drivers/regulator: Update WARN uses
[linux-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34
35 #define rdev_err(rdev, fmt, ...)                                        \
36         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
37 #define rdev_warn(rdev, fmt, ...)                                       \
38         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39 #define rdev_info(rdev, fmt, ...)                                       \
40         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_dbg(rdev, fmt, ...)                                        \
42         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43
44 static DEFINE_MUTEX(regulator_list_mutex);
45 static LIST_HEAD(regulator_list);
46 static LIST_HEAD(regulator_map_list);
47 static int has_full_constraints;
48 static bool board_wants_dummy_regulator;
49
50 /*
51  * struct regulator_map
52  *
53  * Used to provide symbolic supply names to devices.
54  */
55 struct regulator_map {
56         struct list_head list;
57         const char *dev_name;   /* The dev_name() for the consumer */
58         const char *supply;
59         struct regulator_dev *regulator;
60 };
61
62 /*
63  * struct regulator
64  *
65  * One for each consumer device.
66  */
67 struct regulator {
68         struct device *dev;
69         struct list_head list;
70         int uA_load;
71         int min_uV;
72         int max_uV;
73         char *supply_name;
74         struct device_attribute dev_attr;
75         struct regulator_dev *rdev;
76 };
77
78 static int _regulator_is_enabled(struct regulator_dev *rdev);
79 static int _regulator_disable(struct regulator_dev *rdev,
80                 struct regulator_dev **supply_rdev_ptr);
81 static int _regulator_get_voltage(struct regulator_dev *rdev);
82 static int _regulator_get_current_limit(struct regulator_dev *rdev);
83 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
84 static void _notifier_call_chain(struct regulator_dev *rdev,
85                                   unsigned long event, void *data);
86
87 static const char *rdev_get_name(struct regulator_dev *rdev)
88 {
89         if (rdev->constraints && rdev->constraints->name)
90                 return rdev->constraints->name;
91         else if (rdev->desc->name)
92                 return rdev->desc->name;
93         else
94                 return "";
95 }
96
97 /* gets the regulator for a given consumer device */
98 static struct regulator *get_device_regulator(struct device *dev)
99 {
100         struct regulator *regulator = NULL;
101         struct regulator_dev *rdev;
102
103         mutex_lock(&regulator_list_mutex);
104         list_for_each_entry(rdev, &regulator_list, list) {
105                 mutex_lock(&rdev->mutex);
106                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
107                         if (regulator->dev == dev) {
108                                 mutex_unlock(&rdev->mutex);
109                                 mutex_unlock(&regulator_list_mutex);
110                                 return regulator;
111                         }
112                 }
113                 mutex_unlock(&rdev->mutex);
114         }
115         mutex_unlock(&regulator_list_mutex);
116         return NULL;
117 }
118
119 /* Platform voltage constraint check */
120 static int regulator_check_voltage(struct regulator_dev *rdev,
121                                    int *min_uV, int *max_uV)
122 {
123         BUG_ON(*min_uV > *max_uV);
124
125         if (!rdev->constraints) {
126                 rdev_err(rdev, "no constraints\n");
127                 return -ENODEV;
128         }
129         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130                 rdev_err(rdev, "operation not allowed\n");
131                 return -EPERM;
132         }
133
134         if (*max_uV > rdev->constraints->max_uV)
135                 *max_uV = rdev->constraints->max_uV;
136         if (*min_uV < rdev->constraints->min_uV)
137                 *min_uV = rdev->constraints->min_uV;
138
139         if (*min_uV > *max_uV)
140                 return -EINVAL;
141
142         return 0;
143 }
144
145 /* Make sure we select a voltage that suits the needs of all
146  * regulator consumers
147  */
148 static int regulator_check_consumers(struct regulator_dev *rdev,
149                                      int *min_uV, int *max_uV)
150 {
151         struct regulator *regulator;
152
153         list_for_each_entry(regulator, &rdev->consumer_list, list) {
154                 if (*max_uV > regulator->max_uV)
155                         *max_uV = regulator->max_uV;
156                 if (*min_uV < regulator->min_uV)
157                         *min_uV = regulator->min_uV;
158         }
159
160         if (*min_uV > *max_uV)
161                 return -EINVAL;
162
163         return 0;
164 }
165
166 /* current constraint check */
167 static int regulator_check_current_limit(struct regulator_dev *rdev,
168                                         int *min_uA, int *max_uA)
169 {
170         BUG_ON(*min_uA > *max_uA);
171
172         if (!rdev->constraints) {
173                 rdev_err(rdev, "no constraints\n");
174                 return -ENODEV;
175         }
176         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
177                 rdev_err(rdev, "operation not allowed\n");
178                 return -EPERM;
179         }
180
181         if (*max_uA > rdev->constraints->max_uA)
182                 *max_uA = rdev->constraints->max_uA;
183         if (*min_uA < rdev->constraints->min_uA)
184                 *min_uA = rdev->constraints->min_uA;
185
186         if (*min_uA > *max_uA)
187                 return -EINVAL;
188
189         return 0;
190 }
191
192 /* operating mode constraint check */
193 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
194 {
195         switch (mode) {
196         case REGULATOR_MODE_FAST:
197         case REGULATOR_MODE_NORMAL:
198         case REGULATOR_MODE_IDLE:
199         case REGULATOR_MODE_STANDBY:
200                 break;
201         default:
202                 return -EINVAL;
203         }
204
205         if (!rdev->constraints) {
206                 rdev_err(rdev, "no constraints\n");
207                 return -ENODEV;
208         }
209         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
210                 rdev_err(rdev, "operation not allowed\n");
211                 return -EPERM;
212         }
213         if (!(rdev->constraints->valid_modes_mask & mode)) {
214                 rdev_err(rdev, "invalid mode %x\n", mode);
215                 return -EINVAL;
216         }
217         return 0;
218 }
219
220 /* dynamic regulator mode switching constraint check */
221 static int regulator_check_drms(struct regulator_dev *rdev)
222 {
223         if (!rdev->constraints) {
224                 rdev_err(rdev, "no constraints\n");
225                 return -ENODEV;
226         }
227         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
228                 rdev_err(rdev, "operation not allowed\n");
229                 return -EPERM;
230         }
231         return 0;
232 }
233
234 static ssize_t device_requested_uA_show(struct device *dev,
235                              struct device_attribute *attr, char *buf)
236 {
237         struct regulator *regulator;
238
239         regulator = get_device_regulator(dev);
240         if (regulator == NULL)
241                 return 0;
242
243         return sprintf(buf, "%d\n", regulator->uA_load);
244 }
245
246 static ssize_t regulator_uV_show(struct device *dev,
247                                 struct device_attribute *attr, char *buf)
248 {
249         struct regulator_dev *rdev = dev_get_drvdata(dev);
250         ssize_t ret;
251
252         mutex_lock(&rdev->mutex);
253         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
254         mutex_unlock(&rdev->mutex);
255
256         return ret;
257 }
258 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
259
260 static ssize_t regulator_uA_show(struct device *dev,
261                                 struct device_attribute *attr, char *buf)
262 {
263         struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
266 }
267 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
268
269 static ssize_t regulator_name_show(struct device *dev,
270                              struct device_attribute *attr, char *buf)
271 {
272         struct regulator_dev *rdev = dev_get_drvdata(dev);
273
274         return sprintf(buf, "%s\n", rdev_get_name(rdev));
275 }
276
277 static ssize_t regulator_print_opmode(char *buf, int mode)
278 {
279         switch (mode) {
280         case REGULATOR_MODE_FAST:
281                 return sprintf(buf, "fast\n");
282         case REGULATOR_MODE_NORMAL:
283                 return sprintf(buf, "normal\n");
284         case REGULATOR_MODE_IDLE:
285                 return sprintf(buf, "idle\n");
286         case REGULATOR_MODE_STANDBY:
287                 return sprintf(buf, "standby\n");
288         }
289         return sprintf(buf, "unknown\n");
290 }
291
292 static ssize_t regulator_opmode_show(struct device *dev,
293                                     struct device_attribute *attr, char *buf)
294 {
295         struct regulator_dev *rdev = dev_get_drvdata(dev);
296
297         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
298 }
299 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
300
301 static ssize_t regulator_print_state(char *buf, int state)
302 {
303         if (state > 0)
304                 return sprintf(buf, "enabled\n");
305         else if (state == 0)
306                 return sprintf(buf, "disabled\n");
307         else
308                 return sprintf(buf, "unknown\n");
309 }
310
311 static ssize_t regulator_state_show(struct device *dev,
312                                    struct device_attribute *attr, char *buf)
313 {
314         struct regulator_dev *rdev = dev_get_drvdata(dev);
315         ssize_t ret;
316
317         mutex_lock(&rdev->mutex);
318         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
319         mutex_unlock(&rdev->mutex);
320
321         return ret;
322 }
323 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
324
325 static ssize_t regulator_status_show(struct device *dev,
326                                    struct device_attribute *attr, char *buf)
327 {
328         struct regulator_dev *rdev = dev_get_drvdata(dev);
329         int status;
330         char *label;
331
332         status = rdev->desc->ops->get_status(rdev);
333         if (status < 0)
334                 return status;
335
336         switch (status) {
337         case REGULATOR_STATUS_OFF:
338                 label = "off";
339                 break;
340         case REGULATOR_STATUS_ON:
341                 label = "on";
342                 break;
343         case REGULATOR_STATUS_ERROR:
344                 label = "error";
345                 break;
346         case REGULATOR_STATUS_FAST:
347                 label = "fast";
348                 break;
349         case REGULATOR_STATUS_NORMAL:
350                 label = "normal";
351                 break;
352         case REGULATOR_STATUS_IDLE:
353                 label = "idle";
354                 break;
355         case REGULATOR_STATUS_STANDBY:
356                 label = "standby";
357                 break;
358         default:
359                 return -ERANGE;
360         }
361
362         return sprintf(buf, "%s\n", label);
363 }
364 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
365
366 static ssize_t regulator_min_uA_show(struct device *dev,
367                                     struct device_attribute *attr, char *buf)
368 {
369         struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371         if (!rdev->constraints)
372                 return sprintf(buf, "constraint not defined\n");
373
374         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
375 }
376 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
377
378 static ssize_t regulator_max_uA_show(struct device *dev,
379                                     struct device_attribute *attr, char *buf)
380 {
381         struct regulator_dev *rdev = dev_get_drvdata(dev);
382
383         if (!rdev->constraints)
384                 return sprintf(buf, "constraint not defined\n");
385
386         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
387 }
388 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
389
390 static ssize_t regulator_min_uV_show(struct device *dev,
391                                     struct device_attribute *attr, char *buf)
392 {
393         struct regulator_dev *rdev = dev_get_drvdata(dev);
394
395         if (!rdev->constraints)
396                 return sprintf(buf, "constraint not defined\n");
397
398         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
399 }
400 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
401
402 static ssize_t regulator_max_uV_show(struct device *dev,
403                                     struct device_attribute *attr, char *buf)
404 {
405         struct regulator_dev *rdev = dev_get_drvdata(dev);
406
407         if (!rdev->constraints)
408                 return sprintf(buf, "constraint not defined\n");
409
410         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
411 }
412 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
413
414 static ssize_t regulator_total_uA_show(struct device *dev,
415                                       struct device_attribute *attr, char *buf)
416 {
417         struct regulator_dev *rdev = dev_get_drvdata(dev);
