Merge tag 'v3.3-rc2' into for-3.4
[linux-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/async.h>
24 #include <linux/err.h>
25 #include <linux/mutex.h>
26 #include <linux/suspend.h>
27 #include <linux/delay.h>
28 #include <linux/of.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 #ifdef CONFIG_DEBUG_FS
58 static struct dentry *debugfs_root;
59 #endif
60
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67         struct list_head list;
68         const char *dev_name;   /* The dev_name() for the consumer */
69         const char *supply;
70         struct regulator_dev *regulator;
71 };
72
73 /*
74  * struct regulator
75  *
76  * One for each consumer device.
77  */
78 struct regulator {
79         struct device *dev;
80         struct list_head list;
81         int uA_load;
82         int min_uV;
83         int max_uV;
84         char *supply_name;
85         struct device_attribute dev_attr;
86         struct regulator_dev *rdev;
87 #ifdef CONFIG_DEBUG_FS
88         struct dentry *debugfs;
89 #endif
90 };
91
92 static int _regulator_is_enabled(struct regulator_dev *rdev);
93 static int _regulator_disable(struct regulator_dev *rdev);
94 static int _regulator_get_voltage(struct regulator_dev *rdev);
95 static int _regulator_get_current_limit(struct regulator_dev *rdev);
96 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
97 static void _notifier_call_chain(struct regulator_dev *rdev,
98                                   unsigned long event, void *data);
99 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
100                                      int min_uV, int max_uV);
101 static struct regulator *create_regulator(struct regulator_dev *rdev,
102                                           struct device *dev,
103                                           const char *supply_name);
104
105 static const char *rdev_get_name(struct regulator_dev *rdev)
106 {
107         if (rdev->constraints && rdev->constraints->name)
108                 return rdev->constraints->name;
109         else if (rdev->desc->name)
110                 return rdev->desc->name;
111         else
112                 return "";
113 }
114
115 /* gets the regulator for a given consumer device */
116 static struct regulator *get_device_regulator(struct device *dev)
117 {
118         struct regulator *regulator = NULL;
119         struct regulator_dev *rdev;
120
121         mutex_lock(&regulator_list_mutex);
122         list_for_each_entry(rdev, &regulator_list, list) {
123                 mutex_lock(&rdev->mutex);
124                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
125                         if (regulator->dev == dev) {
126                                 mutex_unlock(&rdev->mutex);
127                                 mutex_unlock(&regulator_list_mutex);
128                                 return regulator;
129                         }
130                 }
131                 mutex_unlock(&rdev->mutex);
132         }
133         mutex_unlock(&regulator_list_mutex);
134         return NULL;
135 }
136
137 /**
138  * of_get_regulator - get a regulator device node based on supply name
139  * @dev: Device pointer for the consumer (of regulator) device
140  * @supply: regulator supply name
141  *
142  * Extract the regulator device node corresponding to the supply name.
143  * retruns the device node corresponding to the regulator if found, else
144  * returns NULL.
145  */
146 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
147 {
148         struct device_node *regnode = NULL;
149         char prop_name[32]; /* 32 is max size of property name */
150
151         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
152
153         snprintf(prop_name, 32, "%s-supply", supply);
154         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
155
156         if (!regnode) {
157                 dev_warn(dev, "%s property in node %s references invalid phandle",
158                                 prop_name, dev->of_node->full_name);
159                 return NULL;
160         }
161         return regnode;
162 }
163
164 /* Platform voltage constraint check */
165 static int regulator_check_voltage(struct regulator_dev *rdev,
166                                    int *min_uV, int *max_uV)
167 {
168         BUG_ON(*min_uV > *max_uV);
169
170         if (!rdev->constraints) {
171                 rdev_err(rdev, "no constraints\n");
172                 return -ENODEV;
173         }
174         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175                 rdev_err(rdev, "operation not allowed\n");
176                 return -EPERM;
177         }
178
179         if (*max_uV > rdev->constraints->max_uV)
180                 *max_uV = rdev->constraints->max_uV;
181         if (*min_uV < rdev->constraints->min_uV)
182                 *min_uV = rdev->constraints->min_uV;
183
184         if (*min_uV > *max_uV) {
185                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186                          *min_uV, *max_uV);
187                 return -EINVAL;
188         }
189
190         return 0;
191 }
192
193 /* Make sure we select a voltage that suits the needs of all
194  * regulator consumers
195  */
196 static int regulator_check_consumers(struct regulator_dev *rdev,
197                                      int *min_uV, int *max_uV)
198 {
199         struct regulator *regulator;
200
201         list_for_each_entry(regulator, &rdev->consumer_list, list) {
202                 /*
203                  * Assume consumers that didn't say anything are OK
204                  * with anything in the constraint range.
205                  */
206                 if (!regulator->min_uV && !regulator->max_uV)
207                         continue;
208
209                 if (*max_uV > regulator->max_uV)
210                         *max_uV = regulator->max_uV;
211                 if (*min_uV < regulator->min_uV)
212                         *min_uV = regulator->min_uV;
213         }
214
215         if (*min_uV > *max_uV)
216                 return -EINVAL;
217
218         return 0;
219 }
220
221 /* current constraint check */
222 static int regulator_check_current_limit(struct regulator_dev *rdev,
223                                         int *min_uA, int *max_uA)
224 {
225         BUG_ON(*min_uA > *max_uA);
226
227         if (!rdev->constraints) {
228                 rdev_err(rdev, "no constraints\n");
229                 return -ENODEV;
230         }
231         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
232                 rdev_err(rdev, "operation not allowed\n");
233                 return -EPERM;
234         }
235
236         if (*max_uA > rdev->constraints->max_uA)
237                 *max_uA = rdev->constraints->max_uA;
238         if (*min_uA < rdev->constraints->min_uA)
239                 *min_uA = rdev->constraints->min_uA;
240
241         if (*min_uA > *max_uA) {
242                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
243                          *min_uA, *max_uA);
244                 return -EINVAL;
245         }
246
247         return 0;
248 }
249
250 /* operating mode constraint check */
251 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
252 {
253         switch (*mode) {
254         case REGULATOR_MODE_FAST:
255         case REGULATOR_MODE_NORMAL:
256         case REGULATOR_MODE_IDLE:
257         case REGULATOR_MODE_STANDBY:
258                 break;
259         default:
260                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
261                 return -EINVAL;
262         }
263
264         if (!rdev->constraints) {
265                 rdev_err(rdev, "no constraints\n");
266                 return -ENODEV;
267         }
268         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
269                 rdev_err(rdev, "operation not allowed\n");
270                 return -EPERM;
271         }
272
273         /* The modes are bitmasks, the most power hungry modes having
274          * the lowest values. If the requested mode isn't supported
275          * try higher modes. */
276         while (*mode) {
277                 if (rdev->constraints->valid_modes_mask & *mode)
278                         return 0;
279                 *mode /= 2;
280         }
281
282         return -EINVAL;
283 }
284
285 /* dynamic regulator mode switching constraint check */
286 static int regulator_check_drms(struct regulator_dev *rdev)
287 {
288         if (!rdev->constraints) {
289                 rdev_err(rdev, "no constraints\n");
290                 return -ENODEV;
291         }
292         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
293                 rdev_err(rdev, "operation not allowed\n");
294                 return -EPERM;
295         }
296         return 0;
297 }
298
299 static ssize_t device_requested_uA_show(struct device *dev,
300                              struct device_attribute *attr, char *buf)
301 {
302         struct regulator *regulator;
303
304         regulator = get_device_regulator(dev);
305         if (regulator == NULL)
306                 return 0;
307
308         return sprintf(buf, "%d\n", regulator->uA_load);
309 }
310
311 static ssize_t regulator_uV_show(struct device *dev,
312                                 struct device_attribute *attr, char *buf)
313 {
314         struct regulator_dev *rdev = dev_get_drvdata(dev);
315         ssize_t ret;
316
317         mutex_lock(&rdev->mutex);
318         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
319         mutex_unlock(&rdev->mutex);
320
321         return ret;
322 }
323 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
324
325 static ssize_t regulator_uA_show(struct device *dev,
326                                 struct device_attribute *attr, char *buf)
327 {
328         struct regulator_dev *rdev = dev_get_drvdata(dev);
329
330         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
331 }
332 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
333
334 static ssize_t regulator_name_show(struct device *dev,
335                              struct device_attribute *attr, char *buf)
336 {
337         struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339         return sprintf(buf, "%s\n", rdev_get_name(rdev));
340 }
341
342 static ssize_t regulator_print_opmode(char *buf, int mode)
343 {
344         switch (mode) {
345         case REGULATOR_MODE_FAST:
346                 return sprintf(buf, "fast\n");
347         case REGULATOR_MODE_NORMAL:
348                 return sprintf(buf, "normal\n");
349         case REGULATOR_MODE_IDLE:
350                 return sprintf(buf, "idle\n");
351         case REGULATOR_MODE_STANDBY:
352                 return sprintf(buf, "standby\n");
353         }
354         return sprintf(buf, "unknown\n");
355 }
356
357 static ssize_t regulator_opmode_show(struct device *dev,
358                                     struct device_attribute *attr, char *buf)
359 {
