rtc-r9701.c: silence compiler warning
[linux-2.6.git] / drivers / rtc / rtc-sh.c
1 /*
2  * SuperH On-Chip RTC Support
3  *
4  * Copyright (C) 2006, 2007  Paul Mundt
5  * Copyright (C) 2006  Jamie Lenehan
6  *
7  * Based on the old arch/sh/kernel/cpu/rtc.c by:
8  *
9  *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
10  *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
11  *
12  * This file is subject to the terms and conditions of the GNU General Public
13  * License.  See the file "COPYING" in the main directory of this archive
14  * for more details.
15  */
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/bcd.h>
19 #include <linux/rtc.h>
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/seq_file.h>
23 #include <linux/interrupt.h>
24 #include <linux/spinlock.h>
25 #include <linux/io.h>
26 #include <asm/rtc.h>
27
28 #define DRV_NAME        "sh-rtc"
29 #define DRV_VERSION     "0.1.6"
30
31 #define RTC_REG(r)      ((r) * rtc_reg_size)
32
33 #define R64CNT          RTC_REG(0)
34
35 #define RSECCNT         RTC_REG(1)      /* RTC sec */
36 #define RMINCNT         RTC_REG(2)      /* RTC min */
37 #define RHRCNT          RTC_REG(3)      /* RTC hour */
38 #define RWKCNT          RTC_REG(4)      /* RTC week */
39 #define RDAYCNT         RTC_REG(5)      /* RTC day */
40 #define RMONCNT         RTC_REG(6)      /* RTC month */
41 #define RYRCNT          RTC_REG(7)      /* RTC year */
42 #define RSECAR          RTC_REG(8)      /* ALARM sec */
43 #define RMINAR          RTC_REG(9)      /* ALARM min */
44 #define RHRAR           RTC_REG(10)     /* ALARM hour */
45 #define RWKAR           RTC_REG(11)     /* ALARM week */
46 #define RDAYAR          RTC_REG(12)     /* ALARM day */
47 #define RMONAR          RTC_REG(13)     /* ALARM month */
48 #define RCR1            RTC_REG(14)     /* Control */
49 #define RCR2            RTC_REG(15)     /* Control */
50
51 /*
52  * Note on RYRAR and RCR3: Up until this point most of the register
53  * definitions are consistent across all of the available parts. However,
54  * the placement of the optional RYRAR and RCR3 (the RYRAR control
55  * register used to control RYRCNT/RYRAR compare) varies considerably
56  * across various parts, occasionally being mapped in to a completely
57  * unrelated address space. For proper RYRAR support a separate resource
58  * would have to be handed off, but as this is purely optional in
59  * practice, we simply opt not to support it, thereby keeping the code
60  * quite a bit more simplified.
61  */
62
63 /* ALARM Bits - or with BCD encoded value */
64 #define AR_ENB          0x80    /* Enable for alarm cmp   */
65
66 /* RCR1 Bits */
67 #define RCR1_CF         0x80    /* Carry Flag             */
68 #define RCR1_CIE        0x10    /* Carry Interrupt Enable */
69 #define RCR1_AIE        0x08    /* Alarm Interrupt Enable */
70 #define RCR1_AF         0x01    /* Alarm Flag             */
71
72 /* RCR2 Bits */
73 #define RCR2_PEF        0x80    /* PEriodic interrupt Flag */
74 #define RCR2_PESMASK    0x70    /* Periodic interrupt Set  */
75 #define RCR2_RTCEN      0x08    /* ENable RTC              */
76 #define RCR2_ADJ        0x04    /* ADJustment (30-second)  */
77 #define RCR2_RESET      0x02    /* Reset bit               */
78 #define RCR2_START      0x01    /* Start bit               */
79
80 struct sh_rtc {
81         void __iomem *regbase;
82         unsigned long regsize;
83         struct resource *res;
84         unsigned int alarm_irq, periodic_irq, carry_irq;
85         struct rtc_device *rtc_dev;
86         spinlock_t lock;
87         int rearm_aie;
88         unsigned long capabilities;     /* See asm-sh/rtc.h for cap bits */
89 };
90
91 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
92 {
93         struct platform_device *pdev = to_platform_device(dev_id);
94         struct sh_rtc *rtc = platform_get_drvdata(pdev);