418         struct regulator *regulator;
419         int uA = 0;
420
421         mutex_lock(&rdev->mutex);
422         list_for_each_entry(regulator, &rdev->consumer_list, list)
423                 uA += regulator->uA_load;
424         mutex_unlock(&rdev->mutex);
425         return sprintf(buf, "%d\n", uA);
426 }
427 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
428
429 static ssize_t regulator_num_users_show(struct device *dev,
430                                       struct device_attribute *attr, char *buf)
431 {
432         struct regulator_dev *rdev = dev_get_drvdata(dev);
433         return sprintf(buf, "%d\n", rdev->use_count);
434 }
435
436 static ssize_t regulator_type_show(struct device *dev,
437                                   struct device_attribute *attr, char *buf)
438 {
439         struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441         switch (rdev->desc->type) {
442         case REGULATOR_VOLTAGE:
443                 return sprintf(buf, "voltage\n");
444         case REGULATOR_CURRENT:
445                 return sprintf(buf, "current\n");
446         }
447         return sprintf(buf, "unknown\n");
448 }
449
450 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
451                                 struct device_attribute *attr, char *buf)
452 {
453         struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
456 }
457 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
458                 regulator_suspend_mem_uV_show, NULL);
459
460 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
461                                 struct device_attribute *attr, char *buf)
462 {
463         struct regulator_dev *rdev = dev_get_drvdata(dev);
464
465         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
466 }
467 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
468                 regulator_suspend_disk_uV_show, NULL);
469
470 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
471                                 struct device_attribute *attr, char *buf)
472 {
473         struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
476 }
477 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
478                 regulator_suspend_standby_uV_show, NULL);
479
480 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
481                                 struct device_attribute *attr, char *buf)
482 {
483         struct regulator_dev *rdev = dev_get_drvdata(dev);
484
485         return regulator_print_opmode(buf,
486                 rdev->constraints->state_mem.mode);
487 }
488 static DEVICE_ATTR(suspend_mem_mode, 0444,
489                 regulator_suspend_mem_mode_show, NULL);
490
491 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
492                                 struct device_attribute *attr, char *buf)
493 {
494         struct regulator_dev *rdev = dev_get_drvdata(dev);
495
496         return regulator_print_opmode(buf,
497                 rdev->constraints->state_disk.mode);
498 }
499 static DEVICE_ATTR(suspend_disk_mode, 0444,
500                 regulator_suspend_disk_mode_show, NULL);
501
502 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
503                                 struct device_attribute *attr, char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         return regulator_print_opmode(buf,
508                 rdev->constraints->state_standby.mode);
509 }
510 static DEVICE_ATTR(suspend_standby_mode, 0444,
511                 regulator_suspend_standby_mode_show, NULL);
512
513 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
514                                    struct device_attribute *attr, char *buf)
515 {
516         struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518         return regulator_print_state(buf,
519                         rdev->constraints->state_mem.enabled);
520 }
521 static DEVICE_ATTR(suspend_mem_state, 0444,
522                 regulator_suspend_mem_state_show, NULL);
523
524 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
525                                    struct device_attribute *attr, char *buf)
526 {
527         struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529         return regulator_print_state(buf,
530                         rdev->constraints->state_disk.enabled);
531 }
532 static DEVICE_ATTR(suspend_disk_state, 0444,
533                 regulator_suspend_disk_state_show, NULL);
534
535 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
536                                    struct device_attribute *attr, char *buf)
537 {
538         struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540         return regulator_print_state(buf,
541                         rdev->constraints->state_standby.enabled);
542 }
543 static DEVICE_ATTR(suspend_standby_state, 0444,
544                 regulator_suspend_standby_state_show, NULL);
545
546
547 /*
548  * These are the only attributes are present for all regulators.
549  * Other attributes are a function of regulator functionality.
550  */
551 static struct device_attribute regulator_dev_attrs[] = {
552         __ATTR(name, 0444, regulator_name_show, NULL),
553         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
554         __ATTR(type, 0444, regulator_type_show, NULL),
555         __ATTR_NULL,
556 };
557
558 static void regulator_dev_release(struct device *dev)
559 {
560         struct regulator_dev *rdev = dev_get_drvdata(dev);
561         kfree(rdev);
562 }
563
564 static struct class regulator_class = {
565         .name = "regulator",
566         .dev_release = regulator_dev_release,
567         .dev_attrs = regulator_dev_attrs,
568 };
569
570 /* Calculate the new optimum regulator operating mode based on the new total
571  * consumer load. All locks held by caller */
572 static void drms_uA_update(struct regulator_dev *rdev)
573 {
574         struct regulator *sibling;
575         int current_uA = 0, output_uV, input_uV, err;
576         unsigned int mode;
577
578         err = regulator_check_drms(rdev);
579         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
580             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
581                 return;
582
583         /* get output voltage */
584         output_uV = rdev->desc->ops->get_voltage(rdev);
585         if (output_uV <= 0)
586                 return;
587
588         /* get input voltage */
589         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
590                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
591         else
592                 input_uV = rdev->constraints->input_uV;
593         if (input_uV <= 0)
594                 return;
595
596         /* calc total requested load */
597         list_for_each_entry(sibling, &rdev->consumer_list, list)
598                 current_uA += sibling->uA_load;
599
600         /* now get the optimum mode for our new total regulator load */
601         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
602                                                   output_uV, current_uA);
603
604         /* check the new mode is allowed */
605         err = regulator_check_mode(rdev, mode);
606         if (err == 0)
607                 rdev->desc->ops->set_mode(rdev, mode);
608 }
609
610 static int suspend_set_state(struct regulator_dev *rdev,
611         struct regulator_state *rstate)
612 {
613         int ret = 0;
614         bool can_set_state;
615
616         can_set_state = rdev->desc->ops->set_suspend_enable &&
617                 rdev->desc->ops->set_suspend_disable;
618
619         /* If we have no suspend mode configration don't set anything;
620          * only warn if the driver actually makes the suspend mode
621          * configurable.
622          */
623         if (!rstate->enabled && !rstate->disabled) {
624                 if (can_set_state)
625                         rdev_warn(rdev, "No configuration\n");
626                 return 0;
627         }
628
629         if (rstate->enabled && rstate->disabled) {
630                 rdev_err(rdev, "invalid configuration\n");
631                 return -EINVAL;
632         }
633
634         if (!can_set_state) {
635                 rdev_err(rdev, "no way to set suspend state\n");
636                 return -EINVAL;
637         }
638
639         if (rstate->enabled)
640                 ret = rdev->desc->ops->set_suspend_enable(rdev);
641         else
642                 ret = rdev->desc->ops->set_suspend_disable(rdev);
643         if (ret < 0) {
644                 rdev_err(rdev, "failed to enabled/disable\n");
645                 return ret;
646         }
647
648         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
649                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
650                 if (ret < 0) {
651                         rdev_err(rdev, "failed to set voltage\n");
652                         return ret;
653                 }
654         }
655
656         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
657                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
658                 if (ret < 0) {
659                         rdev_err(rdev, "failed to set mode\n");
660                         return ret;
661                 }
662         }
663         return ret;
664 }
665
666 /* locks held by caller */
667 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
668 {
669         if (!rdev->constraints)
670                 return -EINVAL;
671
672         switch (state) {
673         case PM_SUSPEND_STANDBY:
674                 return suspend_set_state(rdev,
675                         &rdev->constraints->state_standby);
676         case PM_SUSPEND_MEM:
677                 return suspend_set_state(rdev,
678                         &rdev->constraints->state_mem);
679         case PM_SUSPEND_MAX:
680                 return suspend_set_state(rdev,
681                         &rdev->constraints->state_disk);
682         default:
683                 return -EINVAL;
684         }
685 }
686
687 static void print_constraints(struct regulator_dev *rdev)
688 {
689         struct regulation_constraints *constraints = rdev->constraints;
690         char buf[80] = "";
691         int count = 0;
692         int ret;
693
694         if (constraints->min_uV && constraints->max_uV) {
695                 if (constraints->min_uV == constraints->max_uV)
696                         count += sprintf(buf + count, "%d mV ",
697                                          constraints->min_uV / 1000);
698                 else
699                         count += sprintf(buf + count, "%d <--> %d mV ",
700                                          constraints->min_uV / 1000,
701                                          constraints->max_uV / 1000);
702         }
703
704         if (!constraints->min_uV ||
705             constraints->min_uV != constraints->max_uV) {
706                 ret = _regulator_get_voltage(rdev);
707                 if (ret > 0)
708                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
709         }
710
711         if (constraints->min_uA && constraints->max_uA) {
712                 if (constraints->min_uA == constraints->max_uA)
713                         count += sprintf(buf + count, "%d mA ",
714                                          constraints->min_uA / 1000);
715                 else
716                         count += sprintf(buf + count, "%d <--> %d mA ",
717                                          constraints->min_uA / 1000,
718                                          constraints->max_uA / 1000);
719         }
720
721         if (!constraints->min_uA ||
722             constraints->min_uA != constraints->max_uA) {
723                 ret = _regulator_get_current_limit(rdev);
724                 if (ret > 0)
725                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
726         }
727
728         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
729                 count += sprintf(buf + count, "fast ");
730         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
731                 count += sprintf(buf + count, "normal ");
732         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
733                 count += sprintf(buf + count, "idle ");
734         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
735                 count += sprintf(buf + count, "standby");
736
737         rdev_info(rdev, "regulator: %s\n", buf);
738 }
739
740 static int machine_constraints_voltage(struct regulator_dev *rdev,
741         struct regulation_constraints *constraints)
742 {
743         struct regulator_ops *ops = rdev->desc->ops;
744         int ret;
745         unsigned selector;
746
747         /* do we need to apply the constraint voltage */
748         if (rdev->constraints->apply_uV &&
749                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
750                 ops->set_voltage) {
751                 ret = ops->set_voltage(rdev,
752                                        rdev->constraints->min_uV,
753                                        rdev->constraints->max_uV,
754                                        &selector);
755                         if (ret < 0) {
756                                 rdev_err(rdev, "failed to apply %duV constraint\n",
757                                          rdev->constraints->min_uV);
758                                 rdev->constraints = NULL;
759                                 return ret;
760                         }
761         }
762
763         /* constrain machine-level voltage specs to fit
764          * the actual range supported by this regulator.
