),
1027                                     phy_id);
1028                         sas_ex_disable_phy(dev, phy_id);
1029                         break;
1030                 } else
1031                         memcpy(dev->port->disc.fanout_sas_addr,
1032                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1033                 /* fallthrough */
1034         case EDGE_DEV:
1035                 child = sas_ex_discover_expander(dev, phy_id);
1036                 break;
1037         default:
1038                 break;
1039         }
1040
1041         if (child) {
1042                 int i;
1043
1044                 for (i = 0; i < ex->num_phys; i++) {
1045                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1046                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1047                                 continue;
1048                         /*
1049                          * Due to races, the phy might not get added to the
1050                          * wide port, so we add the phy to the wide port here.
1051                          */
1052                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1053                             SAS_ADDR(child->sas_addr)) {
1054                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1055                                 res = sas_ex_join_wide_port(dev, i);
1056                                 if (!res)
1057                                         SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1058                                                     i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1059
1060                         }
1061                 }
1062         }
1063
1064         return res;
1065 }
1066
1067 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1068 {
1069         struct expander_device *ex = &dev->ex_dev;
1070         int i;
1071
1072         for (i = 0; i < ex->num_phys; i++) {
1073                 struct ex_phy *phy = &ex->ex_phy[i];
1074
1075                 if (phy->phy_state == PHY_VACANT ||
1076                     phy->phy_state == PHY_NOT_PRESENT)
1077                         continue;
1078
1079                 if ((phy->attached_dev_type == EDGE_DEV ||
1080                      phy->attached_dev_type == FANOUT_DEV) &&
1081                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1082
1083                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1084
1085                         return 1;
1086                 }
1087         }
1088         return 0;
1089 }
1090
1091 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1092 {
1093         struct expander_device *ex = &dev->ex_dev;
1094         struct domain_device *child;
1095         u8 sub_addr[8] = {0, };
1096
1097         list_for_each_entry(child, &ex->children, siblings) {
1098                 if (child->dev_type != EDGE_DEV &&
1099                     child->dev_type != FANOUT_DEV)
1100                         continue;
1101                 if (sub_addr[0] == 0) {
1102                         sas_find_sub_addr(child, sub_addr);
1103                         continue;
1104                 } else {
1105                         u8 s2[8];
1106
1107                         if (sas_find_sub_addr(child, s2) &&
1108                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1109
1110                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1111                                             "diverges from subtractive "
1112                                             "boundary %016llx\n",
1113                                             SAS_ADDR(dev->sas_addr),
1114                                             SAS_ADDR(child->sas_addr),
1115                                             SAS_ADDR(s2),
1116                                             SAS_ADDR(sub_addr));
1117
1118                                 sas_ex_disable_port(child, s2);
1119                         }
1120                 }
1121         }
1122         return 0;
1123 }
1124 /**
1125  * sas_ex_discover_devices -- discover devices attached to this expander
1126  * dev: pointer to the expander domain device
1127  * single: if you want to do a single phy, else set to -1;
1128  *
1129  * Configure this expander for use with its devices and register the
1130  * devices of this expander.
