[SCSI] hpsa: Fix hard reset code.
[linux-2.6.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp_lock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <asm/atomic.h>
51 #include <linux/kthread.h>
52 #include "hpsa_cmd.h"
53 #include "hpsa.h"
54
55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56 #define HPSA_DRIVER_VERSION "2.0.2-1"
57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58
59 /* How long to wait (in milliseconds) for board to go into simple mode */
60 #define MAX_CONFIG_WAIT 30000
61 #define MAX_IOCTL_CONFIG_WAIT 1000
62
63 /*define how many times we will try a command because of bus resets */
64 #define MAX_CMD_RETRIES 3
65
66 /* Embedded module documentation macros - see modules.h */
67 MODULE_AUTHOR("Hewlett-Packard Company");
68 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
69         HPSA_DRIVER_VERSION);
70 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
71 MODULE_VERSION(HPSA_DRIVER_VERSION);
72 MODULE_LICENSE("GPL");
73
74 static int hpsa_allow_any;
75 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
76 MODULE_PARM_DESC(hpsa_allow_any,
77                 "Allow hpsa driver to access unknown HP Smart Array hardware");
78
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id hpsa_pci_device_id[] = {
81         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
82         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
83         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3250},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3251},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3252},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3253},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3254},
94 #define PCI_DEVICE_ID_HP_CISSF 0x333f
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x333F},
96         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
97                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
98         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
99                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
100         {0,}
101 };
102
103 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
104
105 /*  board_id = Subsystem Device ID & Vendor ID
106  *  product = Marketing Name for the board
107  *  access = Address of the struct of function pointers
108  */
109 static struct board_type products[] = {
110         {0x3241103C, "Smart Array P212", &SA5_access},
111         {0x3243103C, "Smart Array P410", &SA5_access},
112         {0x3245103C, "Smart Array P410i", &SA5_access},
113         {0x3247103C, "Smart Array P411", &SA5_access},
114         {0x3249103C, "Smart Array P812", &SA5_access},
115         {0x324a103C, "Smart Array P712m", &SA5_access},
116         {0x324b103C, "Smart Array P711m", &SA5_access},
117         {0x3233103C, "StorageWorks P1210m", &SA5_access},
118         {0x333F103C, "StorageWorks P1210m", &SA5_access},
119         {0x3250103C, "Smart Array", &SA5_access},
120         {0x3250113C, "Smart Array", &SA5_access},
121         {0x3250123C, "Smart Array", &SA5_access},
122         {0x3250133C, "Smart Array", &SA5_access},
123         {0x3250143C, "Smart Array", &SA5_access},
124         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
125 };
126
127 static int number_of_controllers;
128
129 static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
130 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
131 static void start_io(struct ctlr_info *h);
132
133 #ifdef CONFIG_COMPAT
134 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
135 #endif
136
137 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
138 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
139 static struct CommandList *cmd_alloc(struct ctlr_info *h);
140 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
141 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
142         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
143         int cmd_type);
144
145 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
146                 void (*done)(struct scsi_cmnd *));
147 static void hpsa_scan_start(struct Scsi_Host *);
148 static int hpsa_scan_finished(struct Scsi_Host *sh,
149         unsigned long elapsed_time);
150 static int hpsa_change_queue_depth(struct scsi_device *sdev,
151         int qdepth, int reason);
152
153 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
154 static int hpsa_slave_alloc(struct scsi_device *sdev);
155 static void hpsa_slave_destroy(struct scsi_device *sdev);
156
157 static ssize_t raid_level_show(struct device *dev,
158         struct device_attribute *attr, char *buf);
159 static ssize_t lunid_show(struct device *dev,
160         struct device_attribute *attr, char *buf);
161 static ssize_t unique_id_show(struct device *dev,
162         struct device_attribute *attr, char *buf);
163 static ssize_t host_show_firmware_revision(struct device *dev,
164              struct device_attribute *attr, char *buf);
165 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
166 static ssize_t host_store_rescan(struct device *dev,
167          struct device_attribute *attr, const char *buf, size_t count);
168 static int check_for_unit_attention(struct ctlr_info *h,
169         struct CommandList *c);
170 static void check_ioctl_unit_attention(struct ctlr_info *h,
171         struct CommandList *c);
172 /* performant mode helper functions */
173 static void calc_bucket_map(int *bucket, int num_buckets,
174         int nsgs, int *bucket_map);
175 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
176 static inline u32 next_command(struct ctlr_info *h);
177 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
178         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
179         u64 *cfg_offset);
180 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
181         unsigned long *memory_bar);
182
183 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
184 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
185 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
186 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
187 static DEVICE_ATTR(firmware_revision, S_IRUGO,
188         host_show_firmware_revision, NULL);
189
190 static struct device_attribute *hpsa_sdev_attrs[] = {
191         &dev_attr_raid_level,
192         &dev_attr_lunid,
193         &dev_attr_unique_id,
194         NULL,
195 };
196
197 static struct device_attribute *hpsa_shost_attrs[] = {
198         &dev_attr_rescan,
199         &dev_attr_firmware_revision,
200         NULL,
201 };
202
203 static struct scsi_host_template hpsa_driver_template = {
204         .module                 = THIS_MODULE,
205         .name                   = "hpsa",
206         .proc_name              = "hpsa",
207         .queuecommand           = hpsa_scsi_queue_command,
208         .scan_start             = hpsa_scan_start,
209         .scan_finished          = hpsa_scan_finished,
210         .change_queue_depth     = hpsa_change_queue_depth,
211         .this_id                = -1,
212         .use_clustering         = ENABLE_CLUSTERING,
213         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
214         .ioctl                  = hpsa_ioctl,
215         .slave_alloc            = hpsa_slave_alloc,
216         .slave_destroy          = hpsa_slave_destroy,
217 #ifdef CONFIG_COMPAT
218         .compat_ioctl           = hpsa_compat_ioctl,
219 #endif
220         .sdev_attrs = hpsa_sdev_attrs,
221         .shost_attrs = hpsa_shost_attrs,
222 };
223
224 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
225 {
226         unsigned long *priv = shost_priv(sdev->host);
227         return (struct ctlr_info *) *priv;
228 }
229
230 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
231 {
232         unsigned long *priv = shost_priv(sh);
233         return (struct ctlr_info *) *priv;
234 }
235
236 static int check_for_unit_attention(struct ctlr_info *h,
237         struct CommandList *c)
238 {
239         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
240                 return 0;
241
242         switch (c->err_info->SenseInfo[12]) {
243         case STATE_CHANGED:
244                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
245                         "detected, command retried\n", h->ctlr);
246                 break;
247         case LUN_FAILED:
248                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
249                         "detected, action required\n", h->ctlr);
250                 break;
251         case REPORT_LUNS_CHANGED:
252                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
253                         "changed, action required\n", h->ctlr);
254         /*
255          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
256          */
257                 break;
258         case POWER_OR_RESET:
259                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
260                         "or device reset detected\n", h->ctlr);
261                 break;
262         case UNIT_ATTENTION_CLEARED:
263                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
264                     "cleared by another initiator\n", h->ctlr);
265                 break;
266         default:
267                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
268                         "unit attention detected\n", h->ctlr);
269                 break;
270         }
271         return 1;
272 }
273
274 static ssize_t host_store_rescan(struct device *dev,
275                                  struct device_attribute *attr,
276                                  const char *buf, size_t count)
277 {
278         struct ctlr_info *h;
279         struct Scsi_Host *shost = class_to_shost(dev);
280         h = shost_to_hba(shost);
281         hpsa_scan_start(h->scsi_host);
282         return count;
283 }
284
285 static ssize_t host_show_firmware_revision(struct device *dev,
286              struct device_attribute *attr, char *buf)
287 {
288         struct ctlr_info *h;
289         struct Scsi_Host *shost = class_to_shost(dev);
290         unsigned char *fwrev;
291
292         h = shost_to_hba(shost);
293         if (!h->hba_inquiry_data)
294                 return 0;
295         fwrev = &h->hba_inquiry_data[32];
296         return snprintf(buf, 20, "%c%c%c%c\n",
297                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
298 }
299
300 /* Enqueuing and dequeuing functions for cmdlists. */
301 static inline void addQ(struct hlist_head *list, struct CommandList *c)
302 {
303         hlist_add_head(&c->list, list);
304 }
305
306 static inline u32 next_command(struct ctlr_info *h)
307 {
308         u32 a;
309
310         if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
311                 return h->access.command_completed(h);
312
313         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
314                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
315                 (h->reply_pool_head)++;
316                 h->commands_outstanding--;
317         } else {
318                 a = FIFO_EMPTY;
319         }
320         /* Check for wraparound */
321         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
322                 h->reply_pool_head = h->reply_pool;
323                 h->reply_pool_wraparound ^= 1;
324         }
325         return a;
326 }
327
328 /* set_performant_mode: Modify the tag for cciss performant
329  * set bit 0 for pull model, bits 3-1 for block fetch
330  * register number
331  */
332 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
333 {
334         if (likely(h->transMethod == CFGTBL_Trans_Performant))
335                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
336 }
337
338 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
339         struct CommandList *c)
340 {
341         unsigned long flags;
342
343         set_performant_mode(h, c);
344         spin_lock_irqsave(&h->lock, flags);
345         addQ(&h->reqQ, c);
346         h->Qdepth++;
347         start_io(h);
348         spin_unlock_irqrestore(&h->lock, flags);
349 }
350
351 static inline void removeQ(struct CommandList *c)
352 {
353         if (WARN_ON(hlist_unhashed(&c->list)))
354                 return;
355         hlist_del_init(&c->list);
356 }
357
358 static inline int is_hba_lunid(unsigned char scsi3addr[])
359 {
360         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
361 }
362
363 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
364 {
365         return (scsi3addr[3] & 0xC0) == 0x40;
366 }
367
368 static inline int is_scsi_rev_5(struct ctlr_info *h)
369 {
370         if (!h->hba_inquiry_data)
371                 return 0;
372         if ((h->hba_inquiry_data[2] & 0x07) == 5)
373                 return 1;
374         return 0;
375 }
376
377 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
378         "UNKNOWN"
379 };
380 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
381
382 static ssize_t raid_level_show(struct device *dev,
383              struct device_attribute *attr, char *buf)
384 {
385         ssize_t l = 0;
386         unsigned char rlevel;
387         struct ctlr_info *h;
388         struct scsi_device *sdev;
389         struct hpsa_scsi_dev_t *hdev;
390         unsigned long flags;
391
392         sdev = to_scsi_device(dev);
393         h = sdev_to_hba(sdev);
394         spin_lock_irqsave(&h->lock, flags);
395         hdev = sdev->hostdata;
396         if (!hdev) {
397                 spin_unlock_irqrestore(&h->lock, flags);
398                 return -ENODEV;
399         }
400
401         /* Is this even a logical drive? */
402         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
403                 spin_unlock_irqrestore(&h->lock, flags);
404                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
405                 return l;
406         }
407
408         rlevel = hdev->raid_level;
409         spin_unlock_irqrestore(&h->lock, flags);
410         if (rlevel > RAID_UNKNOWN)
411                 rlevel = RAID_UNKNOWN;
412         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
413         return l;
414 }
415
416 static ssize_t lunid_show(struct device *dev,
417              struct device_attribute *attr, char *buf)
418 {
419         struct ctlr_info *h;
420         struct scsi_device *sdev;
421         struct hpsa_scsi_dev_t *hdev;
422         unsigned long flags;
423         unsigned char lunid[8];
424
425         sdev = to_scsi_device(dev);
426         h = sdev_to_hba(sdev);
427         spin_lock_irqsave(&h->lock, flags);
428         hdev = sdev->hostdata;
429         if (!hdev) {
430                 spin_unlock_irqrestore(&h->lock, flags);
431                 return -ENODEV;
432         }
433         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
434         spin_unlock_irqrestore(&h->lock, flags);
435         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
436                 lunid[0], lunid[1], lunid[2], lunid[3],
437                 lunid[4], lunid[5], lunid[6], lunid[7]);
438 }
439
440 static ssize_t unique_id_show(struct device *dev,
441              struct device_attribute *attr, char *buf)
442 {
443         struct ctlr_info *h;
444         struct scsi_device *sdev;
445         struct hpsa_scsi_dev_t *hdev;
446         unsigned long flags;
447         unsigned char sn[16];
448
449         sdev = to_scsi_device(dev);
450         h = sdev_to_hba(sdev);
451         spin_lock_irqsave(&h->lock, flags);
452         hdev = sdev->hostdata;
453         if (!hdev) {
454                 spin_unlock_irqrestore(&h->lock, flags);
455                 return -ENODEV;
456         }
457         memcpy(sn, hdev->device_id, sizeof(sn));
458         spin_unlock_irqrestore(&h->lock, flags);
459         return snprintf(buf, 16 * 2 + 2,
460                         "%02X%02X%02X%02X%02X%02X%02X%02X"
461                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
462                         sn[0], sn[1], sn[2], sn[3],
463                         sn[4], sn[5], sn[6], sn[7],
464                         sn[8], sn[9], sn[10], sn[11],
465                         sn[12], sn[13], sn[14], sn[15]);
466 }
467
468 static int hpsa_find_target_lun(struct ctlr_info *h,
469         unsigned char scsi3addr[], int bus, int *target, int *lun)
470 {
471         /* finds an unused bus, target, lun for a new physical device
472          * assumes h->devlock is held
473          */
474         int i, found = 0;
475         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
476
477         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
478
479         for (i = 0; i < h->ndevices; i++) {
480                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
481                         set_bit(h->dev[i]->target, lun_taken);
482         }
483
484         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
485                 if (!test_bit(i, lun_taken)) {
486                         /* *bus = 1; */
487                         *target = i;
488                         *lun = 0;
489                         found = 1;
490                         break;
491                 }
492         }
493         return !found;
494 }
495
496 /* Add an entry into h->dev[] array. */
497 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
498                 struct hpsa_scsi_dev_t *device,
499                 struct hpsa_scsi_dev_t *added[], int *nadded)
500 {
501         /* assumes h->devlock is held */
502         int n = h->ndevices;
503         int i;
504         unsigned char addr1[8], addr2[8];
505         struct hpsa_scsi_dev_t *sd;
506
507         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
508                 dev_err(&h->pdev->dev, "too many devices, some will be "
509                         "inaccessible.\n");
510                 return -1;
511         }
512
513         /* physical devices do not have lun or target assigned until now. */
514         if (device->lun != -1)
515                 /* Logical device, lun is already assigned. */
516                 goto lun_assigned;
517
518         /* If this device a non-zero lun of a multi-lun device
519          * byte 4 of the 8-byte LUN addr will contain the logical
520          * unit no, zero otherise.
521          */
522         if (device->scsi3addr[4] == 0) {
523                 /* This is not a non-zero lun of a multi-lun device */
524                 if (hpsa_find_target_lun(h, device->scsi3addr,
525                         device->bus, &device->target, &device->lun) != 0)
526                         return -1;
527                 goto lun_assigned;
528         }
529
530         /* This is a non-zero lun of a multi-lun device.
531          * Search through our list and find the device which
532          * has the same 8 byte LUN address, excepting byte 4.
533          * Assign the same bus and target for this new LUN.
534          * Use the logical unit number from the firmware.