765          */
766         if (ops->list_voltage && rdev->desc->n_voltages) {
767                 int     count = rdev->desc->n_voltages;
768                 int     i;
769                 int     min_uV = INT_MAX;
770                 int     max_uV = INT_MIN;
771                 int     cmin = constraints->min_uV;
772                 int     cmax = constraints->max_uV;
773
774                 /* it's safe to autoconfigure fixed-voltage supplies
775                    and the constraints are used by list_voltage. */
776                 if (count == 1 && !cmin) {
777                         cmin = 1;
778                         cmax = INT_MAX;
779                         constraints->min_uV = cmin;
780                         constraints->max_uV = cmax;
781                 }
782
783                 /* voltage constraints are optional */
784                 if ((cmin == 0) && (cmax == 0))
785                         return 0;
786
787                 /* else require explicit machine-level constraints */
788                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
789                         rdev_err(rdev, "invalid voltage constraints\n");
790                         return -EINVAL;
791                 }
792
793                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
794                 for (i = 0; i < count; i++) {
795                         int     value;
796
797                         value = ops->list_voltage(rdev, i);
798                         if (value <= 0)
799                                 continue;
800
801                         /* maybe adjust [min_uV..max_uV] */
802                         if (value >= cmin && value < min_uV)
803                                 min_uV = value;
804                         if (value <= cmax && value > max_uV)
805                                 max_uV = value;
806                 }
807
808                 /* final: [min_uV..max_uV] valid iff constraints valid */
809                 if (max_uV < min_uV) {
810                         rdev_err(rdev, "unsupportable voltage constraints\n");
811                         return -EINVAL;
812                 }
813
814                 /* use regulator's subset of machine constraints */
815                 if (constraints->min_uV < min_uV) {
816                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
817                                  constraints->min_uV, min_uV);
818                         constraints->min_uV = min_uV;
819                 }
820                 if (constraints->max_uV > max_uV) {
821                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
822                                  constraints->max_uV, max_uV);
823                         constraints->max_uV = max_uV;
824                 }
825         }
826
827         return 0;
828 }
829
830 /**
831  * set_machine_constraints - sets regulator constraints
832  * @rdev: regulator source
833  * @constraints: constraints to apply
834  *
835  * Allows platform initialisation code to define and constrain
836  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
837  * Constraints *must* be set by platform code in order for some
838  * regulator operations to proceed i.e. set_voltage, set_current_limit,
839  * set_mode.
840  */
841 static int set_machine_constraints(struct regulator_dev *rdev,
842         const struct regulation_constraints *constraints)
843 {
844         int ret = 0;
845         struct regulator_ops *ops = rdev->desc->ops;
846
847         rdev->constraints = kmemdup(constraints, sizeof(*constraints),
848                                     GFP_KERNEL);
849         if (!rdev->constraints)
850                 return -ENOMEM;
851
852         ret = machine_constraints_voltage(rdev, rdev->constraints);
853         if (ret != 0)
854                 goto out;
855
856         /* do we need to setup our suspend state */
857         if (constraints->initial_state) {
858                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
859                 if (ret < 0) {
860                         rdev_err(rdev, "failed to set suspend state\n");
861                         rdev->constraints = NULL;
862                         goto out;
863                 }
864         }
865
866         if (constraints->initial_mode) {
867                 if (!ops->set_mode) {
868                         rdev_err(rdev, "no set_mode operation\n");
869                         ret = -EINVAL;
870                         goto out;
871                 }
872
873                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
874                 if (ret < 0) {
875                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
876                         goto out;
877                 }
878         }
879
880         /* If the constraints say the regulator should be on at this point
881          * and we have control then make sure it is enabled.
882          */
883         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
884             ops->enable) {
885                 ret = ops->enable(rdev);
886                 if (ret < 0) {
887                         rdev_err(rdev, "failed to enable\n");
888                         rdev->constraints = NULL;
889                         goto out;
890                 }
891         }
892
893         print_constraints(rdev);
894 out:
895         return ret;
896 }
897
898 /**
899  * set_supply - set regulator supply regulator
900  * @rdev: regulator name
901  * @supply_rdev: supply regulator name
902  *
903  * Called by platform initialisation code to set the supply regulator for this
904  * regulator. This ensures that a regulators supply will also be enabled by the
905  * core if it's child is enabled.
906  */
907 static int set_supply(struct regulator_dev *rdev,
908         struct regulator_dev *supply_rdev)
909 {
910         int err;
911
912         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
913                                 "supply");
914         if (err) {
915                 rdev_err(rdev, "could not add device link %s err %d\n",
916                          supply_rdev->dev.kobj.name, err);
917                        goto out;
918         }
919         rdev->supply = supply_rdev;
920         list_add(&rdev->slist, &supply_rdev->supply_list);
921 out:
922         return err;
923 }
924
925 /**
926  * set_consumer_device_supply - Bind a regulator to a symbolic supply
927  * @rdev:         regulator source
928  * @consumer_dev: device the supply applies to
929  * @consumer_dev_name: dev_name() string for device supply applies to
930  * @supply:       symbolic name for supply
931  *
932  * Allows platform initialisation code to map physical regulator
933  * sources to symbolic names for supplies for use by devices.  Devices
934  * should use these symbolic names to request regulators, avoiding the
935  * need to provide board-specific regulator names as platform data.
936  *
937  * Only one of consumer_dev and consumer_dev_name may be specified.
938  */
939 static int set_consumer_device_supply(struct regulator_dev *rdev,
940         struct device *consumer_dev, const char *consumer_dev_name,
941         const char *supply)
942 {
943         struct regulator_map *node;
944         int has_dev;
945
946         if (consumer_dev && consumer_dev_name)
947                 return -EINVAL;
948
949         if (!consumer_dev_name && consumer_dev)
950                 consumer_dev_name = dev_name(consumer_dev);
951
952         if (supply == NULL)
953                 return -EINVAL;
954
955         if (consumer_dev_name != NULL)
956                 has_dev = 1;
957         else
958                 has_dev = 0;
959
960         list_for_each_entry(node, &regulator_map_list, list) {
961                 if (node->dev_name && consumer_dev_name) {
962                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
963                                 continue;
964                 } else if (node->dev_name || consumer_dev_name) {
965                         continue;
966                 }
967
968                 if (strcmp(node->supply, supply) != 0)
969                         continue;
970
971                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
972                         dev_name(&node->regulator->dev),
973                         node->regulator->desc->name,
974                         supply,
975                         dev_name(&rdev->dev), rdev_get_name(rdev));
976                 return -EBUSY;
977         }
978
979         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
980         if (node == NULL)
981                 return -ENOMEM;
982
983         node->regulator = rdev;
984         node->supply = supply;
985
986         if (has_dev) {
987                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
988                 if (node->dev_name == NULL) {
989                         kfree(node);
990                         return -ENOMEM;
991                 }
992         }
993
994         list_add(&node->list, &regulator_map_list);
995         return 0;
996 }
997
998 static void unset_regulator_supplies(struct regulator_dev *rdev)
999 {
1000         struct regulator_map *node, *n;
1001
1002         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1003                 if (rdev == node->regulator) {
1004                         list_del(&node->list);
1005                         kfree(node->dev_name);
1006                         kfree(node);
1007                 }
1008         }
1009 }
1010
1011 #define REG_STR_SIZE    32
1012
1013 static struct regulator *create_regulator(struct regulator_dev *rdev,
1014                                           struct device *dev,
1015                                           const char *supply_name)
1016 {
1017         struct regulator *regulator;
1018         char buf[REG_STR_SIZE];
1019         int err, size;
1020
1021         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1022         if (regulator == NULL)
1023                 return NULL;
1024
1025         mutex_lock(&rdev->mutex);
1026         regulator->rdev = rdev;
1027         list_add(&regulator->list, &rdev->consumer_list);
1028
1029         if (dev) {
1030                 /* create a 'requested_microamps_name' sysfs entry */
1031                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1032                         supply_name);
1033                 if (size >= REG_STR_SIZE)
1034                         goto overflow_err;
1035
1036                 regulator->dev = dev;
1037                 sysfs_attr_init(&regulator->dev_attr.attr);
1038                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1039                 if (regulator->dev_attr.attr.name == NULL)
1040                         goto attr_name_err;
1041
1042                 regulator->dev_attr.attr.mode = 0444;
1043                 regulator->dev_attr.show = device_requested_uA_show;
1044                 err = device_create_file(dev, &regulator->dev_attr);
1045                 if (err < 0) {
1046                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1047                         goto attr_name_err;
1048                 }
1049
1050                 /* also add a link to the device sysfs entry */
1051                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1052                                  dev->kobj.name, supply_name);
1053                 if (size >= REG_STR_SIZE)
1054                         goto attr_err;
1055
1056                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1057                 if (regulator->supply_name == NULL)
1058                         goto attr_err;
1059
1060                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1061                                         buf);
1062                 if (err) {
1063                         rdev_warn(rdev, "could not add device link %s err %d\n",
1064                                   dev->kobj.name, err);
1065                         goto link_name_err;
1066                 }
1067         }
1068         mutex_unlock(&rdev->mutex);
1069         return regulator;
1070 link_name_err:
1071         kfree(regulator->supply_name);
1072 attr_err:
1073         device_remove_file(regulator->dev, &regulator->dev_attr);
1074 attr_name_err:
1075         kfree(regulator->dev_attr.attr.name);
1076 overflow_err:
1077         list_del(&regulator->list);
1078         kfree(regulator);
1079         mutex_unlock(&rdev->mutex);
1080         return NULL;
1081 }
1082
1083 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1084 {
1085         if (!rdev->desc->ops->enable_time)
1086                 return 0;
1087         return rdev->desc->ops->enable_time(rdev);
1088 }
1089
1090 /* Internal regulator request function */
1091 static struct regulator *_regulator_get(struct device *dev, const char *id,
1092                                         int exclusive)
1093 {
1094         struct regulator_dev *rdev;
1095         struct regulator_map *map;
1096         struct regulator *regulator = ERR_PTR(-ENODEV);
1097         const char *devname = NULL;
1098         int ret;
1099
1100         if (id == NULL) {
1101                 pr_err("get() with no identifier\n");
1102                 return regulator;
1103         }
1104
1105         if (dev)
1106                 devname = dev_name(dev);
1107
1108         mutex_lock(&regulator_list_mutex);
1109
1110         list_for_each_entry(map, &regulator_map_list, list) {
1111                 /* If the mapping has a device set up it must match */
1112                 if (map->dev_name &&
1113                     (!devname || strcmp(map->dev_name, devname)))
1114                         continue;
1115
1116                 if (strcmp(map->supply, id) == 0) {
1117                         rdev = map->regulator;
1118                         goto found;
1119                 }
1120         }
1121
1122         if (board_wants_dummy_regulator) {
1123                 rdev = dummy_regulator_rdev;
1124                 goto found;
1125         }
1126
1127 #ifdef CONFIG_REGULATOR_DUMMY
1128         if (!devname)
1129                 devname = "deviceless";
1130
1131         /* If the board didn't flag that it was fully constrained then
1132          * substitute in a dummy regulator so consumers can continue.
