regulator: Fix documentation for of_node parameter of regulator_register()
[linux-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/async.h>
24 #include <linux/err.h>
25 #include <linux/mutex.h>
26 #include <linux/suspend.h>
27 #include <linux/delay.h>
28 #include <linux/of.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 #ifdef CONFIG_DEBUG_FS
58 static struct dentry *debugfs_root;
59 #endif
60
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67         struct list_head list;
68         const char *dev_name;   /* The dev_name() for the consumer */
69         const char *supply;
70         struct regulator_dev *regulator;
71 };
72
73 /*
74  * struct regulator
75  *
76  * One for each consumer device.
77  */
78 struct regulator {
79         struct device *dev;
80         struct list_head list;
81         int uA_load;
82         int min_uV;
83         int max_uV;
84         char *supply_name;
85         struct device_attribute dev_attr;
86         struct regulator_dev *rdev;
87 #ifdef CONFIG_DEBUG_FS
88         struct dentry *debugfs;
89 #endif
90 };
91
92 static int _regulator_is_enabled(struct regulator_dev *rdev);
93 static int _regulator_disable(struct regulator_dev *rdev);
94 static int _regulator_get_voltage(struct regulator_dev *rdev);
95 static int _regulator_get_current_limit(struct regulator_dev *rdev);
96 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
97 static void _notifier_call_chain(struct regulator_dev *rdev,
98                                   unsigned long event, void *data);
99 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
100                                      int min_uV, int max_uV);
101 static struct regulator *create_regulator(struct regulator_dev *rdev,
102                                           struct device *dev,
103                                           const char *supply_name);
104
105 static const char *rdev_get_name(struct regulator_dev *rdev)
106 {
107         if (rdev->constraints && rdev->constraints->name)
108                 return rdev->constraints->name;
109         else if (rdev->desc->name)
110                 return rdev->desc->name;
111         else
112                 return "";
113 }
114
115 /* gets the regulator for a given consumer device */
116 static struct regulator *get_device_regulator(struct device *dev)
117 {
118         struct regulator *regulator = NULL;
119         struct regulator_dev *rdev;
120
121         mutex_lock(&regulator_list_mutex);
122         list_for_each_entry(rdev, &regulator_list, list) {
123                 mutex_lock(&rdev->mutex);
124                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
125                         if (regulator->dev == dev) {
126                                 mutex_unlock(&rdev->mutex);
127                                 mutex_unlock(&regulator_list_mutex);
128                                 return regulator;
129                         }
130                 }
131                 mutex_unlock(&rdev->mutex);
132         }
133         mutex_unlock(&regulator_list_mutex);
134         return NULL;
135 }
136
137 /**
138  * of_get_regulator - get a regulator device node based on supply name
139  * @dev: Device pointer for the consumer (of regulator) device
140  * @supply: regulator supply name
141  *
142  * Extract the regulator device node corresponding to the supply name.
143  * retruns the device node corresponding to the regulator if found, else
144  * returns NULL.
145  */
146 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
147 {
148         struct device_node *regnode = NULL;
149         char prop_name[32]; /* 32 is max size of property name */
150
151         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
152
153         snprintf(prop_name, 32, "%s-supply", supply);
154         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
155
156         if (!regnode) {
157                 dev_warn(dev, "%s property in node %s references invalid phandle",
158                                 prop_name, dev->of_node->full_name);
159                 return NULL;
160         }
161         return regnode;
162 }
163
164 /* Platform voltage constraint check */
165 static int regulator_check_voltage(struct regulator_dev *rdev,
166                                    int *min_uV, int *max_uV)
167 {
168         BUG_ON(*min_uV > *max_uV);
169
170         if (!rdev->constraints) {
171                 rdev_err(rdev, "no constraints\n");
172                 return -ENODEV;
173         }
174         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175                 rdev_err(rdev, "operation not allowed\n");
176                 return -EPERM;
177         }
178
179         if (*max_uV > rdev->constraints->max_uV)
180                 *max_uV = rdev->constraints->max_uV;
181         if (*min_uV < rdev->constraints->min_uV)
182                 *min_uV = rdev->constraints->min_uV;
183
184         if (*min_uV > *max_uV) {
185                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186                          *min_uV, *max_uV);
187                 return -EINVAL;
188         }
189
190         return 0;
191 }
192
193 /* Make sure we select a voltage that suits the needs of all
194  * regulator consumers
195  */
196 static int regulator_check_consumers(struct regulator_dev *rdev,
197                                      int *min_uV, int *max_uV)
198 {
199         struct regulator *regulator;
200
201         list_for_each_entry(regulator, &rdev->consumer_list, list) {
202                 /*
203                  * Assume consumers that didn't say anything are OK
204                  * with anything in the constraint range.
205                  */
206                 if (!regulator->min_uV && !regulator->max_uV)
207                         continue;
208
209                 if (*max_uV > regulator->max_uV)
210                         *max_uV = regulator->max_uV;
211                 if (*min_uV < regulator->min_uV)
212                         *min_uV = regulator->min_uV;
213         }
214
215         if (*min_uV > *max_uV)
216                 return -EINVAL;
217
218         return 0;
219 }
220
221 /* current constraint check */
222 static int regulator_check_current_limit(struct regulator_dev *rdev,
223                                         int *min_uA, int *max_uA)
224 {
225         BUG_ON(*min_uA > *max_uA);
226
227         if (!rdev->constraints) {
228                 rdev_err(rdev, "no constraints\n");
229                 return -ENODEV;
230         }
231         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
232                 rdev_err(rdev, "operation not allowed\n");
233                 return -EPERM;
234         }
235
236         if (*max_uA > rdev->constraints->max_uA)
237                 *max_uA = rdev->constraints->max_uA;
238         if (*min_uA < rdev->constraints->min_uA)
239                 *min_uA = rdev->constraints->min_uA;
240
241         if (*min_uA > *max_uA) {
242                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
243                          *min_uA, *max_uA);
244                 return -EINVAL;
245         }
246
247         return 0;
248 }
249
250 /* operating mode constraint check */
251 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
252 {
253         switch (*mode) {
254         case REGULATOR_MODE_FAST:
255         case REGULATOR_MODE_NORMAL:
256         case REGULATOR_MODE_IDLE:
257         case REGULATOR_MODE_STANDBY:
258                 break;
259         default:
260                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
261                 return -EINVAL;
262         }
263
264         if (!rdev->constraints) {
265                 rdev_err(rdev, "no constraints\n");
266                 return -ENODEV;
267         }
268         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
269                 rdev_err(rdev, "operation not allowed\n");
270                 return -EPERM;
271         }
272
273         /* The modes are bitmasks, the most power hungry modes having
274          * the lowest values. If the requested mode isn't supported
275          * try higher modes. */
276         while (*mode) {
277                 if (rdev->constraints->valid_modes_mask & *mode)
278                         return 0;
279                 *mode /= 2;
280         }
281
282         return -EINVAL;
283 }
284
285 /* dynamic regulator mode switching constraint check */
286 static int regulator_check_drms(struct regulator_dev *rdev)
287 {
288         if (!rdev->constraints) {
289                 rdev_err(rdev, "no constraints\n");
290                 return -ENODEV;
291         }
292         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
293                 rdev_err(rdev, "operation not allowed\n");
294                 return -EPERM;
295         }
296         return 0;
297 }
298
299 static ssize_t device_requested_uA_show(struct device *dev,
300                              struct device_attribute *attr, char *buf)
301 {
302         struct regulator *regulator;
303
304         regulator = get_device_regulator(dev);
305         if (regulator == NULL)
306                 return 0;
307
308         return sprintf(buf, "%d\n", regulator->uA_load);
309 }
310
311 static ssize_t regulator_uV_show(struct device *dev,
312                                 struct device_attribute *attr, char *buf)
313 {
314         struct regulator_dev *rdev = dev_get_drvdata(dev);
315         ssize_t ret;
316
317         mutex_lock(&rdev->mutex);
318         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
319         mutex_unlock(&rdev->mutex);
320
321         return ret;
322 }
323 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
324
325 static ssize_t regulator_uA_show(struct device *dev,
326                                 struct device_attribute *attr, char *buf)
327 {
328         struct regulator_dev *rdev = dev_get_drvdata(dev);
329
330         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
331 }
332 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
333
334 static ssize_t regulator_name_show(struct device *dev,
335                              struct device_attribute *attr, char *buf)
336 {
337         struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339         return sprintf(buf, "%s\n", rdev_get_name(rdev));
340 }
341
342 static ssize_t regulator_print_opmode(char *buf, int mode)
343 {
344         switch (mode) {
345         case REGULATOR_MODE_FAST:
346                 return sprintf(buf, "fast\n");
347         case REGULATOR_MODE_NORMAL:
348                 return sprintf(buf, "normal\n");
349         case REGULATOR_MODE_IDLE:
350                 return sprintf(buf, "idle\n");
351         case REGULATOR_MODE_STANDBY:
352                 return sprintf(buf, "standby\n");
353         }
354         return sprintf(buf, "unknown\n");
355 }
356
357 static ssize_t regulator_opmode_show(struct device *dev,
358                                     struct device_attribute *attr, char *buf)
359 {
360         struct regulator_dev *rdev = dev_get_drvdata(dev);
361
362         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363 }
364 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365
366 static ssize_t regulator_print_state(char *buf, int state)
367 {
368         if (state > 0)
369                 return sprintf(buf, "enabled\n");
370         else if (state == 0)
371                 return sprintf(buf, "disabled\n");
372         else
373                 return sprintf(buf, "unknown\n");
374 }
375
376 static ssize_t regulator_state_show(struct device *dev,
377                                    struct device_attribute *attr, char *buf)
378 {
379         struct regulator_dev *rdev = dev_get_drvdata(dev);
380         ssize_t ret;
381
382         mutex_lock(&rdev->mutex);
383         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384         mutex_unlock(&rdev->mutex);
385
386         return ret;
387 }
388 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389
390 static ssize_t regulator_status_show(struct device *dev,
391                                    struct device_attribute *attr, char *buf)
392 {
393         struct regulator_dev *rdev = dev_get_drvdata(dev);
394         int status;
395         char *label;
396
397         status = rdev->desc->ops->get_status(rdev);
398         if (status < 0)
399                 return status;
400
401         switch (status) {
402         case REGULATOR_STATUS_OFF:
403                 label = "off";
404                 break;
405         case REGULATOR_STATUS_ON:
406                 label = "on";
407                 break;
408         case REGULATOR_STATUS_ERROR:
409                 label = "error";
410                 break;
411         case REGULATOR_STATUS_FAST:
412                 label = "fast";
413                 break;
414         case REGULATOR_STATUS_NORMAL:
415                 label = "normal";
416                 break;
417         case REGULATOR_STATUS_IDLE:
418                 label = "idle";
419                 break;
420         case REGULATOR_STATUS_STANDBY:
421                 label = "standby";
422                 break;
423         default:
424                 return -ERANGE;
425         }
426
427         return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432                                     struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436         if (!rdev->constraints)
437                 return sprintf(buf, "constraint not defined\n");
438
439         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444                                     struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         if (!rdev->constraints)
449                 return sprintf(buf, "constraint not defined\n");
450
451         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456                                     struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         if (!rdev->constraints)
461                 return sprintf(buf, "constraint not defined\n");
462
463         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468                                     struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         if (!rdev->constraints)
473                 return sprintf(buf, "constraint not defined\n");
474
475         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480                                       struct device_attribute *attr, char *buf)
481 {
482         struct regulator_dev *rdev = dev_get_drvdata(dev);
483         struct regulator *regulator;
484         int uA = 0;
485
486         mutex_lock(&rdev->mutex);
487         list_for_each_entry(regulator, &rdev->consumer_list, list)
488                 uA += regulator->uA_load;
489         mutex_unlock(&rdev->mutex);
490         return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t regulator_num_users_show(struct device *dev,
495                                       struct device_attribute *attr, char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498         return sprintf(buf, "%d\n", rdev->use_count);
499 }
500
501 static ssize_t regulator_type_show(struct device *dev,
502                                   struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         switch (rdev->desc->type) {
507         case REGULATOR_VOLTAGE:
508                 return sprintf(buf, "voltage\n");
509         case REGULATOR_CURRENT:
510                 return sprintf(buf, "current\n");
511         }
512         return sprintf(buf, "unknown\n");
513 }
514
515 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
516                                 struct device_attribute *attr, char *buf)
517 {
518         struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
521 }
522 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
523                 regulator_suspend_mem_uV_show, NULL);
524
525 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
526                                 struct device_attribute *attr, char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
531 }
532 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
533                 regulator_suspend_disk_uV_show, NULL);
534
535 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
536                                 struct device_attribute *attr, char *buf)
537 {
538         struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
541 }
542 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
543                 regulator_suspend_standby_uV_show, NULL);
544
545 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
546                                 struct device_attribute *attr, char *buf)
547 {
548         struct regulator_dev *rdev = dev_get_drvdata(dev);
549
550         return regulator_print_opmode(buf,
551                 rdev->constraints->state_mem.mode);
552 }
553 static DEVICE_ATTR(suspend_mem_mode, 0444,
554                 regulator_suspend_mem_mode_show, NULL);
555
556 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
557                                 struct device_attribute *attr, char *buf)
558 {
559         struct regulator_dev *rdev = dev_get_drvdata(dev);
560
561         return regulator_print_opmode(buf,
562                 rdev->constraints->state_disk.mode);
563 }
564 static DEVICE_ATTR(suspend_disk_mode, 0444,
565                 regulator_suspend_disk_mode_show, NULL);
566
567 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
568                                 struct device_attribute *attr, char *buf)
569 {
570         struct regulator_dev *rdev = dev_get_drvdata(dev);
571
572         return regulator_print_opmode(buf,
573                 rdev->constraints->state_standby.mode);
574 }
575 static DEVICE_ATTR(suspend_standby_mode, 0444,
576                 regulator_suspend_standby_mode_show, NULL);
577
578 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
579                                    struct device_attribute *attr, char *buf)
580 {
581         struct regulator_dev *rdev = dev_get_drvdata(dev);
582
583         return regulator_print_state(buf,
584                         rdev->constraints->state_mem.enabled);
585 }
586 static DEVICE_ATTR(suspend_mem_state, 0444,
587                 regulator_suspend_mem_state_show, NULL);
588
589 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
590                                    struct device_attribute *attr, char *buf)
591 {
592         struct regulator_dev *rdev = dev_get_drvdata(dev);
593
594         return regulator_print_state(buf,
595                         rdev->constraints->state_disk.enabled);
596 }
597 static DEVICE_ATTR(suspend_disk_state, 0444,
598                 regulator_suspend_disk_state_show, NULL);
599
600 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
601                                    struct device_attribute *attr, char *buf)
602 {
603         struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605         return regulator_print_state(buf,
606                         rdev->constraints->state_standby.enabled);
607 }
608 static DEVICE_ATTR(suspend_standby_state, 0444,
609                 regulator_suspend_standby_state_show, NULL);
610
611
612 /*
613  * These are the only attributes are present for all regulators.