360         struct regulator_dev *rdev = dev_get_drvdata(dev);
361
362         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363 }
364 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365
366 static ssize_t regulator_print_state(char *buf, int state)
367 {
368         if (state > 0)
369                 return sprintf(buf, "enabled\n");
370         else if (state == 0)
371                 return sprintf(buf, "disabled\n");
372         else
373                 return sprintf(buf, "unknown\n");
374 }
375
376 static ssize_t regulator_state_show(struct device *dev,
377                                    struct device_attribute *attr, char *buf)
378 {
379         struct regulator_dev *rdev = dev_get_drvdata(dev);
380         ssize_t ret;
381
382         mutex_lock(&rdev->mutex);
383         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384         mutex_unlock(&rdev->mutex);
385
386         return ret;
387 }
388 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389
390 static ssize_t regulator_status_show(struct device *dev,
391                                    struct device_attribute *attr, char *buf)
392 {
393         struct regulator_dev *rdev = dev_get_drvdata(dev);
394         int status;
395         char *label;
396
397         status = rdev->desc->ops->get_status(rdev);
398         if (status < 0)
399                 return status;
400
401         switch (status) {
402         case REGULATOR_STATUS_OFF:
403                 label = "off";
404                 break;
405         case REGULATOR_STATUS_ON:
406                 label = "on";
407                 break;
408         case REGULATOR_STATUS_ERROR:
409                 label = "error";
410                 break;
411         case REGULATOR_STATUS_FAST:
412                 label = "fast";
413                 break;
414         case REGULATOR_STATUS_NORMAL:
415                 label = "normal";
416                 break;
417         case REGULATOR_STATUS_IDLE:
418                 label = "idle";
419                 break;
420         case REGULATOR_STATUS_STANDBY:
421                 label = "standby";
422                 break;
423         default:
424                 return -ERANGE;
425         }
426
427         return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432                                     struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436         if (!rdev->constraints)
437                 return sprintf(buf, "constraint not defined\n");
438
439         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444                                     struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         if (!rdev->constraints)
449                 return sprintf(buf, "constraint not defined\n");
450
451         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456                                     struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         if (!rdev->constraints)
461                 return sprintf(buf, "constraint not defined\n");
462
463         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468                                     struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         if (!rdev->constraints)
473                 return sprintf(buf, "constraint not defined\n");
474
475         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480                                       struct device_attribute *attr, char *buf)
481 {
482         struct regulator_dev *rdev = dev_get_drvdata(dev);
483         struct regulator *regulator;
484         int uA = 0;
485
486         mutex_lock(&rdev->mutex);
487         list_for_each_entry(regulator, &rdev->consumer_list, list)
488                 uA += regulator->uA_load;
489         mutex_unlock(&rdev->mutex);
490         return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t regulator_num_users_show(struct device *dev,
495                                       struct device_attribute *attr, char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498         return sprintf(buf, "%d\n", rdev->use_count);
499 }
500
501 static ssize_t regulator_type_show(struct device *dev,
502                                   struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         switch (rdev->desc->type) {
507         case REGULATOR_VOLTAGE:
508                 return sprintf(buf, "voltage\n");
509         case REGULATOR_CURRENT:
510                 return sprintf(buf, "current\n");
511         }
512         return sprintf(buf, "unknown\n");
513 }
514
515 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
516                                 struct device_attribute *attr, char *buf)
517 {
518         struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
521 }
522 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
523                 regulator_suspend_mem_uV_show, NULL);
524
525 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
526                                 struct device_attribute *attr, char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
531 }
532 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
533                 regulator_suspend_disk_uV_show, NULL);
534
535 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
536                                 struct device_attribute *attr, char *buf)
537 {
538         struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
541 }
542 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
543                 regulator_suspend_standby_uV_show, NULL);
544
545 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
546                                 struct device_attribute *attr, char *buf)
547 {
548         struct regulator_dev *rdev = dev_get_drvdata(dev);
549
550         return regulator_print_opmode(buf,
551                 rdev->constraints->state_mem.mode);
552 }
553 static DEVICE_ATTR(suspend_mem_mode, 0444,
554                 regulator_suspend_mem_mode_show, NULL);
555
556 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
557                                 struct device_attribute *attr, char *buf)
558 {
559         struct regulator_dev *rdev = dev_get_drvdata(dev);
560
561         return regulator_print_opmode(buf,
562                 rdev->constraints->state_disk.mode);
563 }
564 static DEVICE_ATTR(suspend_disk_mode, 0444,
565                 regulator_suspend_disk_mode_show, NULL);
566
567 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
568                                 struct device_attribute *attr, char *buf)
569 {
570         struct regulator_dev *rdev = dev_get_drvdata(dev);
571
572         return regulator_print_opmode(buf,
573                 rdev->constraints->state_standby.mode);
574 }
575 static DEVICE_ATTR(suspend_standby_mode, 0444,
576                 regulator_suspend_standby_mode_show, NULL);
577
578 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
579                                    struct device_attribute *attr, char *buf)
580 {
581         struct regulator_dev *rdev = dev_get_drvdata(dev);
582
583         return regulator_print_state(buf,
584                         rdev->constraints->state_mem.enabled);
585 }
586 static DEVICE_ATTR(suspend_mem_state, 0444,
587                 regulator_suspend_mem_state_show, NULL);
588
589 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
590                                    struct device_attribute *attr, char *buf)
591 {
592         struct regulator_dev *rdev = dev_get_drvdata(dev);
593
594         return regulator_print_state(buf,
595                         rdev->constraints->state_disk.enabled);
596 }
597 static DEVICE_ATTR(suspend_disk_state, 0444,
598                 regulator_suspend_disk_state_show, NULL);
599
600 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
601                                    struct device_attribute *attr, char *buf)
602 {
603         struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605         return regulator_print_state(buf,
606                         rdev->constraints->state_standby.enabled);
607 }
608 static DEVICE_ATTR(suspend_standby_state, 0444,
609                 regulator_suspend_standby_state_show, NULL);
610
611
612 /*
613  * These are the only attributes are present for all regulators.
614  * Other attributes are a function of regulator functionality.
615  */
616 static struct device_attribute regulator_dev_attrs[] = {
617         __ATTR(name, 0444, regulator_name_show, NULL),
618         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
619         __ATTR(type, 0444, regulator_type_show, NULL),
620         __ATTR_NULL,
621 };
622
623 static void regulator_dev_release(struct device *dev)
624 {
625         struct regulator_dev *rdev = dev_get_drvdata(dev);
626         kfree(rdev);
627 }
628
629 static struct class regulator_class = {
630         .name = "regulator",
631         .dev_release = regulator_dev_release,
632         .dev_attrs = regulator_dev_attrs,
633 };
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static void drms_uA_update(struct regulator_dev *rdev)
638 {
639         struct regulator *sibling;
640         int current_uA = 0, output_uV, input_uV, err;
641         unsigned int mode;
642
643         err = regulator_check_drms(rdev);
644         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645             (!rdev->desc->ops->get_voltage &&
646              !rdev->desc->ops->get_voltage_sel) ||
647             !rdev->desc->ops->set_mode)
648                 return;
649
650         /* get output voltage */
651         output_uV = _regulator_get_voltage(rdev);
652         if (output_uV <= 0)
653                 return;
654
655         /* get input voltage */
656         input_uV = 0;
657         if (rdev->supply)
658                 input_uV = _regulator_get_voltage(rdev);
659         if (input_uV <= 0)
660                 input_uV = rdev->constraints->input_uV;
661         if (input_uV <= 0)
662                 return;
663
664         /* calc total requested load */
665         list_for_each_entry(sibling, &rdev->consumer_list, list)
666                 current_uA += sibling->uA_load;
667
668         /* now get the optimum mode for our new total regulator load */
669         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
670                                                   output_uV, current_uA);
671
672         /* check the new mode is allowed */
673         err = regulator_mode_constrain(rdev, &mode);
674         if (err == 0)
675                 rdev->desc->ops->set_mode(rdev, mode);
676 }
677
678 static int suspend_set_state(struct regulator_dev *rdev,
679         struct regulator_state *rstate)
680 {
681         int ret = 0;
682         bool can_set_state;
683
684         can_set_state = rdev->desc->ops->set_suspend_enable &&
685                 rdev->desc->ops->set_suspend_disable;
686
687         /* If we have no suspend mode configration don't set anything;
688          * only warn if the driver actually makes the suspend mode
689          * configurable.