1131  */
1132 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1133 {
1134         struct expander_device *ex = &dev->ex_dev;
1135         int i = 0, end = ex->num_phys;
1136         int res = 0;
1137
1138         if (0 <= single && single < end) {
1139                 i = single;
1140                 end = i+1;
1141         }
1142
1143         for ( ; i < end; i++) {
1144                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1145
1146                 if (ex_phy->phy_state == PHY_VACANT ||
1147                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1148                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1149                         continue;
1150
1151                 switch (ex_phy->linkrate) {
1152                 case SAS_PHY_DISABLED:
1153                 case SAS_PHY_RESET_PROBLEM:
1154                 case SAS_SATA_PORT_SELECTOR:
1155                         continue;
1156                 default:
1157                         res = sas_ex_discover_dev(dev, i);
1158                         if (res)
1159                                 break;
1160                         continue;
1161                 }
1162         }
1163
1164         if (!res)
1165                 sas_check_level_subtractive_boundary(dev);
1166
1167         return res;
1168 }
1169
1170 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1171 {
1172         struct expander_device *ex = &dev->ex_dev;
1173         int i;
1174         u8  *sub_sas_addr = NULL;
1175
1176         if (dev->dev_type != EDGE_DEV)
1177                 return 0;
1178
1179         for (i = 0; i < ex->num_phys; i++) {
1180                 struct ex_phy *phy = &ex->ex_phy[i];
1181
1182                 if (phy->phy_state == PHY_VACANT ||
1183                     phy->phy_state == PHY_NOT_PRESENT)
1184                         continue;
1185
1186                 if ((phy->attached_dev_type == FANOUT_DEV ||
1187                      phy->attached_dev_type == EDGE_DEV) &&
1188                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1189
1190                         if (!sub_sas_addr)
1191                                 sub_sas_addr = &phy->attached_sas_addr[0];
1192                         else if (SAS_ADDR(sub_sas_addr) !=
1193                                  SAS_ADDR(phy->attached_sas_addr)) {
1194
1195                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1196                                             "diverges(%016llx) on subtractive "
1197                                             "boundary(%016llx). Disabled\n",
1198                                             SAS_ADDR(dev->sas_addr), i,
1199                                             SAS_ADDR(phy->attached_sas_addr),
1200                                             SAS_ADDR(sub_sas_addr));
1201                                 sas_ex_disable_phy(dev, i);
1202                         }
1203                 }
1204         }
1205         return 0;
1206 }
1207
1208 static void sas_print_parent_topology_bug(struct domain_device *child,
1209                                                  struct ex_phy *parent_phy,
1210                                                  struct ex_phy *child_phy)
1211 {
1212         static const char *ex_type[] = {
1213                 [EDGE_DEV] = "edge",
1214                 [FANOUT_DEV] = "fanout",
1215         };
1216         struct domain_device *parent = child->parent;
1217
1218         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1219                    "phy 0x%x has %c:%c routing link!\n",
1220
1221                    ex_type[parent->dev_type],
1222                    SAS_ADDR(parent->sas_addr),
1223                    parent_phy->phy_id,
1224
1225                    ex_type[child->dev_type],
1226                    SAS_ADDR(child->sas_addr),
1227                    child_phy->phy_id,
1228
1229                    sas_route_char(parent, parent_phy),
1230                    sas_route_char(child, child_phy));
1231 }
1232
1233 static int sas_check_eeds(struct domain_device *child,
1234                                  struct ex_phy *parent_phy,
1235                                  struct ex_phy *child_phy)
1236 {
1237         int res = 0;
1238         struct domain_device *parent = child->parent;
1239
1240         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1241                 res = -ENODEV;
1242                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1243                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1244                             SAS_ADDR(parent->sas_addr),
1245                             parent_phy->phy_id,
1246                             SAS_ADDR(child->sas_addr),
1247                             child_phy->phy_id,
1248                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1249         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1250                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1251                        SAS_ADDR_SIZE);
1252                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1253                        SAS_ADDR_SIZE);
1254         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1255                     SAS_ADDR(parent->sas_addr)) ||
1256                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1257                     SAS_ADDR(child->sas_addr)))
1258                    &&
1259                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1260                      SAS_ADDR(parent->sas_addr)) ||
1261                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1262                      SAS_ADDR(child->sas_addr))))
1263                 ;
1264         else {
1265                 res = -ENODEV;
1266                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1267                             "phy 0x%x link forms a third EEDS!\n",
1268                             SAS_ADDR(parent->sas_addr),
1269                             parent_phy->phy_id,
1270                             SAS_ADDR(child->sas_addr),
1271                             child_phy->phy_id);
1272         }
1273
1274         return res;
1275 }
1276
1277 /* Here we spill over 80 columns.  It is intentional.
