[SCSI] libsas: restore scan order
[linux-2.6.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39                              u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41
42 /* ---------- SMP task management ---------- */
43
44 static void smp_task_timedout(unsigned long _task)
45 {
46         struct sas_task *task = (void *) _task;
47         unsigned long flags;
48
49         spin_lock_irqsave(&task->task_state_lock, flags);
50         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52         spin_unlock_irqrestore(&task->task_state_lock, flags);
53
54         complete(&task->completion);
55 }
56
57 static void smp_task_done(struct sas_task *task)
58 {
59         if (!del_timer(&task->timer))
60                 return;
61         complete(&task->completion);
62 }
63
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
66
67 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68                             void *resp, int resp_size)
69 {
70         int res, retry;
71         struct sas_task *task = NULL;
72         struct sas_internal *i =
73                 to_sas_internal(dev->port->ha->core.shost->transportt);
74
75         mutex_lock(&dev->ex_dev.cmd_mutex);
76         for (retry = 0; retry < 3; retry++) {
77                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
78                         res = -ECOMM;
79                         break;
80                 }
81
82                 task = sas_alloc_task(GFP_KERNEL);
83                 if (!task) {
84                         res = -ENOMEM;
85                         break;
86                 }
87                 task->dev = dev;
88                 task->task_proto = dev->tproto;
89                 sg_init_one(&task->smp_task.smp_req, req, req_size);
90                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
91
92                 task->task_done = smp_task_done;
93
94                 task->timer.data = (unsigned long) task;
95                 task->timer.function = smp_task_timedout;
96                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97                 add_timer(&task->timer);
98
99                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
100
101                 if (res) {
102                         del_timer(&task->timer);
103                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
104                         break;
105                 }
106
107                 wait_for_completion(&task->completion);
108                 res = -ECOMM;
109                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110                         SAS_DPRINTK("smp task timed out or aborted\n");
111                         i->dft->lldd_abort_task(task);
112                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113                                 SAS_DPRINTK("SMP task aborted and not done\n");
114                                 break;
115                         }
116                 }
117                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118                     task->task_status.stat == SAM_STAT_GOOD) {
119                         res = 0;
120                         break;
121                 }
122                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123                     task->task_status.stat == SAS_DATA_UNDERRUN) {
124                         /* no error, but return the number of bytes of
125                          * underrun */
126                         res = task->task_status.residual;
127                         break;
128                 }
129                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130                     task->task_status.stat == SAS_DATA_OVERRUN) {
131                         res = -EMSGSIZE;
132                         break;
133                 }
134                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
136                         break;
137                 else {
138                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139                                     "status 0x%x\n", __func__,
140                                     SAS_ADDR(dev->sas_addr),
141                                     task->task_status.resp,
142                                     task->task_status.stat);
143                         sas_free_task(task);
144                         task = NULL;
145                 }
146         }
147         mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149         BUG_ON(retry == 3 && task != NULL);
150         sas_free_task(task);
151         return res;
152 }
153
154 /* ---------- Allocations ---------- */
155
156 static inline void *alloc_smp_req(int size)
157 {
158         u8 *p = kzalloc(size, GFP_KERNEL);
159         if (p)
160                 p[0] = SMP_REQUEST;
161         return p;
162 }
163
164 static inline void *alloc_smp_resp(int size)
165 {
166         return kzalloc(size, GFP_KERNEL);
167 }
168
169 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170 {
171         switch (phy->routing_attr) {
172         case TABLE_ROUTING:
173                 if (dev->ex_dev.t2t_supp)
174                         return 'U';
175                 else
176                         return 'T';
177         case DIRECT_ROUTING:
178                 return 'D';
179         case SUBTRACTIVE_ROUTING:
180                 return 'S';
181         default:
182                 return '?';
183         }
184 }
185
186 static enum sas_dev_type to_dev_type(struct discover_resp *dr)
187 {
188         /* This is detecting a failure to transmit initial dev to host
189          * FIS as described in section J.5 of sas-2 r16
190          */
191         if (dr->attached_dev_type == NO_DEVICE && dr->attached_sata_dev &&
192             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193                 return SATA_PENDING;
194         else
195                 return dr->attached_dev_type;
196 }
197
198 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199 {
200         enum sas_dev_type dev_type;
201         enum sas_linkrate linkrate;
202         u8 sas_addr[SAS_ADDR_SIZE];
203         struct smp_resp *resp = rsp;
204         struct discover_resp *dr = &resp->disc;
205         struct expander_device *ex = &dev->ex_dev;
206         struct ex_phy *phy = &ex->ex_phy[phy_id];
207         struct sas_rphy *rphy = dev->rphy;
208         bool new_phy = !phy->phy;
209         char *type;
210
211         if (new_phy) {
212                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
213
214                 /* FIXME: error_handling */
215                 BUG_ON(!phy->phy);
216         }
217
218         switch (resp->result) {
219         case SMP_RESP_PHY_VACANT:
220                 phy->phy_state = PHY_VACANT;
221                 break;
222         default:
223                 phy->phy_state = PHY_NOT_PRESENT;
224                 break;
225         case SMP_RESP_FUNC_ACC:
226                 phy->phy_state = PHY_EMPTY; /* do not know yet */
227                 break;
228         }
229
230         /* check if anything important changed to squelch debug */
231         dev_type = phy->attached_dev_type;
232         linkrate  = phy->linkrate;
233         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
234
235         phy->attached_dev_type = to_dev_type(dr);
236         phy->phy_id = phy_id;
237         phy->linkrate = dr->linkrate;
238         phy->attached_sata_host = dr->attached_sata_host;
239         phy->attached_sata_dev  = dr->attached_sata_dev;
240         phy->attached_sata_ps   = dr->attached_sata_ps;
241         phy->attached_iproto = dr->iproto << 1;
242         phy->attached_tproto = dr->tproto << 1;
243         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
244         phy->attached_phy_id = dr->attached_phy_id;
245         phy->phy_change_count = dr->change_count;
246         phy->routing_attr = dr->routing_attr;
247         phy->virtual = dr->virtual;
248         phy->last_da_index = -1;
249
250         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
251         phy->phy->identify.device_type = dr->attached_dev_type;
252         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
253         phy->phy->identify.target_port_protocols = phy->attached_tproto;
254         phy->phy->identify.phy_identifier = phy_id;
255         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
256         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
257         phy->phy->minimum_linkrate = dr->pmin_linkrate;
258         phy->phy->maximum_linkrate = dr->pmax_linkrate;
259         phy->phy->negotiated_linkrate = phy->linkrate;
260
261         if (new_phy)
262                 if (sas_phy_add(phy->phy)) {
263                         sas_phy_free(phy->phy);
264                         return;
265                 }
266
267         switch (phy->attached_dev_type) {
268         case SATA_PENDING:
269                 type = "stp pending";
270                 break;
271         case NO_DEVICE:
272                 type = "no device";
273                 break;
274         case SAS_END_DEV:
275                 if (phy->attached_iproto) {
276                         if (phy->attached_tproto)
277                                 type = "host+target";
278                         else
279                                 type = "host";
280                 } else {
281                         if (dr->attached_sata_dev)
282                                 type = "stp";
283                         else
284                                 type = "ssp";
285                 }
286                 break;
287         case EDGE_DEV:
288         case FANOUT_DEV:
289                 type = "smp";
290                 break;
291         default:
292                 type = "unknown";
293         }
294
295         /* this routine is polled by libata error recovery so filter
296          * unimportant messages
297          */
298         if (new_phy || phy->attached_dev_type != dev_type ||
299             phy->linkrate != linkrate ||
300             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
301                 /* pass */;
302         else
303                 return;
304
305         SAS_DPRINTK("ex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
306                     SAS_ADDR(dev->sas_addr), phy->phy_id,
307                     sas_route_char(dev, phy), phy->linkrate,
308                     SAS_ADDR(phy->attached_sas_addr), type);
309 }
310
311 /* check if we have an existing attached ata device on this expander phy */
312 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
313 {
314         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
315         struct domain_device *dev;
316         struct sas_rphy *rphy;
317
318         if (!ex_phy->port)
319                 return NULL;
320
321         rphy = ex_phy->port->rphy;
322         if (!rphy)
323                 return NULL;
324
325         dev = sas_find_dev_by_rphy(rphy);
326
327         if (dev && dev_is_sata(dev))
328                 return dev;
329
330         return NULL;
331 }
332
333 #define DISCOVER_REQ_SIZE  16
334 #define DISCOVER_RESP_SIZE 56
335
336 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
337                                       u8 *disc_resp, int single)
338 {