535          */
536         memcpy(addr1, device->scsi3addr, 8);
537         addr1[4] = 0;
538         for (i = 0; i < n; i++) {
539                 sd = h->dev[i];
540                 memcpy(addr2, sd->scsi3addr, 8);
541                 addr2[4] = 0;
542                 /* differ only in byte 4? */
543                 if (memcmp(addr1, addr2, 8) == 0) {
544                         device->bus = sd->bus;
545                         device->target = sd->target;
546                         device->lun = device->scsi3addr[4];
547                         break;
548                 }
549         }
550         if (device->lun == -1) {
551                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
552                         " suspect firmware bug or unsupported hardware "
553                         "configuration.\n");
554                         return -1;
555         }
556
557 lun_assigned:
558
559         h->dev[n] = device;
560         h->ndevices++;
561         added[*nadded] = device;
562         (*nadded)++;
563
564         /* initially, (before registering with scsi layer) we don't
565          * know our hostno and we don't want to print anything first
566          * time anyway (the scsi layer's inquiries will show that info)
567          */
568         /* if (hostno != -1) */
569                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
570                         scsi_device_type(device->devtype), hostno,
571                         device->bus, device->target, device->lun);
572         return 0;
573 }
574
575 /* Replace an entry from h->dev[] array. */
576 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
577         int entry, struct hpsa_scsi_dev_t *new_entry,
578         struct hpsa_scsi_dev_t *added[], int *nadded,
579         struct hpsa_scsi_dev_t *removed[], int *nremoved)
580 {
581         /* assumes h->devlock is held */
582         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
583         removed[*nremoved] = h->dev[entry];
584         (*nremoved)++;
585         h->dev[entry] = new_entry;
586         added[*nadded] = new_entry;
587         (*nadded)++;
588         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
589                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
590                         new_entry->target, new_entry->lun);
591 }
592
593 /* Remove an entry from h->dev[] array. */
594 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
595         struct hpsa_scsi_dev_t *removed[], int *nremoved)
596 {
597         /* assumes h->devlock is held */
598         int i;
599         struct hpsa_scsi_dev_t *sd;
600
601         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
602
603         sd = h->dev[entry];
604         removed[*nremoved] = h->dev[entry];
605         (*nremoved)++;
606
607         for (i = entry; i < h->ndevices-1; i++)
608                 h->dev[i] = h->dev[i+1];
609         h->ndevices--;
610         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
611                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
612                 sd->lun);
613 }
614
615 #define SCSI3ADDR_EQ(a, b) ( \
616         (a)[7] == (b)[7] && \
617         (a)[6] == (b)[6] && \
618         (a)[5] == (b)[5] && \
619         (a)[4] == (b)[4] && \
620         (a)[3] == (b)[3] && \
621         (a)[2] == (b)[2] && \
622         (a)[1] == (b)[1] && \
623         (a)[0] == (b)[0])
624
625 static void fixup_botched_add(struct ctlr_info *h,
626         struct hpsa_scsi_dev_t *added)
627 {
628         /* called when scsi_add_device fails in order to re-adjust
629          * h->dev[] to match the mid layer's view.
630          */
631         unsigned long flags;
632         int i, j;
633
634         spin_lock_irqsave(&h->lock, flags);
635         for (i = 0; i < h->ndevices; i++) {
636                 if (h->dev[i] == added) {
637                         for (j = i; j < h->ndevices-1; j++)
638                                 h->dev[j] = h->dev[j+1];
639                         h->ndevices--;
640                         break;
641                 }
642         }
643         spin_unlock_irqrestore(&h->lock, flags);
644         kfree(added);
645 }
646
647 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
648         struct hpsa_scsi_dev_t *dev2)
649 {
650         if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
651                 (dev1->lun != -1 && dev2->lun != -1)) &&
652                 dev1->devtype != 0x0C)
653                 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
654
655         /* we compare everything except lun and target as these
656          * are not yet assigned.  Compare parts likely
657          * to differ first
658          */
659         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
660                 sizeof(dev1->scsi3addr)) != 0)
661                 return 0;
662         if (memcmp(dev1->device_id, dev2->device_id,
663                 sizeof(dev1->device_id)) != 0)
664                 return 0;
665         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
666                 return 0;
667         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
668                 return 0;
669         if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
670                 return 0;
671         if (dev1->devtype != dev2->devtype)
672                 return 0;
673         if (dev1->raid_level != dev2->raid_level)
674                 return 0;
675         if (dev1->bus != dev2->bus)
676                 return 0;
677         return 1;
678 }
679
680 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
681  * and return needle location in *index.  If scsi3addr matches, but not
682  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
683  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
684  */
685 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
686         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
687         int *index)
688 {
689         int i;
690 #define DEVICE_NOT_FOUND 0
691 #define DEVICE_CHANGED 1
692 #define DEVICE_SAME 2
693         for (i = 0; i < haystack_size; i++) {
694                 if (haystack[i] == NULL) /* previously removed. */
695                         continue;
696                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
697                         *index = i;
698                         if (device_is_the_same(needle, haystack[i]))
699                                 return DEVICE_SAME;
700                         else
701                                 return DEVICE_CHANGED;
702                 }
703         }
704         *index = -1;
705         return DEVICE_NOT_FOUND;
706 }
707
708 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
709         struct hpsa_scsi_dev_t *sd[], int nsds)
710 {
711         /* sd contains scsi3 addresses and devtypes, and inquiry
712          * data.  This function takes what's in sd to be the current
713          * reality and updates h->dev[] to reflect that reality.
714          */
715         int i, entry, device_change, changes = 0;
716         struct hpsa_scsi_dev_t *csd;
717         unsigned long flags;
718         struct hpsa_scsi_dev_t **added, **removed;
719         int nadded, nremoved;
720         struct Scsi_Host *sh = NULL;
721
722         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
723                 GFP_KERNEL);
724         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
725                 GFP_KERNEL);
726
727         if (!added || !removed) {
728                 dev_warn(&h->pdev->dev, "out of memory in "
729                         "adjust_hpsa_scsi_table\n");
730                 goto free_and_out;
731         }
732
733         spin_lock_irqsave(&h->devlock, flags);
734
735         /* find any devices in h->dev[] that are not in
736          * sd[] and remove them from h->dev[], and for any
737          * devices which have changed, remove the old device
738          * info and add the new device info.
739          */
740         i = 0;
741         nremoved = 0;
742         nadded = 0;
743         while (i < h->ndevices) {
744                 csd = h->dev[i];
745                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
746                 if (device_change == DEVICE_NOT_FOUND) {
747                         changes++;
748                         hpsa_scsi_remove_entry(h, hostno, i,
749                                 removed, &nremoved);
750                         continue; /* remove ^^^, hence i not incremented */
751                 } else if (device_change == DEVICE_CHANGED) {
752                         changes++;
753                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
754                                 added, &nadded, removed, &nremoved);
755                         /* Set it to NULL to prevent it from being freed
756                          * at the bottom of hpsa_update_scsi_devices()
757                          */
758                         sd[entry] = NULL;
759                 }
760                 i++;
761         }
762
763         /* Now, make sure every device listed in sd[] is also
764          * listed in h->dev[], adding them if they aren't found
765          */
766
767         for (i = 0; i < nsds; i++) {
768                 if (!sd[i]) /* if already added above. */
769                         continue;
770                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
771                                         h->ndevices, &entry);
772                 if (device_change == DEVICE_NOT_FOUND) {
773                         changes++;
774                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
775                                 added, &nadded) != 0)
776                                 break;
777                         sd[i] = NULL; /* prevent from being freed later. */
778                 } else if (device_change == DEVICE_CHANGED) {
779                         /* should never happen... */
780                         changes++;
781                         dev_warn(&h->pdev->dev,
782                                 "device unexpectedly changed.\n");
783                         /* but if it does happen, we just ignore that device */
784                 }
785         }
786         spin_unlock_irqrestore(&h->devlock, flags);
787
788         /* Don't notify scsi mid layer of any changes the first time through
789          * (or if there are no changes) scsi_scan_host will do it later the
790          * first time through.
791          */
792         if (hostno == -1 || !changes)
793                 goto free_and_out;
794
795         sh = h->scsi_host;
796         /* Notify scsi mid layer of any removed devices */
797         for (i = 0; i < nremoved; i++) {
798                 struct scsi_device *sdev =
799                         scsi_device_lookup(sh, removed[i]->bus,
800                                 removed[i]->target, removed[i]->lun);
801                 if (sdev != NULL) {
802                         scsi_remove_device(sdev);
803                         scsi_device_put(sdev);
804                 } else {
805                         /* We don't expect to get here.
806                          * future cmds to this device will get selection
807                          * timeout as if the device was gone.
808                          */
809                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
810                                 " for removal.", hostno, removed[i]->bus,
811                                 removed[i]->target, removed[i]->lun);
812                 }
813                 kfree(removed[i]);
814                 removed[i] = NULL;
815         }
816
817         /* Notify scsi mid layer of any added devices */
818         for (i = 0; i < nadded; i++) {
819                 if (scsi_add_device(sh, added[i]->bus,
820                         added[i]->target, added[i]->lun) == 0)
821                         continue;
822                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
823                         "device not added.\n", hostno, added[i]->bus,
824                         added[i]->target, added[i]->lun);
825                 /* now we have to remove it from h->dev,
826                  * since it didn't get added to scsi mid layer
827                  */
828                 fixup_botched_add(h, added[i]);
829         }
830
831 free_and_out:
832         kfree(added);
833         kfree(removed);
834 }
835
836 /*
837  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
838  * Assume's h->devlock is held.
839  */
840 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
841         int bus, int target, int lun)
842 {
843         int i;
844         struct hpsa_scsi_dev_t *sd;
845
846         for (i = 0; i < h->ndevices; i++) {
847                 sd = h->dev[i];
848                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
849                         return sd;
850         }
851         return NULL;
852 }
853
854 /* link sdev->hostdata to our per-device structure. */
855 static int hpsa_slave_alloc(struct scsi_device *sdev)
856 {
857         struct hpsa_scsi_dev_t *sd;
858         unsigned long flags;
859         struct ctlr_info *h;
860
861         h = sdev_to_hba(sdev);
862         spin_lock_irqsave(&h->devlock, flags);
863         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
864                 sdev_id(sdev), sdev->lun);
865         if (sd != NULL)
866                 sdev->hostdata = sd;
867         spin_unlock_irqrestore(&h->devlock, flags);
868         return 0;
869 }
870
871 static void hpsa_slave_destroy(struct scsi_device *sdev)
872 {
873         /* nothing to do. */
874 }
875
876 static void hpsa_scsi_setup(struct ctlr_info *h)
877 {
878         h->ndevices = 0;
879         h->scsi_host = NULL;
880         spin_lock_init(&h->devlock);
881 }
882
883 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
884 {
885         int i;
886
887         if (!h->cmd_sg_list)
888                 return;
889         for (i = 0; i < h->nr_cmds; i++) {
890                 kfree(h->cmd_sg_list[i]);
891                 h->cmd_sg_list[i] = NULL;
892         }
893         kfree(h->cmd_sg_list);
894         h->cmd_sg_list = NULL;
895 }
896
897 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
898 {
899         int i;
900
901         if (h->chainsize <= 0)
902                 return 0;
903
904         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
905                                 GFP_KERNEL);
906         if (!h->cmd_sg_list)
907                 return -ENOMEM;
908         for (i = 0; i < h->nr_cmds; i++) {
909                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
910                                                 h->chainsize, GFP_KERNEL);
911                 if (!h->cmd_sg_list[i])
912                         goto clean;
913         }
914         return 0;
915
916 clean:
917         hpsa_free_sg_chain_blocks(h);
918         return -ENOMEM;
919 }
920
921 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
922         struct CommandList *c)
923 {
924         struct SGDescriptor *chain_sg, *chain_block;
925         u64 temp64;
926
927         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
928         chain_block = h->cmd_sg_list[c->cmdindex];
929         chain_sg->Ext = HPSA_SG_CHAIN;
930         chain_sg->Len = sizeof(*chain_sg) *
931                 (c->Header.SGTotal - h->max_cmd_sg_entries);
932         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
933                                 PCI_DMA_TODEVICE);
934         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
935         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
936 }
937
938 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
939         struct CommandList *c)
940 {
941         struct SGDescriptor *chain_sg;
942         union u64bit temp64;
943
944         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
945                 return;
946
947         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
948         temp64.val32.lower = chain_sg->Addr.lower;
949         temp64.val32.upper = chain_sg->Addr.upper;
950         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
951 }
952
953 static void complete_scsi_command(struct CommandList *cp,
954         int timeout, u32 tag)
955 {
956         struct scsi_cmnd *cmd;
957         struct ctlr_info *h;
958         struct ErrorInfo *ei;
959
960         unsigned char sense_key;
961         unsigned char asc;      /* additional sense code */
962         unsigned char ascq;     /* additional sense code qualifier */
963
964         ei = cp->err_info;
965         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
966         h = cp->h;
967
968         scsi_dma_unmap(cmd); /* undo the DMA mappings */
969         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
970                 hpsa_unmap_sg_chain_block(h, cp);
971
972         cmd->result = (DID_OK << 16);           /* host byte */
973         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
974         cmd->result |= ei->ScsiStatus;
975
976         /* copy the sense data whether we need to or not. */
977         memcpy(cmd->sense_buffer, ei->SenseInfo,
978                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
979                         SCSI_SENSE_BUFFERSIZE :
980                         ei->SenseLen);
981         scsi_set_resid(cmd, ei->ResidualCnt);
982
983         if (ei->CommandStatus == 0) {
984                 cmd->scsi_done(cmd);
985                 cmd_free(h, cp);
986                 return;
987         }
988
989         /* an error has occurred */
990         switch (ei->CommandStatus) {
991
992         case CMD_TARGET_STATUS:
993                 if (ei->ScsiStatus) {
994                         /* Get sense key */
995                         sense_key = 0xf & ei->SenseInfo[2];
996                         /* Get additional sense code */
997                         asc = ei->SenseInfo[12];
998                         /* Get addition sense code qualifier */
999                         ascq = ei->SenseInfo[13];
1000                 }
1001
1002                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1003                         if (check_for_unit_attention(h, cp)) {
1004                                 cmd->result = DID_SOFT_ERROR << 16;
1005                                 break;
1006                         }
1007                         if (sense_key == ILLEGAL_REQUEST) {
1008                                 /*
1009                                  * SCSI REPORT_LUNS is commonly unsupported on
1010                                  * Smart Array.  Suppress noisy complaint.
1011                                  */
1012                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1013                                         break;
1014
1015                                 /* If ASC/ASCQ indicate Logical Unit
1016                                  * Not Supported condition,
1017                                  */
1018                                 if ((asc == 0x25) && (ascq == 0x0)) {
1019                                         dev_warn(&h->pdev->dev, "cp %p "
1020                                                 "has check condition\n", cp);
1021                                         break;
1022                                 }
1023                         }
1024
1025                         if (sense_key == NOT_READY) {
1026                                 /* If Sense is Not Ready, Logical Unit
1027                                  * Not ready, Manual Intervention
1028                                  * required
1029                                  */
1030                                 if ((asc == 0x04) && (ascq == 0x03)) {
1031                                         dev_warn(&h->pdev->dev, "cp %p "
1032                                                 "has check condition: unit "
1033                                                 "not ready, manual "
1034                                                 "intervention required\n", cp);
1035                                         break;
1036                                 }
1037                         }
1038                         if (sense_key == ABORTED_COMMAND) {
1039                                 /* Aborted command is retryable */
1040                                 dev_warn(&h->pdev->dev, "cp %p "
1041                                         "has check condition: aborted command: "
1042                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1043                                         cp, asc, ascq);
1044                                 cmd->result = DID_SOFT_ERROR << 16;
1045                                 break;
1046                         }
1047                         /* Must be some other type of check condition */
1048                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1049                                         "unknown type: "
1050                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1051                                         "Returning result: 0x%x, "
1052                                         "cmd=[%02x %02x %02x %02x %02x "
1053                                         "%02x %02x %02x %02x %02x %02x "
1054                                         "%02x %02x %02x %02x %02x]\n",
1055                                         cp, sense_key, asc, ascq,
1056                                         cmd->result,
1057                                         cmd->cmnd[0], cmd->cmnd[1],
1058                                         cmd->cmnd[2], cmd->cmnd[3],
1059                                         cmd->cmnd[4], cmd->cmnd[5],
1060                                         cmd->cmnd[6], cmd->cmnd[7],
1061                                         cmd->cmnd[8], cmd->cmnd[9],
1062                                         cmd->cmnd[10], cmd->cmnd[11],
1063                                         cmd->cmnd[12], cmd->cmnd[13],
1064                                         cmd->cmnd[14], cmd->cmnd[15]);
1065                         break;
1066                 }
1067
1068
1069                 /* Problem was not a check condition
1070                  * Pass it up to the upper layers...