95         unsigned int tmp, events = 0;
96
97         spin_lock(&rtc->lock);
98
99         tmp = readb(rtc->regbase + RCR1);
100         tmp &= ~RCR1_CF;
101
102         if (rtc->rearm_aie) {
103                 if (tmp & RCR1_AF)
104                         tmp &= ~RCR1_AF;        /* try to clear AF again */
105                 else {
106                         tmp |= RCR1_AIE;        /* AF has cleared, rearm IRQ */
107                         rtc->rearm_aie = 0;
108                 }
109         }
110
111         writeb(tmp, rtc->regbase + RCR1);
112
113         rtc_update_irq(rtc->rtc_dev, 1, events);
114
115         spin_unlock(&rtc->lock);
116
117         return IRQ_HANDLED;
118 }
119
120 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
121 {
122         struct platform_device *pdev = to_platform_device(dev_id);
123         struct sh_rtc *rtc = platform_get_drvdata(pdev);
124         unsigned int tmp, events = 0;
125
126         spin_lock(&rtc->lock);
127
128         tmp = readb(rtc->regbase + RCR1);
129
130         /*
131          * If AF is set then the alarm has triggered. If we clear AF while
132          * the alarm time still matches the RTC time then AF will
133          * immediately be set again, and if AIE is enabled then the alarm
134          * interrupt will immediately be retrigger. So we clear AIE here
135          * and use rtc->rearm_aie so that the carry interrupt will keep
136          * trying to clear AF and once it stays cleared it'll re-enable
137          * AIE.
138          */
139         if (tmp & RCR1_AF) {
140                 events |= RTC_AF | RTC_IRQF;
141
142                 tmp &= ~(RCR1_AF|RCR1_AIE);
143
144                 writeb(tmp, rtc->regbase + RCR1);
145
146                 rtc->rearm_aie = 1;
147
148                 rtc_update_irq(rtc->rtc_dev, 1, events);
149         }
150
151         spin_unlock(&rtc->lock);
152         return IRQ_HANDLED;
153 }
154
155 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
156 {
157         struct platform_device *pdev = to_platform_device(dev_id);
158         struct sh_rtc *rtc = platform_get_drvdata(pdev);
159
160         spin_lock(&rtc->lock);
161
162         rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
163
164         spin_unlock(&rtc->lock);
165
166         return IRQ_HANDLED;
167 }
168
169 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
170 {
171         struct sh_rtc *rtc = dev_get_drvdata(dev);
172         unsigned int tmp;
173
174         spin_lock_irq(&rtc->lock);
175
176         tmp = readb(rtc->regbase + RCR2);
177
178         if (enable) {
179                 tmp &= ~RCR2_PESMASK;
180                 tmp |= RCR2_PEF | (2 << 4);
181         } else
182                 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
183
184         writeb(tmp, rtc->regbase + RCR2);
185
186         spin_unlock_irq(&rtc->lock);
187 }
188
189 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
190 {
191         struct sh_rtc *rtc = dev_get_drvdata(dev);
192         unsigned int tmp;
193
194         spin_lock_irq(&rtc->lock);
195
196         tmp = readb(rtc->regbase + RCR1);
197
198         if (!enable) {
199                 tmp &= ~RCR1_AIE;
200                 rtc->rearm_aie = 0;
201         } else if (rtc->rearm_aie == 0)
202                 tmp |= RCR1_AIE;
203
204         writeb(tmp, rtc->regbase + RCR1);
205
206         spin_unlock_irq(&rtc->lock);
207 }
208
209 static int sh_rtc_open(struct device *dev)
210 {
211         struct sh_rtc *rtc = dev_get_drvdata(dev);
212         unsigned int tmp;
213         int ret;
214
215         tmp = readb(rtc->regbase + RCR1);
216         tmp &= ~RCR1_CF;
217         tmp |= RCR1_CIE;
218         writeb(tmp, rtc->regbase + RCR1);
219
220         ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, IRQF_DISABLED,
221                           "sh-rtc period", dev);