339         struct discover_resp *dr;
340         int res;
341
342         disc_req[9] = single;
343
344         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
345                                disc_resp, DISCOVER_RESP_SIZE);
346         if (res)
347                 return res;
348         dr = &((struct smp_resp *)disc_resp)->disc;
349         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
350                 sas_printk("Found loopback topology, just ignore it!\n");
351                 return 0;
352         }
353         sas_set_ex_phy(dev, single, disc_resp);
354         return 0;
355 }
356
357 int sas_ex_phy_discover(struct domain_device *dev, int single)
358 {
359         struct expander_device *ex = &dev->ex_dev;
360         int  res = 0;
361         u8   *disc_req;
362         u8   *disc_resp;
363
364         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
365         if (!disc_req)
366                 return -ENOMEM;
367
368         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
369         if (!disc_resp) {
370                 kfree(disc_req);
371                 return -ENOMEM;
372         }
373
374         disc_req[1] = SMP_DISCOVER;
375
376         if (0 <= single && single < ex->num_phys) {
377                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
378         } else {
379                 int i;
380
381                 for (i = 0; i < ex->num_phys; i++) {
382                         res = sas_ex_phy_discover_helper(dev, disc_req,
383                                                          disc_resp, i);
384                         if (res)
385                                 goto out_err;
386                 }
387         }
388 out_err:
389         kfree(disc_resp);
390         kfree(disc_req);
391         return res;
392 }
393
394 static int sas_expander_discover(struct domain_device *dev)
395 {
396         struct expander_device *ex = &dev->ex_dev;
397         int res = -ENOMEM;
398
399         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
400         if (!ex->ex_phy)
401                 return -ENOMEM;
402
403         res = sas_ex_phy_discover(dev, -1);
404         if (res)
405                 goto out_err;
406
407         return 0;
408  out_err:
409         kfree(ex->ex_phy);
410         ex->ex_phy = NULL;
411         return res;
412 }
413
414 #define MAX_EXPANDER_PHYS 128
415
416 static void ex_assign_report_general(struct domain_device *dev,
417                                             struct smp_resp *resp)
418 {
419         struct report_general_resp *rg = &resp->rg;
420
421         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
422         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
423         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
424         dev->ex_dev.t2t_supp = rg->t2t_supp;
425         dev->ex_dev.conf_route_table = rg->conf_route_table;
426         dev->ex_dev.configuring = rg->configuring;
427         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
428 }
429
430 #define RG_REQ_SIZE   8
431 #define RG_RESP_SIZE 32
432
433 static int sas_ex_general(struct domain_device *dev)
434 {
435         u8 *rg_req;
436         struct smp_resp *rg_resp;
437         int res;
438         int i;
439
440         rg_req = alloc_smp_req(RG_REQ_SIZE);
441         if (!rg_req)
442                 return -ENOMEM;
443
444         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
445         if (!rg_resp) {
446                 kfree(rg_req);
447                 return -ENOMEM;
448         }
449
450         rg_req[1] = SMP_REPORT_GENERAL;
451
452         for (i = 0; i < 5; i++) {
453                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
454                                        RG_RESP_SIZE);
455
456                 if (res) {
457                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
458                                     SAS_ADDR(dev->sas_addr), res);
459                         goto out;
460                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
461                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
462                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
463                         res = rg_resp->result;
464                         goto out;
465                 }
466
467                 ex_assign_report_general(dev, rg_resp);
468
469                 if (dev->ex_dev.configuring) {
470                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
471                                     SAS_ADDR(dev->sas_addr));
472                         schedule_timeout_interruptible(5*HZ);
473                 } else
474                         break;
475         }
476 out:
477         kfree(rg_req);
478         kfree(rg_resp);
479         return res;
480 }
481
482 static void ex_assign_manuf_info(struct domain_device *dev, void
483                                         *_mi_resp)
484 {
485         u8 *mi_resp = _mi_resp;
486         struct sas_rphy *rphy = dev->rphy;
487         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
488
489         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
490         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
491         memcpy(edev->product_rev, mi_resp + 36,
492                SAS_EXPANDER_PRODUCT_REV_LEN);
493
494         if (mi_resp[8] & 1) {
495                 memcpy(edev->component_vendor_id, mi_resp + 40,
496                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
497                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
498                 edev->component_revision_id = mi_resp[50];
499         }
500 }
501
502 #define MI_REQ_SIZE   8
503 #define MI_RESP_SIZE 64
504
505 static int sas_ex_manuf_info(struct domain_device *dev)
506 {
507         u8 *mi_req;
508         u8 *mi_resp;
509         int res;
510
511         mi_req = alloc_smp_req(MI_REQ_SIZE);
512         if (!mi_req)
513                 return -ENOMEM;
514
515         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
516         if (!mi_resp) {
517                 kfree(mi_req);
518                 return -ENOMEM;
519         }
520
521         mi_req[1] = SMP_REPORT_MANUF_INFO;
522
523         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
524         if (res) {
525                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
526                             SAS_ADDR(dev->sas_addr), res);
527                 goto out;
528         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
529                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
530                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
531                 goto out;
532         }
533
534         ex_assign_manuf_info(dev, mi_resp);
535 out:
536         kfree(mi_req);
537         kfree(mi_resp);
538         return res;
539 }
540
541 #define PC_REQ_SIZE  44
542 #define PC_RESP_SIZE 8
543
544 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
545                         enum phy_func phy_func,
546                         struct sas_phy_linkrates *rates)
547 {
548         u8 *pc_req;
549         u8 *pc_resp;
550         int res;
551
552         pc_req = alloc_smp_req(PC_REQ_SIZE);
553         if (!pc_req)
554                 return -ENOMEM;
555
556         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
557         if (!pc_resp) {
558                 kfree(pc_req);
559                 return -ENOMEM;
560         }
561
562         pc_req[1] = SMP_PHY_CONTROL;
563         pc_req[9] = phy_id;
564         pc_req[10]= phy_func;
565         if (rates) {
566                 pc_req[32] = rates->minimum_linkrate << 4;
567                 pc_req[33] = rates->maximum_linkrate << 4;
568         }
569
570         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
571
572         kfree(pc_resp);
573         kfree(pc_req);
574         return res;
575 }
576
577 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
578 {
579         struct expander_device *ex = &dev->ex_dev;
580         struct ex_phy *phy = &ex->ex_phy[phy_id];
581
582         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
583         phy->linkrate = SAS_PHY_DISABLED;
584 }
585
586 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
587 {
588         struct expander_device *ex = &dev->ex_dev;
589         int i;
590
591         for (i = 0; i < ex->num_phys; i++) {
592                 struct ex_phy *phy = &ex->ex_phy[i];
593
594                 if (phy->phy_state == PHY_VACANT ||
595                     phy->phy_state == PHY_NOT_PRESENT)
596                         continue;
597
598                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
599                         sas_ex_disable_phy(dev, i);
600         }
601 }
602
603 static int sas_dev_present_in_domain(struct asd_sas_port *port,
604                                             u8 *sas_addr)
605 {
606         struct domain_device *dev;
607
608         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
609                 return 1;
610         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
611                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
612                         return 1;
613         }
614         return 0;
615 }
616
617 #define RPEL_REQ_SIZE   16
618 #define RPEL_RESP_SIZE  32
619 int sas_smp_get_phy_events(struct sas_phy *phy)
620 {
621         int res;
622         u8 *req;
623         u8 *resp;
624         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
625         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
626
627         req = alloc_smp_req(RPEL_REQ_SIZE);
628         if (!req)
629                 return -ENOMEM;
630
631         resp = alloc_smp_resp(RPEL_RESP_SIZE);
632         if (!resp) {
633                 kfree(req);
634                 return -ENOMEM;
635         }
636
637         req[1] = SMP_REPORT_PHY_ERR_LOG;
638         req[9] = phy->number;
639
640         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
641                                     resp, RPEL_RESP_SIZE);
642
643         if (!res)
644                 goto out;
645
646         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
647         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
648         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
649         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
650
651  out:
652         kfree(resp);
653         return res;
654
655 }
656
657 #ifdef CONFIG_SCSI_SAS_ATA
658
659 #define RPS_REQ_SIZE  16
660 #define RPS_RESP_SIZE 60
661
662 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
663                             struct smp_resp *rps_resp)
664 {
665         int res;
666         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
667         u8 *resp = (u8 *)rps_resp;
668
669         if (!rps_req)
670                 return -ENOMEM;
671
672         rps_req[1] = SMP_REPORT_PHY_SATA;
673         rps_req[9] = phy_id;
674
675         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
676                                     rps_resp, RPS_RESP_SIZE);
677
678         /* 0x34 is the FIS type for the D2H fis.  There's a potential
679          * standards cockup here.  sas-2 explicitly specifies the FIS
680          * should be encoded so that FIS type is in resp[24].
