regulator: Allow drivers to report voltages as selectors
[linux-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34
35 #define rdev_err(rdev, fmt, ...)                                        \
36         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
37 #define rdev_warn(rdev, fmt, ...)                                       \
38         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39 #define rdev_info(rdev, fmt, ...)                                       \
40         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_dbg(rdev, fmt, ...)                                        \
42         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43
44 static DEFINE_MUTEX(regulator_list_mutex);
45 static LIST_HEAD(regulator_list);
46 static LIST_HEAD(regulator_map_list);
47 static int has_full_constraints;
48 static bool board_wants_dummy_regulator;
49
50 /*
51  * struct regulator_map
52  *
53  * Used to provide symbolic supply names to devices.
54  */
55 struct regulator_map {
56         struct list_head list;
57         const char *dev_name;   /* The dev_name() for the consumer */
58         const char *supply;
59         struct regulator_dev *regulator;
60 };
61
62 /*
63  * struct regulator
64  *
65  * One for each consumer device.
66  */
67 struct regulator {
68         struct device *dev;
69         struct list_head list;
70         int uA_load;
71         int min_uV;
72         int max_uV;
73         char *supply_name;
74         struct device_attribute dev_attr;
75         struct regulator_dev *rdev;
76 };
77
78 static int _regulator_is_enabled(struct regulator_dev *rdev);
79 static int _regulator_disable(struct regulator_dev *rdev,
80                 struct regulator_dev **supply_rdev_ptr);
81 static int _regulator_get_voltage(struct regulator_dev *rdev);
82 static int _regulator_get_current_limit(struct regulator_dev *rdev);
83 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
84 static void _notifier_call_chain(struct regulator_dev *rdev,
85                                   unsigned long event, void *data);
86
87 static const char *rdev_get_name(struct regulator_dev *rdev)
88 {
89         if (rdev->constraints && rdev->constraints->name)
90                 return rdev->constraints->name;
91         else if (rdev->desc->name)
92                 return rdev->desc->name;
93         else
94                 return "";
95 }
96
97 /* gets the regulator for a given consumer device */
98 static struct regulator *get_device_regulator(struct device *dev)
99 {
100         struct regulator *regulator = NULL;
101         struct regulator_dev *rdev;
102
103         mutex_lock(&regulator_list_mutex);
104         list_for_each_entry(rdev, &regulator_list, list) {
105                 mutex_lock(&rdev->mutex);
106                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
107                         if (regulator->dev == dev) {
108                                 mutex_unlock(&rdev->mutex);
109                                 mutex_unlock(&regulator_list_mutex);
110                                 return regulator;
111                         }
112                 }
113                 mutex_unlock(&rdev->mutex);
114         }
115         mutex_unlock(&regulator_list_mutex);
116         return NULL;
117 }
118
119 /* Platform voltage constraint check */
120 static int regulator_check_voltage(struct regulator_dev *rdev,
121                                    int *min_uV, int *max_uV)
122 {
123         BUG_ON(*min_uV > *max_uV);
124
125         if (!rdev->constraints) {
126                 rdev_err(rdev, "no constraints\n");
127                 return -ENODEV;
128         }
129         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130                 rdev_err(rdev, "operation not allowed\n");
131                 return -EPERM;
132         }
133
134         if (*max_uV > rdev->constraints->max_uV)
135                 *max_uV = rdev->constraints->max_uV;
136         if (*min_uV < rdev->constraints->min_uV)
137                 *min_uV = rdev->constraints->min_uV;
138
139         if (*min_uV > *max_uV)
140                 return -EINVAL;
141
142         return 0;
143 }
144
145 /* Make sure we select a voltage that suits the needs of all
146  * regulator consumers
147  */
148 static int regulator_check_consumers(struct regulator_dev *rdev,
149                                      int *min_uV, int *max_uV)
150 {
151         struct regulator *regulator;
152
153         list_for_each_entry(regulator, &rdev->consumer_list, list) {
154                 if (*max_uV > regulator->max_uV)
155                         *max_uV = regulator->max_uV;
156                 if (*min_uV < regulator->min_uV)
157                         *min_uV = regulator->min_uV;
158         }
159
160         if (*min_uV > *max_uV)
161                 return -EINVAL;
162
163         return 0;
164 }
165
166 /* current constraint check */
167 static int regulator_check_current_limit(struct regulator_dev *rdev,
168                                         int *min_uA, int *max_uA)
169 {
170         BUG_ON(*min_uA > *max_uA);
171
172         if (!rdev->constraints) {
173                 rdev_err(rdev, "no constraints\n");
174                 return -ENODEV;
175         }
176         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
177                 rdev_err(rdev, "operation not allowed\n");
178                 return -EPERM;
179         }
180
181         if (*max_uA > rdev->constraints->max_uA)
182                 *max_uA = rdev->constraints->max_uA;
183         if (*min_uA < rdev->constraints->min_uA)
184                 *min_uA = rdev->constraints->min_uA;
185
186         if (*min_uA > *max_uA)
187                 return -EINVAL;
188
189         return 0;
190 }
191
192 /* operating mode constraint check */
193 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
194 {
195         switch (mode) {
196         case REGULATOR_MODE_FAST:
197         case REGULATOR_MODE_NORMAL:
198         case REGULATOR_MODE_IDLE:
199         case REGULATOR_MODE_STANDBY:
200                 break;
201         default:
202                 return -EINVAL;
203         }
204
205         if (!rdev->constraints) {
206                 rdev_err(rdev, "no constraints\n");
207                 return -ENODEV;
208         }
209         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
210                 rdev_err(rdev, "operation not allowed\n");
211                 return -EPERM;
212         }
213         if (!(rdev->constraints->valid_modes_mask & mode)) {
214                 rdev_err(rdev, "invalid mode %x\n", mode);
215                 return -EINVAL;
216         }
217         return 0;
218 }
219
220 /* dynamic regulator mode switching constraint check */
221 static int regulator_check_drms(struct regulator_dev *rdev)
222 {
223         if (!rdev->constraints) {
224                 rdev_err(rdev, "no constraints\n");
225                 return -ENODEV;
226         }
227         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
228                 rdev_err(rdev, "operation not allowed\n");
229                 return -EPERM;
230         }
231         return 0;
232 }
233
234 static ssize_t device_requested_uA_show(struct device *dev,
235                              struct device_attribute *attr, char *buf)
236 {
237         struct regulator *regulator;
238
239         regulator = get_device_regulator(dev);
240         if (regulator == NULL)
241                 return 0;
242
243         return sprintf(buf, "%d\n", regulator->uA_load);
244 }
245
246 static ssize_t regulator_uV_show(struct device *dev,
247                                 struct device_attribute *attr, char *buf)
248 {
249         struct regulator_dev *rdev = dev_get_drvdata(dev);
250         ssize_t ret;
251
252         mutex_lock(&rdev->mutex);
253         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
254         mutex_unlock(&rdev->mutex);
255
256         return ret;
257 }
258 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
259
260 static ssize_t regulator_uA_show(struct device *dev,
261                                 struct device_attribute *attr, char *buf)
262 {
263         struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
266 }
267 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
268
269 static ssize_t regulator_name_show(struct device *dev,
270                              struct device_attribute *attr, char *buf)
271 {
272         struct regulator_dev *rdev = dev_get_drvdata(dev);
273
274         return sprintf(buf, "%s\n", rdev_get_name(rdev));
275 }
276
277 static ssize_t regulator_print_opmode(char *buf, int mode)
278 {
279         switch (mode) {
280         case REGULATOR_MODE_FAST:
281                 return sprintf(buf, "fast\n");
282         case REGULATOR_MODE_NORMAL:
283                 return sprintf(buf, "normal\n");
284         case REGULATOR_MODE_IDLE:
285                 return sprintf(buf, "idle\n");
286         case REGULATOR_MODE_STANDBY:
287                 return sprintf(buf, "standby\n");
288         }
289         return sprintf(buf, "unknown\n");
290 }
291
292 static ssize_t regulator_opmode_show(struct device *dev,
293                                     struct device_attribute *attr, char *buf)
294 {
295         struct regulator_dev *rdev = dev_get_drvdata(dev);
296
297         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
298 }
299 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
300
301 static ssize_t regulator_print_state(char *buf, int state)
302 {
303         if (state > 0)
304                 return sprintf(buf, "enabled\n");
305         else if (state == 0)
306                 return sprintf(buf, "disabled\n");
307         else
308                 return sprintf(buf, "unknown\n");
309 }
310
311 static ssize_t regulator_state_show(struct device *dev,
312                                    struct device_attribute *attr, char *buf)
313 {
314         struct regulator_dev *rdev = dev_get_drvdata(dev);
315         ssize_t ret;
316
317         mutex_lock(&rdev->mutex);
318         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
319         mutex_unlock(&rdev->mutex);
320
321         return ret;
322 }
323 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
324
325 static ssize_t regulator_status_show(struct device *dev,
326                                    struct device_attribute *attr, char *buf)
327 {
328         struct regulator_dev *rdev = dev_get_drvdata(dev);
329         int status;
330         char *label;
331
332         status = rdev->desc->ops->get_status(rdev);
333         if (status < 0)
334                 return status;
335
336         switch (status) {
337         case REGULATOR_STATUS_OFF:
338                 label = "off";
339                 break;
340         case REGULATOR_STATUS_ON:
341                 label = "on";
342                 break;
343         case REGULATOR_STATUS_ERROR:
344                 label = "error";
345                 break;
346         case REGULATOR_STATUS_FAST:
347                 label = "fast";
348                 break;
349         case REGULATOR_STATUS_NORMAL:
350                 label = "normal";
351                 break;
352         case REGULATOR_STATUS_IDLE:
353                 label = "idle";
354                 break;
355         case REGULATOR_STATUS_STANDBY:
356                 label = "standby";
357                 break;
358         default:
359                 return -ERANGE;
360         }
361
362         return sprintf(buf, "%s\n", label);
363 }
364 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
365
366 static ssize_t regulator_min_uA_show(struct device *dev,
367                                     struct device_attribute *attr, char *buf)
368 {
369         struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371         if (!rdev->constraints)
372                 return sprintf(buf, "constraint not defined\n");
373
374         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
375 }
376 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
377
378 static ssize_t regulator_max_uA_show(struct device *dev,
379                                     struct device_attribute *attr, char *buf)
380 {
381         struct regulator_dev *rdev = dev_get_drvdata(dev);
382
383         if (!rdev->constraints)
384                 return sprintf(buf, "constraint not defined\n");
385
386         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
387 }
388 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
389
390 static ssize_t regulator_min_uV_show(struct device *dev,
391                                     struct device_attribute *attr, char *buf)
392 {
393         struct regulator_dev *rdev = dev_get_drvdata(dev);
394
395         if (!rdev->constraints)
396                 return sprintf(buf, "constraint not defined\n");
397
398         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
399 }
400 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
401
402 static ssize_t regulator_max_uV_show(struct device *dev,
403                                     struct device_attribute *attr, char *buf)
404 {
405         struct regulator_dev *rdev = dev_get_drvdata(dev);
406
407         if (!rdev->constraints)
408                 return sprintf(buf, "constraint not defined\n");
409
410         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
411 }
412 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
413
414 static ssize_t regulator_total_uA_show(struct device *dev,
415                                       struct device_attribute *attr, char *buf)
416 {
417         struct regulator_dev *rdev = dev_get_drvdata(dev);
418         struct regulator *regulator;
