[SCSI] hpsa: allow driver to put controller in either simple or performant mode
[linux-2.6.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77 static int hpsa_simple_mode;
78 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
79 MODULE_PARM_DESC(hpsa_simple_mode,
80         "Use 'simple mode' rather than 'performant mode'");
81
82 /* define the PCI info for the cards we can control */
83 static const struct pci_device_id hpsa_pci_device_id[] = {
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3250},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3251},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3252},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3253},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3254},
97         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
98                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
99         {0,}
100 };
101
102 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
103
104 /*  board_id = Subsystem Device ID & Vendor ID
105  *  product = Marketing Name for the board
106  *  access = Address of the struct of function pointers
107  */
108 static struct board_type products[] = {
109         {0x3241103C, "Smart Array P212", &SA5_access},
110         {0x3243103C, "Smart Array P410", &SA5_access},
111         {0x3245103C, "Smart Array P410i", &SA5_access},
112         {0x3247103C, "Smart Array P411", &SA5_access},
113         {0x3249103C, "Smart Array P812", &SA5_access},
114         {0x324a103C, "Smart Array P712m", &SA5_access},
115         {0x324b103C, "Smart Array P711m", &SA5_access},
116         {0x3250103C, "Smart Array", &SA5_access},
117         {0x3250113C, "Smart Array", &SA5_access},
118         {0x3250123C, "Smart Array", &SA5_access},
119         {0x3250133C, "Smart Array", &SA5_access},
120         {0x3250143C, "Smart Array", &SA5_access},
121         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
122 };
123
124 static int number_of_controllers;
125
126 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
127 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
128 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
129 static void start_io(struct ctlr_info *h);
130
131 #ifdef CONFIG_COMPAT
132 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
133 #endif
134
135 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
136 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
137 static struct CommandList *cmd_alloc(struct ctlr_info *h);
138 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
139 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
140         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
141         int cmd_type);
142
143 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
144 static void hpsa_scan_start(struct Scsi_Host *);
145 static int hpsa_scan_finished(struct Scsi_Host *sh,
146         unsigned long elapsed_time);
147 static int hpsa_change_queue_depth(struct scsi_device *sdev,
148         int qdepth, int reason);
149
150 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
151 static int hpsa_slave_alloc(struct scsi_device *sdev);
152 static void hpsa_slave_destroy(struct scsi_device *sdev);
153
154 static ssize_t raid_level_show(struct device *dev,
155         struct device_attribute *attr, char *buf);
156 static ssize_t lunid_show(struct device *dev,
157         struct device_attribute *attr, char *buf);
158 static ssize_t unique_id_show(struct device *dev,
159         struct device_attribute *attr, char *buf);
160 static ssize_t host_show_firmware_revision(struct device *dev,
161              struct device_attribute *attr, char *buf);
162 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
163 static ssize_t host_store_rescan(struct device *dev,
164          struct device_attribute *attr, const char *buf, size_t count);
165 static int check_for_unit_attention(struct ctlr_info *h,
166         struct CommandList *c);
167 static void check_ioctl_unit_attention(struct ctlr_info *h,
168         struct CommandList *c);
169 /* performant mode helper functions */
170 static void calc_bucket_map(int *bucket, int num_buckets,
171         int nsgs, int *bucket_map);
172 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
173 static inline u32 next_command(struct ctlr_info *h);
174 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
175         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
176         u64 *cfg_offset);
177 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
178         unsigned long *memory_bar);
179 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
180 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
181         void __iomem *vaddr, int wait_for_ready);
182 #define BOARD_NOT_READY 0
183 #define BOARD_READY 1
184
185 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
186 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
187 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
188 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
189 static DEVICE_ATTR(firmware_revision, S_IRUGO,
190         host_show_firmware_revision, NULL);
191
192 static struct device_attribute *hpsa_sdev_attrs[] = {
193         &dev_attr_raid_level,
194         &dev_attr_lunid,
195         &dev_attr_unique_id,
196         NULL,
197 };
198
199 static struct device_attribute *hpsa_shost_attrs[] = {
200         &dev_attr_rescan,
201         &dev_attr_firmware_revision,
202         NULL,
203 };
204
205 static struct scsi_host_template hpsa_driver_template = {
206         .module                 = THIS_MODULE,
207         .name                   = "hpsa",
208         .proc_name              = "hpsa",
209         .queuecommand           = hpsa_scsi_queue_command,
210         .scan_start             = hpsa_scan_start,
211         .scan_finished          = hpsa_scan_finished,
212         .change_queue_depth     = hpsa_change_queue_depth,
213         .this_id                = -1,
214         .use_clustering         = ENABLE_CLUSTERING,
215         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
216         .ioctl                  = hpsa_ioctl,
217         .slave_alloc            = hpsa_slave_alloc,
218         .slave_destroy          = hpsa_slave_destroy,
219 #ifdef CONFIG_COMPAT
220         .compat_ioctl           = hpsa_compat_ioctl,
221 #endif
222         .sdev_attrs = hpsa_sdev_attrs,
223         .shost_attrs = hpsa_shost_attrs,
224 };
225
226 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
227 {
228         unsigned long *priv = shost_priv(sdev->host);
229         return (struct ctlr_info *) *priv;
230 }
231
232 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
233 {
234         unsigned long *priv = shost_priv(sh);
235         return (struct ctlr_info *) *priv;
236 }
237
238 static int check_for_unit_attention(struct ctlr_info *h,
239         struct CommandList *c)
240 {
241         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
242                 return 0;
243
244         switch (c->err_info->SenseInfo[12]) {
245         case STATE_CHANGED:
246                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
247                         "detected, command retried\n", h->ctlr);
248                 break;
249         case LUN_FAILED:
250                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
251                         "detected, action required\n", h->ctlr);
252                 break;
253         case REPORT_LUNS_CHANGED:
254                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
255                         "changed, action required\n", h->ctlr);
256         /*
257          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
258          */
259                 break;
260         case POWER_OR_RESET:
261                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
262                         "or device reset detected\n", h->ctlr);
263                 break;
264         case UNIT_ATTENTION_CLEARED:
265                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
266                     "cleared by another initiator\n", h->ctlr);
267                 break;
268         default:
269                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
270                         "unit attention detected\n", h->ctlr);
271                 break;
272         }
273         return 1;
274 }
275
276 static ssize_t host_store_rescan(struct device *dev,
277                                  struct device_attribute *attr,
278                                  const char *buf, size_t count)
279 {
280         struct ctlr_info *h;
281         struct Scsi_Host *shost = class_to_shost(dev);
282         h = shost_to_hba(shost);
283         hpsa_scan_start(h->scsi_host);
284         return count;
285 }
286
287 static ssize_t host_show_firmware_revision(struct device *dev,
288              struct device_attribute *attr, char *buf)
289 {
290         struct ctlr_info *h;
291         struct Scsi_Host *shost = class_to_shost(dev);
292         unsigned char *fwrev;
293
294         h = shost_to_hba(shost);
295         if (!h->hba_inquiry_data)
296                 return 0;
297         fwrev = &h->hba_inquiry_data[32];
298         return snprintf(buf, 20, "%c%c%c%c\n",
299                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
300 }
301
302 /* Enqueuing and dequeuing functions for cmdlists. */
303 static inline void addQ(struct hlist_head *list, struct CommandList *c)
304 {
305         hlist_add_head(&c->list, list);
306 }
307
308 static inline u32 next_command(struct ctlr_info *h)
309 {
310         u32 a;
311
312         if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
313                 return h->access.command_completed(h);
314
315         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
316                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
317                 (h->reply_pool_head)++;
318                 h->commands_outstanding--;
319         } else {
320                 a = FIFO_EMPTY;
321         }
322         /* Check for wraparound */
323         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
324                 h->reply_pool_head = h->reply_pool;
325                 h->reply_pool_wraparound ^= 1;
326         }
327         return a;
328 }
329
330 /* set_performant_mode: Modify the tag for cciss performant
331  * set bit 0 for pull model, bits 3-1 for block fetch
332  * register number
333  */
334 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
335 {
336         if (likely(h->transMethod == CFGTBL_Trans_Performant))
337                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
338 }
339
340 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
341         struct CommandList *c)
342 {
343         unsigned long flags;
344
345         set_performant_mode(h, c);
346         spin_lock_irqsave(&h->lock, flags);
347         addQ(&h->reqQ, c);
348         h->Qdepth++;
349         start_io(h);
350         spin_unlock_irqrestore(&h->lock, flags);
351 }
352
353 static inline void removeQ(struct CommandList *c)
354 {
355         if (WARN_ON(hlist_unhashed(&c->list)))
356                 return;
357         hlist_del_init(&c->list);
358 }
359
360 static inline int is_hba_lunid(unsigned char scsi3addr[])
361 {
362         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
363 }
364
365 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
366 {
367         return (scsi3addr[3] & 0xC0) == 0x40;
368 }
369
370 static inline int is_scsi_rev_5(struct ctlr_info *h)
371 {
372         if (!h->hba_inquiry_data)
373                 return 0;
374         if ((h->hba_inquiry_data[2] & 0x07) == 5)
375                 return 1;
376         return 0;
377 }
378
379 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
380         "UNKNOWN"
381 };
382 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
383
384 static ssize_t raid_level_show(struct device *dev,
385              struct device_attribute *attr, char *buf)
386 {
387         ssize_t l = 0;
388         unsigned char rlevel;
389         struct ctlr_info *h;
390         struct scsi_device *sdev;
391         struct hpsa_scsi_dev_t *hdev;
392         unsigned long flags;
393
394         sdev = to_scsi_device(dev);
395         h = sdev_to_hba(sdev);
396         spin_lock_irqsave(&h->lock, flags);
397         hdev = sdev->hostdata;
398         if (!hdev) {
399                 spin_unlock_irqrestore(&h->lock, flags);
400                 return -ENODEV;
401         }
402
403         /* Is this even a logical drive? */
404         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
405                 spin_unlock_irqrestore(&h->lock, flags);
406                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
407                 return l;
408         }
409
410         rlevel = hdev->raid_level;
411         spin_unlock_irqrestore(&h->lock, flags);
412         if (rlevel > RAID_UNKNOWN)
413                 rlevel = RAID_UNKNOWN;
414         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
415         return l;
416 }
417
418 static ssize_t lunid_show(struct device *dev,
419              struct device_attribute *attr, char *buf)
420 {
421         struct ctlr_info *h;
422         struct scsi_device *sdev;
423         struct hpsa_scsi_dev_t *hdev;
424         unsigned long flags;
425         unsigned char lunid[8];
426
427         sdev = to_scsi_device(dev);
428         h = sdev_to_hba(sdev);
429         spin_lock_irqsave(&h->lock, flags);
430         hdev = sdev->hostdata;
431         if (!hdev) {
432                 spin_unlock_irqrestore(&h->lock, flags);
433                 return -ENODEV;
434         }
435         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
436         spin_unlock_irqrestore(&h->lock, flags);
437         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
438                 lunid[0], lunid[1], lunid[2], lunid[3],
439                 lunid[4], lunid[5], lunid[6], lunid[7]);
440 }
441
442 static ssize_t unique_id_show(struct device *dev,
443              struct device_attribute *attr, char *buf)
444 {
445         struct ctlr_info *h;
446         struct scsi_device *sdev;
447         struct hpsa_scsi_dev_t *hdev;
448         unsigned long flags;
449         unsigned char sn[16];
450
451         sdev = to_scsi_device(dev);
452         h = sdev_to_hba(sdev);
453         spin_lock_irqsave(&h->lock, flags);
454         hdev = sdev->hostdata;
455         if (!hdev) {
456                 spin_unlock_irqrestore(&h->lock, flags);
457                 return -ENODEV;
458         }
459         memcpy(sn, hdev->device_id, sizeof(sn));
460         spin_unlock_irqrestore(&h->lock, flags);
461         return snprintf(buf, 16 * 2 + 2,
462                         "%02X%02X%02X%02X%02X%02X%02X%02X"
463                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
464                         sn[0], sn[1], sn[2], sn[3],
465                         sn[4], sn[5], sn[6], sn[7],
466                         sn[8], sn[9], sn[10], sn[11],
467                         sn[12], sn[13], sn[14], sn[15]);
468 }
469
470 static int hpsa_find_target_lun(struct ctlr_info *h,
471         unsigned char scsi3addr[], int bus, int *target, int *lun)
472 {
473         /* finds an unused bus, target, lun for a new physical device
474          * assumes h->devlock is held
475          */
476         int i, found = 0;
477         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
478
479         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
480
481         for (i = 0; i < h->ndevices; i++) {
482                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
483                         set_bit(h->dev[i]->target, lun_taken);
484         }
485
486         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
487                 if (!test_bit(i, lun_taken)) {
488                         /* *bus = 1; */
489                         *target = i;
490                         *lun = 0;
491                         found = 1;
492                         break;
493                 }
494         }
495         return !found;
496 }
497
498 /* Add an entry into h->dev[] array. */
499 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
500                 struct hpsa_scsi_dev_t *device,
501                 struct hpsa_scsi_dev_t *added[], int *nadded)
502 {
503         /* assumes h->devlock is held */
504         int n = h->ndevices;
505         int i;
506         unsigned char addr1[8], addr2[8];
507         struct hpsa_scsi_dev_t *sd;
508
509         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
510                 dev_err(&h->pdev->dev, "too many devices, some will be "
511                         "inaccessible.\n");
512                 return -1;
513         }
514
515         /* physical devices do not have lun or target assigned until now. */
516         if (device->lun != -1)
517                 /* Logical device, lun is already assigned. */
518                 goto lun_assigned;
519
520         /* If this device a non-zero lun of a multi-lun device
521          * byte 4 of the 8-byte LUN addr will contain the logical
522          * unit no, zero otherise.
523          */
524         if (device->scsi3addr[4] == 0) {
525                 /* This is not a non-zero lun of a multi-lun device */
526                 if (hpsa_find_target_lun(h, device->scsi3addr,
527                         device->bus, &device->target, &device->lun) != 0)
528                         return -1;
529                 goto lun_assigned;
530         }
531
532         /* This is a non-zero lun of a multi-lun device.
533          * Search through our list and find the device which
534          * has the same 8 byte LUN address, excepting byte 4.
535          * Assign the same bus and target for this new LUN.
536          * Use the logical unit number from the firmware.
537          */
538         memcpy(addr1, device->scsi3addr, 8);
539         addr1[4] = 0;
540         for (i = 0; i < n; i++) {
541                 sd = h->dev[i];
542                 memcpy(addr2, sd->scsi3addr, 8);
543                 addr2[4] = 0;
544                 /* differ only in byte 4? */
545                 if (memcmp(addr1, addr2, 8) == 0) {
546                         device->bus = sd->bus;
547                         device->target = sd->target;
548                         device->lun = device->scsi3addr[4];
549                         break;
550                 }
551         }
552         if (device->lun == -1) {
553                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
554                         " suspect firmware bug or unsupported hardware "
555                         "configuration.\n");
556                         return -1;
557         }
558
559 lun_assigned:
560
561         h->dev[n] = device;
562         h->ndevices++;
563         added[*nadded] = device;
564         (*nadded)++;
565
566         /* initially, (before registering with scsi layer) we don't
567          * know our hostno and we don't want to print anything first
568          * time anyway (the scsi layer's inquiries will show that info)
569          */
570         /* if (hostno != -1) */
571                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
572                         scsi_device_type(device->devtype), hostno,
573                         device->bus, device->target, device->lun);
574         return 0;
575 }
576
577 /* Replace an entry from h->dev[] array. */
578 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
579         int entry, struct hpsa_scsi_dev_t *new_entry,
580         struct hpsa_scsi_dev_t *added[], int *nadded,
581         struct hpsa_scsi_dev_t *removed[], int *nremoved)
582 {
583         /* assumes h->devlock is held */
584         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
585         removed[*nremoved] = h->dev[entry];
586         (*nremoved)++;
587         h->dev[entry] = new_entry;
588         added[*nadded] = new_entry;
589         (*nadded)++;
590         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
591                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
592                         new_entry->target, new_entry->lun);
593 }
594
595 /* Remove an entry from h->dev[] array. */
596 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
597         struct hpsa_scsi_dev_t *removed[], int *nremoved)
598 {
599         /* assumes h->devlock is held */
600         int i;
601         struct hpsa_scsi_dev_t *sd;
602
603         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
604
605         sd = h->dev[entry];
606         removed[*nremoved] = h->dev[entry];
607         (*nremoved)++;
608
609         for (i = entry; i < h->ndevices-1; i++)
610                 h->dev[i] = h->dev[i+1];
611         h->ndevices--;
612         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
613                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
614                 sd->lun);
615 }
616
617 #define SCSI3ADDR_EQ(a, b) ( \
618         (a)[7] == (b)[7] && \
619         (a)[6] == (b)[6] && \
620         (a)[5] == (b)[5] && \
621         (a)[4] == (b)[4] && \
622         (a)[3] == (b)[3] && \
623         (a)[2] == (b)[2] && \
624         (a)[1] == (b)[1] && \
625         (a)[0] == (b)[0])
626
627 static void fixup_botched_add(struct ctlr_info *h,
628         struct hpsa_scsi_dev_t *added)
629 {
630         /* called when scsi_add_device fails in order to re-adjust
631          * h->dev[] to match the mid layer's view.