614  * Other attributes are a function of regulator functionality.
615  */
616 static struct device_attribute regulator_dev_attrs[] = {
617         __ATTR(name, 0444, regulator_name_show, NULL),
618         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
619         __ATTR(type, 0444, regulator_type_show, NULL),
620         __ATTR_NULL,
621 };
622
623 static void regulator_dev_release(struct device *dev)
624 {
625         struct regulator_dev *rdev = dev_get_drvdata(dev);
626         kfree(rdev);
627 }
628
629 static struct class regulator_class = {
630         .name = "regulator",
631         .dev_release = regulator_dev_release,
632         .dev_attrs = regulator_dev_attrs,
633 };
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static void drms_uA_update(struct regulator_dev *rdev)
638 {
639         struct regulator *sibling;
640         int current_uA = 0, output_uV, input_uV, err;
641         unsigned int mode;
642
643         err = regulator_check_drms(rdev);
644         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645             (!rdev->desc->ops->get_voltage &&
646              !rdev->desc->ops->get_voltage_sel) ||
647             !rdev->desc->ops->set_mode)
648                 return;
649
650         /* get output voltage */
651         output_uV = _regulator_get_voltage(rdev);
652         if (output_uV <= 0)
653                 return;
654
655         /* get input voltage */
656         input_uV = 0;
657         if (rdev->supply)
658                 input_uV = _regulator_get_voltage(rdev);
659         if (input_uV <= 0)
660                 input_uV = rdev->constraints->input_uV;
661         if (input_uV <= 0)
662                 return;
663
664         /* calc total requested load */
665         list_for_each_entry(sibling, &rdev->consumer_list, list)
666                 current_uA += sibling->uA_load;
667
668         /* now get the optimum mode for our new total regulator load */
669         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
670                                                   output_uV, current_uA);
671
672         /* check the new mode is allowed */
673         err = regulator_mode_constrain(rdev, &mode);
674         if (err == 0)
675                 rdev->desc->ops->set_mode(rdev, mode);
676 }
677
678 static int suspend_set_state(struct regulator_dev *rdev,
679         struct regulator_state *rstate)
680 {
681         int ret = 0;
682         bool can_set_state;
683
684         can_set_state = rdev->desc->ops->set_suspend_enable &&
685                 rdev->desc->ops->set_suspend_disable;
686
687         /* If we have no suspend mode configration don't set anything;
688          * only warn if the driver actually makes the suspend mode
689          * configurable.
690          */
691         if (!rstate->enabled && !rstate->disabled) {
692                 if (can_set_state)
693                         rdev_warn(rdev, "No configuration\n");
694                 return 0;
695         }
696
697         if (rstate->enabled && rstate->disabled) {
698                 rdev_err(rdev, "invalid configuration\n");
699                 return -EINVAL;
700         }
701
702         if (!can_set_state) {
703                 rdev_err(rdev, "no way to set suspend state\n");
704                 return -EINVAL;
705         }
706
707         if (rstate->enabled)
708                 ret = rdev->desc->ops->set_suspend_enable(rdev);
709         else
710                 ret = rdev->desc->ops->set_suspend_disable(rdev);
711         if (ret < 0) {
712                 rdev_err(rdev, "failed to enabled/disable\n");
713                 return ret;
714         }
715
716         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718                 if (ret < 0) {
719                         rdev_err(rdev, "failed to set voltage\n");
720                         return ret;
721                 }
722         }
723
724         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726                 if (ret < 0) {
727                         rdev_err(rdev, "failed to set mode\n");
728                         return ret;
729                 }
730         }
731         return ret;
732 }
733
734 /* locks held by caller */
735 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736 {
737         if (!rdev->constraints)
738                 return -EINVAL;
739
740         switch (state) {
741         case PM_SUSPEND_STANDBY:
742                 return suspend_set_state(rdev,
743                         &rdev->constraints->state_standby);
744         case PM_SUSPEND_MEM:
745                 return suspend_set_state(rdev,
746                         &rdev->constraints->state_mem);
747         case PM_SUSPEND_MAX:
748                 return suspend_set_state(rdev,
749                         &rdev->constraints->state_disk);
750         default:
751                 return -EINVAL;
752         }
753 }
754
755 static void print_constraints(struct regulator_dev *rdev)
756 {
757         struct regulation_constraints *constraints = rdev->constraints;
758         char buf[80] = "";
759         int count = 0;
760         int ret;
761
762         if (constraints->min_uV && constraints->max_uV) {
763                 if (constraints->min_uV == constraints->max_uV)
764                         count += sprintf(buf + count, "%d mV ",
765                                          constraints->min_uV / 1000);
766                 else
767                         count += sprintf(buf + count, "%d <--> %d mV ",
768                                          constraints->min_uV / 1000,
769                                          constraints->max_uV / 1000);
770         }
771
772         if (!constraints->min_uV ||
773             constraints->min_uV != constraints->max_uV) {
774                 ret = _regulator_get_voltage(rdev);
775                 if (ret > 0)
776                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
777         }
778
779         if (constraints->uV_offset)
780                 count += sprintf(buf, "%dmV offset ",
781                                  constraints->uV_offset / 1000);
782
783         if (constraints->min_uA && constraints->max_uA) {
784                 if (constraints->min_uA == constraints->max_uA)
785                         count += sprintf(buf + count, "%d mA ",
786                                          constraints->min_uA / 1000);
787                 else
788                         count += sprintf(buf + count, "%d <--> %d mA ",
789                                          constraints->min_uA / 1000,
790                                          constraints->max_uA / 1000);
791         }
792
793         if (!constraints->min_uA ||
794             constraints->min_uA != constraints->max_uA) {
795                 ret = _regulator_get_current_limit(rdev);
796                 if (ret > 0)
797                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
798         }
799
800         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801                 count += sprintf(buf + count, "fast ");
802         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803                 count += sprintf(buf + count, "normal ");
804         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805                 count += sprintf(buf + count, "idle ");
806         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807                 count += sprintf(buf + count, "standby");
808
809         rdev_info(rdev, "%s\n", buf);
810 }
811
812 static int machine_constraints_voltage(struct regulator_dev *rdev,
813         struct regulation_constraints *constraints)
814 {
815         struct regulator_ops *ops = rdev->desc->ops;
816         int ret;
817
818         /* do we need to apply the constraint voltage */
819         if (rdev->constraints->apply_uV &&
820             rdev->constraints->min_uV == rdev->constraints->max_uV) {
821                 ret = _regulator_do_set_voltage(rdev,
822                                                 rdev->constraints->min_uV,
823                                                 rdev->constraints->max_uV);
824                 if (ret < 0) {
825                         rdev_err(rdev, "failed to apply %duV constraint\n",
826                                  rdev->constraints->min_uV);
827                         return ret;
828                 }
829         }
830
831         /* constrain machine-level voltage specs to fit
832          * the actual range supported by this regulator.
833          */
834         if (ops->list_voltage && rdev->desc->n_voltages) {
835                 int     count = rdev->desc->n_voltages;
836                 int     i;
837                 int     min_uV = INT_MAX;
838                 int     max_uV = INT_MIN;
839                 int     cmin = constraints->min_uV;
840                 int     cmax = constraints->max_uV;
841
842                 /* it's safe to autoconfigure fixed-voltage supplies
843                    and the constraints are used by list_voltage. */
844                 if (count == 1 && !cmin) {
845                         cmin = 1;
846                         cmax = INT_MAX;
847                         constraints->min_uV = cmin;
848                         constraints->max_uV = cmax;
849                 }
850
851                 /* voltage constraints are optional */
852                 if ((cmin == 0) && (cmax == 0))
853                         return 0;
854
855                 /* else require explicit machine-level constraints */
856                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
857                         rdev_err(rdev, "invalid voltage constraints\n");
858                         return -EINVAL;
859                 }
860
861                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
862                 for (i = 0; i < count; i++) {
863                         int     value;
864
865                         value = ops->list_voltage(rdev, i);
866                         if (value <= 0)
867                                 continue;
868
869                         /* maybe adjust [min_uV..max_uV] */
870                         if (value >= cmin && value < min_uV)
871                                 min_uV = value;
872                         if (value <= cmax && value > max_uV)
873                                 max_uV = value;
874                 }
875
876                 /* final: [min_uV..max_uV] valid iff constraints valid */
877                 if (max_uV < min_uV) {
878                         rdev_err(rdev, "unsupportable voltage constraints\n");
879                         return -EINVAL;
880                 }
881
882                 /* use regulator's subset of machine constraints */
883                 if (constraints->min_uV < min_uV) {
884                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
885                                  constraints->min_uV, min_uV);
886                         constraints->min_uV = min_uV;
887                 }
888                 if (constraints->max_uV > max_uV) {
889                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
890                                  constraints->max_uV, max_uV);
891                         constraints->max_uV = max_uV;
892                 }
893         }
894
895         return 0;
896 }
897
898 /**
899  * set_machine_constraints - sets regulator constraints
900  * @rdev: regulator source
901  * @constraints: constraints to apply
902  *
903  * Allows platform initialisation code to define and constrain
904  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
905  * Constraints *must* be set by platform code in order for some
906  * regulator operations to proceed i.e. set_voltage, set_current_limit,
907  * set_mode.
