regulator: Factor out voltage set operation into a separate function
[linux-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34
35 #define rdev_err(rdev, fmt, ...)                                        \
36         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
37 #define rdev_warn(rdev, fmt, ...)                                       \
38         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39 #define rdev_info(rdev, fmt, ...)                                       \
40         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_dbg(rdev, fmt, ...)                                        \
42         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43
44 static DEFINE_MUTEX(regulator_list_mutex);
45 static LIST_HEAD(regulator_list);
46 static LIST_HEAD(regulator_map_list);
47 static int has_full_constraints;
48 static bool board_wants_dummy_regulator;
49
50 /*
51  * struct regulator_map
52  *
53  * Used to provide symbolic supply names to devices.
54  */
55 struct regulator_map {
56         struct list_head list;
57         const char *dev_name;   /* The dev_name() for the consumer */
58         const char *supply;
59         struct regulator_dev *regulator;
60 };
61
62 /*
63  * struct regulator
64  *
65  * One for each consumer device.
66  */
67 struct regulator {
68         struct device *dev;
69         struct list_head list;
70         int uA_load;
71         int min_uV;
72         int max_uV;
73         char *supply_name;
74         struct device_attribute dev_attr;
75         struct regulator_dev *rdev;
76 };
77
78 static int _regulator_is_enabled(struct regulator_dev *rdev);
79 static int _regulator_disable(struct regulator_dev *rdev,
80                 struct regulator_dev **supply_rdev_ptr);
81 static int _regulator_get_voltage(struct regulator_dev *rdev);
82 static int _regulator_get_current_limit(struct regulator_dev *rdev);
83 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
84 static void _notifier_call_chain(struct regulator_dev *rdev,
85                                   unsigned long event, void *data);
86 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
87                                      int min_uV, int max_uV);
88
89 static const char *rdev_get_name(struct regulator_dev *rdev)
90 {
91         if (rdev->constraints && rdev->constraints->name)
92                 return rdev->constraints->name;
93         else if (rdev->desc->name)
94                 return rdev->desc->name;
95         else
96                 return "";
97 }
98
99 /* gets the regulator for a given consumer device */
100 static struct regulator *get_device_regulator(struct device *dev)
101 {
102         struct regulator *regulator = NULL;
103         struct regulator_dev *rdev;
104
105         mutex_lock(&regulator_list_mutex);
106         list_for_each_entry(rdev, &regulator_list, list) {
107                 mutex_lock(&rdev->mutex);
108                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
109                         if (regulator->dev == dev) {
110                                 mutex_unlock(&rdev->mutex);
111                                 mutex_unlock(&regulator_list_mutex);
112                                 return regulator;
113                         }
114                 }
115                 mutex_unlock(&rdev->mutex);
116         }
117         mutex_unlock(&regulator_list_mutex);
118         return NULL;
119 }
120
121 /* Platform voltage constraint check */
122 static int regulator_check_voltage(struct regulator_dev *rdev,
123                                    int *min_uV, int *max_uV)
124 {
125         BUG_ON(*min_uV > *max_uV);
126
127         if (!rdev->constraints) {
128                 rdev_err(rdev, "no constraints\n");
129                 return -ENODEV;
130         }
131         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
132                 rdev_err(rdev, "operation not allowed\n");
133                 return -EPERM;
134         }
135
136         if (*max_uV > rdev->constraints->max_uV)
137                 *max_uV = rdev->constraints->max_uV;
138         if (*min_uV < rdev->constraints->min_uV)
139                 *min_uV = rdev->constraints->min_uV;
140
141         if (*min_uV > *max_uV)
142                 return -EINVAL;
143
144         return 0;
145 }
146
147 /* Make sure we select a voltage that suits the needs of all
148  * regulator consumers
149  */
150 static int regulator_check_consumers(struct regulator_dev *rdev,
151                                      int *min_uV, int *max_uV)
152 {
153         struct regulator *regulator;
154
155         list_for_each_entry(regulator, &rdev->consumer_list, list) {
156                 if (*max_uV > regulator->max_uV)
157                         *max_uV = regulator->max_uV;
158                 if (*min_uV < regulator->min_uV)
159                         *min_uV = regulator->min_uV;
160         }
161
162         if (*min_uV > *max_uV)
163                 return -EINVAL;
164
165         return 0;
166 }
167
168 /* current constraint check */
169 static int regulator_check_current_limit(struct regulator_dev *rdev,
170                                         int *min_uA, int *max_uA)
171 {
172         BUG_ON(*min_uA > *max_uA);
173
174         if (!rdev->constraints) {
175                 rdev_err(rdev, "no constraints\n");
176                 return -ENODEV;
177         }
178         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
179                 rdev_err(rdev, "operation not allowed\n");
180                 return -EPERM;
181         }
182
183         if (*max_uA > rdev->constraints->max_uA)
184                 *max_uA = rdev->constraints->max_uA;
185         if (*min_uA < rdev->constraints->min_uA)
186                 *min_uA = rdev->constraints->min_uA;
187
188         if (*min_uA > *max_uA)
189                 return -EINVAL;
190
191         return 0;
192 }
193
194 /* operating mode constraint check */
195 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
196 {
197         switch (mode) {
198         case REGULATOR_MODE_FAST:
199         case REGULATOR_MODE_NORMAL:
200         case REGULATOR_MODE_IDLE:
201         case REGULATOR_MODE_STANDBY:
202                 break;
203         default:
204                 return -EINVAL;
205         }
206
207         if (!rdev->constraints) {
208                 rdev_err(rdev, "no constraints\n");
209                 return -ENODEV;
210         }
211         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
212                 rdev_err(rdev, "operation not allowed\n");
213                 return -EPERM;
214         }
215         if (!(rdev->constraints->valid_modes_mask & mode)) {
216                 rdev_err(rdev, "invalid mode %x\n", mode);
217                 return -EINVAL;
218         }
219         return 0;
220 }
221
222 /* dynamic regulator mode switching constraint check */
223 static int regulator_check_drms(struct regulator_dev *rdev)
224 {
225         if (!rdev->constraints) {
226                 rdev_err(rdev, "no constraints\n");
227                 return -ENODEV;
228         }
229         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
230                 rdev_err(rdev, "operation not allowed\n");
231                 return -EPERM;
232         }
233         return 0;
234 }
235
236 static ssize_t device_requested_uA_show(struct device *dev,
237                              struct device_attribute *attr, char *buf)
238 {
239         struct regulator *regulator;
240
241         regulator = get_device_regulator(dev);
242         if (regulator == NULL)
243                 return 0;
244
245         return sprintf(buf, "%d\n", regulator->uA_load);
246 }
247
248 static ssize_t regulator_uV_show(struct device *dev,
249                                 struct device_attribute *attr, char *buf)
250 {
251         struct regulator_dev *rdev = dev_get_drvdata(dev);
252         ssize_t ret;
253
254         mutex_lock(&rdev->mutex);
255         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
256         mutex_unlock(&rdev->mutex);
257
258         return ret;
259 }
260 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
261
262 static ssize_t regulator_uA_show(struct device *dev,
263                                 struct device_attribute *attr, char *buf)
264 {
265         struct regulator_dev *rdev = dev_get_drvdata(dev);
266
267         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
268 }
269 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
270
271 static ssize_t regulator_name_show(struct device *dev,
272                              struct device_attribute *attr, char *buf)
273 {
274         struct regulator_dev *rdev = dev_get_drvdata(dev);
275
276         return sprintf(buf, "%s\n", rdev_get_name(rdev));
277 }
278
279 static ssize_t regulator_print_opmode(char *buf, int mode)
280 {
281         switch (mode) {
282         case REGULATOR_MODE_FAST:
283                 return sprintf(buf, "fast\n");
284         case REGULATOR_MODE_NORMAL:
285                 return sprintf(buf, "normal\n");
286         case REGULATOR_MODE_IDLE:
287                 return sprintf(buf, "idle\n");
288         case REGULATOR_MODE_STANDBY:
289                 return sprintf(buf, "standby\n");
290         }
291         return sprintf(buf, "unknown\n");
292 }
293
294 static ssize_t regulator_opmode_show(struct device *dev,
295                                     struct device_attribute *attr, char *buf)
296 {
297         struct regulator_dev *rdev = dev_get_drvdata(dev);
298
299         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
300 }
301 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
302
303 static ssize_t regulator_print_state(char *buf, int state)
304 {
305         if (state > 0)
306                 return sprintf(buf, "enabled\n");
307         else if (state == 0)
308                 return sprintf(buf, "disabled\n");
309         else
310                 return sprintf(buf, "unknown\n");
311 }
312
313 static ssize_t regulator_state_show(struct device *dev,
314                                    struct device_attribute *attr, char *buf)
315 {
316         struct regulator_dev *rdev = dev_get_drvdata(dev);
317         ssize_t ret;
318
319         mutex_lock(&rdev->mutex);
320         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
321         mutex_unlock(&rdev->mutex);
322
323         return ret;
324 }
325 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
326
327 static ssize_t regulator_status_show(struct device *dev,
328                                    struct device_attribute *attr, char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331         int status;
332         char *label;
333
334         status = rdev->desc->ops->get_status(rdev);
335         if (status < 0)
336                 return status;
337
338         switch (status) {
339         case REGULATOR_STATUS_OFF:
340                 label = "off";
341                 break;
342         case REGULATOR_STATUS_ON:
343                 label = "on";
344                 break;
345         case REGULATOR_STATUS_ERROR:
346                 label = "error";
347                 break;
348         case REGULATOR_STATUS_FAST:
349                 label = "fast";
350                 break;
351         case REGULATOR_STATUS_NORMAL:
352                 label = "normal";
353                 break;
354         case REGULATOR_STATUS_IDLE:
355                 label = "idle";
356                 break;
357         case REGULATOR_STATUS_STANDBY:
358                 label = "standby";
359                 break;
360         default:
361                 return -ERANGE;
362         }
363
364         return sprintf(buf, "%s\n", label);
365 }
366 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
367
368 static ssize_t regulator_min_uA_show(struct device *dev,
369                                     struct device_attribute *attr, char *buf)
370 {
371         struct regulator_dev *rdev = dev_get_drvdata(dev);
372
373         if (!rdev->constraints)
374                 return sprintf(buf, "constraint not defined\n");
375
376         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
377 }
378 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
379
380 static ssize_t regulator_max_uA_show(struct device *dev,
381                                     struct device_attribute *attr, char *buf)
382 {
383         struct regulator_dev *rdev = dev_get_drvdata(dev);
384
385         if (!rdev->constraints)
386                 return sprintf(buf, "constraint not defined\n");
387
388         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
389 }
390 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
391
392 static ssize_t regulator_min_uV_show(struct device *dev,
393                                     struct device_attribute *attr, char *buf)
394 {
395         struct regulator_dev *rdev = dev_get_drvdata(dev);
396
397         if (!rdev->constraints)
398                 return sprintf(buf, "constraint not defined\n");
399
400         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
401 }
402 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
403
404 static ssize_t regulator_max_uV_show(struct device *dev,
405                                     struct device_attribute *attr, char *buf)
406 {
407         struct regulator_dev *rdev = dev_get_drvdata(dev);
408
409         if (!rdev->constraints)
410                 return sprintf(buf, "constraint not defined\n");
411
412         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
413 }
414 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
415
416 static ssize_t regulator_total_uA_show(struct device *dev,