632          */
633         unsigned long flags;
634         int i, j;
635
636         spin_lock_irqsave(&h->lock, flags);
637         for (i = 0; i < h->ndevices; i++) {
638                 if (h->dev[i] == added) {
639                         for (j = i; j < h->ndevices-1; j++)
640                                 h->dev[j] = h->dev[j+1];
641                         h->ndevices--;
642                         break;
643                 }
644         }
645         spin_unlock_irqrestore(&h->lock, flags);
646         kfree(added);
647 }
648
649 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
650         struct hpsa_scsi_dev_t *dev2)
651 {
652         /* we compare everything except lun and target as these
653          * are not yet assigned.  Compare parts likely
654          * to differ first
655          */
656         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
657                 sizeof(dev1->scsi3addr)) != 0)
658                 return 0;
659         if (memcmp(dev1->device_id, dev2->device_id,
660                 sizeof(dev1->device_id)) != 0)
661                 return 0;
662         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
663                 return 0;
664         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
665                 return 0;
666         if (dev1->devtype != dev2->devtype)
667                 return 0;
668         if (dev1->bus != dev2->bus)
669                 return 0;
670         return 1;
671 }
672
673 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
674  * and return needle location in *index.  If scsi3addr matches, but not
675  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
676  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
677  */
678 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
679         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
680         int *index)
681 {
682         int i;
683 #define DEVICE_NOT_FOUND 0
684 #define DEVICE_CHANGED 1
685 #define DEVICE_SAME 2
686         for (i = 0; i < haystack_size; i++) {
687                 if (haystack[i] == NULL) /* previously removed. */
688                         continue;
689                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
690                         *index = i;
691                         if (device_is_the_same(needle, haystack[i]))
692                                 return DEVICE_SAME;
693                         else
694                                 return DEVICE_CHANGED;
695                 }
696         }
697         *index = -1;
698         return DEVICE_NOT_FOUND;
699 }
700
701 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
702         struct hpsa_scsi_dev_t *sd[], int nsds)
703 {
704         /* sd contains scsi3 addresses and devtypes, and inquiry
705          * data.  This function takes what's in sd to be the current
706          * reality and updates h->dev[] to reflect that reality.
707          */
708         int i, entry, device_change, changes = 0;
709         struct hpsa_scsi_dev_t *csd;
710         unsigned long flags;
711         struct hpsa_scsi_dev_t **added, **removed;
712         int nadded, nremoved;
713         struct Scsi_Host *sh = NULL;
714
715         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
716                 GFP_KERNEL);
717         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
718                 GFP_KERNEL);
719
720         if (!added || !removed) {
721                 dev_warn(&h->pdev->dev, "out of memory in "
722                         "adjust_hpsa_scsi_table\n");
723                 goto free_and_out;
724         }
725
726         spin_lock_irqsave(&h->devlock, flags);
727
728         /* find any devices in h->dev[] that are not in
729          * sd[] and remove them from h->dev[], and for any
730          * devices which have changed, remove the old device
731          * info and add the new device info.
732          */
733         i = 0;
734         nremoved = 0;
735         nadded = 0;
736         while (i < h->ndevices) {
737                 csd = h->dev[i];
738                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
739                 if (device_change == DEVICE_NOT_FOUND) {
740                         changes++;
741                         hpsa_scsi_remove_entry(h, hostno, i,
742                                 removed, &nremoved);
743                         continue; /* remove ^^^, hence i not incremented */
744                 } else if (device_change == DEVICE_CHANGED) {
745                         changes++;
746                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
747                                 added, &nadded, removed, &nremoved);
748                         /* Set it to NULL to prevent it from being freed
749                          * at the bottom of hpsa_update_scsi_devices()
750                          */
751                         sd[entry] = NULL;
752                 }
753                 i++;
754         }
755
756         /* Now, make sure every device listed in sd[] is also
757          * listed in h->dev[], adding them if they aren't found
758          */
759
760         for (i = 0; i < nsds; i++) {
761                 if (!sd[i]) /* if already added above. */
762                         continue;
763                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
764                                         h->ndevices, &entry);
765                 if (device_change == DEVICE_NOT_FOUND) {
766                         changes++;
767                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
768                                 added, &nadded) != 0)
769                                 break;
770                         sd[i] = NULL; /* prevent from being freed later. */
771                 } else if (device_change == DEVICE_CHANGED) {
772                         /* should never happen... */
773                         changes++;
774                         dev_warn(&h->pdev->dev,
775                                 "device unexpectedly changed.\n");
776                         /* but if it does happen, we just ignore that device */
777                 }
778         }
779         spin_unlock_irqrestore(&h->devlock, flags);
780
781         /* Don't notify scsi mid layer of any changes the first time through
782          * (or if there are no changes) scsi_scan_host will do it later the
783          * first time through.
784          */
785         if (hostno == -1 || !changes)
786                 goto free_and_out;
787
788         sh = h->scsi_host;
789         /* Notify scsi mid layer of any removed devices */
790         for (i = 0; i < nremoved; i++) {
791                 struct scsi_device *sdev =
792                         scsi_device_lookup(sh, removed[i]->bus,
793                                 removed[i]->target, removed[i]->lun);
794                 if (sdev != NULL) {
795                         scsi_remove_device(sdev);
796                         scsi_device_put(sdev);
797                 } else {
798                         /* We don't expect to get here.
799                          * future cmds to this device will get selection
800                          * timeout as if the device was gone.
801                          */
802                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
803                                 " for removal.", hostno, removed[i]->bus,
804                                 removed[i]->target, removed[i]->lun);
805                 }
806                 kfree(removed[i]);
807                 removed[i] = NULL;
808         }
809
810         /* Notify scsi mid layer of any added devices */
811         for (i = 0; i < nadded; i++) {
812                 if (scsi_add_device(sh, added[i]->bus,
813                         added[i]->target, added[i]->lun) == 0)
814                         continue;
815                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
816                         "device not added.\n", hostno, added[i]->bus,
817                         added[i]->target, added[i]->lun);
818                 /* now we have to remove it from h->dev,
819                  * since it didn't get added to scsi mid layer
820                  */
821                 fixup_botched_add(h, added[i]);
822         }
823
824 free_and_out:
825         kfree(added);
826         kfree(removed);
827 }
828
829 /*
830  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
831  * Assume's h->devlock is held.
832  */
833 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
834         int bus, int target, int lun)
835 {
836         int i;
837         struct hpsa_scsi_dev_t *sd;
838
839         for (i = 0; i < h->ndevices; i++) {
840                 sd = h->dev[i];
841                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
842                         return sd;
843         }
844         return NULL;
845 }
846
847 /* link sdev->hostdata to our per-device structure. */
848 static int hpsa_slave_alloc(struct scsi_device *sdev)
849 {
850         struct hpsa_scsi_dev_t *sd;
851         unsigned long flags;
852         struct ctlr_info *h;
853
854         h = sdev_to_hba(sdev);
855         spin_lock_irqsave(&h->devlock, flags);
856         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
857                 sdev_id(sdev), sdev->lun);
858         if (sd != NULL)
859                 sdev->hostdata = sd;
860         spin_unlock_irqrestore(&h->devlock, flags);
861         return 0;
862 }
863
864 static void hpsa_slave_destroy(struct scsi_device *sdev)
865 {
866         /* nothing to do. */
867 }
868
869 static void hpsa_scsi_setup(struct ctlr_info *h)
870 {
871         h->ndevices = 0;
872         h->scsi_host = NULL;
873         spin_lock_init(&h->devlock);
874 }
875
876 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
877 {
878         int i;
879
880         if (!h->cmd_sg_list)
881                 return;
882         for (i = 0; i < h->nr_cmds; i++) {
883                 kfree(h->cmd_sg_list[i]);
884                 h->cmd_sg_list[i] = NULL;
885         }
886         kfree(h->cmd_sg_list);
887         h->cmd_sg_list = NULL;
888 }
889
890 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
891 {
892         int i;
893
894         if (h->chainsize <= 0)
895                 return 0;
896
897         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
898                                 GFP_KERNEL);
899         if (!h->cmd_sg_list)
900                 return -ENOMEM;
901         for (i = 0; i < h->nr_cmds; i++) {
902                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
903                                                 h->chainsize, GFP_KERNEL);
904                 if (!h->cmd_sg_list[i])
905                         goto clean;
906         }
907         return 0;
908
909 clean:
910         hpsa_free_sg_chain_blocks(h);
911         return -ENOMEM;
912 }
913
914 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
915         struct CommandList *c)
916 {
917         struct SGDescriptor *chain_sg, *chain_block;
918         u64 temp64;
919
920         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
921         chain_block = h->cmd_sg_list[c->cmdindex];
922         chain_sg->Ext = HPSA_SG_CHAIN;
923         chain_sg->Len = sizeof(*chain_sg) *
924                 (c->Header.SGTotal - h->max_cmd_sg_entries);
925         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
926                                 PCI_DMA_TODEVICE);
927         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
928         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
929 }
930
931 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
932         struct CommandList *c)
933 {
934         struct SGDescriptor *chain_sg;
935         union u64bit temp64;
936
937         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
938                 return;
939
940         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
941         temp64.val32.lower = chain_sg->Addr.lower;
942         temp64.val32.upper = chain_sg->Addr.upper;
943         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
944 }
945
946 static void complete_scsi_command(struct CommandList *cp,
947         int timeout, u32 tag)
948 {
949         struct scsi_cmnd *cmd;
950         struct ctlr_info *h;
951         struct ErrorInfo *ei;
952
953         unsigned char sense_key;
954         unsigned char asc;      /* additional sense code */
955         unsigned char ascq;     /* additional sense code qualifier */
956
957         ei = cp->err_info;
958         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
959         h = cp->h;
960
961         scsi_dma_unmap(cmd); /* undo the DMA mappings */
962         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
963                 hpsa_unmap_sg_chain_block(h, cp);
964
965         cmd->result = (DID_OK << 16);           /* host byte */
966         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
967         cmd->result |= ei->ScsiStatus;
968
969         /* copy the sense data whether we need to or not. */
970         memcpy(cmd->sense_buffer, ei->SenseInfo,
971                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
972                         SCSI_SENSE_BUFFERSIZE :
973                         ei->SenseLen);
974         scsi_set_resid(cmd, ei->ResidualCnt);
975
976         if (ei->CommandStatus == 0) {
977                 cmd->scsi_done(cmd);
978                 cmd_free(h, cp);
979                 return;
980         }
981
982         /* an error has occurred */
983         switch (ei->CommandStatus) {
984
985         case CMD_TARGET_STATUS:
986                 if (ei->ScsiStatus) {
987                         /* Get sense key */
988                         sense_key = 0xf & ei->SenseInfo[2];
989                         /* Get additional sense code */
990                         asc = ei->SenseInfo[12];
991                         /* Get addition sense code qualifier */
992                         ascq = ei->SenseInfo[13];
993                 }
994
995                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
996                         if (check_for_unit_attention(h, cp)) {
997                                 cmd->result = DID_SOFT_ERROR << 16;
998                                 break;
999                         }
1000                         if (sense_key == ILLEGAL_REQUEST) {
1001                                 /*
1002                                  * SCSI REPORT_LUNS is commonly unsupported on
1003                                  * Smart Array.  Suppress noisy complaint.
1004                                  */
1005                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1006                                         break;
1007
1008                                 /* If ASC/ASCQ indicate Logical Unit
1009                                  * Not Supported condition,
1010                                  */
1011                                 if ((asc == 0x25) && (ascq == 0x0)) {
1012                                         dev_warn(&h->pdev->dev, "cp %p "
1013                                                 "has check condition\n", cp);
1014                                         break;
1015                                 }
1016                         }
1017
1018                         if (sense_key == NOT_READY) {
1019                                 /* If Sense is Not Ready, Logical Unit
1020                                  * Not ready, Manual Intervention
1021                                  * required
1022                                  */
1023                                 if ((asc == 0x04) && (ascq == 0x03)) {
1024                                         dev_warn(&h->pdev->dev, "cp %p "
1025                                                 "has check condition: unit "
1026                                                 "not ready, manual "
1027                                                 "intervention required\n", cp);
1028                                         break;
1029                                 }
1030                         }
1031                         if (sense_key == ABORTED_COMMAND) {
1032                                 /* Aborted command is retryable */
1033                                 dev_warn(&h->pdev->dev, "cp %p "
1034                                         "has check condition: aborted command: "
1035                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1036                                         cp, asc, ascq);
1037                                 cmd->result = DID_SOFT_ERROR << 16;
1038                                 break;
1039                         }
1040                         /* Must be some other type of check condition */
1041                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1042                                         "unknown type: "
1043                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1044                                         "Returning result: 0x%x, "
1045                                         "cmd=[%02x %02x %02x %02x %02x "
1046                                         "%02x %02x %02x %02x %02x %02x "
1047                                         "%02x %02x %02x %02x %02x]\n",
1048                                         cp, sense_key, asc, ascq,
1049                                         cmd->result,
1050                                         cmd->cmnd[0], cmd->cmnd[1],
1051                                         cmd->cmnd[2], cmd->cmnd[3],
1052                                         cmd->cmnd[4], cmd->cmnd[5],
1053                                         cmd->cmnd[6], cmd->cmnd[7],
1054                                         cmd->cmnd[8], cmd->cmnd[9],
1055                                         cmd->cmnd[10], cmd->cmnd[11],
1056                                         cmd->cmnd[12], cmd->cmnd[13],
1057                                         cmd->cmnd[14], cmd->cmnd[15]);
1058                         break;
1059                 }
1060
1061
1062                 /* Problem was not a check condition
1063                  * Pass it up to the upper layers...
1064                  */
1065                 if (ei->ScsiStatus) {
1066                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1067                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1068                                 "Returning result: 0x%x\n",
1069                                 cp, ei->ScsiStatus,
1070                                 sense_key, asc, ascq,
1071                                 cmd->result);
1072                 } else {  /* scsi status is zero??? How??? */
1073                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1074                                 "Returning no connection.\n", cp),
1075
1076                         /* Ordinarily, this case should never happen,
1077                          * but there is a bug in some released firmware
1078                          * revisions that allows it to happen if, for
1079                          * example, a 4100 backplane loses power and
1080                          * the tape drive is in it.  We assume that
1081                          * it's a fatal error of some kind because we
1082                          * can't show that it wasn't. We will make it
1083                          * look like selection timeout since that is
1084                          * the most common reason for this to occur,
1085                          * and it's severe enough.