908  */
909 static int set_machine_constraints(struct regulator_dev *rdev,
910         const struct regulation_constraints *constraints)
911 {
912         int ret = 0;
913         struct regulator_ops *ops = rdev->desc->ops;
914
915         if (constraints)
916                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
917                                             GFP_KERNEL);
918         else
919                 rdev->constraints = kzalloc(sizeof(*constraints),
920                                             GFP_KERNEL);
921         if (!rdev->constraints)
922                 return -ENOMEM;
923
924         ret = machine_constraints_voltage(rdev, rdev->constraints);
925         if (ret != 0)
926                 goto out;
927
928         /* do we need to setup our suspend state */
929         if (rdev->constraints->initial_state) {
930                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
931                 if (ret < 0) {
932                         rdev_err(rdev, "failed to set suspend state\n");
933                         goto out;
934                 }
935         }
936
937         if (rdev->constraints->initial_mode) {
938                 if (!ops->set_mode) {
939                         rdev_err(rdev, "no set_mode operation\n");
940                         ret = -EINVAL;
941                         goto out;
942                 }
943
944                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
945                 if (ret < 0) {
946                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
947                         goto out;
948                 }
949         }
950
951         /* If the constraints say the regulator should be on at this point
952          * and we have control then make sure it is enabled.
953          */
954         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
955             ops->enable) {
956                 ret = ops->enable(rdev);
957                 if (ret < 0) {
958                         rdev_err(rdev, "failed to enable\n");
959                         goto out;
960                 }
961         }
962
963         print_constraints(rdev);
964         return 0;
965 out:
966         kfree(rdev->constraints);
967         rdev->constraints = NULL;
968         return ret;
969 }
970
971 /**
972  * set_supply - set regulator supply regulator
973  * @rdev: regulator name
974  * @supply_rdev: supply regulator name
975  *
976  * Called by platform initialisation code to set the supply regulator for this
977  * regulator. This ensures that a regulators supply will also be enabled by the
978  * core if it's child is enabled.
979  */
980 static int set_supply(struct regulator_dev *rdev,
981                       struct regulator_dev *supply_rdev)
982 {
983         int err;
984
985         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
986
987         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
988         if (rdev->supply == NULL) {
989                 err = -ENOMEM;
990                 return err;
991         }
992
993         return 0;
994 }
995
996 /**
997  * set_consumer_device_supply - Bind a regulator to a symbolic supply
998  * @rdev:         regulator source
999  * @consumer_dev: device the supply applies to
1000  * @consumer_dev_name: dev_name() string for device supply applies to
1001  * @supply:       symbolic name for supply
1002  *
1003  * Allows platform initialisation code to map physical regulator
1004  * sources to symbolic names for supplies for use by devices.  Devices
1005  * should use these symbolic names to request regulators, avoiding the
1006  * need to provide board-specific regulator names as platform data.
1007  *
1008  * Only one of consumer_dev and consumer_dev_name may be specified.
1009  */
1010 static int set_consumer_device_supply(struct regulator_dev *rdev,
1011         struct device *consumer_dev, const char *consumer_dev_name,
1012         const char *supply)
1013 {
1014         struct regulator_map *node;
1015         int has_dev;
1016
1017         if (consumer_dev && consumer_dev_name)
1018                 return -EINVAL;
1019
1020         if (!consumer_dev_name && consumer_dev)
1021                 consumer_dev_name = dev_name(consumer_dev);
1022
1023         if (supply == NULL)
1024                 return -EINVAL;
1025
1026         if (consumer_dev_name != NULL)
1027                 has_dev = 1;
1028         else
1029                 has_dev = 0;
1030
1031         list_for_each_entry(node, &regulator_map_list, list) {
1032                 if (node->dev_name && consumer_dev_name) {
1033                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1034                                 continue;
1035                 } else if (node->dev_name || consumer_dev_name) {
1036                         continue;
1037                 }
1038
1039                 if (strcmp(node->supply, supply) != 0)
1040                         continue;
1041
1042                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1043                         dev_name(&node->regulator->dev),
1044                         node->regulator->desc->name,
1045                         supply,
1046                         dev_name(&rdev->dev), rdev_get_name(rdev));
1047                 return -EBUSY;
1048         }
1049
1050         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1051         if (node == NULL)
1052                 return -ENOMEM;
1053
1054         node->regulator = rdev;
1055         node->supply = supply;
1056
1057         if (has_dev) {
1058                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1059                 if (node->dev_name == NULL) {
1060                         kfree(node);
1061                         return -ENOMEM;
1062                 }
1063         }
1064
1065         list_add(&node->list, &regulator_map_list);
1066         return 0;
1067 }
1068
1069 static void unset_regulator_supplies(struct regulator_dev *rdev)
1070 {
1071         struct regulator_map *node, *n;
1072
1073         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1074                 if (rdev == node->regulator) {
1075                         list_del(&node->list);
1076                         kfree(node->dev_name);
1077                         kfree(node);
1078                 }
1079         }
1080 }
1081
1082 #define REG_STR_SIZE    64
1083
1084 static struct regulator *create_regulator(struct regulator_dev *rdev,
1085                                           struct device *dev,
1086                                           const char *supply_name)
1087 {
1088         struct regulator *regulator;
1089         char buf[REG_STR_SIZE];
1090         int err, size;
1091
1092         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1093         if (regulator == NULL)
1094                 return NULL;
1095
1096         mutex_lock(&rdev->mutex);
1097         regulator->rdev = rdev;
1098         list_add(&regulator->list, &rdev->consumer_list);
1099
1100         if (dev) {
1101                 /* create a 'requested_microamps_name' sysfs entry */
1102                 size = scnprintf(buf, REG_STR_SIZE,
1103                                  "microamps_requested_%s-%s",
1104                                  dev_name(dev), supply_name);
1105                 if (size >= REG_STR_SIZE)
1106                         goto overflow_err;
1107
1108                 regulator->dev = dev;
1109                 sysfs_attr_init(&regulator->dev_attr.attr);
1110                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1111                 if (regulator->dev_attr.attr.name == NULL)
1112                         goto attr_name_err;
1113
1114                 regulator->dev_attr.attr.mode = 0444;
1115                 regulator->dev_attr.show = device_requested_uA_show;
1116                 err = device_create_file(dev, &regulator->dev_attr);
1117                 if (err < 0) {
1118                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1119                         goto attr_name_err;
1120                 }
1121
1122                 /* also add a link to the device sysfs entry */
1123                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1124                                  dev->kobj.name, supply_name);
1125                 if (size >= REG_STR_SIZE)
1126                         goto attr_err;
1127
1128                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1129                 if (regulator->supply_name == NULL)
1130                         goto attr_err;
1131
1132                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1133                                         buf);
1134                 if (err) {
1135                         rdev_warn(rdev, "could not add device link %s err %d\n",
1136                                   dev->kobj.name, err);
1137                         goto link_name_err;
1138                 }
1139         } else {
1140                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1141                 if (regulator->supply_name == NULL)
1142                         goto attr_err;
1143         }
1144
1145 #ifdef CONFIG_DEBUG_FS
1146         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1147                                                 rdev->debugfs);
1148         if (IS_ERR_OR_NULL(regulator->debugfs)) {
1149                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1150                 regulator->debugfs = NULL;
1151         } else {
1152                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1153                                    &regulator->uA_load);
1154                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1155                                    &regulator->min_uV);
1156                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1157                                    &regulator->max_uV);
1158         }
1159 #endif
1160
1161         mutex_unlock(&rdev->mutex);
1162         return regulator;
1163 link_name_err:
1164         kfree(regulator->supply_name);
1165 attr_err:
1166         device_remove_file(regulator->dev, &regulator->dev_attr);
1167 attr_name_err:
1168         kfree(regulator->dev_attr.attr.name);
1169 overflow_err:
1170         list_del(&regulator->list);
1171         kfree(regulator);
1172         mutex_unlock(&rdev->mutex);
1173         return NULL;
1174 }
1175
1176 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1177 {
1178         if (!rdev->desc->ops->enable_time)
1179                 return 0;
1180         return rdev->desc->ops->enable_time(rdev);
1181 }
1182
1183 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1184                                                          const char *supply)
1185 {
1186         struct regulator_dev *r;
1187         struct device_node *node;
1188
1189         /* first do a dt based lookup */
1190         if (dev && dev->of_node) {
1191                 node = of_get_regulator(dev, supply);
1192                 if (node)
1193                         list_for_each_entry(r, &regulator_list, list)
1194                                 if (r->dev.parent &&
1195                                         node == r->dev.of_node)
1196                                         return r;
1197         }
1198
1199         /* if not found, try doing it non-dt way */
1200         list_for_each_entry(r, &regulator_list, list)
1201                 if (strcmp(rdev_get_name(r), supply) == 0)
1202                         return r;
1203
1204         return NULL;
1205 }
1206
1207 /* Internal regulator request function */
1208 static struct regulator *_regulator_get(struct device *dev, const char *id,
1209                                         int exclusive)
1210 {
1211         struct regulator_dev *rdev;
1212         struct regulator_map *map;
1213         struct regulator *regulator = ERR_PTR(-ENODEV);
1214         const char *devname = NULL;
1215         int ret;
1216
1217         if (id == NULL) {
1218                 pr_err("get() with no identifier\n");
1219                 return regulator;
1220         }
1221
1222         if (dev)
1223                 devname = dev_name(dev);
1224
1225         mutex_lock(&regulator_list_mutex);
1226
1227         rdev = regulator_dev_lookup(dev, id);
1228         if (rdev)
1229                 goto found;
1230
1231         list_for_each_entry(map, &regulator_map_list, list) {
1232                 /* If the mapping has a device set up it must match */
1233                 if (map->dev_name &&
1234                     (!devname || strcmp(map->dev_name, devname)))
1235                         continue;
1236
1237                 if (strcmp(map->supply, id) == 0) {
1238                         rdev = map->regulator;
1239                         goto found;
1240                 }
1241         }
1242
1243         if (board_wants_dummy_regulator) {
1244                 rdev = dummy_regulator_rdev;
1245                 goto found;
1246         }
1247
1248 #ifdef CONFIG_REGULATOR_DUMMY
1249         if (!devname)
1250                 devname = "deviceless";
1251
1252         /* If the board didn't flag that it was fully constrained then
1253          * substitute in a dummy regulator so consumers can continue.
1254          */
1255         if (!has_full_constraints) {
1256                 pr_warn("%s supply %s not found, using dummy regulator\n",
1257                         devname, id);
1258                 rdev = dummy_regulator_rdev;
1259                 goto found;
1260         }
1261 #endif
1262
1263         mutex_unlock(&regulator_list_mutex);
1264         return regulator;
1265
1266 found:
1267         if (rdev->exclusive) {
1268                 regulator = ERR_PTR(-EPERM);
1269                 goto out;
1270         }
1271
1272         if (exclusive && rdev->open_count) {
1273                 regulator = ERR_PTR(-EBUSY);
1274                 goto out;
1275         }
1276
1277         if (!try_module_get(rdev->owner))
1278                 goto out;
1279
1280         regulator = create_regulator(rdev, dev, id);
1281         if (regulator == NULL) {
1282                 regulator = ERR_PTR(-ENOMEM);
1283                 module_put(rdev->owner);
1284                 goto out;
1285         }
1286
1287         rdev->open_count++;
1288         if (exclusive) {
1289                 rdev->exclusive = 1;
1290
1291                 ret = _regulator_is_enabled(rdev);
1292                 if (ret > 0)
1293                         rdev->use_count = 1;
1294                 else
1295                         rdev->use_count = 0;
1296         }
1297
1298 out:
1299         mutex_unlock(&regulator_list_mutex);
1300
1301         return regulator;
1302 }
1303
1304 /**
1305  * regulator_get - lookup and obtain a reference to a regulator.