419         int uA = 0;
420
421         mutex_lock(&rdev->mutex);
422         list_for_each_entry(regulator, &rdev->consumer_list, list)
423                 uA += regulator->uA_load;
424         mutex_unlock(&rdev->mutex);
425         return sprintf(buf, "%d\n", uA);
426 }
427 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
428
429 static ssize_t regulator_num_users_show(struct device *dev,
430                                       struct device_attribute *attr, char *buf)
431 {
432         struct regulator_dev *rdev = dev_get_drvdata(dev);
433         return sprintf(buf, "%d\n", rdev->use_count);
434 }
435
436 static ssize_t regulator_type_show(struct device *dev,
437                                   struct device_attribute *attr, char *buf)
438 {
439         struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441         switch (rdev->desc->type) {
442         case REGULATOR_VOLTAGE:
443                 return sprintf(buf, "voltage\n");
444         case REGULATOR_CURRENT:
445                 return sprintf(buf, "current\n");
446         }
447         return sprintf(buf, "unknown\n");
448 }
449
450 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
451                                 struct device_attribute *attr, char *buf)
452 {
453         struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
456 }
457 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
458                 regulator_suspend_mem_uV_show, NULL);
459
460 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
461                                 struct device_attribute *attr, char *buf)
462 {
463         struct regulator_dev *rdev = dev_get_drvdata(dev);
464
465         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
466 }
467 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
468                 regulator_suspend_disk_uV_show, NULL);
469
470 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
471                                 struct device_attribute *attr, char *buf)
472 {
473         struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
476 }
477 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
478                 regulator_suspend_standby_uV_show, NULL);
479
480 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
481                                 struct device_attribute *attr, char *buf)
482 {
483         struct regulator_dev *rdev = dev_get_drvdata(dev);
484
485         return regulator_print_opmode(buf,
486                 rdev->constraints->state_mem.mode);
487 }
488 static DEVICE_ATTR(suspend_mem_mode, 0444,
489                 regulator_suspend_mem_mode_show, NULL);
490
491 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
492                                 struct device_attribute *attr, char *buf)
493 {
494         struct regulator_dev *rdev = dev_get_drvdata(dev);
495
496         return regulator_print_opmode(buf,
497                 rdev->constraints->state_disk.mode);
498 }
499 static DEVICE_ATTR(suspend_disk_mode, 0444,
500                 regulator_suspend_disk_mode_show, NULL);
501
502 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
503                                 struct device_attribute *attr, char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         return regulator_print_opmode(buf,
508                 rdev->constraints->state_standby.mode);
509 }
510 static DEVICE_ATTR(suspend_standby_mode, 0444,
511                 regulator_suspend_standby_mode_show, NULL);
512
513 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
514                                    struct device_attribute *attr, char *buf)
515 {
516         struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518         return regulator_print_state(buf,
519                         rdev->constraints->state_mem.enabled);
520 }
521 static DEVICE_ATTR(suspend_mem_state, 0444,
522                 regulator_suspend_mem_state_show, NULL);
523
524 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
525                                    struct device_attribute *attr, char *buf)
526 {
527         struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529         return regulator_print_state(buf,
530                         rdev->constraints->state_disk.enabled);
531 }
532 static DEVICE_ATTR(suspend_disk_state, 0444,
533                 regulator_suspend_disk_state_show, NULL);
534
535 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
536                                    struct device_attribute *attr, char *buf)
537 {
538         struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540         return regulator_print_state(buf,
541                         rdev->constraints->state_standby.enabled);
542 }
543 static DEVICE_ATTR(suspend_standby_state, 0444,
544                 regulator_suspend_standby_state_show, NULL);
545
546
547 /*
548  * These are the only attributes are present for all regulators.
549  * Other attributes are a function of regulator functionality.
550  */
551 static struct device_attribute regulator_dev_attrs[] = {
552         __ATTR(name, 0444, regulator_name_show, NULL),
553         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
554         __ATTR(type, 0444, regulator_type_show, NULL),
555         __ATTR_NULL,
556 };
557
558 static void regulator_dev_release(struct device *dev)
559 {
560         struct regulator_dev *rdev = dev_get_drvdata(dev);
561         kfree(rdev);
562 }
563
564 static struct class regulator_class = {
565         .name = "regulator",
566         .dev_release = regulator_dev_release,
567         .dev_attrs = regulator_dev_attrs,
568 };
569
570 /* Calculate the new optimum regulator operating mode based on the new total
571  * consumer load. All locks held by caller */
572 static void drms_uA_update(struct regulator_dev *rdev)
573 {
574         struct regulator *sibling;
575         int current_uA = 0, output_uV, input_uV, err;
576         unsigned int mode;
577
578         err = regulator_check_drms(rdev);
579         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
580             (!rdev->desc->ops->get_voltage &&
581              !rdev->desc->ops->get_voltage_sel) ||
582             !rdev->desc->ops->set_mode)
583                 return;
584
585         /* get output voltage */
586         output_uV = _regulator_get_voltage(rdev);
587         if (output_uV <= 0)
588                 return;
589
590         /* get input voltage */
591         input_uV = 0;
592         if (rdev->supply)
593                 input_uV = _regulator_get_voltage(rdev);
594         if (input_uV <= 0)
595                 input_uV = rdev->constraints->input_uV;
596         if (input_uV <= 0)
597                 return;
598
599         /* calc total requested load */
600         list_for_each_entry(sibling, &rdev->consumer_list, list)
601                 current_uA += sibling->uA_load;
602
603         /* now get the optimum mode for our new total regulator load */
604         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
605                                                   output_uV, current_uA);
606
607         /* check the new mode is allowed */
608         err = regulator_check_mode(rdev, mode);
609         if (err == 0)
610                 rdev->desc->ops->set_mode(rdev, mode);
611 }
612
613 static int suspend_set_state(struct regulator_dev *rdev,
614         struct regulator_state *rstate)
615 {
616         int ret = 0;
617         bool can_set_state;
618
619         can_set_state = rdev->desc->ops->set_suspend_enable &&
620                 rdev->desc->ops->set_suspend_disable;
621
622         /* If we have no suspend mode configration don't set anything;
623          * only warn if the driver actually makes the suspend mode
624          * configurable.
625          */
626         if (!rstate->enabled && !rstate->disabled) {
627                 if (can_set_state)
628                         rdev_warn(rdev, "No configuration\n");
629                 return 0;
630         }
631
632         if (rstate->enabled && rstate->disabled) {
633                 rdev_err(rdev, "invalid configuration\n");
634                 return -EINVAL;
635         }
636
637         if (!can_set_state) {
638                 rdev_err(rdev, "no way to set suspend state\n");
639                 return -EINVAL;
640         }
641
642         if (rstate->enabled)
643                 ret = rdev->desc->ops->set_suspend_enable(rdev);
644         else
645                 ret = rdev->desc->ops->set_suspend_disable(rdev);
646         if (ret < 0) {
647                 rdev_err(rdev, "failed to enabled/disable\n");
648                 return ret;
649         }
650
651         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
652                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
653                 if (ret < 0) {
654                         rdev_err(rdev, "failed to set voltage\n");
655                         return ret;
656                 }
657         }
658
659         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
660                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
661                 if (ret < 0) {
662                         rdev_err(rdev, "failed to set mode\n");
663                         return ret;
664                 }
665         }
666         return ret;
667 }
668
669 /* locks held by caller */
670 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
671 {
672         if (!rdev->constraints)
673                 return -EINVAL;
674
675         switch (state) {
676         case PM_SUSPEND_STANDBY:
677                 return suspend_set_state(rdev,
678                         &rdev->constraints->state_standby);
679         case PM_SUSPEND_MEM:
680                 return suspend_set_state(rdev,
681                         &rdev->constraints->state_mem);
682         case PM_SUSPEND_MAX:
683                 return suspend_set_state(rdev,
684                         &rdev->constraints->state_disk);
685         default:
686                 return -EINVAL;
687         }
688 }
689
690 static void print_constraints(struct regulator_dev *rdev)
691 {
692         struct regulation_constraints *constraints = rdev->constraints;
693         char buf[80] = "";
694         int count = 0;
695         int ret;
696
697         if (constraints->min_uV && constraints->max_uV) {
698                 if (constraints->min_uV == constraints->max_uV)
699                         count += sprintf(buf + count, "%d mV ",
700                                          constraints->min_uV / 1000);
701                 else
702                         count += sprintf(buf + count, "%d <--> %d mV ",
703                                          constraints->min_uV / 1000,
704                                          constraints->max_uV / 1000);
705         }
706
707         if (!constraints->min_uV ||
708             constraints->min_uV != constraints->max_uV) {
709                 ret = _regulator_get_voltage(rdev);
710                 if (ret > 0)
711                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
712         }
713
714         if (constraints->min_uA && constraints->max_uA) {
715                 if (constraints->min_uA == constraints->max_uA)
716                         count += sprintf(buf + count, "%d mA ",
717                                          constraints->min_uA / 1000);
718                 else
719                         count += sprintf(buf + count, "%d <--> %d mA ",
720                                          constraints->min_uA / 1000,
721                                          constraints->max_uA / 1000);
722         }
723
724         if (!constraints->min_uA ||
725             constraints->min_uA != constraints->max_uA) {
726                 ret = _regulator_get_current_limit(rdev);
727                 if (ret > 0)
728                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
729         }
730
731         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
732                 count += sprintf(buf + count, "fast ");
733         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
734                 count += sprintf(buf + count, "normal ");
735         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
736                 count += sprintf(buf + count, "idle ");
737         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
738                 count += sprintf(buf + count, "standby");
739
740         rdev_info(rdev, "regulator: %s\n", buf);
741 }
742
743 static int machine_constraints_voltage(struct regulator_dev *rdev,
744         struct regulation_constraints *constraints)
745 {
746         struct regulator_ops *ops = rdev->desc->ops;
747         int ret;
748         unsigned selector;
749
750         /* do we need to apply the constraint voltage */
751         if (rdev->constraints->apply_uV &&
752                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
753                 ops->set_voltage) {
754                 ret = ops->set_voltage(rdev,
755                                        rdev->constraints->min_uV,
756                                        rdev->constraints->max_uV,
757                                        &selector);
758                         if (ret < 0) {
759                                 rdev_err(rdev, "failed to apply %duV constraint\n",
760                                          rdev->constraints->min_uV);
761                                 rdev->constraints = NULL;
762                                 return ret;
763                         }
764         }
765
766         /* constrain machine-level voltage specs to fit
767          * the actual range supported by this regulator.