1086                          */
1087
1088                         cmd->result = DID_NO_CONNECT << 16;
1089                 }
1090                 break;
1091
1092         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1093                 break;
1094         case CMD_DATA_OVERRUN:
1095                 dev_warn(&h->pdev->dev, "cp %p has"
1096                         " completed with data overrun "
1097                         "reported\n", cp);
1098                 break;
1099         case CMD_INVALID: {
1100                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1101                 print_cmd(cp); */
1102                 /* We get CMD_INVALID if you address a non-existent device
1103                  * instead of a selection timeout (no response).  You will
1104                  * see this if you yank out a drive, then try to access it.
1105                  * This is kind of a shame because it means that any other
1106                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1107                  * missing target. */
1108                 cmd->result = DID_NO_CONNECT << 16;
1109         }
1110                 break;
1111         case CMD_PROTOCOL_ERR:
1112                 dev_warn(&h->pdev->dev, "cp %p has "
1113                         "protocol error \n", cp);
1114                 break;
1115         case CMD_HARDWARE_ERR:
1116                 cmd->result = DID_ERROR << 16;
1117                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1118                 break;
1119         case CMD_CONNECTION_LOST:
1120                 cmd->result = DID_ERROR << 16;
1121                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1122                 break;
1123         case CMD_ABORTED:
1124                 cmd->result = DID_ABORT << 16;
1125                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1126                                 cp, ei->ScsiStatus);
1127                 break;
1128         case CMD_ABORT_FAILED:
1129                 cmd->result = DID_ERROR << 16;
1130                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1131                 break;
1132         case CMD_UNSOLICITED_ABORT:
1133                 cmd->result = DID_RESET << 16;
1134                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1135                         "abort\n", cp);
1136                 break;
1137         case CMD_TIMEOUT:
1138                 cmd->result = DID_TIME_OUT << 16;
1139                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1140                 break;
1141         default:
1142                 cmd->result = DID_ERROR << 16;
1143                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1144                                 cp, ei->CommandStatus);
1145         }
1146         cmd->scsi_done(cmd);
1147         cmd_free(h, cp);
1148 }
1149
1150 static int hpsa_scsi_detect(struct ctlr_info *h)
1151 {
1152         struct Scsi_Host *sh;
1153         int error;
1154
1155         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1156         if (sh == NULL)
1157                 goto fail;
1158
1159         sh->io_port = 0;
1160         sh->n_io_port = 0;
1161         sh->this_id = -1;
1162         sh->max_channel = 3;
1163         sh->max_cmd_len = MAX_COMMAND_SIZE;
1164         sh->max_lun = HPSA_MAX_LUN;
1165         sh->max_id = HPSA_MAX_LUN;
1166         sh->can_queue = h->nr_cmds;
1167         sh->cmd_per_lun = h->nr_cmds;
1168         sh->sg_tablesize = h->maxsgentries;
1169         h->scsi_host = sh;
1170         sh->hostdata[0] = (unsigned long) h;
1171         sh->irq = h->intr[PERF_MODE_INT];
1172         sh->unique_id = sh->irq;
1173         error = scsi_add_host(sh, &h->pdev->dev);
1174         if (error)
1175                 goto fail_host_put;
1176         scsi_scan_host(sh);
1177         return 0;
1178
1179  fail_host_put:
1180         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1181                 " failed for controller %d\n", h->ctlr);
1182         scsi_host_put(sh);
1183         return error;
1184  fail:
1185         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1186                 " failed for controller %d\n", h->ctlr);
1187         return -ENOMEM;
1188 }
1189
1190 static void hpsa_pci_unmap(struct pci_dev *pdev,
1191         struct CommandList *c, int sg_used, int data_direction)
1192 {
1193         int i;
1194         union u64bit addr64;
1195
1196         for (i = 0; i < sg_used; i++) {
1197                 addr64.val32.lower = c->SG[i].Addr.lower;
1198                 addr64.val32.upper = c->SG[i].Addr.upper;
1199                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1200                         data_direction);
1201         }
1202 }
1203
1204 static void hpsa_map_one(struct pci_dev *pdev,
1205                 struct CommandList *cp,
1206                 unsigned char *buf,
1207                 size_t buflen,
1208                 int data_direction)
1209 {
1210         u64 addr64;
1211
1212         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1213                 cp->Header.SGList = 0;
1214                 cp->Header.SGTotal = 0;
1215                 return;
1216         }
1217
1218         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1219         cp->SG[0].Addr.lower =
1220           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1221         cp->SG[0].Addr.upper =
1222           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1223         cp->SG[0].Len = buflen;
1224         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1225         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1226 }
1227
1228 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1229         struct CommandList *c)
1230 {
1231         DECLARE_COMPLETION_ONSTACK(wait);
1232
1233         c->waiting = &wait;
1234         enqueue_cmd_and_start_io(h, c);
1235         wait_for_completion(&wait);
1236 }
1237
1238 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1239         struct CommandList *c, int data_direction)
1240 {
1241         int retry_count = 0;
1242
1243         do {
1244                 memset(c->err_info, 0, sizeof(c->err_info));
1245                 hpsa_scsi_do_simple_cmd_core(h, c);
1246                 retry_count++;
1247         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1248         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1249 }
1250
1251 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1252 {
1253         struct ErrorInfo *ei;
1254         struct device *d = &cp->h->pdev->dev;
1255
1256         ei = cp->err_info;
1257         switch (ei->CommandStatus) {
1258         case CMD_TARGET_STATUS:
1259                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1260                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1261                                 ei->ScsiStatus);
1262                 if (ei->ScsiStatus == 0)
1263                         dev_warn(d, "SCSI status is abnormally zero.  "
1264                         "(probably indicates selection timeout "
1265                         "reported incorrectly due to a known "
1266                         "firmware bug, circa July, 2001.)\n");
1267                 break;
1268         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1269                         dev_info(d, "UNDERRUN\n");
1270                 break;
1271         case CMD_DATA_OVERRUN:
1272                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1273                 break;
1274         case CMD_INVALID: {
1275                 /* controller unfortunately reports SCSI passthru's
1276                  * to non-existent targets as invalid commands.
1277                  */
1278                 dev_warn(d, "cp %p is reported invalid (probably means "
1279                         "target device no longer present)\n", cp);
1280                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1281                 print_cmd(cp);  */
1282                 }
1283                 break;
1284         case CMD_PROTOCOL_ERR:
1285                 dev_warn(d, "cp %p has protocol error \n", cp);
1286                 break;
1287         case CMD_HARDWARE_ERR:
1288                 /* cmd->result = DID_ERROR << 16; */
1289                 dev_warn(d, "cp %p had hardware error\n", cp);
1290                 break;
1291         case CMD_CONNECTION_LOST:
1292                 dev_warn(d, "cp %p had connection lost\n", cp);
1293                 break;
1294         case CMD_ABORTED:
1295                 dev_warn(d, "cp %p was aborted\n", cp);
1296                 break;
1297         case CMD_ABORT_FAILED:
1298                 dev_warn(d, "cp %p reports abort failed\n", cp);
1299                 break;
1300         case CMD_UNSOLICITED_ABORT:
1301                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1302                 break;
1303         case CMD_TIMEOUT:
1304                 dev_warn(d, "cp %p timed out\n", cp);
1305                 break;
1306         default:
1307                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1308                                 ei->CommandStatus);
1309         }
1310 }
1311
1312 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1313                         unsigned char page, unsigned char *buf,
1314                         unsigned char bufsize)
1315 {
1316         int rc = IO_OK;
1317         struct CommandList *c;
1318         struct ErrorInfo *ei;
1319
1320         c = cmd_special_alloc(h);
1321
1322         if (c == NULL) {                        /* trouble... */
1323                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1324                 return -ENOMEM;
1325         }
1326
1327         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1328         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1329         ei = c->err_info;
1330         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1331                 hpsa_scsi_interpret_error(c);
1332                 rc = -1;
1333         }
1334         cmd_special_free(h, c);
1335         return rc;
1336 }
1337
1338 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1339 {
1340         int rc = IO_OK;
1341         struct CommandList *c;
1342         struct ErrorInfo *ei;
1343
1344         c = cmd_special_alloc(h);
1345
1346         if (c == NULL) {                        /* trouble... */
1347                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1348                 return -ENOMEM;
1349         }
1350
1351         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1352         hpsa_scsi_do_simple_cmd_core(h, c);
1353         /* no unmap needed here because no data xfer. */
1354
1355         ei = c->err_info;
1356         if (ei->CommandStatus != 0) {
1357                 hpsa_scsi_interpret_error(c);
1358                 rc = -1;
1359         }
1360         cmd_special_free(h, c);
1361         return rc;
1362 }
1363
1364 static void hpsa_get_raid_level(struct ctlr_info *h,
1365         unsigned char *scsi3addr, unsigned char *raid_level)
1366 {
1367         int rc;
1368         unsigned char *buf;
1369
1370         *raid_level = RAID_UNKNOWN;
1371         buf = kzalloc(64, GFP_KERNEL);
1372         if (!buf)
1373                 return;
1374         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1375         if (rc == 0)
1376                 *raid_level = buf[8];
1377         if (*raid_level > RAID_UNKNOWN)
1378                 *raid_level = RAID_UNKNOWN;
1379         kfree(buf);
1380         return;
1381 }
1382
1383 /* Get the device id from inquiry page 0x83 */
1384 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1385         unsigned char *device_id, int buflen)
1386 {
1387         int rc;
1388         unsigned char *buf;
1389
1390         if (buflen > 16)
1391                 buflen = 16;
1392         buf = kzalloc(64, GFP_KERNEL);
1393         if (!buf)
1394                 return -1;
1395         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1396         if (rc == 0)
1397                 memcpy(device_id, &buf[8], buflen);
1398         kfree(buf);
1399         return rc != 0;
1400 }
1401
1402 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1403                 struct ReportLUNdata *buf, int bufsize,
1404                 int extended_response)
1405 {
1406         int rc = IO_OK;
1407         struct CommandList *c;
1408         unsigned char scsi3addr[8];
1409         struct ErrorInfo *ei;
1410
1411         c = cmd_special_alloc(h);
1412         if (c == NULL) {                        /* trouble... */
1413                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1414                 return -1;
1415         }
1416         /* address the controller */
1417         memset(scsi3addr, 0, sizeof(scsi3addr));
1418         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1419                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1420         if (extended_response)
1421                 c->Request.CDB[1] = extended_response;
1422         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1423         ei = c->err_info;
1424         if (ei->CommandStatus != 0 &&
1425             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1426                 hpsa_scsi_interpret_error(c);
1427                 rc = -1;
1428         }
1429         cmd_special_free(h, c);
1430         return rc;
1431 }
1432
1433 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1434                 struct ReportLUNdata *buf,
1435                 int bufsize, int extended_response)
1436 {
1437         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1438 }
1439
1440 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1441                 struct ReportLUNdata *buf, int bufsize)
1442 {
1443         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1444 }
1445
1446 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1447         int bus, int target, int lun)
1448 {
1449         device->bus = bus;
1450         device->target = target;
1451         device->lun = lun;
1452 }
1453
1454 static int hpsa_update_device_info(struct ctlr_info *h,
1455         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1456 {
1457 #define OBDR_TAPE_INQ_SIZE 49
1458         unsigned char *inq_buff;
1459
1460         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1461         if (!inq_buff)
1462                 goto bail_out;
1463
1464         /* Do an inquiry to the device to see what it is. */
1465         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1466                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1467                 /* Inquiry failed (msg printed already) */
1468                 dev_err(&h->pdev->dev,
1469                         "hpsa_update_device_info: inquiry failed\n");
1470                 goto bail_out;
1471         }
1472
1473         this_device->devtype = (inq_buff[0] & 0x1f);
1474         memcpy(this_device->scsi3addr, scsi3addr, 8);
1475         memcpy(this_device->vendor, &inq_buff[8],
1476                 sizeof(this_device->vendor));
1477         memcpy(this_device->model, &inq_buff[16],
1478                 sizeof(this_device->model));
1479         memset(this_device->device_id, 0,
1480                 sizeof(this_device->device_id));
1481         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1482                 sizeof(this_device->device_id));
1483
1484         if (this_device->devtype == TYPE_DISK &&
1485                 is_logical_dev_addr_mode(scsi3addr))
1486                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1487         else
1488                 this_device->raid_level = RAID_UNKNOWN;
1489
1490         kfree(inq_buff);
1491         return 0;
1492
1493 bail_out:
1494         kfree(inq_buff);
1495         return 1;
1496 }
1497
1498 static unsigned char *msa2xxx_model[] = {
1499         "MSA2012",
1500         "MSA2024",
1501         "MSA2312",
1502         "MSA2324",
1503         NULL,
1504 };
1505
1506 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1507 {
1508         int i;
1509
1510         for (i = 0; msa2xxx_model[i]; i++)
1511                 if (strncmp(device->model, msa2xxx_model[i],
1512                         strlen(msa2xxx_model[i])) == 0)
1513                         return 1;
1514         return 0;
1515 }
1516
1517 /* Helper function to assign bus, target, lun mapping of devices.
1518  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1519  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1520  * Logical drive target and lun are assigned at this time, but
1521  * physical device lun and target assignment are deferred (assigned
1522  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1523  */
1524 static void figure_bus_target_lun(struct ctlr_info *h,
1525         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1526         struct hpsa_scsi_dev_t *device)
1527 {
1528         u32 lunid;
1529
1530         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1531                 /* logical device */
1532                 if (unlikely(is_scsi_rev_5(h))) {
1533                         /* p1210m, logical drives lun assignments
1534                          * match SCSI REPORT LUNS data.
1535                          */
1536                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1537                         *bus = 0;
1538                         *target = 0;
1539                         *lun = (lunid & 0x3fff) + 1;
1540                 } else {
1541                         /* not p1210m... */
1542                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1543                         if (is_msa2xxx(h, device)) {
1544                                 /* msa2xxx way, put logicals on bus 1
1545                                  * and match target/lun numbers box
1546                                  * reports.
1547                                  */
1548                                 *bus = 1;
1549                                 *target = (lunid >> 16) & 0x3fff;
1550                                 *lun = lunid & 0x00ff;
1551                         } else {
1552                                 /* Traditional smart array way. */
1553                                 *bus = 0;
1554                                 *lun = 0;
1555                                 *target = lunid & 0x3fff;
1556                         }
1557                 }
1558         } else {
1559                 /* physical device */
1560                 if (is_hba_lunid(lunaddrbytes))
1561                         if (unlikely(is_scsi_rev_5(h))) {
1562                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1563                                 *target = 0;
1564                                 *lun = 0;
1565                                 return;
1566                         } else
1567                                 *bus = 3; /* traditional smartarray */
1568                 else
1569                         *bus = 2; /* physical disk */
1570                 *target = -1;
1571                 *lun = -1; /* we will fill these in later. */
1572         }
1573 }
1574
1575 /*
1576  * If there is no lun 0 on a target, linux won't find any devices.
1577  * For the MSA2xxx boxes, we have to manually detect the enclosure
1578  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1579  * it for some reason.  *tmpdevice is the target we're adding,
1580  * this_device is a pointer into the current element of currentsd[]
1581  * that we're building up in update_scsi_devices(), below.
1582  * lunzerobits is a bitmap that tracks which targets already have a
1583  * lun 0 assigned.
1584  * Returns 1 if an enclosure was added, 0 if not.