417                                       struct device_attribute *attr, char *buf)
418 {
419         struct regulator_dev *rdev = dev_get_drvdata(dev);
420         struct regulator *regulator;
421         int uA = 0;
422
423         mutex_lock(&rdev->mutex);
424         list_for_each_entry(regulator, &rdev->consumer_list, list)
425                 uA += regulator->uA_load;
426         mutex_unlock(&rdev->mutex);
427         return sprintf(buf, "%d\n", uA);
428 }
429 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
430
431 static ssize_t regulator_num_users_show(struct device *dev,
432                                       struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435         return sprintf(buf, "%d\n", rdev->use_count);
436 }
437
438 static ssize_t regulator_type_show(struct device *dev,
439                                   struct device_attribute *attr, char *buf)
440 {
441         struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443         switch (rdev->desc->type) {
444         case REGULATOR_VOLTAGE:
445                 return sprintf(buf, "voltage\n");
446         case REGULATOR_CURRENT:
447                 return sprintf(buf, "current\n");
448         }
449         return sprintf(buf, "unknown\n");
450 }
451
452 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
453                                 struct device_attribute *attr, char *buf)
454 {
455         struct regulator_dev *rdev = dev_get_drvdata(dev);
456
457         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
458 }
459 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
460                 regulator_suspend_mem_uV_show, NULL);
461
462 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
463                                 struct device_attribute *attr, char *buf)
464 {
465         struct regulator_dev *rdev = dev_get_drvdata(dev);
466
467         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
468 }
469 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
470                 regulator_suspend_disk_uV_show, NULL);
471
472 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
473                                 struct device_attribute *attr, char *buf)
474 {
475         struct regulator_dev *rdev = dev_get_drvdata(dev);
476
477         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
478 }
479 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
480                 regulator_suspend_standby_uV_show, NULL);
481
482 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
483                                 struct device_attribute *attr, char *buf)
484 {
485         struct regulator_dev *rdev = dev_get_drvdata(dev);
486
487         return regulator_print_opmode(buf,
488                 rdev->constraints->state_mem.mode);
489 }
490 static DEVICE_ATTR(suspend_mem_mode, 0444,
491                 regulator_suspend_mem_mode_show, NULL);
492
493 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
494                                 struct device_attribute *attr, char *buf)
495 {
496         struct regulator_dev *rdev = dev_get_drvdata(dev);
497
498         return regulator_print_opmode(buf,
499                 rdev->constraints->state_disk.mode);
500 }
501 static DEVICE_ATTR(suspend_disk_mode, 0444,
502                 regulator_suspend_disk_mode_show, NULL);
503
504 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
505                                 struct device_attribute *attr, char *buf)
506 {
507         struct regulator_dev *rdev = dev_get_drvdata(dev);
508
509         return regulator_print_opmode(buf,
510                 rdev->constraints->state_standby.mode);
511 }
512 static DEVICE_ATTR(suspend_standby_mode, 0444,
513                 regulator_suspend_standby_mode_show, NULL);
514
515 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
516                                    struct device_attribute *attr, char *buf)
517 {
518         struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520         return regulator_print_state(buf,
521                         rdev->constraints->state_mem.enabled);
522 }
523 static DEVICE_ATTR(suspend_mem_state, 0444,
524                 regulator_suspend_mem_state_show, NULL);
525
526 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
527                                    struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return regulator_print_state(buf,
532                         rdev->constraints->state_disk.enabled);
533 }
534 static DEVICE_ATTR(suspend_disk_state, 0444,
535                 regulator_suspend_disk_state_show, NULL);
536
537 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
538                                    struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return regulator_print_state(buf,
543                         rdev->constraints->state_standby.enabled);
544 }
545 static DEVICE_ATTR(suspend_standby_state, 0444,
546                 regulator_suspend_standby_state_show, NULL);
547
548
549 /*
550  * These are the only attributes are present for all regulators.
551  * Other attributes are a function of regulator functionality.
552  */
553 static struct device_attribute regulator_dev_attrs[] = {
554         __ATTR(name, 0444, regulator_name_show, NULL),
555         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
556         __ATTR(type, 0444, regulator_type_show, NULL),
557         __ATTR_NULL,
558 };
559
560 static void regulator_dev_release(struct device *dev)
561 {
562         struct regulator_dev *rdev = dev_get_drvdata(dev);
563         kfree(rdev);
564 }
565
566 static struct class regulator_class = {
567         .name = "regulator",
568         .dev_release = regulator_dev_release,
569         .dev_attrs = regulator_dev_attrs,
570 };
571
572 /* Calculate the new optimum regulator operating mode based on the new total
573  * consumer load. All locks held by caller */
574 static void drms_uA_update(struct regulator_dev *rdev)
575 {
576         struct regulator *sibling;
577         int current_uA = 0, output_uV, input_uV, err;
578         unsigned int mode;
579
580         err = regulator_check_drms(rdev);
581         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
582             (!rdev->desc->ops->get_voltage &&
583              !rdev->desc->ops->get_voltage_sel) ||
584             !rdev->desc->ops->set_mode)
585                 return;
586
587         /* get output voltage */
588         output_uV = _regulator_get_voltage(rdev);
589         if (output_uV <= 0)
590                 return;
591
592         /* get input voltage */
593         input_uV = 0;
594         if (rdev->supply)
595                 input_uV = _regulator_get_voltage(rdev);
596         if (input_uV <= 0)
597                 input_uV = rdev->constraints->input_uV;
598         if (input_uV <= 0)
599                 return;
600
601         /* calc total requested load */
602         list_for_each_entry(sibling, &rdev->consumer_list, list)
603                 current_uA += sibling->uA_load;
604
605         /* now get the optimum mode for our new total regulator load */
606         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
607                                                   output_uV, current_uA);
608
609         /* check the new mode is allowed */
610         err = regulator_check_mode(rdev, mode);
611         if (err == 0)
612                 rdev->desc->ops->set_mode(rdev, mode);
613 }
614
615 static int suspend_set_state(struct regulator_dev *rdev,
616         struct regulator_state *rstate)
617 {
618         int ret = 0;
619         bool can_set_state;
620
621         can_set_state = rdev->desc->ops->set_suspend_enable &&
622                 rdev->desc->ops->set_suspend_disable;
623
624         /* If we have no suspend mode configration don't set anything;
625          * only warn if the driver actually makes the suspend mode
626          * configurable.
627          */
628         if (!rstate->enabled && !rstate->disabled) {
629                 if (can_set_state)
630                         rdev_warn(rdev, "No configuration\n");
631                 return 0;
632         }
633
634         if (rstate->enabled && rstate->disabled) {
635                 rdev_err(rdev, "invalid configuration\n");
636                 return -EINVAL;
637         }
638
639         if (!can_set_state) {
640                 rdev_err(rdev, "no way to set suspend state\n");
641                 return -EINVAL;
642         }
643
644         if (rstate->enabled)
645                 ret = rdev->desc->ops->set_suspend_enable(rdev);
646         else
647                 ret = rdev->desc->ops->set_suspend_disable(rdev);
648         if (ret < 0) {
649                 rdev_err(rdev, "failed to enabled/disable\n");
650                 return ret;
651         }
652
653         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
654                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
655                 if (ret < 0) {
656                         rdev_err(rdev, "failed to set voltage\n");
657                         return ret;
658                 }
659         }
660
661         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
662                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
663                 if (ret < 0) {
664                         rdev_err(rdev, "failed to set mode\n");
665                         return ret;
666                 }
667         }
668         return ret;
669 }
670
671 /* locks held by caller */
672 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
673 {
674         if (!rdev->constraints)
675                 return -EINVAL;
676
677         switch (state) {
678         case PM_SUSPEND_STANDBY:
679                 return suspend_set_state(rdev,
680                         &rdev->constraints->state_standby);
681         case PM_SUSPEND_MEM:
682                 return suspend_set_state(rdev,
683                         &rdev->constraints->state_mem);
684         case PM_SUSPEND_MAX:
685                 return suspend_set_state(rdev,
686                         &rdev->constraints->state_disk);
687         default:
688                 return -EINVAL;
689         }
690 }
691
692 static void print_constraints(struct regulator_dev *rdev)
693 {
694         struct regulation_constraints *constraints = rdev->constraints;
695         char buf[80] = "";
696         int count = 0;
697         int ret;
698
699         if (constraints->min_uV && constraints->max_uV) {
700                 if (constraints->min_uV == constraints->max_uV)
701                         count += sprintf(buf + count, "%d mV ",
702                                          constraints->min_uV / 1000);
703                 else
704                         count += sprintf(buf + count, "%d <--> %d mV ",
705                                          constraints->min_uV / 1000,
706                                          constraints->max_uV / 1000);
707         }
708
709         if (!constraints->min_uV ||
710             constraints->min_uV != constraints->max_uV) {
711                 ret = _regulator_get_voltage(rdev);
712                 if (ret > 0)
713                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
714         }
715
716         if (constraints->min_uA && constraints->max_uA) {
717                 if (constraints->min_uA == constraints->max_uA)
718                         count += sprintf(buf + count, "%d mA ",
719                                          constraints->min_uA / 1000);
720                 else
721                         count += sprintf(buf + count, "%d <--> %d mA ",
722                                          constraints->min_uA / 1000,
723                                          constraints->max_uA / 1000);
724         }
725
726         if (!constraints->min_uA ||
727             constraints->min_uA != constraints->max_uA) {
728                 ret = _regulator_get_current_limit(rdev);
729                 if (ret > 0)
730                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
731         }
732
733         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
734                 count += sprintf(buf + count, "fast ");
735         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
736                 count += sprintf(buf + count, "normal ");
737         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
738                 count += sprintf(buf + count, "idle ");
739         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
740                 count += sprintf(buf + count, "standby");
741
742         rdev_info(rdev, "regulator: %s\n", buf);
743 }
744
745 static int machine_constraints_voltage(struct regulator_dev *rdev,
746         struct regulation_constraints *constraints)
747 {
748         struct regulator_ops *ops = rdev->desc->ops;
749         int ret;
750
751         /* do we need to apply the constraint voltage */
752         if (rdev->constraints->apply_uV &&
753             rdev->constraints->min_uV == rdev->constraints->max_uV) {
754                 ret = _regulator_do_set_voltage(rdev,
755                                                 rdev->constraints->min_uV,
756                                                 rdev->constraints->max_uV);
757                 if (ret < 0) {
758                         rdev_err(rdev, "failed to apply %duV constraint\n",
759                                  rdev->constraints->min_uV);
760                         rdev->constraints = NULL;
761                         return ret;
762                 }
763         }
764
765         /* constrain machine-level voltage specs to fit
766          * the actual range supported by this regulator.