1071                  */
1072                 if (ei->ScsiStatus) {
1073                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1074                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1075                                 "Returning result: 0x%x\n",
1076                                 cp, ei->ScsiStatus,
1077                                 sense_key, asc, ascq,
1078                                 cmd->result);
1079                 } else {  /* scsi status is zero??? How??? */
1080                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1081                                 "Returning no connection.\n", cp),
1082
1083                         /* Ordinarily, this case should never happen,
1084                          * but there is a bug in some released firmware
1085                          * revisions that allows it to happen if, for
1086                          * example, a 4100 backplane loses power and
1087                          * the tape drive is in it.  We assume that
1088                          * it's a fatal error of some kind because we
1089                          * can't show that it wasn't. We will make it
1090                          * look like selection timeout since that is
1091                          * the most common reason for this to occur,
1092                          * and it's severe enough.
1093                          */
1094
1095                         cmd->result = DID_NO_CONNECT << 16;
1096                 }
1097                 break;
1098
1099         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1100                 break;
1101         case CMD_DATA_OVERRUN:
1102                 dev_warn(&h->pdev->dev, "cp %p has"
1103                         " completed with data overrun "
1104                         "reported\n", cp);
1105                 break;
1106         case CMD_INVALID: {
1107                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1108                 print_cmd(cp); */
1109                 /* We get CMD_INVALID if you address a non-existent device
1110                  * instead of a selection timeout (no response).  You will
1111                  * see this if you yank out a drive, then try to access it.
1112                  * This is kind of a shame because it means that any other
1113                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1114                  * missing target. */
1115                 cmd->result = DID_NO_CONNECT << 16;
1116         }
1117                 break;
1118         case CMD_PROTOCOL_ERR:
1119                 dev_warn(&h->pdev->dev, "cp %p has "
1120                         "protocol error \n", cp);
1121                 break;
1122         case CMD_HARDWARE_ERR:
1123                 cmd->result = DID_ERROR << 16;
1124                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1125                 break;
1126         case CMD_CONNECTION_LOST:
1127                 cmd->result = DID_ERROR << 16;
1128                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1129                 break;
1130         case CMD_ABORTED:
1131                 cmd->result = DID_ABORT << 16;
1132                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1133                                 cp, ei->ScsiStatus);
1134                 break;
1135         case CMD_ABORT_FAILED:
1136                 cmd->result = DID_ERROR << 16;
1137                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1138                 break;
1139         case CMD_UNSOLICITED_ABORT:
1140                 cmd->result = DID_RESET << 16;
1141                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1142                         "abort\n", cp);
1143                 break;
1144         case CMD_TIMEOUT:
1145                 cmd->result = DID_TIME_OUT << 16;
1146                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1147                 break;
1148         default:
1149                 cmd->result = DID_ERROR << 16;
1150                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1151                                 cp, ei->CommandStatus);
1152         }
1153         cmd->scsi_done(cmd);
1154         cmd_free(h, cp);
1155 }
1156
1157 static int hpsa_scsi_detect(struct ctlr_info *h)
1158 {
1159         struct Scsi_Host *sh;
1160         int error;
1161
1162         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1163         if (sh == NULL)
1164                 goto fail;
1165
1166         sh->io_port = 0;
1167         sh->n_io_port = 0;
1168         sh->this_id = -1;
1169         sh->max_channel = 3;
1170         sh->max_cmd_len = MAX_COMMAND_SIZE;
1171         sh->max_lun = HPSA_MAX_LUN;
1172         sh->max_id = HPSA_MAX_LUN;
1173         sh->can_queue = h->nr_cmds;
1174         sh->cmd_per_lun = h->nr_cmds;
1175         sh->sg_tablesize = h->maxsgentries;
1176         h->scsi_host = sh;
1177         sh->hostdata[0] = (unsigned long) h;
1178         sh->irq = h->intr[PERF_MODE_INT];
1179         sh->unique_id = sh->irq;
1180         error = scsi_add_host(sh, &h->pdev->dev);
1181         if (error)
1182                 goto fail_host_put;
1183         scsi_scan_host(sh);
1184         return 0;
1185
1186  fail_host_put:
1187         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1188                 " failed for controller %d\n", h->ctlr);
1189         scsi_host_put(sh);
1190         return error;
1191  fail:
1192         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1193                 " failed for controller %d\n", h->ctlr);
1194         return -ENOMEM;
1195 }
1196
1197 static void hpsa_pci_unmap(struct pci_dev *pdev,
1198         struct CommandList *c, int sg_used, int data_direction)
1199 {
1200         int i;
1201         union u64bit addr64;
1202
1203         for (i = 0; i < sg_used; i++) {
1204                 addr64.val32.lower = c->SG[i].Addr.lower;
1205                 addr64.val32.upper = c->SG[i].Addr.upper;
1206                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1207                         data_direction);
1208         }
1209 }
1210
1211 static void hpsa_map_one(struct pci_dev *pdev,
1212                 struct CommandList *cp,
1213                 unsigned char *buf,
1214                 size_t buflen,
1215                 int data_direction)
1216 {
1217         u64 addr64;
1218
1219         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1220                 cp->Header.SGList = 0;
1221                 cp->Header.SGTotal = 0;
1222                 return;
1223         }
1224
1225         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1226         cp->SG[0].Addr.lower =
1227           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1228         cp->SG[0].Addr.upper =
1229           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1230         cp->SG[0].Len = buflen;
1231         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1232         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1233 }
1234
1235 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1236         struct CommandList *c)
1237 {
1238         DECLARE_COMPLETION_ONSTACK(wait);
1239
1240         c->waiting = &wait;
1241         enqueue_cmd_and_start_io(h, c);
1242         wait_for_completion(&wait);
1243 }
1244
1245 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1246         struct CommandList *c, int data_direction)
1247 {
1248         int retry_count = 0;
1249
1250         do {
1251                 memset(c->err_info, 0, sizeof(c->err_info));
1252                 hpsa_scsi_do_simple_cmd_core(h, c);
1253                 retry_count++;
1254         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1255         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1256 }
1257
1258 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1259 {
1260         struct ErrorInfo *ei;
1261         struct device *d = &cp->h->pdev->dev;
1262
1263         ei = cp->err_info;
1264         switch (ei->CommandStatus) {
1265         case CMD_TARGET_STATUS:
1266                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1267                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1268                                 ei->ScsiStatus);
1269                 if (ei->ScsiStatus == 0)
1270                         dev_warn(d, "SCSI status is abnormally zero.  "
1271                         "(probably indicates selection timeout "
1272                         "reported incorrectly due to a known "
1273                         "firmware bug, circa July, 2001.)\n");
1274                 break;
1275         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1276                         dev_info(d, "UNDERRUN\n");
1277                 break;
1278         case CMD_DATA_OVERRUN:
1279                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1280                 break;
1281         case CMD_INVALID: {
1282                 /* controller unfortunately reports SCSI passthru's
1283                  * to non-existent targets as invalid commands.
1284                  */
1285                 dev_warn(d, "cp %p is reported invalid (probably means "
1286                         "target device no longer present)\n", cp);
1287                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1288                 print_cmd(cp);  */
1289                 }
1290                 break;
1291         case CMD_PROTOCOL_ERR:
1292                 dev_warn(d, "cp %p has protocol error \n", cp);
1293                 break;
1294         case CMD_HARDWARE_ERR:
1295                 /* cmd->result = DID_ERROR << 16; */
1296                 dev_warn(d, "cp %p had hardware error\n", cp);
1297                 break;
1298         case CMD_CONNECTION_LOST:
1299                 dev_warn(d, "cp %p had connection lost\n", cp);
1300                 break;
1301         case CMD_ABORTED:
1302                 dev_warn(d, "cp %p was aborted\n", cp);
1303                 break;
1304         case CMD_ABORT_FAILED:
1305                 dev_warn(d, "cp %p reports abort failed\n", cp);
1306                 break;
1307         case CMD_UNSOLICITED_ABORT:
1308                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1309                 break;
1310         case CMD_TIMEOUT:
1311                 dev_warn(d, "cp %p timed out\n", cp);
1312                 break;
1313         default:
1314                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1315                                 ei->CommandStatus);
1316         }
1317 }
1318
1319 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1320                         unsigned char page, unsigned char *buf,
1321                         unsigned char bufsize)
1322 {
1323         int rc = IO_OK;
1324         struct CommandList *c;
1325         struct ErrorInfo *ei;
1326
1327         c = cmd_special_alloc(h);
1328
1329         if (c == NULL) {                        /* trouble... */
1330                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1331                 return -ENOMEM;
1332         }
1333
1334         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1335         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1336         ei = c->err_info;
1337         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1338                 hpsa_scsi_interpret_error(c);
1339                 rc = -1;
1340         }
1341         cmd_special_free(h, c);
1342         return rc;
1343 }
1344
1345 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1346 {
1347         int rc = IO_OK;
1348         struct CommandList *c;
1349         struct ErrorInfo *ei;
1350
1351         c = cmd_special_alloc(h);
1352
1353         if (c == NULL) {                        /* trouble... */
1354                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1355                 return -ENOMEM;
1356         }
1357
1358         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1359         hpsa_scsi_do_simple_cmd_core(h, c);
1360         /* no unmap needed here because no data xfer. */
1361
1362         ei = c->err_info;
1363         if (ei->CommandStatus != 0) {
1364                 hpsa_scsi_interpret_error(c);
1365                 rc = -1;
1366         }
1367         cmd_special_free(h, c);
1368         return rc;
1369 }
1370
1371 static void hpsa_get_raid_level(struct ctlr_info *h,
1372         unsigned char *scsi3addr, unsigned char *raid_level)
1373 {
1374         int rc;
1375         unsigned char *buf;
1376
1377         *raid_level = RAID_UNKNOWN;
1378         buf = kzalloc(64, GFP_KERNEL);
1379         if (!buf)
1380                 return;
1381         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1382         if (rc == 0)
1383                 *raid_level = buf[8];
1384         if (*raid_level > RAID_UNKNOWN)
1385                 *raid_level = RAID_UNKNOWN;
1386         kfree(buf);
1387         return;
1388 }
1389
1390 /* Get the device id from inquiry page 0x83 */
1391 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1392         unsigned char *device_id, int buflen)
1393 {
1394         int rc;
1395         unsigned char *buf;
1396
1397         if (buflen > 16)
1398                 buflen = 16;
1399         buf = kzalloc(64, GFP_KERNEL);
1400         if (!buf)
1401                 return -1;
1402         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1403         if (rc == 0)
1404                 memcpy(device_id, &buf[8], buflen);
1405         kfree(buf);
1406         return rc != 0;
1407 }
1408
1409 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1410                 struct ReportLUNdata *buf, int bufsize,
1411                 int extended_response)
1412 {
1413         int rc = IO_OK;
1414         struct CommandList *c;
1415         unsigned char scsi3addr[8];
1416         struct ErrorInfo *ei;
1417
1418         c = cmd_special_alloc(h);
1419         if (c == NULL) {                        /* trouble... */
1420                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1421                 return -1;
1422         }
1423         /* address the controller */
1424         memset(scsi3addr, 0, sizeof(scsi3addr));
1425         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1426                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1427         if (extended_response)
1428                 c->Request.CDB[1] = extended_response;
1429         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1430         ei = c->err_info;
1431         if (ei->CommandStatus != 0 &&
1432             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1433                 hpsa_scsi_interpret_error(c);
1434                 rc = -1;
1435         }
1436         cmd_special_free(h, c);
1437         return rc;
1438 }
1439
1440 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1441                 struct ReportLUNdata *buf,
1442                 int bufsize, int extended_response)
1443 {
1444         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1445 }
1446
1447 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1448                 struct ReportLUNdata *buf, int bufsize)
1449 {
1450         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1451 }
1452
1453 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1454         int bus, int target, int lun)
1455 {
1456         device->bus = bus;
1457         device->target = target;
1458         device->lun = lun;
1459 }
1460
1461 static int hpsa_update_device_info(struct ctlr_info *h,
1462         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1463 {
1464 #define OBDR_TAPE_INQ_SIZE 49
1465         unsigned char *inq_buff;
1466
1467         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1468         if (!inq_buff)
1469                 goto bail_out;
1470
1471         /* Do an inquiry to the device to see what it is. */
1472         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1473                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1474                 /* Inquiry failed (msg printed already) */
1475                 dev_err(&h->pdev->dev,
1476                         "hpsa_update_device_info: inquiry failed\n");
1477                 goto bail_out;
1478         }
1479
1480         this_device->devtype = (inq_buff[0] & 0x1f);
1481         memcpy(this_device->scsi3addr, scsi3addr, 8);
1482         memcpy(this_device->vendor, &inq_buff[8],
1483                 sizeof(this_device->vendor));
1484         memcpy(this_device->model, &inq_buff[16],
1485                 sizeof(this_device->model));
1486         memcpy(this_device->revision, &inq_buff[32],
1487                 sizeof(this_device->revision));
1488         memset(this_device->device_id, 0,
1489                 sizeof(this_device->device_id));
1490         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1491                 sizeof(this_device->device_id));
1492
1493         if (this_device->devtype == TYPE_DISK &&
1494                 is_logical_dev_addr_mode(scsi3addr))
1495                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1496         else
1497                 this_device->raid_level = RAID_UNKNOWN;
1498
1499         kfree(inq_buff);
1500         return 0;
1501
1502 bail_out:
1503         kfree(inq_buff);
1504         return 1;
1505 }
1506
1507 static unsigned char *msa2xxx_model[] = {
1508         "MSA2012",
1509         "MSA2024",
1510         "MSA2312",
1511         "MSA2324",
1512         NULL,
1513 };
1514
1515 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1516 {
1517         int i;
1518
1519         for (i = 0; msa2xxx_model[i]; i++)
1520                 if (strncmp(device->model, msa2xxx_model[i],
1521                         strlen(msa2xxx_model[i])) == 0)
1522                         return 1;
1523         return 0;
1524 }
1525
1526 /* Helper function to assign bus, target, lun mapping of devices.
1527  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1528  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1529  * Logical drive target and lun are assigned at this time, but
1530  * physical device lun and target assignment are deferred (assigned
1531  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1532  */
1533 static void figure_bus_target_lun(struct ctlr_info *h,
1534         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1535         struct hpsa_scsi_dev_t *device)
1536 {
1537         u32 lunid;
1538
1539         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1540                 /* logical device */
1541                 if (unlikely(is_scsi_rev_5(h))) {
1542                         /* p1210m, logical drives lun assignments
1543                          * match SCSI REPORT LUNS data.
1544                          */
1545                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1546                         *bus = 0;
1547                         *target = 0;
1548                         *lun = (lunid & 0x3fff) + 1;
1549                 } else {
1550                         /* not p1210m... */
1551                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1552                         if (is_msa2xxx(h, device)) {
1553                                 /* msa2xxx way, put logicals on bus 1
1554                                  * and match target/lun numbers box
1555                                  * reports.
1556                                  */
1557                                 *bus = 1;
1558                                 *target = (lunid >> 16) & 0x3fff;
1559                                 *lun = lunid & 0x00ff;
1560                         } else {
1561                                 /* Traditional smart array way. */
1562                                 *bus = 0;
1563                                 *lun = 0;
1564                                 *target = lunid & 0x3fff;
1565                         }
1566                 }
1567         } else {
1568                 /* physical device */
1569                 if (is_hba_lunid(lunaddrbytes))
1570                         if (unlikely(is_scsi_rev_5(h))) {
1571                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1572                                 *target = 0;
1573                                 *lun = 0;
1574                                 return;
1575                         } else
1576                                 *bus = 3; /* traditional smartarray */
1577                 else
1578                         *bus = 2; /* physical disk */
1579                 *target = -1;
1580                 *lun = -1; /* we will fill these in later. */
1581         }
1582 }
1583
1584 /*
1585  * If there is no lun 0 on a target, linux won't find any devices.