1278  */
1279 static int sas_check_parent_topology(struct domain_device *child)
1280 {
1281         struct expander_device *child_ex = &child->ex_dev;
1282         struct expander_device *parent_ex;
1283         int i;
1284         int res = 0;
1285
1286         if (!child->parent)
1287                 return 0;
1288
1289         if (child->parent->dev_type != EDGE_DEV &&
1290             child->parent->dev_type != FANOUT_DEV)
1291                 return 0;
1292
1293         parent_ex = &child->parent->ex_dev;
1294
1295         for (i = 0; i < parent_ex->num_phys; i++) {
1296                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1297                 struct ex_phy *child_phy;
1298
1299                 if (parent_phy->phy_state == PHY_VACANT ||
1300                     parent_phy->phy_state == PHY_NOT_PRESENT)
1301                         continue;
1302
1303                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1304                         continue;
1305
1306                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1307
1308                 switch (child->parent->dev_type) {
1309                 case EDGE_DEV:
1310                         if (child->dev_type == FANOUT_DEV) {
1311                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1312                                     child_phy->routing_attr != TABLE_ROUTING) {
1313                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1314                                         res = -ENODEV;
1315                                 }
1316                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1317                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1318                                         res = sas_check_eeds(child, parent_phy, child_phy);
1319                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1320                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1321                                         res = -ENODEV;
1322                                 }
1323                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1324                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1325                                     (child_phy->routing_attr == TABLE_ROUTING &&
1326                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1327                                         /* All good */;
1328                                 } else {
1329                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1330                                         res = -ENODEV;
1331                                 }
1332                         }
1333                         break;
1334                 case FANOUT_DEV:
1335                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1336                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1337                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1338                                 res = -ENODEV;
1339                         }
1340                         break;
1341                 default:
1342                         break;
1343                 }
1344         }
1345
1346         return res;
1347 }
1348
1349 #define RRI_REQ_SIZE  16
1350 #define RRI_RESP_SIZE 44
1351
1352 static int sas_configure_present(struct domain_device *dev, int phy_id,
1353                                  u8 *sas_addr, int *index, int *present)
1354 {
1355         int i, res = 0;
1356         struct expander_device *ex = &dev->ex_dev;
1357         struct ex_phy *phy = &ex->ex_phy[phy_id];
1358         u8 *rri_req;
1359         u8 *rri_resp;
1360
1361         *present = 0;
1362         *index = 0;
1363
1364         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1365         if (!rri_req)
1366                 return -ENOMEM;
1367
1368         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1369         if (!rri_resp) {
1370                 kfree(rri_req);
1371                 return -ENOMEM;
1372         }
1373
1374         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1375         rri_req[9] = phy_id;
1376
1377         for (i = 0; i < ex->max_route_indexes ; i++) {
1378                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1379                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1380                                        RRI_RESP_SIZE);
1381                 if (res)
1382                         goto out;
1383                 res = rri_resp[2];
1384                 if (res == SMP_RESP_NO_INDEX) {
1385                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1386                                     "phy 0x%x index 0x%x\n",
1387                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1388                         goto out;
1389                 } else if (res != SMP_RESP_FUNC_ACC) {
1390                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1391                                     "result 0x%x\n", __func__,
1392                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1393                         goto out;
1394                 }
1395                 if (SAS_ADDR(sas_addr) != 0) {
1396                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1397                                 *index = i;
1398                                 if ((rri_resp[12] & 0x80) == 0x80)
1399                                         *present = 0;
1400                                 else
1401                                         *present = 1;
1402                                 goto out;
1403                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1404                                 *index = i;
1405                                 *present = 0;
1406                                 goto out;
1407                         }
1408                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1409                            phy->last_da_index < i) {