767          */
768         if (ops->list_voltage && rdev->desc->n_voltages) {
769                 int     count = rdev->desc->n_voltages;
770                 int     i;
771                 int     min_uV = INT_MAX;
772                 int     max_uV = INT_MIN;
773                 int     cmin = constraints->min_uV;
774                 int     cmax = constraints->max_uV;
775
776                 /* it's safe to autoconfigure fixed-voltage supplies
777                    and the constraints are used by list_voltage. */
778                 if (count == 1 && !cmin) {
779                         cmin = 1;
780                         cmax = INT_MAX;
781                         constraints->min_uV = cmin;
782                         constraints->max_uV = cmax;
783                 }
784
785                 /* voltage constraints are optional */
786                 if ((cmin == 0) && (cmax == 0))
787                         return 0;
788
789                 /* else require explicit machine-level constraints */
790                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
791                         rdev_err(rdev, "invalid voltage constraints\n");
792                         return -EINVAL;
793                 }
794
795                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
796                 for (i = 0; i < count; i++) {
797                         int     value;
798
799                         value = ops->list_voltage(rdev, i);
800                         if (value <= 0)
801                                 continue;
802
803                         /* maybe adjust [min_uV..max_uV] */
804                         if (value >= cmin && value < min_uV)
805                                 min_uV = value;
806                         if (value <= cmax && value > max_uV)
807                                 max_uV = value;
808                 }
809
810                 /* final: [min_uV..max_uV] valid iff constraints valid */
811                 if (max_uV < min_uV) {
812                         rdev_err(rdev, "unsupportable voltage constraints\n");
813                         return -EINVAL;
814                 }
815
816                 /* use regulator's subset of machine constraints */
817                 if (constraints->min_uV < min_uV) {
818                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
819                                  constraints->min_uV, min_uV);
820                         constraints->min_uV = min_uV;
821                 }
822                 if (constraints->max_uV > max_uV) {
823                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
824                                  constraints->max_uV, max_uV);
825                         constraints->max_uV = max_uV;
826                 }
827         }
828
829         return 0;
830 }
831
832 /**
833  * set_machine_constraints - sets regulator constraints
834  * @rdev: regulator source
835  * @constraints: constraints to apply
836  *
837  * Allows platform initialisation code to define and constrain
838  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
839  * Constraints *must* be set by platform code in order for some
840  * regulator operations to proceed i.e. set_voltage, set_current_limit,
841  * set_mode.
842  */
843 static int set_machine_constraints(struct regulator_dev *rdev,
844         const struct regulation_constraints *constraints)
845 {
846         int ret = 0;
847         struct regulator_ops *ops = rdev->desc->ops;
848
849         rdev->constraints = kmemdup(constraints, sizeof(*constraints),
850                                     GFP_KERNEL);
851         if (!rdev->constraints)
852                 return -ENOMEM;
853
854         ret = machine_constraints_voltage(rdev, rdev->constraints);
855         if (ret != 0)
856                 goto out;
857
858         /* do we need to setup our suspend state */
859         if (constraints->initial_state) {
860                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
861                 if (ret < 0) {
862                         rdev_err(rdev, "failed to set suspend state\n");
863                         rdev->constraints = NULL;
864                         goto out;
865                 }
866         }
867
868         if (constraints->initial_mode) {
869                 if (!ops->set_mode) {
870                         rdev_err(rdev, "no set_mode operation\n");
871                         ret = -EINVAL;
872                         goto out;
873                 }
874
875                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
876                 if (ret < 0) {
877                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
878                         goto out;
879                 }
880         }
881
882         /* If the constraints say the regulator should be on at this point
883          * and we have control then make sure it is enabled.
884          */
885         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
886             ops->enable) {
887                 ret = ops->enable(rdev);
888                 if (ret < 0) {
889                         rdev_err(rdev, "failed to enable\n");
890                         rdev->constraints = NULL;
891                         goto out;
892                 }
893         }
894
895         print_constraints(rdev);
896 out:
897         return ret;
898 }
899
900 /**
901  * set_supply - set regulator supply regulator
902  * @rdev: regulator name
903  * @supply_rdev: supply regulator name
904  *
905  * Called by platform initialisation code to set the supply regulator for this
906  * regulator. This ensures that a regulators supply will also be enabled by the
907  * core if it's child is enabled.
908  */
909 static int set_supply(struct regulator_dev *rdev,
910         struct regulator_dev *supply_rdev)
911 {
912         int err;
913
914         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
915                                 "supply");
916         if (err) {
917                 rdev_err(rdev, "could not add device link %s err %d\n",
918                          supply_rdev->dev.kobj.name, err);
919                        goto out;
920         }
921         rdev->supply = supply_rdev;
922         list_add(&rdev->slist, &supply_rdev->supply_list);
923 out:
924         return err;
925 }
926
927 /**
928  * set_consumer_device_supply - Bind a regulator to a symbolic supply
929  * @rdev:         regulator source
930  * @consumer_dev: device the supply applies to
931  * @consumer_dev_name: dev_name() string for device supply applies to
932  * @supply:       symbolic name for supply
933  *
934  * Allows platform initialisation code to map physical regulator
935  * sources to symbolic names for supplies for use by devices.  Devices
936  * should use these symbolic names to request regulators, avoiding the
937  * need to provide board-specific regulator names as platform data.
938  *
939  * Only one of consumer_dev and consumer_dev_name may be specified.
940  */
941 static int set_consumer_device_supply(struct regulator_dev *rdev,
942         struct device *consumer_dev, const char *consumer_dev_name,
943         const char *supply)
944 {
945         struct regulator_map *node;
946         int has_dev;
947
948         if (consumer_dev && consumer_dev_name)
949                 return -EINVAL;
950
951         if (!consumer_dev_name && consumer_dev)
952                 consumer_dev_name = dev_name(consumer_dev);
953
954         if (supply == NULL)
955                 return -EINVAL;
956
957         if (consumer_dev_name != NULL)
958                 has_dev = 1;
959         else
960                 has_dev = 0;
961
962         list_for_each_entry(node, &regulator_map_list, list) {
963                 if (node->dev_name && consumer_dev_name) {
964                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
965                                 continue;
966                 } else if (node->dev_name || consumer_dev_name) {
967                         continue;
968                 }
969
970                 if (strcmp(node->supply, supply) != 0)
971                         continue;
972
973                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
974                         dev_name(&node->regulator->dev),
975                         node->regulator->desc->name,
976                         supply,
977                         dev_name(&rdev->dev), rdev_get_name(rdev));
978                 return -EBUSY;
979         }
980
981         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
982         if (node == NULL)
983                 return -ENOMEM;
984
985         node->regulator = rdev;
986         node->supply = supply;
987
988         if (has_dev) {
989                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
990                 if (node->dev_name == NULL) {
991                         kfree(node);
992                         return -ENOMEM;
993                 }
994         }
995
996         list_add(&node->list, &regulator_map_list);
997         return 0;
998 }
999
1000 static void unset_regulator_supplies(struct regulator_dev *rdev)
1001 {
1002         struct regulator_map *node, *n;
1003
1004         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1005                 if (rdev == node->regulator) {
1006                         list_del(&node->list);
1007                         kfree(node->dev_name);
1008                         kfree(node);
1009                 }
1010         }
1011 }
1012
1013 #define REG_STR_SIZE    32
1014
1015 static struct regulator *create_regulator(struct regulator_dev *rdev,
1016                                           struct device *dev,
1017                                           const char *supply_name)
1018 {
1019         struct regulator *regulator;
1020         char buf[REG_STR_SIZE];
1021         int err, size;
1022
1023         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1024         if (regulator == NULL)
1025                 return NULL;
1026
1027         mutex_lock(&rdev->mutex);
1028         regulator->rdev = rdev;
1029         list_add(&regulator->list, &rdev->consumer_list);
1030
1031         if (dev) {
1032                 /* create a 'requested_microamps_name' sysfs entry */
1033                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1034                         supply_name);
1035                 if (size >= REG_STR_SIZE)
1036                         goto overflow_err;
1037
1038                 regulator->dev = dev;
1039                 sysfs_attr_init(&regulator->dev_attr.attr);
1040                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1041                 if (regulator->dev_attr.attr.name == NULL)
1042                         goto attr_name_err;
1043
1044                 regulator->dev_attr.attr.mode = 0444;
1045                 regulator->dev_attr.show = device_requested_uA_show;
1046                 err = device_create_file(dev, &regulator->dev_attr);
1047                 if (err < 0) {
1048                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1049                         goto attr_name_err;
1050                 }
1051
1052                 /* also add a link to the device sysfs entry */
1053                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1054                                  dev->kobj.name, supply_name);
1055                 if (size >= REG_STR_SIZE)
1056                         goto attr_err;
1057
1058                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1059                 if (regulator->supply_name == NULL)
1060                         goto attr_err;
1061
1062                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1063                                         buf);
1064                 if (err) {
1065                         rdev_warn(rdev, "could not add device link %s err %d\n",
1066                                   dev->kobj.name, err);
1067                         goto link_name_err;
1068                 }
1069         }
1070         mutex_unlock(&rdev->mutex);
1071         return regulator;
1072 link_name_err:
1073         kfree(regulator->supply_name);
1074 attr_err:
1075         device_remove_file(regulator->dev, &regulator->dev_attr);
1076 attr_name_err:
1077         kfree(regulator->dev_attr.attr.name);
1078 overflow_err:
1079         list_del(&regulator->list);
1080         kfree(regulator);
1081         mutex_unlock(&rdev->mutex);
1082         return NULL;
1083 }
1084
1085 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1086 {
1087         if (!rdev->desc->ops->enable_time)
1088                 return 0;
1089         return rdev->desc->ops->enable_time(rdev);
1090 }
1091
1092 /* Internal regulator request function */
1093 static struct regulator *_regulator_get(struct device *dev, const char *id,
1094                                         int exclusive)
1095 {
1096         struct regulator_dev *rdev;
1097         struct regulator_map *map;
1098         struct regulator *regulator = ERR_PTR(-ENODEV);
1099         const char *devname = NULL;
1100         int ret;
1101
1102         if (id == NULL) {
1103                 pr_err("get() with no identifier\n");
1104                 return regulator;
1105         }
1106
1107         if (dev)
1108                 devname = dev_name(dev);
1109
1110         mutex_lock(&regulator_list_mutex);
1111
1112         list_for_each_entry(map, &regulator_map_list, list) {
1113                 /* If the mapping has a device set up it must match */
1114                 if (map->dev_name &&
1115                     (!devname || strcmp(map->dev_name, devname)))
1116                         continue;
1117
1118                 if (strcmp(map->supply, id) == 0) {
1119                         rdev = map->regulator;
1120                         goto found;
1121                 }
1122         }
1123
1124         if (board_wants_dummy_regulator) {
1125                 rdev = dummy_regulator_rdev;
1126                 goto found;
1127         }
1128
1129 #ifdef CONFIG_REGULATOR_DUMMY
1130         if (!devname)
1131                 devname = "deviceless";
1132
1133         /* If the board didn't flag that it was fully constrained then
1134          * substitute in a dummy regulator so consumers can continue.