1585  */
1586 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1587         struct hpsa_scsi_dev_t *tmpdevice,
1588         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1589         int bus, int target, int lun, unsigned long lunzerobits[],
1590         int *nmsa2xxx_enclosures)
1591 {
1592         unsigned char scsi3addr[8];
1593
1594         if (test_bit(target, lunzerobits))
1595                 return 0; /* There is already a lun 0 on this target. */
1596
1597         if (!is_logical_dev_addr_mode(lunaddrbytes))
1598                 return 0; /* It's the logical targets that may lack lun 0. */
1599
1600         if (!is_msa2xxx(h, tmpdevice))
1601                 return 0; /* It's only the MSA2xxx that have this problem. */
1602
1603         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1604                 return 0;
1605
1606         if (is_hba_lunid(scsi3addr))
1607                 return 0; /* Don't add the RAID controller here. */
1608
1609         if (is_scsi_rev_5(h))
1610                 return 0; /* p1210m doesn't need to do this. */
1611
1612 #define MAX_MSA2XXX_ENCLOSURES 32
1613         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1614                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1615                         "enclosures exceeded.  Check your hardware "
1616                         "configuration.");
1617                 return 0;
1618         }
1619
1620         memset(scsi3addr, 0, 8);
1621         scsi3addr[3] = target;
1622         if (hpsa_update_device_info(h, scsi3addr, this_device))
1623                 return 0;
1624         (*nmsa2xxx_enclosures)++;
1625         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1626         set_bit(target, lunzerobits);
1627         return 1;
1628 }
1629
1630 /*
1631  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1632  * logdev.  The number of luns in physdev and logdev are returned in
1633  * *nphysicals and *nlogicals, respectively.
1634  * Returns 0 on success, -1 otherwise.
1635  */
1636 static int hpsa_gather_lun_info(struct ctlr_info *h,
1637         int reportlunsize,
1638         struct ReportLUNdata *physdev, u32 *nphysicals,
1639         struct ReportLUNdata *logdev, u32 *nlogicals)
1640 {
1641         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1642                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1643                 return -1;
1644         }
1645         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1646         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1647                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1648                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1649                         *nphysicals - HPSA_MAX_PHYS_LUN);
1650                 *nphysicals = HPSA_MAX_PHYS_LUN;
1651         }
1652         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1653                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1654                 return -1;
1655         }
1656         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1657         /* Reject Logicals in excess of our max capability. */
1658         if (*nlogicals > HPSA_MAX_LUN) {
1659                 dev_warn(&h->pdev->dev,
1660                         "maximum logical LUNs (%d) exceeded.  "
1661                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1662                         *nlogicals - HPSA_MAX_LUN);
1663                         *nlogicals = HPSA_MAX_LUN;
1664         }
1665         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1666                 dev_warn(&h->pdev->dev,
1667                         "maximum logical + physical LUNs (%d) exceeded. "
1668                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1669                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1670                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1671         }
1672         return 0;
1673 }
1674
1675 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1676         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1677         struct ReportLUNdata *logdev_list)
1678 {
1679         /* Helper function, figure out where the LUN ID info is coming from
1680          * given index i, lists of physical and logical devices, where in
1681          * the list the raid controller is supposed to appear (first or last)
1682          */
1683
1684         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1685         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1686
1687         if (i == raid_ctlr_position)
1688                 return RAID_CTLR_LUNID;
1689
1690         if (i < logicals_start)
1691                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1692
1693         if (i < last_device)
1694                 return &logdev_list->LUN[i - nphysicals -
1695                         (raid_ctlr_position == 0)][0];
1696         BUG();
1697         return NULL;
1698 }
1699
1700 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1701 {
1702         /* the idea here is we could get notified
1703          * that some devices have changed, so we do a report
1704          * physical luns and report logical luns cmd, and adjust
1705          * our list of devices accordingly.
1706          *
1707          * The scsi3addr's of devices won't change so long as the
1708          * adapter is not reset.  That means we can rescan and
1709          * tell which devices we already know about, vs. new
1710          * devices, vs.  disappearing devices.
1711          */
1712         struct ReportLUNdata *physdev_list = NULL;
1713         struct ReportLUNdata *logdev_list = NULL;
1714         unsigned char *inq_buff = NULL;
1715         u32 nphysicals = 0;
1716         u32 nlogicals = 0;
1717         u32 ndev_allocated = 0;
1718         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1719         int ncurrent = 0;
1720         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1721         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1722         int bus, target, lun;
1723         int raid_ctlr_position;
1724         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1725
1726         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1727                 GFP_KERNEL);
1728         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1729         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1730         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1731         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1732
1733         if (!currentsd || !physdev_list || !logdev_list ||
1734                 !inq_buff || !tmpdevice) {
1735                 dev_err(&h->pdev->dev, "out of memory\n");
1736                 goto out;
1737         }
1738         memset(lunzerobits, 0, sizeof(lunzerobits));
1739
1740         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1741                         logdev_list, &nlogicals))
1742                 goto out;
1743
1744         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1745          * but each of them 4 times through different paths.  The plus 1
1746          * is for the RAID controller.
1747          */
1748         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1749
1750         /* Allocate the per device structures */
1751         for (i = 0; i < ndevs_to_allocate; i++) {
1752                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1753                 if (!currentsd[i]) {
1754                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1755                                 __FILE__, __LINE__);
1756                         goto out;
1757                 }
1758                 ndev_allocated++;
1759         }
1760
1761         if (unlikely(is_scsi_rev_5(h)))
1762                 raid_ctlr_position = 0;
1763         else
1764                 raid_ctlr_position = nphysicals + nlogicals;
1765
1766         /* adjust our table of devices */
1767         nmsa2xxx_enclosures = 0;
1768         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1769                 u8 *lunaddrbytes;
1770
1771                 /* Figure out where the LUN ID info is coming from */
1772                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1773                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1774                 /* skip masked physical devices. */
1775                 if (lunaddrbytes[3] & 0xC0 &&
1776                         i < nphysicals + (raid_ctlr_position == 0))
1777                         continue;
1778
1779                 /* Get device type, vendor, model, device id */
1780                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1781                         continue; /* skip it if we can't talk to it. */
1782                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1783                         tmpdevice);
1784                 this_device = currentsd[ncurrent];
1785
1786                 /*
1787                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1788                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1789                  * is nonetheless an enclosure device there.  We have to
1790                  * present that otherwise linux won't find anything if
1791                  * there is no lun 0.
1792                  */
1793                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1794                                 lunaddrbytes, bus, target, lun, lunzerobits,
1795                                 &nmsa2xxx_enclosures)) {
1796                         ncurrent++;
1797                         this_device = currentsd[ncurrent];
1798                 }
1799
1800                 *this_device = *tmpdevice;
1801                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1802
1803                 switch (this_device->devtype) {
1804                 case TYPE_ROM: {
1805                         /* We don't *really* support actual CD-ROM devices,
1806                          * just "One Button Disaster Recovery" tape drive
1807                          * which temporarily pretends to be a CD-ROM drive.
1808                          * So we check that the device is really an OBDR tape
1809                          * device by checking for "$DR-10" in bytes 43-48 of
1810                          * the inquiry data.
1811                          */
1812                                 char obdr_sig[7];
1813 #define OBDR_TAPE_SIG "$DR-10"
1814                                 strncpy(obdr_sig, &inq_buff[43], 6);
1815                                 obdr_sig[6] = '\0';
1816                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1817                                         /* Not OBDR device, ignore it. */
1818                                         break;
1819                         }
1820                         ncurrent++;
1821                         break;
1822                 case TYPE_DISK:
1823                         if (i < nphysicals)
1824                                 break;
1825                         ncurrent++;
1826                         break;
1827                 case TYPE_TAPE:
1828                 case TYPE_MEDIUM_CHANGER:
1829                         ncurrent++;
1830                         break;
1831                 case TYPE_RAID:
1832                         /* Only present the Smartarray HBA as a RAID controller.
1833                          * If it's a RAID controller other than the HBA itself
1834                          * (an external RAID controller, MSA500 or similar)
1835                          * don't present it.
1836                          */
1837                         if (!is_hba_lunid(lunaddrbytes))
1838                                 break;
1839                         ncurrent++;
1840                         break;
1841                 default:
1842                         break;
1843                 }
1844                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1845                         break;
1846         }
1847         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1848 out:
1849         kfree(tmpdevice);
1850         for (i = 0; i < ndev_allocated; i++)
1851                 kfree(currentsd[i]);
1852         kfree(currentsd);
1853         kfree(inq_buff);
1854         kfree(physdev_list);
1855         kfree(logdev_list);
1856 }
1857
1858 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1859  * dma mapping  and fills in the scatter gather entries of the
1860  * hpsa command, cp.
1861  */
1862 static int hpsa_scatter_gather(struct ctlr_info *h,
1863                 struct CommandList *cp,
1864                 struct scsi_cmnd *cmd)
1865 {
1866         unsigned int len;
1867         struct scatterlist *sg;
1868         u64 addr64;
1869         int use_sg, i, sg_index, chained;
1870         struct SGDescriptor *curr_sg;
1871
1872         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1873
1874         use_sg = scsi_dma_map(cmd);
1875         if (use_sg < 0)
1876                 return use_sg;
1877
1878         if (!use_sg)
1879                 goto sglist_finished;
1880
1881         curr_sg = cp->SG;
1882         chained = 0;
1883         sg_index = 0;
1884         scsi_for_each_sg(cmd, sg, use_sg, i) {
1885                 if (i == h->max_cmd_sg_entries - 1 &&
1886                         use_sg > h->max_cmd_sg_entries) {
1887                         chained = 1;
1888                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1889                         sg_index = 0;
1890                 }
1891                 addr64 = (u64) sg_dma_address(sg);
1892                 len  = sg_dma_len(sg);
1893                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1894                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1895                 curr_sg->Len = len;
1896                 curr_sg->Ext = 0;  /* we are not chaining */
1897                 curr_sg++;
1898         }
1899
1900         if (use_sg + chained > h->maxSG)
1901                 h->maxSG = use_sg + chained;
1902
1903         if (chained) {
1904                 cp->Header.SGList = h->max_cmd_sg_entries;
1905                 cp->Header.SGTotal = (u16) (use_sg + 1);
1906                 hpsa_map_sg_chain_block(h, cp);
1907                 return 0;
1908         }
1909
1910 sglist_finished:
1911
1912         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1913         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1914         return 0;
1915 }
1916
1917
1918 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1919         void (*done)(struct scsi_cmnd *))
1920 {
1921         struct ctlr_info *h;
1922         struct hpsa_scsi_dev_t *dev;
1923         unsigned char scsi3addr[8];
1924         struct CommandList *c;
1925         unsigned long flags;
1926
1927         /* Get the ptr to our adapter structure out of cmd->host. */
1928         h = sdev_to_hba(cmd->device);
1929         dev = cmd->device->hostdata;
1930         if (!dev) {
1931                 cmd->result = DID_NO_CONNECT << 16;
1932                 done(cmd);
1933                 return 0;
1934         }
1935         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1936
1937         /* Need a lock as this is being allocated from the pool */
1938         spin_lock_irqsave(&h->lock, flags);
1939         c = cmd_alloc(h);
1940         spin_unlock_irqrestore(&h->lock, flags);
1941         if (c == NULL) {                        /* trouble... */
1942                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1943                 return SCSI_MLQUEUE_HOST_BUSY;
1944         }
1945
1946         /* Fill in the command list header */
1947
1948         cmd->scsi_done = done;    /* save this for use by completion code */
1949
1950         /* save c in case we have to abort it  */
1951         cmd->host_scribble = (unsigned char *) c;
1952
1953         c->cmd_type = CMD_SCSI;
1954         c->scsi_cmd = cmd;
1955         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1956         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1957         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1958         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1959
1960         /* Fill in the request block... */
1961
1962         c->Request.Timeout = 0;
1963         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1964         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1965         c->Request.CDBLen = cmd->cmd_len;
1966         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1967         c->Request.Type.Type = TYPE_CMD;
1968         c->Request.Type.Attribute = ATTR_SIMPLE;
1969         switch (cmd->sc_data_direction) {
1970         case DMA_TO_DEVICE:
1971                 c->Request.Type.Direction = XFER_WRITE;
1972                 break;
1973         case DMA_FROM_DEVICE:
1974                 c->Request.Type.Direction = XFER_READ;
1975                 break;
1976         case DMA_NONE:
1977                 c->Request.Type.Direction = XFER_NONE;
1978                 break;
1979         case DMA_BIDIRECTIONAL:
1980                 /* This can happen if a buggy application does a scsi passthru
1981                  * and sets both inlen and outlen to non-zero. ( see
1982                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1983                  */
1984
1985                 c->Request.Type.Direction = XFER_RSVD;
1986                 /* This is technically wrong, and hpsa controllers should
1987                  * reject it with CMD_INVALID, which is the most correct
1988                  * response, but non-fibre backends appear to let it
1989                  * slide by, and give the same results as if this field
1990                  * were set correctly.  Either way is acceptable for
1991                  * our purposes here.
1992                  */
1993
1994                 break;
1995
1996         default:
1997                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
1998                         cmd->sc_data_direction);
1999                 BUG();
2000                 break;
2001         }
2002
2003         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2004                 cmd_free(h, c);
2005                 return SCSI_MLQUEUE_HOST_BUSY;
2006         }
2007         enqueue_cmd_and_start_io(h, c);
2008         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2009         return 0;
2010 }
2011
2012 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2013
2014 static void hpsa_scan_start(struct Scsi_Host *sh)
2015 {
2016         struct ctlr_info *h = shost_to_hba(sh);
2017         unsigned long flags;
2018
2019         /* wait until any scan already in progress is finished. */
2020         while (1) {
2021                 spin_lock_irqsave(&h->scan_lock, flags);
2022                 if (h->scan_finished)
2023                         break;
2024                 spin_unlock_irqrestore(&h->scan_lock, flags);
2025                 wait_event(h->scan_wait_queue, h->scan_finished);
2026                 /* Note: We don't need to worry about a race between this
2027                  * thread and driver unload because the midlayer will
2028                  * have incremented the reference count, so unload won't
2029                  * happen if we're in here.
2030                  */
2031         }
2032         h->scan_finished = 0; /* mark scan as in progress */
2033         spin_unlock_irqrestore(&h->scan_lock, flags);
2034
2035         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2036
2037         spin_lock_irqsave(&h->scan_lock, flags);
2038         h->scan_finished = 1; /* mark scan as finished. */
2039         wake_up_all(&h->scan_wait_queue);
2040         spin_unlock_irqrestore(&h->scan_lock, flags);
2041 }
2042
2043 static int hpsa_scan_finished(struct Scsi_Host *sh,
2044         unsigned long elapsed_time)
2045 {
2046         struct ctlr_info *h = shost_to_hba(sh);
2047         unsigned long flags;
2048         int finished;
2049
2050         spin_lock_irqsave(&h->scan_lock, flags);
2051         finished = h->scan_finished;
2052         spin_unlock_irqrestore(&h->scan_lock, flags);
2053         return finished;
2054 }
2055
2056 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2057         int qdepth, int reason)
2058 {
2059         struct ctlr_info *h = sdev_to_hba(sdev);
2060
2061         if (reason != SCSI_QDEPTH_DEFAULT)
2062                 return -ENOTSUPP;
2063
2064         if (qdepth < 1)
2065                 qdepth = 1;
2066         else
2067                 if (qdepth > h->nr_cmds)
2068                         qdepth = h->nr_cmds;
2069         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2070         return sdev->queue_depth;
2071 }
2072
2073 static void hpsa_unregister_scsi(struct ctlr_info *h)
2074 {
2075         /* we are being forcibly unloaded, and may not refuse. */
2076         scsi_remove_host(h->scsi_host);
2077         scsi_host_put(h->scsi_host);
2078         h->scsi_host = NULL;
2079 }
2080
2081 static int hpsa_register_scsi(struct ctlr_info *h)
2082 {
2083         int rc;
2084
2085         rc = hpsa_scsi_detect(h);
2086         if (rc != 0)
2087                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2088                         " hpsa_scsi_detect(), rc is %d\n", rc);
2089         return rc;
2090 }
2091
2092 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2093         unsigned char lunaddr[])
2094 {
2095         int rc = 0;
2096         int count = 0;
2097         int waittime = 1; /* seconds */
2098         struct CommandList *c;
2099
2100         c = cmd_special_alloc(h);
2101         if (!c) {
2102                 dev_warn(&h->pdev->dev, "out of memory in "
2103                         "wait_for_device_to_become_ready.\n");
2104                 return IO_ERROR;
2105         }
2106
2107         /* Send test unit ready until device ready, or give up. */
2108         while (count < HPSA_TUR_RETRY_LIMIT) {
2109
2110                 /* Wait for a bit.  do this first, because if we send
2111                  * the TUR right away, the reset will just abort it.