768          */
769         if (ops->list_voltage && rdev->desc->n_voltages) {
770                 int     count = rdev->desc->n_voltages;
771                 int     i;
772                 int     min_uV = INT_MAX;
773                 int     max_uV = INT_MIN;
774                 int     cmin = constraints->min_uV;
775                 int     cmax = constraints->max_uV;
776
777                 /* it's safe to autoconfigure fixed-voltage supplies
778                    and the constraints are used by list_voltage. */
779                 if (count == 1 && !cmin) {
780                         cmin = 1;
781                         cmax = INT_MAX;
782                         constraints->min_uV = cmin;
783                         constraints->max_uV = cmax;
784                 }
785
786                 /* voltage constraints are optional */
787                 if ((cmin == 0) && (cmax == 0))
788                         return 0;
789
790                 /* else require explicit machine-level constraints */
791                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
792                         rdev_err(rdev, "invalid voltage constraints\n");
793                         return -EINVAL;
794                 }
795
796                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
797                 for (i = 0; i < count; i++) {
798                         int     value;
799
800                         value = ops->list_voltage(rdev, i);
801                         if (value <= 0)
802                                 continue;
803
804                         /* maybe adjust [min_uV..max_uV] */
805                         if (value >= cmin && value < min_uV)
806                                 min_uV = value;
807                         if (value <= cmax && value > max_uV)
808                                 max_uV = value;
809                 }
810
811                 /* final: [min_uV..max_uV] valid iff constraints valid */
812                 if (max_uV < min_uV) {
813                         rdev_err(rdev, "unsupportable voltage constraints\n");
814                         return -EINVAL;
815                 }
816
817                 /* use regulator's subset of machine constraints */
818                 if (constraints->min_uV < min_uV) {
819                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
820                                  constraints->min_uV, min_uV);
821                         constraints->min_uV = min_uV;
822                 }
823                 if (constraints->max_uV > max_uV) {
824                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
825                                  constraints->max_uV, max_uV);
826                         constraints->max_uV = max_uV;
827                 }
828         }
829
830         return 0;
831 }
832
833 /**
834  * set_machine_constraints - sets regulator constraints
835  * @rdev: regulator source
836  * @constraints: constraints to apply
837  *
838  * Allows platform initialisation code to define and constrain
839  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
840  * Constraints *must* be set by platform code in order for some
841  * regulator operations to proceed i.e. set_voltage, set_current_limit,
842  * set_mode.
843  */
844 static int set_machine_constraints(struct regulator_dev *rdev,
845         const struct regulation_constraints *constraints)
846 {
847         int ret = 0;
848         struct regulator_ops *ops = rdev->desc->ops;
849
850         rdev->constraints = kmemdup(constraints, sizeof(*constraints),
851                                     GFP_KERNEL);
852         if (!rdev->constraints)
853                 return -ENOMEM;
854
855         ret = machine_constraints_voltage(rdev, rdev->constraints);
856         if (ret != 0)
857                 goto out;
858
859         /* do we need to setup our suspend state */
860         if (constraints->initial_state) {
861                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
862                 if (ret < 0) {
863                         rdev_err(rdev, "failed to set suspend state\n");
864                         rdev->constraints = NULL;
865                         goto out;
866                 }
867         }
868
869         if (constraints->initial_mode) {
870                 if (!ops->set_mode) {
871                         rdev_err(rdev, "no set_mode operation\n");
872                         ret = -EINVAL;
873                         goto out;
874                 }
875
876                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
877                 if (ret < 0) {
878                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
879                         goto out;
880                 }
881         }
882
883         /* If the constraints say the regulator should be on at this point
884          * and we have control then make sure it is enabled.
885          */
886         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
887             ops->enable) {
888                 ret = ops->enable(rdev);
889                 if (ret < 0) {
890                         rdev_err(rdev, "failed to enable\n");
891                         rdev->constraints = NULL;
892                         goto out;
893                 }
894         }
895
896         print_constraints(rdev);
897 out:
898         return ret;
899 }
900
901 /**
902  * set_supply - set regulator supply regulator
903  * @rdev: regulator name
904  * @supply_rdev: supply regulator name
905  *
906  * Called by platform initialisation code to set the supply regulator for this
907  * regulator. This ensures that a regulators supply will also be enabled by the
908  * core if it's child is enabled.
909  */
910 static int set_supply(struct regulator_dev *rdev,
911         struct regulator_dev *supply_rdev)
912 {
913         int err;
914
915         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
916                                 "supply");
917         if (err) {
918                 rdev_err(rdev, "could not add device link %s err %d\n",
919                          supply_rdev->dev.kobj.name, err);
920                        goto out;
921         }
922         rdev->supply = supply_rdev;
923         list_add(&rdev->slist, &supply_rdev->supply_list);
924 out:
925         return err;
926 }
927
928 /**
929  * set_consumer_device_supply - Bind a regulator to a symbolic supply
930  * @rdev:         regulator source
931  * @consumer_dev: device the supply applies to
932  * @consumer_dev_name: dev_name() string for device supply applies to
933  * @supply:       symbolic name for supply
934  *
935  * Allows platform initialisation code to map physical regulator
936  * sources to symbolic names for supplies for use by devices.  Devices
937  * should use these symbolic names to request regulators, avoiding the
938  * need to provide board-specific regulator names as platform data.
939  *
940  * Only one of consumer_dev and consumer_dev_name may be specified.
941  */
942 static int set_consumer_device_supply(struct regulator_dev *rdev,
943         struct device *consumer_dev, const char *consumer_dev_name,
944         const char *supply)
945 {
946         struct regulator_map *node;
947         int has_dev;
948
949         if (consumer_dev && consumer_dev_name)
950                 return -EINVAL;
951
952         if (!consumer_dev_name && consumer_dev)
953                 consumer_dev_name = dev_name(consumer_dev);
954
955         if (supply == NULL)
956                 return -EINVAL;
957
958         if (consumer_dev_name != NULL)
959                 has_dev = 1;
960         else
961                 has_dev = 0;
962
963         list_for_each_entry(node, &regulator_map_list, list) {
964                 if (node->dev_name && consumer_dev_name) {
965                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
966                                 continue;
967                 } else if (node->dev_name || consumer_dev_name) {
968                         continue;
969                 }
970
971                 if (strcmp(node->supply, supply) != 0)
972                         continue;
973
974                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
975                         dev_name(&node->regulator->dev),
976                         node->regulator->desc->name,
977                         supply,
978                         dev_name(&rdev->dev), rdev_get_name(rdev));
979                 return -EBUSY;
980         }
981
982         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
983         if (node == NULL)
984                 return -ENOMEM;
985
986         node->regulator = rdev;
987         node->supply = supply;
988
989         if (has_dev) {
990                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
991                 if (node->dev_name == NULL) {
992                         kfree(node);
993                         return -ENOMEM;
994                 }
995         }
996
997         list_add(&node->list, &regulator_map_list);
998         return 0;
999 }
1000
1001 static void unset_regulator_supplies(struct regulator_dev *rdev)
1002 {
1003         struct regulator_map *node, *n;
1004
1005         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1006                 if (rdev == node->regulator) {
1007                         list_del(&node->list);
1008                         kfree(node->dev_name);
1009                         kfree(node);
1010                 }
1011         }
1012 }
1013
1014 #define REG_STR_SIZE    32
1015
1016 static struct regulator *create_regulator(struct regulator_dev *rdev,
1017                                           struct device *dev,
1018                                           const char *supply_name)
1019 {
1020         struct regulator *regulator;
1021         char buf[REG_STR_SIZE];
1022         int err, size;
1023
1024         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1025         if (regulator == NULL)
1026                 return NULL;
1027
1028         mutex_lock(&rdev->mutex);
1029         regulator->rdev = rdev;
1030         list_add(&regulator->list, &rdev->consumer_list);
1031
1032         if (dev) {
1033                 /* create a 'requested_microamps_name' sysfs entry */
1034                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1035                         supply_name);
1036                 if (size >= REG_STR_SIZE)
1037                         goto overflow_err;
1038
1039                 regulator->dev = dev;
1040                 sysfs_attr_init(&regulator->dev_attr.attr);
1041                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1042                 if (regulator->dev_attr.attr.name == NULL)
1043                         goto attr_name_err;
1044
1045                 regulator->dev_attr.attr.mode = 0444;
1046                 regulator->dev_attr.show = device_requested_uA_show;
1047                 err = device_create_file(dev, &regulator->dev_attr);
1048                 if (err < 0) {
1049                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1050                         goto attr_name_err;
1051                 }
1052
1053                 /* also add a link to the device sysfs entry */
1054                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1055                                  dev->kobj.name, supply_name);
1056                 if (size >= REG_STR_SIZE)
1057                         goto attr_err;
1058
1059                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1060                 if (regulator->supply_name == NULL)
1061                         goto attr_err;
1062
1063                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1064                                         buf);
1065                 if (err) {
1066                         rdev_warn(rdev, "could not add device link %s err %d\n",
1067                                   dev->kobj.name, err);
1068                         goto link_name_err;
1069                 }
1070         }
1071         mutex_unlock(&rdev->mutex);
1072         return regulator;
1073 link_name_err:
1074         kfree(regulator->supply_name);
1075 attr_err:
1076         device_remove_file(regulator->dev, &regulator->dev_attr);
1077 attr_name_err:
1078         kfree(regulator->dev_attr.attr.name);
1079 overflow_err:
1080         list_del(&regulator->list);
1081         kfree(regulator);
1082         mutex_unlock(&rdev->mutex);
1083         return NULL;
1084 }
1085
1086 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1087 {
1088         if (!rdev->desc->ops->enable_time)
1089                 return 0;
1090         return rdev->desc->ops->enable_time(rdev);
1091 }
1092
1093 /* Internal regulator request function */
1094 static struct regulator *_regulator_get(struct device *dev, const char *id,
1095                                         int exclusive)
1096 {
1097         struct regulator_dev *rdev;
1098         struct regulator_map *map;
1099         struct regulator *regulator = ERR_PTR(-ENODEV);
1100         const char *devname = NULL;
1101         int ret;
1102
1103         if (id == NULL) {
1104                 pr_err("get() with no identifier\n");
1105                 return regulator;
1106         }
1107
1108         if (dev)
1109                 devname = dev_name(dev);
1110
1111         mutex_lock(&regulator_list_mutex);
1112
1113         list_for_each_entry(map, &regulator_map_list, list) {
1114                 /* If the mapping has a device set up it must match */
1115                 if (map->dev_name &&
1116                     (!devname || strcmp(map->dev_name, devname)))
1117                         continue;
1118
1119                 if (strcmp(map->supply, id) == 0) {
1120                         rdev = map->regulator;
1121                         goto found;
1122                 }
1123         }
1124
1125         if (board_wants_dummy_regulator) {
1126                 rdev = dummy_regulator_rdev;
1127                 goto found;
1128         }
1129
1130 #ifdef CONFIG_REGULATOR_DUMMY
1131         if (!devname)
1132                 devname = "deviceless";
1133
1134         /* If the board didn't flag that it was fully constrained then
1135          * substitute in a dummy regulator so consumers can continue.