1410                         phy->last_da_index = i;
1411                         *index = i;
1412                         *present = 0;
1413                         goto out;
1414                 }
1415         }
1416         res = -1;
1417 out:
1418         kfree(rri_req);
1419         kfree(rri_resp);
1420         return res;
1421 }
1422
1423 #define CRI_REQ_SIZE  44
1424 #define CRI_RESP_SIZE  8
1425
1426 static int sas_configure_set(struct domain_device *dev, int phy_id,
1427                              u8 *sas_addr, int index, int include)
1428 {
1429         int res;
1430         u8 *cri_req;
1431         u8 *cri_resp;
1432
1433         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1434         if (!cri_req)
1435                 return -ENOMEM;
1436
1437         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1438         if (!cri_resp) {
1439                 kfree(cri_req);
1440                 return -ENOMEM;
1441         }
1442
1443         cri_req[1] = SMP_CONF_ROUTE_INFO;
1444         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1445         cri_req[9] = phy_id;
1446         if (SAS_ADDR(sas_addr) == 0 || !include)
1447                 cri_req[12] |= 0x80;
1448         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1449
1450         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1451                                CRI_RESP_SIZE);
1452         if (res)
1453                 goto out;
1454         res = cri_resp[2];
1455         if (res == SMP_RESP_NO_INDEX) {
1456                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1457                             "index 0x%x\n",
1458                             SAS_ADDR(dev->sas_addr), phy_id, index);
1459         }
1460 out:
1461         kfree(cri_req);
1462         kfree(cri_resp);
1463         return res;
1464 }
1465
1466 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1467                                     u8 *sas_addr, int include)
1468 {
1469         int index;
1470         int present;
1471         int res;
1472
1473         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1474         if (res)
1475                 return res;
1476         if (include ^ present)
1477                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1478
1479         return res;
1480 }
1481
1482 /**
1483  * sas_configure_parent -- configure routing table of parent
1484  * parent: parent expander
1485  * child: child expander
1486  * sas_addr: SAS port identifier of device directly attached to child
1487  */
1488 static int sas_configure_parent(struct domain_device *parent,
1489                                 struct domain_device *child,
1490                                 u8 *sas_addr, int include)
1491 {
1492         struct expander_device *ex_parent = &parent->ex_dev;
1493         int res = 0;
1494         int i;
1495
1496         if (parent->parent) {
1497                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1498                                            include);
1499                 if (res)
1500                         return res;
1501         }
1502
1503         if (ex_parent->conf_route_table == 0) {
1504                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1505                             SAS_ADDR(parent->sas_addr));
1506                 return 0;
1507         }
1508
1509         for (i = 0; i < ex_parent->num_phys; i++) {
1510                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1511
1512                 if ((phy->routing_attr == TABLE_ROUTING) &&
1513                     (SAS_ADDR(phy->attached_sas_addr) ==
1514                      SAS_ADDR(child->sas_addr))) {
1515                         res = sas_configure_phy(parent, i, sas_addr, include);
1516                         if (res)
1517                                 return res;
1518                 }
1519         }
1520
1521         return res;
1522 }
1523
1524 /**
1525  * sas_configure_routing -- configure routing
1526  * dev: expander device
1527  * sas_addr: port identifier of device directly attached to the expander device
1528  */
1529 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1530 {
1531         if (dev->parent)
1532                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1533         return 0;
1534 }
1535
1536 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1537 {
1538         if (dev->parent)
1539                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1540         return 0;
1541 }
1542
1543 /**
1544  * sas_discover_expander -- expander discovery
1545  * @ex: pointer to expander domain device
1546  *
1547  * See comment in sas_discover_sata().
1548  */
1549 static int sas_discover_expander(struct domain_device *dev)
1550 {
1551         int res;
1552
1553         res = sas_notify_lldd_dev_found(dev);
1554         if (res)
1555                 return res;
1556
1557         res = sas_ex_general(dev);
1558         if (res)
1559                 goto out_err;
1560         res = sas_ex_manuf_info(dev);
1561         if (res)
1562                 goto out_err;
1563
1564         res = sas_expander_discover(dev);
1565         if (res) {
1566                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1567                             SAS_ADDR(dev->sas_addr), res);
1568                 goto out_err;
1569         }
1570
1571         sas_check_ex_subtractive_boundary(dev);
1572         res = sas_check_parent_topology(dev);
1573         if (res)
1574                 goto out_err;
1575         return 0;
1576 out_err:
1577         sas_notify_lldd_dev_gone(dev);
1578         return res;
1579 }
1580
1581 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1582 {
1583         int res = 0;
1584         struct domain_device *dev;
1585
1586         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1587                 if (dev->dev_type == EDGE_DEV ||