681          * However, some expanders endian reverse this.  Undo the
682          * reversal here */
683         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
684                 int i;
685
686                 for (i = 0; i < 5; i++) {
687                         int j = 24 + (i*4);
688                         u8 a, b;
689                         a = resp[j + 0];
690                         b = resp[j + 1];
691                         resp[j + 0] = resp[j + 3];
692                         resp[j + 1] = resp[j + 2];
693                         resp[j + 2] = b;
694                         resp[j + 3] = a;
695                 }
696         }
697
698         kfree(rps_req);
699         return res;
700 }
701 #endif
702
703 static void sas_ex_get_linkrate(struct domain_device *parent,
704                                        struct domain_device *child,
705                                        struct ex_phy *parent_phy)
706 {
707         struct expander_device *parent_ex = &parent->ex_dev;
708         struct sas_port *port;
709         int i;
710
711         child->pathways = 0;
712
713         port = parent_phy->port;
714
715         for (i = 0; i < parent_ex->num_phys; i++) {
716                 struct ex_phy *phy = &parent_ex->ex_phy[i];
717
718                 if (phy->phy_state == PHY_VACANT ||
719                     phy->phy_state == PHY_NOT_PRESENT)
720                         continue;
721
722                 if (SAS_ADDR(phy->attached_sas_addr) ==
723                     SAS_ADDR(child->sas_addr)) {
724
725                         child->min_linkrate = min(parent->min_linkrate,
726                                                   phy->linkrate);
727                         child->max_linkrate = max(parent->max_linkrate,
728                                                   phy->linkrate);
729                         child->pathways++;
730                         sas_port_add_phy(port, phy->phy);
731                 }
732         }
733         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
734         child->pathways = min(child->pathways, parent->pathways);
735 }
736
737 static struct domain_device *sas_ex_discover_end_dev(
738         struct domain_device *parent, int phy_id)
739 {
740         struct expander_device *parent_ex = &parent->ex_dev;
741         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
742         struct domain_device *child = NULL;
743         struct sas_rphy *rphy;
744         int res;
745
746         if (phy->attached_sata_host || phy->attached_sata_ps)
747                 return NULL;
748
749         child = sas_alloc_device();
750         if (!child)
751                 return NULL;
752
753         kref_get(&parent->kref);
754         child->parent = parent;
755         child->port   = parent->port;
756         child->iproto = phy->attached_iproto;
757         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
758         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
759         if (!phy->port) {
760                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
761                 if (unlikely(!phy->port))
762                         goto out_err;
763                 if (unlikely(sas_port_add(phy->port) != 0)) {
764                         sas_port_free(phy->port);
765                         goto out_err;
766                 }
767         }
768         sas_ex_get_linkrate(parent, child, phy);
769         sas_device_set_phy(child, phy->port);
770
771 #ifdef CONFIG_SCSI_SAS_ATA
772         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
773                 res = sas_get_ata_info(child, phy);
774                 if (res)
775                         goto out_free;
776
777                 rphy = sas_end_device_alloc(phy->port);
778                 if (unlikely(!rphy))
779                         goto out_free;
780
781                 sas_init_dev(child);
782
783                 child->rphy = rphy;
784
785                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
786
787                 res = sas_discover_sata(child);
788                 if (res) {
789                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
790                                     "%016llx:0x%x returned 0x%x\n",
791                                     SAS_ADDR(child->sas_addr),
792                                     SAS_ADDR(parent->sas_addr), phy_id, res);
793                         goto out_list_del;
794                 }
795         } else
796 #endif
797           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
798                 child->dev_type = SAS_END_DEV;
799                 rphy = sas_end_device_alloc(phy->port);
800                 /* FIXME: error handling */
801                 if (unlikely(!rphy))
802                         goto out_free;
803                 child->tproto = phy->attached_tproto;
804                 sas_init_dev(child);
805
806                 child->rphy = rphy;
807                 sas_fill_in_rphy(child, rphy);
808
809                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
810
811                 res = sas_discover_end_dev(child);
812                 if (res) {
813                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
814                                     "at %016llx:0x%x returned 0x%x\n",
815                                     SAS_ADDR(child->sas_addr),
816                                     SAS_ADDR(parent->sas_addr), phy_id, res);
817                         goto out_list_del;
818                 }
819         } else {
820                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
821                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
822                             phy_id);
823                 goto out_free;
824         }
825
826         list_add_tail(&child->siblings, &parent_ex->children);
827         return child;
828
829  out_list_del:
830         sas_rphy_free(child->rphy);
831         child->rphy = NULL;
832
833         list_del(&child->disco_list_node);
834         spin_lock_irq(&parent->port->dev_list_lock);
835         list_del(&child->dev_list_node);
836         spin_unlock_irq(&parent->port->dev_list_lock);
837  out_free:
838         sas_port_delete(phy->port);
839  out_err:
840         phy->port = NULL;
841         sas_put_device(child);
842         return NULL;
843 }
844
845 /* See if this phy is part of a wide port */
846 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
847 {
848         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
849         int i;
850
851         for (i = 0; i < parent->ex_dev.num_phys; i++) {
852                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
853
854                 if (ephy == phy)
855                         continue;
856
857                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
858                             SAS_ADDR_SIZE) && ephy->port) {
859                         sas_port_add_phy(ephy->port, phy->phy);
860                         phy->port = ephy->port;
861                         phy->phy_state = PHY_DEVICE_DISCOVERED;
862                         return 0;
863                 }
864         }
865
866         return -ENODEV;
867 }
868
869 static struct domain_device *sas_ex_discover_expander(
870         struct domain_device *parent, int phy_id)
871 {
872         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
873         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
874         struct domain_device *child = NULL;
875         struct sas_rphy *rphy;
876         struct sas_expander_device *edev;
877         struct asd_sas_port *port;
878         int res;
879
880         if (phy->routing_attr == DIRECT_ROUTING) {
881                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
882                             "allowed\n",
883                             SAS_ADDR(parent->sas_addr), phy_id,
884                             SAS_ADDR(phy->attached_sas_addr),
885                             phy->attached_phy_id);
886                 return NULL;
887         }
888         child = sas_alloc_device();
889         if (!child)
890                 return NULL;
891
892         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
893         /* FIXME: better error handling */
894         BUG_ON(sas_port_add(phy->port) != 0);
895
896
897         switch (phy->attached_dev_type) {
898         case EDGE_DEV:
899                 rphy = sas_expander_alloc(phy->port,
900                                           SAS_EDGE_EXPANDER_DEVICE);
901                 break;
902         case FANOUT_DEV:
903                 rphy = sas_expander_alloc(phy->port,
904                                           SAS_FANOUT_EXPANDER_DEVICE);
905                 break;
906         default:
907                 rphy = NULL;    /* shut gcc up */
908                 BUG();
909         }
910         port = parent->port;
911         child->rphy = rphy;
912         edev = rphy_to_expander_device(rphy);
913         child->dev_type = phy->attached_dev_type;
914         kref_get(&parent->kref);
915         child->parent = parent;
916         child->port = port;
917         child->iproto = phy->attached_iproto;