1136          */
1137         if (!has_full_constraints) {
1138                 pr_warn("%s supply %s not found, using dummy regulator\n",
1139                         devname, id);
1140                 rdev = dummy_regulator_rdev;
1141                 goto found;
1142         }
1143 #endif
1144
1145         mutex_unlock(&regulator_list_mutex);
1146         return regulator;
1147
1148 found:
1149         if (rdev->exclusive) {
1150                 regulator = ERR_PTR(-EPERM);
1151                 goto out;
1152         }
1153
1154         if (exclusive && rdev->open_count) {
1155                 regulator = ERR_PTR(-EBUSY);
1156                 goto out;
1157         }
1158
1159         if (!try_module_get(rdev->owner))
1160                 goto out;
1161
1162         regulator = create_regulator(rdev, dev, id);
1163         if (regulator == NULL) {
1164                 regulator = ERR_PTR(-ENOMEM);
1165                 module_put(rdev->owner);
1166         }
1167
1168         rdev->open_count++;
1169         if (exclusive) {
1170                 rdev->exclusive = 1;
1171
1172                 ret = _regulator_is_enabled(rdev);
1173                 if (ret > 0)
1174                         rdev->use_count = 1;
1175                 else
1176                         rdev->use_count = 0;
1177         }
1178
1179 out:
1180         mutex_unlock(&regulator_list_mutex);
1181
1182         return regulator;
1183 }
1184
1185 /**
1186  * regulator_get - lookup and obtain a reference to a regulator.
1187  * @dev: device for regulator "consumer"
1188  * @id: Supply name or regulator ID.
1189  *
1190  * Returns a struct regulator corresponding to the regulator producer,
1191  * or IS_ERR() condition containing errno.
1192  *
1193  * Use of supply names configured via regulator_set_device_supply() is
1194  * strongly encouraged.  It is recommended that the supply name used
1195  * should match the name used for the supply and/or the relevant
1196  * device pins in the datasheet.
1197  */
1198 struct regulator *regulator_get(struct device *dev, const char *id)
1199 {
1200         return _regulator_get(dev, id, 0);
1201 }
1202 EXPORT_SYMBOL_GPL(regulator_get);
1203
1204 /**
1205  * regulator_get_exclusive - obtain exclusive access to a regulator.
1206  * @dev: device for regulator "consumer"
1207  * @id: Supply name or regulator ID.
1208  *
1209  * Returns a struct regulator corresponding to the regulator producer,
1210  * or IS_ERR() condition containing errno.  Other consumers will be
1211  * unable to obtain this reference is held and the use count for the
1212  * regulator will be initialised to reflect the current state of the
1213  * regulator.
1214  *
1215  * This is intended for use by consumers which cannot tolerate shared
1216  * use of the regulator such as those which need to force the
1217  * regulator off for correct operation of the hardware they are
1218  * controlling.
1219  *
1220  * Use of supply names configured via regulator_set_device_supply() is
1221  * strongly encouraged.  It is recommended that the supply name used
1222  * should match the name used for the supply and/or the relevant
1223  * device pins in the datasheet.
1224  */
1225 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1226 {
1227         return _regulator_get(dev, id, 1);
1228 }
1229 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1230
1231 /**
1232  * regulator_put - "free" the regulator source
1233  * @regulator: regulator source
1234  *
1235  * Note: drivers must ensure that all regulator_enable calls made on this
1236  * regulator source are balanced by regulator_disable calls prior to calling
1237  * this function.
1238  */
1239 void regulator_put(struct regulator *regulator)
1240 {
1241         struct regulator_dev *rdev;
1242
1243         if (regulator == NULL || IS_ERR(regulator))
1244                 return;
1245
1246         mutex_lock(&regulator_list_mutex);
1247         rdev = regulator->rdev;
1248
1249         /* remove any sysfs entries */
1250         if (regulator->dev) {
1251                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1252                 kfree(regulator->supply_name);
1253                 device_remove_file(regulator->dev, &regulator->dev_attr);
1254                 kfree(regulator->dev_attr.attr.name);
1255         }
1256         list_del(&regulator->list);
1257         kfree(regulator);
1258
1259         rdev->open_count--;
1260         rdev->exclusive = 0;
1261
1262         module_put(rdev->owner);
1263         mutex_unlock(&regulator_list_mutex);
1264 }
1265 EXPORT_SYMBOL_GPL(regulator_put);
1266
1267 static int _regulator_can_change_status(struct regulator_dev *rdev)
1268 {
1269         if (!rdev->constraints)
1270                 return 0;
1271
1272         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1273                 return 1;
1274         else
1275                 return 0;
1276 }
1277
1278 /* locks held by regulator_enable() */
1279 static int _regulator_enable(struct regulator_dev *rdev)
1280 {
1281         int ret, delay;
1282
1283         if (rdev->use_count == 0) {
1284                 /* do we need to enable the supply regulator first */
1285                 if (rdev->supply) {
1286                         mutex_lock(&rdev->supply->mutex);
1287                         ret = _regulator_enable(rdev->supply);
1288                         mutex_unlock(&rdev->supply->mutex);
1289                         if (ret < 0) {
1290                                 rdev_err(rdev, "failed to enable: %d\n", ret);
1291                                 return ret;
1292                         }
1293                 }
1294         }
1295
1296         /* check voltage and requested load before enabling */
1297         if (rdev->constraints &&
1298             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1299                 drms_uA_update(rdev);
1300
1301         if (rdev->use_count == 0) {
1302                 /* The regulator may on if it's not switchable or left on */
1303                 ret = _regulator_is_enabled(rdev);
1304                 if (ret == -EINVAL || ret == 0) {
1305                         if (!_regulator_can_change_status(rdev))
1306                                 return -EPERM;
1307
1308                         if (!rdev->desc->ops->enable)
1309                                 return -EINVAL;
1310
1311                         /* Query before enabling in case configuration
1312                          * dependant.  */
1313                         ret = _regulator_get_enable_time(rdev);
1314                         if (ret >= 0) {
1315                                 delay = ret;
1316                         } else {
1317                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1318                                            ret);
1319                                 delay = 0;
1320                         }
1321
1322                         trace_regulator_enable(rdev_get_name(rdev));
1323
1324                         /* Allow the regulator to ramp; it would be useful
1325                          * to extend this for bulk operations so that the
1326                          * regulators can ramp together.  */
1327                         ret = rdev->desc->ops->enable(rdev);
1328                         if (ret < 0)
1329                                 return ret;
1330
1331                         trace_regulator_enable_delay(rdev_get_name(rdev));
1332
1333                         if (delay >= 1000) {
1334                                 mdelay(delay / 1000);
1335                                 udelay(delay % 1000);
1336                         } else if (delay) {
1337                                 udelay(delay);
1338                         }
1339
1340                         trace_regulator_enable_complete(rdev_get_name(rdev));
1341
1342                 } else if (ret < 0) {
1343                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1344                         return ret;
1345                 }
1346                 /* Fallthrough on positive return values - already enabled */
1347         }
1348
1349         rdev->use_count++;
1350
1351         return 0;
1352 }
1353
1354 /**
1355  * regulator_enable - enable regulator output
1356  * @regulator: regulator source
1357  *
1358  * Request that the regulator be enabled with the regulator output at
1359  * the predefined voltage or current value.  Calls to regulator_enable()
1360  * must be balanced with calls to regulator_disable().
1361  *
1362  * NOTE: the output value can be set by other drivers, boot loader or may be
1363  * hardwired in the regulator.