2112                  */
2113                 msleep(1000 * waittime);
2114                 count++;
2115
2116                 /* Increase wait time with each try, up to a point. */
2117                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2118                         waittime = waittime * 2;
2119
2120                 /* Send the Test Unit Ready */
2121                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2122                 hpsa_scsi_do_simple_cmd_core(h, c);
2123                 /* no unmap needed here because no data xfer. */
2124
2125                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2126                         break;
2127
2128                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2129                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2130                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2131                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2132                         break;
2133
2134                 dev_warn(&h->pdev->dev, "waiting %d secs "
2135                         "for device to become ready.\n", waittime);
2136                 rc = 1; /* device not ready. */
2137         }
2138
2139         if (rc)
2140                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2141         else
2142                 dev_warn(&h->pdev->dev, "device is ready.\n");
2143
2144         cmd_special_free(h, c);
2145         return rc;
2146 }
2147
2148 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2149  * complaining.  Doing a host- or bus-reset can't do anything good here.
2150  */
2151 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2152 {
2153         int rc;
2154         struct ctlr_info *h;
2155         struct hpsa_scsi_dev_t *dev;
2156
2157         /* find the controller to which the command to be aborted was sent */
2158         h = sdev_to_hba(scsicmd->device);
2159         if (h == NULL) /* paranoia */
2160                 return FAILED;
2161         dev = scsicmd->device->hostdata;
2162         if (!dev) {
2163                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2164                         "device lookup failed.\n");
2165                 return FAILED;
2166         }
2167         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2168                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2169         /* send a reset to the SCSI LUN which the command was sent to */
2170         rc = hpsa_send_reset(h, dev->scsi3addr);
2171         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2172                 return SUCCESS;
2173
2174         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2175         return FAILED;
2176 }
2177
2178 /*
2179  * For operations that cannot sleep, a command block is allocated at init,
2180  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2181  * which ones are free or in use.  Lock must be held when calling this.
2182  * cmd_free() is the complement.
2183  */
2184 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2185 {
2186         struct CommandList *c;
2187         int i;
2188         union u64bit temp64;
2189         dma_addr_t cmd_dma_handle, err_dma_handle;
2190
2191         do {
2192                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2193                 if (i == h->nr_cmds)
2194                         return NULL;
2195         } while (test_and_set_bit
2196                  (i & (BITS_PER_LONG - 1),
2197                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2198         c = h->cmd_pool + i;
2199         memset(c, 0, sizeof(*c));
2200         cmd_dma_handle = h->cmd_pool_dhandle
2201             + i * sizeof(*c);
2202         c->err_info = h->errinfo_pool + i;
2203         memset(c->err_info, 0, sizeof(*c->err_info));
2204         err_dma_handle = h->errinfo_pool_dhandle
2205             + i * sizeof(*c->err_info);
2206         h->nr_allocs++;
2207
2208         c->cmdindex = i;
2209
2210         INIT_HLIST_NODE(&c->list);
2211         c->busaddr = (u32) cmd_dma_handle;
2212         temp64.val = (u64) err_dma_handle;
2213         c->ErrDesc.Addr.lower = temp64.val32.lower;
2214         c->ErrDesc.Addr.upper = temp64.val32.upper;
2215         c->ErrDesc.Len = sizeof(*c->err_info);
2216
2217         c->h = h;
2218         return c;
2219 }
2220
2221 /* For operations that can wait for kmalloc to possibly sleep,
2222  * this routine can be called. Lock need not be held to call
2223  * cmd_special_alloc. cmd_special_free() is the complement.
2224  */
2225 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2226 {
2227         struct CommandList *c;
2228         union u64bit temp64;
2229         dma_addr_t cmd_dma_handle, err_dma_handle;
2230
2231         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2232         if (c == NULL)
2233                 return NULL;
2234         memset(c, 0, sizeof(*c));
2235
2236         c->cmdindex = -1;
2237
2238         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2239                     &err_dma_handle);
2240
2241         if (c->err_info == NULL) {
2242                 pci_free_consistent(h->pdev,
2243                         sizeof(*c), c, cmd_dma_handle);
2244                 return NULL;
2245         }
2246         memset(c->err_info, 0, sizeof(*c->err_info));
2247
2248         INIT_HLIST_NODE(&c->list);
2249         c->busaddr = (u32) cmd_dma_handle;
2250         temp64.val = (u64) err_dma_handle;
2251         c->ErrDesc.Addr.lower = temp64.val32.lower;
2252         c->ErrDesc.Addr.upper = temp64.val32.upper;
2253         c->ErrDesc.Len = sizeof(*c->err_info);
2254
2255         c->h = h;
2256         return c;
2257 }
2258
2259 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2260 {
2261         int i;
2262
2263         i = c - h->cmd_pool;
2264         clear_bit(i & (BITS_PER_LONG - 1),
2265                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2266         h->nr_frees++;
2267 }
2268
2269 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2270 {
2271         union u64bit temp64;
2272
2273         temp64.val32.lower = c->ErrDesc.Addr.lower;
2274         temp64.val32.upper = c->ErrDesc.Addr.upper;
2275         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2276                             c->err_info, (dma_addr_t) temp64.val);
2277         pci_free_consistent(h->pdev, sizeof(*c),
2278                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2279 }
2280
2281 #ifdef CONFIG_COMPAT
2282
2283 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2284 {
2285         IOCTL32_Command_struct __user *arg32 =
2286             (IOCTL32_Command_struct __user *) arg;
2287         IOCTL_Command_struct arg64;
2288         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2289         int err;
2290         u32 cp;
2291
2292         err = 0;
2293         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2294                            sizeof(arg64.LUN_info));
2295         err |= copy_from_user(&arg64.Request, &arg32->Request,
2296                            sizeof(arg64.Request));
2297         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2298                            sizeof(arg64.error_info));
2299         err |= get_user(arg64.buf_size, &arg32->buf_size);
2300         err |= get_user(cp, &arg32->buf);
2301         arg64.buf = compat_ptr(cp);
2302         err |= copy_to_user(p, &arg64, sizeof(arg64));
2303
2304         if (err)
2305                 return -EFAULT;
2306
2307         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2308         if (err)
2309                 return err;
2310         err |= copy_in_user(&arg32->error_info, &p->error_info,
2311                          sizeof(arg32->error_info));
2312         if (err)
2313                 return -EFAULT;
2314         return err;
2315 }
2316
2317 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2318         int cmd, void *arg)
2319 {
2320         BIG_IOCTL32_Command_struct __user *arg32 =
2321             (BIG_IOCTL32_Command_struct __user *) arg;
2322         BIG_IOCTL_Command_struct arg64;
2323         BIG_IOCTL_Command_struct __user *p =
2324             compat_alloc_user_space(sizeof(arg64));
2325         int err;
2326         u32 cp;
2327
2328         err = 0;
2329         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2330                            sizeof(arg64.LUN_info));
2331         err |= copy_from_user(&arg64.Request, &arg32->Request,
2332                            sizeof(arg64.Request));
2333         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2334                            sizeof(arg64.error_info));
2335         err |= get_user(arg64.buf_size, &arg32->buf_size);
2336         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2337         err |= get_user(cp, &arg32->buf);
2338         arg64.buf = compat_ptr(cp);
2339         err |= copy_to_user(p, &arg64, sizeof(arg64));
2340
2341         if (err)
2342                 return -EFAULT;
2343
2344         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2345         if (err)
2346                 return err;
2347         err |= copy_in_user(&arg32->error_info, &p->error_info,
2348                          sizeof(arg32->error_info));
2349         if (err)
2350                 return -EFAULT;
2351         return err;
2352 }
2353
2354 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2355 {
2356         switch (cmd) {
2357         case CCISS_GETPCIINFO:
2358         case CCISS_GETINTINFO:
2359         case CCISS_SETINTINFO:
2360         case CCISS_GETNODENAME:
2361         case CCISS_SETNODENAME:
2362         case CCISS_GETHEARTBEAT:
2363         case CCISS_GETBUSTYPES:
2364         case CCISS_GETFIRMVER:
2365         case CCISS_GETDRIVVER:
2366         case CCISS_REVALIDVOLS:
2367         case CCISS_DEREGDISK:
2368         case CCISS_REGNEWDISK:
2369         case CCISS_REGNEWD:
2370         case CCISS_RESCANDISK:
2371         case CCISS_GETLUNINFO:
2372                 return hpsa_ioctl(dev, cmd, arg);
2373
2374         case CCISS_PASSTHRU32:
2375                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2376         case CCISS_BIG_PASSTHRU32:
2377                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2378
2379         default:
2380                 return -ENOIOCTLCMD;
2381         }
2382 }
2383 #endif
2384
2385 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2386 {
2387         struct hpsa_pci_info pciinfo;
2388
2389         if (!argp)
2390                 return -EINVAL;
2391         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2392         pciinfo.bus = h->pdev->bus->number;
2393         pciinfo.dev_fn = h->pdev->devfn;
2394         pciinfo.board_id = h->board_id;
2395         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2396                 return -EFAULT;
2397         return 0;
2398 }
2399
2400 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2401 {
2402         DriverVer_type DriverVer;
2403         unsigned char vmaj, vmin, vsubmin;
2404         int rc;
2405
2406         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2407                 &vmaj, &vmin, &vsubmin);
2408         if (rc != 3) {
2409                 dev_info(&h->pdev->dev, "driver version string '%s' "
2410                         "unrecognized.", HPSA_DRIVER_VERSION);
2411                 vmaj = 0;
2412                 vmin = 0;
2413                 vsubmin = 0;
2414         }
2415         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2416         if (!argp)
2417                 return -EINVAL;
2418         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2419                 return -EFAULT;
2420         return 0;
2421 }
2422
2423 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2424 {
2425         IOCTL_Command_struct iocommand;
2426         struct CommandList *c;
2427         char *buff = NULL;
2428         union u64bit temp64;
2429
2430         if (!argp)
2431                 return -EINVAL;
2432         if (!capable(CAP_SYS_RAWIO))
2433                 return -EPERM;
2434         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2435                 return -EFAULT;
2436         if ((iocommand.buf_size < 1) &&
2437             (iocommand.Request.Type.Direction != XFER_NONE)) {
2438                 return -EINVAL;
2439         }
2440         if (iocommand.buf_size > 0) {
2441                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2442                 if (buff == NULL)
2443                         return -EFAULT;
2444                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2445                         /* Copy the data into the buffer we created */
2446                         if (copy_from_user(buff, iocommand.buf,
2447                                 iocommand.buf_size)) {
2448                                 kfree(buff);
2449                                 return -EFAULT;
2450                         }
2451                 } else {
2452                         memset(buff, 0, iocommand.buf_size);
2453                 }
2454         }
2455         c = cmd_special_alloc(h);
2456         if (c == NULL) {
2457                 kfree(buff);
2458                 return -ENOMEM;
2459         }
2460         /* Fill in the command type */
2461         c->cmd_type = CMD_IOCTL_PEND;
2462         /* Fill in Command Header */
2463         c->Header.ReplyQueue = 0; /* unused in simple mode */
2464         if (iocommand.buf_size > 0) {   /* buffer to fill */
2465                 c->Header.SGList = 1;
2466                 c->Header.SGTotal = 1;
2467         } else  { /* no buffers to fill */
2468                 c->Header.SGList = 0;
2469                 c->Header.SGTotal = 0;
2470         }
2471         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2472         /* use the kernel address the cmd block for tag */
2473         c->Header.Tag.lower = c->busaddr;
2474
2475         /* Fill in Request block */
2476         memcpy(&c->Request, &iocommand.Request,
2477                 sizeof(c->Request));
2478
2479         /* Fill in the scatter gather information */
2480         if (iocommand.buf_size > 0) {
2481                 temp64.val = pci_map_single(h->pdev, buff,
2482                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2483                 c->SG[0].Addr.lower = temp64.val32.lower;
2484                 c->SG[0].Addr.upper = temp64.val32.upper;
2485                 c->SG[0].Len = iocommand.buf_size;
2486                 c->SG[0].Ext = 0; /* we are not chaining*/
2487         }
2488         hpsa_scsi_do_simple_cmd_core(h, c);
2489         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2490         check_ioctl_unit_attention(h, c);
2491
2492         /* Copy the error information out */
2493         memcpy(&iocommand.error_info, c->err_info,
2494                 sizeof(iocommand.error_info));
2495         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2496                 kfree(buff);
2497                 cmd_special_free(h, c);
2498                 return -EFAULT;
2499         }
2500         if (iocommand.Request.Type.Direction == XFER_READ &&
2501                 iocommand.buf_size > 0) {
2502                 /* Copy the data out of the buffer we created */
2503                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2504                         kfree(buff);
2505                         cmd_special_free(h, c);
2506                         return -EFAULT;
2507                 }
2508         }
2509         kfree(buff);
2510         cmd_special_free(h, c);
2511         return 0;
2512 }
2513
2514 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2515 {
2516         BIG_IOCTL_Command_struct *ioc;
2517         struct CommandList *c;
2518         unsigned char **buff = NULL;
2519         int *buff_size = NULL;
2520         union u64bit temp64;
2521         BYTE sg_used = 0;
2522         int status = 0;
2523         int i;
2524         u32 left;
2525         u32 sz;
2526         BYTE __user *data_ptr;
2527
2528         if (!argp)
2529                 return -EINVAL;
2530         if (!capable(CAP_SYS_RAWIO))
2531                 return -EPERM;
2532         ioc = (BIG_IOCTL_Command_struct *)
2533             kmalloc(sizeof(*ioc), GFP_KERNEL);
2534         if (!ioc) {
2535                 status = -ENOMEM;
2536                 goto cleanup1;
2537         }
2538         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2539                 status = -EFAULT;
2540                 goto cleanup1;
2541         }
2542         if ((ioc->buf_size < 1) &&
2543             (ioc->Request.Type.Direction != XFER_NONE)) {
2544                 status = -EINVAL;
2545                 goto cleanup1;
2546         }
2547         /* Check kmalloc limits  using all SGs */
2548         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2549                 status = -EINVAL;
2550                 goto cleanup1;
2551         }
2552         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2553                 status = -EINVAL;
2554                 goto cleanup1;
2555         }
2556         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2557         if (!buff) {
2558                 status = -ENOMEM;
2559                 goto cleanup1;
2560         }
2561         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2562         if (!buff_size) {
2563                 status = -ENOMEM;
2564                 goto cleanup1;
2565         }
2566         left = ioc->buf_size;
2567         data_ptr = ioc->buf;
2568         while (left) {
2569                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2570                 buff_size[sg_used] = sz;
2571                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2572                 if (buff[sg_used] == NULL) {
2573                         status = -ENOMEM;
2574                         goto cleanup1;
2575                 }
2576                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2577                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2578                                 status = -ENOMEM;
2579                                 goto cleanup1;
2580                         }
2581                 } else
2582                         memset(buff[sg_used], 0, sz);
2583                 left -= sz;
2584                 data_ptr += sz;
2585                 sg_used++;
2586         }
2587         c = cmd_special_alloc(h);
2588         if (c == NULL) {
2589                 status = -ENOMEM;
2590                 goto cleanup1;
2591         }
2592         c->cmd_type = CMD_IOCTL_PEND;
2593         c->Header.ReplyQueue = 0;
2594         c->Header.SGList = c->Header.SGTotal = sg_used;
2595         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2596         c->Header.Tag.lower = c->busaddr;
2597         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2598         if (ioc->buf_size > 0) {
2599                 int i;
2600                 for (i = 0; i < sg_used; i++) {
2601                         temp64.val = pci_map_single(h->pdev, buff[i],
2602                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2603                         c->SG[i].Addr.lower = temp64.val32.lower;
2604                         c->SG[i].Addr.upper = temp64.val32.upper;
2605                         c->SG[i].Len = buff_size[i];
2606                         /* we are not chaining */
2607                         c->SG[i].Ext = 0;
2608                 }
2609         }
2610         hpsa_scsi_do_simple_cmd_core(h, c);
2611         if (sg_used)
2612                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2613         check_ioctl_unit_attention(h, c);
2614         /* Copy the error information out */
2615         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2616         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2617                 cmd_special_free(h, c);
2618                 status = -EFAULT;
2619                 goto cleanup1;
2620         }
2621         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2622                 /* Copy the data out of the buffer we created */
2623                 BYTE __user *ptr = ioc->buf;
2624                 for (i = 0; i < sg_used; i++) {
2625                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2626                                 cmd_special_free(h, c);
2627                                 status = -EFAULT;
2628                                 goto cleanup1;
2629                         }
2630                         ptr += buff_size[i];
2631                 }
2632         }
2633         cmd_special_free(h, c);
2634         status = 0;
2635 cleanup1:
2636         if (buff) {
2637                 for (i = 0; i < sg_used; i++)
2638                         kfree(buff[i]);
2639                 kfree(buff);
2640         }
2641         kfree(buff_size);
2642         kfree(ioc);
2643         return status;
2644 }
2645
2646 static void check_ioctl_unit_attention(struct ctlr_info *h,
2647         struct CommandList *c)
2648 {
2649         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2650                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2651                 (void) check_for_unit_attention(h, c);
2652 }
2653 /*
2654  * ioctl
2655  */
2656 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2657 {
2658         struct ctlr_info *h;
2659         void __user *argp = (void __user *)arg;
2660
2661         h = sdev_to_hba(dev);
2662
2663         switch (cmd) {
2664         case CCISS_DEREGDISK:
2665         case CCISS_REGNEWDISK:
2666         case CCISS_REGNEWD:
2667                 hpsa_scan_start(h->scsi_host);
2668                 return 0;
2669         case CCISS_GETPCIINFO:
2670                 return hpsa_getpciinfo_ioctl(h, argp);
2671         case CCISS_GETDRIVVER:
2672                 return hpsa_getdrivver_ioctl(h, argp);
2673         case CCISS_PASSTHRU:
2674                 return hpsa_passthru_ioctl(h, argp);
2675         case CCISS_BIG_PASSTHRU:
2676                 return hpsa_big_passthru_ioctl(h, argp);
2677         default:
2678                 return -ENOTTY;
2679         }
2680 }
2681
2682 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2683         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2684         int cmd_type)
2685 {
2686         int pci_dir = XFER_NONE;
2687
2688         c->cmd_type = CMD_IOCTL_PEND;
2689         c->Header.ReplyQueue = 0;
2690         if (buff != NULL && size > 0) {
2691                 c->Header.SGList = 1;
2692                 c->Header.SGTotal = 1;
2693         } else {
2694                 c->Header.SGList = 0;
2695                 c->Header.SGTotal = 0;
2696         }
2697         c->Header.Tag.lower = c->busaddr;
2698         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2699
2700         c->Request.Type.Type = cmd_type;
2701         if (cmd_type == TYPE_CMD) {
2702                 switch (cmd) {
2703                 case HPSA_INQUIRY:
2704                         /* are we trying to read a vital product page */
2705                         if (page_code != 0) {
2706                                 c->Request.CDB[1] = 0x01;
2707                                 c->Request.CDB[2] = page_code;
2708                         }
2709                         c->Request.CDBLen = 6;
2710                         c->Request.Type.Attribute = ATTR_SIMPLE;
2711                         c->Request.Type.Direction = XFER_READ;
2712                         c->Request.Timeout = 0;
2713                         c->Request.CDB[0] = HPSA_INQUIRY;
2714                         c->Request.CDB[4] = size & 0xFF;
2715                         break;
2716                 case HPSA_REPORT_LOG:
2717                 case HPSA_REPORT_PHYS:
2718                         /* Talking to controller so It's a physical command
2719                            mode = 00 target = 0.  Nothing to write.