1586  * For the MSA2xxx boxes, we have to manually detect the enclosure
1587  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1588  * it for some reason.  *tmpdevice is the target we're adding,
1589  * this_device is a pointer into the current element of currentsd[]
1590  * that we're building up in update_scsi_devices(), below.
1591  * lunzerobits is a bitmap that tracks which targets already have a
1592  * lun 0 assigned.
1593  * Returns 1 if an enclosure was added, 0 if not.
1594  */
1595 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1596         struct hpsa_scsi_dev_t *tmpdevice,
1597         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1598         int bus, int target, int lun, unsigned long lunzerobits[],
1599         int *nmsa2xxx_enclosures)
1600 {
1601         unsigned char scsi3addr[8];
1602
1603         if (test_bit(target, lunzerobits))
1604                 return 0; /* There is already a lun 0 on this target. */
1605
1606         if (!is_logical_dev_addr_mode(lunaddrbytes))
1607                 return 0; /* It's the logical targets that may lack lun 0. */
1608
1609         if (!is_msa2xxx(h, tmpdevice))
1610                 return 0; /* It's only the MSA2xxx that have this problem. */
1611
1612         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1613                 return 0;
1614
1615         if (is_hba_lunid(scsi3addr))
1616                 return 0; /* Don't add the RAID controller here. */
1617
1618         if (is_scsi_rev_5(h))
1619                 return 0; /* p1210m doesn't need to do this. */
1620
1621 #define MAX_MSA2XXX_ENCLOSURES 32
1622         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1623                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1624                         "enclosures exceeded.  Check your hardware "
1625                         "configuration.");
1626                 return 0;
1627         }
1628
1629         memset(scsi3addr, 0, 8);
1630         scsi3addr[3] = target;
1631         if (hpsa_update_device_info(h, scsi3addr, this_device))
1632                 return 0;
1633         (*nmsa2xxx_enclosures)++;
1634         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1635         set_bit(target, lunzerobits);
1636         return 1;
1637 }
1638
1639 /*
1640  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1641  * logdev.  The number of luns in physdev and logdev are returned in
1642  * *nphysicals and *nlogicals, respectively.
1643  * Returns 0 on success, -1 otherwise.
1644  */
1645 static int hpsa_gather_lun_info(struct ctlr_info *h,
1646         int reportlunsize,
1647         struct ReportLUNdata *physdev, u32 *nphysicals,
1648         struct ReportLUNdata *logdev, u32 *nlogicals)
1649 {
1650         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1651                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1652                 return -1;
1653         }
1654         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1655         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1656                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1657                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1658                         *nphysicals - HPSA_MAX_PHYS_LUN);
1659                 *nphysicals = HPSA_MAX_PHYS_LUN;
1660         }
1661         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1662                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1663                 return -1;
1664         }
1665         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1666         /* Reject Logicals in excess of our max capability. */
1667         if (*nlogicals > HPSA_MAX_LUN) {
1668                 dev_warn(&h->pdev->dev,
1669                         "maximum logical LUNs (%d) exceeded.  "
1670                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1671                         *nlogicals - HPSA_MAX_LUN);
1672                         *nlogicals = HPSA_MAX_LUN;
1673         }
1674         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1675                 dev_warn(&h->pdev->dev,
1676                         "maximum logical + physical LUNs (%d) exceeded. "
1677                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1678                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1679                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1680         }
1681         return 0;
1682 }
1683
1684 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1685         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1686         struct ReportLUNdata *logdev_list)
1687 {
1688         /* Helper function, figure out where the LUN ID info is coming from
1689          * given index i, lists of physical and logical devices, where in
1690          * the list the raid controller is supposed to appear (first or last)
1691          */
1692
1693         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1694         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1695
1696         if (i == raid_ctlr_position)
1697                 return RAID_CTLR_LUNID;
1698
1699         if (i < logicals_start)
1700                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1701
1702         if (i < last_device)
1703                 return &logdev_list->LUN[i - nphysicals -
1704                         (raid_ctlr_position == 0)][0];
1705         BUG();
1706         return NULL;
1707 }
1708
1709 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1710 {
1711         /* the idea here is we could get notified
1712          * that some devices have changed, so we do a report
1713          * physical luns and report logical luns cmd, and adjust
1714          * our list of devices accordingly.
1715          *
1716          * The scsi3addr's of devices won't change so long as the
1717          * adapter is not reset.  That means we can rescan and
1718          * tell which devices we already know about, vs. new
1719          * devices, vs.  disappearing devices.
1720          */
1721         struct ReportLUNdata *physdev_list = NULL;
1722         struct ReportLUNdata *logdev_list = NULL;
1723         unsigned char *inq_buff = NULL;
1724         u32 nphysicals = 0;
1725         u32 nlogicals = 0;
1726         u32 ndev_allocated = 0;
1727         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1728         int ncurrent = 0;
1729         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1730         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1731         int bus, target, lun;
1732         int raid_ctlr_position;
1733         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1734
1735         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1736                 GFP_KERNEL);
1737         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1738         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1739         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1740         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1741
1742         if (!currentsd || !physdev_list || !logdev_list ||
1743                 !inq_buff || !tmpdevice) {
1744                 dev_err(&h->pdev->dev, "out of memory\n");
1745                 goto out;
1746         }
1747         memset(lunzerobits, 0, sizeof(lunzerobits));
1748
1749         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1750                         logdev_list, &nlogicals))
1751                 goto out;
1752
1753         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1754          * but each of them 4 times through different paths.  The plus 1
1755          * is for the RAID controller.
1756          */
1757         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1758
1759         /* Allocate the per device structures */
1760         for (i = 0; i < ndevs_to_allocate; i++) {
1761                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1762                 if (!currentsd[i]) {
1763                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1764                                 __FILE__, __LINE__);
1765                         goto out;
1766                 }
1767                 ndev_allocated++;
1768         }
1769
1770         if (unlikely(is_scsi_rev_5(h)))
1771                 raid_ctlr_position = 0;
1772         else
1773                 raid_ctlr_position = nphysicals + nlogicals;
1774
1775         /* adjust our table of devices */
1776         nmsa2xxx_enclosures = 0;
1777         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1778                 u8 *lunaddrbytes;
1779
1780                 /* Figure out where the LUN ID info is coming from */
1781                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1782                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1783                 /* skip masked physical devices. */
1784                 if (lunaddrbytes[3] & 0xC0 &&
1785                         i < nphysicals + (raid_ctlr_position == 0))
1786                         continue;
1787
1788                 /* Get device type, vendor, model, device id */
1789                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1790                         continue; /* skip it if we can't talk to it. */
1791                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1792                         tmpdevice);
1793                 this_device = currentsd[ncurrent];
1794
1795                 /*
1796                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1797                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1798                  * is nonetheless an enclosure device there.  We have to
1799                  * present that otherwise linux won't find anything if
1800                  * there is no lun 0.
1801                  */
1802                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1803                                 lunaddrbytes, bus, target, lun, lunzerobits,
1804                                 &nmsa2xxx_enclosures)) {
1805                         ncurrent++;
1806                         this_device = currentsd[ncurrent];
1807                 }
1808
1809                 *this_device = *tmpdevice;
1810                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1811
1812                 switch (this_device->devtype) {
1813                 case TYPE_ROM: {
1814                         /* We don't *really* support actual CD-ROM devices,
1815                          * just "One Button Disaster Recovery" tape drive
1816                          * which temporarily pretends to be a CD-ROM drive.
1817                          * So we check that the device is really an OBDR tape
1818                          * device by checking for "$DR-10" in bytes 43-48 of
1819                          * the inquiry data.
1820                          */
1821                                 char obdr_sig[7];
1822 #define OBDR_TAPE_SIG "$DR-10"
1823                                 strncpy(obdr_sig, &inq_buff[43], 6);
1824                                 obdr_sig[6] = '\0';
1825                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1826                                         /* Not OBDR device, ignore it. */
1827                                         break;
1828                         }
1829                         ncurrent++;
1830                         break;
1831                 case TYPE_DISK:
1832                         if (i < nphysicals)
1833                                 break;
1834                         ncurrent++;
1835                         break;
1836                 case TYPE_TAPE:
1837                 case TYPE_MEDIUM_CHANGER:
1838                         ncurrent++;
1839                         break;
1840                 case TYPE_RAID:
1841                         /* Only present the Smartarray HBA as a RAID controller.
1842                          * If it's a RAID controller other than the HBA itself
1843                          * (an external RAID controller, MSA500 or similar)
1844                          * don't present it.
1845                          */
1846                         if (!is_hba_lunid(lunaddrbytes))
1847                                 break;
1848                         ncurrent++;
1849                         break;
1850                 default:
1851                         break;
1852                 }
1853                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1854                         break;
1855         }
1856         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1857 out:
1858         kfree(tmpdevice);
1859         for (i = 0; i < ndev_allocated; i++)
1860                 kfree(currentsd[i]);
1861         kfree(currentsd);
1862         kfree(inq_buff);
1863         kfree(physdev_list);
1864         kfree(logdev_list);
1865 }
1866
1867 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1868  * dma mapping  and fills in the scatter gather entries of the
1869  * hpsa command, cp.
1870  */
1871 static int hpsa_scatter_gather(struct ctlr_info *h,
1872                 struct CommandList *cp,
1873                 struct scsi_cmnd *cmd)
1874 {
1875         unsigned int len;
1876         struct scatterlist *sg;
1877         u64 addr64;
1878         int use_sg, i, sg_index, chained;
1879         struct SGDescriptor *curr_sg;
1880
1881         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1882
1883         use_sg = scsi_dma_map(cmd);
1884         if (use_sg < 0)
1885                 return use_sg;
1886
1887         if (!use_sg)
1888                 goto sglist_finished;
1889
1890         curr_sg = cp->SG;
1891         chained = 0;
1892         sg_index = 0;
1893         scsi_for_each_sg(cmd, sg, use_sg, i) {
1894                 if (i == h->max_cmd_sg_entries - 1 &&
1895                         use_sg > h->max_cmd_sg_entries) {
1896                         chained = 1;
1897                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1898                         sg_index = 0;
1899                 }
1900                 addr64 = (u64) sg_dma_address(sg);
1901                 len  = sg_dma_len(sg);
1902                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1903                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1904                 curr_sg->Len = len;
1905                 curr_sg->Ext = 0;  /* we are not chaining */
1906                 curr_sg++;
1907         }
1908
1909         if (use_sg + chained > h->maxSG)
1910                 h->maxSG = use_sg + chained;
1911
1912         if (chained) {
1913                 cp->Header.SGList = h->max_cmd_sg_entries;
1914                 cp->Header.SGTotal = (u16) (use_sg + 1);
1915                 hpsa_map_sg_chain_block(h, cp);
1916                 return 0;
1917         }
1918
1919 sglist_finished:
1920
1921         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1922         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1923         return 0;
1924 }
1925
1926
1927 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1928         void (*done)(struct scsi_cmnd *))
1929 {
1930         struct ctlr_info *h;
1931         struct hpsa_scsi_dev_t *dev;
1932         unsigned char scsi3addr[8];
1933         struct CommandList *c;
1934         unsigned long flags;
1935
1936         /* Get the ptr to our adapter structure out of cmd->host. */
1937         h = sdev_to_hba(cmd->device);
1938         dev = cmd->device->hostdata;
1939         if (!dev) {
1940                 cmd->result = DID_NO_CONNECT << 16;
1941                 done(cmd);
1942                 return 0;
1943         }
1944         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1945
1946         /* Need a lock as this is being allocated from the pool */
1947         spin_lock_irqsave(&h->lock, flags);
1948         c = cmd_alloc(h);
1949         spin_unlock_irqrestore(&h->lock, flags);
1950         if (c == NULL) {                        /* trouble... */
1951                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1952                 return SCSI_MLQUEUE_HOST_BUSY;
1953         }
1954
1955         /* Fill in the command list header */
1956
1957         cmd->scsi_done = done;    /* save this for use by completion code */
1958
1959         /* save c in case we have to abort it  */
1960         cmd->host_scribble = (unsigned char *) c;
1961
1962         c->cmd_type = CMD_SCSI;
1963         c->scsi_cmd = cmd;
1964         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1965         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1966         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1967         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1968
1969         /* Fill in the request block... */
1970
1971         c->Request.Timeout = 0;
1972         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1973         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1974         c->Request.CDBLen = cmd->cmd_len;
1975         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1976         c->Request.Type.Type = TYPE_CMD;
1977         c->Request.Type.Attribute = ATTR_SIMPLE;
1978         switch (cmd->sc_data_direction) {
1979         case DMA_TO_DEVICE:
1980                 c->Request.Type.Direction = XFER_WRITE;
1981                 break;
1982         case DMA_FROM_DEVICE:
1983                 c->Request.Type.Direction = XFER_READ;
1984                 break;
1985         case DMA_NONE:
1986                 c->Request.Type.Direction = XFER_NONE;
1987                 break;
1988         case DMA_BIDIRECTIONAL:
1989                 /* This can happen if a buggy application does a scsi passthru
1990                  * and sets both inlen and outlen to non-zero. ( see
1991                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1992                  */
1993
1994                 c->Request.Type.Direction = XFER_RSVD;
1995                 /* This is technically wrong, and hpsa controllers should
1996                  * reject it with CMD_INVALID, which is the most correct
1997                  * response, but non-fibre backends appear to let it
1998                  * slide by, and give the same results as if this field
1999                  * were set correctly.  Either way is acceptable for
2000                  * our purposes here.
2001                  */
2002
2003                 break;
2004
2005         default:
2006                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2007                         cmd->sc_data_direction);
2008                 BUG();
2009                 break;
2010         }
2011
2012         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2013                 cmd_free(h, c);
2014                 return SCSI_MLQUEUE_HOST_BUSY;
2015         }
2016         enqueue_cmd_and_start_io(h, c);
2017         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2018         return 0;
2019 }
2020
2021 static void hpsa_scan_start(struct Scsi_Host *sh)
2022 {
2023         struct ctlr_info *h = shost_to_hba(sh);
2024         unsigned long flags;
2025
2026         /* wait until any scan already in progress is finished. */
2027         while (1) {
2028                 spin_lock_irqsave(&h->scan_lock, flags);
2029                 if (h->scan_finished)
2030                         break;
2031                 spin_unlock_irqrestore(&h->scan_lock, flags);
2032                 wait_event(h->scan_wait_queue, h->scan_finished);
2033                 /* Note: We don't need to worry about a race between this
2034                  * thread and driver unload because the midlayer will
2035                  * have incremented the reference count, so unload won't
2036                  * happen if we're in here.