1364  */
1365 int regulator_enable(struct regulator *regulator)
1366 {
1367         struct regulator_dev *rdev = regulator->rdev;
1368         int ret = 0;
1369
1370         mutex_lock(&rdev->mutex);
1371         ret = _regulator_enable(rdev);
1372         mutex_unlock(&rdev->mutex);
1373         return ret;
1374 }
1375 EXPORT_SYMBOL_GPL(regulator_enable);
1376
1377 /* locks held by regulator_disable() */
1378 static int _regulator_disable(struct regulator_dev *rdev,
1379                 struct regulator_dev **supply_rdev_ptr)
1380 {
1381         int ret = 0;
1382         *supply_rdev_ptr = NULL;
1383
1384         if (WARN(rdev->use_count <= 0,
1385                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1386                 return -EIO;
1387
1388         /* are we the last user and permitted to disable ? */
1389         if (rdev->use_count == 1 &&
1390             (rdev->constraints && !rdev->constraints->always_on)) {
1391
1392                 /* we are last user */
1393                 if (_regulator_can_change_status(rdev) &&
1394                     rdev->desc->ops->disable) {
1395                         trace_regulator_disable(rdev_get_name(rdev));
1396
1397                         ret = rdev->desc->ops->disable(rdev);
1398                         if (ret < 0) {
1399                                 rdev_err(rdev, "failed to disable\n");
1400                                 return ret;
1401                         }
1402
1403                         trace_regulator_disable_complete(rdev_get_name(rdev));
1404
1405                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1406                                              NULL);
1407                 }
1408
1409                 /* decrease our supplies ref count and disable if required */
1410                 *supply_rdev_ptr = rdev->supply;
1411
1412                 rdev->use_count = 0;
1413         } else if (rdev->use_count > 1) {
1414
1415                 if (rdev->constraints &&
1416                         (rdev->constraints->valid_ops_mask &
1417                         REGULATOR_CHANGE_DRMS))
1418                         drms_uA_update(rdev);
1419
1420                 rdev->use_count--;
1421         }
1422         return ret;
1423 }
1424
1425 /**
1426  * regulator_disable - disable regulator output
1427  * @regulator: regulator source
1428  *
1429  * Disable the regulator output voltage or current.  Calls to
1430  * regulator_enable() must be balanced with calls to
1431  * regulator_disable().
1432  *
1433  * NOTE: this will only disable the regulator output if no other consumer
1434  * devices have it enabled, the regulator device supports disabling and
1435  * machine constraints permit this operation.
1436  */
1437 int regulator_disable(struct regulator *regulator)
1438 {
1439         struct regulator_dev *rdev = regulator->rdev;
1440         struct regulator_dev *supply_rdev = NULL;
1441         int ret = 0;
1442
1443         mutex_lock(&rdev->mutex);
1444         ret = _regulator_disable(rdev, &supply_rdev);
1445         mutex_unlock(&rdev->mutex);
1446
1447         /* decrease our supplies ref count and disable if required */
1448         while (supply_rdev != NULL) {
1449                 rdev = supply_rdev;
1450
1451                 mutex_lock(&rdev->mutex);
1452                 _regulator_disable(rdev, &supply_rdev);
1453                 mutex_unlock(&rdev->mutex);
1454         }
1455
1456         return ret;
1457 }
1458 EXPORT_SYMBOL_GPL(regulator_disable);
1459
1460 /* locks held by regulator_force_disable() */
1461 static int _regulator_force_disable(struct regulator_dev *rdev,
1462                 struct regulator_dev **supply_rdev_ptr)
1463 {
1464         int ret = 0;
1465
1466         /* force disable */
1467         if (rdev->desc->ops->disable) {
1468                 /* ah well, who wants to live forever... */
1469                 ret = rdev->desc->ops->disable(rdev);
1470                 if (ret < 0) {
1471                         rdev_err(rdev, "failed to force disable\n");
1472                         return ret;
1473                 }
1474                 /* notify other consumers that power has been forced off */
1475                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1476                         REGULATOR_EVENT_DISABLE, NULL);
1477         }
1478
1479         /* decrease our supplies ref count and disable if required */
1480         *supply_rdev_ptr = rdev->supply;
1481
1482         rdev->use_count = 0;
1483         return ret;
1484 }
1485
1486 /**
1487  * regulator_force_disable - force disable regulator output
1488  * @regulator: regulator source
1489  *
1490  * Forcibly disable the regulator output voltage or current.
1491  * NOTE: this *will* disable the regulator output even if other consumer
1492  * devices have it enabled. This should be used for situations when device
1493  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1494  */
1495 int regulator_force_disable(struct regulator *regulator)
1496 {
1497         struct regulator_dev *supply_rdev = NULL;
1498         int ret;
1499
1500         mutex_lock(&regulator->rdev->mutex);
1501         regulator->uA_load = 0;
1502         ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1503         mutex_unlock(&regulator->rdev->mutex);
1504
1505         if (supply_rdev)
1506                 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1507
1508         return ret;
1509 }
1510 EXPORT_SYMBOL_GPL(regulator_force_disable);
1511
1512 static int _regulator_is_enabled(struct regulator_dev *rdev)
1513 {
1514         /* If we don't know then assume that the regulator is always on */
1515         if (!rdev->desc->ops->is_enabled)
1516                 return 1;
1517
1518         return rdev->desc->ops->is_enabled(rdev);
1519 }
1520
1521 /**
1522  * regulator_is_enabled - is the regulator output enabled
1523  * @regulator: regulator source
1524  *
1525  * Returns positive if the regulator driver backing the source/client
1526  * has requested that the device be enabled, zero if it hasn't, else a
1527  * negative errno code.
1528  *
1529  * Note that the device backing this regulator handle can have multiple
1530  * users, so it might be enabled even if regulator_enable() was never
1531  * called for this particular source.
1532  */
1533 int regulator_is_enabled(struct regulator *regulator)
1534 {
1535         int ret;
1536
1537         mutex_lock(&regulator->rdev->mutex);
1538         ret = _regulator_is_enabled(regulator->rdev);
1539         mutex_unlock(&regulator->rdev->mutex);
1540
1541         return ret;
1542 }
1543 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1544
1545 /**
1546  * regulator_count_voltages - count regulator_list_voltage() selectors
1547  * @regulator: regulator source
1548  *
1549  * Returns number of selectors, or negative errno.  Selectors are
1550  * numbered starting at zero, and typically correspond to bitfields
1551  * in hardware registers.
1552  */
1553 int regulator_count_voltages(struct regulator *regulator)
1554 {
1555         struct regulator_dev    *rdev = regulator->rdev;
1556
1557         return rdev->desc->n_voltages ? : -EINVAL;
1558 }
1559 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1560
1561 /**
1562  * regulator_list_voltage - enumerate supported voltages
1563  * @regulator: regulator source
1564  * @selector: identify voltage to list
1565  * Context: can sleep
1566  *
1567  * Returns a voltage that can be passed to @regulator_set_voltage(),
1568  * zero if this selector code can't be used on this system, or a
1569  * negative errno.
1570  */
1571 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1572 {
1573         struct regulator_dev    *rdev = regulator->rdev;
1574         struct regulator_ops    *ops = rdev->desc->ops;
1575         int                     ret;
1576
1577         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1578                 return -EINVAL;
1579
1580         mutex_lock(&rdev->mutex);
1581         ret = ops->list_voltage(rdev, selector);
1582         mutex_unlock(&rdev->mutex);
1583
1584         if (ret > 0) {
1585                 if (ret < rdev->constraints->min_uV)
1586                         ret = 0;
1587                 else if (ret > rdev->constraints->max_uV)
1588                         ret = 0;
1589         }
1590
1591         return ret;
1592 }
1593 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1594
1595 /**
1596  * regulator_is_supported_voltage - check if a voltage range can be supported
1597  *
1598  * @regulator: Regulator to check.
1599  * @min_uV: Minimum required voltage in uV.
1600  * @max_uV: Maximum required voltage in uV.
1601  *
1602  * Returns a boolean or a negative error code.
1603  */
1604 int regulator_is_supported_voltage(struct regulator *regulator,
1605                                    int min_uV, int max_uV)
1606 {
1607         int i, voltages, ret;
1608
1609         ret = regulator_count_voltages(regulator);
1610         if (ret < 0)
1611                 return ret;
1612         voltages = ret;
1613
1614         for (i = 0; i < voltages; i++) {
1615                 ret = regulator_list_voltage(regulator, i);
1616
1617                 if (ret >= min_uV && ret <= max_uV)
1618                         return 1;
1619         }
1620
1621         return 0;
1622 }
1623
1624 /**
1625  * regulator_set_voltage - set regulator output voltage
1626  * @regulator: regulator source
1627  * @min_uV: Minimum required voltage in uV
1628  * @max_uV: Maximum acceptable voltage in uV
1629  *
1630  * Sets a voltage regulator to the desired output voltage. This can be set
1631  * during any regulator state. IOW, regulator can be disabled or enabled.
1632  *
1633  * If the regulator is enabled then the voltage will change to the new value
1634  * immediately otherwise if the regulator is disabled the regulator will
1635  * output at the new voltage when enabled.
1636  *
1637  * NOTE: If the regulator is shared between several devices then the lowest
1638  * request voltage that meets the system constraints will be used.
1639  * Regulator system constraints must be set for this regulator before
1640  * calling this function otherwise this call will fail.
1641  */
1642 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1643 {
1644         struct regulator_dev *rdev = regulator->rdev;
1645         int ret;
1646         unsigned selector;
1647
1648         mutex_lock(&rdev->mutex);
1649
1650         /* sanity check */
1651         if (!rdev->desc->ops->set_voltage) {
1652                 ret = -EINVAL;
1653                 goto out;
1654         }
1655
1656         /* constraints check */
1657         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1658         if (ret < 0)
1659                 goto out;
1660         regulator->min_uV = min_uV;
1661         regulator->max_uV = max_uV;
1662
1663         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1664         if (ret < 0)
1665                 goto out;
1666
1667         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1668
1669         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, &selector);
1670
1671         if (rdev->desc->ops->list_voltage)
1672                 selector = rdev->desc->ops->list_voltage(rdev, selector);
1673         else
1674                 selector = -1;
1675
1676         trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1677
1678 out:
1679         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1680         mutex_unlock(&rdev->mutex);
1681         return ret;
1682 }
1683 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1684
1685 static int _regulator_get_voltage(struct regulator_dev *rdev)
1686 {
1687         int sel;
1688
1689         if (rdev->desc->ops->get_voltage_sel) {
1690                 sel = rdev->desc->ops->get_voltage_sel(rdev);
1691                 if (sel < 0)
1692                         return sel;
1693                 return rdev->desc->ops->list_voltage(rdev, sel);
1694         }
1695         if (rdev->desc->ops->get_voltage)
1696                 return rdev->desc->ops->get_voltage(rdev);
1697         else
1698                 return -EINVAL;
1699 }
1700
1701 /**
1702  * regulator_get_voltage - get regulator output voltage
1703  * @regulator: regulator source
1704  *
1705  * This returns the current regulator voltage in uV.