1133          */
1134         if (!has_full_constraints) {
1135                 pr_warn("%s supply %s not found, using dummy regulator\n",
1136                         devname, id);
1137                 rdev = dummy_regulator_rdev;
1138                 goto found;
1139         }
1140 #endif
1141
1142         mutex_unlock(&regulator_list_mutex);
1143         return regulator;
1144
1145 found:
1146         if (rdev->exclusive) {
1147                 regulator = ERR_PTR(-EPERM);
1148                 goto out;
1149         }
1150
1151         if (exclusive && rdev->open_count) {
1152                 regulator = ERR_PTR(-EBUSY);
1153                 goto out;
1154         }
1155
1156         if (!try_module_get(rdev->owner))
1157                 goto out;
1158
1159         regulator = create_regulator(rdev, dev, id);
1160         if (regulator == NULL) {
1161                 regulator = ERR_PTR(-ENOMEM);
1162                 module_put(rdev->owner);
1163         }
1164
1165         rdev->open_count++;
1166         if (exclusive) {
1167                 rdev->exclusive = 1;
1168
1169                 ret = _regulator_is_enabled(rdev);
1170                 if (ret > 0)
1171                         rdev->use_count = 1;
1172                 else
1173                         rdev->use_count = 0;
1174         }
1175
1176 out:
1177         mutex_unlock(&regulator_list_mutex);
1178
1179         return regulator;
1180 }
1181
1182 /**
1183  * regulator_get - lookup and obtain a reference to a regulator.
1184  * @dev: device for regulator "consumer"
1185  * @id: Supply name or regulator ID.
1186  *
1187  * Returns a struct regulator corresponding to the regulator producer,
1188  * or IS_ERR() condition containing errno.
1189  *
1190  * Use of supply names configured via regulator_set_device_supply() is
1191  * strongly encouraged.  It is recommended that the supply name used
1192  * should match the name used for the supply and/or the relevant
1193  * device pins in the datasheet.
1194  */
1195 struct regulator *regulator_get(struct device *dev, const char *id)
1196 {
1197         return _regulator_get(dev, id, 0);
1198 }
1199 EXPORT_SYMBOL_GPL(regulator_get);
1200
1201 /**
1202  * regulator_get_exclusive - obtain exclusive access to a regulator.
1203  * @dev: device for regulator "consumer"
1204  * @id: Supply name or regulator ID.
1205  *
1206  * Returns a struct regulator corresponding to the regulator producer,
1207  * or IS_ERR() condition containing errno.  Other consumers will be
1208  * unable to obtain this reference is held and the use count for the
1209  * regulator will be initialised to reflect the current state of the
1210  * regulator.
1211  *
1212  * This is intended for use by consumers which cannot tolerate shared
1213  * use of the regulator such as those which need to force the
1214  * regulator off for correct operation of the hardware they are
1215  * controlling.
1216  *
1217  * Use of supply names configured via regulator_set_device_supply() is
1218  * strongly encouraged.  It is recommended that the supply name used
1219  * should match the name used for the supply and/or the relevant
1220  * device pins in the datasheet.
1221  */
1222 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1223 {
1224         return _regulator_get(dev, id, 1);
1225 }
1226 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1227
1228 /**
1229  * regulator_put - "free" the regulator source
1230  * @regulator: regulator source
1231  *
1232  * Note: drivers must ensure that all regulator_enable calls made on this
1233  * regulator source are balanced by regulator_disable calls prior to calling
1234  * this function.
1235  */
1236 void regulator_put(struct regulator *regulator)
1237 {
1238         struct regulator_dev *rdev;
1239
1240         if (regulator == NULL || IS_ERR(regulator))
1241                 return;
1242
1243         mutex_lock(&regulator_list_mutex);
1244         rdev = regulator->rdev;
1245
1246         /* remove any sysfs entries */
1247         if (regulator->dev) {
1248                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1249                 kfree(regulator->supply_name);
1250                 device_remove_file(regulator->dev, &regulator->dev_attr);
1251                 kfree(regulator->dev_attr.attr.name);
1252         }
1253         list_del(&regulator->list);
1254         kfree(regulator);
1255
1256         rdev->open_count--;
1257         rdev->exclusive = 0;
1258
1259         module_put(rdev->owner);
1260         mutex_unlock(&regulator_list_mutex);
1261 }
1262 EXPORT_SYMBOL_GPL(regulator_put);
1263
1264 static int _regulator_can_change_status(struct regulator_dev *rdev)
1265 {
1266         if (!rdev->constraints)
1267                 return 0;
1268
1269         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1270                 return 1;
1271         else
1272                 return 0;
1273 }
1274
1275 /* locks held by regulator_enable() */
1276 static int _regulator_enable(struct regulator_dev *rdev)
1277 {
1278         int ret, delay;
1279
1280         if (rdev->use_count == 0) {
1281                 /* do we need to enable the supply regulator first */
1282                 if (rdev->supply) {
1283                         mutex_lock(&rdev->supply->mutex);
1284                         ret = _regulator_enable(rdev->supply);
1285                         mutex_unlock(&rdev->supply->mutex);
1286                         if (ret < 0) {
1287                                 rdev_err(rdev, "failed to enable: %d\n", ret);
1288                                 return ret;
1289                         }
1290                 }
1291         }
1292
1293         /* check voltage and requested load before enabling */
1294         if (rdev->constraints &&
1295             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1296                 drms_uA_update(rdev);
1297
1298         if (rdev->use_count == 0) {
1299                 /* The regulator may on if it's not switchable or left on */
1300                 ret = _regulator_is_enabled(rdev);
1301                 if (ret == -EINVAL || ret == 0) {
1302                         if (!_regulator_can_change_status(rdev))
1303                                 return -EPERM;
1304
1305                         if (!rdev->desc->ops->enable)
1306                                 return -EINVAL;
1307
1308                         /* Query before enabling in case configuration
1309                          * dependant.  */
1310                         ret = _regulator_get_enable_time(rdev);
1311                         if (ret >= 0) {
1312                                 delay = ret;
1313                         } else {
1314                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1315                                            ret);
1316                                 delay = 0;
1317                         }
1318
1319                         trace_regulator_enable(rdev_get_name(rdev));
1320
1321                         /* Allow the regulator to ramp; it would be useful
1322                          * to extend this for bulk operations so that the
1323                          * regulators can ramp together.  */
1324                         ret = rdev->desc->ops->enable(rdev);
1325                         if (ret < 0)
1326                                 return ret;
1327
1328                         trace_regulator_enable_delay(rdev_get_name(rdev));
1329
1330                         if (delay >= 1000) {
1331                                 mdelay(delay / 1000);
1332                                 udelay(delay % 1000);
1333                         } else if (delay) {
1334                                 udelay(delay);
1335                         }
1336
1337                         trace_regulator_enable_complete(rdev_get_name(rdev));
1338
1339                 } else if (ret < 0) {
1340                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1341                         return ret;
1342                 }
1343                 /* Fallthrough on positive return values - already enabled */
1344         }
1345
1346         rdev->use_count++;
1347
1348         return 0;
1349 }
1350
1351 /**
1352  * regulator_enable - enable regulator output
1353  * @regulator: regulator source
1354  *
1355  * Request that the regulator be enabled with the regulator output at
1356  * the predefined voltage or current value.  Calls to regulator_enable()
1357  * must be balanced with calls to regulator_disable().
1358  *
1359  * NOTE: the output value can be set by other drivers, boot loader or may be
1360  * hardwired in the regulator.