690          */
691         if (!rstate->enabled && !rstate->disabled) {
692                 if (can_set_state)
693                         rdev_warn(rdev, "No configuration\n");
694                 return 0;
695         }
696
697         if (rstate->enabled && rstate->disabled) {
698                 rdev_err(rdev, "invalid configuration\n");
699                 return -EINVAL;
700         }
701
702         if (!can_set_state) {
703                 rdev_err(rdev, "no way to set suspend state\n");
704                 return -EINVAL;
705         }
706
707         if (rstate->enabled)
708                 ret = rdev->desc->ops->set_suspend_enable(rdev);
709         else
710                 ret = rdev->desc->ops->set_suspend_disable(rdev);
711         if (ret < 0) {
712                 rdev_err(rdev, "failed to enabled/disable\n");
713                 return ret;
714         }
715
716         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718                 if (ret < 0) {
719                         rdev_err(rdev, "failed to set voltage\n");
720                         return ret;
721                 }
722         }
723
724         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726                 if (ret < 0) {
727                         rdev_err(rdev, "failed to set mode\n");
728                         return ret;
729                 }
730         }
731         return ret;
732 }
733
734 /* locks held by caller */
735 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736 {
737         if (!rdev->constraints)
738                 return -EINVAL;
739
740         switch (state) {
741         case PM_SUSPEND_STANDBY:
742                 return suspend_set_state(rdev,
743                         &rdev->constraints->state_standby);
744         case PM_SUSPEND_MEM:
745                 return suspend_set_state(rdev,
746                         &rdev->constraints->state_mem);
747         case PM_SUSPEND_MAX:
748                 return suspend_set_state(rdev,
749                         &rdev->constraints->state_disk);
750         default:
751                 return -EINVAL;
752         }
753 }
754
755 static void print_constraints(struct regulator_dev *rdev)
756 {
757         struct regulation_constraints *constraints = rdev->constraints;
758         char buf[80] = "";
759         int count = 0;
760         int ret;
761
762         if (constraints->min_uV && constraints->max_uV) {
763                 if (constraints->min_uV == constraints->max_uV)
764                         count += sprintf(buf + count, "%d mV ",
765                                          constraints->min_uV / 1000);
766                 else
767                         count += sprintf(buf + count, "%d <--> %d mV ",
768                                          constraints->min_uV / 1000,
769                                          constraints->max_uV / 1000);
770         }
771
772         if (!constraints->min_uV ||
773             constraints->min_uV != constraints->max_uV) {
774                 ret = _regulator_get_voltage(rdev);
775                 if (ret > 0)
776                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
777         }
778
779         if (constraints->uV_offset)
780                 count += sprintf(buf, "%dmV offset ",
781                                  constraints->uV_offset / 1000);
782
783         if (constraints->min_uA && constraints->max_uA) {
784                 if (constraints->min_uA == constraints->max_uA)
785                         count += sprintf(buf + count, "%d mA ",
786                                          constraints->min_uA / 1000);
787                 else
788                         count += sprintf(buf + count, "%d <--> %d mA ",
789                                          constraints->min_uA / 1000,
790                                          constraints->max_uA / 1000);
791         }
792
793         if (!constraints->min_uA ||
794             constraints->min_uA != constraints->max_uA) {
795                 ret = _regulator_get_current_limit(rdev);
796                 if (ret > 0)
797                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
798         }
799
800         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801                 count += sprintf(buf + count, "fast ");
802         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803                 count += sprintf(buf + count, "normal ");
804         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805                 count += sprintf(buf + count, "idle ");
806         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807                 count += sprintf(buf + count, "standby");
808
809         rdev_info(rdev, "%s\n", buf);
810 }
811
812 static int machine_constraints_voltage(struct regulator_dev *rdev,
813         struct regulation_constraints *constraints)
814 {
815         struct regulator_ops *ops = rdev->desc->ops;
816         int ret;
817
818         /* do we need to apply the constraint voltage */
819         if (rdev->constraints->apply_uV &&
820             rdev->constraints->min_uV == rdev->constraints->max_uV) {
821                 ret = _regulator_do_set_voltage(rdev,
822                                                 rdev->constraints->min_uV,
823                                                 rdev->constraints->max_uV);
824                 if (ret < 0) {
825                         rdev_err(rdev, "failed to apply %duV constraint\n",
826                                  rdev->constraints->min_uV);
827                         return ret;
828                 }
829         }
830
831         /* constrain machine-level voltage specs to fit
832          * the actual range supported by this regulator.
833          */
834         if (ops->list_voltage && rdev->desc->n_voltages) {
835                 int     count = rdev->desc->n_voltages;
836                 int     i;
837                 int     min_uV = INT_MAX;
838                 int     max_uV = INT_MIN;
839                 int     cmin = constraints->min_uV;
840                 int     cmax = constraints->max_uV;
841
842                 /* it's safe to autoconfigure fixed-voltage supplies
843                    and the constraints are used by list_voltage. */
844                 if (count == 1 && !cmin) {
845                         cmin = 1;
846                         cmax = INT_MAX;
847                         constraints->min_uV = cmin;
848                         constraints->max_uV = cmax;
849                 }
850
851                 /* voltage constraints are optional */
852                 if ((cmin == 0) && (cmax == 0))
853                         return 0;
854
855                 /* else require explicit machine-level constraints */
856                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
857                         rdev_err(rdev, "invalid voltage constraints\n");
858                         return -EINVAL;
859                 }
860
861                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
862                 for (i = 0; i < count; i++) {
863                         int     value;
864
865                         value = ops->list_voltage(rdev, i);
866                         if (value <= 0)
867                                 continue;
868
869                         /* maybe adjust [min_uV..max_uV] */
870                         if (value >= cmin && value < min_uV)
871                                 min_uV = value;
872                         if (value <= cmax && value > max_uV)
873                                 max_uV = value;
874                 }
875
876                 /* final: [min_uV..max_uV] valid iff constraints valid */
877                 if (max_uV < min_uV) {
878                         rdev_err(rdev, "unsupportable voltage constraints\n");
879                         return -EINVAL;
880                 }
881
882                 /* use regulator's subset of machine constraints */
883                 if (constraints->min_uV < min_uV) {
884                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
885                                  constraints->min_uV, min_uV);
886                         constraints->min_uV = min_uV;
887                 }
888                 if (constraints->max_uV > max_uV) {
889                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
890                                  constraints->max_uV, max_uV);
891                         constraints->max_uV = max_uV;
892                 }
893         }
894
895         return 0;
896 }
897
898 /**
899  * set_machine_constraints - sets regulator constraints
900  * @rdev: regulator source
901  * @constraints: constraints to apply
902  *
903  * Allows platform initialisation code to define and constrain
904  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
905  * Constraints *must* be set by platform code in order for some
906  * regulator operations to proceed i.e. set_voltage, set_current_limit,
907  * set_mode.
908  */
909 static int set_machine_constraints(struct regulator_dev *rdev,
910         const struct regulation_constraints *constraints)
911 {
912         int ret = 0;
913         struct regulator_ops *ops = rdev->desc->ops;
914
915         if (constraints)
916                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
917                                             GFP_KERNEL);
918         else
919                 rdev->constraints = kzalloc(sizeof(*constraints),
920                                             GFP_KERNEL);
921         if (!rdev->constraints)
922                 return -ENOMEM;
923
924         ret = machine_constraints_voltage(rdev, rdev->constraints);
925         if (ret != 0)
926                 goto out;
927
928         /* do we need to setup our suspend state */
929         if (rdev->constraints->initial_state) {
930                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
931                 if (ret < 0) {
932                         rdev_err(rdev, "failed to set suspend state\n");
933                         goto out;
934                 }
935         }
936
937         if (rdev->constraints->initial_mode) {
938                 if (!ops->set_mode) {
939                         rdev_err(rdev, "no set_mode operation\n");
940                         ret = -EINVAL;
941                         goto out;
942                 }
943
944                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
945                 if (ret < 0) {
946                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
947                         goto out;
948                 }
949         }
950
951         /* If the constraints say the regulator should be on at this point
952          * and we have control then make sure it is enabled.
953          */
954         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
955             ops->enable) {
956                 ret = ops->enable(rdev);
957                 if (ret < 0) {
958                         rdev_err(rdev, "failed to enable\n");
959                         goto out;
960                 }
961         }
962
963         print_constraints(rdev);
964         return 0;
965 out:
966         kfree(rdev->constraints);
967         rdev->constraints = NULL;
968         return ret;
969 }
970
971 /**
972  * set_supply - set regulator supply regulator
973  * @rdev: regulator name
974  * @supply_rdev: supply regulator name
975  *
976  * Called by platform initialisation code to set the supply regulator for this
977  * regulator. This ensures that a regulators supply will also be enabled by the
978  * core if it's child is enabled.
979  */
980 static int set_supply(struct regulator_dev *rdev,
981                       struct regulator_dev *supply_rdev)
982 {
983         int err;
984
985         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
986
987         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
988         if (rdev->supply == NULL) {
989                 err = -ENOMEM;
990                 return err;
991         }
992
993         return 0;
994 }
995
996 /**
997  * set_consumer_device_supply - Bind a regulator to a symbolic supply
998  * @rdev:         regulator source
999  * @consumer_dev: device the supply applies to
1000  * @consumer_dev_name: dev_name() string for device supply applies to
1001  * @supply:       symbolic name for supply
1002  *
1003  * Allows platform initialisation code to map physical regulator
1004  * sources to symbolic names for supplies for use by devices.  Devices
1005  * should use these symbolic names to request regulators, avoiding the
1006  * need to provide board-specific regulator names as platform data.
1007  *
1008  * Only one of consumer_dev and consumer_dev_name may be specified.