2720                          */
2721                         c->Request.CDBLen = 12;
2722                         c->Request.Type.Attribute = ATTR_SIMPLE;
2723                         c->Request.Type.Direction = XFER_READ;
2724                         c->Request.Timeout = 0;
2725                         c->Request.CDB[0] = cmd;
2726                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2727                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2728                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2729                         c->Request.CDB[9] = size & 0xFF;
2730                         break;
2731                 case HPSA_CACHE_FLUSH:
2732                         c->Request.CDBLen = 12;
2733                         c->Request.Type.Attribute = ATTR_SIMPLE;
2734                         c->Request.Type.Direction = XFER_WRITE;
2735                         c->Request.Timeout = 0;
2736                         c->Request.CDB[0] = BMIC_WRITE;
2737                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2738                         break;
2739                 case TEST_UNIT_READY:
2740                         c->Request.CDBLen = 6;
2741                         c->Request.Type.Attribute = ATTR_SIMPLE;
2742                         c->Request.Type.Direction = XFER_NONE;
2743                         c->Request.Timeout = 0;
2744                         break;
2745                 default:
2746                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2747                         BUG();
2748                         return;
2749                 }
2750         } else if (cmd_type == TYPE_MSG) {
2751                 switch (cmd) {
2752
2753                 case  HPSA_DEVICE_RESET_MSG:
2754                         c->Request.CDBLen = 16;
2755                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2756                         c->Request.Type.Attribute = ATTR_SIMPLE;
2757                         c->Request.Type.Direction = XFER_NONE;
2758                         c->Request.Timeout = 0; /* Don't time out */
2759                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2760                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2761                         /* If bytes 4-7 are zero, it means reset the */
2762                         /* LunID device */
2763                         c->Request.CDB[4] = 0x00;
2764                         c->Request.CDB[5] = 0x00;
2765                         c->Request.CDB[6] = 0x00;
2766                         c->Request.CDB[7] = 0x00;
2767                 break;
2768
2769                 default:
2770                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2771                                 cmd);
2772                         BUG();
2773                 }
2774         } else {
2775                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2776                 BUG();
2777         }
2778
2779         switch (c->Request.Type.Direction) {
2780         case XFER_READ:
2781                 pci_dir = PCI_DMA_FROMDEVICE;
2782                 break;
2783         case XFER_WRITE:
2784                 pci_dir = PCI_DMA_TODEVICE;
2785                 break;
2786         case XFER_NONE:
2787                 pci_dir = PCI_DMA_NONE;
2788                 break;
2789         default:
2790                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2791         }
2792
2793         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2794
2795         return;
2796 }
2797
2798 /*
2799  * Map (physical) PCI mem into (virtual) kernel space
2800  */
2801 static void __iomem *remap_pci_mem(ulong base, ulong size)
2802 {
2803         ulong page_base = ((ulong) base) & PAGE_MASK;
2804         ulong page_offs = ((ulong) base) - page_base;
2805         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2806
2807         return page_remapped ? (page_remapped + page_offs) : NULL;
2808 }
2809
2810 /* Takes cmds off the submission queue and sends them to the hardware,
2811  * then puts them on the queue of cmds waiting for completion.
2812  */
2813 static void start_io(struct ctlr_info *h)
2814 {
2815         struct CommandList *c;
2816
2817         while (!hlist_empty(&h->reqQ)) {
2818                 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2819                 /* can't do anything if fifo is full */
2820                 if ((h->access.fifo_full(h))) {
2821                         dev_warn(&h->pdev->dev, "fifo full\n");
2822                         break;
2823                 }
2824
2825                 /* Get the first entry from the Request Q */
2826                 removeQ(c);
2827                 h->Qdepth--;
2828
2829                 /* Tell the controller execute command */
2830                 h->access.submit_command(h, c);
2831
2832                 /* Put job onto the completed Q */
2833                 addQ(&h->cmpQ, c);
2834         }
2835 }
2836
2837 static inline unsigned long get_next_completion(struct ctlr_info *h)
2838 {
2839         return h->access.command_completed(h);
2840 }
2841
2842 static inline bool interrupt_pending(struct ctlr_info *h)
2843 {
2844         return h->access.intr_pending(h);
2845 }
2846
2847 static inline long interrupt_not_for_us(struct ctlr_info *h)
2848 {
2849         return (h->access.intr_pending(h) == 0) ||
2850                 (h->interrupts_enabled == 0);
2851 }
2852
2853 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2854         u32 raw_tag)
2855 {
2856         if (unlikely(tag_index >= h->nr_cmds)) {
2857                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2858                 return 1;
2859         }
2860         return 0;
2861 }
2862
2863 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2864 {
2865         removeQ(c);
2866         if (likely(c->cmd_type == CMD_SCSI))
2867                 complete_scsi_command(c, 0, raw_tag);
2868         else if (c->cmd_type == CMD_IOCTL_PEND)
2869                 complete(c->waiting);
2870 }
2871
2872 static inline u32 hpsa_tag_contains_index(u32 tag)
2873 {
2874         return tag & DIRECT_LOOKUP_BIT;
2875 }
2876
2877 static inline u32 hpsa_tag_to_index(u32 tag)
2878 {
2879         return tag >> DIRECT_LOOKUP_SHIFT;
2880 }
2881
2882 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2883 {
2884 #define HPSA_ERROR_BITS 0x03
2885         return tag & ~HPSA_ERROR_BITS;
2886 }
2887
2888 /* process completion of an indexed ("direct lookup") command */
2889 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2890         u32 raw_tag)
2891 {
2892         u32 tag_index;
2893         struct CommandList *c;
2894
2895         tag_index = hpsa_tag_to_index(raw_tag);
2896         if (bad_tag(h, tag_index, raw_tag))
2897                 return next_command(h);
2898         c = h->cmd_pool + tag_index;
2899         finish_cmd(c, raw_tag);
2900         return next_command(h);
2901 }
2902
2903 /* process completion of a non-indexed command */
2904 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2905         u32 raw_tag)
2906 {
2907         u32 tag;
2908         struct CommandList *c = NULL;
2909         struct hlist_node *tmp;
2910
2911         tag = hpsa_tag_discard_error_bits(raw_tag);
2912         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2913                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2914                         finish_cmd(c, raw_tag);
2915                         return next_command(h);
2916                 }
2917         }
2918         bad_tag(h, h->nr_cmds + 1, raw_tag);
2919         return next_command(h);
2920 }
2921
2922 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2923 {
2924         struct ctlr_info *h = dev_id;
2925         unsigned long flags;
2926         u32 raw_tag;
2927
2928         if (interrupt_not_for_us(h))
2929                 return IRQ_NONE;
2930         spin_lock_irqsave(&h->lock, flags);
2931         while (interrupt_pending(h)) {
2932                 raw_tag = get_next_completion(h);
2933                 while (raw_tag != FIFO_EMPTY) {
2934                         if (hpsa_tag_contains_index(raw_tag))
2935                                 raw_tag = process_indexed_cmd(h, raw_tag);
2936                         else
2937                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
2938                 }
2939         }
2940         spin_unlock_irqrestore(&h->lock, flags);
2941         return IRQ_HANDLED;
2942 }
2943
2944 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
2945 {
2946         struct ctlr_info *h = dev_id;
2947         unsigned long flags;
2948         u32 raw_tag;
2949
2950         spin_lock_irqsave(&h->lock, flags);
2951         raw_tag = get_next_completion(h);
2952         while (raw_tag != FIFO_EMPTY) {
2953                 if (hpsa_tag_contains_index(raw_tag))
2954                         raw_tag = process_indexed_cmd(h, raw_tag);
2955                 else
2956                         raw_tag = process_nonindexed_cmd(h, raw_tag);
2957         }
2958         spin_unlock_irqrestore(&h->lock, flags);
2959         return IRQ_HANDLED;
2960 }
2961
2962 /* Send a message CDB to the firmware. */
2963 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2964                                                 unsigned char type)
2965 {
2966         struct Command {
2967                 struct CommandListHeader CommandHeader;
2968                 struct RequestBlock Request;
2969                 struct ErrDescriptor ErrorDescriptor;
2970         };
2971         struct Command *cmd;
2972         static const size_t cmd_sz = sizeof(*cmd) +
2973                                         sizeof(cmd->ErrorDescriptor);
2974         dma_addr_t paddr64;
2975         uint32_t paddr32, tag;
2976         void __iomem *vaddr;
2977         int i, err;
2978
2979         vaddr = pci_ioremap_bar(pdev, 0);
2980         if (vaddr == NULL)
2981                 return -ENOMEM;
2982
2983         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2984          * CCISS commands, so they must be allocated from the lower 4GiB of
2985          * memory.
2986          */
2987         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2988         if (err) {
2989                 iounmap(vaddr);
2990                 return -ENOMEM;
2991         }
2992
2993         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2994         if (cmd == NULL) {
2995                 iounmap(vaddr);
2996                 return -ENOMEM;
2997         }
2998
2999         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3000          * although there's no guarantee, we assume that the address is at
3001          * least 4-byte aligned (most likely, it's page-aligned).
3002          */
3003         paddr32 = paddr64;
3004
3005         cmd->CommandHeader.ReplyQueue = 0;
3006         cmd->CommandHeader.SGList = 0;
3007         cmd->CommandHeader.SGTotal = 0;
3008         cmd->CommandHeader.Tag.lower = paddr32;
3009         cmd->CommandHeader.Tag.upper = 0;
3010         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3011
3012         cmd->Request.CDBLen = 16;
3013         cmd->Request.Type.Type = TYPE_MSG;
3014         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3015         cmd->Request.Type.Direction = XFER_NONE;
3016         cmd->Request.Timeout = 0; /* Don't time out */
3017         cmd->Request.CDB[0] = opcode;
3018         cmd->Request.CDB[1] = type;
3019         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3020         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3021         cmd->ErrorDescriptor.Addr.upper = 0;
3022         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3023
3024         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3025
3026         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3027                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3028                 if (hpsa_tag_discard_error_bits(tag) == paddr32)
3029                         break;
3030                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3031         }
3032
3033         iounmap(vaddr);
3034
3035         /* we leak the DMA buffer here ... no choice since the controller could
3036          *  still complete the command.
3037          */
3038         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3039                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3040                         opcode, type);
3041                 return -ETIMEDOUT;
3042         }
3043
3044         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3045
3046         if (tag & HPSA_ERROR_BIT) {
3047                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3048                         opcode, type);
3049                 return -EIO;
3050         }
3051
3052         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3053                 opcode, type);
3054         return 0;
3055 }
3056
3057 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3058 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3059
3060 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3061         void * __iomem vaddr, bool use_doorbell)
3062 {
3063         u16 pmcsr;
3064         int pos;
3065
3066         if (use_doorbell) {
3067                 /* For everything after the P600, the PCI power state method
3068                  * of resetting the controller doesn't work, so we have this
3069                  * other way using the doorbell register.
3070                  */
3071                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3072                 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3073                 msleep(1000);
3074         } else { /* Try to do it the PCI power state way */
3075
3076                 /* Quoting from the Open CISS Specification: "The Power
3077                  * Management Control/Status Register (CSR) controls the power
3078                  * state of the device.  The normal operating state is D0,
3079                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3080                  * the controller, place the interface device in D3 then to D0,
3081                  * this causes a secondary PCI reset which will reset the
3082                  * controller." */
3083
3084                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3085                 if (pos == 0) {
3086                         dev_err(&pdev->dev,
3087                                 "hpsa_reset_controller: "
3088                                 "PCI PM not supported\n");
3089                         return -ENODEV;
3090                 }
3091                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3092                 /* enter the D3hot power management state */
3093                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3094                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3095                 pmcsr |= PCI_D3hot;
3096                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3097
3098                 msleep(500);
3099
3100                 /* enter the D0 power management state */
3101                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3102                 pmcsr |= PCI_D0;
3103                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3104
3105                 msleep(500);
3106         }
3107         return 0;
3108 }
3109
3110 /* This does a hard reset of the controller using PCI power management
3111  * states or the using the doorbell register.