1306  * @dev: device for regulator "consumer"
1307  * @id: Supply name or regulator ID.
1308  *
1309  * Returns a struct regulator corresponding to the regulator producer,
1310  * or IS_ERR() condition containing errno.
1311  *
1312  * Use of supply names configured via regulator_set_device_supply() is
1313  * strongly encouraged.  It is recommended that the supply name used
1314  * should match the name used for the supply and/or the relevant
1315  * device pins in the datasheet.
1316  */
1317 struct regulator *regulator_get(struct device *dev, const char *id)
1318 {
1319         return _regulator_get(dev, id, 0);
1320 }
1321 EXPORT_SYMBOL_GPL(regulator_get);
1322
1323 /**
1324  * regulator_get_exclusive - obtain exclusive access to a regulator.
1325  * @dev: device for regulator "consumer"
1326  * @id: Supply name or regulator ID.
1327  *
1328  * Returns a struct regulator corresponding to the regulator producer,
1329  * or IS_ERR() condition containing errno.  Other consumers will be
1330  * unable to obtain this reference is held and the use count for the
1331  * regulator will be initialised to reflect the current state of the
1332  * regulator.
1333  *
1334  * This is intended for use by consumers which cannot tolerate shared
1335  * use of the regulator such as those which need to force the
1336  * regulator off for correct operation of the hardware they are
1337  * controlling.
1338  *
1339  * Use of supply names configured via regulator_set_device_supply() is
1340  * strongly encouraged.  It is recommended that the supply name used
1341  * should match the name used for the supply and/or the relevant
1342  * device pins in the datasheet.
1343  */
1344 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1345 {
1346         return _regulator_get(dev, id, 1);
1347 }
1348 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1349
1350 /**
1351  * regulator_put - "free" the regulator source
1352  * @regulator: regulator source
1353  *
1354  * Note: drivers must ensure that all regulator_enable calls made on this
1355  * regulator source are balanced by regulator_disable calls prior to calling
1356  * this function.
1357  */
1358 void regulator_put(struct regulator *regulator)
1359 {
1360         struct regulator_dev *rdev;
1361
1362         if (regulator == NULL || IS_ERR(regulator))
1363                 return;
1364
1365         mutex_lock(&regulator_list_mutex);
1366         rdev = regulator->rdev;
1367
1368 #ifdef CONFIG_DEBUG_FS
1369         debugfs_remove_recursive(regulator->debugfs);
1370 #endif
1371
1372         /* remove any sysfs entries */
1373         if (regulator->dev) {
1374                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1375                 device_remove_file(regulator->dev, &regulator->dev_attr);
1376                 kfree(regulator->dev_attr.attr.name);
1377         }
1378         kfree(regulator->supply_name);
1379         list_del(&regulator->list);
1380         kfree(regulator);
1381
1382         rdev->open_count--;
1383         rdev->exclusive = 0;
1384
1385         module_put(rdev->owner);
1386         mutex_unlock(&regulator_list_mutex);
1387 }
1388 EXPORT_SYMBOL_GPL(regulator_put);
1389
1390 static int _regulator_can_change_status(struct regulator_dev *rdev)
1391 {
1392         if (!rdev->constraints)
1393                 return 0;
1394
1395         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1396                 return 1;
1397         else
1398                 return 0;
1399 }
1400
1401 /* locks held by regulator_enable() */
1402 static int _regulator_enable(struct regulator_dev *rdev)
1403 {
1404         int ret, delay;
1405
1406         /* check voltage and requested load before enabling */
1407         if (rdev->constraints &&
1408             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1409                 drms_uA_update(rdev);
1410
1411         if (rdev->use_count == 0) {
1412                 /* The regulator may on if it's not switchable or left on */
1413                 ret = _regulator_is_enabled(rdev);
1414                 if (ret == -EINVAL || ret == 0) {
1415                         if (!_regulator_can_change_status(rdev))
1416                                 return -EPERM;
1417
1418                         if (!rdev->desc->ops->enable)
1419                                 return -EINVAL;
1420
1421                         /* Query before enabling in case configuration
1422                          * dependent.  */
1423                         ret = _regulator_get_enable_time(rdev);
1424                         if (ret >= 0) {
1425                                 delay = ret;
1426                         } else {
1427                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1428                                            ret);
1429                                 delay = 0;
1430                         }
1431
1432                         trace_regulator_enable(rdev_get_name(rdev));
1433
1434                         /* Allow the regulator to ramp; it would be useful
1435                          * to extend this for bulk operations so that the
1436                          * regulators can ramp together.  */
1437                         ret = rdev->desc->ops->enable(rdev);
1438                         if (ret < 0)
1439                                 return ret;
1440
1441                         trace_regulator_enable_delay(rdev_get_name(rdev));
1442
1443                         if (delay >= 1000) {
1444                                 mdelay(delay / 1000);
1445                                 udelay(delay % 1000);
1446                         } else if (delay) {
1447                                 udelay(delay);
1448                         }
1449
1450                         trace_regulator_enable_complete(rdev_get_name(rdev));
1451
1452                 } else if (ret < 0) {
1453                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1454                         return ret;
1455                 }
1456                 /* Fallthrough on positive return values - already enabled */
1457         }
1458
1459         rdev->use_count++;
1460
1461         return 0;
1462 }
1463
1464 /**
1465  * regulator_enable - enable regulator output
1466  * @regulator: regulator source
1467  *
1468  * Request that the regulator be enabled with the regulator output at
1469  * the predefined voltage or current value.  Calls to regulator_enable()
1470  * must be balanced with calls to regulator_disable().
1471  *
1472  * NOTE: the output value can be set by other drivers, boot loader or may be
1473  * hardwired in the regulator.
1474  */
1475 int regulator_enable(struct regulator *regulator)
1476 {
1477         struct regulator_dev *rdev = regulator->rdev;
1478         int ret = 0;
1479
1480         if (rdev->supply) {
1481                 ret = regulator_enable(rdev->supply);
1482                 if (ret != 0)
1483                         return ret;
1484         }
1485
1486         mutex_lock(&rdev->mutex);
1487         ret = _regulator_enable(rdev);
1488         mutex_unlock(&rdev->mutex);
1489
1490         if (ret != 0 && rdev->supply)
1491                 regulator_disable(rdev->supply);
1492
1493         return ret;
1494 }
1495 EXPORT_SYMBOL_GPL(regulator_enable);
1496
1497 /* locks held by regulator_disable() */
1498 static int _regulator_disable(struct regulator_dev *rdev)
1499 {
1500         int ret = 0;
1501
1502         if (WARN(rdev->use_count <= 0,
1503                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1504                 return -EIO;
1505
1506         /* are we the last user and permitted to disable ? */
1507         if (rdev->use_count == 1 &&
1508             (rdev->constraints && !rdev->constraints->always_on)) {
1509
1510                 /* we are last user */
1511                 if (_regulator_can_change_status(rdev) &&
1512                     rdev->desc->ops->disable) {
1513                         trace_regulator_disable(rdev_get_name(rdev));
1514
1515                         ret = rdev->desc->ops->disable(rdev);
1516                         if (ret < 0) {
1517                                 rdev_err(rdev, "failed to disable\n");
1518                                 return ret;
1519                         }
1520
1521                         trace_regulator_disable_complete(rdev_get_name(rdev));
1522
1523                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1524                                              NULL);
1525                 }
1526
1527                 rdev->use_count = 0;
1528         } else if (rdev->use_count > 1) {
1529
1530                 if (rdev->constraints &&
1531                         (rdev->constraints->valid_ops_mask &
1532                         REGULATOR_CHANGE_DRMS))
1533                         drms_uA_update(rdev);
1534
1535                 rdev->use_count--;
1536         }
1537
1538         return ret;
1539 }
1540
1541 /**
1542  * regulator_disable - disable regulator output
1543  * @regulator: regulator source
1544  *
1545  * Disable the regulator output voltage or current.  Calls to
1546  * regulator_enable() must be balanced with calls to
1547  * regulator_disable().
1548  *
1549  * NOTE: this will only disable the regulator output if no other consumer
1550  * devices have it enabled, the regulator device supports disabling and
1551  * machine constraints permit this operation.
1552  */
1553 int regulator_disable(struct regulator *regulator)
1554 {
1555         struct regulator_dev *rdev = regulator->rdev;
1556         int ret = 0;
1557
1558         mutex_lock(&rdev->mutex);
1559         ret = _regulator_disable(rdev);
1560         mutex_unlock(&rdev->mutex);
1561
1562         if (ret == 0 && rdev->supply)
1563                 regulator_disable(rdev->supply);
1564
1565         return ret;
1566 }
1567 EXPORT_SYMBOL_GPL(regulator_disable);
1568
1569 /* locks held by regulator_force_disable() */
1570 static int _regulator_force_disable(struct regulator_dev *rdev)
1571 {
1572         int ret = 0;
1573
1574         /* force disable */
1575         if (rdev->desc->ops->disable) {
1576                 /* ah well, who wants to live forever... */
1577                 ret = rdev->desc->ops->disable(rdev);
1578                 if (ret < 0) {
1579                         rdev_err(rdev, "failed to force disable\n");
1580                         return ret;
1581                 }
1582                 /* notify other consumers that power has been forced off */
1583                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1584                         REGULATOR_EVENT_DISABLE, NULL);
1585         }
1586
1587         return ret;
1588 }
1589
1590 /**
1591  * regulator_force_disable - force disable regulator output
1592  * @regulator: regulator source
1593  *
1594  * Forcibly disable the regulator output voltage or current.
1595  * NOTE: this *will* disable the regulator output even if other consumer
1596  * devices have it enabled. This should be used for situations when device
1597  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1598  */
1599 int regulator_force_disable(struct regulator *regulator)
1600 {
1601         struct regulator_dev *rdev = regulator->rdev;
1602         int ret;
1603
1604         mutex_lock(&rdev->mutex);
1605         regulator->uA_load = 0;
1606         ret = _regulator_force_disable(regulator->rdev);
1607         mutex_unlock(&rdev->mutex);
1608
1609         if (rdev->supply)
1610                 while (rdev->open_count--)
1611                         regulator_disable(rdev->supply);
1612
1613         return ret;
1614 }
1615 EXPORT_SYMBOL_GPL(regulator_force_disable);
1616
1617 static void regulator_disable_work(struct work_struct *work)
1618 {
1619         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1620                                                   disable_work.work);
1621         int count, i, ret;
1622
1623         mutex_lock(&rdev->mutex);
1624
1625         BUG_ON(!rdev->deferred_disables);
1626
1627         count = rdev->deferred_disables;
1628         rdev->deferred_disables = 0;
1629
1630         for (i = 0; i < count; i++) {
1631                 ret = _regulator_disable(rdev);
1632                 if (ret != 0)
1633                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1634         }
1635
1636         mutex_unlock(&rdev->mutex);
1637
1638         if (rdev->supply) {
1639                 for (i = 0; i < count; i++) {
1640                         ret = regulator_disable(rdev->supply);
1641                         if (ret != 0) {
1642                                 rdev_err(rdev,
1643                                          "Supply disable failed: %d\n", ret);
1644                         }
1645                 }
1646         }
1647 }
1648
1649 /**
1650  * regulator_disable_deferred - disable regulator output with delay
1651  * @regulator: regulator source
1652  * @ms: miliseconds until the regulator is disabled
1653  *
1654  * Execute regulator_disable() on the regulator after a delay.  This
1655  * is intended for use with devices that require some time to quiesce.
1656  *
1657  * NOTE: this will only disable the regulator output if no other consumer
1658  * devices have it enabled, the regulator device supports disabling and
1659  * machine constraints permit this operation.