1009  */
1010 static int set_consumer_device_supply(struct regulator_dev *rdev,
1011         struct device *consumer_dev, const char *consumer_dev_name,
1012         const char *supply)
1013 {
1014         struct regulator_map *node;
1015         int has_dev;
1016
1017         if (consumer_dev && consumer_dev_name)
1018                 return -EINVAL;
1019
1020         if (!consumer_dev_name && consumer_dev)
1021                 consumer_dev_name = dev_name(consumer_dev);
1022
1023         if (supply == NULL)
1024                 return -EINVAL;
1025
1026         if (consumer_dev_name != NULL)
1027                 has_dev = 1;
1028         else
1029                 has_dev = 0;
1030
1031         list_for_each_entry(node, &regulator_map_list, list) {
1032                 if (node->dev_name && consumer_dev_name) {
1033                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1034                                 continue;
1035                 } else if (node->dev_name || consumer_dev_name) {
1036                         continue;
1037                 }
1038
1039                 if (strcmp(node->supply, supply) != 0)
1040                         continue;
1041
1042                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1043                         dev_name(&node->regulator->dev),
1044                         node->regulator->desc->name,
1045                         supply,
1046                         dev_name(&rdev->dev), rdev_get_name(rdev));
1047                 return -EBUSY;
1048         }
1049
1050         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1051         if (node == NULL)
1052                 return -ENOMEM;
1053
1054         node->regulator = rdev;
1055         node->supply = supply;
1056
1057         if (has_dev) {
1058                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1059                 if (node->dev_name == NULL) {
1060                         kfree(node);
1061                         return -ENOMEM;
1062                 }
1063         }
1064
1065         list_add(&node->list, &regulator_map_list);
1066         return 0;
1067 }
1068
1069 static void unset_regulator_supplies(struct regulator_dev *rdev)
1070 {
1071         struct regulator_map *node, *n;
1072
1073         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1074                 if (rdev == node->regulator) {
1075                         list_del(&node->list);
1076                         kfree(node->dev_name);
1077                         kfree(node);
1078                 }
1079         }
1080 }
1081
1082 #define REG_STR_SIZE    64
1083
1084 static struct regulator *create_regulator(struct regulator_dev *rdev,
1085                                           struct device *dev,
1086                                           const char *supply_name)
1087 {
1088         struct regulator *regulator;
1089         char buf[REG_STR_SIZE];
1090         int err, size;
1091
1092         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1093         if (regulator == NULL)
1094                 return NULL;
1095
1096         mutex_lock(&rdev->mutex);
1097         regulator->rdev = rdev;
1098         list_add(&regulator->list, &rdev->consumer_list);
1099
1100         if (dev) {
1101                 /* create a 'requested_microamps_name' sysfs entry */
1102                 size = scnprintf(buf, REG_STR_SIZE,
1103                                  "microamps_requested_%s-%s",
1104                                  dev_name(dev), supply_name);
1105                 if (size >= REG_STR_SIZE)
1106                         goto overflow_err;
1107
1108                 regulator->dev = dev;
1109                 sysfs_attr_init(&regulator->dev_attr.attr);
1110                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1111                 if (regulator->dev_attr.attr.name == NULL)
1112                         goto attr_name_err;
1113
1114                 regulator->dev_attr.attr.mode = 0444;
1115                 regulator->dev_attr.show = device_requested_uA_show;
1116                 err = device_create_file(dev, &regulator->dev_attr);
1117                 if (err < 0) {
1118                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1119                         goto attr_name_err;
1120                 }
1121
1122                 /* also add a link to the device sysfs entry */
1123                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1124                                  dev->kobj.name, supply_name);
1125                 if (size >= REG_STR_SIZE)
1126                         goto attr_err;
1127
1128                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1129                 if (regulator->supply_name == NULL)
1130                         goto attr_err;
1131
1132                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1133                                         buf);
1134                 if (err) {
1135                         rdev_warn(rdev, "could not add device link %s err %d\n",
1136                                   dev->kobj.name, err);
1137                         goto link_name_err;
1138                 }
1139         } else {
1140                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1141                 if (regulator->supply_name == NULL)
1142                         goto attr_err;
1143         }
1144
1145 #ifdef CONFIG_DEBUG_FS
1146         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1147                                                 rdev->debugfs);
1148         if (IS_ERR_OR_NULL(regulator->debugfs)) {
1149                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1150                 regulator->debugfs = NULL;
1151         } else {
1152                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1153                                    &regulator->uA_load);
1154                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1155                                    &regulator->min_uV);
1156                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1157                                    &regulator->max_uV);
1158         }
1159 #endif
1160
1161         mutex_unlock(&rdev->mutex);
1162         return regulator;
1163 link_name_err:
1164         kfree(regulator->supply_name);
1165 attr_err:
1166         device_remove_file(regulator->dev, &regulator->dev_attr);
1167 attr_name_err:
1168         kfree(regulator->dev_attr.attr.name);
1169 overflow_err:
1170         list_del(&regulator->list);
1171         kfree(regulator);
1172         mutex_unlock(&rdev->mutex);
1173         return NULL;
1174 }
1175
1176 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1177 {
1178         if (!rdev->desc->ops->enable_time)
1179                 return 0;
1180         return rdev->desc->ops->enable_time(rdev);
1181 }
1182
1183 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1184                                                          const char *supply)
1185 {
1186         struct regulator_dev *r;
1187         struct device_node *node;
1188
1189         /* first do a dt based lookup */
1190         if (dev && dev->of_node) {
1191                 node = of_get_regulator(dev, supply);
1192                 if (node)
1193                         list_for_each_entry(r, &regulator_list, list)
1194                                 if (r->dev.parent &&
1195                                         node == r->dev.of_node)
1196                                         return r;
1197         }
1198
1199         /* if not found, try doing it non-dt way */
1200         list_for_each_entry(r, &regulator_list, list)
1201                 if (strcmp(rdev_get_name(r), supply) == 0)
1202                         return r;
1203
1204         return NULL;
1205 }
1206
1207 /* Internal regulator request function */
1208 static struct regulator *_regulator_get(struct device *dev, const char *id,
1209                                         int exclusive)
1210 {
1211         struct regulator_dev *rdev;
1212         struct regulator_map *map;
1213         struct regulator *regulator = ERR_PTR(-ENODEV);
1214         const char *devname = NULL;
1215         int ret;
1216
1217         if (id == NULL) {
1218                 pr_err("get() with no identifier\n");
1219                 return regulator;
1220         }
1221
1222         if (dev)
1223                 devname = dev_name(dev);
1224
1225         mutex_lock(&regulator_list_mutex);
1226
1227         rdev = regulator_dev_lookup(dev, id);
1228         if (rdev)
1229                 goto found;
1230
1231         list_for_each_entry(map, &regulator_map_list, list) {
1232                 /* If the mapping has a device set up it must match */
1233                 if (map->dev_name &&
1234                     (!devname || strcmp(map->dev_name, devname)))
1235                         continue;
1236
1237                 if (strcmp(map->supply, id) == 0) {
1238                         rdev = map->regulator;
1239                         goto found;
1240                 }
1241         }
1242
1243         if (board_wants_dummy_regulator) {
1244                 rdev = dummy_regulator_rdev;
1245                 goto found;
1246         }
1247
1248 #ifdef CONFIG_REGULATOR_DUMMY
1249         if (!devname)
1250                 devname = "deviceless";
1251
1252         /* If the board didn't flag that it was fully constrained then
1253          * substitute in a dummy regulator so consumers can continue.
1254          */
1255         if (!has_full_constraints) {
1256                 pr_warn("%s supply %s not found, using dummy regulator\n",
1257                         devname, id);
1258                 rdev = dummy_regulator_rdev;
1259                 goto found;
1260         }
1261 #endif
1262
1263         mutex_unlock(&regulator_list_mutex);
1264         return regulator;
1265
1266 found:
1267         if (rdev->exclusive) {
1268                 regulator = ERR_PTR(-EPERM);
1269                 goto out;
1270         }
1271
1272         if (exclusive && rdev->open_count) {
1273                 regulator = ERR_PTR(-EBUSY);
1274                 goto out;
1275         }
1276
1277         if (!try_module_get(rdev->owner))
1278                 goto out;
1279
1280         regulator = create_regulator(rdev, dev, id);
1281         if (regulator == NULL) {
1282                 regulator = ERR_PTR(-ENOMEM);
1283                 module_put(rdev->owner);
1284                 goto out;
1285         }
1286
1287         rdev->open_count++;
1288         if (exclusive) {
1289                 rdev->exclusive = 1;
1290
1291                 ret = _regulator_is_enabled(rdev);
1292                 if (ret > 0)
1293                         rdev->use_count = 1;
1294                 else
1295                         rdev->use_count = 0;
1296         }
1297
1298 out:
1299         mutex_unlock(&regulator_list_mutex);
1300
1301         return regulator;
1302 }
1303
1304 /**
1305  * regulator_get - lookup and obtain a reference to a regulator.
1306  * @dev: device for regulator "consumer"
1307  * @id: Supply name or regulator ID.
1308  *
1309  * Returns a struct regulator corresponding to the regulator producer,
1310  * or IS_ERR() condition containing errno.
1311  *
1312  * Use of supply names configured via regulator_set_device_supply() is
1313  * strongly encouraged.  It is recommended that the supply name used
1314  * should match the name used for the supply and/or the relevant
1315  * device pins in the datasheet.
1316  */
1317 struct regulator *regulator_get(struct device *dev, const char *id)
1318 {
1319         return _regulator_get(dev, id, 0);
1320 }
1321 EXPORT_SYMBOL_GPL(regulator_get);
1322
1323 static void devm_regulator_release(struct device *dev, void *res)
1324 {
1325         regulator_put(*(struct regulator **)res);
1326 }
1327
1328 /**
1329  * devm_regulator_get - Resource managed regulator_get()
1330  * @dev: device for regulator "consumer"
1331  * @id: Supply name or regulator ID.
1332  *
1333  * Managed regulator_get(). Regulators returned from this function are
1334  * automatically regulator_put() on driver detach. See regulator_get() for more
1335  * information.