1135          */
1136         if (!has_full_constraints) {
1137                 pr_warn("%s supply %s not found, using dummy regulator\n",
1138                         devname, id);
1139                 rdev = dummy_regulator_rdev;
1140                 goto found;
1141         }
1142 #endif
1143
1144         mutex_unlock(&regulator_list_mutex);
1145         return regulator;
1146
1147 found:
1148         if (rdev->exclusive) {
1149                 regulator = ERR_PTR(-EPERM);
1150                 goto out;
1151         }
1152
1153         if (exclusive && rdev->open_count) {
1154                 regulator = ERR_PTR(-EBUSY);
1155                 goto out;
1156         }
1157
1158         if (!try_module_get(rdev->owner))
1159                 goto out;
1160
1161         regulator = create_regulator(rdev, dev, id);
1162         if (regulator == NULL) {
1163                 regulator = ERR_PTR(-ENOMEM);
1164                 module_put(rdev->owner);
1165         }
1166
1167         rdev->open_count++;
1168         if (exclusive) {
1169                 rdev->exclusive = 1;
1170
1171                 ret = _regulator_is_enabled(rdev);
1172                 if (ret > 0)
1173                         rdev->use_count = 1;
1174                 else
1175                         rdev->use_count = 0;
1176         }
1177
1178 out:
1179         mutex_unlock(&regulator_list_mutex);
1180
1181         return regulator;
1182 }
1183
1184 /**
1185  * regulator_get - lookup and obtain a reference to a regulator.
1186  * @dev: device for regulator "consumer"
1187  * @id: Supply name or regulator ID.
1188  *
1189  * Returns a struct regulator corresponding to the regulator producer,
1190  * or IS_ERR() condition containing errno.
1191  *
1192  * Use of supply names configured via regulator_set_device_supply() is
1193  * strongly encouraged.  It is recommended that the supply name used
1194  * should match the name used for the supply and/or the relevant
1195  * device pins in the datasheet.
1196  */
1197 struct regulator *regulator_get(struct device *dev, const char *id)
1198 {
1199         return _regulator_get(dev, id, 0);
1200 }
1201 EXPORT_SYMBOL_GPL(regulator_get);
1202
1203 /**
1204  * regulator_get_exclusive - obtain exclusive access to a regulator.
1205  * @dev: device for regulator "consumer"
1206  * @id: Supply name or regulator ID.
1207  *
1208  * Returns a struct regulator corresponding to the regulator producer,
1209  * or IS_ERR() condition containing errno.  Other consumers will be
1210  * unable to obtain this reference is held and the use count for the
1211  * regulator will be initialised to reflect the current state of the
1212  * regulator.
1213  *
1214  * This is intended for use by consumers which cannot tolerate shared
1215  * use of the regulator such as those which need to force the
1216  * regulator off for correct operation of the hardware they are
1217  * controlling.
1218  *
1219  * Use of supply names configured via regulator_set_device_supply() is
1220  * strongly encouraged.  It is recommended that the supply name used
1221  * should match the name used for the supply and/or the relevant
1222  * device pins in the datasheet.
1223  */
1224 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1225 {
1226         return _regulator_get(dev, id, 1);
1227 }
1228 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1229
1230 /**
1231  * regulator_put - "free" the regulator source
1232  * @regulator: regulator source
1233  *
1234  * Note: drivers must ensure that all regulator_enable calls made on this
1235  * regulator source are balanced by regulator_disable calls prior to calling
1236  * this function.
1237  */
1238 void regulator_put(struct regulator *regulator)
1239 {
1240         struct regulator_dev *rdev;
1241
1242         if (regulator == NULL || IS_ERR(regulator))
1243                 return;
1244
1245         mutex_lock(&regulator_list_mutex);
1246         rdev = regulator->rdev;
1247
1248         /* remove any sysfs entries */
1249         if (regulator->dev) {
1250                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1251                 kfree(regulator->supply_name);
1252                 device_remove_file(regulator->dev, &regulator->dev_attr);
1253                 kfree(regulator->dev_attr.attr.name);
1254         }
1255         list_del(&regulator->list);
1256         kfree(regulator);
1257
1258         rdev->open_count--;
1259         rdev->exclusive = 0;
1260
1261         module_put(rdev->owner);
1262         mutex_unlock(&regulator_list_mutex);
1263 }
1264 EXPORT_SYMBOL_GPL(regulator_put);
1265
1266 static int _regulator_can_change_status(struct regulator_dev *rdev)
1267 {
1268         if (!rdev->constraints)
1269                 return 0;
1270
1271         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1272                 return 1;
1273         else
1274                 return 0;
1275 }
1276
1277 /* locks held by regulator_enable() */
1278 static int _regulator_enable(struct regulator_dev *rdev)
1279 {
1280         int ret, delay;
1281
1282         if (rdev->use_count == 0) {
1283                 /* do we need to enable the supply regulator first */
1284                 if (rdev->supply) {
1285                         mutex_lock(&rdev->supply->mutex);
1286                         ret = _regulator_enable(rdev->supply);
1287                         mutex_unlock(&rdev->supply->mutex);
1288                         if (ret < 0) {
1289                                 rdev_err(rdev, "failed to enable: %d\n", ret);
1290                                 return ret;
1291                         }
1292                 }
1293         }
1294
1295         /* check voltage and requested load before enabling */
1296         if (rdev->constraints &&
1297             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1298                 drms_uA_update(rdev);
1299
1300         if (rdev->use_count == 0) {
1301                 /* The regulator may on if it's not switchable or left on */
1302                 ret = _regulator_is_enabled(rdev);
1303                 if (ret == -EINVAL || ret == 0) {
1304                         if (!_regulator_can_change_status(rdev))
1305                                 return -EPERM;
1306
1307                         if (!rdev->desc->ops->enable)
1308                                 return -EINVAL;
1309
1310                         /* Query before enabling in case configuration
1311                          * dependant.  */
1312                         ret = _regulator_get_enable_time(rdev);
1313                         if (ret >= 0) {
1314                                 delay = ret;
1315                         } else {
1316                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1317                                            ret);
1318                                 delay = 0;
1319                         }
1320
1321                         trace_regulator_enable(rdev_get_name(rdev));
1322
1323                         /* Allow the regulator to ramp; it would be useful
1324                          * to extend this for bulk operations so that the
1325                          * regulators can ramp together.  */
1326                         ret = rdev->desc->ops->enable(rdev);
1327                         if (ret < 0)
1328                                 return ret;
1329
1330                         trace_regulator_enable_delay(rdev_get_name(rdev));
1331
1332                         if (delay >= 1000) {
1333                                 mdelay(delay / 1000);
1334                                 udelay(delay % 1000);
1335                         } else if (delay) {
1336                                 udelay(delay);
1337                         }
1338
1339                         trace_regulator_enable_complete(rdev_get_name(rdev));
1340
1341                 } else if (ret < 0) {
1342                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1343                         return ret;
1344                 }
1345                 /* Fallthrough on positive return values - already enabled */
1346         }
1347
1348         rdev->use_count++;
1349
1350         return 0;
1351 }
1352
1353 /**
1354  * regulator_enable - enable regulator output
1355  * @regulator: regulator source
1356  *
1357  * Request that the regulator be enabled with the regulator output at
1358  * the predefined voltage or current value.  Calls to regulator_enable()
1359  * must be balanced with calls to regulator_disable().
1360  *
1361  * NOTE: the output value can be set by other drivers, boot loader or may be
1362  * hardwired in the regulator.