1660  */
1661 int regulator_disable_deferred(struct regulator *regulator, int ms)
1662 {
1663         struct regulator_dev *rdev = regulator->rdev;
1664         int ret;
1665
1666         mutex_lock(&rdev->mutex);
1667         rdev->deferred_disables++;
1668         mutex_unlock(&rdev->mutex);
1669
1670         ret = schedule_delayed_work(&rdev->disable_work,
1671                                     msecs_to_jiffies(ms));
1672         if (ret < 0)
1673                 return ret;
1674         else
1675                 return 0;
1676 }
1677 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1678
1679 static int _regulator_is_enabled(struct regulator_dev *rdev)
1680 {
1681         /* If we don't know then assume that the regulator is always on */
1682         if (!rdev->desc->ops->is_enabled)
1683                 return 1;
1684
1685         return rdev->desc->ops->is_enabled(rdev);
1686 }
1687
1688 /**
1689  * regulator_is_enabled - is the regulator output enabled
1690  * @regulator: regulator source
1691  *
1692  * Returns positive if the regulator driver backing the source/client
1693  * has requested that the device be enabled, zero if it hasn't, else a
1694  * negative errno code.
1695  *
1696  * Note that the device backing this regulator handle can have multiple
1697  * users, so it might be enabled even if regulator_enable() was never
1698  * called for this particular source.
1699  */
1700 int regulator_is_enabled(struct regulator *regulator)
1701 {
1702         int ret;
1703
1704         mutex_lock(&regulator->rdev->mutex);
1705         ret = _regulator_is_enabled(regulator->rdev);
1706         mutex_unlock(&regulator->rdev->mutex);
1707
1708         return ret;
1709 }
1710 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1711
1712 /**
1713  * regulator_count_voltages - count regulator_list_voltage() selectors
1714  * @regulator: regulator source
1715  *
1716  * Returns number of selectors, or negative errno.  Selectors are
1717  * numbered starting at zero, and typically correspond to bitfields
1718  * in hardware registers.
1719  */
1720 int regulator_count_voltages(struct regulator *regulator)
1721 {
1722         struct regulator_dev    *rdev = regulator->rdev;
1723
1724         return rdev->desc->n_voltages ? : -EINVAL;
1725 }
1726 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1727
1728 /**
1729  * regulator_list_voltage - enumerate supported voltages
1730  * @regulator: regulator source
1731  * @selector: identify voltage to list
1732  * Context: can sleep
1733  *
1734  * Returns a voltage that can be passed to @regulator_set_voltage(),
1735  * zero if this selector code can't be used on this system, or a
1736  * negative errno.
1737  */
1738 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1739 {
1740         struct regulator_dev    *rdev = regulator->rdev;
1741         struct regulator_ops    *ops = rdev->desc->ops;
1742         int                     ret;
1743
1744         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1745                 return -EINVAL;
1746
1747         mutex_lock(&rdev->mutex);
1748         ret = ops->list_voltage(rdev, selector);
1749         mutex_unlock(&rdev->mutex);
1750
1751         if (ret > 0) {
1752                 if (ret < rdev->constraints->min_uV)
1753                         ret = 0;
1754                 else if (ret > rdev->constraints->max_uV)
1755                         ret = 0;
1756         }
1757
1758         return ret;
1759 }
1760 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1761
1762 /**
1763  * regulator_is_supported_voltage - check if a voltage range can be supported
1764  *
1765  * @regulator: Regulator to check.
1766  * @min_uV: Minimum required voltage in uV.
1767  * @max_uV: Maximum required voltage in uV.
1768  *
1769  * Returns a boolean or a negative error code.
1770  */
1771 int regulator_is_supported_voltage(struct regulator *regulator,
1772                                    int min_uV, int max_uV)
1773 {
1774         int i, voltages, ret;
1775
1776         ret = regulator_count_voltages(regulator);
1777         if (ret < 0)
1778                 return ret;
1779         voltages = ret;
1780
1781         for (i = 0; i < voltages; i++) {
1782                 ret = regulator_list_voltage(regulator, i);
1783
1784                 if (ret >= min_uV && ret <= max_uV)
1785                         return 1;
1786         }
1787
1788         return 0;
1789 }
1790 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1791
1792 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1793                                      int min_uV, int max_uV)
1794 {
1795         int ret;
1796         int delay = 0;
1797         unsigned int selector;
1798
1799         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1800
1801         min_uV += rdev->constraints->uV_offset;
1802         max_uV += rdev->constraints->uV_offset;
1803
1804         if (rdev->desc->ops->set_voltage) {
1805                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1806                                                    &selector);
1807
1808                 if (rdev->desc->ops->list_voltage)
1809                         selector = rdev->desc->ops->list_voltage(rdev,
1810                                                                  selector);
1811                 else
1812                         selector = -1;
1813         } else if (rdev->desc->ops->set_voltage_sel) {
1814                 int best_val = INT_MAX;
1815                 int i;
1816
1817                 selector = 0;
1818
1819                 /* Find the smallest voltage that falls within the specified
1820                  * range.
1821                  */
1822                 for (i = 0; i < rdev->desc->n_voltages; i++) {
1823                         ret = rdev->desc->ops->list_voltage(rdev, i);
1824                         if (ret < 0)
1825                                 continue;
1826
1827                         if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1828                                 best_val = ret;
1829                                 selector = i;
1830                         }
1831                 }
1832
1833                 /*
1834                  * If we can't obtain the old selector there is not enough
1835                  * info to call set_voltage_time_sel().
1836                  */
1837                 if (rdev->desc->ops->set_voltage_time_sel &&
1838                     rdev->desc->ops->get_voltage_sel) {
1839                         unsigned int old_selector = 0;
1840
1841                         ret = rdev->desc->ops->get_voltage_sel(rdev);
1842                         if (ret < 0)
1843                                 return ret;
1844                         old_selector = ret;
1845                         delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1846                                                 old_selector, selector);
1847                 }
1848
1849                 if (best_val != INT_MAX) {
1850                         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1851                         selector = best_val;
1852                 } else {
1853                         ret = -EINVAL;
1854                 }
1855         } else {
1856                 ret = -EINVAL;
1857         }
1858
1859         /* Insert any necessary delays */
1860         if (delay >= 1000) {
1861                 mdelay(delay / 1000);
1862                 udelay(delay % 1000);
1863         } else if (delay) {
1864                 udelay(delay);
1865         }
1866
1867         if (ret == 0)
1868                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1869                                      NULL);
1870
1871         trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1872
1873         return ret;
1874 }
1875
1876 /**
1877  * regulator_set_voltage - set regulator output voltage
1878  * @regulator: regulator source
1879  * @min_uV: Minimum required voltage in uV
1880  * @max_uV: Maximum acceptable voltage in uV
1881  *
1882  * Sets a voltage regulator to the desired output voltage. This can be set
1883  * during any regulator state. IOW, regulator can be disabled or enabled.
1884  *
1885  * If the regulator is enabled then the voltage will change to the new value
1886  * immediately otherwise if the regulator is disabled the regulator will
1887  * output at the new voltage when enabled.
1888  *
1889  * NOTE: If the regulator is shared between several devices then the lowest
1890  * request voltage that meets the system constraints will be used.
1891  * Regulator system constraints must be set for this regulator before
1892  * calling this function otherwise this call will fail.
1893  */
1894 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1895 {
1896         struct regulator_dev *rdev = regulator->rdev;
1897         int ret = 0;
1898
1899         mutex_lock(&rdev->mutex);
1900
1901         /* If we're setting the same range as last time the change
1902          * should be a noop (some cpufreq implementations use the same
1903          * voltage for multiple frequencies, for example).
1904          */
1905         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1906                 goto out;
1907
1908         /* sanity check */
1909         if (!rdev->desc->ops->set_voltage &&
1910             !rdev->desc->ops->set_voltage_sel) {
1911                 ret = -EINVAL;
1912                 goto out;
1913         }
1914
1915         /* constraints check */
1916         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1917         if (ret < 0)
1918                 goto out;
1919         regulator->min_uV = min_uV;
1920         regulator->max_uV = max_uV;
1921
1922         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1923         if (ret < 0)
1924                 goto out;
1925
1926         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1927
1928 out:
1929         mutex_unlock(&rdev->mutex);
1930         return ret;
1931 }
1932 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1933
1934 /**
1935  * regulator_set_voltage_time - get raise/fall time
1936  * @regulator: regulator source
1937  * @old_uV: starting voltage in microvolts
1938  * @new_uV: target voltage in microvolts
1939  *
1940  * Provided with the starting and ending voltage, this function attempts to
1941  * calculate the time in microseconds required to rise or fall to this new
1942  * voltage.
1943  */
1944 int regulator_set_voltage_time(struct regulator *regulator,
1945                                int old_uV, int new_uV)
1946 {
1947         struct regulator_dev    *rdev = regulator->rdev;
1948         struct regulator_ops    *ops = rdev->desc->ops;
1949         int old_sel = -1;
1950         int new_sel = -1;
1951         int voltage;
1952         int i;
1953
1954         /* Currently requires operations to do this */
1955         if (!ops->list_voltage || !ops->set_voltage_time_sel
1956             || !rdev->desc->n_voltages)
1957                 return -EINVAL;
1958
1959         for (i = 0; i < rdev->desc->n_voltages; i++) {
1960                 /* We only look for exact voltage matches here */
1961                 voltage = regulator_list_voltage(regulator, i);
1962                 if (voltage < 0)
1963                         return -EINVAL;
1964                 if (voltage == 0)
1965                         continue;
1966                 if (voltage == old_uV)
1967                         old_sel = i;
1968                 if (voltage == new_uV)
1969                         new_sel = i;
1970         }
1971
1972         if (old_sel < 0 || new_sel < 0)
1973                 return -EINVAL;
1974
1975         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1976 }
1977 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1978
1979 /**
1980  * regulator_sync_voltage - re-apply last regulator output voltage
1981  * @regulator: regulator source
1982  *
1983  * Re-apply the last configured voltage.  This is intended to be used
1984  * where some external control source the consumer is cooperating with
1985  * has caused the configured voltage to change.
1986  */
1987 int regulator_sync_voltage(struct regulator *regulator)
1988 {
1989         struct regulator_dev *rdev = regulator->rdev;
1990         int ret, min_uV, max_uV;
1991
1992         mutex_lock(&rdev->mutex);
1993
1994         if (!rdev->desc->ops->set_voltage &&
1995             !rdev->desc->ops->set_voltage_sel) {
1996                 ret = -EINVAL;
1997                 goto out;
1998         }
1999
2000         /* This is only going to work if we've had a voltage configured. */
2001         if (!regulator->min_uV && !regulator->max_uV) {
2002                 ret = -EINVAL;
2003                 goto out;
2004         }
2005
2006         min_uV = regulator->min_uV;
2007         max_uV = regulator->max_uV;
2008
2009         /* This should be a paranoia check... */
2010         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2011         if (ret < 0)
2012                 goto out;
2013
2014         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2015         if (ret < 0)
2016                 goto out;
2017
2018         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2019
2020 out:
2021         mutex_unlock(&rdev->mutex);
2022         return ret;
2023 }
2024 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2025
2026 static int _regulator_get_voltage(struct regulator_dev *rdev)
2027 {
2028         int sel, ret;
2029
2030         if (rdev->desc->ops->get_voltage_sel) {
2031                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2032                 if (sel < 0)
2033                         return sel;
2034                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2035         } else if (rdev->desc->ops->get_voltage) {
2036                 ret = rdev->desc->ops->get_voltage(rdev);
2037         } else {
2038                 return -EINVAL;
2039         }
2040
2041         if (ret < 0)
2042                 return ret;
2043         return ret - rdev->constraints->uV_offset;
2044 }
2045
2046 /**
2047  * regulator_get_voltage - get regulator output voltage
2048  * @regulator: regulator source
2049  *
2050  * This returns the current regulator voltage in uV.
2051  *
2052  * NOTE: If the regulator is disabled it will return the voltage value. This
2053  * function should not be used to determine regulator state.
2054  */
2055 int regulator_get_voltage(struct regulator *regulator)
2056 {
2057         int ret;
2058
2059         mutex_lock(&regulator->rdev->mutex);
2060
2061         ret = _regulator_get_voltage(regulator->rdev);
2062
2063         mutex_unlock(&regulator->rdev->mutex);
2064
2065         return ret;
2066 }
2067 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2068
2069 /**
2070  * regulator_set_current_limit - set regulator output current limit
2071  * @regulator: regulator source
2072  * @min_uA: Minimuum supported current in uA
2073  * @max_uA: Maximum supported current in uA
2074  *
2075  * Sets current sink to the desired output current. This can be set during
2076  * any regulator state. IOW, regulator can be disabled or enabled.