1336  */
1337 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1338 {
1339         struct regulator **ptr, *regulator;
1340
1341         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1342         if (!ptr)
1343                 return ERR_PTR(-ENOMEM);
1344
1345         regulator = regulator_get(dev, id);
1346         if (!IS_ERR(regulator)) {
1347                 *ptr = regulator;
1348                 devres_add(dev, ptr);
1349         } else {
1350                 devres_free(ptr);
1351         }
1352
1353         return regulator;
1354 }
1355 EXPORT_SYMBOL_GPL(devm_regulator_get);
1356
1357 /**
1358  * regulator_get_exclusive - obtain exclusive access to a regulator.
1359  * @dev: device for regulator "consumer"
1360  * @id: Supply name or regulator ID.
1361  *
1362  * Returns a struct regulator corresponding to the regulator producer,
1363  * or IS_ERR() condition containing errno.  Other consumers will be
1364  * unable to obtain this reference is held and the use count for the
1365  * regulator will be initialised to reflect the current state of the
1366  * regulator.
1367  *
1368  * This is intended for use by consumers which cannot tolerate shared
1369  * use of the regulator such as those which need to force the
1370  * regulator off for correct operation of the hardware they are
1371  * controlling.
1372  *
1373  * Use of supply names configured via regulator_set_device_supply() is
1374  * strongly encouraged.  It is recommended that the supply name used
1375  * should match the name used for the supply and/or the relevant
1376  * device pins in the datasheet.
1377  */
1378 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1379 {
1380         return _regulator_get(dev, id, 1);
1381 }
1382 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1383
1384 /**
1385  * regulator_put - "free" the regulator source
1386  * @regulator: regulator source
1387  *
1388  * Note: drivers must ensure that all regulator_enable calls made on this
1389  * regulator source are balanced by regulator_disable calls prior to calling
1390  * this function.
1391  */
1392 void regulator_put(struct regulator *regulator)
1393 {
1394         struct regulator_dev *rdev;
1395
1396         if (regulator == NULL || IS_ERR(regulator))
1397                 return;
1398
1399         mutex_lock(&regulator_list_mutex);
1400         rdev = regulator->rdev;
1401
1402 #ifdef CONFIG_DEBUG_FS
1403         debugfs_remove_recursive(regulator->debugfs);
1404 #endif
1405
1406         /* remove any sysfs entries */
1407         if (regulator->dev) {
1408                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1409                 device_remove_file(regulator->dev, &regulator->dev_attr);
1410                 kfree(regulator->dev_attr.attr.name);
1411         }
1412         kfree(regulator->supply_name);
1413         list_del(&regulator->list);
1414         kfree(regulator);
1415
1416         rdev->open_count--;
1417         rdev->exclusive = 0;
1418
1419         module_put(rdev->owner);
1420         mutex_unlock(&regulator_list_mutex);
1421 }
1422 EXPORT_SYMBOL_GPL(regulator_put);
1423
1424 static int devm_regulator_match(struct device *dev, void *res, void *data)
1425 {
1426         struct regulator **r = res;
1427         if (!r || !*r) {
1428                 WARN_ON(!r || !*r);
1429                 return 0;
1430         }
1431         return *r == data;
1432 }
1433
1434 /**
1435  * devm_regulator_put - Resource managed regulator_put()
1436  * @regulator: regulator to free
1437  *
1438  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1439  * this function will not need to be called and the resource management
1440  * code will ensure that the resource is freed.
1441  */
1442 void devm_regulator_put(struct regulator *regulator)
1443 {
1444         int rc;
1445
1446         rc = devres_destroy(regulator->dev, devm_regulator_release,
1447                             devm_regulator_match, regulator);
1448         WARN_ON(rc);
1449 }
1450 EXPORT_SYMBOL_GPL(devm_regulator_put);
1451
1452 static int _regulator_can_change_status(struct regulator_dev *rdev)
1453 {
1454         if (!rdev->constraints)
1455                 return 0;
1456
1457         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1458                 return 1;
1459         else
1460                 return 0;
1461 }
1462
1463 /* locks held by regulator_enable() */
1464 static int _regulator_enable(struct regulator_dev *rdev)
1465 {
1466         int ret, delay;
1467
1468         /* check voltage and requested load before enabling */
1469         if (rdev->constraints &&
1470             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1471                 drms_uA_update(rdev);
1472
1473         if (rdev->use_count == 0) {
1474                 /* The regulator may on if it's not switchable or left on */
1475                 ret = _regulator_is_enabled(rdev);
1476                 if (ret == -EINVAL || ret == 0) {
1477                         if (!_regulator_can_change_status(rdev))
1478                                 return -EPERM;
1479
1480                         if (!rdev->desc->ops->enable)
1481                                 return -EINVAL;
1482
1483                         /* Query before enabling in case configuration
1484                          * dependent.  */
1485                         ret = _regulator_get_enable_time(rdev);
1486                         if (ret >= 0) {
1487                                 delay = ret;
1488                         } else {
1489                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1490                                            ret);
1491                                 delay = 0;
1492                         }
1493
1494                         trace_regulator_enable(rdev_get_name(rdev));
1495
1496                         /* Allow the regulator to ramp; it would be useful
1497                          * to extend this for bulk operations so that the
1498                          * regulators can ramp together.  */
1499                         ret = rdev->desc->ops->enable(rdev);
1500                         if (ret < 0)
1501                                 return ret;
1502
1503                         trace_regulator_enable_delay(rdev_get_name(rdev));
1504
1505                         if (delay >= 1000) {
1506                                 mdelay(delay / 1000);
1507                                 udelay(delay % 1000);
1508                         } else if (delay) {
1509                                 udelay(delay);
1510                         }
1511
1512                         trace_regulator_enable_complete(rdev_get_name(rdev));
1513
1514                 } else if (ret < 0) {
1515                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1516                         return ret;
1517                 }
1518                 /* Fallthrough on positive return values - already enabled */
1519         }
1520
1521         rdev->use_count++;
1522
1523         return 0;
1524 }
1525
1526 /**
1527  * regulator_enable - enable regulator output
1528  * @regulator: regulator source
1529  *
1530  * Request that the regulator be enabled with the regulator output at
1531  * the predefined voltage or current value.  Calls to regulator_enable()
1532  * must be balanced with calls to regulator_disable().
1533  *
1534  * NOTE: the output value can be set by other drivers, boot loader or may be
1535  * hardwired in the regulator.
1536  */
1537 int regulator_enable(struct regulator *regulator)
1538 {
1539         struct regulator_dev *rdev = regulator->rdev;
1540         int ret = 0;
1541
1542         if (rdev->supply) {
1543                 ret = regulator_enable(rdev->supply);
1544                 if (ret != 0)
1545                         return ret;
1546         }
1547
1548         mutex_lock(&rdev->mutex);
1549         ret = _regulator_enable(rdev);
1550         mutex_unlock(&rdev->mutex);
1551
1552         if (ret != 0 && rdev->supply)
1553                 regulator_disable(rdev->supply);
1554
1555         return ret;
1556 }
1557 EXPORT_SYMBOL_GPL(regulator_enable);
1558
1559 /* locks held by regulator_disable() */
1560 static int _regulator_disable(struct regulator_dev *rdev)
1561 {
1562         int ret = 0;
1563
1564         if (WARN(rdev->use_count <= 0,
1565                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1566                 return -EIO;
1567
1568         /* are we the last user and permitted to disable ? */
1569         if (rdev->use_count == 1 &&
1570             (rdev->constraints && !rdev->constraints->always_on)) {
1571
1572                 /* we are last user */
1573                 if (_regulator_can_change_status(rdev) &&
1574                     rdev->desc->ops->disable) {
1575                         trace_regulator_disable(rdev_get_name(rdev));
1576
1577                         ret = rdev->desc->ops->disable(rdev);
1578                         if (ret < 0) {
1579                                 rdev_err(rdev, "failed to disable\n");
1580                                 return ret;
1581                         }
1582
1583                         trace_regulator_disable_complete(rdev_get_name(rdev));
1584
1585                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1586                                              NULL);
1587                 }
1588
1589                 rdev->use_count = 0;
1590         } else if (rdev->use_count > 1) {
1591
1592                 if (rdev->constraints &&
1593                         (rdev->constraints->valid_ops_mask &
1594                         REGULATOR_CHANGE_DRMS))
1595                         drms_uA_update(rdev);
1596
1597                 rdev->use_count--;
1598         }
1599
1600         return ret;
1601 }
1602
1603 /**
1604  * regulator_disable - disable regulator output
1605  * @regulator: regulator source
1606  *
1607  * Disable the regulator output voltage or current.  Calls to
1608  * regulator_enable() must be balanced with calls to
1609  * regulator_disable().
1610  *
1611  * NOTE: this will only disable the regulator output if no other consumer
1612  * devices have it enabled, the regulator device supports disabling and
1613  * machine constraints permit this operation.
1614  */
1615 int regulator_disable(struct regulator *regulator)
1616 {
1617         struct regulator_dev *rdev = regulator->rdev;
1618         int ret = 0;
1619
1620         mutex_lock(&rdev->mutex);
1621         ret = _regulator_disable(rdev);
1622         mutex_unlock(&rdev->mutex);
1623
1624         if (ret == 0 && rdev->supply)
1625                 regulator_disable(rdev->supply);
1626
1627         return ret;
1628 }
1629 EXPORT_SYMBOL_GPL(regulator_disable);
1630
1631 /* locks held by regulator_force_disable() */
1632 static int _regulator_force_disable(struct regulator_dev *rdev)
1633 {
1634         int ret = 0;
1635
1636         /* force disable */
1637         if (rdev->desc->ops->disable) {
1638                 /* ah well, who wants to live forever... */
1639                 ret = rdev->desc->ops->disable(rdev);
1640                 if (ret < 0) {
1641                         rdev_err(rdev, "failed to force disable\n");
1642                         return ret;
1643                 }
1644                 /* notify other consumers that power has been forced off */
1645                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1646                         REGULATOR_EVENT_DISABLE, NULL);
1647         }
1648
1649         return ret;
1650 }
1651
1652 /**
1653  * regulator_force_disable - force disable regulator output
1654  * @regulator: regulator source
1655  *
1656  * Forcibly disable the regulator output voltage or current.