1363  */
1364 int regulator_enable(struct regulator *regulator)
1365 {
1366         struct regulator_dev *rdev = regulator->rdev;
1367         int ret = 0;
1368
1369         mutex_lock(&rdev->mutex);
1370         ret = _regulator_enable(rdev);
1371         mutex_unlock(&rdev->mutex);
1372         return ret;
1373 }
1374 EXPORT_SYMBOL_GPL(regulator_enable);
1375
1376 /* locks held by regulator_disable() */
1377 static int _regulator_disable(struct regulator_dev *rdev,
1378                 struct regulator_dev **supply_rdev_ptr)
1379 {
1380         int ret = 0;
1381         *supply_rdev_ptr = NULL;
1382
1383         if (WARN(rdev->use_count <= 0,
1384                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1385                 return -EIO;
1386
1387         /* are we the last user and permitted to disable ? */
1388         if (rdev->use_count == 1 &&
1389             (rdev->constraints && !rdev->constraints->always_on)) {
1390
1391                 /* we are last user */
1392                 if (_regulator_can_change_status(rdev) &&
1393                     rdev->desc->ops->disable) {
1394                         trace_regulator_disable(rdev_get_name(rdev));
1395
1396                         ret = rdev->desc->ops->disable(rdev);
1397                         if (ret < 0) {
1398                                 rdev_err(rdev, "failed to disable\n");
1399                                 return ret;
1400                         }
1401
1402                         trace_regulator_disable_complete(rdev_get_name(rdev));
1403
1404                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1405                                              NULL);
1406                 }
1407
1408                 /* decrease our supplies ref count and disable if required */
1409                 *supply_rdev_ptr = rdev->supply;
1410
1411                 rdev->use_count = 0;
1412         } else if (rdev->use_count > 1) {
1413
1414                 if (rdev->constraints &&
1415                         (rdev->constraints->valid_ops_mask &
1416                         REGULATOR_CHANGE_DRMS))
1417                         drms_uA_update(rdev);
1418
1419                 rdev->use_count--;
1420         }
1421         return ret;
1422 }
1423
1424 /**
1425  * regulator_disable - disable regulator output
1426  * @regulator: regulator source
1427  *
1428  * Disable the regulator output voltage or current.  Calls to
1429  * regulator_enable() must be balanced with calls to
1430  * regulator_disable().
1431  *
1432  * NOTE: this will only disable the regulator output if no other consumer
1433  * devices have it enabled, the regulator device supports disabling and
1434  * machine constraints permit this operation.
1435  */
1436 int regulator_disable(struct regulator *regulator)
1437 {
1438         struct regulator_dev *rdev = regulator->rdev;
1439         struct regulator_dev *supply_rdev = NULL;
1440         int ret = 0;
1441
1442         mutex_lock(&rdev->mutex);
1443         ret = _regulator_disable(rdev, &supply_rdev);
1444         mutex_unlock(&rdev->mutex);
1445
1446         /* decrease our supplies ref count and disable if required */
1447         while (supply_rdev != NULL) {
1448                 rdev = supply_rdev;
1449
1450                 mutex_lock(&rdev->mutex);
1451                 _regulator_disable(rdev, &supply_rdev);
1452                 mutex_unlock(&rdev->mutex);
1453         }
1454
1455         return ret;
1456 }
1457 EXPORT_SYMBOL_GPL(regulator_disable);
1458
1459 /* locks held by regulator_force_disable() */
1460 static int _regulator_force_disable(struct regulator_dev *rdev,
1461                 struct regulator_dev **supply_rdev_ptr)
1462 {
1463         int ret = 0;
1464
1465         /* force disable */
1466         if (rdev->desc->ops->disable) {
1467                 /* ah well, who wants to live forever... */
1468                 ret = rdev->desc->ops->disable(rdev);
1469                 if (ret < 0) {
1470                         rdev_err(rdev, "failed to force disable\n");
1471                         return ret;
1472                 }
1473                 /* notify other consumers that power has been forced off */
1474                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1475                         REGULATOR_EVENT_DISABLE, NULL);
1476         }
1477
1478         /* decrease our supplies ref count and disable if required */
1479         *supply_rdev_ptr = rdev->supply;
1480
1481         rdev->use_count = 0;
1482         return ret;
1483 }
1484
1485 /**
1486  * regulator_force_disable - force disable regulator output
1487  * @regulator: regulator source
1488  *
1489  * Forcibly disable the regulator output voltage or current.
1490  * NOTE: this *will* disable the regulator output even if other consumer
1491  * devices have it enabled. This should be used for situations when device
1492  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1493  */
1494 int regulator_force_disable(struct regulator *regulator)
1495 {
1496         struct regulator_dev *supply_rdev = NULL;
1497         int ret;
1498
1499         mutex_lock(&regulator->rdev->mutex);
1500         regulator->uA_load = 0;
1501         ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1502         mutex_unlock(&regulator->rdev->mutex);
1503
1504         if (supply_rdev)
1505                 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1506
1507         return ret;
1508 }
1509 EXPORT_SYMBOL_GPL(regulator_force_disable);
1510
1511 static int _regulator_is_enabled(struct regulator_dev *rdev)
1512 {
1513         /* If we don't know then assume that the regulator is always on */
1514         if (!rdev->desc->ops->is_enabled)
1515                 return 1;
1516
1517         return rdev->desc->ops->is_enabled(rdev);
1518 }
1519
1520 /**
1521  * regulator_is_enabled - is the regulator output enabled
1522  * @regulator: regulator source
1523  *
1524  * Returns positive if the regulator driver backing the source/client
1525  * has requested that the device be enabled, zero if it hasn't, else a
1526  * negative errno code.
1527  *
1528  * Note that the device backing this regulator handle can have multiple
1529  * users, so it might be enabled even if regulator_enable() was never
1530  * called for this particular source.
1531  */
1532 int regulator_is_enabled(struct regulator *regulator)
1533 {
1534         int ret;
1535
1536         mutex_lock(&regulator->rdev->mutex);
1537         ret = _regulator_is_enabled(regulator->rdev);
1538         mutex_unlock(&regulator->rdev->mutex);
1539
1540         return ret;
1541 }
1542 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1543
1544 /**
1545  * regulator_count_voltages - count regulator_list_voltage() selectors
1546  * @regulator: regulator source
1547  *
1548  * Returns number of selectors, or negative errno.  Selectors are
1549  * numbered starting at zero, and typically correspond to bitfields
1550  * in hardware registers.
1551  */
1552 int regulator_count_voltages(struct regulator *regulator)
1553 {
1554         struct regulator_dev    *rdev = regulator->rdev;
1555
1556         return rdev->desc->n_voltages ? : -EINVAL;
1557 }
1558 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1559
1560 /**
1561  * regulator_list_voltage - enumerate supported voltages
1562  * @regulator: regulator source
1563  * @selector: identify voltage to list
1564  * Context: can sleep
1565  *
1566  * Returns a voltage that can be passed to @regulator_set_voltage(),
1567  * zero if this selector code can't be used on this system, or a
1568  * negative errno.
1569  */
1570 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1571 {
1572         struct regulator_dev    *rdev = regulator->rdev;
1573         struct regulator_ops    *ops = rdev->desc->ops;
1574         int                     ret;
1575
1576         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1577                 return -EINVAL;
1578
1579         mutex_lock(&rdev->mutex);
1580         ret = ops->list_voltage(rdev, selector);
1581         mutex_unlock(&rdev->mutex);
1582
1583         if (ret > 0) {
1584                 if (ret < rdev->constraints->min_uV)
1585                         ret = 0;
1586                 else if (ret > rdev->constraints->max_uV)
1587                         ret = 0;
1588         }
1589
1590         return ret;
1591 }
1592 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1593
1594 /**
1595  * regulator_is_supported_voltage - check if a voltage range can be supported
1596  *
1597  * @regulator: Regulator to check.
1598  * @min_uV: Minimum required voltage in uV.
1599  * @max_uV: Maximum required voltage in uV.
1600  *
1601  * Returns a boolean or a negative error code.
1602  */
1603 int regulator_is_supported_voltage(struct regulator *regulator,
1604                                    int min_uV, int max_uV)
1605 {
1606         int i, voltages, ret;
1607
1608         ret = regulator_count_voltages(regulator);
1609         if (ret < 0)
1610                 return ret;
1611         voltages = ret;
1612
1613         for (i = 0; i < voltages; i++) {
1614                 ret = regulator_list_voltage(regulator, i);
1615
1616                 if (ret >= min_uV && ret <= max_uV)
1617                         return 1;
1618         }
1619
1620         return 0;
1621 }
1622
1623 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1624                                      int min_uV, int max_uV)
1625 {
1626         int ret;
1627         unsigned int selector;
1628
1629         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1630
1631         if (rdev->desc->ops->set_voltage) {
1632                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1633                                                    &selector);
1634
1635                 if (rdev->desc->ops->list_voltage)
1636                         selector = rdev->desc->ops->list_voltage(rdev,
1637                                                                  selector);
1638                 else
1639                         selector = -1;
1640         } else {
1641                 ret = -EINVAL;
1642         }
1643
1644         trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1645
1646         return ret;
1647 }
1648
1649 /**
1650  * regulator_set_voltage - set regulator output voltage
1651  * @regulator: regulator source
1652  * @min_uV: Minimum required voltage in uV
1653  * @max_uV: Maximum acceptable voltage in uV
1654  *
1655  * Sets a voltage regulator to the desired output voltage. This can be set
1656  * during any regulator state. IOW, regulator can be disabled or enabled.
1657  *
1658  * If the regulator is enabled then the voltage will change to the new value
1659  * immediately otherwise if the regulator is disabled the regulator will
1660  * output at the new voltage when enabled.
1661  *
1662  * NOTE: If the regulator is shared between several devices then the lowest
1663  * request voltage that meets the system constraints will be used.
1664  * Regulator system constraints must be set for this regulator before
1665  * calling this function otherwise this call will fail.
1666  */
1667 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1668 {
1669         struct regulator_dev *rdev = regulator->rdev;
1670         int ret;
1671
1672         mutex_lock(&rdev->mutex);
1673
1674         /* sanity check */
1675         if (!rdev->desc->ops->set_voltage) {
1676                 ret = -EINVAL;
1677                 goto out;
1678         }
1679
1680         /* constraints check */
1681         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1682         if (ret < 0)
1683                 goto out;
1684         regulator->min_uV = min_uV;
1685         regulator->max_uV = max_uV;
1686
1687         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1688         if (ret < 0)
1689                 goto out;
1690
1691         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1692
1693 out:
1694         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1695         mutex_unlock(&rdev->mutex);
1696         return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1699
1700 static int _regulator_get_voltage(struct regulator_dev *rdev)
1701 {
1702         int sel;
1703
1704         if (rdev->desc->ops->get_voltage_sel) {
1705                 sel = rdev->desc->ops->get_voltage_sel(rdev);
1706                 if (sel < 0)
1707                         return sel;
1708                 return rdev->desc->ops->list_voltage(rdev, sel);
1709         }
1710         if (rdev->desc->ops->get_voltage)
1711                 return rdev->desc->ops->get_voltage(rdev);
1712         else
1713                 return -EINVAL;
1714 }
1715
1716 /**
1717  * regulator_get_voltage - get regulator output voltage
1718  * @regulator: regulator source
1719  *
1720  * This returns the current regulator voltage in uV.