222         if (unlikely(ret)) {
223                 dev_err(dev, "request period IRQ failed with %d, IRQ %d\n",
224                         ret, rtc->periodic_irq);
225                 return ret;
226         }
227
228         ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, IRQF_DISABLED,
229                           "sh-rtc carry", dev);
230         if (unlikely(ret)) {
231                 dev_err(dev, "request carry IRQ failed with %d, IRQ %d\n",
232                         ret, rtc->carry_irq);
233                 free_irq(rtc->periodic_irq, dev);
234                 goto err_bad_carry;
235         }
236
237         ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, IRQF_DISABLED,
238                           "sh-rtc alarm", dev);
239         if (unlikely(ret)) {
240                 dev_err(dev, "request alarm IRQ failed with %d, IRQ %d\n",
241                         ret, rtc->alarm_irq);
242                 goto err_bad_alarm;
243         }
244
245         return 0;
246
247 err_bad_alarm:
248         free_irq(rtc->carry_irq, dev);
249 err_bad_carry:
250         free_irq(rtc->periodic_irq, dev);
251
252         return ret;
253 }
254
255 static void sh_rtc_release(struct device *dev)
256 {
257         struct sh_rtc *rtc = dev_get_drvdata(dev);
258
259         sh_rtc_setpie(dev, 0);
260         sh_rtc_setaie(dev, 0);
261
262         free_irq(rtc->periodic_irq, dev);
263         free_irq(rtc->carry_irq, dev);
264         free_irq(rtc->alarm_irq, dev);
265 }
266
267 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
268 {
269         struct sh_rtc *rtc = dev_get_drvdata(dev);
270         unsigned int tmp;
271
272         tmp = readb(rtc->regbase + RCR1);
273         seq_printf(seq, "carry_IRQ\t: %s\n",
274                    (tmp & RCR1_CIE) ? "yes" : "no");
275
276         tmp = readb(rtc->regbase + RCR2);
277         seq_printf(seq, "periodic_IRQ\t: %s\n",
278                    (tmp & RCR2_PEF) ? "yes" : "no");
279
280         return 0;
281 }
282
283 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
284 {
285         unsigned int ret = -ENOIOCTLCMD;
286
287         switch (cmd) {
288         case RTC_PIE_OFF:
289         case RTC_PIE_ON:
290                 sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
291                 ret = 0;
292                 break;
293         case RTC_AIE_OFF:
294         case RTC_AIE_ON:
295                 sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
296                 ret = 0;
297                 break;
298         }
299
300         return ret;
301 }
302
303 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
304 {
305         struct platform_device *pdev = to_platform_device(dev);
306         struct sh_rtc *rtc = platform_get_drvdata(pdev);
307         unsigned int sec128, sec2, yr, yr100, cf_bit;
308
309         do {
310                 unsigned int tmp;
311
312                 spin_lock_irq(&rtc->lock);
313
314                 tmp = readb(rtc->regbase + RCR1);
315                 tmp &= ~RCR1_CF; /* Clear CF-bit */
316                 tmp |= RCR1_CIE;
317                 writeb(tmp, rtc->regbase + RCR1);
318
319                 sec128 = readb(rtc->regbase + R64CNT);
320
321                 tm->tm_sec      = BCD2BIN(readb(rtc->regbase + RSECCNT));
322                 tm->tm_min      = BCD2BIN(readb(rtc->regbase + RMINCNT));
323                 tm->tm_hour     = BCD2BIN(readb(rtc->regbase + RHRCNT));
324                 tm->tm_wday     = BCD2BIN(readb(rtc->regbase + RWKCNT));
325                 tm->tm_mday     = BCD2BIN(readb(rtc->regbase + RDAYCNT));
326                 tm->tm_mon      = BCD2BIN(readb(rtc->regbase + RMONCNT)) - 1;
327
328                 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
329                         yr  = readw(rtc->regbase + RYRCNT);
330                         yr100 = BCD2BIN(yr >> 8);