1657  * NOTE: this *will* disable the regulator output even if other consumer
1658  * devices have it enabled. This should be used for situations when device
1659  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1660  */
1661 int regulator_force_disable(struct regulator *regulator)
1662 {
1663         struct regulator_dev *rdev = regulator->rdev;
1664         int ret;
1665
1666         mutex_lock(&rdev->mutex);
1667         regulator->uA_load = 0;
1668         ret = _regulator_force_disable(regulator->rdev);
1669         mutex_unlock(&rdev->mutex);
1670
1671         if (rdev->supply)
1672                 while (rdev->open_count--)
1673                         regulator_disable(rdev->supply);
1674
1675         return ret;
1676 }
1677 EXPORT_SYMBOL_GPL(regulator_force_disable);
1678
1679 static void regulator_disable_work(struct work_struct *work)
1680 {
1681         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1682                                                   disable_work.work);
1683         int count, i, ret;
1684
1685         mutex_lock(&rdev->mutex);
1686
1687         BUG_ON(!rdev->deferred_disables);
1688
1689         count = rdev->deferred_disables;
1690         rdev->deferred_disables = 0;
1691
1692         for (i = 0; i < count; i++) {
1693                 ret = _regulator_disable(rdev);
1694                 if (ret != 0)
1695                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1696         }
1697
1698         mutex_unlock(&rdev->mutex);
1699
1700         if (rdev->supply) {
1701                 for (i = 0; i < count; i++) {
1702                         ret = regulator_disable(rdev->supply);
1703                         if (ret != 0) {
1704                                 rdev_err(rdev,
1705                                          "Supply disable failed: %d\n", ret);
1706                         }
1707                 }
1708         }
1709 }
1710
1711 /**
1712  * regulator_disable_deferred - disable regulator output with delay
1713  * @regulator: regulator source
1714  * @ms: miliseconds until the regulator is disabled
1715  *
1716  * Execute regulator_disable() on the regulator after a delay.  This
1717  * is intended for use with devices that require some time to quiesce.
1718  *
1719  * NOTE: this will only disable the regulator output if no other consumer
1720  * devices have it enabled, the regulator device supports disabling and
1721  * machine constraints permit this operation.
1722  */
1723 int regulator_disable_deferred(struct regulator *regulator, int ms)
1724 {
1725         struct regulator_dev *rdev = regulator->rdev;
1726         int ret;
1727
1728         mutex_lock(&rdev->mutex);
1729         rdev->deferred_disables++;
1730         mutex_unlock(&rdev->mutex);
1731
1732         ret = schedule_delayed_work(&rdev->disable_work,
1733                                     msecs_to_jiffies(ms));
1734         if (ret < 0)
1735                 return ret;
1736         else
1737                 return 0;
1738 }
1739 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1740
1741 static int _regulator_is_enabled(struct regulator_dev *rdev)
1742 {
1743         /* If we don't know then assume that the regulator is always on */
1744         if (!rdev->desc->ops->is_enabled)
1745                 return 1;
1746
1747         return rdev->desc->ops->is_enabled(rdev);
1748 }
1749
1750 /**
1751  * regulator_is_enabled - is the regulator output enabled
1752  * @regulator: regulator source
1753  *
1754  * Returns positive if the regulator driver backing the source/client
1755  * has requested that the device be enabled, zero if it hasn't, else a
1756  * negative errno code.
1757  *
1758  * Note that the device backing this regulator handle can have multiple
1759  * users, so it might be enabled even if regulator_enable() was never
1760  * called for this particular source.
1761  */
1762 int regulator_is_enabled(struct regulator *regulator)
1763 {
1764         int ret;
1765
1766         mutex_lock(&regulator->rdev->mutex);
1767         ret = _regulator_is_enabled(regulator->rdev);
1768         mutex_unlock(&regulator->rdev->mutex);
1769
1770         return ret;
1771 }
1772 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1773
1774 /**
1775  * regulator_count_voltages - count regulator_list_voltage() selectors
1776  * @regulator: regulator source
1777  *
1778  * Returns number of selectors, or negative errno.  Selectors are
1779  * numbered starting at zero, and typically correspond to bitfields
1780  * in hardware registers.
1781  */
1782 int regulator_count_voltages(struct regulator *regulator)
1783 {
1784         struct regulator_dev    *rdev = regulator->rdev;
1785
1786         return rdev->desc->n_voltages ? : -EINVAL;
1787 }
1788 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1789
1790 /**
1791  * regulator_list_voltage - enumerate supported voltages
1792  * @regulator: regulator source
1793  * @selector: identify voltage to list
1794  * Context: can sleep
1795  *
1796  * Returns a voltage that can be passed to @regulator_set_voltage(),
1797  * zero if this selector code can't be used on this system, or a
1798  * negative errno.
1799  */
1800 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1801 {
1802         struct regulator_dev    *rdev = regulator->rdev;
1803         struct regulator_ops    *ops = rdev->desc->ops;
1804         int                     ret;
1805
1806         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1807                 return -EINVAL;
1808
1809         mutex_lock(&rdev->mutex);
1810         ret = ops->list_voltage(rdev, selector);
1811         mutex_unlock(&rdev->mutex);
1812
1813         if (ret > 0) {
1814                 if (ret < rdev->constraints->min_uV)
1815                         ret = 0;
1816                 else if (ret > rdev->constraints->max_uV)
1817                         ret = 0;
1818         }
1819
1820         return ret;
1821 }
1822 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1823
1824 /**
1825  * regulator_is_supported_voltage - check if a voltage range can be supported
1826  *
1827  * @regulator: Regulator to check.
1828  * @min_uV: Minimum required voltage in uV.
1829  * @max_uV: Maximum required voltage in uV.
1830  *
1831  * Returns a boolean or a negative error code.
1832  */
1833 int regulator_is_supported_voltage(struct regulator *regulator,
1834                                    int min_uV, int max_uV)
1835 {
1836         int i, voltages, ret;
1837
1838         ret = regulator_count_voltages(regulator);
1839         if (ret < 0)
1840                 return ret;
1841         voltages = ret;
1842
1843         for (i = 0; i < voltages; i++) {
1844                 ret = regulator_list_voltage(regulator, i);
1845
1846                 if (ret >= min_uV && ret <= max_uV)
1847                         return 1;
1848         }
1849
1850         return 0;
1851 }
1852 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1853
1854 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1855                                      int min_uV, int max_uV)
1856 {
1857         int ret;
1858         int delay = 0;
1859         unsigned int selector;
1860
1861         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1862
1863         min_uV += rdev->constraints->uV_offset;
1864         max_uV += rdev->constraints->uV_offset;
1865
1866         if (rdev->desc->ops->set_voltage) {
1867                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1868                                                    &selector);
1869
1870                 if (rdev->desc->ops->list_voltage)
1871                         selector = rdev->desc->ops->list_voltage(rdev,
1872                                                                  selector);
1873                 else
1874                         selector = -1;
1875         } else if (rdev->desc->ops->set_voltage_sel) {
1876                 int best_val = INT_MAX;
1877                 int i;
1878
1879                 selector = 0;
1880
1881                 /* Find the smallest voltage that falls within the specified
1882                  * range.
1883                  */
1884                 for (i = 0; i < rdev->desc->n_voltages; i++) {
1885                         ret = rdev->desc->ops->list_voltage(rdev, i);
1886                         if (ret < 0)
1887                                 continue;
1888
1889                         if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1890                                 best_val = ret;
1891                                 selector = i;
1892                         }
1893                 }
1894
1895                 /*
1896                  * If we can't obtain the old selector there is not enough
1897                  * info to call set_voltage_time_sel().
1898                  */
1899                 if (rdev->desc->ops->set_voltage_time_sel &&
1900                     rdev->desc->ops->get_voltage_sel) {
1901                         unsigned int old_selector = 0;
1902
1903                         ret = rdev->desc->ops->get_voltage_sel(rdev);
1904                         if (ret < 0)
1905                                 return ret;
1906                         old_selector = ret;
1907                         delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1908                                                 old_selector, selector);
1909                 }
1910
1911                 if (best_val != INT_MAX) {
1912                         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1913                         selector = best_val;
1914                 } else {
1915                         ret = -EINVAL;
1916                 }
1917         } else {
1918                 ret = -EINVAL;
1919         }
1920
1921         /* Insert any necessary delays */
1922         if (delay >= 1000) {
1923                 mdelay(delay / 1000);
1924                 udelay(delay % 1000);
1925         } else if (delay) {
1926                 udelay(delay);
1927         }
1928
1929         if (ret == 0)
1930                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1931                                      NULL);
1932
1933         trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1934
1935         return ret;
1936 }
1937
1938 /**
1939  * regulator_set_voltage - set regulator output voltage
1940  * @regulator: regulator source
1941  * @min_uV: Minimum required voltage in uV
1942  * @max_uV: Maximum acceptable voltage in uV
1943  *
1944  * Sets a voltage regulator to the desired output voltage. This can be set
1945  * during any regulator state. IOW, regulator can be disabled or enabled.