1721  *
1722  * NOTE: If the regulator is disabled it will return the voltage value. This
1723  * function should not be used to determine regulator state.
1724  */
1725 int regulator_get_voltage(struct regulator *regulator)
1726 {
1727         int ret;
1728
1729         mutex_lock(&regulator->rdev->mutex);
1730
1731         ret = _regulator_get_voltage(regulator->rdev);
1732
1733         mutex_unlock(&regulator->rdev->mutex);
1734
1735         return ret;
1736 }
1737 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1738
1739 /**
1740  * regulator_set_current_limit - set regulator output current limit
1741  * @regulator: regulator source
1742  * @min_uA: Minimuum supported current in uA
1743  * @max_uA: Maximum supported current in uA
1744  *
1745  * Sets current sink to the desired output current. This can be set during
1746  * any regulator state. IOW, regulator can be disabled or enabled.
1747  *
1748  * If the regulator is enabled then the current will change to the new value
1749  * immediately otherwise if the regulator is disabled the regulator will
1750  * output at the new current when enabled.
1751  *
1752  * NOTE: Regulator system constraints must be set for this regulator before
1753  * calling this function otherwise this call will fail.
1754  */
1755 int regulator_set_current_limit(struct regulator *regulator,
1756                                int min_uA, int max_uA)
1757 {
1758         struct regulator_dev *rdev = regulator->rdev;
1759         int ret;
1760
1761         mutex_lock(&rdev->mutex);
1762
1763         /* sanity check */
1764         if (!rdev->desc->ops->set_current_limit) {
1765                 ret = -EINVAL;
1766                 goto out;
1767         }
1768
1769         /* constraints check */
1770         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1771         if (ret < 0)
1772                 goto out;
1773
1774         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1775 out:
1776         mutex_unlock(&rdev->mutex);
1777         return ret;
1778 }
1779 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1780
1781 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1782 {
1783         int ret;
1784
1785         mutex_lock(&rdev->mutex);
1786
1787         /* sanity check */
1788         if (!rdev->desc->ops->get_current_limit) {
1789                 ret = -EINVAL;
1790                 goto out;
1791         }
1792
1793         ret = rdev->desc->ops->get_current_limit(rdev);
1794 out:
1795         mutex_unlock(&rdev->mutex);
1796         return ret;
1797 }
1798
1799 /**
1800  * regulator_get_current_limit - get regulator output current
1801  * @regulator: regulator source
1802  *
1803  * This returns the current supplied by the specified current sink in uA.
1804  *
1805  * NOTE: If the regulator is disabled it will return the current value. This
1806  * function should not be used to determine regulator state.
1807  */
1808 int regulator_get_current_limit(struct regulator *regulator)
1809 {
1810         return _regulator_get_current_limit(regulator->rdev);
1811 }
1812 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1813
1814 /**
1815  * regulator_set_mode - set regulator operating mode
1816  * @regulator: regulator source
1817  * @mode: operating mode - one of the REGULATOR_MODE constants
1818  *
1819  * Set regulator operating mode to increase regulator efficiency or improve
1820  * regulation performance.
1821  *
1822  * NOTE: Regulator system constraints must be set for this regulator before
1823  * calling this function otherwise this call will fail.
1824  */
1825 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1826 {
1827         struct regulator_dev *rdev = regulator->rdev;
1828         int ret;
1829         int regulator_curr_mode;
1830
1831         mutex_lock(&rdev->mutex);
1832
1833         /* sanity check */
1834         if (!rdev->desc->ops->set_mode) {
1835                 ret = -EINVAL;
1836                 goto out;
1837         }
1838
1839         /* return if the same mode is requested */
1840         if (rdev->desc->ops->get_mode) {
1841                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1842                 if (regulator_curr_mode == mode) {
1843                         ret = 0;
1844                         goto out;
1845                 }
1846         }
1847
1848         /* constraints check */
1849         ret = regulator_check_mode(rdev, mode);
1850         if (ret < 0)
1851                 goto out;
1852
1853         ret = rdev->desc->ops->set_mode(rdev, mode);
1854 out:
1855         mutex_unlock(&rdev->mutex);
1856         return ret;
1857 }
1858 EXPORT_SYMBOL_GPL(regulator_set_mode);
1859
1860 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1861 {
1862         int ret;
1863
1864         mutex_lock(&rdev->mutex);
1865
1866         /* sanity check */
1867         if (!rdev->desc->ops->get_mode) {
1868                 ret = -EINVAL;
1869                 goto out;
1870         }
1871
1872         ret = rdev->desc->ops->get_mode(rdev);
1873 out:
1874         mutex_unlock(&rdev->mutex);
1875         return ret;
1876 }
1877
1878 /**
1879  * regulator_get_mode - get regulator operating mode
1880  * @regulator: regulator source
1881  *
1882  * Get the current regulator operating mode.
1883  */
1884 unsigned int regulator_get_mode(struct regulator *regulator)
1885 {
1886         return _regulator_get_mode(regulator->rdev);
1887 }
1888 EXPORT_SYMBOL_GPL(regulator_get_mode);
1889
1890 /**
1891  * regulator_set_optimum_mode - set regulator optimum operating mode
1892  * @regulator: regulator source
1893  * @uA_load: load current
1894  *
1895  * Notifies the regulator core of a new device load. This is then used by
1896  * DRMS (if enabled by constraints) to set the most efficient regulator
1897  * operating mode for the new regulator loading.
1898  *
1899  * Consumer devices notify their supply regulator of the maximum power
1900  * they will require (can be taken from device datasheet in the power
1901  * consumption tables) when they change operational status and hence power
1902  * state. Examples of operational state changes that can affect power
1903  * consumption are :-
1904  *
1905  *    o Device is opened / closed.
1906  *    o Device I/O is about to begin or has just finished.
1907  *    o Device is idling in between work.
1908  *
1909  * This information is also exported via sysfs to userspace.
1910  *
1911  * DRMS will sum the total requested load on the regulator and change
1912  * to the most efficient operating mode if platform constraints allow.
1913  *
1914  * Returns the new regulator mode or error.
1915  */
1916 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1917 {
1918         struct regulator_dev *rdev = regulator->rdev;
1919         struct regulator *consumer;
1920         int ret, output_uV, input_uV, total_uA_load = 0;
1921         unsigned int mode;
1922
1923         mutex_lock(&rdev->mutex);
1924
1925         regulator->uA_load = uA_load;
1926         ret = regulator_check_drms(rdev);
1927         if (ret < 0)
1928                 goto out;
1929         ret = -EINVAL;
1930
1931         /* sanity check */
1932         if (!rdev->desc->ops->get_optimum_mode)
1933                 goto out;
1934
1935         /* get output voltage */
1936         output_uV = _regulator_get_voltage(rdev);
1937         if (output_uV <= 0) {
1938                 rdev_err(rdev, "invalid output voltage found\n");
1939                 goto out;
1940         }
1941
1942         /* get input voltage */
1943         input_uV = 0;
1944         if (rdev->supply)
1945                 input_uV = _regulator_get_voltage(rdev->supply);
1946         if (input_uV <= 0)
1947                 input_uV = rdev->constraints->input_uV;
1948         if (input_uV <= 0) {
1949                 rdev_err(rdev, "invalid input voltage found\n");
1950                 goto out;
1951         }
1952
1953         /* calc total requested load for this regulator */
1954         list_for_each_entry(consumer, &rdev->consumer_list, list)
1955                 total_uA_load += consumer->uA_load;
1956
1957         mode = rdev->desc->ops->get_optimum_mode(rdev,
1958                                                  input_uV, output_uV,
1959                                                  total_uA_load);
1960         ret = regulator_check_mode(rdev, mode);
1961         if (ret < 0) {
1962                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
1963                          total_uA_load, input_uV, output_uV);
1964                 goto out;
1965         }
1966
1967         ret = rdev->desc->ops->set_mode(rdev, mode);
1968         if (ret < 0) {
1969                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
1970                 goto out;
1971         }
1972         ret = mode;
1973 out:
1974         mutex_unlock(&rdev->mutex);
1975         return ret;
1976 }
1977 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1978
1979 /**
1980  * regulator_register_notifier - register regulator event notifier
1981  * @regulator: regulator source
1982  * @nb: notifier block
1983  *
1984  * Register notifier block to receive regulator events.
1985  */
1986 int regulator_register_notifier(struct regulator *regulator,
1987                               struct notifier_block *nb)
1988 {
1989         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1990                                                 nb);
1991 }
1992 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1993
1994 /**
1995  * regulator_unregister_notifier - unregister regulator event notifier
1996  * @regulator: regulator source
1997  * @nb: notifier block
1998  *
1999  * Unregister regulator event notifier block.
2000  */
2001 int regulator_unregister_notifier(struct regulator *regulator,
2002                                 struct notifier_block *nb)
2003 {
2004         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2005                                                   nb);
2006 }
2007 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2008
2009 /* notify regulator consumers and downstream regulator consumers.
2010  * Note mutex must be held by caller.
2011  */
2012 static void _notifier_call_chain(struct regulator_dev *rdev,
2013                                   unsigned long event, void *data)
2014 {
2015         struct regulator_dev *_rdev;
2016
2017         /* call rdev chain first */
2018         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2019
2020         /* now notify regulator we supply */
2021         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2022                 mutex_lock(&_rdev->mutex);
2023                 _notifier_call_chain(_rdev, event, data);
2024                 mutex_unlock(&_rdev->mutex);
2025         }
2026 }
2027
2028 /**
2029  * regulator_bulk_get - get multiple regulator consumers
2030  *
2031  * @dev:           Device to supply
2032  * @num_consumers: Number of consumers to register
2033  * @consumers:     Configuration of consumers; clients are stored here.
2034  *
2035  * @return 0 on success, an errno on failure.
2036  *
2037  * This helper function allows drivers to get several regulator
2038  * consumers in one operation.  If any of the regulators cannot be
2039  * acquired then any regulators that were allocated will be freed
2040  * before returning to the caller.