331                         yr &= 0xff;
332                 } else {
333                         yr  = readb(rtc->regbase + RYRCNT);
334                         yr100 = BCD2BIN((yr == 0x99) ? 0x19 : 0x20);
335                 }
336
337                 tm->tm_year = (yr100 * 100 + BCD2BIN(yr)) - 1900;
338
339                 sec2 = readb(rtc->regbase + R64CNT);
340                 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
341
342                 spin_unlock_irq(&rtc->lock);
343         } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
344
345 #if RTC_BIT_INVERTED != 0
346         if ((sec128 & RTC_BIT_INVERTED))
347                 tm->tm_sec--;
348 #endif
349
350         dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
351                 "mday=%d, mon=%d, year=%d, wday=%d\n",
352                 __FUNCTION__,
353                 tm->tm_sec, tm->tm_min, tm->tm_hour,
354                 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
355
356         if (rtc_valid_tm(tm) < 0) {
357                 dev_err(dev, "invalid date\n");
358                 rtc_time_to_tm(0, tm);
359         }
360
361         return 0;
362 }
363
364 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
365 {
366         struct platform_device *pdev = to_platform_device(dev);
367         struct sh_rtc *rtc = platform_get_drvdata(pdev);
368         unsigned int tmp;
369         int year;
370
371         spin_lock_irq(&rtc->lock);
372
373         /* Reset pre-scaler & stop RTC */
374         tmp = readb(rtc->regbase + RCR2);
375         tmp |= RCR2_RESET;
376         tmp &= ~RCR2_START;
377         writeb(tmp, rtc->regbase + RCR2);
378
379         writeb(BIN2BCD(tm->tm_sec),  rtc->regbase + RSECCNT);
380         writeb(BIN2BCD(tm->tm_min),  rtc->regbase + RMINCNT);
381         writeb(BIN2BCD(tm->tm_hour), rtc->regbase + RHRCNT);
382         writeb(BIN2BCD(tm->tm_wday), rtc->regbase + RWKCNT);
383         writeb(BIN2BCD(tm->tm_mday), rtc->regbase + RDAYCNT);
384         writeb(BIN2BCD(tm->tm_mon + 1), rtc->regbase + RMONCNT);
385
386         if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
387                 year = (BIN2BCD((tm->tm_year + 1900) / 100) << 8) |
388                         BIN2BCD(tm->tm_year % 100);
389                 writew(year, rtc->regbase + RYRCNT);
390         } else {
391                 year = tm->tm_year % 100;
392                 writeb(BIN2BCD(year), rtc->regbase + RYRCNT);
393         }
394
395         /* Start RTC */
396         tmp = readb(rtc->regbase + RCR2);
397         tmp &= ~RCR2_RESET;
398         tmp |= RCR2_RTCEN | RCR2_START;
399         writeb(tmp, rtc->regbase + RCR2);
400
401         spin_unlock_irq(&rtc->lock);
402
403         return 0;
404 }
405
406 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
407 {
408         unsigned int byte;
409         int value = 0xff;       /* return 0xff for ignored values */
410
411         byte = readb(rtc->regbase + reg_off);
412         if (byte & AR_ENB) {
413                 byte &= ~AR_ENB;        /* strip the enable bit */
414                 value = BCD2BIN(byte);
415         }
416
417         return value;
418 }
419
420 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
421 {
422         struct platform_device *pdev = to_platform_device(dev);
423         struct sh_rtc *rtc = platform_get_drvdata(pdev);
424         struct rtc_time* tm = &wkalrm->time;
425
426         spin_lock_irq(&rtc->lock);
427
428         tm->tm_sec      = sh_rtc_read_alarm_value(rtc, RSECAR);
429         tm->tm_min      = sh_rtc_read_alarm_value(rtc, RMINAR);
430         tm->tm_hour     = sh_rtc_read_alarm_value(rtc, RHRAR);
431         tm->tm_wday     = sh_rtc_read_alarm_value(rtc, RWKAR);
432         tm->tm_mday     = sh_rtc_read_alarm_value(rtc, RDAYAR);
433         tm->tm_mon      = sh_rtc_read_alarm_value(rtc, RMONAR);