2037                  */
2038         }
2039         h->scan_finished = 0; /* mark scan as in progress */
2040         spin_unlock_irqrestore(&h->scan_lock, flags);
2041
2042         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2043
2044         spin_lock_irqsave(&h->scan_lock, flags);
2045         h->scan_finished = 1; /* mark scan as finished. */
2046         wake_up_all(&h->scan_wait_queue);
2047         spin_unlock_irqrestore(&h->scan_lock, flags);
2048 }
2049
2050 static int hpsa_scan_finished(struct Scsi_Host *sh,
2051         unsigned long elapsed_time)
2052 {
2053         struct ctlr_info *h = shost_to_hba(sh);
2054         unsigned long flags;
2055         int finished;
2056
2057         spin_lock_irqsave(&h->scan_lock, flags);
2058         finished = h->scan_finished;
2059         spin_unlock_irqrestore(&h->scan_lock, flags);
2060         return finished;
2061 }
2062
2063 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2064         int qdepth, int reason)
2065 {
2066         struct ctlr_info *h = sdev_to_hba(sdev);
2067
2068         if (reason != SCSI_QDEPTH_DEFAULT)
2069                 return -ENOTSUPP;
2070
2071         if (qdepth < 1)
2072                 qdepth = 1;
2073         else
2074                 if (qdepth > h->nr_cmds)
2075                         qdepth = h->nr_cmds;
2076         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2077         return sdev->queue_depth;
2078 }
2079
2080 static void hpsa_unregister_scsi(struct ctlr_info *h)
2081 {
2082         /* we are being forcibly unloaded, and may not refuse. */
2083         scsi_remove_host(h->scsi_host);
2084         scsi_host_put(h->scsi_host);
2085         h->scsi_host = NULL;
2086 }
2087
2088 static int hpsa_register_scsi(struct ctlr_info *h)
2089 {
2090         int rc;
2091
2092         rc = hpsa_scsi_detect(h);
2093         if (rc != 0)
2094                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2095                         " hpsa_scsi_detect(), rc is %d\n", rc);
2096         return rc;
2097 }
2098
2099 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2100         unsigned char lunaddr[])
2101 {
2102         int rc = 0;
2103         int count = 0;
2104         int waittime = 1; /* seconds */
2105         struct CommandList *c;
2106
2107         c = cmd_special_alloc(h);
2108         if (!c) {
2109                 dev_warn(&h->pdev->dev, "out of memory in "
2110                         "wait_for_device_to_become_ready.\n");
2111                 return IO_ERROR;
2112         }
2113
2114         /* Send test unit ready until device ready, or give up. */
2115         while (count < HPSA_TUR_RETRY_LIMIT) {
2116
2117                 /* Wait for a bit.  do this first, because if we send
2118                  * the TUR right away, the reset will just abort it.
2119                  */
2120                 msleep(1000 * waittime);
2121                 count++;
2122
2123                 /* Increase wait time with each try, up to a point. */
2124                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2125                         waittime = waittime * 2;
2126
2127                 /* Send the Test Unit Ready */
2128                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2129                 hpsa_scsi_do_simple_cmd_core(h, c);
2130                 /* no unmap needed here because no data xfer. */
2131
2132                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2133                         break;
2134
2135                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2136                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2137                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2138                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2139                         break;
2140
2141                 dev_warn(&h->pdev->dev, "waiting %d secs "
2142                         "for device to become ready.\n", waittime);
2143                 rc = 1; /* device not ready. */
2144         }
2145
2146         if (rc)
2147                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2148         else
2149                 dev_warn(&h->pdev->dev, "device is ready.\n");
2150
2151         cmd_special_free(h, c);
2152         return rc;
2153 }
2154
2155 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2156  * complaining.  Doing a host- or bus-reset can't do anything good here.
2157  */
2158 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2159 {
2160         int rc;
2161         struct ctlr_info *h;
2162         struct hpsa_scsi_dev_t *dev;
2163
2164         /* find the controller to which the command to be aborted was sent */
2165         h = sdev_to_hba(scsicmd->device);
2166         if (h == NULL) /* paranoia */
2167                 return FAILED;
2168         dev = scsicmd->device->hostdata;
2169         if (!dev) {
2170                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2171                         "device lookup failed.\n");
2172                 return FAILED;
2173         }
2174         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2175                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2176         /* send a reset to the SCSI LUN which the command was sent to */
2177         rc = hpsa_send_reset(h, dev->scsi3addr);
2178         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2179                 return SUCCESS;
2180
2181         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2182         return FAILED;
2183 }
2184
2185 /*
2186  * For operations that cannot sleep, a command block is allocated at init,
2187  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2188  * which ones are free or in use.  Lock must be held when calling this.
2189  * cmd_free() is the complement.
2190  */
2191 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2192 {
2193         struct CommandList *c;
2194         int i;
2195         union u64bit temp64;
2196         dma_addr_t cmd_dma_handle, err_dma_handle;
2197
2198         do {
2199                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2200                 if (i == h->nr_cmds)
2201                         return NULL;
2202         } while (test_and_set_bit
2203                  (i & (BITS_PER_LONG - 1),
2204                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2205         c = h->cmd_pool + i;
2206         memset(c, 0, sizeof(*c));
2207         cmd_dma_handle = h->cmd_pool_dhandle
2208             + i * sizeof(*c);
2209         c->err_info = h->errinfo_pool + i;
2210         memset(c->err_info, 0, sizeof(*c->err_info));
2211         err_dma_handle = h->errinfo_pool_dhandle
2212             + i * sizeof(*c->err_info);
2213         h->nr_allocs++;
2214
2215         c->cmdindex = i;
2216
2217         INIT_HLIST_NODE(&c->list);
2218         c->busaddr = (u32) cmd_dma_handle;
2219         temp64.val = (u64) err_dma_handle;
2220         c->ErrDesc.Addr.lower = temp64.val32.lower;
2221         c->ErrDesc.Addr.upper = temp64.val32.upper;
2222         c->ErrDesc.Len = sizeof(*c->err_info);
2223
2224         c->h = h;
2225         return c;
2226 }
2227
2228 /* For operations that can wait for kmalloc to possibly sleep,
2229  * this routine can be called. Lock need not be held to call
2230  * cmd_special_alloc. cmd_special_free() is the complement.
2231  */
2232 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2233 {
2234         struct CommandList *c;
2235         union u64bit temp64;
2236         dma_addr_t cmd_dma_handle, err_dma_handle;
2237
2238         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2239         if (c == NULL)
2240                 return NULL;
2241         memset(c, 0, sizeof(*c));
2242
2243         c->cmdindex = -1;
2244
2245         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2246                     &err_dma_handle);
2247
2248         if (c->err_info == NULL) {
2249                 pci_free_consistent(h->pdev,
2250                         sizeof(*c), c, cmd_dma_handle);
2251                 return NULL;
2252         }
2253         memset(c->err_info, 0, sizeof(*c->err_info));
2254
2255         INIT_HLIST_NODE(&c->list);
2256         c->busaddr = (u32) cmd_dma_handle;
2257         temp64.val = (u64) err_dma_handle;
2258         c->ErrDesc.Addr.lower = temp64.val32.lower;
2259         c->ErrDesc.Addr.upper = temp64.val32.upper;
2260         c->ErrDesc.Len = sizeof(*c->err_info);
2261
2262         c->h = h;
2263         return c;
2264 }
2265
2266 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2267 {
2268         int i;
2269
2270         i = c - h->cmd_pool;
2271         clear_bit(i & (BITS_PER_LONG - 1),
2272                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2273         h->nr_frees++;
2274 }
2275
2276 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2277 {
2278         union u64bit temp64;
2279
2280         temp64.val32.lower = c->ErrDesc.Addr.lower;
2281         temp64.val32.upper = c->ErrDesc.Addr.upper;
2282         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2283                             c->err_info, (dma_addr_t) temp64.val);
2284         pci_free_consistent(h->pdev, sizeof(*c),
2285                             c, (dma_addr_t) c->busaddr);
2286 }
2287
2288 #ifdef CONFIG_COMPAT
2289
2290 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2291 {
2292         IOCTL32_Command_struct __user *arg32 =
2293             (IOCTL32_Command_struct __user *) arg;
2294         IOCTL_Command_struct arg64;
2295         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2296         int err;
2297         u32 cp;
2298
2299         err = 0;
2300         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2301                            sizeof(arg64.LUN_info));
2302         err |= copy_from_user(&arg64.Request, &arg32->Request,
2303                            sizeof(arg64.Request));
2304         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2305                            sizeof(arg64.error_info));
2306         err |= get_user(arg64.buf_size, &arg32->buf_size);
2307         err |= get_user(cp, &arg32->buf);
2308         arg64.buf = compat_ptr(cp);
2309         err |= copy_to_user(p, &arg64, sizeof(arg64));
2310
2311         if (err)
2312                 return -EFAULT;
2313
2314         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2315         if (err)
2316                 return err;
2317         err |= copy_in_user(&arg32->error_info, &p->error_info,
2318                          sizeof(arg32->error_info));
2319         if (err)
2320                 return -EFAULT;
2321         return err;
2322 }
2323
2324 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2325         int cmd, void *arg)
2326 {
2327         BIG_IOCTL32_Command_struct __user *arg32 =
2328             (BIG_IOCTL32_Command_struct __user *) arg;
2329         BIG_IOCTL_Command_struct arg64;
2330         BIG_IOCTL_Command_struct __user *p =
2331             compat_alloc_user_space(sizeof(arg64));
2332         int err;
2333         u32 cp;
2334
2335         err = 0;
2336         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2337                            sizeof(arg64.LUN_info));
2338         err |= copy_from_user(&arg64.Request, &arg32->Request,
2339                            sizeof(arg64.Request));
2340         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2341                            sizeof(arg64.error_info));
2342         err |= get_user(arg64.buf_size, &arg32->buf_size);
2343         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2344         err |= get_user(cp, &arg32->buf);
2345         arg64.buf = compat_ptr(cp);
2346         err |= copy_to_user(p, &arg64, sizeof(arg64));
2347
2348         if (err)
2349                 return -EFAULT;
2350
2351         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2352         if (err)
2353                 return err;
2354         err |= copy_in_user(&arg32->error_info, &p->error_info,
2355                          sizeof(arg32->error_info));
2356         if (err)
2357                 return -EFAULT;
2358         return err;
2359 }
2360
2361 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2362 {
2363         switch (cmd) {
2364         case CCISS_GETPCIINFO:
2365         case CCISS_GETINTINFO:
2366         case CCISS_SETINTINFO:
2367         case CCISS_GETNODENAME:
2368         case CCISS_SETNODENAME:
2369         case CCISS_GETHEARTBEAT:
2370         case CCISS_GETBUSTYPES:
2371         case CCISS_GETFIRMVER:
2372         case CCISS_GETDRIVVER:
2373         case CCISS_REVALIDVOLS:
2374         case CCISS_DEREGDISK:
2375         case CCISS_REGNEWDISK:
2376         case CCISS_REGNEWD:
2377         case CCISS_RESCANDISK:
2378         case CCISS_GETLUNINFO:
2379                 return hpsa_ioctl(dev, cmd, arg);
2380
2381         case CCISS_PASSTHRU32:
2382                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2383         case CCISS_BIG_PASSTHRU32:
2384                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2385
2386         default:
2387                 return -ENOIOCTLCMD;
2388         }
2389 }
2390 #endif
2391
2392 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2393 {
2394         struct hpsa_pci_info pciinfo;
2395
2396         if (!argp)
2397                 return -EINVAL;
2398         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2399         pciinfo.bus = h->pdev->bus->number;
2400         pciinfo.dev_fn = h->pdev->devfn;
2401         pciinfo.board_id = h->board_id;
2402         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2403                 return -EFAULT;
2404         return 0;
2405 }
2406
2407 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2408 {
2409         DriverVer_type DriverVer;
2410         unsigned char vmaj, vmin, vsubmin;
2411         int rc;
2412
2413         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2414                 &vmaj, &vmin, &vsubmin);
2415         if (rc != 3) {
2416                 dev_info(&h->pdev->dev, "driver version string '%s' "
2417                         "unrecognized.", HPSA_DRIVER_VERSION);
2418                 vmaj = 0;
2419                 vmin = 0;
2420                 vsubmin = 0;
2421         }
2422         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2423         if (!argp)
2424                 return -EINVAL;
2425         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2426                 return -EFAULT;
2427         return 0;
2428 }
2429
2430 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2431 {
2432         IOCTL_Command_struct iocommand;
2433         struct CommandList *c;
2434         char *buff = NULL;
2435         union u64bit temp64;
2436
2437         if (!argp)
2438                 return -EINVAL;
2439         if (!capable(CAP_SYS_RAWIO))
2440                 return -EPERM;
2441         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2442                 return -EFAULT;
2443         if ((iocommand.buf_size < 1) &&
2444             (iocommand.Request.Type.Direction != XFER_NONE)) {
2445                 return -EINVAL;
2446         }
2447         if (iocommand.buf_size > 0) {
2448                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2449                 if (buff == NULL)
2450                         return -EFAULT;
2451         }
2452         if (iocommand.Request.Type.Direction == XFER_WRITE) {
2453                 /* Copy the data into the buffer we created */
2454                 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2455                         kfree(buff);
2456                         return -EFAULT;
2457                 }
2458         } else
2459                 memset(buff, 0, iocommand.buf_size);
2460         c = cmd_special_alloc(h);
2461         if (c == NULL) {
2462                 kfree(buff);
2463                 return -ENOMEM;
2464         }
2465         /* Fill in the command type */
2466         c->cmd_type = CMD_IOCTL_PEND;
2467         /* Fill in Command Header */
2468         c->Header.ReplyQueue = 0; /* unused in simple mode */
2469         if (iocommand.buf_size > 0) {   /* buffer to fill */
2470                 c->Header.SGList = 1;
2471                 c->Header.SGTotal = 1;
2472         } else  { /* no buffers to fill */
2473                 c->Header.SGList = 0;
2474                 c->Header.SGTotal = 0;
2475         }
2476         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2477         /* use the kernel address the cmd block for tag */
2478         c->Header.Tag.lower = c->busaddr;
2479
2480         /* Fill in Request block */
2481         memcpy(&c->Request, &iocommand.Request,
2482                 sizeof(c->Request));
2483
2484         /* Fill in the scatter gather information */
2485         if (iocommand.buf_size > 0) {
2486                 temp64.val = pci_map_single(h->pdev, buff,
2487                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2488                 c->SG[0].Addr.lower = temp64.val32.lower;
2489                 c->SG[0].Addr.upper = temp64.val32.upper;
2490                 c->SG[0].Len = iocommand.buf_size;
2491                 c->SG[0].Ext = 0; /* we are not chaining*/
2492         }
2493         hpsa_scsi_do_simple_cmd_core(h, c);
2494         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2495         check_ioctl_unit_attention(h, c);
2496
2497         /* Copy the error information out */
2498         memcpy(&iocommand.error_info, c->err_info,
2499                 sizeof(iocommand.error_info));
2500         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2501                 kfree(buff);
2502                 cmd_special_free(h, c);
2503                 return -EFAULT;
2504         }
2505
2506         if (iocommand.Request.Type.Direction == XFER_READ) {
2507                 /* Copy the data out of the buffer we created */
2508                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2509                         kfree(buff);
2510                         cmd_special_free(h, c);
2511                         return -EFAULT;
2512                 }
2513         }
2514         kfree(buff);
2515         cmd_special_free(h, c);
2516         return 0;
2517 }
2518
2519 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2520 {
2521         BIG_IOCTL_Command_struct *ioc;
2522         struct CommandList *c;
2523         unsigned char **buff = NULL;
2524         int *buff_size = NULL;
2525         union u64bit temp64;
2526         BYTE sg_used = 0;
2527         int status = 0;
2528         int i;
2529         u32 left;
2530         u32 sz;
2531         BYTE __user *data_ptr;
2532
2533         if (!argp)
2534                 return -EINVAL;
2535         if (!capable(CAP_SYS_RAWIO))
2536                 return -EPERM;
2537         ioc = (BIG_IOCTL_Command_struct *)
2538             kmalloc(sizeof(*ioc), GFP_KERNEL);
2539         if (!ioc) {
2540                 status = -ENOMEM;
2541                 goto cleanup1;
2542         }
2543         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2544                 status = -EFAULT;
2545                 goto cleanup1;
2546         }