2077  *
2078  * If the regulator is enabled then the current will change to the new value
2079  * immediately otherwise if the regulator is disabled the regulator will
2080  * output at the new current when enabled.
2081  *
2082  * NOTE: Regulator system constraints must be set for this regulator before
2083  * calling this function otherwise this call will fail.
2084  */
2085 int regulator_set_current_limit(struct regulator *regulator,
2086                                int min_uA, int max_uA)
2087 {
2088         struct regulator_dev *rdev = regulator->rdev;
2089         int ret;
2090
2091         mutex_lock(&rdev->mutex);
2092
2093         /* sanity check */
2094         if (!rdev->desc->ops->set_current_limit) {
2095                 ret = -EINVAL;
2096                 goto out;
2097         }
2098
2099         /* constraints check */
2100         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2101         if (ret < 0)
2102                 goto out;
2103
2104         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2105 out:
2106         mutex_unlock(&rdev->mutex);
2107         return ret;
2108 }
2109 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2110
2111 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2112 {
2113         int ret;
2114
2115         mutex_lock(&rdev->mutex);
2116
2117         /* sanity check */
2118         if (!rdev->desc->ops->get_current_limit) {
2119                 ret = -EINVAL;
2120                 goto out;
2121         }
2122
2123         ret = rdev->desc->ops->get_current_limit(rdev);
2124 out:
2125         mutex_unlock(&rdev->mutex);
2126         return ret;
2127 }
2128
2129 /**
2130  * regulator_get_current_limit - get regulator output current
2131  * @regulator: regulator source
2132  *
2133  * This returns the current supplied by the specified current sink in uA.
2134  *
2135  * NOTE: If the regulator is disabled it will return the current value. This
2136  * function should not be used to determine regulator state.
2137  */
2138 int regulator_get_current_limit(struct regulator *regulator)
2139 {
2140         return _regulator_get_current_limit(regulator->rdev);
2141 }
2142 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2143
2144 /**
2145  * regulator_set_mode - set regulator operating mode
2146  * @regulator: regulator source
2147  * @mode: operating mode - one of the REGULATOR_MODE constants
2148  *
2149  * Set regulator operating mode to increase regulator efficiency or improve
2150  * regulation performance.
2151  *
2152  * NOTE: Regulator system constraints must be set for this regulator before
2153  * calling this function otherwise this call will fail.
2154  */
2155 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2156 {
2157         struct regulator_dev *rdev = regulator->rdev;
2158         int ret;
2159         int regulator_curr_mode;
2160
2161         mutex_lock(&rdev->mutex);
2162
2163         /* sanity check */
2164         if (!rdev->desc->ops->set_mode) {
2165                 ret = -EINVAL;
2166                 goto out;
2167         }
2168
2169         /* return if the same mode is requested */
2170         if (rdev->desc->ops->get_mode) {
2171                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2172                 if (regulator_curr_mode == mode) {
2173                         ret = 0;
2174                         goto out;
2175                 }
2176         }
2177
2178         /* constraints check */
2179         ret = regulator_mode_constrain(rdev, &mode);
2180         if (ret < 0)
2181                 goto out;
2182
2183         ret = rdev->desc->ops->set_mode(rdev, mode);
2184 out:
2185         mutex_unlock(&rdev->mutex);
2186         return ret;
2187 }
2188 EXPORT_SYMBOL_GPL(regulator_set_mode);
2189
2190 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2191 {
2192         int ret;
2193
2194         mutex_lock(&rdev->mutex);
2195
2196         /* sanity check */
2197         if (!rdev->desc->ops->get_mode) {
2198                 ret = -EINVAL;
2199                 goto out;
2200         }
2201
2202         ret = rdev->desc->ops->get_mode(rdev);
2203 out:
2204         mutex_unlock(&rdev->mutex);
2205         return ret;
2206 }
2207
2208 /**
2209  * regulator_get_mode - get regulator operating mode
2210  * @regulator: regulator source
2211  *
2212  * Get the current regulator operating mode.
2213  */
2214 unsigned int regulator_get_mode(struct regulator *regulator)
2215 {
2216         return _regulator_get_mode(regulator->rdev);
2217 }
2218 EXPORT_SYMBOL_GPL(regulator_get_mode);
2219
2220 /**
2221  * regulator_set_optimum_mode - set regulator optimum operating mode
2222  * @regulator: regulator source
2223  * @uA_load: load current
2224  *
2225  * Notifies the regulator core of a new device load. This is then used by
2226  * DRMS (if enabled by constraints) to set the most efficient regulator
2227  * operating mode for the new regulator loading.
2228  *
2229  * Consumer devices notify their supply regulator of the maximum power
2230  * they will require (can be taken from device datasheet in the power
2231  * consumption tables) when they change operational status and hence power
2232  * state. Examples of operational state changes that can affect power
2233  * consumption are :-
2234  *
2235  *    o Device is opened / closed.
2236  *    o Device I/O is about to begin or has just finished.
2237  *    o Device is idling in between work.
2238  *
2239  * This information is also exported via sysfs to userspace.
2240  *
2241  * DRMS will sum the total requested load on the regulator and change
2242  * to the most efficient operating mode if platform constraints allow.
2243  *
2244  * Returns the new regulator mode or error.
2245  */
2246 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2247 {
2248         struct regulator_dev *rdev = regulator->rdev;
2249         struct regulator *consumer;
2250         int ret, output_uV, input_uV, total_uA_load = 0;
2251         unsigned int mode;
2252
2253         mutex_lock(&rdev->mutex);
2254
2255         /*
2256          * first check to see if we can set modes at all, otherwise just
2257          * tell the consumer everything is OK.
2258          */
2259         regulator->uA_load = uA_load;
2260         ret = regulator_check_drms(rdev);
2261         if (ret < 0) {
2262                 ret = 0;
2263                 goto out;
2264         }
2265
2266         if (!rdev->desc->ops->get_optimum_mode)
2267                 goto out;
2268
2269         /*
2270          * we can actually do this so any errors are indicators of
2271          * potential real failure.
2272          */
2273         ret = -EINVAL;
2274
2275         /* get output voltage */
2276         output_uV = _regulator_get_voltage(rdev);
2277         if (output_uV <= 0) {
2278                 rdev_err(rdev, "invalid output voltage found\n");
2279                 goto out;
2280         }
2281
2282         /* get input voltage */
2283         input_uV = 0;
2284         if (rdev->supply)
2285                 input_uV = regulator_get_voltage(rdev->supply);
2286         if (input_uV <= 0)
2287                 input_uV = rdev->constraints->input_uV;
2288         if (input_uV <= 0) {
2289                 rdev_err(rdev, "invalid input voltage found\n");
2290                 goto out;
2291         }
2292
2293         /* calc total requested load for this regulator */
2294         list_for_each_entry(consumer, &rdev->consumer_list, list)
2295                 total_uA_load += consumer->uA_load;
2296
2297         mode = rdev->desc->ops->get_optimum_mode(rdev,
2298                                                  input_uV, output_uV,
2299                                                  total_uA_load);
2300         ret = regulator_mode_constrain(rdev, &mode);
2301         if (ret < 0) {
2302                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2303                          total_uA_load, input_uV, output_uV);
2304                 goto out;
2305         }
2306
2307         ret = rdev->desc->ops->set_mode(rdev, mode);
2308         if (ret < 0) {
2309                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2310                 goto out;
2311         }
2312         ret = mode;
2313 out:
2314         mutex_unlock(&rdev->mutex);
2315         return ret;
2316 }
2317 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2318
2319 /**
2320  * regulator_register_notifier - register regulator event notifier
2321  * @regulator: regulator source
2322  * @nb: notifier block
2323  *
2324  * Register notifier block to receive regulator events.
2325  */
2326 int regulator_register_notifier(struct regulator *regulator,
2327                               struct notifier_block *nb)
2328 {
2329         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2330                                                 nb);
2331 }
2332 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2333
2334 /**
2335  * regulator_unregister_notifier - unregister regulator event notifier
2336  * @regulator: regulator source
2337  * @nb: notifier block
2338  *
2339  * Unregister regulator event notifier block.
2340  */
2341 int regulator_unregister_notifier(struct regulator *regulator,
2342                                 struct notifier_block *nb)
2343 {
2344         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2345                                                   nb);
2346 }
2347 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2348
2349 /* notify regulator consumers and downstream regulator consumers.
2350  * Note mutex must be held by caller.
2351  */
2352 static void _notifier_call_chain(struct regulator_dev *rdev,
2353                                   unsigned long event, void *data)
2354 {
2355         /* call rdev chain first */
2356         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2357 }
2358
2359 /**
2360  * regulator_bulk_get - get multiple regulator consumers
2361  *
2362  * @dev:           Device to supply
2363  * @num_consumers: Number of consumers to register
2364  * @consumers:     Configuration of consumers; clients are stored here.
2365  *
2366  * @return 0 on success, an errno on failure.
2367  *
2368  * This helper function allows drivers to get several regulator
2369  * consumers in one operation.  If any of the regulators cannot be
2370  * acquired then any regulators that were allocated will be freed
2371  * before returning to the caller.
2372  */
2373 int regulator_bulk_get(struct device *dev, int num_consumers,
2374                        struct regulator_bulk_data *consumers)
2375 {
2376         int i;
2377         int ret;
2378
2379         for (i = 0; i < num_consumers; i++)
2380                 consumers[i].consumer = NULL;
2381
2382         for (i = 0; i < num_consumers; i++) {
2383                 consumers[i].consumer = regulator_get(dev,
2384                                                       consumers[i].supply);
2385                 if (IS_ERR(consumers[i].consumer)) {
2386                         ret = PTR_ERR(consumers[i].consumer);
2387                         dev_err(dev, "Failed to get supply '%s': %d\n",
2388                                 consumers[i].supply, ret);
2389                         consumers[i].consumer = NULL;
2390                         goto err;
2391                 }
2392         }
2393
2394         return 0;
2395
2396 err:
2397         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2398                 regulator_put(consumers[i].consumer);
2399
2400         return ret;
2401 }
2402 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2403
2404 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2405 {
2406         struct regulator_bulk_data *bulk = data;
2407
2408         bulk->ret = regulator_enable(bulk->consumer);
2409 }
2410
2411 /**
2412  * regulator_bulk_enable - enable multiple regulator consumers
2413  *
2414  * @num_consumers: Number of consumers
2415  * @consumers:     Consumer data; clients are stored here.
2416  * @return         0 on success, an errno on failure
2417  *
2418  * This convenience API allows consumers to enable multiple regulator
2419  * clients in a single API call.  If any consumers cannot be enabled
2420  * then any others that were enabled will be disabled again prior to
2421  * return.
2422  */
2423 int regulator_bulk_enable(int num_consumers,
2424                           struct regulator_bulk_data *consumers)
2425 {
2426         LIST_HEAD(async_domain);
2427         int i;
2428         int ret = 0;
2429
2430         for (i = 0; i < num_consumers; i++)
2431                 async_schedule_domain(regulator_bulk_enable_async,
2432                                       &consumers[i], &async_domain);
2433
2434         async_synchronize_full_domain(&async_domain);
2435
2436         /* If any consumer failed we need to unwind any that succeeded */
2437         for (i = 0; i < num_consumers; i++) {
2438                 if (consumers[i].ret != 0) {
2439                         ret = consumers[i].ret;
2440                         goto err;
2441                 }
2442         }
2443
2444         return 0;
2445
2446 err:
2447         for (i = 0; i < num_consumers; i++)
2448                 if (consumers[i].ret == 0)
2449                         regulator_disable(consumers[i].consumer);
2450                 else
2451                         pr_err("Failed to enable %s: %d\n",
2452                                consumers[i].supply, consumers[i].ret);
2453
2454         return ret;
2455 }
2456 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2457
2458 /**
2459  * regulator_bulk_disable - disable multiple regulator consumers
2460  *
2461  * @num_consumers: Number of consumers
2462  * @consumers:     Consumer data; clients are stored here.