1706  *
1707  * NOTE: If the regulator is disabled it will return the voltage value. This
1708  * function should not be used to determine regulator state.
1709  */
1710 int regulator_get_voltage(struct regulator *regulator)
1711 {
1712         int ret;
1713
1714         mutex_lock(&regulator->rdev->mutex);
1715
1716         ret = _regulator_get_voltage(regulator->rdev);
1717
1718         mutex_unlock(&regulator->rdev->mutex);
1719
1720         return ret;
1721 }
1722 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1723
1724 /**
1725  * regulator_set_current_limit - set regulator output current limit
1726  * @regulator: regulator source
1727  * @min_uA: Minimuum supported current in uA
1728  * @max_uA: Maximum supported current in uA
1729  *
1730  * Sets current sink to the desired output current. This can be set during
1731  * any regulator state. IOW, regulator can be disabled or enabled.
1732  *
1733  * If the regulator is enabled then the current will change to the new value
1734  * immediately otherwise if the regulator is disabled the regulator will
1735  * output at the new current when enabled.
1736  *
1737  * NOTE: Regulator system constraints must be set for this regulator before
1738  * calling this function otherwise this call will fail.
1739  */
1740 int regulator_set_current_limit(struct regulator *regulator,
1741                                int min_uA, int max_uA)
1742 {
1743         struct regulator_dev *rdev = regulator->rdev;
1744         int ret;
1745
1746         mutex_lock(&rdev->mutex);
1747
1748         /* sanity check */
1749         if (!rdev->desc->ops->set_current_limit) {
1750                 ret = -EINVAL;
1751                 goto out;
1752         }
1753
1754         /* constraints check */
1755         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1756         if (ret < 0)
1757                 goto out;
1758
1759         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1760 out:
1761         mutex_unlock(&rdev->mutex);
1762         return ret;
1763 }
1764 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1765
1766 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1767 {
1768         int ret;
1769
1770         mutex_lock(&rdev->mutex);
1771
1772         /* sanity check */
1773         if (!rdev->desc->ops->get_current_limit) {
1774                 ret = -EINVAL;
1775                 goto out;
1776         }
1777
1778         ret = rdev->desc->ops->get_current_limit(rdev);
1779 out:
1780         mutex_unlock(&rdev->mutex);
1781         return ret;
1782 }
1783
1784 /**
1785  * regulator_get_current_limit - get regulator output current
1786  * @regulator: regulator source
1787  *
1788  * This returns the current supplied by the specified current sink in uA.
1789  *
1790  * NOTE: If the regulator is disabled it will return the current value. This
1791  * function should not be used to determine regulator state.
1792  */
1793 int regulator_get_current_limit(struct regulator *regulator)
1794 {
1795         return _regulator_get_current_limit(regulator->rdev);
1796 }
1797 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1798
1799 /**
1800  * regulator_set_mode - set regulator operating mode
1801  * @regulator: regulator source
1802  * @mode: operating mode - one of the REGULATOR_MODE constants
1803  *
1804  * Set regulator operating mode to increase regulator efficiency or improve
1805  * regulation performance.
1806  *
1807  * NOTE: Regulator system constraints must be set for this regulator before
1808  * calling this function otherwise this call will fail.
1809  */
1810 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1811 {
1812         struct regulator_dev *rdev = regulator->rdev;
1813         int ret;
1814         int regulator_curr_mode;
1815
1816         mutex_lock(&rdev->mutex);
1817
1818         /* sanity check */
1819         if (!rdev->desc->ops->set_mode) {
1820                 ret = -EINVAL;
1821                 goto out;
1822         }
1823
1824         /* return if the same mode is requested */
1825         if (rdev->desc->ops->get_mode) {
1826                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1827                 if (regulator_curr_mode == mode) {
1828                         ret = 0;
1829                         goto out;
1830                 }
1831         }
1832
1833         /* constraints check */
1834         ret = regulator_check_mode(rdev, mode);
1835         if (ret < 0)
1836                 goto out;
1837
1838         ret = rdev->desc->ops->set_mode(rdev, mode);
1839 out:
1840         mutex_unlock(&rdev->mutex);
1841         return ret;
1842 }
1843 EXPORT_SYMBOL_GPL(regulator_set_mode);
1844
1845 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1846 {
1847         int ret;
1848
1849         mutex_lock(&rdev->mutex);
1850
1851         /* sanity check */
1852         if (!rdev->desc->ops->get_mode) {
1853                 ret = -EINVAL;
1854                 goto out;
1855         }
1856
1857         ret = rdev->desc->ops->get_mode(rdev);
1858 out:
1859         mutex_unlock(&rdev->mutex);
1860         return ret;
1861 }
1862
1863 /**
1864  * regulator_get_mode - get regulator operating mode
1865  * @regulator: regulator source
1866  *
1867  * Get the current regulator operating mode.
1868  */
1869 unsigned int regulator_get_mode(struct regulator *regulator)
1870 {
1871         return _regulator_get_mode(regulator->rdev);
1872 }
1873 EXPORT_SYMBOL_GPL(regulator_get_mode);
1874
1875 /**
1876  * regulator_set_optimum_mode - set regulator optimum operating mode
1877  * @regulator: regulator source
1878  * @uA_load: load current
1879  *
1880  * Notifies the regulator core of a new device load. This is then used by
1881  * DRMS (if enabled by constraints) to set the most efficient regulator
1882  * operating mode for the new regulator loading.
1883  *
1884  * Consumer devices notify their supply regulator of the maximum power
1885  * they will require (can be taken from device datasheet in the power
1886  * consumption tables) when they change operational status and hence power
1887  * state. Examples of operational state changes that can affect power
1888  * consumption are :-
1889  *
1890  *    o Device is opened / closed.
1891  *    o Device I/O is about to begin or has just finished.
1892  *    o Device is idling in between work.
1893  *
1894  * This information is also exported via sysfs to userspace.
1895  *
1896  * DRMS will sum the total requested load on the regulator and change
1897  * to the most efficient operating mode if platform constraints allow.
1898  *
1899  * Returns the new regulator mode or error.
1900  */
1901 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1902 {
1903         struct regulator_dev *rdev = regulator->rdev;
1904         struct regulator *consumer;
1905         int ret, output_uV, input_uV, total_uA_load = 0;
1906         unsigned int mode;
1907
1908         mutex_lock(&rdev->mutex);
1909
1910         regulator->uA_load = uA_load;
1911         ret = regulator_check_drms(rdev);
1912         if (ret < 0)
1913                 goto out;
1914         ret = -EINVAL;
1915
1916         /* sanity check */
1917         if (!rdev->desc->ops->get_optimum_mode)
1918                 goto out;
1919
1920         /* get output voltage */
1921         output_uV = _regulator_get_voltage(rdev);
1922         if (output_uV <= 0) {
1923                 rdev_err(rdev, "invalid output voltage found\n");
1924                 goto out;
1925         }
1926
1927         /* get input voltage */
1928         input_uV = 0;
1929         if (rdev->supply)
1930                 input_uV = _regulator_get_voltage(rdev->supply);
1931         if (input_uV <= 0)
1932                 input_uV = rdev->constraints->input_uV;
1933         if (input_uV <= 0) {
1934                 rdev_err(rdev, "invalid input voltage found\n");
1935                 goto out;
1936         }
1937
1938         /* calc total requested load for this regulator */
1939         list_for_each_entry(consumer, &rdev->consumer_list, list)
1940                 total_uA_load += consumer->uA_load;
1941
1942         mode = rdev->desc->ops->get_optimum_mode(rdev,
1943                                                  input_uV, output_uV,
1944                                                  total_uA_load);
1945         ret = regulator_check_mode(rdev, mode);
1946         if (ret < 0) {
1947                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
1948                          total_uA_load, input_uV, output_uV);
1949                 goto out;
1950         }
1951
1952         ret = rdev->desc->ops->set_mode(rdev, mode);
1953         if (ret < 0) {
1954                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
1955                 goto out;
1956         }
1957         ret = mode;
1958 out:
1959         mutex_unlock(&rdev->mutex);
1960         return ret;
1961 }
1962 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1963
1964 /**
1965  * regulator_register_notifier - register regulator event notifier
1966  * @regulator: regulator source
1967  * @nb: notifier block
1968  *
1969  * Register notifier block to receive regulator events.
1970  */
1971 int regulator_register_notifier(struct regulator *regulator,
1972                               struct notifier_block *nb)
1973 {
1974         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1975                                                 nb);
1976 }
1977 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1978
1979 /**
1980  * regulator_unregister_notifier - unregister regulator event notifier
1981  * @regulator: regulator source
1982  * @nb: notifier block
1983  *
1984  * Unregister regulator event notifier block.
1985  */
1986 int regulator_unregister_notifier(struct regulator *regulator,
1987                                 struct notifier_block *nb)
1988 {
1989         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1990                                                   nb);
1991 }
1992 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1993
1994 /* notify regulator consumers and downstream regulator consumers.
1995  * Note mutex must be held by caller.
1996  */
1997 static void _notifier_call_chain(struct regulator_dev *rdev,
1998                                   unsigned long event, void *data)
1999 {
2000         struct regulator_dev *_rdev;
2001
2002         /* call rdev chain first */
2003         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2004
2005         /* now notify regulator we supply */
2006         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2007                 mutex_lock(&_rdev->mutex);
2008                 _notifier_call_chain(_rdev, event, data);
2009                 mutex_unlock(&_rdev->mutex);
2010         }
2011 }
2012
2013 /**
2014  * regulator_bulk_get - get multiple regulator consumers
2015  *
2016  * @dev:           Device to supply
2017  * @num_consumers: Number of consumers to register
2018  * @consumers:     Configuration of consumers; clients are stored here.
2019  *
2020  * @return 0 on success, an errno on failure.
2021  *
2022  * This helper function allows drivers to get several regulator
2023  * consumers in one operation.  If any of the regulators cannot be
2024  * acquired then any regulators that were allocated will be freed
2025  * before returning to the caller.