1588                     dev->dev_type == FANOUT_DEV) {
1589                         struct sas_expander_device *ex =
1590                                 rphy_to_expander_device(dev->rphy);
1591
1592                         if (level == ex->level)
1593                                 res = sas_ex_discover_devices(dev, -1);
1594                         else if (level > 0)
1595                                 res = sas_ex_discover_devices(port->port_dev, -1);
1596
1597                 }
1598         }
1599
1600         return res;
1601 }
1602
1603 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1604 {
1605         int res;
1606         int level;
1607
1608         do {
1609                 level = port->disc.max_level;
1610                 res = sas_ex_level_discovery(port, level);
1611                 mb();
1612         } while (level < port->disc.max_level);
1613
1614         return res;
1615 }
1616
1617 int sas_discover_root_expander(struct domain_device *dev)
1618 {
1619         int res;
1620         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1621
1622         res = sas_rphy_add(dev->rphy);
1623         if (res)
1624                 goto out_err;
1625
1626         ex->level = dev->port->disc.max_level; /* 0 */
1627         res = sas_discover_expander(dev);
1628         if (res)
1629                 goto out_err2;
1630
1631         sas_ex_bfs_disc(dev->port);
1632
1633         return res;
1634
1635 out_err2:
1636         sas_rphy_remove(dev->rphy);
1637 out_err:
1638         return res;
1639 }
1640
1641 /* ---------- Domain revalidation ---------- */
1642
1643 static int sas_get_phy_discover(struct domain_device *dev,
1644                                 int phy_id, struct smp_resp *disc_resp)
1645 {
1646         int res;
1647         u8 *disc_req;
1648
1649         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1650         if (!disc_req)
1651                 return -ENOMEM;
1652
1653         disc_req[1] = SMP_DISCOVER;
1654         disc_req[9] = phy_id;
1655
1656         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1657                                disc_resp, DISCOVER_RESP_SIZE);
1658         if (res)
1659                 goto out;
1660         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1661                 res = disc_resp->result;
1662                 goto out;
1663         }
1664 out:
1665         kfree(disc_req);
1666         return res;
1667 }
1668
1669 static int sas_get_phy_change_count(struct domain_device *dev,
1670                                     int phy_id, int *pcc)
1671 {
1672         int res;
1673         struct smp_resp *disc_resp;
1674
1675         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1676         if (!disc_resp)
1677                 return -ENOMEM;
1678
1679         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1680         if (!res)
1681                 *pcc = disc_resp->disc.change_count;
1682
1683         kfree(disc_resp);
1684         return res;
1685 }
1686
1687 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1688                                     u8 *sas_addr, enum sas_dev_type *type)
1689 {
1690         int res;
1691         struct smp_resp *disc_resp;
1692         struct discover_resp *dr;
1693
1694         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1695         if (!disc_resp)
1696                 return -ENOMEM;
1697         dr = &disc_resp->disc;
1698
1699         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1700         if (res == 0) {
1701                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1702                 *type = to_dev_type(dr);
1703                 if (*type == 0)
1704                         memset(sas_addr, 0, 8);
1705         }
1706         kfree(disc_resp);
1707         return res;
1708 }
1709
1710 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1711                               int from_phy, bool update)
1712 {
1713         struct expander_device *ex = &dev->ex_dev;
1714         int res = 0;
1715         int i;
1716
1717         for (i = from_phy; i < ex->num_phys; i++) {
1718                 int phy_change_count = 0;
1719
1720                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1721                 if (res)
1722                         goto out;
1723                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1724                         if (update)
1725                                 ex->ex_phy[i].phy_change_count =
1726                                         phy_change_count;
1727                         *phy_id = i;
1728                         return 0;
1729                 }
1730         }
1731 out:
1732         return res;
1733 }
1734
1735 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1736 {
1737         int res;
1738         u8  *rg_req;
1739         struct smp_resp  *rg_resp;
1740
1741         rg_req = alloc_smp_req(RG_REQ_SIZE);
1742         if (!rg_req)
1743                 return -ENOMEM;
1744
1745         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1746         if (!rg_resp) {
1747                 kfree(rg_req);
1748                 return -ENOMEM;
1749         }
1750
1751         rg_req[1] = SMP_REPORT_GENERAL;
1752
1753         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1754                                RG_RESP_SIZE);
1755         if (res)
1756                 goto out;
1757         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1758                 res = rg_resp->result;
1759                 goto out;
1760         }
1761
1762         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1763 out:
1764         kfree(rg_resp);
1765         kfree(rg_req);
1766         return res;
1767 }
1768 /**
1769  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1770  * @dev:domain device to be detect.
1771  * @src_dev: the device which originated BROADCAST(CHANGE).