918         child->tproto = phy->attached_tproto;
919         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
920         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
921         sas_ex_get_linkrate(parent, child, phy);
922         edev->level = parent_ex->level + 1;
923         parent->port->disc.max_level = max(parent->port->disc.max_level,
924                                            edev->level);
925         sas_init_dev(child);
926         sas_fill_in_rphy(child, rphy);
927         sas_rphy_add(rphy);
928
929         spin_lock_irq(&parent->port->dev_list_lock);
930         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
931         spin_unlock_irq(&parent->port->dev_list_lock);
932
933         res = sas_discover_expander(child);
934         if (res) {
935                 spin_lock_irq(&parent->port->dev_list_lock);
936                 list_del(&child->dev_list_node);
937                 spin_unlock_irq(&parent->port->dev_list_lock);
938                 sas_put_device(child);
939                 return NULL;
940         }
941         list_add_tail(&child->siblings, &parent->ex_dev.children);
942         return child;
943 }
944
945 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
946 {
947         struct expander_device *ex = &dev->ex_dev;
948         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
949         struct domain_device *child = NULL;
950         int res = 0;
951
952         /* Phy state */
953         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
954                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
955                         res = sas_ex_phy_discover(dev, phy_id);
956                 if (res)
957                         return res;
958         }
959
960         /* Parent and domain coherency */
961         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
962                              SAS_ADDR(dev->port->sas_addr))) {
963                 sas_add_parent_port(dev, phy_id);
964                 return 0;
965         }
966         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
967                             SAS_ADDR(dev->parent->sas_addr))) {
968                 sas_add_parent_port(dev, phy_id);
969                 if (ex_phy->routing_attr == TABLE_ROUTING)
970                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
971                 return 0;
972         }
973
974         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
975                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
976
977         if (ex_phy->attached_dev_type == NO_DEVICE) {
978                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
979                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
980                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
981                 }
982                 return 0;
983         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
984                 return 0;
985
986         if (ex_phy->attached_dev_type != SAS_END_DEV &&
987             ex_phy->attached_dev_type != FANOUT_DEV &&
988             ex_phy->attached_dev_type != EDGE_DEV &&
989             ex_phy->attached_dev_type != SATA_PENDING) {
990                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
991                             "phy 0x%x\n", ex_phy->attached_dev_type,
992                             SAS_ADDR(dev->sas_addr),
993                             phy_id);
994                 return 0;
995         }
996
997         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
998         if (res) {
999                 SAS_DPRINTK("configure routing for dev %016llx "
1000                             "reported 0x%x. Forgotten\n",
1001                             SAS_ADDR(ex_phy->attached_sas_addr), res);
1002                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1003                 return res;
1004         }
1005
1006         res = sas_ex_join_wide_port(dev, phy_id);
1007         if (!res) {
1008                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1009                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1010                 return res;
1011         }
1012
1013         switch (ex_phy->attached_dev_type) {
1014         case SAS_END_DEV:
1015         case SATA_PENDING:
1016                 child = sas_ex_discover_end_dev(dev, phy_id);
1017                 break;
1018         case FANOUT_DEV:
1019                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1020                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1021                                     "attached to ex %016llx phy 0x%x\n",
1022                                     SAS_ADDR(ex_phy->attached_sas_addr),
1023                                     ex_phy->attached_phy_id,
1024                                     SAS_ADDR(dev->sas_addr),
1025                                     phy_id);
1026                         sas_ex_disable_phy(dev, phy_id);
1027                         break;
1028                 } else
1029                         memcpy(dev->port->disc.fanout_sas_addr,
1030                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1031                 /* fallthrough */
1032         case EDGE_DEV:
1033                 child = sas_ex_discover_expander(dev, phy_id);
1034                 break;
1035         default:
1036                 break;
1037         }
1038
1039         if (child) {
1040                 int i;
1041
1042                 for (i = 0; i < ex->num_phys; i++) {
1043                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1044                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1045                                 continue;
1046                         /*
1047                          * Due to races, the phy might not get added to the
1048                          * wide port, so we add the phy to the wide port here.
1049                          */
1050                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1051                             SAS_ADDR(child->sas_addr)) {
1052                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1053                                 res = sas_ex_join_wide_port(dev, i);
1054                                 if (!res)
1055                                         SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1056                                                     i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1057
1058                         }
1059                 }
1060         }
1061
1062         return res;
1063 }
1064
1065 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1066 {
1067         struct expander_device *ex = &dev->ex_dev;
1068         int i;
1069
1070         for (i = 0; i < ex->num_phys; i++) {
1071                 struct ex_phy *phy = &ex->ex_phy[i];
1072
1073                 if (phy->phy_state == PHY_VACANT ||
1074                     phy->phy_state == PHY_NOT_PRESENT)
1075                         continue;
1076
1077                 if ((phy->attached_dev_type == EDGE_DEV ||
1078                      phy->attached_dev_type == FANOUT_DEV) &&
1079                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1080
1081                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1082
1083                         return 1;
1084                 }
1085         }
1086         return 0;
1087 }
1088
1089 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1090 {
1091         struct expander_device *ex = &dev->ex_dev;
1092         struct domain_device *child;
1093         u8 sub_addr[8] = {0, };
1094
1095         list_for_each_entry(child, &ex->children, siblings) {
1096                 if (child->dev_type != EDGE_DEV &&
1097                     child->dev_type != FANOUT_DEV)
1098                         continue;
1099                 if (sub_addr[0] == 0) {
1100                         sas_find_sub_addr(child, sub_addr);
1101                         continue;
1102                 } else {
1103                         u8 s2[8];
1104
1105                         if (sas_find_sub_addr(child, s2) &&
1106                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1107
1108                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1109                                             "diverges from subtractive "
1110                                             "boundary %016llx\n",
1111                                             SAS_ADDR(dev->sas_addr),
1112                                             SAS_ADDR(child->sas_addr),
1113                                             SAS_ADDR(s2),
1114                                             SAS_ADDR(sub_addr));
1115
1116                                 sas_ex_disable_port(child, s2);
1117                         }
1118                 }
1119         }
1120         return 0;
1121 }
1122 /**
1123  * sas_ex_discover_devices -- discover devices attached to this expander
1124  * dev: pointer to the expander domain device
1125  * single: if you want to do a single phy, else set to -1;
1126  *
1127  * Configure this expander for use with its devices and register the
1128  * devices of this expander.