3112  */
3113 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3114 {
3115         u64 cfg_offset;
3116         u32 cfg_base_addr;
3117         u64 cfg_base_addr_index;
3118         void __iomem *vaddr;
3119         unsigned long paddr;
3120         u32 misc_fw_support, active_transport;
3121         int rc;
3122         struct CfgTable __iomem *cfgtable;
3123         bool use_doorbell;
3124         u32 board_id;
3125         u16 command_register;
3126
3127         /* For controllers as old as the P600, this is very nearly
3128          * the same thing as
3129          *
3130          * pci_save_state(pci_dev);
3131          * pci_set_power_state(pci_dev, PCI_D3hot);
3132          * pci_set_power_state(pci_dev, PCI_D0);
3133          * pci_restore_state(pci_dev);
3134          *
3135          * For controllers newer than the P600, the pci power state
3136          * method of resetting doesn't work so we have another way
3137          * using the doorbell register.
3138          */
3139
3140         /* Exclude 640x boards.  These are two pci devices in one slot
3141          * which share a battery backed cache module.  One controls the
3142          * cache, the other accesses the cache through the one that controls
3143          * it.  If we reset the one controlling the cache, the other will
3144          * likely not be happy.  Just forbid resetting this conjoined mess.
3145          * The 640x isn't really supported by hpsa anyway.
3146          */
3147         rc = hpsa_lookup_board_id(pdev, &board_id);
3148         if (rc < 0) {
3149                 dev_warn(&pdev->dev, "Not resetting device.\n");
3150                 return -ENODEV;
3151         }
3152         if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3153                 return -ENOTSUPP;
3154
3155         /* Save the PCI command register */
3156         pci_read_config_word(pdev, 4, &command_register);
3157         /* Turn the board off.  This is so that later pci_restore_state()
3158          * won't turn the board on before the rest of config space is ready.
3159          */
3160         pci_disable_device(pdev);
3161         pci_save_state(pdev);
3162
3163         /* find the first memory BAR, so we can find the cfg table */
3164         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3165         if (rc)
3166                 return rc;
3167         vaddr = remap_pci_mem(paddr, 0x250);
3168         if (!vaddr)
3169                 return -ENOMEM;
3170
3171         /* find cfgtable in order to check if reset via doorbell is supported */
3172         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3173                                         &cfg_base_addr_index, &cfg_offset);
3174         if (rc)
3175                 goto unmap_vaddr;
3176         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3177                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3178         if (!cfgtable) {
3179                 rc = -ENOMEM;
3180                 goto unmap_vaddr;
3181         }
3182
3183         /* If reset via doorbell register is supported, use that. */
3184         misc_fw_support = readl(&cfgtable->misc_fw_support);
3185         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3186
3187         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3188         if (rc)
3189                 goto unmap_cfgtable;
3190
3191         pci_restore_state(pdev);
3192         rc = pci_enable_device(pdev);
3193         if (rc) {
3194                 dev_warn(&pdev->dev, "failed to enable device.\n");
3195                 goto unmap_cfgtable;
3196         }
3197         pci_write_config_word(pdev, 4, command_register);
3198
3199         /* Some devices (notably the HP Smart Array 5i Controller)
3200            need a little pause here */
3201         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3202
3203         /* Wait for board to become not ready, then ready. */
3204         dev_info(&pdev->dev, "Waiting for board to become ready.\n");
3205         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3206         if (rc)
3207                 dev_warn(&pdev->dev,
3208                         "failed waiting for board to become not ready\n");
3209         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3210         if (rc) {
3211                 dev_warn(&pdev->dev,
3212                         "failed waiting for board to become ready\n");
3213                 goto unmap_cfgtable;
3214         }
3215         dev_info(&pdev->dev, "board ready.\n");
3216
3217         /* Controller should be in simple mode at this point.  If it's not,
3218          * It means we're on one of those controllers which doesn't support
3219          * the doorbell reset method and on which the PCI power management reset
3220          * method doesn't work (P800, for example.)
3221          * In those cases, pretend the reset worked and hope for the best.
3222          */
3223         active_transport = readl(&cfgtable->TransportActive);
3224         if (active_transport & PERFORMANT_MODE) {
3225                 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3226                         " proceeding anyway.\n");
3227                 rc = -ENOTSUPP;
3228         }
3229
3230 unmap_cfgtable:
3231         iounmap(cfgtable);
3232
3233 unmap_vaddr:
3234         iounmap(vaddr);
3235         return rc;
3236 }
3237
3238 /*
3239  *  We cannot read the structure directly, for portability we must use
3240  *   the io functions.
3241  *   This is for debug only.
3242  */
3243 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3244 {
3245 #ifdef HPSA_DEBUG
3246         int i;
3247         char temp_name[17];
3248
3249         dev_info(dev, "Controller Configuration information\n");
3250         dev_info(dev, "------------------------------------\n");
3251         for (i = 0; i < 4; i++)
3252                 temp_name[i] = readb(&(tb->Signature[i]));
3253         temp_name[4] = '\0';
3254         dev_info(dev, "   Signature = %s\n", temp_name);
3255         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3256         dev_info(dev, "   Transport methods supported = 0x%x\n",
3257                readl(&(tb->TransportSupport)));
3258         dev_info(dev, "   Transport methods active = 0x%x\n",
3259                readl(&(tb->TransportActive)));
3260         dev_info(dev, "   Requested transport Method = 0x%x\n",
3261                readl(&(tb->HostWrite.TransportRequest)));
3262         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3263                readl(&(tb->HostWrite.CoalIntDelay)));
3264         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3265                readl(&(tb->HostWrite.CoalIntCount)));
3266         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3267                readl(&(tb->CmdsOutMax)));
3268         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3269         for (i = 0; i < 16; i++)
3270                 temp_name[i] = readb(&(tb->ServerName[i]));
3271         temp_name[16] = '\0';
3272         dev_info(dev, "   Server Name = %s\n", temp_name);
3273         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3274                 readl(&(tb->HeartBeat)));
3275 #endif                          /* HPSA_DEBUG */
3276 }
3277
3278 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3279 {
3280         int i, offset, mem_type, bar_type;
3281
3282         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3283                 return 0;
3284         offset = 0;
3285         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3286                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3287                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3288                         offset += 4;
3289                 else {
3290                         mem_type = pci_resource_flags(pdev, i) &
3291                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3292                         switch (mem_type) {
3293                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3294                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3295                                 offset += 4;    /* 32 bit */
3296                                 break;
3297                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3298                                 offset += 8;
3299                                 break;
3300                         default:        /* reserved in PCI 2.2 */
3301                                 dev_warn(&pdev->dev,
3302                                        "base address is invalid\n");
3303                                 return -1;
3304                                 break;
3305                         }
3306                 }
3307                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3308                         return i + 1;
3309         }
3310         return -1;
3311 }
3312
3313 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3314  * controllers that are capable. If not, we use IO-APIC mode.
3315  */
3316
3317 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3318 {
3319 #ifdef CONFIG_PCI_MSI
3320         int err;
3321         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3322         {0, 2}, {0, 3}
3323         };
3324
3325         /* Some boards advertise MSI but don't really support it */
3326         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3327             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3328                 goto default_int_mode;
3329         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3330                 dev_info(&h->pdev->dev, "MSIX\n");
3331                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3332                 if (!err) {
3333                         h->intr[0] = hpsa_msix_entries[0].vector;
3334                         h->intr[1] = hpsa_msix_entries[1].vector;
3335                         h->intr[2] = hpsa_msix_entries[2].vector;
3336                         h->intr[3] = hpsa_msix_entries[3].vector;
3337                         h->msix_vector = 1;
3338                         return;
3339                 }
3340                 if (err > 0) {
3341                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3342                                "available\n", err);
3343                         goto default_int_mode;
3344                 } else {
3345                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3346                                err);
3347                         goto default_int_mode;
3348                 }
3349         }
3350         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3351                 dev_info(&h->pdev->dev, "MSI\n");
3352                 if (!pci_enable_msi(h->pdev))
3353                         h->msi_vector = 1;
3354                 else
3355                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3356         }
3357 default_int_mode:
3358 #endif                          /* CONFIG_PCI_MSI */
3359         /* if we get here we're going to use the default interrupt mode */
3360         h->intr[PERF_MODE_INT] = h->pdev->irq;
3361 }
3362
3363 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3364 {
3365         int i;
3366         u32 subsystem_vendor_id, subsystem_device_id;
3367
3368         subsystem_vendor_id = pdev->subsystem_vendor;
3369         subsystem_device_id = pdev->subsystem_device;
3370         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3371                     subsystem_vendor_id;
3372
3373         for (i = 0; i < ARRAY_SIZE(products); i++)
3374                 if (*board_id == products[i].board_id)
3375                         return i;
3376
3377         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3378                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3379                 !hpsa_allow_any) {
3380                 dev_warn(&pdev->dev, "unrecognized board ID: "
3381                         "0x%08x, ignoring.\n", *board_id);
3382                         return -ENODEV;
3383         }
3384         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3385 }
3386
3387 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3388 {
3389         u16 command;
3390
3391         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3392         return ((command & PCI_COMMAND_MEMORY) == 0);
3393 }
3394
3395 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3396         unsigned long *memory_bar)
3397 {
3398         int i;
3399
3400         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3401                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3402                         /* addressing mode bits already removed */
3403                         *memory_bar = pci_resource_start(pdev, i);
3404                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3405                                 *memory_bar);
3406                         return 0;
3407                 }
3408         dev_warn(&pdev->dev, "no memory BAR found\n");
3409         return -ENODEV;
3410 }
3411
3412 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3413         void __iomem *vaddr, int wait_for_ready)
3414 {
3415         int i, iterations;
3416         u32 scratchpad;
3417         if (wait_for_ready)
3418                 iterations = HPSA_BOARD_READY_ITERATIONS;
3419         else
3420                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3421
3422         for (i = 0; i < iterations; i++) {
3423                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3424                 if (wait_for_ready) {
3425                         if (scratchpad == HPSA_FIRMWARE_READY)
3426                                 return 0;
3427                 } else {
3428                         if (scratchpad != HPSA_FIRMWARE_READY)
3429                                 return 0;
3430                 }
3431                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3432         }
3433         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3434         return -ENODEV;
3435 }
3436
3437 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3438         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3439         u64 *cfg_offset)
3440 {
3441         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3442         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3443         *cfg_base_addr &= (u32) 0x0000ffff;
3444         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3445         if (*cfg_base_addr_index == -1) {
3446                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3447                 return -ENODEV;
3448         }
3449         return 0;
3450 }
3451
3452 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3453 {
3454         u64 cfg_offset;
3455         u32 cfg_base_addr;
3456         u64 cfg_base_addr_index;
3457         u32 trans_offset;
3458         int rc;
3459
3460         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3461                 &cfg_base_addr_index, &cfg_offset);
3462         if (rc)
3463                 return rc;
3464         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3465                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3466         if (!h->cfgtable)
3467                 return -ENOMEM;
3468         /* Find performant mode table. */
3469         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3470         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3471                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3472                                 sizeof(*h->transtable));
3473         if (!h->transtable)
3474                 return -ENOMEM;
3475         return 0;
3476 }
3477
3478 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3479 {
3480         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3481
3482         /* Limit commands in memory limited kdump scenario. */
3483         if (reset_devices && h->max_commands > 32)
3484                 h->max_commands = 32;
3485
3486         if (h->max_commands < 16) {
3487                 dev_warn(&h->pdev->dev, "Controller reports "
3488                         "max supported commands of %d, an obvious lie. "
3489                         "Using 16.  Ensure that firmware is up to date.\n",
3490                         h->max_commands);
3491                 h->max_commands = 16;
3492         }
3493 }
3494
3495 /* Interrogate the hardware for some limits:
3496  * max commands, max SG elements without chaining, and with chaining,
3497  * SG chain block size, etc.
3498  */
3499 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3500 {
3501         hpsa_get_max_perf_mode_cmds(h);
3502         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3503         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3504         /*
3505          * Limit in-command s/g elements to 32 save dma'able memory.
3506          * Howvever spec says if 0, use 31
3507          */
3508         h->max_cmd_sg_entries = 31;
3509         if (h->maxsgentries > 512) {
3510                 h->max_cmd_sg_entries = 32;
3511                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3512                 h->maxsgentries--; /* save one for chain pointer */
3513         } else {
3514                 h->maxsgentries = 31; /* default to traditional values */
3515                 h->chainsize = 0;
3516         }
3517 }
3518
3519 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3520 {
3521         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3522             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3523             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3524             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3525                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3526                 return false;
3527         }
3528         return true;
3529 }
3530
3531 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3532 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3533 {
3534 #ifdef CONFIG_X86
3535         u32 prefetch;
3536
3537         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3538         prefetch |= 0x100;
3539         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3540 #endif
3541 }
3542
3543 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3544  * in a prefetch beyond physical memory.
3545  */
3546 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3547 {
3548         u32 dma_prefetch;
3549
3550         if (h->board_id != 0x3225103C)
3551                 return;
3552         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3553         dma_prefetch |= 0x8000;
3554         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3555 }
3556
3557 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3558 {
3559         int i;
3560         u32 doorbell_value;
3561         unsigned long flags;
3562
3563         /* under certain very rare conditions, this can take awhile.
3564          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3565          * as we enter this code.)
3566          */
3567         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3568                 spin_lock_irqsave(&h->lock, flags);
3569                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3570                 spin_unlock_irqrestore(&h->lock, flags);
3571                 if (!doorbell_value & CFGTBL_ChangeReq)
3572                         break;
3573                 /* delay and try again */
3574                 msleep(10);
3575         }
3576 }
3577
3578 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3579 {
3580         u32 trans_support;
3581
3582         trans_support = readl(&(h->cfgtable->TransportSupport));
3583         if (!(trans_support & SIMPLE_MODE))
3584                 return -ENOTSUPP;
3585
3586         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3587         /* Update the field, and then ring the doorbell */
3588         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3589         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3590         hpsa_wait_for_mode_change_ack(h);
3591         print_cfg_table(&h->pdev->dev, h->cfgtable);
3592         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3593                 dev_warn(&h->pdev->dev,
3594                         "unable to get board into simple mode\n");
3595                 return -ENODEV;
3596         }
3597         return 0;
3598 }
3599
3600 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3601 {
3602         int prod_index, err;
3603
3604         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3605         if (prod_index < 0)
3606                 return -ENODEV;
3607         h->product_name = products[prod_index].product_name;
3608         h->access = *(products[prod_index].access);
3609
3610         if (hpsa_board_disabled(h->pdev)) {
3611                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3612                 return -ENODEV;
3613         }
3614         err = pci_enable_device(h->pdev);
3615         if (err) {
3616                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3617                 return err;
3618         }
3619
3620         err = pci_request_regions(h->pdev, "hpsa");
3621         if (err) {
3622                 dev_err(&h->pdev->dev,
3623                         "cannot obtain PCI resources, aborting\n");
3624                 return err;
3625         }
3626         hpsa_interrupt_mode(h);
3627         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3628         if (err)
3629                 goto err_out_free_res;
3630         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3631         if (!h->vaddr) {
3632                 err = -ENOMEM;
3633                 goto err_out_free_res;
3634         }
3635         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3636         if (err)
3637                 goto err_out_free_res;
3638         err = hpsa_find_cfgtables(h);
3639         if (err)
3640                 goto err_out_free_res;
3641         hpsa_find_board_params(h);
3642
3643         if (!hpsa_CISS_signature_present(h)) {
3644                 err = -ENODEV;
3645                 goto err_out_free_res;
3646         }
3647         hpsa_enable_scsi_prefetch(h);
3648         hpsa_p600_dma_prefetch_quirk(h);
3649         err = hpsa_enter_simple_mode(h);
3650         if (err)
3651                 goto err_out_free_res;
3652         return 0;
3653
3654 err_out_free_res:
3655         if (h->transtable)
3656                 iounmap(h->transtable);
3657         if (h->cfgtable)
3658                 iounmap(h->cfgtable);
3659         if (h->vaddr)
3660                 iounmap(h->vaddr);
3661         /*
3662          * Deliberately omit pci_disable_device(): it does something nasty to
3663          * Smart Array controllers that pci_enable_device does not undo
3664          */
3665         pci_release_regions(h->pdev);
3666         return err;
3667 }
3668
3669 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3670 {
3671         int rc;
3672
3673 #define HBA_INQUIRY_BYTE_COUNT 64
3674         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3675         if (!h->hba_inquiry_data)
3676                 return;
3677         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3678                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3679         if (rc != 0) {
3680                 kfree(h->hba_inquiry_data);
3681                 h->hba_inquiry_data = NULL;
3682         }
3683 }
3684
3685 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3686 {
3687         int rc, i;
3688
3689         if (!reset_devices)
3690                 return 0;
3691
3692         /* Reset the controller with a PCI power-cycle or via doorbell */
3693         rc = hpsa_kdump_hard_reset_controller(pdev);
3694
3695         /* -ENOTSUPP here means we cannot reset the controller
3696          * but it's already (and still) up and running in
3697          * "performant mode".  Or, it might be 640x, which can't reset
3698          * due to concerns about shared bbwc between 6402/6404 pair.