1361  */
1362 int regulator_enable(struct regulator *regulator)
1363 {
1364         struct regulator_dev *rdev = regulator->rdev;
1365         int ret = 0;
1366
1367         mutex_lock(&rdev->mutex);
1368         ret = _regulator_enable(rdev);
1369         mutex_unlock(&rdev->mutex);
1370         return ret;
1371 }
1372 EXPORT_SYMBOL_GPL(regulator_enable);
1373
1374 /* locks held by regulator_disable() */
1375 static int _regulator_disable(struct regulator_dev *rdev,
1376                 struct regulator_dev **supply_rdev_ptr)
1377 {
1378         int ret = 0;
1379         *supply_rdev_ptr = NULL;
1380
1381         if (WARN(rdev->use_count <= 0,
1382                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1383                 return -EIO;
1384
1385         /* are we the last user and permitted to disable ? */
1386         if (rdev->use_count == 1 &&
1387             (rdev->constraints && !rdev->constraints->always_on)) {
1388
1389                 /* we are last user */
1390                 if (_regulator_can_change_status(rdev) &&
1391                     rdev->desc->ops->disable) {
1392                         trace_regulator_disable(rdev_get_name(rdev));
1393
1394                         ret = rdev->desc->ops->disable(rdev);
1395                         if (ret < 0) {
1396                                 rdev_err(rdev, "failed to disable\n");
1397                                 return ret;
1398                         }
1399
1400                         trace_regulator_disable_complete(rdev_get_name(rdev));
1401
1402                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1403                                              NULL);
1404                 }
1405
1406                 /* decrease our supplies ref count and disable if required */
1407                 *supply_rdev_ptr = rdev->supply;
1408
1409                 rdev->use_count = 0;
1410         } else if (rdev->use_count > 1) {
1411
1412                 if (rdev->constraints &&
1413                         (rdev->constraints->valid_ops_mask &
1414                         REGULATOR_CHANGE_DRMS))
1415                         drms_uA_update(rdev);
1416
1417                 rdev->use_count--;
1418         }
1419         return ret;
1420 }
1421
1422 /**
1423  * regulator_disable - disable regulator output
1424  * @regulator: regulator source
1425  *
1426  * Disable the regulator output voltage or current.  Calls to
1427  * regulator_enable() must be balanced with calls to
1428  * regulator_disable().
1429  *
1430  * NOTE: this will only disable the regulator output if no other consumer
1431  * devices have it enabled, the regulator device supports disabling and
1432  * machine constraints permit this operation.
1433  */
1434 int regulator_disable(struct regulator *regulator)
1435 {
1436         struct regulator_dev *rdev = regulator->rdev;
1437         struct regulator_dev *supply_rdev = NULL;
1438         int ret = 0;
1439
1440         mutex_lock(&rdev->mutex);
1441         ret = _regulator_disable(rdev, &supply_rdev);
1442         mutex_unlock(&rdev->mutex);
1443
1444         /* decrease our supplies ref count and disable if required */
1445         while (supply_rdev != NULL) {
1446                 rdev = supply_rdev;
1447
1448                 mutex_lock(&rdev->mutex);
1449                 _regulator_disable(rdev, &supply_rdev);
1450                 mutex_unlock(&rdev->mutex);
1451         }
1452
1453         return ret;
1454 }
1455 EXPORT_SYMBOL_GPL(regulator_disable);
1456
1457 /* locks held by regulator_force_disable() */
1458 static int _regulator_force_disable(struct regulator_dev *rdev,
1459                 struct regulator_dev **supply_rdev_ptr)
1460 {
1461         int ret = 0;
1462
1463         /* force disable */
1464         if (rdev->desc->ops->disable) {
1465                 /* ah well, who wants to live forever... */
1466                 ret = rdev->desc->ops->disable(rdev);
1467                 if (ret < 0) {
1468                         rdev_err(rdev, "failed to force disable\n");
1469                         return ret;
1470                 }
1471                 /* notify other consumers that power has been forced off */
1472                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1473                         REGULATOR_EVENT_DISABLE, NULL);
1474         }
1475
1476         /* decrease our supplies ref count and disable if required */
1477         *supply_rdev_ptr = rdev->supply;
1478
1479         rdev->use_count = 0;
1480         return ret;
1481 }
1482
1483 /**
1484  * regulator_force_disable - force disable regulator output
1485  * @regulator: regulator source
1486  *
1487  * Forcibly disable the regulator output voltage or current.
1488  * NOTE: this *will* disable the regulator output even if other consumer
1489  * devices have it enabled. This should be used for situations when device
1490  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1491  */
1492 int regulator_force_disable(struct regulator *regulator)
1493 {
1494         struct regulator_dev *supply_rdev = NULL;
1495         int ret;
1496
1497         mutex_lock(&regulator->rdev->mutex);
1498         regulator->uA_load = 0;
1499         ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1500         mutex_unlock(&regulator->rdev->mutex);
1501
1502         if (supply_rdev)
1503                 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1504
1505         return ret;
1506 }
1507 EXPORT_SYMBOL_GPL(regulator_force_disable);
1508
1509 static int _regulator_is_enabled(struct regulator_dev *rdev)
1510 {
1511         /* If we don't know then assume that the regulator is always on */
1512         if (!rdev->desc->ops->is_enabled)
1513                 return 1;
1514
1515         return rdev->desc->ops->is_enabled(rdev);
1516 }
1517
1518 /**
1519  * regulator_is_enabled - is the regulator output enabled
1520  * @regulator: regulator source
1521  *
1522  * Returns positive if the regulator driver backing the source/client
1523  * has requested that the device be enabled, zero if it hasn't, else a
1524  * negative errno code.
1525  *
1526  * Note that the device backing this regulator handle can have multiple
1527  * users, so it might be enabled even if regulator_enable() was never
1528  * called for this particular source.
1529  */
1530 int regulator_is_enabled(struct regulator *regulator)
1531 {
1532         int ret;
1533
1534         mutex_lock(&regulator->rdev->mutex);
1535         ret = _regulator_is_enabled(regulator->rdev);
1536         mutex_unlock(&regulator->rdev->mutex);
1537
1538         return ret;
1539 }
1540 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1541
1542 /**
1543  * regulator_count_voltages - count regulator_list_voltage() selectors
1544  * @regulator: regulator source
1545  *
1546  * Returns number of selectors, or negative errno.  Selectors are
1547  * numbered starting at zero, and typically correspond to bitfields
1548  * in hardware registers.
1549  */
1550 int regulator_count_voltages(struct regulator *regulator)
1551 {
1552         struct regulator_dev    *rdev = regulator->rdev;
1553
1554         return rdev->desc->n_voltages ? : -EINVAL;
1555 }
1556 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1557
1558 /**
1559  * regulator_list_voltage - enumerate supported voltages
1560  * @regulator: regulator source
1561  * @selector: identify voltage to list
1562  * Context: can sleep
1563  *
1564  * Returns a voltage that can be passed to @regulator_set_voltage(),
1565  * zero if this selector code can't be used on this system, or a
1566  * negative errno.
1567  */
1568 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1569 {
1570         struct regulator_dev    *rdev = regulator->rdev;
1571         struct regulator_ops    *ops = rdev->desc->ops;
1572         int                     ret;
1573
1574         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1575                 return -EINVAL;
1576
1577         mutex_lock(&rdev->mutex);
1578         ret = ops->list_voltage(rdev, selector);
1579         mutex_unlock(&rdev->mutex);
1580
1581         if (ret > 0) {
1582                 if (ret < rdev->constraints->min_uV)
1583                         ret = 0;
1584                 else if (ret > rdev->constraints->max_uV)
1585                         ret = 0;
1586         }
1587
1588         return ret;
1589 }
1590 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1591
1592 /**
1593  * regulator_is_supported_voltage - check if a voltage range can be supported
1594  *
1595  * @regulator: Regulator to check.
1596  * @min_uV: Minimum required voltage in uV.
1597  * @max_uV: Maximum required voltage in uV.
1598  *
1599  * Returns a boolean or a negative error code.
1600  */
1601 int regulator_is_supported_voltage(struct regulator *regulator,
1602                                    int min_uV, int max_uV)
1603 {
1604         int i, voltages, ret;
1605
1606         ret = regulator_count_voltages(regulator);
1607         if (ret < 0)
1608                 return ret;
1609         voltages = ret;
1610
1611         for (i = 0; i < voltages; i++) {
1612                 ret = regulator_list_voltage(regulator, i);
1613
1614                 if (ret >= min_uV && ret <= max_uV)
1615                         return 1;
1616         }
1617
1618         return 0;
1619 }
1620
1621 /**
1622  * regulator_set_voltage - set regulator output voltage
1623  * @regulator: regulator source
1624  * @min_uV: Minimum required voltage in uV
1625  * @max_uV: Maximum acceptable voltage in uV
1626  *
1627  * Sets a voltage regulator to the desired output voltage. This can be set
1628  * during any regulator state. IOW, regulator can be disabled or enabled.
1629  *
1630  * If the regulator is enabled then the voltage will change to the new value
1631  * immediately otherwise if the regulator is disabled the regulator will
1632  * output at the new voltage when enabled.
1633  *
1634  * NOTE: If the regulator is shared between several devices then the lowest
1635  * request voltage that meets the system constraints will be used.
1636  * Regulator system constraints must be set for this regulator before
1637  * calling this function otherwise this call will fail.
1638  */
1639 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1640 {
1641         struct regulator_dev *rdev = regulator->rdev;
1642         int ret;
1643         unsigned selector;
1644
1645         mutex_lock(&rdev->mutex);
1646
1647         /* sanity check */
1648         if (!rdev->desc->ops->set_voltage) {
1649                 ret = -EINVAL;
1650                 goto out;
1651         }
1652
1653         /* constraints check */
1654         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1655         if (ret < 0)
1656                 goto out;
1657         regulator->min_uV = min_uV;
1658         regulator->max_uV = max_uV;
1659
1660         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1661         if (ret < 0)
1662                 goto out;
1663
1664         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1665
1666         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, &selector);
1667
1668         if (rdev->desc->ops->list_voltage)
1669                 selector = rdev->desc->ops->list_voltage(rdev, selector);
1670         else
1671                 selector = -1;
1672
1673         trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1674
1675 out:
1676         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1677         mutex_unlock(&rdev->mutex);
1678         return ret;
1679 }
1680 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1681
1682 static int _regulator_get_voltage(struct regulator_dev *rdev)
1683 {
1684         /* sanity check */
1685         if (rdev->desc->ops->get_voltage)
1686                 return rdev->desc->ops->get_voltage(rdev);
1687         else
1688                 return -EINVAL;
1689 }
1690
1691 /**
1692  * regulator_get_voltage - get regulator output voltage
1693  * @regulator: regulator source
1694  *
1695  * This returns the current regulator voltage in uV.