1129  */
1130 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1131 {
1132         struct expander_device *ex = &dev->ex_dev;
1133         int i = 0, end = ex->num_phys;
1134         int res = 0;
1135
1136         if (0 <= single && single < end) {
1137                 i = single;
1138                 end = i+1;
1139         }
1140
1141         for ( ; i < end; i++) {
1142                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1143
1144                 if (ex_phy->phy_state == PHY_VACANT ||
1145                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1146                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1147                         continue;
1148
1149                 switch (ex_phy->linkrate) {
1150                 case SAS_PHY_DISABLED:
1151                 case SAS_PHY_RESET_PROBLEM:
1152                 case SAS_SATA_PORT_SELECTOR:
1153                         continue;
1154                 default:
1155                         res = sas_ex_discover_dev(dev, i);
1156                         if (res)
1157                                 break;
1158                         continue;
1159                 }
1160         }
1161
1162         if (!res)
1163                 sas_check_level_subtractive_boundary(dev);
1164
1165         return res;
1166 }
1167
1168 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1169 {
1170         struct expander_device *ex = &dev->ex_dev;
1171         int i;
1172         u8  *sub_sas_addr = NULL;
1173
1174         if (dev->dev_type != EDGE_DEV)
1175                 return 0;
1176
1177         for (i = 0; i < ex->num_phys; i++) {
1178                 struct ex_phy *phy = &ex->ex_phy[i];
1179
1180                 if (phy->phy_state == PHY_VACANT ||
1181                     phy->phy_state == PHY_NOT_PRESENT)
1182                         continue;
1183
1184                 if ((phy->attached_dev_type == FANOUT_DEV ||
1185                      phy->attached_dev_type == EDGE_DEV) &&
1186                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1187
1188                         if (!sub_sas_addr)
1189                                 sub_sas_addr = &phy->attached_sas_addr[0];
1190                         else if (SAS_ADDR(sub_sas_addr) !=
1191                                  SAS_ADDR(phy->attached_sas_addr)) {
1192
1193                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1194                                             "diverges(%016llx) on subtractive "
1195                                             "boundary(%016llx). Disabled\n",
1196                                             SAS_ADDR(dev->sas_addr), i,
1197                                             SAS_ADDR(phy->attached_sas_addr),
1198                                             SAS_ADDR(sub_sas_addr));
1199                                 sas_ex_disable_phy(dev, i);
1200                         }
1201                 }
1202         }
1203         return 0;
1204 }
1205
1206 static void sas_print_parent_topology_bug(struct domain_device *child,
1207                                                  struct ex_phy *parent_phy,
1208                                                  struct ex_phy *child_phy)
1209 {
1210         static const char *ex_type[] = {
1211                 [EDGE_DEV] = "edge",
1212                 [FANOUT_DEV] = "fanout",
1213         };
1214         struct domain_device *parent = child->parent;
1215
1216         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1217                    "phy 0x%x has %c:%c routing link!\n",
1218
1219                    ex_type[parent->dev_type],
1220                    SAS_ADDR(parent->sas_addr),
1221                    parent_phy->phy_id,
1222
1223                    ex_type[child->dev_type],
1224                    SAS_ADDR(child->sas_addr),
1225                    child_phy->phy_id,
1226
1227                    sas_route_char(parent, parent_phy),
1228                    sas_route_char(child, child_phy));
1229 }
1230
1231 static int sas_check_eeds(struct domain_device *child,
1232                                  struct ex_phy *parent_phy,
1233                                  struct ex_phy *child_phy)
1234 {
1235         int res = 0;
1236         struct domain_device *parent = child->parent;
1237
1238         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1239                 res = -ENODEV;
1240                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1241                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1242                             SAS_ADDR(parent->sas_addr),
1243                             parent_phy->phy_id,
1244                             SAS_ADDR(child->sas_addr),
1245                             child_phy->phy_id,
1246                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1247         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1248                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1249                        SAS_ADDR_SIZE);
1250                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1251                        SAS_ADDR_SIZE);
1252         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1253                     SAS_ADDR(parent->sas_addr)) ||
1254                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1255                     SAS_ADDR(child->sas_addr)))
1256                    &&
1257                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1258                      SAS_ADDR(parent->sas_addr)) ||
1259                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1260                      SAS_ADDR(child->sas_addr))))
1261                 ;
1262         else {
1263                 res = -ENODEV;
1264                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1265                             "phy 0x%x link forms a third EEDS!\n",
1266                             SAS_ADDR(parent->sas_addr),
1267                             parent_phy->phy_id,
1268                             SAS_ADDR(child->sas_addr),
1269                             child_phy->phy_id);
1270         }
1271
1272         return res;
1273 }
1274
1275 /* Here we spill over 80 columns.  It is intentional.
1276  */
1277 static int sas_check_parent_topology(struct domain_device *child)
1278 {
1279         struct expander_device *child_ex = &child->ex_dev;
1280         struct expander_device *parent_ex;
1281         int i;
1282         int res = 0;
1283
1284         if (!child->parent)
1285                 return 0;
1286
1287         if (child->parent->dev_type != EDGE_DEV &&
1288             child->parent->dev_type != FANOUT_DEV)
1289                 return 0;
1290
1291         parent_ex = &child->parent->ex_dev;
1292
1293         for (i = 0; i < parent_ex->num_phys; i++) {
1294                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1295                 struct ex_phy *child_phy;
1296
1297                 if (parent_phy->phy_state == PHY_VACANT ||
1298                     parent_phy->phy_state == PHY_NOT_PRESENT)
1299                         continue;
1300
1301                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1302                         continue;
1303
1304                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1305
1306                 switch (child->parent->dev_type) {
1307                 case EDGE_DEV:
1308                         if (child->dev_type == FANOUT_DEV) {
1309                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1310                                     child_phy->routing_attr != TABLE_ROUTING) {
1311                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1312                                         res = -ENODEV;
1313                                 }
1314                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1315                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1316                                         res = sas_check_eeds(child, parent_phy, child_phy);
1317                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1318                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1319                                         res = -ENODEV;
1320                                 }
1321                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1322                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1323                                     (child_phy->routing_attr == TABLE_ROUTING &&
1324                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1325                                         /* All good */;
1326                                 } else {
1327                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1328                                         res = -ENODEV;
1329                                 }
1330                         }
1331                         break;
1332                 case FANOUT_DEV:
1333                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1334                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1335                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1336                                 res = -ENODEV;
1337                         }
1338                         break;
1339                 default:
1340                         break;
1341                 }
1342         }
1343
1344         return res;
1345 }
1346
1347 #define RRI_REQ_SIZE  16
1348 #define RRI_RESP_SIZE 44
1349
1350 static int sas_configure_present(struct domain_device *dev, int phy_id,
1351                                  u8 *sas_addr, int *index, int *present)
1352 {
1353         int i, res = 0;
1354         struct expander_device *ex = &dev->ex_dev;
1355         struct ex_phy *phy = &ex->ex_phy[phy_id];
1356         u8 *rri_req;
1357         u8 *rri_resp;
1358
1359         *present = 0;
1360         *index = 0;
1361
1362         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1363         if (!rri_req)