434         if (tm->tm_mon > 0)
435                 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
436         tm->tm_year     = 0xffff;
437
438         wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
439
440         spin_unlock_irq(&rtc->lock);
441
442         return 0;
443 }
444
445 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
446                                             int value, int reg_off)
447 {
448         /* < 0 for a value that is ignored */
449         if (value < 0)
450                 writeb(0, rtc->regbase + reg_off);
451         else
452                 writeb(BIN2BCD(value) | AR_ENB,  rtc->regbase + reg_off);
453 }
454
455 static int sh_rtc_check_alarm(struct rtc_time* tm)
456 {
457         /*
458          * The original rtc says anything > 0xc0 is "don't care" or "match
459          * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
460          * The original rtc doesn't support years - some things use -1 and
461          * some 0xffff. We use -1 to make out tests easier.
462          */
463         if (tm->tm_year == 0xffff)
464                 tm->tm_year = -1;
465         if (tm->tm_mon >= 0xff)
466                 tm->tm_mon = -1;
467         if (tm->tm_mday >= 0xff)
468                 tm->tm_mday = -1;
469         if (tm->tm_wday >= 0xff)
470                 tm->tm_wday = -1;
471         if (tm->tm_hour >= 0xff)
472                 tm->tm_hour = -1;
473         if (tm->tm_min >= 0xff)
474                 tm->tm_min = -1;
475         if (tm->tm_sec >= 0xff)
476                 tm->tm_sec = -1;
477
478         if (tm->tm_year > 9999 ||
479                 tm->tm_mon >= 12 ||
480                 tm->tm_mday == 0 || tm->tm_mday >= 32 ||
481                 tm->tm_wday >= 7 ||
482                 tm->tm_hour >= 24 ||
483                 tm->tm_min >= 60 ||
484                 tm->tm_sec >= 60)
485                 return -EINVAL;
486
487         return 0;
488 }
489
490 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
491 {
492         struct platform_device *pdev = to_platform_device(dev);
493         struct sh_rtc *rtc = platform_get_drvdata(pdev);
494         unsigned int rcr1;
495         struct rtc_time *tm = &wkalrm->time;
496         int mon, err;
497
498         err = sh_rtc_check_alarm(tm);
499         if (unlikely(err < 0))
500                 return err;
501
502         spin_lock_irq(&rtc->lock);
503
504         /* disable alarm interrupt and clear the alarm flag */
505         rcr1 = readb(rtc->regbase + RCR1);
506         rcr1 &= ~(RCR1_AF|RCR1_AIE);
507         writeb(rcr1, rtc->regbase + RCR1);
508
509         rtc->rearm_aie = 0;
510
511         /* set alarm time */
512         sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
513         sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
514         sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
515         sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
516         sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
517         mon = tm->tm_mon;
518         if (mon >= 0)
519                 mon += 1;
520         sh_rtc_write_alarm_value(rtc, mon, RMONAR);
521
522         if (wkalrm->enabled) {
523                 rcr1 |= RCR1_AIE;
524                 writeb(rcr1, rtc->regbase + RCR1);
525         }
526
527         spin_unlock_irq(&rtc->lock);
528
529         return 0;
530 }
531
532 static struct rtc_class_ops sh_rtc_ops = {
533         .open           = sh_rtc_open,
534         .release        = sh_rtc_release,
535         .ioctl          = sh_rtc_ioctl,
536         .read_time      = sh_rtc_read_time,
537         .set_time       = sh_rtc_set_time,
538         .read_alarm     = sh_rtc_read_alarm,
539         .set_alarm      = sh_rtc_set_alarm,
540         .proc           = sh_rtc_proc,
541 };
542
543 static int __devinit sh_rtc_probe(struct platform_device *pdev)