2547         if ((ioc->buf_size < 1) &&
2548             (ioc->Request.Type.Direction != XFER_NONE)) {
2549                 status = -EINVAL;
2550                 goto cleanup1;
2551         }
2552         /* Check kmalloc limits  using all SGs */
2553         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2554                 status = -EINVAL;
2555                 goto cleanup1;
2556         }
2557         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2558                 status = -EINVAL;
2559                 goto cleanup1;
2560         }
2561         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2562         if (!buff) {
2563                 status = -ENOMEM;
2564                 goto cleanup1;
2565         }
2566         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2567         if (!buff_size) {
2568                 status = -ENOMEM;
2569                 goto cleanup1;
2570         }
2571         left = ioc->buf_size;
2572         data_ptr = ioc->buf;
2573         while (left) {
2574                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2575                 buff_size[sg_used] = sz;
2576                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2577                 if (buff[sg_used] == NULL) {
2578                         status = -ENOMEM;
2579                         goto cleanup1;
2580                 }
2581                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2582                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2583                                 status = -ENOMEM;
2584                                 goto cleanup1;
2585                         }
2586                 } else
2587                         memset(buff[sg_used], 0, sz);
2588                 left -= sz;
2589                 data_ptr += sz;
2590                 sg_used++;
2591         }
2592         c = cmd_special_alloc(h);
2593         if (c == NULL) {
2594                 status = -ENOMEM;
2595                 goto cleanup1;
2596         }
2597         c->cmd_type = CMD_IOCTL_PEND;
2598         c->Header.ReplyQueue = 0;
2599
2600         if (ioc->buf_size > 0) {
2601                 c->Header.SGList = sg_used;
2602                 c->Header.SGTotal = sg_used;
2603         } else {
2604                 c->Header.SGList = 0;
2605                 c->Header.SGTotal = 0;
2606         }
2607         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2608         c->Header.Tag.lower = c->busaddr;
2609         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2610         if (ioc->buf_size > 0) {
2611                 int i;
2612                 for (i = 0; i < sg_used; i++) {
2613                         temp64.val = pci_map_single(h->pdev, buff[i],
2614                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2615                         c->SG[i].Addr.lower = temp64.val32.lower;
2616                         c->SG[i].Addr.upper = temp64.val32.upper;
2617                         c->SG[i].Len = buff_size[i];
2618                         /* we are not chaining */
2619                         c->SG[i].Ext = 0;
2620                 }
2621         }
2622         hpsa_scsi_do_simple_cmd_core(h, c);
2623         hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2624         check_ioctl_unit_attention(h, c);
2625         /* Copy the error information out */
2626         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2627         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2628                 cmd_special_free(h, c);
2629                 status = -EFAULT;
2630                 goto cleanup1;
2631         }
2632         if (ioc->Request.Type.Direction == XFER_READ) {
2633                 /* Copy the data out of the buffer we created */
2634                 BYTE __user *ptr = ioc->buf;
2635                 for (i = 0; i < sg_used; i++) {
2636                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2637                                 cmd_special_free(h, c);
2638                                 status = -EFAULT;
2639                                 goto cleanup1;
2640                         }
2641                         ptr += buff_size[i];
2642                 }
2643         }
2644         cmd_special_free(h, c);
2645         status = 0;
2646 cleanup1:
2647         if (buff) {
2648                 for (i = 0; i < sg_used; i++)
2649                         kfree(buff[i]);
2650                 kfree(buff);
2651         }
2652         kfree(buff_size);
2653         kfree(ioc);
2654         return status;
2655 }
2656
2657 static void check_ioctl_unit_attention(struct ctlr_info *h,
2658         struct CommandList *c)
2659 {
2660         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2661                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2662                 (void) check_for_unit_attention(h, c);
2663 }
2664 /*
2665  * ioctl
2666  */
2667 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2668 {
2669         struct ctlr_info *h;
2670         void __user *argp = (void __user *)arg;
2671
2672         h = sdev_to_hba(dev);
2673
2674         switch (cmd) {
2675         case CCISS_DEREGDISK:
2676         case CCISS_REGNEWDISK:
2677         case CCISS_REGNEWD:
2678                 hpsa_scan_start(h->scsi_host);
2679                 return 0;
2680         case CCISS_GETPCIINFO:
2681                 return hpsa_getpciinfo_ioctl(h, argp);
2682         case CCISS_GETDRIVVER:
2683                 return hpsa_getdrivver_ioctl(h, argp);
2684         case CCISS_PASSTHRU:
2685                 return hpsa_passthru_ioctl(h, argp);
2686         case CCISS_BIG_PASSTHRU:
2687                 return hpsa_big_passthru_ioctl(h, argp);
2688         default:
2689                 return -ENOTTY;
2690         }
2691 }
2692
2693 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2694         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2695         int cmd_type)
2696 {
2697         int pci_dir = XFER_NONE;
2698
2699         c->cmd_type = CMD_IOCTL_PEND;
2700         c->Header.ReplyQueue = 0;
2701         if (buff != NULL && size > 0) {
2702                 c->Header.SGList = 1;
2703                 c->Header.SGTotal = 1;
2704         } else {
2705                 c->Header.SGList = 0;
2706                 c->Header.SGTotal = 0;
2707         }
2708         c->Header.Tag.lower = c->busaddr;
2709         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2710
2711         c->Request.Type.Type = cmd_type;
2712         if (cmd_type == TYPE_CMD) {
2713                 switch (cmd) {
2714                 case HPSA_INQUIRY:
2715                         /* are we trying to read a vital product page */
2716                         if (page_code != 0) {
2717                                 c->Request.CDB[1] = 0x01;
2718                                 c->Request.CDB[2] = page_code;
2719                         }
2720                         c->Request.CDBLen = 6;
2721                         c->Request.Type.Attribute = ATTR_SIMPLE;
2722                         c->Request.Type.Direction = XFER_READ;
2723                         c->Request.Timeout = 0;
2724                         c->Request.CDB[0] = HPSA_INQUIRY;
2725                         c->Request.CDB[4] = size & 0xFF;
2726                         break;
2727                 case HPSA_REPORT_LOG:
2728                 case HPSA_REPORT_PHYS:
2729                         /* Talking to controller so It's a physical command
2730                            mode = 00 target = 0.  Nothing to write.
2731                          */
2732                         c->Request.CDBLen = 12;
2733                         c->Request.Type.Attribute = ATTR_SIMPLE;
2734                         c->Request.Type.Direction = XFER_READ;
2735                         c->Request.Timeout = 0;
2736                         c->Request.CDB[0] = cmd;
2737                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2738                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2739                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2740                         c->Request.CDB[9] = size & 0xFF;
2741                         break;
2742                 case HPSA_CACHE_FLUSH:
2743                         c->Request.CDBLen = 12;
2744                         c->Request.Type.Attribute = ATTR_SIMPLE;
2745                         c->Request.Type.Direction = XFER_WRITE;
2746                         c->Request.Timeout = 0;
2747                         c->Request.CDB[0] = BMIC_WRITE;
2748                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2749                         break;
2750                 case TEST_UNIT_READY:
2751                         c->Request.CDBLen = 6;
2752                         c->Request.Type.Attribute = ATTR_SIMPLE;
2753                         c->Request.Type.Direction = XFER_NONE;
2754                         c->Request.Timeout = 0;
2755                         break;
2756                 default:
2757                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2758                         BUG();
2759                         return;
2760                 }
2761         } else if (cmd_type == TYPE_MSG) {
2762                 switch (cmd) {
2763
2764                 case  HPSA_DEVICE_RESET_MSG:
2765                         c->Request.CDBLen = 16;
2766                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2767                         c->Request.Type.Attribute = ATTR_SIMPLE;
2768                         c->Request.Type.Direction = XFER_NONE;
2769                         c->Request.Timeout = 0; /* Don't time out */
2770                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2771                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2772                         /* If bytes 4-7 are zero, it means reset the */
2773                         /* LunID device */
2774                         c->Request.CDB[4] = 0x00;
2775                         c->Request.CDB[5] = 0x00;
2776                         c->Request.CDB[6] = 0x00;
2777                         c->Request.CDB[7] = 0x00;
2778                 break;
2779
2780                 default:
2781                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2782                                 cmd);
2783                         BUG();
2784                 }
2785         } else {
2786                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2787                 BUG();
2788         }
2789
2790         switch (c->Request.Type.Direction) {
2791         case XFER_READ:
2792                 pci_dir = PCI_DMA_FROMDEVICE;
2793                 break;
2794         case XFER_WRITE:
2795                 pci_dir = PCI_DMA_TODEVICE;
2796                 break;
2797         case XFER_NONE:
2798                 pci_dir = PCI_DMA_NONE;
2799                 break;
2800         default:
2801                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2802         }
2803
2804         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2805
2806         return;
2807 }
2808
2809 /*
2810  * Map (physical) PCI mem into (virtual) kernel space
2811  */
2812 static void __iomem *remap_pci_mem(ulong base, ulong size)
2813 {
2814         ulong page_base = ((ulong) base) & PAGE_MASK;
2815         ulong page_offs = ((ulong) base) - page_base;
2816         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2817
2818         return page_remapped ? (page_remapped + page_offs) : NULL;
2819 }
2820
2821 /* Takes cmds off the submission queue and sends them to the hardware,
2822  * then puts them on the queue of cmds waiting for completion.
2823  */
2824 static void start_io(struct ctlr_info *h)
2825 {
2826         struct CommandList *c;
2827
2828         while (!hlist_empty(&h->reqQ)) {
2829                 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2830                 /* can't do anything if fifo is full */
2831                 if ((h->access.fifo_full(h))) {
2832                         dev_warn(&h->pdev->dev, "fifo full\n");
2833                         break;
2834                 }
2835
2836                 /* Get the first entry from the Request Q */
2837                 removeQ(c);
2838                 h->Qdepth--;
2839
2840                 /* Tell the controller execute command */
2841                 h->access.submit_command(h, c);
2842
2843                 /* Put job onto the completed Q */
2844                 addQ(&h->cmpQ, c);
2845         }
2846 }
2847
2848 static inline unsigned long get_next_completion(struct ctlr_info *h)
2849 {
2850         return h->access.command_completed(h);
2851 }
2852
2853 static inline bool interrupt_pending(struct ctlr_info *h)
2854 {
2855         return h->access.intr_pending(h);
2856 }
2857
2858 static inline long interrupt_not_for_us(struct ctlr_info *h)
2859 {
2860         return !(h->msi_vector || h->msix_vector) &&
2861                 ((h->access.intr_pending(h) == 0) ||
2862                 (h->interrupts_enabled == 0));
2863 }
2864
2865 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2866         u32 raw_tag)
2867 {
2868         if (unlikely(tag_index >= h->nr_cmds)) {
2869                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2870                 return 1;
2871         }
2872         return 0;
2873 }
2874
2875 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2876 {
2877         removeQ(c);
2878         if (likely(c->cmd_type == CMD_SCSI))
2879                 complete_scsi_command(c, 0, raw_tag);
2880         else if (c->cmd_type == CMD_IOCTL_PEND)
2881                 complete(c->waiting);
2882 }
2883
2884 static inline u32 hpsa_tag_contains_index(u32 tag)
2885 {
2886 #define DIRECT_LOOKUP_BIT 0x10
2887         return tag & DIRECT_LOOKUP_BIT;
2888 }
2889
2890 static inline u32 hpsa_tag_to_index(u32 tag)
2891 {
2892 #define DIRECT_LOOKUP_SHIFT 5
2893         return tag >> DIRECT_LOOKUP_SHIFT;
2894 }
2895
2896 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2897 {
2898 #define HPSA_ERROR_BITS 0x03
2899         return tag & ~HPSA_ERROR_BITS;
2900 }
2901
2902 /* process completion of an indexed ("direct lookup") command */
2903 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2904         u32 raw_tag)
2905 {
2906         u32 tag_index;
2907         struct CommandList *c;
2908
2909         tag_index = hpsa_tag_to_index(raw_tag);
2910         if (bad_tag(h, tag_index, raw_tag))
2911                 return next_command(h);
2912         c = h->cmd_pool + tag_index;
2913         finish_cmd(c, raw_tag);
2914         return next_command(h);
2915 }
2916
2917 /* process completion of a non-indexed command */
2918 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2919         u32 raw_tag)
2920 {
2921         u32 tag;
2922         struct CommandList *c = NULL;
2923         struct hlist_node *tmp;
2924
2925         tag = hpsa_tag_discard_error_bits(raw_tag);
2926         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2927                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2928                         finish_cmd(c, raw_tag);
2929                         return next_command(h);
2930                 }
2931         }
2932         bad_tag(h, h->nr_cmds + 1, raw_tag);
2933         return next_command(h);
2934 }
2935
2936 static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2937 {
2938         struct ctlr_info *h = dev_id;
2939         unsigned long flags;
2940         u32 raw_tag;
2941
2942         if (interrupt_not_for_us(h))
2943                 return IRQ_NONE;
2944         spin_lock_irqsave(&h->lock, flags);
2945         raw_tag = get_next_completion(h);
2946         while (raw_tag != FIFO_EMPTY) {
2947                 if (hpsa_tag_contains_index(raw_tag))
2948                         raw_tag = process_indexed_cmd(h, raw_tag);
2949                 else
2950                         raw_tag = process_nonindexed_cmd(h, raw_tag);
2951         }
2952         spin_unlock_irqrestore(&h->lock, flags);
2953         return IRQ_HANDLED;
2954 }
2955
2956 /* Send a message CDB to the firmware. */
2957 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2958                                                 unsigned char type)
2959 {
2960         struct Command {
2961                 struct CommandListHeader CommandHeader;
2962                 struct RequestBlock Request;
2963                 struct ErrDescriptor ErrorDescriptor;
2964         };
2965         struct Command *cmd;
2966         static const size_t cmd_sz = sizeof(*cmd) +
2967                                         sizeof(cmd->ErrorDescriptor);
2968         dma_addr_t paddr64;
2969         uint32_t paddr32, tag;
2970         void __iomem *vaddr;
2971         int i, err;
2972
2973         vaddr = pci_ioremap_bar(pdev, 0);
2974         if (vaddr == NULL)
2975                 return -ENOMEM;
2976
2977         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2978          * CCISS commands, so they must be allocated from the lower 4GiB of
2979          * memory.
2980          */
2981         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2982         if (err) {
2983                 iounmap(vaddr);
2984                 return -ENOMEM;
2985         }
2986
2987         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2988         if (cmd == NULL) {
2989                 iounmap(vaddr);
2990                 return -ENOMEM;
2991         }
2992
2993         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
2994          * although there's no guarantee, we assume that the address is at
2995          * least 4-byte aligned (most likely, it's page-aligned).
2996          */
2997         paddr32 = paddr64;
2998
2999         cmd->CommandHeader.ReplyQueue = 0;
3000         cmd->CommandHeader.SGList = 0;
3001         cmd->CommandHeader.SGTotal = 0;
3002         cmd->CommandHeader.Tag.lower = paddr32;
3003         cmd->CommandHeader.Tag.upper = 0;
3004         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3005
3006         cmd->Request.CDBLen = 16;
3007         cmd->Request.Type.Type = TYPE_MSG;
3008         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3009         cmd->Request.Type.Direction = XFER_NONE;
3010         cmd->Request.Timeout = 0; /* Don't time out */
3011         cmd->Request.CDB[0] = opcode;
3012         cmd->Request.CDB[1] = type;
3013         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3014         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3015         cmd->ErrorDescriptor.Addr.upper = 0;
3016         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3017
3018         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3019
3020         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3021                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3022                 if (hpsa_tag_discard_error_bits(tag) == paddr32)
3023                         break;
3024                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3025         }
3026
3027         iounmap(vaddr);
3028
3029         /* we leak the DMA buffer here ... no choice since the controller could
3030          *  still complete the command.