1364                 return -ENOMEM;
1365
1366         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1367         if (!rri_resp) {
1368                 kfree(rri_req);
1369                 return -ENOMEM;
1370         }
1371
1372         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1373         rri_req[9] = phy_id;
1374
1375         for (i = 0; i < ex->max_route_indexes ; i++) {
1376                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1377                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1378                                        RRI_RESP_SIZE);
1379                 if (res)
1380                         goto out;
1381                 res = rri_resp[2];
1382                 if (res == SMP_RESP_NO_INDEX) {
1383                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1384                                     "phy 0x%x index 0x%x\n",
1385                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1386                         goto out;
1387                 } else if (res != SMP_RESP_FUNC_ACC) {
1388                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1389                                     "result 0x%x\n", __func__,
1390                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1391                         goto out;
1392                 }
1393                 if (SAS_ADDR(sas_addr) != 0) {
1394                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1395                                 *index = i;
1396                                 if ((rri_resp[12] & 0x80) == 0x80)
1397                                         *present = 0;
1398                                 else
1399                                         *present = 1;
1400                                 goto out;
1401                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1402                                 *index = i;
1403                                 *present = 0;
1404                                 goto out;
1405                         }
1406                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1407                            phy->last_da_index < i) {
1408                         phy->last_da_index = i;
1409                         *index = i;
1410                         *present = 0;
1411                         goto out;
1412                 }
1413         }
1414         res = -1;
1415 out:
1416         kfree(rri_req);
1417         kfree(rri_resp);
1418         return res;
1419 }
1420
1421 #define CRI_REQ_SIZE  44
1422 #define CRI_RESP_SIZE  8
1423
1424 static int sas_configure_set(struct domain_device *dev, int phy_id,
1425                              u8 *sas_addr, int index, int include)
1426 {
1427         int res;
1428         u8 *cri_req;
1429         u8 *cri_resp;
1430
1431         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1432         if (!cri_req)
1433                 return -ENOMEM;
1434
1435         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1436         if (!cri_resp) {
1437                 kfree(cri_req);
1438                 return -ENOMEM;
1439         }
1440
1441         cri_req[1] = SMP_CONF_ROUTE_INFO;
1442         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1443         cri_req[9] = phy_id;
1444         if (SAS_ADDR(sas_addr) == 0 || !include)
1445                 cri_req[12] |= 0x80;
1446         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1447
1448         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1449                                CRI_RESP_SIZE);
1450         if (res)
1451                 goto out;
1452         res = cri_resp[2];
1453         if (res == SMP_RESP_NO_INDEX) {
1454                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1455                             "index 0x%x\n",
1456                             SAS_ADDR(dev->sas_addr), phy_id, index);
1457         }
1458 out:
1459         kfree(cri_req);
1460         kfree(cri_resp);
1461         return res;
1462 }
1463
1464 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1465                                     u8 *sas_addr, int include)
1466 {
1467         int index;
1468         int present;
1469         int res;
1470
1471         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1472         if (res)
1473                 return res;
1474         if (include ^ present)
1475                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1476
1477         return res;
1478 }
1479
1480 /**
1481  * sas_configure_parent -- configure routing table of parent
1482  * parent: parent expander
1483  * child: child expander
1484  * sas_addr: SAS port identifier of device directly attached to child
1485  */
1486 static int sas_configure_parent(struct domain_device *parent,
1487                                 struct domain_device *child,
1488                                 u8 *sas_addr, int include)
1489 {
1490         struct expander_device *ex_parent = &parent->ex_dev;
1491         int res = 0;
1492         int i;
1493
1494         if (parent->parent) {
1495                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1496                                            include);
1497                 if (res)
1498                         return res;
1499         }
1500
1501         if (ex_parent->conf_route_table == 0) {
1502                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1503                             SAS_ADDR(parent->sas_addr));
1504                 return 0;
1505         }
1506
1507         for (i = 0; i < ex_parent->num_phys; i++) {
1508                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1509
1510                 if ((phy->routing_attr == TABLE_ROUTING) &&
1511                     (SAS_ADDR(phy->attached_sas_addr) ==
1512                      SAS_ADDR(child->sas_addr))) {
1513                         res = sas_configure_phy(parent, i, sas_addr, include);
1514                         if (res)
1515                                 return res;
1516                 }
1517         }
1518
1519         return res;
1520 }
1521
1522 /**
1523  * sas_configure_routing -- configure routing
1524  * dev: expander device
1525  * sas_addr: port identifier of device directly attached to the expander device
1526  */
1527 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1528 {
1529         if (dev->parent)
1530                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1531         return 0;
1532 }
1533
1534 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1535 {
1536         if (dev->parent)
1537                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1538         return 0;
1539 }
1540
1541 /**
1542  * sas_discover_expander -- expander discovery
1543  * @ex: pointer to expander domain device
1544  *
1545  * See comment in sas_discover_sata().
1546  */
1547 static int sas_discover_expander(struct domain_device *dev)
1548 {
1549         int res;
1550
1551         res = sas_notify_lldd_dev_found(dev);
1552         if (res)
1553                 return res;
1554
1555         res = sas_ex_general(dev);
1556         if (res)
1557                 goto out_err;
1558         res = sas_ex_manuf_info(dev);
1559         if (res)
1560                 goto out_err;
1561
1562         res = sas_expander_discover(dev);
1563         if (res) {
1564                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1565                             SAS_ADDR(dev->sas_addr), res);
1566                 goto out_err;
1567         }
1568
1569         sas_check_ex_subtractive_boundary(dev);
1570         res = sas_check_parent_topology(dev);
1571         if (res)
1572                 goto out_err;
1573         return 0;
1574 out_err:
1575         sas_notify_lldd_dev_gone(dev);
1576         return res;
1577 }
1578
1579 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1580 {
1581         int res = 0;
1582         struct domain_device *dev;
1583
1584         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1585                 if (dev->dev_type == EDGE_DEV ||
1586                     dev->dev_type == FANOUT_DEV) {
1587                         struct sas_expander_device *ex =
1588                                 rphy_to_expander_device(dev->rphy);
1589
1590                         if (level == ex->level)
1591                                 res = sas_ex_discover_devices(dev, -1);
1592                         else if (level > 0)
1593                                 res = sas_ex_discover_devices(port->port_dev, -1);
1594
1595                 }
1596         }
1597
1598         return res;
1599 }
1600
1601 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1602 {
1603         int res;
1604         int level;
1605
1606         do {
1607                 level = port->disc.max_level;
1608                 res = sas_ex_level_discovery(port, level);
1609                 mb();
1610         } while (level < port->disc.max_level);
1611
1612         return res;
1613 }
1614
1615 int sas_discover_root_expander(struct domain_device *dev)
1616 {
1617         int res;
1618         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1619
1620         res = sas_rphy_add(dev->rphy);
1621         if (res)
1622                 goto out_err;
1623
1624         ex->level = dev->port->disc.max_level; /* 0 */
1625         res = sas_discover_expander(dev);
1626         if (res)
1627                 goto out_err2;
1628
1629         sas_ex_bfs_disc(dev->port);
1630
1631         return res;
1632
1633 out_err2:
1634         sas_rphy_remove(dev->rphy);
1635 out_err:
1636         return res;
1637 }
1638
1639 /* ---------- Domain revalidation ---------- */
1640
1641 static int sas_get_phy_discover(struct domain_device *dev,
1642                                 int phy_id, struct smp_resp *disc_resp)
1643 {
1644         int res;
1645         u8 *disc_req;
1646
1647         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1648         if (!disc_req)