2463  * @return         0 on success, an errno on failure
2464  *
2465  * This convenience API allows consumers to disable multiple regulator
2466  * clients in a single API call.  If any consumers cannot be enabled
2467  * then any others that were disabled will be disabled again prior to
2468  * return.
2469  */
2470 int regulator_bulk_disable(int num_consumers,
2471                            struct regulator_bulk_data *consumers)
2472 {
2473         int i;
2474         int ret;
2475
2476         for (i = 0; i < num_consumers; i++) {
2477                 ret = regulator_disable(consumers[i].consumer);
2478                 if (ret != 0)
2479                         goto err;
2480         }
2481
2482         return 0;
2483
2484 err:
2485         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2486         for (--i; i >= 0; --i)
2487                 regulator_enable(consumers[i].consumer);
2488
2489         return ret;
2490 }
2491 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2492
2493 /**
2494  * regulator_bulk_force_disable - force disable multiple regulator consumers
2495  *
2496  * @num_consumers: Number of consumers
2497  * @consumers:     Consumer data; clients are stored here.
2498  * @return         0 on success, an errno on failure
2499  *
2500  * This convenience API allows consumers to forcibly disable multiple regulator
2501  * clients in a single API call.
2502  * NOTE: This should be used for situations when device damage will
2503  * likely occur if the regulators are not disabled (e.g. over temp).
2504  * Although regulator_force_disable function call for some consumers can
2505  * return error numbers, the function is called for all consumers.
2506  */
2507 int regulator_bulk_force_disable(int num_consumers,
2508                            struct regulator_bulk_data *consumers)
2509 {
2510         int i;
2511         int ret;
2512
2513         for (i = 0; i < num_consumers; i++)
2514                 consumers[i].ret =
2515                             regulator_force_disable(consumers[i].consumer);
2516
2517         for (i = 0; i < num_consumers; i++) {
2518                 if (consumers[i].ret != 0) {
2519                         ret = consumers[i].ret;
2520                         goto out;
2521                 }
2522         }
2523
2524         return 0;
2525 out:
2526         return ret;
2527 }
2528 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2529
2530 /**
2531  * regulator_bulk_free - free multiple regulator consumers
2532  *
2533  * @num_consumers: Number of consumers
2534  * @consumers:     Consumer data; clients are stored here.
2535  *
2536  * This convenience API allows consumers to free multiple regulator
2537  * clients in a single API call.
2538  */
2539 void regulator_bulk_free(int num_consumers,
2540                          struct regulator_bulk_data *consumers)
2541 {
2542         int i;
2543
2544         for (i = 0; i < num_consumers; i++) {
2545                 regulator_put(consumers[i].consumer);
2546                 consumers[i].consumer = NULL;
2547         }
2548 }
2549 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2550
2551 /**
2552  * regulator_notifier_call_chain - call regulator event notifier
2553  * @rdev: regulator source
2554  * @event: notifier block
2555  * @data: callback-specific data.
2556  *
2557  * Called by regulator drivers to notify clients a regulator event has
2558  * occurred. We also notify regulator clients downstream.
2559  * Note lock must be held by caller.
2560  */
2561 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2562                                   unsigned long event, void *data)
2563 {
2564         _notifier_call_chain(rdev, event, data);
2565         return NOTIFY_DONE;
2566
2567 }
2568 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2569
2570 /**
2571  * regulator_mode_to_status - convert a regulator mode into a status
2572  *
2573  * @mode: Mode to convert
2574  *
2575  * Convert a regulator mode into a status.
2576  */
2577 int regulator_mode_to_status(unsigned int mode)
2578 {
2579         switch (mode) {
2580         case REGULATOR_MODE_FAST:
2581                 return REGULATOR_STATUS_FAST;
2582         case REGULATOR_MODE_NORMAL:
2583                 return REGULATOR_STATUS_NORMAL;
2584         case REGULATOR_MODE_IDLE:
2585                 return REGULATOR_STATUS_IDLE;
2586         case REGULATOR_STATUS_STANDBY:
2587                 return REGULATOR_STATUS_STANDBY;
2588         default:
2589                 return 0;
2590         }
2591 }
2592 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2593
2594 /*
2595  * To avoid cluttering sysfs (and memory) with useless state, only
2596  * create attributes that can be meaningfully displayed.
2597  */
2598 static int add_regulator_attributes(struct regulator_dev *rdev)
2599 {
2600         struct device           *dev = &rdev->dev;
2601         struct regulator_ops    *ops = rdev->desc->ops;
2602         int                     status = 0;
2603
2604         /* some attributes need specific methods to be displayed */
2605         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2606             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2607                 status = device_create_file(dev, &dev_attr_microvolts);
2608                 if (status < 0)
2609                         return status;
2610         }
2611         if (ops->get_current_limit) {
2612                 status = device_create_file(dev, &dev_attr_microamps);
2613                 if (status < 0)
2614                         return status;
2615         }
2616         if (ops->get_mode) {
2617                 status = device_create_file(dev, &dev_attr_opmode);
2618                 if (status < 0)
2619                         return status;
2620         }
2621         if (ops->is_enabled) {
2622                 status = device_create_file(dev, &dev_attr_state);
2623                 if (status < 0)
2624                         return status;
2625         }
2626         if (ops->get_status) {
2627                 status = device_create_file(dev, &dev_attr_status);
2628                 if (status < 0)
2629                         return status;
2630         }
2631
2632         /* some attributes are type-specific */
2633         if (rdev->desc->type == REGULATOR_CURRENT) {
2634                 status = device_create_file(dev, &dev_attr_requested_microamps);
2635                 if (status < 0)
2636                         return status;
2637         }
2638
2639         /* all the other attributes exist to support constraints;
2640          * don't show them if there are no constraints, or if the
2641          * relevant supporting methods are missing.
2642          */
2643         if (!rdev->constraints)
2644                 return status;
2645
2646         /* constraints need specific supporting methods */
2647         if (ops->set_voltage || ops->set_voltage_sel) {
2648                 status = device_create_file(dev, &dev_attr_min_microvolts);
2649                 if (status < 0)
2650                         return status;
2651                 status = device_create_file(dev, &dev_attr_max_microvolts);
2652                 if (status < 0)
2653                         return status;
2654         }
2655         if (ops->set_current_limit) {
2656                 status = device_create_file(dev, &dev_attr_min_microamps);
2657                 if (status < 0)
2658                         return status;
2659                 status = device_create_file(dev, &dev_attr_max_microamps);
2660                 if (status < 0)
2661                         return status;
2662         }
2663
2664         /* suspend mode constraints need multiple supporting methods */
2665         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2666                 return status;
2667
2668         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2669         if (status < 0)
2670                 return status;
2671         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2672         if (status < 0)
2673                 return status;
2674         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2675         if (status < 0)
2676                 return status;
2677
2678         if (ops->set_suspend_voltage) {
2679                 status = device_create_file(dev,
2680                                 &dev_attr_suspend_standby_microvolts);
2681                 if (status < 0)
2682                         return status;
2683                 status = device_create_file(dev,
2684                                 &dev_attr_suspend_mem_microvolts);
2685                 if (status < 0)
2686                         return status;
2687                 status = device_create_file(dev,
2688                                 &dev_attr_suspend_disk_microvolts);
2689                 if (status < 0)
2690                         return status;
2691         }
2692
2693         if (ops->set_suspend_mode) {
2694                 status = device_create_file(dev,
2695                                 &dev_attr_suspend_standby_mode);
2696                 if (status < 0)
2697                         return status;
2698                 status = device_create_file(dev,
2699                                 &dev_attr_suspend_mem_mode);
2700                 if (status < 0)
2701                         return status;
2702                 status = device_create_file(dev,
2703                                 &dev_attr_suspend_disk_mode);
2704                 if (status < 0)
2705                         return status;
2706         }
2707
2708         return status;
2709 }
2710
2711 static void rdev_init_debugfs(struct regulator_dev *rdev)
2712 {
2713 #ifdef CONFIG_DEBUG_FS
2714         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2715         if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2716                 rdev_warn(rdev, "Failed to create debugfs directory\n");
2717                 rdev->debugfs = NULL;
2718                 return;
2719         }
2720
2721         debugfs_create_u32("use_count", 0444, rdev->debugfs,
2722                            &rdev->use_count);
2723         debugfs_create_u32("open_count", 0444, rdev->debugfs,
2724                            &rdev->open_count);
2725 #endif
2726 }
2727
2728 /**
2729  * regulator_register - register regulator
2730  * @regulator_desc: regulator to register
2731  * @dev: struct device for the regulator
2732  * @init_data: platform provided init data, passed through by driver
2733  * @driver_data: private regulator data
2734  * @of_node: OpenFirmware node to parse for device tree bindings (may be
2735  *           NULL).
2736  *
2737  * Called by regulator drivers to register a regulator.
2738  * Returns 0 on success.
2739  */
2740 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2741         struct device *dev, const struct regulator_init_data *init_data,
2742         void *driver_data, struct device_node *of_node)
2743 {
2744         const struct regulation_constraints *constraints = NULL;
2745         static atomic_t regulator_no = ATOMIC_INIT(0);
2746         struct regulator_dev *rdev;
2747         int ret, i;
2748         const char *supply = NULL;
2749
2750         if (regulator_desc == NULL)
2751                 return ERR_PTR(-EINVAL);
2752
2753         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2754                 return ERR_PTR(-EINVAL);
2755
2756         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2757             regulator_desc->type != REGULATOR_CURRENT)
2758                 return ERR_PTR(-EINVAL);
2759
2760         /* Only one of each should be implemented */
2761         WARN_ON(regulator_desc->ops->get_voltage &&
2762                 regulator_desc->ops->get_voltage_sel);
2763         WARN_ON(regulator_desc->ops->set_voltage &&
2764                 regulator_desc->ops->set_voltage_sel);
2765
2766         /* If we're using selectors we must implement list_voltage. */
2767         if (regulator_desc->ops->get_voltage_sel &&
2768             !regulator_desc->ops->list_voltage) {
2769                 return ERR_PTR(-EINVAL);
2770         }
2771         if (regulator_desc->ops->set_voltage_sel &&
2772             !regulator_desc->ops->list_voltage) {
2773                 return ERR_PTR(-EINVAL);
2774         }
2775
2776         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2777         if (rdev == NULL)
2778                 return ERR_PTR(-ENOMEM);
2779
2780         mutex_lock(&regulator_list_mutex);
2781
2782         mutex_init(&rdev->mutex);
2783         rdev->reg_data = driver_data;
2784         rdev->owner = regulator_desc->owner;
2785         rdev->desc = regulator_desc;
2786         INIT_LIST_HEAD(&rdev->consumer_list);
2787         INIT_LIST_HEAD(&rdev->list);
2788         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2789         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2790
2791         /* preform any regulator specific init */
2792         if (init_data && init_data->regulator_init) {
2793                 ret = init_data->regulator_init(rdev->reg_data);
2794                 if (ret < 0)
2795                         goto clean;
2796         }
2797
2798         /* register with sysfs */
2799         rdev->dev.class = &regulator_class;
2800         rdev->dev.of_node = of_node;
2801         rdev->dev.parent = dev;
2802         dev_set_name(&rdev->dev, "regulator.%d",
2803                      atomic_inc_return(&regulator_no) - 1);
2804         ret = device_register(&rdev->dev);
2805         if (ret != 0) {
2806                 put_device(&rdev->dev);
2807                 goto clean;
2808         }
2809
2810         dev_set_drvdata(&rdev->dev, rdev);
2811
2812         /* set regulator constraints */
2813         if (init_data)
2814                 constraints = &init_data->constraints;
2815
2816         ret = set_machine_constraints(rdev, constraints);
2817         if (ret < 0)
2818                 goto scrub;
2819
2820         /* add attributes supported by this regulator */
2821         ret = add_regulator_attributes(rdev);
2822         if (ret < 0)
2823                 goto scrub;
2824
2825         if (init_data && init_data->supply_regulator)
2826                 supply = init_data->supply_regulator;
2827         else if (regulator_desc->supply_name)
2828                 supply = regulator_desc->supply_name;
2829
2830         if (supply) {
2831                 struct regulator_dev *r;
2832
2833                 r = regulator_dev_lookup(dev, supply);
2834
2835                 if (!r) {
2836                         dev_err(dev, "Failed to find supply %s\n", supply);
2837                         ret = -ENODEV;
2838                         goto scrub;
2839                 }
2840
2841                 ret = set_supply(rdev, r);
2842                 if (ret < 0)
2843                         goto scrub;
2844
2845                 /* Enable supply if rail is enabled */
2846                 if (rdev->desc->ops->is_enabled &&
2847                                 rdev->desc->ops->is_enabled(rdev)) {
2848                         ret = regulator_enable(rdev->supply);
2849                         if (ret < 0)
2850                                 goto scrub;
2851                 }
2852         }
2853
2854         /* add consumers devices */
2855         if (init_data) {
2856                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2857                         ret = set_consumer_device_supply(rdev,
2858                                 init_data->consumer_supplies[i].dev,
2859                                 init_data->consumer_supplies[i].dev_name,
2860                                 init_data->consumer_supplies[i].supply);
2861                         if (ret < 0) {
2862                                 dev_err(dev, "Failed to set supply %s\n",
2863                                         init_data->consumer_supplies[i].supply);
2864                                 goto unset_supplies;
2865                         }
2866                 }
2867         }
2868
2869         list_add(&rdev->list, &regulator_list);
2870
2871         rdev_init_debugfs(rdev);
2872 out:
2873         mutex_unlock(&regulator_list_mutex);
2874         return rdev;
2875
2876 unset_supplies:
2877         unset_regulator_supplies(rdev);
2878
2879 scrub:
2880         kfree(rdev->constraints);
2881         device_unregister(&rdev->dev);
2882         /* device core frees rdev */
2883         rdev = ERR_PTR(ret);
2884         goto out;
2885
2886 clean:
2887         kfree(rdev);
2888         rdev = ERR_PTR(ret);
2889         goto out;
2890 }
2891 EXPORT_SYMBOL_GPL(regulator_register);
2892
2893 /**
2894  * regulator_unregister - unregister regulator
2895  * @rdev: regulator to unregister
2896  *
2897  * Called by regulator drivers to unregister a regulator.