2041  */
2042 int regulator_bulk_get(struct device *dev, int num_consumers,
2043                        struct regulator_bulk_data *consumers)
2044 {
2045         int i;
2046         int ret;
2047
2048         for (i = 0; i < num_consumers; i++)
2049                 consumers[i].consumer = NULL;
2050
2051         for (i = 0; i < num_consumers; i++) {
2052                 consumers[i].consumer = regulator_get(dev,
2053                                                       consumers[i].supply);
2054                 if (IS_ERR(consumers[i].consumer)) {
2055                         ret = PTR_ERR(consumers[i].consumer);
2056                         dev_err(dev, "Failed to get supply '%s': %d\n",
2057                                 consumers[i].supply, ret);
2058                         consumers[i].consumer = NULL;
2059                         goto err;
2060                 }
2061         }
2062
2063         return 0;
2064
2065 err:
2066         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2067                 regulator_put(consumers[i].consumer);
2068
2069         return ret;
2070 }
2071 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2072
2073 /**
2074  * regulator_bulk_enable - enable multiple regulator consumers
2075  *
2076  * @num_consumers: Number of consumers
2077  * @consumers:     Consumer data; clients are stored here.
2078  * @return         0 on success, an errno on failure
2079  *
2080  * This convenience API allows consumers to enable multiple regulator
2081  * clients in a single API call.  If any consumers cannot be enabled
2082  * then any others that were enabled will be disabled again prior to
2083  * return.
2084  */
2085 int regulator_bulk_enable(int num_consumers,
2086                           struct regulator_bulk_data *consumers)
2087 {
2088         int i;
2089         int ret;
2090
2091         for (i = 0; i < num_consumers; i++) {
2092                 ret = regulator_enable(consumers[i].consumer);
2093                 if (ret != 0)
2094                         goto err;
2095         }
2096
2097         return 0;
2098
2099 err:
2100         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2101         for (--i; i >= 0; --i)
2102                 regulator_disable(consumers[i].consumer);
2103
2104         return ret;
2105 }
2106 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2107
2108 /**
2109  * regulator_bulk_disable - disable multiple regulator consumers
2110  *
2111  * @num_consumers: Number of consumers
2112  * @consumers:     Consumer data; clients are stored here.
2113  * @return         0 on success, an errno on failure
2114  *
2115  * This convenience API allows consumers to disable multiple regulator
2116  * clients in a single API call.  If any consumers cannot be enabled
2117  * then any others that were disabled will be disabled again prior to
2118  * return.
2119  */
2120 int regulator_bulk_disable(int num_consumers,
2121                            struct regulator_bulk_data *consumers)
2122 {
2123         int i;
2124         int ret;
2125
2126         for (i = 0; i < num_consumers; i++) {
2127                 ret = regulator_disable(consumers[i].consumer);
2128                 if (ret != 0)
2129                         goto err;
2130         }
2131
2132         return 0;
2133
2134 err:
2135         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2136         for (--i; i >= 0; --i)
2137                 regulator_enable(consumers[i].consumer);
2138
2139         return ret;
2140 }
2141 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2142
2143 /**
2144  * regulator_bulk_free - free multiple regulator consumers
2145  *
2146  * @num_consumers: Number of consumers
2147  * @consumers:     Consumer data; clients are stored here.
2148  *
2149  * This convenience API allows consumers to free multiple regulator
2150  * clients in a single API call.
2151  */
2152 void regulator_bulk_free(int num_consumers,
2153                          struct regulator_bulk_data *consumers)
2154 {
2155         int i;
2156
2157         for (i = 0; i < num_consumers; i++) {
2158                 regulator_put(consumers[i].consumer);
2159                 consumers[i].consumer = NULL;
2160         }
2161 }
2162 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2163
2164 /**
2165  * regulator_notifier_call_chain - call regulator event notifier
2166  * @rdev: regulator source
2167  * @event: notifier block
2168  * @data: callback-specific data.
2169  *
2170  * Called by regulator drivers to notify clients a regulator event has
2171  * occurred. We also notify regulator clients downstream.
2172  * Note lock must be held by caller.
2173  */
2174 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2175                                   unsigned long event, void *data)
2176 {
2177         _notifier_call_chain(rdev, event, data);
2178         return NOTIFY_DONE;
2179
2180 }
2181 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2182
2183 /**
2184  * regulator_mode_to_status - convert a regulator mode into a status
2185  *
2186  * @mode: Mode to convert
2187  *
2188  * Convert a regulator mode into a status.
2189  */
2190 int regulator_mode_to_status(unsigned int mode)
2191 {
2192         switch (mode) {
2193         case REGULATOR_MODE_FAST:
2194                 return REGULATOR_STATUS_FAST;
2195         case REGULATOR_MODE_NORMAL:
2196                 return REGULATOR_STATUS_NORMAL;
2197         case REGULATOR_MODE_IDLE:
2198                 return REGULATOR_STATUS_IDLE;
2199         case REGULATOR_STATUS_STANDBY:
2200                 return REGULATOR_STATUS_STANDBY;
2201         default:
2202                 return 0;
2203         }
2204 }
2205 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2206
2207 /*
2208  * To avoid cluttering sysfs (and memory) with useless state, only
2209  * create attributes that can be meaningfully displayed.
2210  */
2211 static int add_regulator_attributes(struct regulator_dev *rdev)
2212 {
2213         struct device           *dev = &rdev->dev;
2214         struct regulator_ops    *ops = rdev->desc->ops;
2215         int                     status = 0;
2216
2217         /* some attributes need specific methods to be displayed */
2218         if (ops->get_voltage || ops->get_voltage_sel) {
2219                 status = device_create_file(dev, &dev_attr_microvolts);
2220                 if (status < 0)
2221                         return status;
2222         }
2223         if (ops->get_current_limit) {
2224                 status = device_create_file(dev, &dev_attr_microamps);
2225                 if (status < 0)
2226                         return status;
2227         }
2228         if (ops->get_mode) {
2229                 status = device_create_file(dev, &dev_attr_opmode);
2230                 if (status < 0)
2231                         return status;
2232         }
2233         if (ops->is_enabled) {
2234                 status = device_create_file(dev, &dev_attr_state);
2235                 if (status < 0)
2236                         return status;
2237         }
2238         if (ops->get_status) {
2239                 status = device_create_file(dev, &dev_attr_status);
2240                 if (status < 0)
2241                         return status;
2242         }
2243
2244         /* some attributes are type-specific */
2245         if (rdev->desc->type == REGULATOR_CURRENT) {
2246                 status = device_create_file(dev, &dev_attr_requested_microamps);
2247                 if (status < 0)
2248                         return status;
2249         }
2250
2251         /* all the other attributes exist to support constraints;
2252          * don't show them if there are no constraints, or if the
2253          * relevant supporting methods are missing.
2254          */
2255         if (!rdev->constraints)
2256                 return status;
2257
2258         /* constraints need specific supporting methods */
2259         if (ops->set_voltage) {
2260                 status = device_create_file(dev, &dev_attr_min_microvolts);
2261                 if (status < 0)
2262                         return status;
2263                 status = device_create_file(dev, &dev_attr_max_microvolts);
2264                 if (status < 0)
2265                         return status;
2266         }
2267         if (ops->set_current_limit) {
2268                 status = device_create_file(dev, &dev_attr_min_microamps);
2269                 if (status < 0)
2270                         return status;
2271                 status = device_create_file(dev, &dev_attr_max_microamps);
2272                 if (status < 0)
2273                         return status;
2274         }
2275
2276         /* suspend mode constraints need multiple supporting methods */
2277         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2278                 return status;
2279
2280         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2281         if (status < 0)
2282                 return status;
2283         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2284         if (status < 0)
2285                 return status;
2286         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2287         if (status < 0)
2288                 return status;
2289
2290         if (ops->set_suspend_voltage) {
2291                 status = device_create_file(dev,
2292                                 &dev_attr_suspend_standby_microvolts);
2293                 if (status < 0)
2294                         return status;
2295                 status = device_create_file(dev,
2296                                 &dev_attr_suspend_mem_microvolts);
2297                 if (status < 0)
2298                         return status;
2299                 status = device_create_file(dev,
2300                                 &dev_attr_suspend_disk_microvolts);
2301                 if (status < 0)
2302                         return status;
2303         }
2304
2305         if (ops->set_suspend_mode) {
2306                 status = device_create_file(dev,
2307                                 &dev_attr_suspend_standby_mode);
2308                 if (status < 0)
2309                         return status;
2310                 status = device_create_file(dev,
2311                                 &dev_attr_suspend_mem_mode);
2312                 if (status < 0)
2313                         return status;
2314                 status = device_create_file(dev,
2315                                 &dev_attr_suspend_disk_mode);
2316                 if (status < 0)
2317                         return status;
2318         }
2319
2320         return status;
2321 }
2322
2323 /**
2324  * regulator_register - register regulator
2325  * @regulator_desc: regulator to register
2326  * @dev: struct device for the regulator
2327  * @init_data: platform provided init data, passed through by driver
2328  * @driver_data: private regulator data
2329  *
2330  * Called by regulator drivers to register a regulator.
2331  * Returns 0 on success.