1649                 return -ENOMEM;
1650
1651         disc_req[1] = SMP_DISCOVER;
1652         disc_req[9] = phy_id;
1653
1654         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1655                                disc_resp, DISCOVER_RESP_SIZE);
1656         if (res)
1657                 goto out;
1658         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1659                 res = disc_resp->result;
1660                 goto out;
1661         }
1662 out:
1663         kfree(disc_req);
1664         return res;
1665 }
1666
1667 static int sas_get_phy_change_count(struct domain_device *dev,
1668                                     int phy_id, int *pcc)
1669 {
1670         int res;
1671         struct smp_resp *disc_resp;
1672
1673         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1674         if (!disc_resp)
1675                 return -ENOMEM;
1676
1677         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1678         if (!res)
1679                 *pcc = disc_resp->disc.change_count;
1680
1681         kfree(disc_resp);
1682         return res;
1683 }
1684
1685 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1686                                     u8 *sas_addr, enum sas_dev_type *type)
1687 {
1688         int res;
1689         struct smp_resp *disc_resp;
1690         struct discover_resp *dr;
1691
1692         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1693         if (!disc_resp)
1694                 return -ENOMEM;
1695         dr = &disc_resp->disc;
1696
1697         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1698         if (res == 0) {
1699                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1700                 *type = to_dev_type(dr);
1701                 if (*type == 0)
1702                         memset(sas_addr, 0, 8);
1703         }
1704         kfree(disc_resp);
1705         return res;
1706 }
1707
1708 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1709                               int from_phy, bool update)
1710 {
1711         struct expander_device *ex = &dev->ex_dev;
1712         int res = 0;
1713         int i;
1714
1715         for (i = from_phy; i < ex->num_phys; i++) {
1716                 int phy_change_count = 0;
1717
1718                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1719                 if (res)
1720                         goto out;
1721                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1722                         if (update)
1723                                 ex->ex_phy[i].phy_change_count =
1724                                         phy_change_count;
1725                         *phy_id = i;
1726                         return 0;
1727                 }
1728         }
1729 out:
1730         return res;
1731 }
1732
1733 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1734 {
1735         int res;
1736         u8  *rg_req;
1737         struct smp_resp  *rg_resp;
1738
1739         rg_req = alloc_smp_req(RG_REQ_SIZE);
1740         if (!rg_req)
1741                 return -ENOMEM;
1742
1743         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1744         if (!rg_resp) {
1745                 kfree(rg_req);
1746                 return -ENOMEM;
1747         }
1748
1749         rg_req[1] = SMP_REPORT_GENERAL;
1750
1751         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1752                                RG_RESP_SIZE);
1753         if (res)
1754                 goto out;
1755         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1756                 res = rg_resp->result;
1757                 goto out;
1758         }
1759
1760         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1761 out:
1762         kfree(rg_resp);
1763         kfree(rg_req);
1764         return res;
1765 }
1766 /**
1767  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1768  * @dev:domain device to be detect.
1769  * @src_dev: the device which originated BROADCAST(CHANGE).
1770  *
1771  * Add self-configuration expander suport. Suppose two expander cascading,
1772  * when the first level expander is self-configuring, hotplug the disks in
1773  * second level expander, BROADCAST(CHANGE) will not only be originated
1774  * in the second level expander, but also be originated in the first level
1775  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1776  * expander changed count in two level expanders will all increment at least
1777  * once, but the phy which chang count has changed is the source device which
1778  * we concerned.
1779  */
1780
1781 static int sas_find_bcast_dev(struct domain_device *dev,
1782                               struct domain_device **src_dev)
1783 {
1784         struct expander_device *ex = &dev->ex_dev;
1785         int ex_change_count = -1;
1786         int phy_id = -1;
1787         int res;
1788         struct domain_device *ch;
1789
1790         res = sas_get_ex_change_count(dev, &ex_change_count);
1791         if (res)
1792                 goto out;
1793         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1794                 /* Just detect if this expander phys phy change count changed,
1795                 * in order to determine if this expander originate BROADCAST,
1796                 * and do not update phy change count field in our structure.
1797                 */
1798                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1799                 if (phy_id != -1) {
1800                         *src_dev = dev;
1801                         ex->ex_change_count = ex_change_count;
1802                         SAS_DPRINTK("Expander phy change count has changed\n");
1803                         return res;
1804                 } else
1805                         SAS_DPRINTK("Expander phys DID NOT change\n");
1806         }
1807         list_for_each_entry(ch, &ex->children, siblings) {
1808                 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1809                         res = sas_find_bcast_dev(ch, src_dev);
1810                         if (*src_dev)
1811                                 return res;
1812                 }
1813         }
1814 out:
1815         return res;
1816 }
1817
1818 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1819 {
1820         struct expander_device *ex = &dev->ex_dev;
1821         struct domain_device *child, *n;
1822
1823         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1824                 set_bit(SAS_DEV_GONE, &child->state);
1825                 if (child->dev_type == EDGE_DEV ||
1826                     child->dev_type == FANOUT_DEV)
1827                         sas_unregister_ex_tree(port, child);
1828                 else
1829                         sas_unregister_dev(port, child);
1830         }
1831         sas_unregister_dev(port, dev);
1832 }
1833
1834 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1835                                          int phy_id, bool last)
1836 {
1837         struct expander_device *ex_dev = &parent->ex_dev;
1838         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1839         struct domain_device *child, *n, *found = NULL;
1840         if (last) {
1841                 list_for_each_entry_safe(child, n,
1842                         &ex_dev->children, siblings) {
1843                         if (SAS_ADDR(child->sas_addr) ==
1844                             SAS_ADDR(phy->attached_sas_addr)) {
1845                                 set_bit(SAS_DEV_GONE, &child->state);
1846                                 if (child->dev_type == EDGE_DEV ||
1847                                     child->dev_type == FANOUT_DEV)
1848                                         sas_unregister_ex_tree(parent->port, child);
1849                                 else
1850                                         sas_unregister_dev(parent->port, child);
1851                                 found = child;
1852                                 break;
1853                         }
1854                 }
1855                 sas_disable_routing(parent, phy->attached_sas_addr);
1856         }
1857         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1858         if (phy->port) {
1859                 sas_port_delete_phy(phy->port, phy->phy);
1860                 sas_device_set_phy(found, phy->port);
1861                 if (phy->port->num_phys == 0)
1862                         sas_port_delete(phy->port);
1863                 phy->port = NULL;
1864         }
1865 }
1866
1867 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1868                                           const int level)
1869 {
1870         struct expander_device *ex_root = &root->ex_dev;
1871         struct domain_device *child;
1872         int res = 0;
1873
1874         list_for_each_entry(child, &ex_root->children, siblings) {
1875                 if (child->dev_type == EDGE_DEV ||
1876                     child->dev_type == FANOUT_DEV) {
1877                         struct sas_expander_device *ex =
1878                                 rphy_to_expander_device(child->rphy);
1879
1880                         if (level > ex->level)
1881                                 res = sas_discover_bfs_by_root_level(child,
1882                                                                      level);
1883                         else if (level == ex->level)
1884                                 res = sas_ex_discover_devices(child, -1);
1885                 }
1886         }
1887         return res;
1888 }
1889
1890 static int sas_discover_bfs_by_root(struct domain_device *dev)
1891 {
1892         int res;
1893         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1894         int level = ex->level+1;
1895
1896         res = sas_ex_discover_devices(dev, -1);
1897         if (res)
1898                 goto out;
1899         do {
1900                 res = sas_discover_bfs_by_root_level(dev, level);
1901                 mb();