1946  *
1947  * If the regulator is enabled then the voltage will change to the new value
1948  * immediately otherwise if the regulator is disabled the regulator will
1949  * output at the new voltage when enabled.
1950  *
1951  * NOTE: If the regulator is shared between several devices then the lowest
1952  * request voltage that meets the system constraints will be used.
1953  * Regulator system constraints must be set for this regulator before
1954  * calling this function otherwise this call will fail.
1955  */
1956 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1957 {
1958         struct regulator_dev *rdev = regulator->rdev;
1959         int ret = 0;
1960
1961         mutex_lock(&rdev->mutex);
1962
1963         /* If we're setting the same range as last time the change
1964          * should be a noop (some cpufreq implementations use the same
1965          * voltage for multiple frequencies, for example).
1966          */
1967         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1968                 goto out;
1969
1970         /* sanity check */
1971         if (!rdev->desc->ops->set_voltage &&
1972             !rdev->desc->ops->set_voltage_sel) {
1973                 ret = -EINVAL;
1974                 goto out;
1975         }
1976
1977         /* constraints check */
1978         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1979         if (ret < 0)
1980                 goto out;
1981         regulator->min_uV = min_uV;
1982         regulator->max_uV = max_uV;
1983
1984         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1985         if (ret < 0)
1986                 goto out;
1987
1988         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1989
1990 out:
1991         mutex_unlock(&rdev->mutex);
1992         return ret;
1993 }
1994 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1995
1996 /**
1997  * regulator_set_voltage_time - get raise/fall time
1998  * @regulator: regulator source
1999  * @old_uV: starting voltage in microvolts
2000  * @new_uV: target voltage in microvolts
2001  *
2002  * Provided with the starting and ending voltage, this function attempts to
2003  * calculate the time in microseconds required to rise or fall to this new
2004  * voltage.
2005  */
2006 int regulator_set_voltage_time(struct regulator *regulator,
2007                                int old_uV, int new_uV)
2008 {
2009         struct regulator_dev    *rdev = regulator->rdev;
2010         struct regulator_ops    *ops = rdev->desc->ops;
2011         int old_sel = -1;
2012         int new_sel = -1;
2013         int voltage;
2014         int i;
2015
2016         /* Currently requires operations to do this */
2017         if (!ops->list_voltage || !ops->set_voltage_time_sel
2018             || !rdev->desc->n_voltages)
2019                 return -EINVAL;
2020
2021         for (i = 0; i < rdev->desc->n_voltages; i++) {
2022                 /* We only look for exact voltage matches here */
2023                 voltage = regulator_list_voltage(regulator, i);
2024                 if (voltage < 0)
2025                         return -EINVAL;
2026                 if (voltage == 0)
2027                         continue;
2028                 if (voltage == old_uV)
2029                         old_sel = i;
2030                 if (voltage == new_uV)
2031                         new_sel = i;
2032         }
2033
2034         if (old_sel < 0 || new_sel < 0)
2035                 return -EINVAL;
2036
2037         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2038 }
2039 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2040
2041 /**
2042  * regulator_sync_voltage - re-apply last regulator output voltage
2043  * @regulator: regulator source
2044  *
2045  * Re-apply the last configured voltage.  This is intended to be used
2046  * where some external control source the consumer is cooperating with
2047  * has caused the configured voltage to change.
2048  */
2049 int regulator_sync_voltage(struct regulator *regulator)
2050 {
2051         struct regulator_dev *rdev = regulator->rdev;
2052         int ret, min_uV, max_uV;
2053
2054         mutex_lock(&rdev->mutex);
2055
2056         if (!rdev->desc->ops->set_voltage &&
2057             !rdev->desc->ops->set_voltage_sel) {
2058                 ret = -EINVAL;
2059                 goto out;
2060         }
2061
2062         /* This is only going to work if we've had a voltage configured. */
2063         if (!regulator->min_uV && !regulator->max_uV) {
2064                 ret = -EINVAL;
2065                 goto out;
2066         }
2067
2068         min_uV = regulator->min_uV;
2069         max_uV = regulator->max_uV;
2070
2071         /* This should be a paranoia check... */
2072         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2073         if (ret < 0)
2074                 goto out;
2075
2076         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2077         if (ret < 0)
2078                 goto out;
2079
2080         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2081
2082 out:
2083         mutex_unlock(&rdev->mutex);
2084         return ret;
2085 }
2086 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2087
2088 static int _regulator_get_voltage(struct regulator_dev *rdev)
2089 {
2090         int sel, ret;
2091
2092         if (rdev->desc->ops->get_voltage_sel) {
2093                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2094                 if (sel < 0)
2095                         return sel;
2096                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2097         } else if (rdev->desc->ops->get_voltage) {
2098                 ret = rdev->desc->ops->get_voltage(rdev);
2099         } else {
2100                 return -EINVAL;
2101         }
2102
2103         if (ret < 0)
2104                 return ret;
2105         return ret - rdev->constraints->uV_offset;
2106 }
2107
2108 /**
2109  * regulator_get_voltage - get regulator output voltage
2110  * @regulator: regulator source
2111  *
2112  * This returns the current regulator voltage in uV.
2113  *
2114  * NOTE: If the regulator is disabled it will return the voltage value. This
2115  * function should not be used to determine regulator state.
2116  */
2117 int regulator_get_voltage(struct regulator *regulator)
2118 {
2119         int ret;
2120
2121         mutex_lock(&regulator->rdev->mutex);
2122
2123         ret = _regulator_get_voltage(regulator->rdev);
2124
2125         mutex_unlock(&regulator->rdev->mutex);
2126
2127         return ret;
2128 }
2129 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2130
2131 /**
2132  * regulator_set_current_limit - set regulator output current limit
2133  * @regulator: regulator source
2134  * @min_uA: Minimuum supported current in uA
2135  * @max_uA: Maximum supported current in uA
2136  *
2137  * Sets current sink to the desired output current. This can be set during
2138  * any regulator state. IOW, regulator can be disabled or enabled.
2139  *
2140  * If the regulator is enabled then the current will change to the new value
2141  * immediately otherwise if the regulator is disabled the regulator will
2142  * output at the new current when enabled.
2143  *
2144  * NOTE: Regulator system constraints must be set for this regulator before
2145  * calling this function otherwise this call will fail.
2146  */
2147 int regulator_set_current_limit(struct regulator *regulator,
2148                                int min_uA, int max_uA)
2149 {
2150         struct regulator_dev *rdev = regulator->rdev;
2151         int ret;
2152
2153         mutex_lock(&rdev->mutex);
2154
2155         /* sanity check */
2156         if (!rdev->desc->ops->set_current_limit) {
2157                 ret = -EINVAL;
2158                 goto out;
2159         }
2160
2161         /* constraints check */
2162         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2163         if (ret < 0)
2164                 goto out;
2165
2166         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2167 out:
2168         mutex_unlock(&rdev->mutex);
2169         return ret;
2170 }
2171 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2172
2173 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2174 {
2175         int ret;
2176
2177         mutex_lock(&rdev->mutex);
2178
2179         /* sanity check */
2180         if (!rdev->desc->ops->get_current_limit) {
2181                 ret = -EINVAL;
2182                 goto out;
2183         }
2184
2185         ret = rdev->desc->ops->get_current_limit(rdev);
2186 out:
2187         mutex_unlock(&rdev->mutex);
2188         return ret;
2189 }
2190
2191 /**
2192  * regulator_get_current_limit - get regulator output current
2193  * @regulator: regulator source
2194  *
2195  * This returns the current supplied by the specified current sink in uA.
2196  *
2197  * NOTE: If the regulator is disabled it will return the current value. This
2198  * function should not be used to determine regulator state.
2199  */
2200 int regulator_get_current_limit(struct regulator *regulator)
2201 {
2202         return _regulator_get_current_limit(regulator->rdev);
2203 }
2204 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2205
2206 /**
2207  * regulator_set_mode - set regulator operating mode
2208  * @regulator: regulator source
2209  * @mode: operating mode - one of the REGULATOR_MODE constants
2210  *
2211  * Set regulator operating mode to increase regulator efficiency or improve
2212  * regulation performance.
2213  *
2214  * NOTE: Regulator system constraints must be set for this regulator before
2215  * calling this function otherwise this call will fail.
2216  */
2217 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2218 {
2219         struct regulator_dev *rdev = regulator->rdev;
2220         int ret;
2221         int regulator_curr_mode;
2222
2223         mutex_lock(&rdev->mutex);
2224
2225         /* sanity check */
2226         if (!rdev->desc->ops->set_mode) {
2227                 ret = -EINVAL;
2228                 goto out;
2229         }
2230
2231         /* return if the same mode is requested */
2232         if (rdev->desc->ops->get_mode) {
2233                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2234                 if (regulator_curr_mode == mode) {
2235                         ret = 0;
2236                         goto out;
2237                 }
2238         }
2239
2240         /* constraints check */
2241         ret = regulator_mode_constrain(rdev, &mode);
2242         if (ret < 0)
2243                 goto out;
2244
2245         ret = rdev->desc->ops->set_mode(rdev, mode);
2246 out:
2247         mutex_unlock(&rdev->mutex);
2248         return ret;
2249 }
2250 EXPORT_SYMBOL_GPL(regulator_set_mode);
2251
2252 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2253 {
2254         int ret;
2255
2256         mutex_lock(&rdev->mutex);
2257
2258         /* sanity check */
2259         if (!rdev->desc->ops->get_mode) {
2260                 ret = -EINVAL;
2261                 goto out;
2262         }
2263
2264         ret = rdev->desc->ops->get_mode(rdev);
2265 out:
2266         mutex_unlock(&rdev->mutex);
2267         return ret;
2268 }
2269
2270 /**
2271  * regulator_get_mode - get regulator operating mode
2272  * @regulator: regulator source
2273  *
2274  * Get the current regulator operating mode.