1696  *
1697  * NOTE: If the regulator is disabled it will return the voltage value. This
1698  * function should not be used to determine regulator state.
1699  */
1700 int regulator_get_voltage(struct regulator *regulator)
1701 {
1702         int ret;
1703
1704         mutex_lock(&regulator->rdev->mutex);
1705
1706         ret = _regulator_get_voltage(regulator->rdev);
1707
1708         mutex_unlock(&regulator->rdev->mutex);
1709
1710         return ret;
1711 }
1712 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1713
1714 /**
1715  * regulator_set_current_limit - set regulator output current limit
1716  * @regulator: regulator source
1717  * @min_uA: Minimuum supported current in uA
1718  * @max_uA: Maximum supported current in uA
1719  *
1720  * Sets current sink to the desired output current. This can be set during
1721  * any regulator state. IOW, regulator can be disabled or enabled.
1722  *
1723  * If the regulator is enabled then the current will change to the new value
1724  * immediately otherwise if the regulator is disabled the regulator will
1725  * output at the new current when enabled.
1726  *
1727  * NOTE: Regulator system constraints must be set for this regulator before
1728  * calling this function otherwise this call will fail.
1729  */
1730 int regulator_set_current_limit(struct regulator *regulator,
1731                                int min_uA, int max_uA)
1732 {
1733         struct regulator_dev *rdev = regulator->rdev;
1734         int ret;
1735
1736         mutex_lock(&rdev->mutex);
1737
1738         /* sanity check */
1739         if (!rdev->desc->ops->set_current_limit) {
1740                 ret = -EINVAL;
1741                 goto out;
1742         }
1743
1744         /* constraints check */
1745         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1746         if (ret < 0)
1747                 goto out;
1748
1749         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1750 out:
1751         mutex_unlock(&rdev->mutex);
1752         return ret;
1753 }
1754 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1755
1756 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1757 {
1758         int ret;
1759
1760         mutex_lock(&rdev->mutex);
1761
1762         /* sanity check */
1763         if (!rdev->desc->ops->get_current_limit) {
1764                 ret = -EINVAL;
1765                 goto out;
1766         }
1767
1768         ret = rdev->desc->ops->get_current_limit(rdev);
1769 out:
1770         mutex_unlock(&rdev->mutex);
1771         return ret;
1772 }
1773
1774 /**
1775  * regulator_get_current_limit - get regulator output current
1776  * @regulator: regulator source
1777  *
1778  * This returns the current supplied by the specified current sink in uA.
1779  *
1780  * NOTE: If the regulator is disabled it will return the current value. This
1781  * function should not be used to determine regulator state.
1782  */
1783 int regulator_get_current_limit(struct regulator *regulator)
1784 {
1785         return _regulator_get_current_limit(regulator->rdev);
1786 }
1787 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1788
1789 /**
1790  * regulator_set_mode - set regulator operating mode
1791  * @regulator: regulator source
1792  * @mode: operating mode - one of the REGULATOR_MODE constants
1793  *
1794  * Set regulator operating mode to increase regulator efficiency or improve
1795  * regulation performance.
1796  *
1797  * NOTE: Regulator system constraints must be set for this regulator before
1798  * calling this function otherwise this call will fail.
1799  */
1800 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1801 {
1802         struct regulator_dev *rdev = regulator->rdev;
1803         int ret;
1804         int regulator_curr_mode;
1805
1806         mutex_lock(&rdev->mutex);
1807
1808         /* sanity check */
1809         if (!rdev->desc->ops->set_mode) {
1810                 ret = -EINVAL;
1811                 goto out;
1812         }
1813
1814         /* return if the same mode is requested */
1815         if (rdev->desc->ops->get_mode) {
1816                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1817                 if (regulator_curr_mode == mode) {
1818                         ret = 0;
1819                         goto out;
1820                 }
1821         }
1822
1823         /* constraints check */
1824         ret = regulator_check_mode(rdev, mode);
1825         if (ret < 0)
1826                 goto out;
1827
1828         ret = rdev->desc->ops->set_mode(rdev, mode);
1829 out:
1830         mutex_unlock(&rdev->mutex);
1831         return ret;
1832 }
1833 EXPORT_SYMBOL_GPL(regulator_set_mode);
1834
1835 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1836 {
1837         int ret;
1838
1839         mutex_lock(&rdev->mutex);
1840
1841         /* sanity check */
1842         if (!rdev->desc->ops->get_mode) {
1843                 ret = -EINVAL;
1844                 goto out;
1845         }
1846
1847         ret = rdev->desc->ops->get_mode(rdev);
1848 out:
1849         mutex_unlock(&rdev->mutex);
1850         return ret;
1851 }
1852
1853 /**
1854  * regulator_get_mode - get regulator operating mode
1855  * @regulator: regulator source
1856  *
1857  * Get the current regulator operating mode.
1858  */
1859 unsigned int regulator_get_mode(struct regulator *regulator)
1860 {
1861         return _regulator_get_mode(regulator->rdev);
1862 }
1863 EXPORT_SYMBOL_GPL(regulator_get_mode);
1864
1865 /**
1866  * regulator_set_optimum_mode - set regulator optimum operating mode
1867  * @regulator: regulator source
1868  * @uA_load: load current
1869  *
1870  * Notifies the regulator core of a new device load. This is then used by
1871  * DRMS (if enabled by constraints) to set the most efficient regulator
1872  * operating mode for the new regulator loading.
1873  *
1874  * Consumer devices notify their supply regulator of the maximum power
1875  * they will require (can be taken from device datasheet in the power
1876  * consumption tables) when they change operational status and hence power
1877  * state. Examples of operational state changes that can affect power
1878  * consumption are :-
1879  *
1880  *    o Device is opened / closed.
1881  *    o Device I/O is about to begin or has just finished.
1882  *    o Device is idling in between work.
1883  *
1884  * This information is also exported via sysfs to userspace.
1885  *
1886  * DRMS will sum the total requested load on the regulator and change
1887  * to the most efficient operating mode if platform constraints allow.
1888  *
1889  * Returns the new regulator mode or error.
1890  */
1891 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1892 {
1893         struct regulator_dev *rdev = regulator->rdev;
1894         struct regulator *consumer;
1895         int ret, output_uV, input_uV, total_uA_load = 0;
1896         unsigned int mode;
1897
1898         mutex_lock(&rdev->mutex);
1899
1900         regulator->uA_load = uA_load;
1901         ret = regulator_check_drms(rdev);
1902         if (ret < 0)
1903                 goto out;
1904         ret = -EINVAL;
1905
1906         /* sanity check */
1907         if (!rdev->desc->ops->get_optimum_mode)
1908                 goto out;
1909
1910         /* get output voltage */
1911         output_uV = rdev->desc->ops->get_voltage(rdev);
1912         if (output_uV <= 0) {
1913                 rdev_err(rdev, "invalid output voltage found\n");
1914                 goto out;
1915         }
1916
1917         /* get input voltage */
1918         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1919                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1920         else
1921                 input_uV = rdev->constraints->input_uV;
1922         if (input_uV <= 0) {
1923                 rdev_err(rdev, "invalid input voltage found\n");
1924                 goto out;
1925         }
1926
1927         /* calc total requested load for this regulator */
1928         list_for_each_entry(consumer, &rdev->consumer_list, list)
1929                 total_uA_load += consumer->uA_load;
1930
1931         mode = rdev->desc->ops->get_optimum_mode(rdev,
1932                                                  input_uV, output_uV,
1933                                                  total_uA_load);
1934         ret = regulator_check_mode(rdev, mode);
1935         if (ret < 0) {
1936                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
1937                          total_uA_load, input_uV, output_uV);
1938                 goto out;
1939         }
1940
1941         ret = rdev->desc->ops->set_mode(rdev, mode);
1942         if (ret < 0) {
1943                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
1944                 goto out;
1945         }
1946         ret = mode;
1947 out:
1948         mutex_unlock(&rdev->mutex);
1949         return ret;
1950 }
1951 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1952
1953 /**
1954  * regulator_register_notifier - register regulator event notifier
1955  * @regulator: regulator source
1956  * @nb: notifier block
1957  *
1958  * Register notifier block to receive regulator events.
1959  */
1960 int regulator_register_notifier(struct regulator *regulator,
1961                               struct notifier_block *nb)
1962 {
1963         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1964                                                 nb);
1965 }
1966 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1967
1968 /**
1969  * regulator_unregister_notifier - unregister regulator event notifier
1970  * @regulator: regulator source
1971  * @nb: notifier block
1972  *
1973  * Unregister regulator event notifier block.
1974  */
1975 int regulator_unregister_notifier(struct regulator *regulator,
1976                                 struct notifier_block *nb)
1977 {
1978         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1979                                                   nb);
1980 }
1981 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1982
1983 /* notify regulator consumers and downstream regulator consumers.
1984  * Note mutex must be held by caller.
1985  */
1986 static void _notifier_call_chain(struct regulator_dev *rdev,
1987                                   unsigned long event, void *data)
1988 {
1989         struct regulator_dev *_rdev;
1990
1991         /* call rdev chain first */
1992         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1993
1994         /* now notify regulator we supply */
1995         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1996                 mutex_lock(&_rdev->mutex);
1997                 _notifier_call_chain(_rdev, event, data);
1998                 mutex_unlock(&_rdev->mutex);
1999         }
2000 }
2001
2002 /**
2003  * regulator_bulk_get - get multiple regulator consumers
2004  *
2005  * @dev:           Device to supply
2006  * @num_consumers: Number of consumers to register
2007  * @consumers:     Configuration of consumers; clients are stored here.
2008  *
2009  * @return 0 on success, an errno on failure.
2010  *
2011  * This helper function allows drivers to get several regulator
2012  * consumers in one operation.  If any of the regulators cannot be
2013  * acquired then any regulators that were allocated will be freed
2014  * before returning to the caller.