2026  */
2027 int regulator_bulk_get(struct device *dev, int num_consumers,
2028                        struct regulator_bulk_data *consumers)
2029 {
2030         int i;
2031         int ret;
2032
2033         for (i = 0; i < num_consumers; i++)
2034                 consumers[i].consumer = NULL;
2035
2036         for (i = 0; i < num_consumers; i++) {
2037                 consumers[i].consumer = regulator_get(dev,
2038                                                       consumers[i].supply);
2039                 if (IS_ERR(consumers[i].consumer)) {
2040                         ret = PTR_ERR(consumers[i].consumer);
2041                         dev_err(dev, "Failed to get supply '%s': %d\n",
2042                                 consumers[i].supply, ret);
2043                         consumers[i].consumer = NULL;
2044                         goto err;
2045                 }
2046         }
2047
2048         return 0;
2049
2050 err:
2051         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2052                 regulator_put(consumers[i].consumer);
2053
2054         return ret;
2055 }
2056 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2057
2058 /**
2059  * regulator_bulk_enable - enable multiple regulator consumers
2060  *
2061  * @num_consumers: Number of consumers
2062  * @consumers:     Consumer data; clients are stored here.
2063  * @return         0 on success, an errno on failure
2064  *
2065  * This convenience API allows consumers to enable multiple regulator
2066  * clients in a single API call.  If any consumers cannot be enabled
2067  * then any others that were enabled will be disabled again prior to
2068  * return.
2069  */
2070 int regulator_bulk_enable(int num_consumers,
2071                           struct regulator_bulk_data *consumers)
2072 {
2073         int i;
2074         int ret;
2075
2076         for (i = 0; i < num_consumers; i++) {
2077                 ret = regulator_enable(consumers[i].consumer);
2078                 if (ret != 0)
2079                         goto err;
2080         }
2081
2082         return 0;
2083
2084 err:
2085         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2086         for (--i; i >= 0; --i)
2087                 regulator_disable(consumers[i].consumer);
2088
2089         return ret;
2090 }
2091 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2092
2093 /**
2094  * regulator_bulk_disable - disable multiple regulator consumers
2095  *
2096  * @num_consumers: Number of consumers
2097  * @consumers:     Consumer data; clients are stored here.
2098  * @return         0 on success, an errno on failure
2099  *
2100  * This convenience API allows consumers to disable multiple regulator
2101  * clients in a single API call.  If any consumers cannot be enabled
2102  * then any others that were disabled will be disabled again prior to
2103  * return.
2104  */
2105 int regulator_bulk_disable(int num_consumers,
2106                            struct regulator_bulk_data *consumers)
2107 {
2108         int i;
2109         int ret;
2110
2111         for (i = 0; i < num_consumers; i++) {
2112                 ret = regulator_disable(consumers[i].consumer);
2113                 if (ret != 0)
2114                         goto err;
2115         }
2116
2117         return 0;
2118
2119 err:
2120         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2121         for (--i; i >= 0; --i)
2122                 regulator_enable(consumers[i].consumer);
2123
2124         return ret;
2125 }
2126 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2127
2128 /**
2129  * regulator_bulk_free - free multiple regulator consumers
2130  *
2131  * @num_consumers: Number of consumers
2132  * @consumers:     Consumer data; clients are stored here.
2133  *
2134  * This convenience API allows consumers to free multiple regulator
2135  * clients in a single API call.
2136  */
2137 void regulator_bulk_free(int num_consumers,
2138                          struct regulator_bulk_data *consumers)
2139 {
2140         int i;
2141
2142         for (i = 0; i < num_consumers; i++) {
2143                 regulator_put(consumers[i].consumer);
2144                 consumers[i].consumer = NULL;
2145         }
2146 }
2147 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2148
2149 /**
2150  * regulator_notifier_call_chain - call regulator event notifier
2151  * @rdev: regulator source
2152  * @event: notifier block
2153  * @data: callback-specific data.
2154  *
2155  * Called by regulator drivers to notify clients a regulator event has
2156  * occurred. We also notify regulator clients downstream.
2157  * Note lock must be held by caller.
2158  */
2159 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2160                                   unsigned long event, void *data)
2161 {
2162         _notifier_call_chain(rdev, event, data);
2163         return NOTIFY_DONE;
2164
2165 }
2166 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2167
2168 /**
2169  * regulator_mode_to_status - convert a regulator mode into a status
2170  *
2171  * @mode: Mode to convert
2172  *
2173  * Convert a regulator mode into a status.
2174  */
2175 int regulator_mode_to_status(unsigned int mode)
2176 {
2177         switch (mode) {
2178         case REGULATOR_MODE_FAST:
2179                 return REGULATOR_STATUS_FAST;
2180         case REGULATOR_MODE_NORMAL:
2181                 return REGULATOR_STATUS_NORMAL;
2182         case REGULATOR_MODE_IDLE:
2183                 return REGULATOR_STATUS_IDLE;
2184         case REGULATOR_STATUS_STANDBY:
2185                 return REGULATOR_STATUS_STANDBY;
2186         default:
2187                 return 0;
2188         }
2189 }
2190 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2191
2192 /*
2193  * To avoid cluttering sysfs (and memory) with useless state, only
2194  * create attributes that can be meaningfully displayed.
2195  */
2196 static int add_regulator_attributes(struct regulator_dev *rdev)
2197 {
2198         struct device           *dev = &rdev->dev;
2199         struct regulator_ops    *ops = rdev->desc->ops;
2200         int                     status = 0;
2201
2202         /* some attributes need specific methods to be displayed */
2203         if (ops->get_voltage || ops->get_voltage_sel) {
2204                 status = device_create_file(dev, &dev_attr_microvolts);
2205                 if (status < 0)
2206                         return status;
2207         }
2208         if (ops->get_current_limit) {
2209                 status = device_create_file(dev, &dev_attr_microamps);
2210                 if (status < 0)
2211                         return status;
2212         }
2213         if (ops->get_mode) {
2214                 status = device_create_file(dev, &dev_attr_opmode);
2215                 if (status < 0)
2216                         return status;
2217         }
2218         if (ops->is_enabled) {
2219                 status = device_create_file(dev, &dev_attr_state);
2220                 if (status < 0)
2221                         return status;
2222         }
2223         if (ops->get_status) {
2224                 status = device_create_file(dev, &dev_attr_status);
2225                 if (status < 0)
2226                         return status;
2227         }
2228
2229         /* some attributes are type-specific */
2230         if (rdev->desc->type == REGULATOR_CURRENT) {
2231                 status = device_create_file(dev, &dev_attr_requested_microamps);
2232                 if (status < 0)
2233                         return status;
2234         }
2235
2236         /* all the other attributes exist to support constraints;
2237          * don't show them if there are no constraints, or if the
2238          * relevant supporting methods are missing.
2239          */
2240         if (!rdev->constraints)
2241                 return status;
2242
2243         /* constraints need specific supporting methods */
2244         if (ops->set_voltage) {
2245                 status = device_create_file(dev, &dev_attr_min_microvolts);
2246                 if (status < 0)
2247                         return status;
2248                 status = device_create_file(dev, &dev_attr_max_microvolts);
2249                 if (status < 0)
2250                         return status;
2251         }
2252         if (ops->set_current_limit) {
2253                 status = device_create_file(dev, &dev_attr_min_microamps);
2254                 if (status < 0)
2255                         return status;
2256                 status = device_create_file(dev, &dev_attr_max_microamps);
2257                 if (status < 0)
2258                         return status;
2259         }
2260
2261         /* suspend mode constraints need multiple supporting methods */
2262         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2263                 return status;
2264
2265         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2266         if (status < 0)
2267                 return status;
2268         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2269         if (status < 0)
2270                 return status;
2271         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2272         if (status < 0)
2273                 return status;
2274
2275         if (ops->set_suspend_voltage) {
2276                 status = device_create_file(dev,
2277                                 &dev_attr_suspend_standby_microvolts);
2278                 if (status < 0)
2279                         return status;
2280                 status = device_create_file(dev,
2281                                 &dev_attr_suspend_mem_microvolts);
2282                 if (status < 0)
2283                         return status;
2284                 status = device_create_file(dev,
2285                                 &dev_attr_suspend_disk_microvolts);
2286                 if (status < 0)
2287                         return status;
2288         }
2289
2290         if (ops->set_suspend_mode) {
2291                 status = device_create_file(dev,
2292                                 &dev_attr_suspend_standby_mode);
2293                 if (status < 0)
2294                         return status;
2295                 status = device_create_file(dev,
2296                                 &dev_attr_suspend_mem_mode);
2297                 if (status < 0)
2298                         return status;
2299                 status = device_create_file(dev,
2300                                 &dev_attr_suspend_disk_mode);
2301                 if (status < 0)
2302                         return status;
2303         }
2304
2305         return status;
2306 }
2307
2308 /**
2309  * regulator_register - register regulator
2310  * @regulator_desc: regulator to register
2311  * @dev: struct device for the regulator
2312  * @init_data: platform provided init data, passed through by driver
2313  * @driver_data: private regulator data
2314  *
2315  * Called by regulator drivers to register a regulator.
2316  * Returns 0 on success.