2898  */
2899 void regulator_unregister(struct regulator_dev *rdev)
2900 {
2901         if (rdev == NULL)
2902                 return;
2903
2904         mutex_lock(&regulator_list_mutex);
2905 #ifdef CONFIG_DEBUG_FS
2906         debugfs_remove_recursive(rdev->debugfs);
2907 #endif
2908         flush_work_sync(&rdev->disable_work.work);
2909         WARN_ON(rdev->open_count);
2910         unset_regulator_supplies(rdev);
2911         list_del(&rdev->list);
2912         if (rdev->supply)
2913                 regulator_put(rdev->supply);
2914         kfree(rdev->constraints);
2915         device_unregister(&rdev->dev);
2916         mutex_unlock(&regulator_list_mutex);
2917 }
2918 EXPORT_SYMBOL_GPL(regulator_unregister);
2919
2920 /**
2921  * regulator_suspend_prepare - prepare regulators for system wide suspend
2922  * @state: system suspend state
2923  *
2924  * Configure each regulator with it's suspend operating parameters for state.
2925  * This will usually be called by machine suspend code prior to supending.
2926  */
2927 int regulator_suspend_prepare(suspend_state_t state)
2928 {
2929         struct regulator_dev *rdev;
2930         int ret = 0;
2931
2932         /* ON is handled by regulator active state */
2933         if (state == PM_SUSPEND_ON)
2934                 return -EINVAL;
2935
2936         mutex_lock(&regulator_list_mutex);
2937         list_for_each_entry(rdev, &regulator_list, list) {
2938
2939                 mutex_lock(&rdev->mutex);
2940                 ret = suspend_prepare(rdev, state);
2941                 mutex_unlock(&rdev->mutex);
2942
2943                 if (ret < 0) {
2944                         rdev_err(rdev, "failed to prepare\n");
2945                         goto out;
2946                 }
2947         }
2948 out:
2949         mutex_unlock(&regulator_list_mutex);
2950         return ret;
2951 }
2952 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2953
2954 /**
2955  * regulator_suspend_finish - resume regulators from system wide suspend
2956  *
2957  * Turn on regulators that might be turned off by regulator_suspend_prepare
2958  * and that should be turned on according to the regulators properties.
2959  */
2960 int regulator_suspend_finish(void)
2961 {
2962         struct regulator_dev *rdev;
2963         int ret = 0, error;
2964
2965         mutex_lock(&regulator_list_mutex);
2966         list_for_each_entry(rdev, &regulator_list, list) {
2967                 struct regulator_ops *ops = rdev->desc->ops;
2968
2969                 mutex_lock(&rdev->mutex);
2970                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2971                                 ops->enable) {
2972                         error = ops->enable(rdev);
2973                         if (error)
2974                                 ret = error;
2975                 } else {
2976                         if (!has_full_constraints)
2977                                 goto unlock;
2978                         if (!ops->disable)
2979                                 goto unlock;
2980                         if (ops->is_enabled && !ops->is_enabled(rdev))
2981                                 goto unlock;
2982
2983                         error = ops->disable(rdev);
2984                         if (error)
2985                                 ret = error;
2986                 }
2987 unlock:
2988                 mutex_unlock(&rdev->mutex);
2989         }
2990         mutex_unlock(&regulator_list_mutex);
2991         return ret;
2992 }
2993 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2994
2995 /**
2996  * regulator_has_full_constraints - the system has fully specified constraints
2997  *
2998  * Calling this function will cause the regulator API to disable all
2999  * regulators which have a zero use count and don't have an always_on
3000  * constraint in a late_initcall.
3001  *
3002  * The intention is that this will become the default behaviour in a
3003  * future kernel release so users are encouraged to use this facility
3004  * now.
3005  */
3006 void regulator_has_full_constraints(void)
3007 {
3008         has_full_constraints = 1;
3009 }
3010 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3011
3012 /**
3013  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3014  *
3015  * Calling this function will cause the regulator API to provide a
3016  * dummy regulator to consumers if no physical regulator is found,
3017  * allowing most consumers to proceed as though a regulator were
3018  * configured.  This allows systems such as those with software
3019  * controllable regulators for the CPU core only to be brought up more
3020  * readily.
3021  */
3022 void regulator_use_dummy_regulator(void)
3023 {
3024         board_wants_dummy_regulator = true;
3025 }
3026 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3027
3028 /**
3029  * rdev_get_drvdata - get rdev regulator driver data
3030  * @rdev: regulator
3031  *
3032  * Get rdev regulator driver private data. This call can be used in the
3033  * regulator driver context.
3034  */
3035 void *rdev_get_drvdata(struct regulator_dev *rdev)
3036 {
3037         return rdev->reg_data;
3038 }
3039 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3040
3041 /**
3042  * regulator_get_drvdata - get regulator driver data
3043  * @regulator: regulator
3044  *
3045  * Get regulator driver private data. This call can be used in the consumer
3046  * driver context when non API regulator specific functions need to be called.
3047  */
3048 void *regulator_get_drvdata(struct regulator *regulator)
3049 {
3050         return regulator->rdev->reg_data;
3051 }
3052 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3053
3054 /**
3055  * regulator_set_drvdata - set regulator driver data
3056  * @regulator: regulator
3057  * @data: data
3058  */
3059 void regulator_set_drvdata(struct regulator *regulator, void *data)
3060 {
3061         regulator->rdev->reg_data = data;
3062 }
3063 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3064
3065 /**
3066  * regulator_get_id - get regulator ID
3067  * @rdev: regulator
3068  */
3069 int rdev_get_id(struct regulator_dev *rdev)
3070 {
3071         return rdev->desc->id;
3072 }
3073 EXPORT_SYMBOL_GPL(rdev_get_id);
3074
3075 struct device *rdev_get_dev(struct regulator_dev *rdev)
3076 {
3077         return &rdev->dev;
3078 }
3079 EXPORT_SYMBOL_GPL(rdev_get_dev);
3080
3081 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3082 {
3083         return reg_init_data->driver_data;
3084 }
3085 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3086
3087 #ifdef CONFIG_DEBUG_FS
3088 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3089                                     size_t count, loff_t *ppos)
3090 {
3091         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3092         ssize_t len, ret = 0;
3093         struct regulator_map *map;
3094
3095         if (!buf)
3096                 return -ENOMEM;
3097
3098         list_for_each_entry(map, &regulator_map_list, list) {
3099                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3100                                "%s -> %s.%s\n",
3101                                rdev_get_name(map->regulator), map->dev_name,
3102                                map->supply);
3103                 if (len >= 0)
3104                         ret += len;
3105                 if (ret > PAGE_SIZE) {
3106                         ret = PAGE_SIZE;
3107                         break;
3108                 }
3109         }
3110
3111         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3112
3113         kfree(buf);
3114
3115         return ret;
3116 }
3117
3118 static const struct file_operations supply_map_fops = {
3119         .read = supply_map_read_file,
3120         .llseek = default_llseek,
3121 };
3122 #endif
3123
3124 static int __init regulator_init(void)
3125 {
3126         int ret;
3127
3128         ret = class_register(&regulator_class);
3129
3130 #ifdef CONFIG_DEBUG_FS
3131         debugfs_root = debugfs_create_dir("regulator", NULL);
3132         if (IS_ERR(debugfs_root) || !debugfs_root) {
3133                 pr_warn("regulator: Failed to create debugfs directory\n");
3134                 debugfs_root = NULL;
3135         }
3136
3137         if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3138                                        NULL, &supply_map_fops)))
3139                 pr_warn("regulator: Failed to create supplies debugfs\n");
3140 #endif
3141
3142         regulator_dummy_init();
3143
3144         return ret;
3145 }
3146
3147 /* init early to allow our consumers to complete system booting */
3148 core_initcall(regulator_init);
3149
3150 static int __init regulator_init_complete(void)
3151 {
3152         struct regulator_dev *rdev;
3153         struct regulator_ops *ops;
3154         struct regulation_constraints *c;
3155         int enabled, ret;
3156
3157         mutex_lock(&regulator_list_mutex);
3158
3159         /* If we have a full configuration then disable any regulators
3160          * which are not in use or always_on.  This will become the
3161          * default behaviour in the future.
3162          */
3163         list_for_each_entry(rdev, &regulator_list, list) {
3164                 ops = rdev->desc->ops;
3165                 c = rdev->constraints;
3166
3167                 if (!ops->disable || (c && c->always_on))
3168                         continue;
3169
3170                 mutex_lock(&rdev->mutex);
3171
3172                 if (rdev->use_count)
3173                         goto unlock;
3174
3175                 /* If we can't read the status assume it's on. */
3176                 if (ops->is_enabled)
3177                         enabled = ops->is_enabled(rdev);
3178                 else
3179                         enabled = 1;
3180
3181                 if (!enabled)
3182                         goto unlock;
3183
3184                 if (has_full_constraints) {
3185                         /* We log since this may kill the system if it
3186                          * goes wrong. */
3187                         rdev_info(rdev, "disabling\n");
3188                         ret = ops->disable(rdev);
3189                         if (ret != 0) {
3190                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3191                         }
3192                 } else {
3193                         /* The intention is that in future we will
3194                          * assume that full constraints are provided
3195                          * so warn even if we aren't going to do
3196                          * anything here.
3197                          */
3198                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3199                 }
3200
3201 unlock:
3202                 mutex_unlock(&rdev->mutex);
3203         }
3204
3205         mutex_unlock(&regulator_list_mutex);
3206
3207         return 0;
3208 }
3209 late_initcall(regulator_init_complete);