3031          */
3032         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3033                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3034                         opcode, type);
3035                 return -ETIMEDOUT;
3036         }
3037
3038         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3039
3040         if (tag & HPSA_ERROR_BIT) {
3041                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3042                         opcode, type);
3043                 return -EIO;
3044         }
3045
3046         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3047                 opcode, type);
3048         return 0;
3049 }
3050
3051 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3052 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3053
3054 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3055 {
3056 /* the #defines are stolen from drivers/pci/msi.h. */
3057 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
3058 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
3059
3060         int pos;
3061         u16 control = 0;
3062
3063         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3064         if (pos) {
3065                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3066                 if (control & PCI_MSI_FLAGS_ENABLE) {
3067                         dev_info(&pdev->dev, "resetting MSI\n");
3068                         pci_write_config_word(pdev, msi_control_reg(pos),
3069                                         control & ~PCI_MSI_FLAGS_ENABLE);
3070                 }
3071         }
3072
3073         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3074         if (pos) {
3075                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3076                 if (control & PCI_MSIX_FLAGS_ENABLE) {
3077                         dev_info(&pdev->dev, "resetting MSI-X\n");
3078                         pci_write_config_word(pdev, msi_control_reg(pos),
3079                                         control & ~PCI_MSIX_FLAGS_ENABLE);
3080                 }
3081         }
3082
3083         return 0;
3084 }
3085
3086 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3087         void * __iomem vaddr, bool use_doorbell)
3088 {
3089         u16 pmcsr;
3090         int pos;
3091
3092         if (use_doorbell) {
3093                 /* For everything after the P600, the PCI power state method
3094                  * of resetting the controller doesn't work, so we have this
3095                  * other way using the doorbell register.
3096                  */
3097                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3098                 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3099                 msleep(1000);
3100         } else { /* Try to do it the PCI power state way */
3101
3102                 /* Quoting from the Open CISS Specification: "The Power
3103                  * Management Control/Status Register (CSR) controls the power
3104                  * state of the device.  The normal operating state is D0,
3105                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3106                  * the controller, place the interface device in D3 then to D0,
3107                  * this causes a secondary PCI reset which will reset the
3108                  * controller." */
3109
3110                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3111                 if (pos == 0) {
3112                         dev_err(&pdev->dev,
3113                                 "hpsa_reset_controller: "
3114                                 "PCI PM not supported\n");
3115                         return -ENODEV;
3116                 }
3117                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3118                 /* enter the D3hot power management state */
3119                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3120                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3121                 pmcsr |= PCI_D3hot;
3122                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3123
3124                 msleep(500);
3125
3126                 /* enter the D0 power management state */
3127                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3128                 pmcsr |= PCI_D0;
3129                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3130
3131                 msleep(500);
3132         }
3133         return 0;
3134 }
3135
3136 /* This does a hard reset of the controller using PCI power management
3137  * states or the using the doorbell register.
3138  */
3139 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3140 {
3141         u16 saved_config_space[32];
3142         u64 cfg_offset;
3143         u32 cfg_base_addr;
3144         u64 cfg_base_addr_index;
3145         void __iomem *vaddr;
3146         unsigned long paddr;
3147         u32 misc_fw_support, active_transport;
3148         int rc, i;
3149         struct CfgTable __iomem *cfgtable;
3150         bool use_doorbell;
3151
3152
3153         /* For controllers as old as the P600, this is very nearly
3154          * the same thing as
3155          *
3156          * pci_save_state(pci_dev);
3157          * pci_set_power_state(pci_dev, PCI_D3hot);
3158          * pci_set_power_state(pci_dev, PCI_D0);
3159          * pci_restore_state(pci_dev);
3160          *
3161          * but we can't use these nice canned kernel routines on
3162          * kexec, because they also check the MSI/MSI-X state in PCI
3163          * configuration space and do the wrong thing when it is
3164          * set/cleared.  Also, the pci_save/restore_state functions
3165          * violate the ordering requirements for restoring the
3166          * configuration space from the CCISS document (see the
3167          * comment below).  So we roll our own ....
3168          *
3169          * For controllers newer than the P600, the pci power state
3170          * method of resetting doesn't work so we have another way
3171          * using the doorbell register.
3172          */
3173         for (i = 0; i < 32; i++)
3174                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3175
3176
3177         /* find the first memory BAR, so we can find the cfg table */
3178         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3179         if (rc)
3180                 return rc;
3181         vaddr = remap_pci_mem(paddr, 0x250);
3182         if (!vaddr)
3183                 return -ENOMEM;
3184
3185         /* find cfgtable in order to check if reset via doorbell is supported */
3186         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3187                                         &cfg_base_addr_index, &cfg_offset);
3188         if (rc)
3189                 goto unmap_vaddr;
3190         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3191                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3192         if (!cfgtable) {
3193                 rc = -ENOMEM;
3194                 goto unmap_vaddr;
3195         }
3196
3197         /* If reset via doorbell register is supported, use that. */
3198         misc_fw_support = readl(&cfgtable->misc_fw_support);
3199         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3200
3201         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3202         if (rc)
3203                 goto unmap_cfgtable;
3204
3205         /* Restore the PCI configuration space.  The Open CISS
3206          * Specification says, "Restore the PCI Configuration
3207          * Registers, offsets 00h through 60h. It is important to
3208          * restore the command register, 16-bits at offset 04h,
3209          * last. Do not restore the configuration status register,
3210          * 16-bits at offset 06h."  Note that the offset is 2*i.
3211          */
3212         for (i = 0; i < 32; i++) {
3213                 if (i == 2 || i == 3)
3214                         continue;
3215                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3216         }
3217         wmb();
3218         pci_write_config_word(pdev, 4, saved_config_space[2]);
3219
3220         /* Some devices (notably the HP Smart Array 5i Controller)
3221            need a little pause here */
3222         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3223
3224         /* Controller should be in simple mode at this point.  If it's not,
3225          * It means we're on one of those controllers which doesn't support
3226          * the doorbell reset method and on which the PCI power management reset
3227          * method doesn't work (P800, for example.)
3228          * In those cases, pretend the reset worked and hope for the best.
3229          */
3230         active_transport = readl(&cfgtable->TransportActive);
3231         if (active_transport & PERFORMANT_MODE) {
3232                 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3233                         " proceeding anyway.\n");
3234                 rc = -ENOTSUPP;
3235         }
3236
3237 unmap_cfgtable:
3238         iounmap(cfgtable);
3239
3240 unmap_vaddr:
3241         iounmap(vaddr);
3242         return rc;
3243 }
3244
3245 /*
3246  *  We cannot read the structure directly, for portability we must use
3247  *   the io functions.
3248  *   This is for debug only.
3249  */
3250 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3251 {
3252 #ifdef HPSA_DEBUG
3253         int i;
3254         char temp_name[17];
3255
3256         dev_info(dev, "Controller Configuration information\n");
3257         dev_info(dev, "------------------------------------\n");
3258         for (i = 0; i < 4; i++)
3259                 temp_name[i] = readb(&(tb->Signature[i]));
3260         temp_name[4] = '\0';
3261         dev_info(dev, "   Signature = %s\n", temp_name);
3262         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3263         dev_info(dev, "   Transport methods supported = 0x%x\n",
3264                readl(&(tb->TransportSupport)));
3265         dev_info(dev, "   Transport methods active = 0x%x\n",
3266                readl(&(tb->TransportActive)));
3267         dev_info(dev, "   Requested transport Method = 0x%x\n",
3268                readl(&(tb->HostWrite.TransportRequest)));
3269         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3270                readl(&(tb->HostWrite.CoalIntDelay)));
3271         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3272                readl(&(tb->HostWrite.CoalIntCount)));
3273         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3274                readl(&(tb->CmdsOutMax)));
3275         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3276         for (i = 0; i < 16; i++)
3277                 temp_name[i] = readb(&(tb->ServerName[i]));
3278         temp_name[16] = '\0';
3279         dev_info(dev, "   Server Name = %s\n", temp_name);
3280         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3281                 readl(&(tb->HeartBeat)));
3282 #endif                          /* HPSA_DEBUG */
3283 }
3284
3285 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3286 {
3287         int i, offset, mem_type, bar_type;
3288
3289         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3290                 return 0;
3291         offset = 0;
3292         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3293                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3294                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3295                         offset += 4;
3296                 else {
3297                         mem_type = pci_resource_flags(pdev, i) &
3298                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3299                         switch (mem_type) {
3300                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3301                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3302                                 offset += 4;    /* 32 bit */
3303                                 break;
3304                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3305                                 offset += 8;
3306                                 break;
3307                         default:        /* reserved in PCI 2.2 */
3308                                 dev_warn(&pdev->dev,
3309                                        "base address is invalid\n");
3310                                 return -1;
3311                                 break;
3312                         }
3313                 }
3314                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3315                         return i + 1;
3316         }
3317         return -1;
3318 }
3319
3320 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3321  * controllers that are capable. If not, we use IO-APIC mode.
3322  */
3323
3324 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3325 {
3326 #ifdef CONFIG_PCI_MSI
3327         int err;
3328         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3329         {0, 2}, {0, 3}
3330         };
3331
3332         /* Some boards advertise MSI but don't really support it */
3333         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3334             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3335                 goto default_int_mode;
3336         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3337                 dev_info(&h->pdev->dev, "MSIX\n");
3338                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3339                 if (!err) {
3340                         h->intr[0] = hpsa_msix_entries[0].vector;
3341                         h->intr[1] = hpsa_msix_entries[1].vector;
3342                         h->intr[2] = hpsa_msix_entries[2].vector;
3343                         h->intr[3] = hpsa_msix_entries[3].vector;
3344                         h->msix_vector = 1;
3345                         return;
3346                 }
3347                 if (err > 0) {
3348                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3349                                "available\n", err);
3350                         goto default_int_mode;
3351                 } else {
3352                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3353                                err);
3354                         goto default_int_mode;
3355                 }
3356         }
3357         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3358                 dev_info(&h->pdev->dev, "MSI\n");
3359                 if (!pci_enable_msi(h->pdev))
3360                         h->msi_vector = 1;
3361                 else
3362                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3363         }
3364 default_int_mode:
3365 #endif                          /* CONFIG_PCI_MSI */
3366         /* if we get here we're going to use the default interrupt mode */
3367         h->intr[PERF_MODE_INT] = h->pdev->irq;
3368 }
3369
3370 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3371 {
3372         int i;
3373         u32 subsystem_vendor_id, subsystem_device_id;
3374
3375         subsystem_vendor_id = pdev->subsystem_vendor;
3376         subsystem_device_id = pdev->subsystem_device;
3377         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3378                     subsystem_vendor_id;
3379
3380         for (i = 0; i < ARRAY_SIZE(products); i++)
3381                 if (*board_id == products[i].board_id)
3382                         return i;
3383
3384         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3385                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3386                 !hpsa_allow_any) {
3387                 dev_warn(&pdev->dev, "unrecognized board ID: "
3388                         "0x%08x, ignoring.\n", *board_id);
3389                         return -ENODEV;
3390         }
3391         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3392 }
3393
3394 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3395 {
3396         u16 command;
3397
3398         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3399         return ((command & PCI_COMMAND_MEMORY) == 0);
3400 }
3401
3402 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3403         unsigned long *memory_bar)
3404 {
3405         int i;
3406
3407         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3408                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3409                         /* addressing mode bits already removed */
3410                         *memory_bar = pci_resource_start(pdev, i);
3411                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3412                                 *memory_bar);
3413                         return 0;
3414                 }
3415         dev_warn(&pdev->dev, "no memory BAR found\n");
3416         return -ENODEV;
3417 }
3418
3419 static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h)
3420 {
3421         int i;
3422         u32 scratchpad;
3423
3424         for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3425                 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3426                 if (scratchpad == HPSA_FIRMWARE_READY)
3427                         return 0;
3428                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3429         }
3430         dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
3431         return -ENODEV;
3432 }
3433
3434 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3435         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3436         u64 *cfg_offset)
3437 {
3438         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3439         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3440         *cfg_base_addr &= (u32) 0x0000ffff;
3441         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3442         if (*cfg_base_addr_index == -1) {
3443                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3444                 return -ENODEV;
3445         }
3446         return 0;
3447 }
3448
3449 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3450 {
3451         u64 cfg_offset;
3452         u32 cfg_base_addr;
3453         u64 cfg_base_addr_index;
3454         u32 trans_offset;
3455         int rc;
3456
3457         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3458                 &cfg_base_addr_index, &cfg_offset);
3459         if (rc)
3460                 return rc;
3461         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3462                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3463         if (!h->cfgtable)
3464                 return -ENOMEM;
3465         /* Find performant mode table. */
3466         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3467         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3468                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3469                                 sizeof(*h->transtable));
3470         if (!h->transtable)
3471                 return -ENOMEM;
3472         return 0;
3473 }
3474
3475 /* Interrogate the hardware for some limits:
3476  * max commands, max SG elements without chaining, and with chaining,
3477  * SG chain block size, etc.
3478  */
3479 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3480 {
3481         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3482         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3483         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3484         /*
3485          * Limit in-command s/g elements to 32 save dma'able memory.
3486          * Howvever spec says if 0, use 31
3487          */
3488         h->max_cmd_sg_entries = 31;
3489         if (h->maxsgentries > 512) {
3490                 h->max_cmd_sg_entries = 32;
3491                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3492                 h->maxsgentries--; /* save one for chain pointer */
3493         } else {
3494                 h->maxsgentries = 31; /* default to traditional values */
3495                 h->chainsize = 0;
3496         }
3497 }
3498
3499 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3500 {
3501         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3502             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3503             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3504             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3505                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3506                 return false;
3507         }
3508         return true;
3509 }
3510
3511 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3512 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3513 {
3514 #ifdef CONFIG_X86
3515         u32 prefetch;
3516
3517         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3518         prefetch |= 0x100;
3519         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3520 #endif
3521 }
3522
3523 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3524  * in a prefetch beyond physical memory.
3525  */
3526 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3527 {
3528         u32 dma_prefetch;
3529
3530         if (h->board_id != 0x3225103C)
3531                 return;
3532         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3533         dma_prefetch |= 0x8000;
3534         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3535 }
3536
3537 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3538 {
3539         int i;
3540
3541         /* under certain very rare conditions, this can take awhile.
3542          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3543          * as we enter this code.)
3544          */
3545         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3546                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3547                         break;
3548                 /* delay and try again */
3549                 msleep(10);
3550         }
3551 }
3552
3553 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3554 {
3555         u32 trans_support;
3556
3557         trans_support = readl(&(h->cfgtable->TransportSupport));
3558         if (!(trans_support & SIMPLE_MODE))
3559                 return -ENOTSUPP;
3560
3561         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3562         /* Update the field, and then ring the doorbell */
3563         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3564         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3565         hpsa_wait_for_mode_change_ack(h);
3566         print_cfg_table(&h->pdev->dev, h->cfgtable);
3567         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3568                 dev_warn(&h->pdev->dev,
3569                         "unable to get board into simple mode\n");
3570                 return -ENODEV;
3571         }
3572         return 0;
3573 }
3574
3575 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3576 {
3577         int prod_index, err;
3578
3579         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3580         if (prod_index < 0)
3581                 return -ENODEV;
3582         h->product_name = products[prod_index].product_name;
3583         h->access = *(products[prod_index].access);
3584
3585         if (hpsa_board_disabled(h->pdev)) {
3586                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3587                 return -ENODEV;
3588         }
3589         err = pci_enable_device(h->pdev);
3590         if (err) {
3591                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3592                 return err;
3593         }
3594
3595         err = pci_request_regions(h->pdev, "hpsa");
3596         if (err) {
3597                 dev_err(&h->pdev->dev,
3598                         "cannot obtain PCI resources, aborting\n");
3599                 return err;
3600         }
3601         hpsa_interrupt_mode(h);
3602         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3603         if (err)
3604                 goto err_out_free_res;
3605         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3606         if (!h->vaddr) {
3607                 err = -ENOMEM;
3608                 goto err_out_free_res;
3609         }
3610         err = hpsa_wait_for_board_ready(h);
3611         if (err)
3612                 goto err_out_free_res;
3613         err = hpsa_find_cfgtables(h);
3614         if (err)
3615                 goto err_out_free_res;
3616         hpsa_find_board_params(h);
3617
3618         if (!hpsa_CISS_signature_present(h)) {
3619                 err = -ENODEV;
3620                 goto err_out_free_res;
3621         }
3622         hpsa_enable_scsi_prefetch(h);
3623         hpsa_p600_dma_prefetch_quirk(h);
3624         err = hpsa_enter_simple_mode(h);
3625         if (err)
3626                 goto err_out_free_res;
3627         return 0;
3628
3629 err_out_free_res:
3630         if (h->transtable)
3631                 iounmap(h->transtable);
3632         if (h->cfgtable)
3633                 iounmap(h->cfgtable);
3634         if (h->vaddr)
3635                 iounmap(h->vaddr);
3636         /*
3637          * Deliberately omit pci_disable_device(): it does something nasty to
3638          * Smart Array controllers that pci_enable_device does not undo
3639          */
3640         pci_release_regions(h->pdev);
3641         return err;
3642 }
3643
3644 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3645 {
3646         int rc;
3647
3648 #define HBA_INQUIRY_BYTE_COUNT 64
3649         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3650         if (!h->hba_inquiry_data)
3651                 return;
3652         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3653                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3654         if (rc != 0) {
3655                 kfree(h->hba_inquiry_data);
3656                 h->hba_inquiry_data = NULL;
3657         }
3658 }
3659
3660 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3661 {
3662         int rc, i;
3663
3664         if (!reset_devices)
3665                 return 0;
3666
3667         /* Reset the controller with a PCI power-cycle or via doorbell */
3668         rc = hpsa_kdump_hard_reset_controller(pdev);
3669
3670         /* -ENOTSUPP here means we cannot reset the controller
3671          * but it's already (and still) up and running in
3672          * "performant mode".