1772  *
1773  * Add self-configuration expander suport. Suppose two expander cascading,
1774  * when the first level expander is self-configuring, hotplug the disks in
1775  * second level expander, BROADCAST(CHANGE) will not only be originated
1776  * in the second level expander, but also be originated in the first level
1777  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1778  * expander changed count in two level expanders will all increment at least
1779  * once, but the phy which chang count has changed is the source device which
1780  * we concerned.
1781  */
1782
1783 static int sas_find_bcast_dev(struct domain_device *dev,
1784                               struct domain_device **src_dev)
1785 {
1786         struct expander_device *ex = &dev->ex_dev;
1787         int ex_change_count = -1;
1788         int phy_id = -1;
1789         int res;
1790         struct domain_device *ch;
1791
1792         res = sas_get_ex_change_count(dev, &ex_change_count);
1793         if (res)
1794                 goto out;
1795         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1796                 /* Just detect if this expander phys phy change count changed,
1797                 * in order to determine if this expander originate BROADCAST,
1798                 * and do not update phy change count field in our structure.
1799                 */
1800                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1801                 if (phy_id != -1) {
1802                         *src_dev = dev;
1803                         ex->ex_change_count = ex_change_count;
1804                         SAS_DPRINTK("Expander phy change count has changed\n");
1805                         return res;
1806                 } else
1807                         SAS_DPRINTK("Expander phys DID NOT change\n");
1808         }
1809         list_for_each_entry(ch, &ex->children, siblings) {
1810                 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1811                         res = sas_find_bcast_dev(ch, src_dev);
1812                         if (*src_dev)
1813                                 return res;
1814                 }
1815         }
1816 out:
1817         return res;
1818 }
1819
1820 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1821 {
1822         struct expander_device *ex = &dev->ex_dev;
1823         struct domain_device *child, *n;
1824
1825         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1826                 set_bit(SAS_DEV_GONE, &child->state);
1827                 if (child->dev_type == EDGE_DEV ||
1828                     child->dev_type == FANOUT_DEV)
1829                         sas_unregister_ex_tree(port, child);
1830                 else
1831                         sas_unregister_dev(port, child);
1832         }
1833         sas_unregister_dev(port, dev);
1834 }
1835
1836 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1837                                          int phy_id, bool last)
1838 {
1839         struct expander_device *ex_dev = &parent->ex_dev;
1840         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1841         struct domain_device *child, *n, *found = NULL;
1842         if (last) {
1843                 list_for_each_entry_safe(child, n,
1844                         &ex_dev->children, siblings) {
1845                         if (SAS_ADDR(child->sas_addr) ==
1846                             SAS_ADDR(phy->attached_sas_addr)) {
1847                                 set_bit(SAS_DEV_GONE, &child->state);
1848                                 if (child->dev_type == EDGE_DEV ||
1849                                     child->dev_type == FANOUT_DEV)
1850                                         sas_unregister_ex_tree(parent->port, child);
1851                                 else
1852                                         sas_unregister_dev(parent->port, child);
1853                                 found = child;
1854                                 break;
1855                         }
1856                 }
1857                 sas_disable_routing(parent, phy->attached_sas_addr);
1858         }
1859         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1860         if (phy->port) {
1861                 sas_port_delete_phy(phy->port, phy->phy);
1862                 sas_device_set_phy(found, phy->port);
1863                 if (phy->port->num_phys == 0)
1864                         sas_port_delete(phy->port);
1865                 phy->port = NULL;
1866         }
1867 }
1868
1869 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1870                                           const int level)
1871 {
1872         struct expander_device *ex_root = &root->ex_dev;
1873         struct domain_device *child;
1874         int res = 0;
1875
1876         list_for_each_entry(child, &ex_root->children, siblings) {
1877                 if (child->dev_type == EDGE_DEV ||
1878                     child->dev_type == FANOUT_DEV) {
1879                         struct sas_expander_device *ex =
1880                                 rphy_to_expander_device(child->rphy);
1881
1882                         if (level > ex->level)
1883                                 res = sas_discover_bfs_by_root_level(child,
1884                                                                      level);
1885                         else if (level == ex->level)