3699          */
3700         if (rc == -ENOTSUPP)
3701                 return 0; /* just try to do the kdump anyhow. */
3702         if (rc)
3703                 return -ENODEV;
3704
3705         /* Now try to get the controller to respond to a no-op */
3706         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3707                 if (hpsa_noop(pdev) == 0)
3708                         break;
3709                 else
3710                         dev_warn(&pdev->dev, "no-op failed%s\n",
3711                                         (i < 11 ? "; re-trying" : ""));
3712         }
3713         return 0;
3714 }
3715
3716 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3717                                     const struct pci_device_id *ent)
3718 {
3719         int dac, rc;
3720         struct ctlr_info *h;
3721
3722         if (number_of_controllers == 0)
3723                 printk(KERN_INFO DRIVER_NAME "\n");
3724
3725         rc = hpsa_init_reset_devices(pdev);
3726         if (rc)
3727                 return rc;
3728
3729         /* Command structures must be aligned on a 32-byte boundary because
3730          * the 5 lower bits of the address are used by the hardware. and by
3731          * the driver.  See comments in hpsa.h for more info.
3732          */
3733 #define COMMANDLIST_ALIGNMENT 32
3734         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3735         h = kzalloc(sizeof(*h), GFP_KERNEL);
3736         if (!h)
3737                 return -ENOMEM;
3738
3739         h->pdev = pdev;
3740         h->busy_initializing = 1;
3741         INIT_HLIST_HEAD(&h->cmpQ);
3742         INIT_HLIST_HEAD(&h->reqQ);
3743         spin_lock_init(&h->lock);
3744         spin_lock_init(&h->scan_lock);
3745         rc = hpsa_pci_init(h);
3746         if (rc != 0)
3747                 goto clean1;
3748
3749         sprintf(h->devname, "hpsa%d", number_of_controllers);
3750         h->ctlr = number_of_controllers;
3751         number_of_controllers++;
3752
3753         /* configure PCI DMA stuff */
3754         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3755         if (rc == 0) {
3756                 dac = 1;
3757         } else {
3758                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3759                 if (rc == 0) {
3760                         dac = 0;
3761                 } else {
3762                         dev_err(&pdev->dev, "no suitable DMA available\n");
3763                         goto clean1;
3764                 }
3765         }
3766
3767         /* make sure the board interrupts are off */
3768         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3769
3770         if (h->msix_vector || h->msi_vector)
3771                 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_msi,
3772                                 IRQF_DISABLED, h->devname, h);
3773         else
3774                 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_intx,
3775                                 IRQF_DISABLED, h->devname, h);
3776         if (rc) {
3777                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3778                        h->intr[PERF_MODE_INT], h->devname);
3779                 goto clean2;
3780         }
3781
3782         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3783                h->devname, pdev->device,
3784                h->intr[PERF_MODE_INT], dac ? "" : " not");
3785
3786         h->cmd_pool_bits =
3787             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3788                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3789         h->cmd_pool = pci_alloc_consistent(h->pdev,
3790                     h->nr_cmds * sizeof(*h->cmd_pool),
3791                     &(h->cmd_pool_dhandle));
3792         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3793                     h->nr_cmds * sizeof(*h->errinfo_pool),
3794                     &(h->errinfo_pool_dhandle));
3795         if ((h->cmd_pool_bits == NULL)
3796             || (h->cmd_pool == NULL)
3797             || (h->errinfo_pool == NULL)) {
3798                 dev_err(&pdev->dev, "out of memory");
3799                 rc = -ENOMEM;
3800                 goto clean4;
3801         }
3802         if (hpsa_allocate_sg_chain_blocks(h))
3803                 goto clean4;
3804         init_waitqueue_head(&h->scan_wait_queue);
3805         h->scan_finished = 1; /* no scan currently in progress */
3806
3807         pci_set_drvdata(pdev, h);
3808         memset(h->cmd_pool_bits, 0,
3809                ((h->nr_cmds + BITS_PER_LONG -
3810                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3811
3812         hpsa_scsi_setup(h);
3813
3814         /* Turn the interrupts on so we can service requests */
3815         h->access.set_intr_mask(h, HPSA_INTR_ON);
3816
3817         hpsa_put_ctlr_into_performant_mode(h);
3818         hpsa_hba_inquiry(h);
3819         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3820         h->busy_initializing = 0;
3821         return 1;
3822
3823 clean4:
3824         hpsa_free_sg_chain_blocks(h);
3825         kfree(h->cmd_pool_bits);
3826         if (h->cmd_pool)
3827                 pci_free_consistent(h->pdev,
3828                             h->nr_cmds * sizeof(struct CommandList),
3829                             h->cmd_pool, h->cmd_pool_dhandle);
3830         if (h->errinfo_pool)
3831                 pci_free_consistent(h->pdev,
3832                             h->nr_cmds * sizeof(struct ErrorInfo),
3833                             h->errinfo_pool,
3834                             h->errinfo_pool_dhandle);
3835         free_irq(h->intr[PERF_MODE_INT], h);
3836 clean2:
3837 clean1:
3838         h->busy_initializing = 0;
3839         kfree(h);
3840         return rc;
3841 }
3842
3843 static void hpsa_flush_cache(struct ctlr_info *h)
3844 {
3845         char *flush_buf;
3846         struct CommandList *c;
3847
3848         flush_buf = kzalloc(4, GFP_KERNEL);
3849         if (!flush_buf)
3850                 return;
3851
3852         c = cmd_special_alloc(h);
3853         if (!c) {
3854                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3855                 goto out_of_memory;
3856         }
3857         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3858                 RAID_CTLR_LUNID, TYPE_CMD);
3859         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3860         if (c->err_info->CommandStatus != 0)
3861                 dev_warn(&h->pdev->dev,
3862                         "error flushing cache on controller\n");
3863         cmd_special_free(h, c);
3864 out_of_memory:
3865         kfree(flush_buf);
3866 }
3867
3868 static void hpsa_shutdown(struct pci_dev *pdev)
3869 {
3870         struct ctlr_info *h;
3871
3872         h = pci_get_drvdata(pdev);
3873         /* Turn board interrupts off  and send the flush cache command
3874          * sendcmd will turn off interrupt, and send the flush...
3875          * To write all data in the battery backed cache to disks
3876          */
3877         hpsa_flush_cache(h);
3878         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3879         free_irq(h->intr[PERF_MODE_INT], h);
3880 #ifdef CONFIG_PCI_MSI
3881         if (h->msix_vector)
3882                 pci_disable_msix(h->pdev);
3883         else if (h->msi_vector)
3884                 pci_disable_msi(h->pdev);
3885 #endif                          /* CONFIG_PCI_MSI */
3886 }
3887
3888 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3889 {
3890         struct ctlr_info *h;
3891
3892         if (pci_get_drvdata(pdev) == NULL) {
3893                 dev_err(&pdev->dev, "unable to remove device \n");
3894                 return;
3895         }
3896         h = pci_get_drvdata(pdev);
3897         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3898         hpsa_shutdown(pdev);
3899         iounmap(h->vaddr);
3900         iounmap(h->transtable);
3901         iounmap(h->cfgtable);
3902         hpsa_free_sg_chain_blocks(h);
3903         pci_free_consistent(h->pdev,
3904                 h->nr_cmds * sizeof(struct CommandList),
3905                 h->cmd_pool, h->cmd_pool_dhandle);
3906         pci_free_consistent(h->pdev,
3907                 h->nr_cmds * sizeof(struct ErrorInfo),
3908                 h->errinfo_pool, h->errinfo_pool_dhandle);
3909         pci_free_consistent(h->pdev, h->reply_pool_size,
3910                 h->reply_pool, h->reply_pool_dhandle);
3911         kfree(h->cmd_pool_bits);
3912         kfree(h->blockFetchTable);
3913         kfree(h->hba_inquiry_data);
3914         /*
3915          * Deliberately omit pci_disable_device(): it does something nasty to
3916          * Smart Array controllers that pci_enable_device does not undo
3917          */
3918         pci_release_regions(pdev);
3919         pci_set_drvdata(pdev, NULL);
3920         kfree(h);
3921 }
3922
3923 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3924         __attribute__((unused)) pm_message_t state)
3925 {
3926         return -ENOSYS;
3927 }
3928
3929 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3930 {
3931         return -ENOSYS;
3932 }
3933
3934 static struct pci_driver hpsa_pci_driver = {
3935         .name = "hpsa",
3936         .probe = hpsa_init_one,
3937         .remove = __devexit_p(hpsa_remove_one),
3938         .id_table = hpsa_pci_device_id, /* id_table */
3939         .shutdown = hpsa_shutdown,
3940         .suspend = hpsa_suspend,
3941         .resume = hpsa_resume,
3942 };
3943
3944 /* Fill in bucket_map[], given nsgs (the max number of
3945  * scatter gather elements supported) and bucket[],
3946  * which is an array of 8 integers.  The bucket[] array
3947  * contains 8 different DMA transfer sizes (in 16
3948  * byte increments) which the controller uses to fetch
3949  * commands.  This function fills in bucket_map[], which
3950  * maps a given number of scatter gather elements to one of
3951  * the 8 DMA transfer sizes.  The point of it is to allow the
3952  * controller to only do as much DMA as needed to fetch the
3953  * command, with the DMA transfer size encoded in the lower
3954  * bits of the command address.
3955  */
3956 static void  calc_bucket_map(int bucket[], int num_buckets,
3957         int nsgs, int *bucket_map)
3958 {
3959         int i, j, b, size;
3960
3961         /* even a command with 0 SGs requires 4 blocks */
3962 #define MINIMUM_TRANSFER_BLOCKS 4
3963 #define NUM_BUCKETS 8
3964         /* Note, bucket_map must have nsgs+1 entries. */
3965         for (i = 0; i <= nsgs; i++) {
3966                 /* Compute size of a command with i SG entries */
3967                 size = i + MINIMUM_TRANSFER_BLOCKS;
3968                 b = num_buckets; /* Assume the biggest bucket */
3969                 /* Find the bucket that is just big enough */
3970                 for (j = 0; j < 8; j++) {
3971                         if (bucket[j] >= size) {
3972                                 b = j;
3973                                 break;
3974                         }
3975                 }
3976                 /* for a command with i SG entries, use bucket b. */
3977                 bucket_map[i] = b;
3978         }
3979 }
3980
3981 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h)
3982 {
3983         int i;
3984         unsigned long register_value;
3985
3986         /* This is a bit complicated.  There are 8 registers on
3987          * the controller which we write to to tell it 8 different
3988          * sizes of commands which there may be.  It's a way of
3989          * reducing the DMA done to fetch each command.  Encoded into
3990          * each command's tag are 3 bits which communicate to the controller
3991          * which of the eight sizes that command fits within.  The size of
3992          * each command depends on how many scatter gather entries there are.
3993          * Each SG entry requires 16 bytes.  The eight registers are programmed
3994          * with the number of 16-byte blocks a command of that size requires.
3995          * The smallest command possible requires 5 such 16 byte blocks.
3996          * the largest command possible requires MAXSGENTRIES + 4 16-byte
3997          * blocks.  Note, this only extends to the SG entries contained
3998          * within the command block, and does not extend to chained blocks
3999          * of SG elements.   bft[] contains the eight values we write to
4000          * the registers.  They are not evenly distributed, but have more
4001          * sizes for small commands, and fewer sizes for larger commands.
4002          */
4003         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4004         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4005         /*  5 = 1 s/g entry or 4k
4006          *  6 = 2 s/g entry or 8k
4007          *  8 = 4 s/g entry or 16k
4008          * 10 = 6 s/g entry or 24k
4009          */
4010
4011         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4012
4013         /* Controller spec: zero out this buffer. */
4014         memset(h->reply_pool, 0, h->reply_pool_size);
4015         h->reply_pool_head = h->reply_pool;
4016
4017         bft[7] = h->max_sg_entries + 4;
4018         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4019         for (i = 0; i < 8; i++)
4020                 writel(bft[i], &h->transtable->BlockFetch[i]);
4021
4022         /* size of controller ring buffer */
4023         writel(h->max_commands, &h->transtable->RepQSize);
4024         writel(1, &h->transtable->RepQCount);
4025         writel(0, &h->transtable->RepQCtrAddrLow32);
4026         writel(0, &h->transtable->RepQCtrAddrHigh32);
4027         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4028         writel(0, &h->transtable->RepQAddr0High32);
4029         writel(CFGTBL_Trans_Performant,
4030                 &(h->cfgtable->HostWrite.TransportRequest));
4031         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4032         hpsa_wait_for_mode_change_ack(h);
4033         register_value = readl(&(h->cfgtable->TransportActive));
4034         if (!(register_value & CFGTBL_Trans_Performant)) {
4035                 dev_warn(&h->pdev->dev, "unable to get board into"
4036                                         " performant mode\n");
4037                 return;
4038         }
4039 }
4040
4041 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4042 {
4043         u32 trans_support;
4044
4045         if (hpsa_simple_mode)
4046                 return;
4047
4048         trans_support = readl(&(h->cfgtable->TransportSupport));
4049         if (!(trans_support & PERFORMANT_MODE))
4050                 return;
4051
4052         hpsa_get_max_perf_mode_cmds(h);
4053         h->max_sg_entries = 32;
4054         /* Performant mode ring buffer and supporting data structures */
4055         h->reply_pool_size = h->max_commands * sizeof(u64);
4056         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4057                                 &(h->reply_pool_dhandle));
4058
4059         /* Need a block fetch table for performant mode */
4060         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4061                                 sizeof(u32)), GFP_KERNEL);
4062
4063         if ((h->reply_pool == NULL)
4064                 || (h->blockFetchTable == NULL))
4065                 goto clean_up;
4066
4067         hpsa_enter_performant_mode(h);
4068
4069         /* Change the access methods to the performant access methods */
4070         h->access = SA5_performant_access;
4071         h->transMethod = CFGTBL_Trans_Performant;
4072
4073         return;
4074
4075 clean_up:
4076         if (h->reply_pool)
4077                 pci_free_consistent(h->pdev, h->reply_pool_size,
4078                         h->reply_pool, h->reply_pool_dhandle);
4079         kfree(h->blockFetchTable);
4080 }
4081
4082 /*
4083  *  This is it.  Register the PCI driver information for the cards we control
4084  *  the OS will call our registered routines when it finds one of our cards.
4085  */
4086 static int __init hpsa_init(void)
4087 {
4088         return pci_register_driver(&hpsa_pci_driver);
4089 }
4090
4091 static void __exit hpsa_cleanup(void)
4092 {
4093         pci_unregister_driver(&hpsa_pci_driver);
4094 }
4095
4096 module_init(hpsa_init);
4097 module_exit(hpsa_cleanup);