2317  */
2318 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2319         struct device *dev, const struct regulator_init_data *init_data,
2320         void *driver_data)
2321 {
2322         static atomic_t regulator_no = ATOMIC_INIT(0);
2323         struct regulator_dev *rdev;
2324         int ret, i;
2325
2326         if (regulator_desc == NULL)
2327                 return ERR_PTR(-EINVAL);
2328
2329         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2330                 return ERR_PTR(-EINVAL);
2331
2332         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2333             regulator_desc->type != REGULATOR_CURRENT)
2334                 return ERR_PTR(-EINVAL);
2335
2336         if (!init_data)
2337                 return ERR_PTR(-EINVAL);
2338
2339         /* Only one of each should be implemented */
2340         WARN_ON(regulator_desc->ops->get_voltage &&
2341                 regulator_desc->ops->get_voltage_sel);
2342
2343         /* If we're using selectors we must implement list_voltage. */
2344         if (regulator_desc->ops->get_voltage_sel &&
2345             !regulator_desc->ops->list_voltage) {
2346                 return ERR_PTR(-EINVAL);
2347         }
2348
2349         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2350         if (rdev == NULL)
2351                 return ERR_PTR(-ENOMEM);
2352
2353         mutex_lock(&regulator_list_mutex);
2354
2355         mutex_init(&rdev->mutex);
2356         rdev->reg_data = driver_data;
2357         rdev->owner = regulator_desc->owner;
2358         rdev->desc = regulator_desc;
2359         INIT_LIST_HEAD(&rdev->consumer_list);
2360         INIT_LIST_HEAD(&rdev->supply_list);
2361         INIT_LIST_HEAD(&rdev->list);
2362         INIT_LIST_HEAD(&rdev->slist);
2363         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2364
2365         /* preform any regulator specific init */
2366         if (init_data->regulator_init) {
2367                 ret = init_data->regulator_init(rdev->reg_data);
2368                 if (ret < 0)
2369                         goto clean;
2370         }
2371
2372         /* register with sysfs */
2373         rdev->dev.class = &regulator_class;
2374         rdev->dev.parent = dev;
2375         dev_set_name(&rdev->dev, "regulator.%d",
2376                      atomic_inc_return(&regulator_no) - 1);
2377         ret = device_register(&rdev->dev);
2378         if (ret != 0) {
2379                 put_device(&rdev->dev);
2380                 goto clean;
2381         }
2382
2383         dev_set_drvdata(&rdev->dev, rdev);
2384
2385         /* set regulator constraints */
2386         ret = set_machine_constraints(rdev, &init_data->constraints);
2387         if (ret < 0)
2388                 goto scrub;
2389
2390         /* add attributes supported by this regulator */
2391         ret = add_regulator_attributes(rdev);
2392         if (ret < 0)
2393                 goto scrub;
2394
2395         /* set supply regulator if it exists */
2396         if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2397                 dev_err(dev,
2398                         "Supply regulator specified by both name and dev\n");
2399                 ret = -EINVAL;
2400                 goto scrub;
2401         }
2402
2403         if (init_data->supply_regulator) {
2404                 struct regulator_dev *r;
2405                 int found = 0;
2406
2407                 list_for_each_entry(r, &regulator_list, list) {
2408                         if (strcmp(rdev_get_name(r),
2409                                    init_data->supply_regulator) == 0) {
2410                                 found = 1;
2411                                 break;
2412                         }
2413                 }
2414
2415                 if (!found) {
2416                         dev_err(dev, "Failed to find supply %s\n",
2417                                 init_data->supply_regulator);
2418                         ret = -ENODEV;
2419                         goto scrub;
2420                 }
2421
2422                 ret = set_supply(rdev, r);
2423                 if (ret < 0)
2424                         goto scrub;
2425         }
2426
2427         if (init_data->supply_regulator_dev) {
2428                 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2429                 ret = set_supply(rdev,
2430                         dev_get_drvdata(init_data->supply_regulator_dev));
2431                 if (ret < 0)
2432                         goto scrub;
2433         }
2434
2435         /* add consumers devices */
2436         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2437                 ret = set_consumer_device_supply(rdev,
2438                         init_data->consumer_supplies[i].dev,
2439                         init_data->consumer_supplies[i].dev_name,
2440                         init_data->consumer_supplies[i].supply);
2441                 if (ret < 0)
2442                         goto unset_supplies;
2443         }
2444
2445         list_add(&rdev->list, &regulator_list);
2446 out:
2447         mutex_unlock(&regulator_list_mutex);
2448         return rdev;
2449
2450 unset_supplies:
2451         unset_regulator_supplies(rdev);
2452
2453 scrub:
2454         device_unregister(&rdev->dev);
2455         /* device core frees rdev */
2456         rdev = ERR_PTR(ret);
2457         goto out;
2458
2459 clean:
2460         kfree(rdev);
2461         rdev = ERR_PTR(ret);
2462         goto out;
2463 }
2464 EXPORT_SYMBOL_GPL(regulator_register);
2465
2466 /**
2467  * regulator_unregister - unregister regulator
2468  * @rdev: regulator to unregister
2469  *
2470  * Called by regulator drivers to unregister a regulator.
2471  */
2472 void regulator_unregister(struct regulator_dev *rdev)
2473 {
2474         if (rdev == NULL)
2475                 return;
2476
2477         mutex_lock(&regulator_list_mutex);
2478         WARN_ON(rdev->open_count);
2479         unset_regulator_supplies(rdev);
2480         list_del(&rdev->list);
2481         if (rdev->supply)
2482                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2483         device_unregister(&rdev->dev);
2484         kfree(rdev->constraints);
2485         mutex_unlock(&regulator_list_mutex);
2486 }
2487 EXPORT_SYMBOL_GPL(regulator_unregister);
2488
2489 /**
2490  * regulator_suspend_prepare - prepare regulators for system wide suspend
2491  * @state: system suspend state
2492  *
2493  * Configure each regulator with it's suspend operating parameters for state.
2494  * This will usually be called by machine suspend code prior to supending.
2495  */
2496 int regulator_suspend_prepare(suspend_state_t state)
2497 {
2498         struct regulator_dev *rdev;
2499         int ret = 0;
2500
2501         /* ON is handled by regulator active state */
2502         if (state == PM_SUSPEND_ON)
2503                 return -EINVAL;
2504
2505         mutex_lock(&regulator_list_mutex);
2506         list_for_each_entry(rdev, &regulator_list, list) {
2507
2508                 mutex_lock(&rdev->mutex);
2509                 ret = suspend_prepare(rdev, state);
2510                 mutex_unlock(&rdev->mutex);
2511
2512                 if (ret < 0) {
2513                         rdev_err(rdev, "failed to prepare\n");
2514                         goto out;
2515                 }
2516         }
2517 out:
2518         mutex_unlock(&regulator_list_mutex);
2519         return ret;
2520 }
2521 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2522
2523 /**
2524  * regulator_has_full_constraints - the system has fully specified constraints
2525  *
2526  * Calling this function will cause the regulator API to disable all
2527  * regulators which have a zero use count and don't have an always_on
2528  * constraint in a late_initcall.
2529  *
2530  * The intention is that this will become the default behaviour in a
2531  * future kernel release so users are encouraged to use this facility
2532  * now.
2533  */
2534 void regulator_has_full_constraints(void)
2535 {
2536         has_full_constraints = 1;
2537 }
2538 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2539
2540 /**
2541  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2542  *
2543  * Calling this function will cause the regulator API to provide a
2544  * dummy regulator to consumers if no physical regulator is found,
2545  * allowing most consumers to proceed as though a regulator were
2546  * configured.  This allows systems such as those with software
2547  * controllable regulators for the CPU core only to be brought up more
2548  * readily.
2549  */
2550 void regulator_use_dummy_regulator(void)
2551 {
2552         board_wants_dummy_regulator = true;
2553 }
2554 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2555
2556 /**
2557  * rdev_get_drvdata - get rdev regulator driver data
2558  * @rdev: regulator
2559  *
2560  * Get rdev regulator driver private data. This call can be used in the
2561  * regulator driver context.
2562  */
2563 void *rdev_get_drvdata(struct regulator_dev *rdev)
2564 {
2565         return rdev->reg_data;
2566 }
2567 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2568
2569 /**
2570  * regulator_get_drvdata - get regulator driver data
2571  * @regulator: regulator
2572  *
2573  * Get regulator driver private data. This call can be used in the consumer
2574  * driver context when non API regulator specific functions need to be called.
2575  */
2576 void *regulator_get_drvdata(struct regulator *regulator)
2577 {
2578         return regulator->rdev->reg_data;
2579 }
2580 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2581
2582 /**
2583  * regulator_set_drvdata - set regulator driver data
2584  * @regulator: regulator
2585  * @data: data
2586  */
2587 void regulator_set_drvdata(struct regulator *regulator, void *data)
2588 {
2589         regulator->rdev->reg_data = data;
2590 }
2591 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2592
2593 /**
2594  * regulator_get_id - get regulator ID
2595  * @rdev: regulator
2596  */
2597 int rdev_get_id(struct regulator_dev *rdev)
2598 {
2599         return rdev->desc->id;
2600 }
2601 EXPORT_SYMBOL_GPL(rdev_get_id);
2602
2603 struct device *rdev_get_dev(struct regulator_dev *rdev)
2604 {
2605         return &rdev->dev;
2606 }
2607 EXPORT_SYMBOL_GPL(rdev_get_dev);
2608
2609 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2610 {
2611         return reg_init_data->driver_data;
2612 }
2613 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2614
2615 static int __init regulator_init(void)
2616 {
2617         int ret;
2618
2619         ret = class_register(&regulator_class);
2620
2621         regulator_dummy_init();
2622
2623         return ret;
2624 }
2625
2626 /* init early to allow our consumers to complete system booting */
2627 core_initcall(regulator_init);
2628
2629 static int __init regulator_init_complete(void)
2630 {
2631         struct regulator_dev *rdev;
2632         struct regulator_ops *ops;
2633         struct regulation_constraints *c;
2634         int enabled, ret;
2635
2636         mutex_lock(&regulator_list_mutex);
2637
2638         /* If we have a full configuration then disable any regulators
2639          * which are not in use or always_on.  This will become the
2640          * default behaviour in the future.
2641          */
2642         list_for_each_entry(rdev, &regulator_list, list) {
2643                 ops = rdev->desc->ops;
2644                 c = rdev->constraints;
2645
2646                 if (!ops->disable || (c && c->always_on))
2647                         continue;
2648
2649                 mutex_lock(&rdev->mutex);
2650
2651                 if (rdev->use_count)
2652                         goto unlock;
2653
2654                 /* If we can't read the status assume it's on. */
2655                 if (ops->is_enabled)
2656                         enabled = ops->is_enabled(rdev);
2657                 else
2658                         enabled = 1;
2659
2660                 if (!enabled)
2661                         goto unlock;
2662
2663                 if (has_full_constraints) {
2664                         /* We log since this may kill the system if it
2665                          * goes wrong. */
2666                         rdev_info(rdev, "disabling\n");
2667                         ret = ops->disable(rdev);
2668                         if (ret != 0) {
2669                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
2670                         }
2671                 } else {
2672                         /* The intention is that in future we will
2673                          * assume that full constraints are provided
2674                          * so warn even if we aren't going to do
2675                          * anything here.
2676                          */
2677                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
2678                 }
2679
2680 unlock:
2681                 mutex_unlock(&rdev->mutex);
2682         }
2683
2684         mutex_unlock(&regulator_list_mutex);
2685
2686         return 0;
2687 }
2688 late_initcall(regulator_init_complete);