2332  */
2333 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2334         struct device *dev, const struct regulator_init_data *init_data,
2335         void *driver_data)
2336 {
2337         static atomic_t regulator_no = ATOMIC_INIT(0);
2338         struct regulator_dev *rdev;
2339         int ret, i;
2340
2341         if (regulator_desc == NULL)
2342                 return ERR_PTR(-EINVAL);
2343
2344         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2345                 return ERR_PTR(-EINVAL);
2346
2347         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2348             regulator_desc->type != REGULATOR_CURRENT)
2349                 return ERR_PTR(-EINVAL);
2350
2351         if (!init_data)
2352                 return ERR_PTR(-EINVAL);
2353
2354         /* Only one of each should be implemented */
2355         WARN_ON(regulator_desc->ops->get_voltage &&
2356                 regulator_desc->ops->get_voltage_sel);
2357
2358         /* If we're using selectors we must implement list_voltage. */
2359         if (regulator_desc->ops->get_voltage_sel &&
2360             !regulator_desc->ops->list_voltage) {
2361                 return ERR_PTR(-EINVAL);
2362         }
2363
2364         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2365         if (rdev == NULL)
2366                 return ERR_PTR(-ENOMEM);
2367
2368         mutex_lock(&regulator_list_mutex);
2369
2370         mutex_init(&rdev->mutex);
2371         rdev->reg_data = driver_data;
2372         rdev->owner = regulator_desc->owner;
2373         rdev->desc = regulator_desc;
2374         INIT_LIST_HEAD(&rdev->consumer_list);
2375         INIT_LIST_HEAD(&rdev->supply_list);
2376         INIT_LIST_HEAD(&rdev->list);
2377         INIT_LIST_HEAD(&rdev->slist);
2378         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2379
2380         /* preform any regulator specific init */
2381         if (init_data->regulator_init) {
2382                 ret = init_data->regulator_init(rdev->reg_data);
2383                 if (ret < 0)
2384                         goto clean;
2385         }
2386
2387         /* register with sysfs */
2388         rdev->dev.class = &regulator_class;
2389         rdev->dev.parent = dev;
2390         dev_set_name(&rdev->dev, "regulator.%d",
2391                      atomic_inc_return(&regulator_no) - 1);
2392         ret = device_register(&rdev->dev);
2393         if (ret != 0) {
2394                 put_device(&rdev->dev);
2395                 goto clean;
2396         }
2397
2398         dev_set_drvdata(&rdev->dev, rdev);
2399
2400         /* set regulator constraints */
2401         ret = set_machine_constraints(rdev, &init_data->constraints);
2402         if (ret < 0)
2403                 goto scrub;
2404
2405         /* add attributes supported by this regulator */
2406         ret = add_regulator_attributes(rdev);
2407         if (ret < 0)
2408                 goto scrub;
2409
2410         /* set supply regulator if it exists */
2411         if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2412                 dev_err(dev,
2413                         "Supply regulator specified by both name and dev\n");
2414                 ret = -EINVAL;
2415                 goto scrub;
2416         }
2417
2418         if (init_data->supply_regulator) {
2419                 struct regulator_dev *r;
2420                 int found = 0;
2421
2422                 list_for_each_entry(r, &regulator_list, list) {
2423                         if (strcmp(rdev_get_name(r),
2424                                    init_data->supply_regulator) == 0) {
2425                                 found = 1;
2426                                 break;
2427                         }
2428                 }
2429
2430                 if (!found) {
2431                         dev_err(dev, "Failed to find supply %s\n",
2432                                 init_data->supply_regulator);
2433                         ret = -ENODEV;
2434                         goto scrub;
2435                 }
2436
2437                 ret = set_supply(rdev, r);
2438                 if (ret < 0)
2439                         goto scrub;
2440         }
2441
2442         if (init_data->supply_regulator_dev) {
2443                 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2444                 ret = set_supply(rdev,
2445                         dev_get_drvdata(init_data->supply_regulator_dev));
2446                 if (ret < 0)
2447                         goto scrub;
2448         }
2449
2450         /* add consumers devices */
2451         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2452                 ret = set_consumer_device_supply(rdev,
2453                         init_data->consumer_supplies[i].dev,
2454                         init_data->consumer_supplies[i].dev_name,
2455                         init_data->consumer_supplies[i].supply);
2456                 if (ret < 0)
2457                         goto unset_supplies;
2458         }
2459
2460         list_add(&rdev->list, &regulator_list);
2461 out:
2462         mutex_unlock(&regulator_list_mutex);
2463         return rdev;
2464
2465 unset_supplies:
2466         unset_regulator_supplies(rdev);
2467
2468 scrub:
2469         device_unregister(&rdev->dev);
2470         /* device core frees rdev */
2471         rdev = ERR_PTR(ret);
2472         goto out;
2473
2474 clean:
2475         kfree(rdev);
2476         rdev = ERR_PTR(ret);
2477         goto out;
2478 }
2479 EXPORT_SYMBOL_GPL(regulator_register);
2480
2481 /**
2482  * regulator_unregister - unregister regulator
2483  * @rdev: regulator to unregister
2484  *
2485  * Called by regulator drivers to unregister a regulator.
2486  */
2487 void regulator_unregister(struct regulator_dev *rdev)
2488 {
2489         if (rdev == NULL)
2490                 return;
2491
2492         mutex_lock(&regulator_list_mutex);
2493         WARN_ON(rdev->open_count);
2494         unset_regulator_supplies(rdev);
2495         list_del(&rdev->list);
2496         if (rdev->supply)
2497                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2498         device_unregister(&rdev->dev);
2499         kfree(rdev->constraints);
2500         mutex_unlock(&regulator_list_mutex);
2501 }
2502 EXPORT_SYMBOL_GPL(regulator_unregister);
2503
2504 /**
2505  * regulator_suspend_prepare - prepare regulators for system wide suspend
2506  * @state: system suspend state
2507  *
2508  * Configure each regulator with it's suspend operating parameters for state.
2509  * This will usually be called by machine suspend code prior to supending.
2510  */
2511 int regulator_suspend_prepare(suspend_state_t state)
2512 {
2513         struct regulator_dev *rdev;
2514         int ret = 0;
2515
2516         /* ON is handled by regulator active state */
2517         if (state == PM_SUSPEND_ON)
2518                 return -EINVAL;
2519
2520         mutex_lock(&regulator_list_mutex);
2521         list_for_each_entry(rdev, &regulator_list, list) {
2522
2523                 mutex_lock(&rdev->mutex);
2524                 ret = suspend_prepare(rdev, state);
2525                 mutex_unlock(&rdev->mutex);
2526
2527                 if (ret < 0) {
2528                         rdev_err(rdev, "failed to prepare\n");
2529                         goto out;
2530                 }
2531         }
2532 out:
2533         mutex_unlock(&regulator_list_mutex);
2534         return ret;
2535 }
2536 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2537
2538 /**
2539  * regulator_has_full_constraints - the system has fully specified constraints
2540  *
2541  * Calling this function will cause the regulator API to disable all
2542  * regulators which have a zero use count and don't have an always_on
2543  * constraint in a late_initcall.
2544  *
2545  * The intention is that this will become the default behaviour in a
2546  * future kernel release so users are encouraged to use this facility
2547  * now.
2548  */
2549 void regulator_has_full_constraints(void)
2550 {
2551         has_full_constraints = 1;
2552 }
2553 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2554
2555 /**
2556  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2557  *
2558  * Calling this function will cause the regulator API to provide a
2559  * dummy regulator to consumers if no physical regulator is found,
2560  * allowing most consumers to proceed as though a regulator were
2561  * configured.  This allows systems such as those with software
2562  * controllable regulators for the CPU core only to be brought up more
2563  * readily.
2564  */
2565 void regulator_use_dummy_regulator(void)
2566 {
2567         board_wants_dummy_regulator = true;
2568 }
2569 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2570
2571 /**
2572  * rdev_get_drvdata - get rdev regulator driver data
2573  * @rdev: regulator
2574  *
2575  * Get rdev regulator driver private data. This call can be used in the
2576  * regulator driver context.
2577  */
2578 void *rdev_get_drvdata(struct regulator_dev *rdev)
2579 {
2580         return rdev->reg_data;
2581 }
2582 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2583
2584 /**
2585  * regulator_get_drvdata - get regulator driver data
2586  * @regulator: regulator
2587  *
2588  * Get regulator driver private data. This call can be used in the consumer
2589  * driver context when non API regulator specific functions need to be called.
2590  */
2591 void *regulator_get_drvdata(struct regulator *regulator)
2592 {
2593         return regulator->rdev->reg_data;
2594 }
2595 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2596
2597 /**
2598  * regulator_set_drvdata - set regulator driver data
2599  * @regulator: regulator
2600  * @data: data
2601  */
2602 void regulator_set_drvdata(struct regulator *regulator, void *data)
2603 {
2604         regulator->rdev->reg_data = data;
2605 }
2606 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2607
2608 /**
2609  * regulator_get_id - get regulator ID
2610  * @rdev: regulator
2611  */
2612 int rdev_get_id(struct regulator_dev *rdev)
2613 {
2614         return rdev->desc->id;
2615 }
2616 EXPORT_SYMBOL_GPL(rdev_get_id);
2617
2618 struct device *rdev_get_dev(struct regulator_dev *rdev)
2619 {
2620         return &rdev->dev;
2621 }
2622 EXPORT_SYMBOL_GPL(rdev_get_dev);
2623
2624 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2625 {
2626         return reg_init_data->driver_data;
2627 }
2628 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2629
2630 static int __init regulator_init(void)
2631 {
2632         int ret;
2633
2634         ret = class_register(&regulator_class);
2635
2636         regulator_dummy_init();
2637
2638         return ret;
2639 }
2640
2641 /* init early to allow our consumers to complete system booting */
2642 core_initcall(regulator_init);
2643
2644 static int __init regulator_init_complete(void)
2645 {
2646         struct regulator_dev *rdev;
2647         struct regulator_ops *ops;
2648         struct regulation_constraints *c;
2649         int enabled, ret;
2650
2651         mutex_lock(&regulator_list_mutex);
2652
2653         /* If we have a full configuration then disable any regulators
2654          * which are not in use or always_on.  This will become the
2655          * default behaviour in the future.
2656          */
2657         list_for_each_entry(rdev, &regulator_list, list) {
2658                 ops = rdev->desc->ops;
2659                 c = rdev->constraints;
2660
2661                 if (!ops->disable || (c && c->always_on))
2662                         continue;
2663
2664                 mutex_lock(&rdev->mutex);
2665
2666                 if (rdev->use_count)
2667                         goto unlock;
2668
2669                 /* If we can't read the status assume it's on. */
2670                 if (ops->is_enabled)
2671                         enabled = ops->is_enabled(rdev);
2672                 else
2673                         enabled = 1;
2674
2675                 if (!enabled)
2676                         goto unlock;
2677
2678                 if (has_full_constraints) {
2679                         /* We log since this may kill the system if it
2680                          * goes wrong. */
2681                         rdev_info(rdev, "disabling\n");
2682                         ret = ops->disable(rdev);
2683                         if (ret != 0) {
2684                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
2685                         }
2686                 } else {
2687                         /* The intention is that in future we will
2688                          * assume that full constraints are provided
2689                          * so warn even if we aren't going to do
2690                          * anything here.
2691                          */
2692                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
2693                 }
2694
2695 unlock:
2696                 mutex_unlock(&rdev->mutex);
2697         }
2698
2699         mutex_unlock(&regulator_list_mutex);
2700
2701         return 0;
2702 }
2703 late_initcall(regulator_init_complete);