1886                                 res = sas_ex_discover_devices(child, -1);
1887                 }
1888         }
1889         return res;
1890 }
1891
1892 static int sas_discover_bfs_by_root(struct domain_device *dev)
1893 {
1894         int res;
1895         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1896         int level = ex->level+1;
1897
1898         res = sas_ex_discover_devices(dev, -1);
1899         if (res)
1900                 goto out;
1901         do {
1902                 res = sas_discover_bfs_by_root_level(dev, level);
1903                 mb();
1904                 level += 1;
1905         } while (level <= dev->port->disc.max_level);
1906 out:
1907         return res;
1908 }
1909
1910 static int sas_discover_new(struct domain_device *dev, int phy_id)
1911 {
1912         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1913         struct domain_device *child;
1914         bool found = false;
1915         int res, i;
1916
1917         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1918                     SAS_ADDR(dev->sas_addr), phy_id);
1919         res = sas_ex_phy_discover(dev, phy_id);
1920         if (res)
1921                 goto out;
1922         /* to support the wide port inserted */
1923         for (i = 0; i < dev->ex_dev.num_phys; i++) {
1924                 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1925                 if (i == phy_id)
1926                         continue;
1927                 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1928                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1929                         found = true;
1930                         break;
1931                 }
1932         }
1933         if (found) {
1934                 sas_ex_join_wide_port(dev, phy_id);
1935                 return 0;
1936         }
1937         res = sas_ex_discover_devices(dev, phy_id);
1938         if (!res)
1939                 goto out;
1940         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1941                 if (SAS_ADDR(child->sas_addr) ==
1942                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1943                         if (child->dev_type == EDGE_DEV ||
1944                             child->dev_type == FANOUT_DEV)
1945                                 res = sas_discover_bfs_by_root(child);
1946                         break;
1947                 }
1948         }
1949 out:
1950         return res;
1951 }
1952
1953 static bool dev_type_flutter(enum sas_dev_type new, enum sas_dev_type old)
1954 {
1955         if (old == new)
1956                 return true;
1957
1958         /* treat device directed resets as flutter, if we went
1959          * SAS_END_DEV to SATA_PENDING the link needs recovery
1960          */
1961         if ((old == SATA_PENDING && new == SAS_END_DEV) ||
1962             (old == SAS_END_DEV && new == SATA_PENDING))
1963                 return true;
1964
1965         return false;
1966 }
1967
1968 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1969 {
1970         struct expander_device *ex = &dev->ex_dev;
1971         struct ex_phy *phy = &ex->ex_phy[phy_id];
1972         enum sas_dev_type type = NO_DEVICE;
1973         u8 sas_addr[8];
1974         int res;
1975
1976         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1977         switch (res) {
1978         case SMP_RESP_NO_PHY:
1979                 phy->phy_state = PHY_NOT_PRESENT;
1980                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1981                 return res;
1982         case SMP_RESP_PHY_VACANT:
1983                 phy->phy_state = PHY_VACANT;
1984                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1985                 return res;
1986         case SMP_RESP_FUNC_ACC:
1987                 break;
1988         }
1989
1990         if (SAS_ADDR(sas_addr) == 0) {
1991                 phy->phy_state = PHY_EMPTY;
1992                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1993                 return res;
1994         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
1995                    dev_type_flutter(type, phy->attached_dev_type)) {
1996                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
1997                 char *action = "";
1998
1999                 sas_ex_phy_discover(dev, phy_id);
2000
2001                 if (ata_dev && phy->attached_dev_type == SATA_PENDING)
2002                         action = ", needs recovery";
2003                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2004                             SAS_ADDR(dev->sas_addr), phy_id, action);
2005                 return res;
2006         }
2007
2008         /* delete the old link */
2009         if (SAS_ADDR(phy->attached_sas_addr) &&
2010             SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2011                 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2012                             SAS_ADDR(dev->sas_addr), phy_id,
2013                             SAS_ADDR(phy->attached_sas_addr));
2014                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2015         }
2016
2017         return sas_discover_new(dev, phy_id);
2018 }
2019
2020 /**
2021  * sas_rediscover - revalidate the domain.
2022  * @dev:domain device to be detect.
2023  * @phy_id: the phy id will be detected.