2015  */
2016 int regulator_bulk_get(struct device *dev, int num_consumers,
2017                        struct regulator_bulk_data *consumers)
2018 {
2019         int i;
2020         int ret;
2021
2022         for (i = 0; i < num_consumers; i++)
2023                 consumers[i].consumer = NULL;
2024
2025         for (i = 0; i < num_consumers; i++) {
2026                 consumers[i].consumer = regulator_get(dev,
2027                                                       consumers[i].supply);
2028                 if (IS_ERR(consumers[i].consumer)) {
2029                         ret = PTR_ERR(consumers[i].consumer);
2030                         dev_err(dev, "Failed to get supply '%s': %d\n",
2031                                 consumers[i].supply, ret);
2032                         consumers[i].consumer = NULL;
2033                         goto err;
2034                 }
2035         }
2036
2037         return 0;
2038
2039 err:
2040         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2041                 regulator_put(consumers[i].consumer);
2042
2043         return ret;
2044 }
2045 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2046
2047 /**
2048  * regulator_bulk_enable - enable multiple regulator consumers
2049  *
2050  * @num_consumers: Number of consumers
2051  * @consumers:     Consumer data; clients are stored here.
2052  * @return         0 on success, an errno on failure
2053  *
2054  * This convenience API allows consumers to enable multiple regulator
2055  * clients in a single API call.  If any consumers cannot be enabled
2056  * then any others that were enabled will be disabled again prior to
2057  * return.
2058  */
2059 int regulator_bulk_enable(int num_consumers,
2060                           struct regulator_bulk_data *consumers)
2061 {
2062         int i;
2063         int ret;
2064
2065         for (i = 0; i < num_consumers; i++) {
2066                 ret = regulator_enable(consumers[i].consumer);
2067                 if (ret != 0)
2068                         goto err;
2069         }
2070
2071         return 0;
2072
2073 err:
2074         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2075         for (--i; i >= 0; --i)
2076                 regulator_disable(consumers[i].consumer);
2077
2078         return ret;
2079 }
2080 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2081
2082 /**
2083  * regulator_bulk_disable - disable multiple regulator consumers
2084  *
2085  * @num_consumers: Number of consumers
2086  * @consumers:     Consumer data; clients are stored here.
2087  * @return         0 on success, an errno on failure
2088  *
2089  * This convenience API allows consumers to disable multiple regulator
2090  * clients in a single API call.  If any consumers cannot be enabled
2091  * then any others that were disabled will be disabled again prior to
2092  * return.
2093  */
2094 int regulator_bulk_disable(int num_consumers,
2095                            struct regulator_bulk_data *consumers)
2096 {
2097         int i;
2098         int ret;
2099
2100         for (i = 0; i < num_consumers; i++) {
2101                 ret = regulator_disable(consumers[i].consumer);
2102                 if (ret != 0)
2103                         goto err;
2104         }
2105
2106         return 0;
2107
2108 err:
2109         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2110         for (--i; i >= 0; --i)
2111                 regulator_enable(consumers[i].consumer);
2112
2113         return ret;
2114 }
2115 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2116
2117 /**
2118  * regulator_bulk_free - free multiple regulator consumers
2119  *
2120  * @num_consumers: Number of consumers
2121  * @consumers:     Consumer data; clients are stored here.
2122  *
2123  * This convenience API allows consumers to free multiple regulator
2124  * clients in a single API call.
2125  */
2126 void regulator_bulk_free(int num_consumers,
2127                          struct regulator_bulk_data *consumers)
2128 {
2129         int i;
2130
2131         for (i = 0; i < num_consumers; i++) {
2132                 regulator_put(consumers[i].consumer);
2133                 consumers[i].consumer = NULL;
2134         }
2135 }
2136 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2137
2138 /**
2139  * regulator_notifier_call_chain - call regulator event notifier
2140  * @rdev: regulator source
2141  * @event: notifier block
2142  * @data: callback-specific data.
2143  *
2144  * Called by regulator drivers to notify clients a regulator event has
2145  * occurred. We also notify regulator clients downstream.
2146  * Note lock must be held by caller.
2147  */
2148 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2149                                   unsigned long event, void *data)
2150 {
2151         _notifier_call_chain(rdev, event, data);
2152         return NOTIFY_DONE;
2153
2154 }
2155 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2156
2157 /**
2158  * regulator_mode_to_status - convert a regulator mode into a status
2159  *
2160  * @mode: Mode to convert
2161  *
2162  * Convert a regulator mode into a status.
2163  */
2164 int regulator_mode_to_status(unsigned int mode)
2165 {
2166         switch (mode) {
2167         case REGULATOR_MODE_FAST:
2168                 return REGULATOR_STATUS_FAST;
2169         case REGULATOR_MODE_NORMAL:
2170                 return REGULATOR_STATUS_NORMAL;
2171         case REGULATOR_MODE_IDLE:
2172                 return REGULATOR_STATUS_IDLE;
2173         case REGULATOR_STATUS_STANDBY:
2174                 return REGULATOR_STATUS_STANDBY;
2175         default:
2176                 return 0;
2177         }
2178 }
2179 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2180
2181 /*
2182  * To avoid cluttering sysfs (and memory) with useless state, only
2183  * create attributes that can be meaningfully displayed.
2184  */
2185 static int add_regulator_attributes(struct regulator_dev *rdev)
2186 {
2187         struct device           *dev = &rdev->dev;
2188         struct regulator_ops    *ops = rdev->desc->ops;
2189         int                     status = 0;
2190
2191         /* some attributes need specific methods to be displayed */
2192         if (ops->get_voltage) {
2193                 status = device_create_file(dev, &dev_attr_microvolts);
2194                 if (status < 0)
2195                         return status;
2196         }
2197         if (ops->get_current_limit) {
2198                 status = device_create_file(dev, &dev_attr_microamps);
2199                 if (status < 0)
2200                         return status;
2201         }
2202         if (ops->get_mode) {
2203                 status = device_create_file(dev, &dev_attr_opmode);
2204                 if (status < 0)
2205                         return status;
2206         }
2207         if (ops->is_enabled) {
2208                 status = device_create_file(dev, &dev_attr_state);
2209                 if (status < 0)
2210                         return status;
2211         }
2212         if (ops->get_status) {
2213                 status = device_create_file(dev, &dev_attr_status);
2214                 if (status < 0)
2215                         return status;
2216         }
2217
2218         /* some attributes are type-specific */
2219         if (rdev->desc->type == REGULATOR_CURRENT) {
2220                 status = device_create_file(dev, &dev_attr_requested_microamps);
2221                 if (status < 0)
2222                         return status;
2223         }
2224
2225         /* all the other attributes exist to support constraints;
2226          * don't show them if there are no constraints, or if the
2227          * relevant supporting methods are missing.
2228          */
2229         if (!rdev->constraints)
2230                 return status;
2231
2232         /* constraints need specific supporting methods */
2233         if (ops->set_voltage) {
2234                 status = device_create_file(dev, &dev_attr_min_microvolts);
2235                 if (status < 0)
2236                         return status;
2237                 status = device_create_file(dev, &dev_attr_max_microvolts);
2238                 if (status < 0)
2239                         return status;
2240         }
2241         if (ops->set_current_limit) {
2242                 status = device_create_file(dev, &dev_attr_min_microamps);
2243                 if (status < 0)
2244                         return status;
2245                 status = device_create_file(dev, &dev_attr_max_microamps);
2246                 if (status < 0)
2247                         return status;
2248         }
2249
2250         /* suspend mode constraints need multiple supporting methods */
2251         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2252                 return status;
2253
2254         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2255         if (status < 0)
2256                 return status;
2257         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2258         if (status < 0)
2259                 return status;
2260         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2261         if (status < 0)
2262                 return status;
2263
2264         if (ops->set_suspend_voltage) {
2265                 status = device_create_file(dev,
2266                                 &dev_attr_suspend_standby_microvolts);
2267                 if (status < 0)
2268                         return status;
2269                 status = device_create_file(dev,
2270                                 &dev_attr_suspend_mem_microvolts);
2271                 if (status < 0)
2272                         return status;
2273                 status = device_create_file(dev,
2274                                 &dev_attr_suspend_disk_microvolts);
2275                 if (status < 0)
2276                         return status;
2277         }
2278
2279         if (ops->set_suspend_mode) {
2280                 status = device_create_file(dev,
2281                                 &dev_attr_suspend_standby_mode);
2282                 if (status < 0)
2283                         return status;
2284                 status = device_create_file(dev,
2285                                 &dev_attr_suspend_mem_mode);
2286                 if (status < 0)
2287                         return status;
2288                 status = device_create_file(dev,
2289                                 &dev_attr_suspend_disk_mode);
2290                 if (status < 0)
2291                         return status;
2292         }
2293
2294         return status;
2295 }
2296
2297 /**
2298  * regulator_register - register regulator
2299  * @regulator_desc: regulator to register
2300  * @dev: struct device for the regulator
2301  * @init_data: platform provided init data, passed through by driver
2302  * @driver_data: private regulator data
2303  *
2304  * Called by regulator drivers to register a regulator.
2305  * Returns 0 on success.