1902                 level += 1;
1903         } while (level <= dev->port->disc.max_level);
1904 out:
1905         return res;
1906 }
1907
1908 static int sas_discover_new(struct domain_device *dev, int phy_id)
1909 {
1910         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1911         struct domain_device *child;
1912         bool found = false;
1913         int res, i;
1914
1915         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1916                     SAS_ADDR(dev->sas_addr), phy_id);
1917         res = sas_ex_phy_discover(dev, phy_id);
1918         if (res)
1919                 goto out;
1920         /* to support the wide port inserted */
1921         for (i = 0; i < dev->ex_dev.num_phys; i++) {
1922                 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1923                 if (i == phy_id)
1924                         continue;
1925                 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1926                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1927                         found = true;
1928                         break;
1929                 }
1930         }
1931         if (found) {
1932                 sas_ex_join_wide_port(dev, phy_id);
1933                 return 0;
1934         }
1935         res = sas_ex_discover_devices(dev, phy_id);
1936         if (!res)
1937                 goto out;
1938         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1939                 if (SAS_ADDR(child->sas_addr) ==
1940                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1941                         if (child->dev_type == EDGE_DEV ||
1942                             child->dev_type == FANOUT_DEV)
1943                                 res = sas_discover_bfs_by_root(child);
1944                         break;
1945                 }
1946         }
1947 out:
1948         return res;
1949 }
1950
1951 static bool dev_type_flutter(enum sas_dev_type new, enum sas_dev_type old)
1952 {
1953         if (old == new)
1954                 return true;
1955
1956         /* treat device directed resets as flutter, if we went
1957          * SAS_END_DEV to SATA_PENDING the link needs recovery
1958          */
1959         if ((old == SATA_PENDING && new == SAS_END_DEV) ||
1960             (old == SAS_END_DEV && new == SATA_PENDING))
1961                 return true;
1962
1963         return false;
1964 }
1965
1966 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1967 {
1968         struct expander_device *ex = &dev->ex_dev;
1969         struct ex_phy *phy = &ex->ex_phy[phy_id];
1970         enum sas_dev_type type = NO_DEVICE;
1971         u8 sas_addr[8];
1972         int res;
1973
1974         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1975         switch (res) {
1976         case SMP_RESP_NO_PHY:
1977                 phy->phy_state = PHY_NOT_PRESENT;
1978                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1979                 return res;
1980         case SMP_RESP_PHY_VACANT:
1981                 phy->phy_state = PHY_VACANT;
1982                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1983                 return res;
1984         case SMP_RESP_FUNC_ACC:
1985                 break;
1986         }
1987
1988         if (SAS_ADDR(sas_addr) == 0) {
1989                 phy->phy_state = PHY_EMPTY;
1990                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1991                 return res;
1992         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
1993                    dev_type_flutter(type, phy->attached_dev_type)) {
1994                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
1995                 char *action = "";
1996
1997                 sas_ex_phy_discover(dev, phy_id);
1998
1999                 if (ata_dev && phy->attached_dev_type == SATA_PENDING)
2000                         action = ", needs recovery";
2001                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2002                             SAS_ADDR(dev->sas_addr), phy_id, action);
2003                 return res;
2004         }
2005
2006         /* delete the old link */
2007         if (SAS_ADDR(phy->attached_sas_addr) &&
2008             SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2009                 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2010                             SAS_ADDR(dev->sas_addr), phy_id,
2011                             SAS_ADDR(phy->attached_sas_addr));
2012                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2013         }
2014
2015         return sas_discover_new(dev, phy_id);
2016 }
2017
2018 /**
2019  * sas_rediscover - revalidate the domain.
2020  * @dev:domain device to be detect.
2021  * @phy_id: the phy id will be detected.
2022  *
2023  * NOTE: this process _must_ quit (return) as soon as any connection
2024  * errors are encountered.  Connection recovery is done elsewhere.
2025  * Discover process only interrogates devices in order to discover the
2026  * domain.For plugging out, we un-register the device only when it is
2027  * the last phy in the port, for other phys in this port, we just delete it
2028  * from the port.For inserting, we do discovery when it is the
2029  * first phy,for other phys in this port, we add it to the port to
2030  * forming the wide-port.
2031  */
2032 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2033 {
2034         struct expander_device *ex = &dev->ex_dev;
2035         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2036         int res = 0;
2037         int i;
2038         bool last = true;       /* is this the last phy of the port */
2039
2040         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2041                     SAS_ADDR(dev->sas_addr), phy_id);
2042
2043         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2044                 for (i = 0; i < ex->num_phys; i++) {
2045                         struct ex_phy *phy = &ex->ex_phy[i];
2046
2047                         if (i == phy_id)
2048                                 continue;
2049                         if (SAS_ADDR(phy->attached_sas_addr) ==
2050                             SAS_ADDR(changed_phy->attached_sas_addr)) {
2051                                 SAS_DPRINTK("phy%d part of wide port with "
2052                                             "phy%d\n", phy_id, i);
2053                                 last = false;
2054                                 break;
2055                         }
2056                 }
2057                 res = sas_rediscover_dev(dev, phy_id, last);
2058         } else
2059                 res = sas_discover_new(dev, phy_id);
2060         return res;
2061 }
2062
2063 /**
2064  * sas_revalidate_domain -- revalidate the domain
2065  * @port: port to the domain of interest
2066  *
2067  * NOTE: this process _must_ quit (return) as soon as any connection
2068  * errors are encountered.  Connection recovery is done elsewhere.
2069  * Discover process only interrogates devices in order to discover the
2070  * domain.
2071  */
2072 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2073 {
2074         int res;
2075         struct domain_device *dev = NULL;
2076
2077         res = sas_find_bcast_dev(port_dev, &dev);
2078         if (res)
2079                 goto out;
2080         if (dev) {
2081                 struct expander_device *ex = &dev->ex_dev;
2082                 int i = 0, phy_id;
2083
2084                 do {
2085                         phy_id = -1;
2086                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2087                         if (phy_id == -1)
2088                                 break;
2089                         res = sas_rediscover(dev, phy_id);
2090                         i = phy_id + 1;
2091                 } while (i < ex->num_phys);
2092         }
2093 out:
2094         return res;
2095 }
2096
2097 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2098                     struct request *req)
2099 {
2100         struct domain_device *dev;
2101         int ret, type;
2102         struct request *rsp = req->next_rq;
2103
2104         if (!rsp) {
2105                 printk("%s: space for a smp response is missing\n",
2106                        __func__);
2107                 return -EINVAL;
2108         }
2109
2110         /* no rphy means no smp target support (ie aic94xx host) */
2111         if (!rphy)
2112                 return sas_smp_host_handler(shost, req, rsp);
2113
2114         type = rphy->identify.device_type;
2115
2116         if (type != SAS_EDGE_EXPANDER_DEVICE &&
2117             type != SAS_FANOUT_EXPANDER_DEVICE) {
2118                 printk("%s: can we send a smp request to a device?\n",
2119                        __func__);
2120                 return -EINVAL;
2121         }
2122
2123         dev = sas_find_dev_by_rphy(rphy);
2124         if (!dev) {
2125                 printk("%s: fail to find a domain_device?\n", __func__);
2126                 return -EINVAL;
2127         }
2128
2129         /* do we need to support multiple segments? */
2130         if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2131                 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2132                        __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2133                        rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2134                 return -EINVAL;
2135         }
2136
2137         ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2138                                bio_data(rsp->bio), blk_rq_bytes(rsp));
2139         if (ret > 0) {
2140                 /* positive number is the untransferred residual */
2141                 rsp->resid_len = ret;
2142                 req->resid_len = 0;
2143                 ret = 0;
2144         } else if (ret == 0) {
2145                 rsp->resid_len = 0;
2146                 req->resid_len = 0;
2147         }
2148
2149         return ret;
2150 }