2024  *
2025  * NOTE: this process _must_ quit (return) as soon as any connection
2026  * errors are encountered.  Connection recovery is done elsewhere.
2027  * Discover process only interrogates devices in order to discover the
2028  * domain.For plugging out, we un-register the device only when it is
2029  * the last phy in the port, for other phys in this port, we just delete it
2030  * from the port.For inserting, we do discovery when it is the
2031  * first phy,for other phys in this port, we add it to the port to
2032  * forming the wide-port.
2033  */
2034 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2035 {
2036         struct expander_device *ex = &dev->ex_dev;
2037         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2038         int res = 0;
2039         int i;
2040         bool last = true;       /* is this the last phy of the port */
2041
2042         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2043                     SAS_ADDR(dev->sas_addr), phy_id);
2044
2045         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2046                 for (i = 0; i < ex->num_phys; i++) {
2047                         struct ex_phy *phy = &ex->ex_phy[i];
2048
2049                         if (i == phy_id)
2050                                 continue;
2051                         if (SAS_ADDR(phy->attached_sas_addr) ==
2052                             SAS_ADDR(changed_phy->attached_sas_addr)) {
2053                                 SAS_DPRINTK("phy%d part of wide port with "
2054                                             "phy%d\n", phy_id, i);
2055                                 last = false;
2056                                 break;
2057                         }
2058                 }
2059                 res = sas_rediscover_dev(dev, phy_id, last);
2060         } else
2061                 res = sas_discover_new(dev, phy_id);
2062         return res;
2063 }
2064
2065 /**
2066  * sas_revalidate_domain -- revalidate the domain
2067  * @port: port to the domain of interest
2068  *
2069  * NOTE: this process _must_ quit (return) as soon as any connection
2070  * errors are encountered.  Connection recovery is done elsewhere.
2071  * Discover process only interrogates devices in order to discover the
2072  * domain.
2073  */
2074 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2075 {
2076         int res;
2077         struct domain_device *dev = NULL;
2078
2079         res = sas_find_bcast_dev(port_dev, &dev);
2080         if (res)
2081                 goto out;
2082         if (dev) {
2083                 struct expander_device *ex = &dev->ex_dev;
2084                 int i = 0, phy_id;
2085
2086                 do {
2087                         phy_id = -1;
2088                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2089                         if (phy_id == -1)
2090                                 break;
2091                         res = sas_rediscover(dev, phy_id);
2092                         i = phy_id + 1;
2093                 } while (i < ex->num_phys);
2094         }
2095 out:
2096         return res;
2097 }
2098
2099 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2100                     struct request *req)
2101 {
2102         struct domain_device *dev;
2103         int ret, type;
2104         struct request *rsp = req->next_rq;
2105
2106         if (!rsp) {
2107                 printk("%s: space for a smp response is missing\n",
2108                        __func__);
2109                 return -EINVAL;
2110         }
2111
2112         /* no rphy means no smp target support (ie aic94xx host) */
2113         if (!rphy)
2114                 return sas_smp_host_handler(shost, req, rsp);
2115
2116         type = rphy->identify.device_type;
2117
2118         if (type != SAS_EDGE_EXPANDER_DEVICE &&
2119             type != SAS_FANOUT_EXPANDER_DEVICE) {
2120                 printk("%s: can we send a smp request to a device?\n",
2121                        __func__);
2122                 return -EINVAL;
2123         }
2124
2125         dev = sas_find_dev_by_rphy(rphy);
2126         if (!dev) {
2127                 printk("%s: fail to find a domain_device?\n", __func__);
2128                 return -EINVAL;
2129         }
2130
2131         /* do we need to support multiple segments? */
2132         if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2133                 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2134                        __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2135                        rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2136                 return -EINVAL;
2137         }
2138
2139         ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2140                                bio_data(rsp->bio), blk_rq_bytes(rsp));
2141         if (ret > 0) {
2142                 /* positive number is the untransferred residual */
2143                 rsp->resid_len = ret;
2144                 req->resid_len = 0;
2145                 ret = 0;
2146         } else if (ret == 0) {
2147                 rsp->resid_len = 0;
2148                 req->resid_len = 0;
2149         }
2150
2151         return ret;
2152 }