2306  */
2307 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2308         struct device *dev, const struct regulator_init_data *init_data,
2309         void *driver_data)
2310 {
2311         static atomic_t regulator_no = ATOMIC_INIT(0);
2312         struct regulator_dev *rdev;
2313         int ret, i;
2314
2315         if (regulator_desc == NULL)
2316                 return ERR_PTR(-EINVAL);
2317
2318         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2319                 return ERR_PTR(-EINVAL);
2320
2321         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2322             regulator_desc->type != REGULATOR_CURRENT)
2323                 return ERR_PTR(-EINVAL);
2324
2325         if (!init_data)
2326                 return ERR_PTR(-EINVAL);
2327
2328         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2329         if (rdev == NULL)
2330                 return ERR_PTR(-ENOMEM);
2331
2332         mutex_lock(&regulator_list_mutex);
2333
2334         mutex_init(&rdev->mutex);
2335         rdev->reg_data = driver_data;
2336         rdev->owner = regulator_desc->owner;
2337         rdev->desc = regulator_desc;
2338         INIT_LIST_HEAD(&rdev->consumer_list);
2339         INIT_LIST_HEAD(&rdev->supply_list);
2340         INIT_LIST_HEAD(&rdev->list);
2341         INIT_LIST_HEAD(&rdev->slist);
2342         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2343
2344         /* preform any regulator specific init */
2345         if (init_data->regulator_init) {
2346                 ret = init_data->regulator_init(rdev->reg_data);
2347                 if (ret < 0)
2348                         goto clean;
2349         }
2350
2351         /* register with sysfs */
2352         rdev->dev.class = &regulator_class;
2353         rdev->dev.parent = dev;
2354         dev_set_name(&rdev->dev, "regulator.%d",
2355                      atomic_inc_return(&regulator_no) - 1);
2356         ret = device_register(&rdev->dev);
2357         if (ret != 0) {
2358                 put_device(&rdev->dev);
2359                 goto clean;
2360         }
2361
2362         dev_set_drvdata(&rdev->dev, rdev);
2363
2364         /* set regulator constraints */
2365         ret = set_machine_constraints(rdev, &init_data->constraints);
2366         if (ret < 0)
2367                 goto scrub;
2368
2369         /* add attributes supported by this regulator */
2370         ret = add_regulator_attributes(rdev);
2371         if (ret < 0)
2372                 goto scrub;
2373
2374         /* set supply regulator if it exists */
2375         if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2376                 dev_err(dev,
2377                         "Supply regulator specified by both name and dev\n");
2378                 ret = -EINVAL;
2379                 goto scrub;
2380         }
2381
2382         if (init_data->supply_regulator) {
2383                 struct regulator_dev *r;
2384                 int found = 0;
2385
2386                 list_for_each_entry(r, &regulator_list, list) {
2387                         if (strcmp(rdev_get_name(r),
2388                                    init_data->supply_regulator) == 0) {
2389                                 found = 1;
2390                                 break;
2391                         }
2392                 }
2393
2394                 if (!found) {
2395                         dev_err(dev, "Failed to find supply %s\n",
2396                                 init_data->supply_regulator);
2397                         ret = -ENODEV;
2398                         goto scrub;
2399                 }
2400
2401                 ret = set_supply(rdev, r);
2402                 if (ret < 0)
2403                         goto scrub;
2404         }
2405
2406         if (init_data->supply_regulator_dev) {
2407                 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2408                 ret = set_supply(rdev,
2409                         dev_get_drvdata(init_data->supply_regulator_dev));
2410                 if (ret < 0)
2411                         goto scrub;
2412         }
2413
2414         /* add consumers devices */
2415         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2416                 ret = set_consumer_device_supply(rdev,
2417                         init_data->consumer_supplies[i].dev,
2418                         init_data->consumer_supplies[i].dev_name,
2419                         init_data->consumer_supplies[i].supply);
2420                 if (ret < 0)
2421                         goto unset_supplies;
2422         }
2423
2424         list_add(&rdev->list, &regulator_list);
2425 out:
2426         mutex_unlock(&regulator_list_mutex);
2427         return rdev;
2428
2429 unset_supplies:
2430         unset_regulator_supplies(rdev);
2431
2432 scrub:
2433         device_unregister(&rdev->dev);
2434         /* device core frees rdev */
2435         rdev = ERR_PTR(ret);
2436         goto out;
2437
2438 clean:
2439         kfree(rdev);
2440         rdev = ERR_PTR(ret);
2441         goto out;
2442 }
2443 EXPORT_SYMBOL_GPL(regulator_register);
2444
2445 /**
2446  * regulator_unregister - unregister regulator
2447  * @rdev: regulator to unregister
2448  *
2449  * Called by regulator drivers to unregister a regulator.
2450  */
2451 void regulator_unregister(struct regulator_dev *rdev)
2452 {
2453         if (rdev == NULL)
2454                 return;
2455
2456         mutex_lock(&regulator_list_mutex);
2457         WARN_ON(rdev->open_count);
2458         unset_regulator_supplies(rdev);
2459         list_del(&rdev->list);
2460         if (rdev->supply)
2461                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2462         device_unregister(&rdev->dev);
2463         kfree(rdev->constraints);
2464         mutex_unlock(&regulator_list_mutex);
2465 }
2466 EXPORT_SYMBOL_GPL(regulator_unregister);
2467
2468 /**
2469  * regulator_suspend_prepare - prepare regulators for system wide suspend
2470  * @state: system suspend state
2471  *
2472  * Configure each regulator with it's suspend operating parameters for state.
2473  * This will usually be called by machine suspend code prior to supending.
2474  */
2475 int regulator_suspend_prepare(suspend_state_t state)
2476 {
2477         struct regulator_dev *rdev;
2478         int ret = 0;
2479
2480         /* ON is handled by regulator active state */
2481         if (state == PM_SUSPEND_ON)
2482                 return -EINVAL;
2483
2484         mutex_lock(&regulator_list_mutex);
2485         list_for_each_entry(rdev, &regulator_list, list) {
2486
2487                 mutex_lock(&rdev->mutex);
2488                 ret = suspend_prepare(rdev, state);
2489                 mutex_unlock(&rdev->mutex);
2490
2491                 if (ret < 0) {
2492                         rdev_err(rdev, "failed to prepare\n");
2493                         goto out;
2494                 }
2495         }
2496 out:
2497         mutex_unlock(&regulator_list_mutex);
2498         return ret;
2499 }
2500 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2501
2502 /**
2503  * regulator_has_full_constraints - the system has fully specified constraints
2504  *
2505  * Calling this function will cause the regulator API to disable all
2506  * regulators which have a zero use count and don't have an always_on
2507  * constraint in a late_initcall.
2508  *
2509  * The intention is that this will become the default behaviour in a
2510  * future kernel release so users are encouraged to use this facility
2511  * now.
2512  */
2513 void regulator_has_full_constraints(void)
2514 {
2515         has_full_constraints = 1;
2516 }
2517 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2518
2519 /**
2520  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2521  *
2522  * Calling this function will cause the regulator API to provide a
2523  * dummy regulator to consumers if no physical regulator is found,
2524  * allowing most consumers to proceed as though a regulator were
2525  * configured.  This allows systems such as those with software
2526  * controllable regulators for the CPU core only to be brought up more
2527  * readily.
2528  */
2529 void regulator_use_dummy_regulator(void)
2530 {
2531         board_wants_dummy_regulator = true;
2532 }
2533 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2534
2535 /**
2536  * rdev_get_drvdata - get rdev regulator driver data
2537  * @rdev: regulator
2538  *
2539  * Get rdev regulator driver private data. This call can be used in the
2540  * regulator driver context.
2541  */
2542 void *rdev_get_drvdata(struct regulator_dev *rdev)
2543 {
2544         return rdev->reg_data;
2545 }
2546 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2547
2548 /**
2549  * regulator_get_drvdata - get regulator driver data
2550  * @regulator: regulator
2551  *
2552  * Get regulator driver private data. This call can be used in the consumer
2553  * driver context when non API regulator specific functions need to be called.
2554  */
2555 void *regulator_get_drvdata(struct regulator *regulator)
2556 {
2557         return regulator->rdev->reg_data;
2558 }
2559 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2560
2561 /**
2562  * regulator_set_drvdata - set regulator driver data
2563  * @regulator: regulator
2564  * @data: data
2565  */
2566 void regulator_set_drvdata(struct regulator *regulator, void *data)
2567 {
2568         regulator->rdev->reg_data = data;
2569 }
2570 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2571
2572 /**
2573  * regulator_get_id - get regulator ID
2574  * @rdev: regulator
2575  */
2576 int rdev_get_id(struct regulator_dev *rdev)
2577 {
2578         return rdev->desc->id;
2579 }
2580 EXPORT_SYMBOL_GPL(rdev_get_id);
2581
2582 struct device *rdev_get_dev(struct regulator_dev *rdev)
2583 {
2584         return &rdev->dev;
2585 }
2586 EXPORT_SYMBOL_GPL(rdev_get_dev);
2587
2588 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2589 {
2590         return reg_init_data->driver_data;
2591 }
2592 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2593
2594 static int __init regulator_init(void)
2595 {
2596         int ret;
2597
2598         ret = class_register(&regulator_class);
2599
2600         regulator_dummy_init();
2601
2602         return ret;
2603 }
2604
2605 /* init early to allow our consumers to complete system booting */
2606 core_initcall(regulator_init);
2607
2608 static int __init regulator_init_complete(void)
2609 {
2610         struct regulator_dev *rdev;
2611         struct regulator_ops *ops;
2612         struct regulation_constraints *c;
2613         int enabled, ret;
2614
2615         mutex_lock(&regulator_list_mutex);
2616
2617         /* If we have a full configuration then disable any regulators
2618          * which are not in use or always_on.  This will become the
2619          * default behaviour in the future.
2620          */
2621         list_for_each_entry(rdev, &regulator_list, list) {
2622                 ops = rdev->desc->ops;
2623                 c = rdev->constraints;
2624
2625                 if (!ops->disable || (c && c->always_on))
2626                         continue;
2627
2628                 mutex_lock(&rdev->mutex);
2629
2630                 if (rdev->use_count)
2631                         goto unlock;
2632
2633                 /* If we can't read the status assume it's on. */
2634                 if (ops->is_enabled)
2635                         enabled = ops->is_enabled(rdev);
2636                 else
2637                         enabled = 1;
2638
2639                 if (!enabled)
2640                         goto unlock;
2641
2642                 if (has_full_constraints) {
2643                         /* We log since this may kill the system if it
2644                          * goes wrong. */
2645                         rdev_info(rdev, "disabling\n");
2646                         ret = ops->disable(rdev);
2647                         if (ret != 0) {
2648                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
2649                         }
2650                 } else {
2651                         /* The intention is that in future we will
2652                          * assume that full constraints are provided
2653                          * so warn even if we aren't going to do
2654                          * anything here.
2655                          */
2656                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
2657                 }
2658
2659 unlock:
2660                 mutex_unlock(&rdev->mutex);
2661         }
2662
2663         mutex_unlock(&regulator_list_mutex);
2664
2665         return 0;
2666 }
2667 late_initcall(regulator_init_complete);