3673          */
3674         if (rc == -ENOTSUPP)
3675                 return 0; /* just try to do the kdump anyhow. */
3676         if (rc)
3677                 return -ENODEV;
3678         if (hpsa_reset_msi(pdev))
3679                 return -ENODEV;
3680
3681         /* Now try to get the controller to respond to a no-op */
3682         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3683                 if (hpsa_noop(pdev) == 0)
3684                         break;
3685                 else
3686                         dev_warn(&pdev->dev, "no-op failed%s\n",
3687                                         (i < 11 ? "; re-trying" : ""));
3688         }
3689         return 0;
3690 }
3691
3692 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3693                                     const struct pci_device_id *ent)
3694 {
3695         int dac, rc;
3696         struct ctlr_info *h;
3697
3698         if (number_of_controllers == 0)
3699                 printk(KERN_INFO DRIVER_NAME "\n");
3700
3701         rc = hpsa_init_reset_devices(pdev);
3702         if (rc)
3703                 return rc;
3704
3705         /* Command structures must be aligned on a 32-byte boundary because
3706          * the 5 lower bits of the address are used by the hardware. and by
3707          * the driver.  See comments in hpsa.h for more info.
3708          */
3709 #define COMMANDLIST_ALIGNMENT 32
3710         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3711         h = kzalloc(sizeof(*h), GFP_KERNEL);
3712         if (!h)
3713                 return -ENOMEM;
3714
3715         h->pdev = pdev;
3716         h->busy_initializing = 1;
3717         INIT_HLIST_HEAD(&h->cmpQ);
3718         INIT_HLIST_HEAD(&h->reqQ);
3719         rc = hpsa_pci_init(h);
3720         if (rc != 0)
3721                 goto clean1;
3722
3723         sprintf(h->devname, "hpsa%d", number_of_controllers);
3724         h->ctlr = number_of_controllers;
3725         number_of_controllers++;
3726
3727         /* configure PCI DMA stuff */
3728         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3729         if (rc == 0) {
3730                 dac = 1;
3731         } else {
3732                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3733                 if (rc == 0) {
3734                         dac = 0;
3735                 } else {
3736                         dev_err(&pdev->dev, "no suitable DMA available\n");
3737                         goto clean1;
3738                 }
3739         }
3740
3741         /* make sure the board interrupts are off */
3742         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3743         rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr,
3744                         IRQF_DISABLED, h->devname, h);
3745         if (rc) {
3746                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3747                        h->intr[PERF_MODE_INT], h->devname);
3748                 goto clean2;
3749         }
3750
3751         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3752                h->devname, pdev->device,
3753                h->intr[PERF_MODE_INT], dac ? "" : " not");
3754
3755         h->cmd_pool_bits =
3756             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3757                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3758         h->cmd_pool = pci_alloc_consistent(h->pdev,
3759                     h->nr_cmds * sizeof(*h->cmd_pool),
3760                     &(h->cmd_pool_dhandle));
3761         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3762                     h->nr_cmds * sizeof(*h->errinfo_pool),
3763                     &(h->errinfo_pool_dhandle));
3764         if ((h->cmd_pool_bits == NULL)
3765             || (h->cmd_pool == NULL)
3766             || (h->errinfo_pool == NULL)) {
3767                 dev_err(&pdev->dev, "out of memory");
3768                 rc = -ENOMEM;
3769                 goto clean4;
3770         }
3771         if (hpsa_allocate_sg_chain_blocks(h))
3772                 goto clean4;
3773         spin_lock_init(&h->lock);
3774         spin_lock_init(&h->scan_lock);
3775         init_waitqueue_head(&h->scan_wait_queue);
3776         h->scan_finished = 1; /* no scan currently in progress */
3777
3778         pci_set_drvdata(pdev, h);
3779         memset(h->cmd_pool_bits, 0,
3780                ((h->nr_cmds + BITS_PER_LONG -
3781                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3782
3783         hpsa_scsi_setup(h);
3784
3785         /* Turn the interrupts on so we can service requests */
3786         h->access.set_intr_mask(h, HPSA_INTR_ON);
3787
3788         hpsa_put_ctlr_into_performant_mode(h);
3789         hpsa_hba_inquiry(h);
3790         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3791         h->busy_initializing = 0;
3792         return 1;
3793
3794 clean4:
3795         hpsa_free_sg_chain_blocks(h);
3796         kfree(h->cmd_pool_bits);
3797         if (h->cmd_pool)
3798                 pci_free_consistent(h->pdev,
3799                             h->nr_cmds * sizeof(struct CommandList),
3800                             h->cmd_pool, h->cmd_pool_dhandle);
3801         if (h->errinfo_pool)
3802                 pci_free_consistent(h->pdev,
3803                             h->nr_cmds * sizeof(struct ErrorInfo),
3804                             h->errinfo_pool,
3805                             h->errinfo_pool_dhandle);
3806         free_irq(h->intr[PERF_MODE_INT], h);
3807 clean2:
3808 clean1:
3809         h->busy_initializing = 0;
3810         kfree(h);
3811         return rc;
3812 }
3813
3814 static void hpsa_flush_cache(struct ctlr_info *h)
3815 {
3816         char *flush_buf;
3817         struct CommandList *c;
3818
3819         flush_buf = kzalloc(4, GFP_KERNEL);
3820         if (!flush_buf)
3821                 return;
3822
3823         c = cmd_special_alloc(h);
3824         if (!c) {
3825                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3826                 goto out_of_memory;
3827         }
3828         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3829                 RAID_CTLR_LUNID, TYPE_CMD);
3830         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3831         if (c->err_info->CommandStatus != 0)
3832                 dev_warn(&h->pdev->dev,
3833                         "error flushing cache on controller\n");
3834         cmd_special_free(h, c);
3835 out_of_memory:
3836         kfree(flush_buf);
3837 }
3838
3839 static void hpsa_shutdown(struct pci_dev *pdev)
3840 {
3841         struct ctlr_info *h;
3842
3843         h = pci_get_drvdata(pdev);
3844         /* Turn board interrupts off  and send the flush cache command
3845          * sendcmd will turn off interrupt, and send the flush...
3846          * To write all data in the battery backed cache to disks
3847          */
3848         hpsa_flush_cache(h);
3849         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3850         free_irq(h->intr[PERF_MODE_INT], h);
3851 #ifdef CONFIG_PCI_MSI
3852         if (h->msix_vector)
3853                 pci_disable_msix(h->pdev);
3854         else if (h->msi_vector)
3855                 pci_disable_msi(h->pdev);
3856 #endif                          /* CONFIG_PCI_MSI */
3857 }
3858
3859 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3860 {
3861         struct ctlr_info *h;
3862
3863         if (pci_get_drvdata(pdev) == NULL) {
3864                 dev_err(&pdev->dev, "unable to remove device \n");
3865                 return;
3866         }
3867         h = pci_get_drvdata(pdev);
3868         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3869         hpsa_shutdown(pdev);
3870         iounmap(h->vaddr);
3871         iounmap(h->transtable);
3872         iounmap(h->cfgtable);
3873         hpsa_free_sg_chain_blocks(h);
3874         pci_free_consistent(h->pdev,
3875                 h->nr_cmds * sizeof(struct CommandList),
3876                 h->cmd_pool, h->cmd_pool_dhandle);
3877         pci_free_consistent(h->pdev,
3878                 h->nr_cmds * sizeof(struct ErrorInfo),
3879                 h->errinfo_pool, h->errinfo_pool_dhandle);
3880         pci_free_consistent(h->pdev, h->reply_pool_size,
3881                 h->reply_pool, h->reply_pool_dhandle);
3882         kfree(h->cmd_pool_bits);
3883         kfree(h->blockFetchTable);
3884         kfree(h->hba_inquiry_data);
3885         /*
3886          * Deliberately omit pci_disable_device(): it does something nasty to
3887          * Smart Array controllers that pci_enable_device does not undo
3888          */
3889         pci_release_regions(pdev);
3890         pci_set_drvdata(pdev, NULL);
3891         kfree(h);
3892 }
3893
3894 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3895         __attribute__((unused)) pm_message_t state)
3896 {
3897         return -ENOSYS;
3898 }
3899
3900 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3901 {
3902         return -ENOSYS;
3903 }
3904
3905 static struct pci_driver hpsa_pci_driver = {
3906         .name = "hpsa",
3907         .probe = hpsa_init_one,
3908         .remove = __devexit_p(hpsa_remove_one),
3909         .id_table = hpsa_pci_device_id, /* id_table */
3910         .shutdown = hpsa_shutdown,
3911         .suspend = hpsa_suspend,
3912         .resume = hpsa_resume,
3913 };
3914
3915 /* Fill in bucket_map[], given nsgs (the max number of
3916  * scatter gather elements supported) and bucket[],
3917  * which is an array of 8 integers.  The bucket[] array
3918  * contains 8 different DMA transfer sizes (in 16
3919  * byte increments) which the controller uses to fetch
3920  * commands.  This function fills in bucket_map[], which
3921  * maps a given number of scatter gather elements to one of
3922  * the 8 DMA transfer sizes.  The point of it is to allow the
3923  * controller to only do as much DMA as needed to fetch the
3924  * command, with the DMA transfer size encoded in the lower
3925  * bits of the command address.
3926  */
3927 static void  calc_bucket_map(int bucket[], int num_buckets,
3928         int nsgs, int *bucket_map)
3929 {
3930         int i, j, b, size;
3931
3932         /* even a command with 0 SGs requires 4 blocks */
3933 #define MINIMUM_TRANSFER_BLOCKS 4
3934 #define NUM_BUCKETS 8
3935         /* Note, bucket_map must have nsgs+1 entries. */
3936         for (i = 0; i <= nsgs; i++) {
3937                 /* Compute size of a command with i SG entries */
3938                 size = i + MINIMUM_TRANSFER_BLOCKS;
3939                 b = num_buckets; /* Assume the biggest bucket */
3940                 /* Find the bucket that is just big enough */
3941                 for (j = 0; j < 8; j++) {
3942                         if (bucket[j] >= size) {
3943                                 b = j;
3944                                 break;
3945                         }
3946                 }
3947                 /* for a command with i SG entries, use bucket b. */
3948                 bucket_map[i] = b;
3949         }
3950 }
3951
3952 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h)
3953 {
3954         int i;
3955         unsigned long register_value;
3956
3957         /* This is a bit complicated.  There are 8 registers on
3958          * the controller which we write to to tell it 8 different
3959          * sizes of commands which there may be.  It's a way of
3960          * reducing the DMA done to fetch each command.  Encoded into
3961          * each command's tag are 3 bits which communicate to the controller
3962          * which of the eight sizes that command fits within.  The size of
3963          * each command depends on how many scatter gather entries there are.
3964          * Each SG entry requires 16 bytes.  The eight registers are programmed
3965          * with the number of 16-byte blocks a command of that size requires.
3966          * The smallest command possible requires 5 such 16 byte blocks.
3967          * the largest command possible requires MAXSGENTRIES + 4 16-byte
3968          * blocks.  Note, this only extends to the SG entries contained
3969          * within the command block, and does not extend to chained blocks
3970          * of SG elements.   bft[] contains the eight values we write to
3971          * the registers.  They are not evenly distributed, but have more
3972          * sizes for small commands, and fewer sizes for larger commands.
3973          */
3974         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3975         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3976         /*  5 = 1 s/g entry or 4k
3977          *  6 = 2 s/g entry or 8k
3978          *  8 = 4 s/g entry or 16k
3979          * 10 = 6 s/g entry or 24k
3980          */
3981
3982         h->reply_pool_wraparound = 1; /* spec: init to 1 */
3983
3984         /* Controller spec: zero out this buffer. */
3985         memset(h->reply_pool, 0, h->reply_pool_size);
3986         h->reply_pool_head = h->reply_pool;
3987
3988         bft[7] = h->max_sg_entries + 4;
3989         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
3990         for (i = 0; i < 8; i++)
3991                 writel(bft[i], &h->transtable->BlockFetch[i]);
3992
3993         /* size of controller ring buffer */
3994         writel(h->max_commands, &h->transtable->RepQSize);
3995         writel(1, &h->transtable->RepQCount);
3996         writel(0, &h->transtable->RepQCtrAddrLow32);
3997         writel(0, &h->transtable->RepQCtrAddrHigh32);
3998         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3999         writel(0, &h->transtable->RepQAddr0High32);
4000         writel(CFGTBL_Trans_Performant,
4001                 &(h->cfgtable->HostWrite.TransportRequest));
4002         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4003         hpsa_wait_for_mode_change_ack(h);
4004         register_value = readl(&(h->cfgtable->TransportActive));
4005         if (!(register_value & CFGTBL_Trans_Performant)) {
4006                 dev_warn(&h->pdev->dev, "unable to get board into"
4007                                         " performant mode\n");
4008                 return;
4009         }
4010 }
4011
4012 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4013 {
4014         u32 trans_support;
4015
4016         trans_support = readl(&(h->cfgtable->TransportSupport));
4017         if (!(trans_support & PERFORMANT_MODE))
4018                 return;
4019
4020         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4021         h->max_sg_entries = 32;
4022         /* Performant mode ring buffer and supporting data structures */
4023         h->reply_pool_size = h->max_commands * sizeof(u64);
4024         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4025                                 &(h->reply_pool_dhandle));
4026
4027         /* Need a block fetch table for performant mode */
4028         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4029                                 sizeof(u32)), GFP_KERNEL);
4030
4031         if ((h->reply_pool == NULL)
4032                 || (h->blockFetchTable == NULL))
4033                 goto clean_up;
4034
4035         hpsa_enter_performant_mode(h);
4036
4037         /* Change the access methods to the performant access methods */
4038         h->access = SA5_performant_access;
4039         h->transMethod = CFGTBL_Trans_Performant;
4040
4041         return;
4042
4043 clean_up:
4044         if (h->reply_pool)
4045                 pci_free_consistent(h->pdev, h->reply_pool_size,
4046                         h->reply_pool, h->reply_pool_dhandle);
4047         kfree(h->blockFetchTable);
4048 }
4049
4050 /*
4051  *  This is it.  Register the PCI driver information for the cards we control
4052  *  the OS will call our registered routines when it finds one of our cards.
4053  */
4054 static int __init hpsa_init(void)
4055 {
4056         return pci_register_driver(&hpsa_pci_driver);
4057 }
4058
4059 static void __exit hpsa_cleanup(void)
4060 {
4061         pci_unregister_driver(&hpsa_pci_driver);
4062 }
4063
4064 module_init(hpsa_init);
4065 module_exit(hpsa_cleanup);