544 {
545         struct sh_rtc *rtc;
546         struct resource *res;
547         int ret = -ENOENT;
548
549         rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
550         if (unlikely(!rtc))
551                 return -ENOMEM;
552
553         spin_lock_init(&rtc->lock);
554
555         rtc->periodic_irq = platform_get_irq(pdev, 0);
556         if (unlikely(rtc->periodic_irq < 0)) {
557                 dev_err(&pdev->dev, "No IRQ for period\n");
558                 goto err_badres;
559         }
560
561         rtc->carry_irq = platform_get_irq(pdev, 1);
562         if (unlikely(rtc->carry_irq < 0)) {
563                 dev_err(&pdev->dev, "No IRQ for carry\n");
564                 goto err_badres;
565         }
566
567         rtc->alarm_irq = platform_get_irq(pdev, 2);
568         if (unlikely(rtc->alarm_irq < 0)) {
569                 dev_err(&pdev->dev, "No IRQ for alarm\n");
570                 goto err_badres;
571         }
572
573         res = platform_get_resource(pdev, IORESOURCE_IO, 0);
574         if (unlikely(res == NULL)) {
575                 dev_err(&pdev->dev, "No IO resource\n");
576                 goto err_badres;
577         }
578
579         rtc->regsize = res->end - res->start + 1;
580
581         rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
582         if (unlikely(!rtc->res)) {
583                 ret = -EBUSY;
584                 goto err_badres;
585         }
586
587         rtc->regbase = (void __iomem *)rtc->res->start;
588         if (unlikely(!rtc->regbase)) {
589                 ret = -EINVAL;
590                 goto err_badmap;
591         }
592
593         rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
594                                            &sh_rtc_ops, THIS_MODULE);
595         if (IS_ERR(rtc->rtc_dev)) {
596                 ret = PTR_ERR(rtc->rtc_dev);
597                 goto err_badmap;
598         }
599
600         rtc->capabilities = RTC_DEF_CAPABILITIES;
601         if (pdev->dev.platform_data) {
602                 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
603
604                 /*
605                  * Some CPUs have special capabilities in addition to the
606                  * default set. Add those in here.
607                  */
608                 rtc->capabilities |= pinfo->capabilities;
609         }
610
611         platform_set_drvdata(pdev, rtc);
612
613         return 0;
614
615 err_badmap:
616         release_resource(rtc->res);
617 err_badres:
618         kfree(rtc);
619
620         return ret;
621 }
622
623 static int __devexit sh_rtc_remove(struct platform_device *pdev)
624 {
625         struct sh_rtc *rtc = platform_get_drvdata(pdev);
626
627         if (likely(rtc->rtc_dev))
628                 rtc_device_unregister(rtc->rtc_dev);
629
630         sh_rtc_setpie(&pdev->dev, 0);
631         sh_rtc_setaie(&pdev->dev, 0);
632
633         release_resource(rtc->res);
634
635         platform_set_drvdata(pdev, NULL);
636
637         kfree(rtc);
638
639         return 0;
640 }
641 static struct platform_driver sh_rtc_platform_driver = {
642         .driver         = {
643                 .name   = DRV_NAME,
644                 .owner  = THIS_MODULE,
645         },
646         .probe          = sh_rtc_probe,
647         .remove         = __devexit_p(sh_rtc_remove),
648 };
649
650 static int __init sh_rtc_init(void)
651 {
652         return platform_driver_register(&sh_rtc_platform_driver);
653 }
654
655 static void __exit sh_rtc_exit(void)
656 {
657         platform_driver_unregister(&sh_rtc_platform_driver);
658 }
659
660 module_init(sh_rtc_init);
661 module_exit(sh_rtc_exit);
662
663 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
664 MODULE_VERSION(DRV_VERSION);
665 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, Jamie Lenehan <lenehan@twibble.org>");
666 MODULE_LICENSE("GPL");