2275  */
2276 unsigned int regulator_get_mode(struct regulator *regulator)
2277 {
2278         return _regulator_get_mode(regulator->rdev);
2279 }
2280 EXPORT_SYMBOL_GPL(regulator_get_mode);
2281
2282 /**
2283  * regulator_set_optimum_mode - set regulator optimum operating mode
2284  * @regulator: regulator source
2285  * @uA_load: load current
2286  *
2287  * Notifies the regulator core of a new device load. This is then used by
2288  * DRMS (if enabled by constraints) to set the most efficient regulator
2289  * operating mode for the new regulator loading.
2290  *
2291  * Consumer devices notify their supply regulator of the maximum power
2292  * they will require (can be taken from device datasheet in the power
2293  * consumption tables) when they change operational status and hence power
2294  * state. Examples of operational state changes that can affect power
2295  * consumption are :-
2296  *
2297  *    o Device is opened / closed.
2298  *    o Device I/O is about to begin or has just finished.
2299  *    o Device is idling in between work.
2300  *
2301  * This information is also exported via sysfs to userspace.
2302  *
2303  * DRMS will sum the total requested load on the regulator and change
2304  * to the most efficient operating mode if platform constraints allow.
2305  *
2306  * Returns the new regulator mode or error.
2307  */
2308 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2309 {
2310         struct regulator_dev *rdev = regulator->rdev;
2311         struct regulator *consumer;
2312         int ret, output_uV, input_uV, total_uA_load = 0;
2313         unsigned int mode;
2314
2315         mutex_lock(&rdev->mutex);
2316
2317         /*
2318          * first check to see if we can set modes at all, otherwise just
2319          * tell the consumer everything is OK.
2320          */
2321         regulator->uA_load = uA_load;
2322         ret = regulator_check_drms(rdev);
2323         if (ret < 0) {
2324                 ret = 0;
2325                 goto out;
2326         }
2327
2328         if (!rdev->desc->ops->get_optimum_mode)
2329                 goto out;
2330
2331         /*
2332          * we can actually do this so any errors are indicators of
2333          * potential real failure.
2334          */
2335         ret = -EINVAL;
2336
2337         /* get output voltage */
2338         output_uV = _regulator_get_voltage(rdev);
2339         if (output_uV <= 0) {
2340                 rdev_err(rdev, "invalid output voltage found\n");
2341                 goto out;
2342         }
2343
2344         /* get input voltage */
2345         input_uV = 0;
2346         if (rdev->supply)
2347                 input_uV = regulator_get_voltage(rdev->supply);
2348         if (input_uV <= 0)
2349                 input_uV = rdev->constraints->input_uV;
2350         if (input_uV <= 0) {
2351                 rdev_err(rdev, "invalid input voltage found\n");
2352                 goto out;
2353         }
2354
2355         /* calc total requested load for this regulator */
2356         list_for_each_entry(consumer, &rdev->consumer_list, list)
2357                 total_uA_load += consumer->uA_load;
2358
2359         mode = rdev->desc->ops->get_optimum_mode(rdev,
2360                                                  input_uV, output_uV,
2361                                                  total_uA_load);
2362         ret = regulator_mode_constrain(rdev, &mode);
2363         if (ret < 0) {
2364                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2365                          total_uA_load, input_uV, output_uV);
2366                 goto out;
2367         }
2368
2369         ret = rdev->desc->ops->set_mode(rdev, mode);
2370         if (ret < 0) {
2371                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2372                 goto out;
2373         }
2374         ret = mode;
2375 out:
2376         mutex_unlock(&rdev->mutex);
2377         return ret;
2378 }
2379 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2380
2381 /**
2382  * regulator_register_notifier - register regulator event notifier
2383  * @regulator: regulator source
2384  * @nb: notifier block
2385  *
2386  * Register notifier block to receive regulator events.
2387  */
2388 int regulator_register_notifier(struct regulator *regulator,
2389                               struct notifier_block *nb)
2390 {
2391         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2392                                                 nb);
2393 }
2394 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2395
2396 /**
2397  * regulator_unregister_notifier - unregister regulator event notifier
2398  * @regulator: regulator source
2399  * @nb: notifier block
2400  *
2401  * Unregister regulator event notifier block.
2402  */
2403 int regulator_unregister_notifier(struct regulator *regulator,
2404                                 struct notifier_block *nb)
2405 {
2406         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2407                                                   nb);
2408 }
2409 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2410
2411 /* notify regulator consumers and downstream regulator consumers.
2412  * Note mutex must be held by caller.
2413  */
2414 static void _notifier_call_chain(struct regulator_dev *rdev,
2415                                   unsigned long event, void *data)
2416 {
2417         /* call rdev chain first */
2418         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2419 }
2420
2421 /**
2422  * regulator_bulk_get - get multiple regulator consumers
2423  *
2424  * @dev:           Device to supply
2425  * @num_consumers: Number of consumers to register
2426  * @consumers:     Configuration of consumers; clients are stored here.
2427  *
2428  * @return 0 on success, an errno on failure.
2429  *
2430  * This helper function allows drivers to get several regulator
2431  * consumers in one operation.  If any of the regulators cannot be
2432  * acquired then any regulators that were allocated will be freed
2433  * before returning to the caller.
2434  */
2435 int regulator_bulk_get(struct device *dev, int num_consumers,
2436                        struct regulator_bulk_data *consumers)
2437 {
2438         int i;
2439         int ret;
2440
2441         for (i = 0; i < num_consumers; i++)
2442                 consumers[i].consumer = NULL;
2443
2444         for (i = 0; i < num_consumers; i++) {
2445                 consumers[i].consumer = regulator_get(dev,
2446                                                       consumers[i].supply);
2447                 if (IS_ERR(consumers[i].consumer)) {
2448                         ret = PTR_ERR(consumers[i].consumer);
2449                         dev_err(dev, "Failed to get supply '%s': %d\n",
2450                                 consumers[i].supply, ret);
2451                         consumers[i].consumer = NULL;
2452                         goto err;
2453                 }
2454         }
2455
2456         return 0;
2457
2458 err:
2459         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2460                 regulator_put(consumers[i].consumer);
2461
2462         return ret;
2463 }
2464 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2465
2466 /**
2467  * devm_regulator_bulk_get - managed get multiple regulator consumers
2468  *
2469  * @dev:           Device to supply
2470  * @num_consumers: Number of consumers to register
2471  * @consumers:     Configuration of consumers; clients are stored here.
2472  *
2473  * @return 0 on success, an errno on failure.
2474  *
2475  * This helper function allows drivers to get several regulator
2476  * consumers in one operation with management, the regulators will
2477  * automatically be freed when the device is unbound.  If any of the
2478  * regulators cannot be acquired then any regulators that were
2479  * allocated will be freed before returning to the caller.
2480  */
2481 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2482                             struct regulator_bulk_data *consumers)
2483 {
2484         int i;
2485         int ret;
2486
2487         for (i = 0; i < num_consumers; i++)
2488                 consumers[i].consumer = NULL;
2489
2490         for (i = 0; i < num_consumers; i++) {
2491                 consumers[i].consumer = devm_regulator_get(dev,
2492                                                            consumers[i].supply);
2493                 if (IS_ERR(consumers[i].consumer)) {
2494                         ret = PTR_ERR(consumers[i].consumer);
2495                         dev_err(dev, "Failed to get supply '%s': %d\n",
2496                                 consumers[i].supply, ret);
2497                         consumers[i].consumer = NULL;
2498                         goto err;
2499                 }
2500         }
2501
2502         return 0;
2503
2504 err:
2505         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2506                 devm_regulator_put(consumers[i].consumer);
2507
2508         return ret;
2509 }
2510 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2511
2512 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2513 {
2514         struct regulator_bulk_data *bulk = data;
2515
2516         bulk->ret = regulator_enable(bulk->consumer);
2517 }
2518
2519 /**
2520  * regulator_bulk_enable - enable multiple regulator consumers
2521  *
2522  * @num_consumers: Number of consumers
2523  * @consumers:     Consumer data; clients are stored here.
2524  * @return         0 on success, an errno on failure
2525  *
2526  * This convenience API allows consumers to enable multiple regulator
2527  * clients in a single API call.  If any consumers cannot be enabled
2528  * then any others that were enabled will be disabled again prior to
2529  * return.
2530  */
2531 int regulator_bulk_enable(int num_consumers,
2532                           struct regulator_bulk_data *consumers)
2533 {
2534         LIST_HEAD(async_domain);
2535         int i;
2536         int ret = 0;
2537
2538         for (i = 0; i < num_consumers; i++)
2539                 async_schedule_domain(regulator_bulk_enable_async,
2540                                       &consumers[i], &async_domain);
2541
2542         async_synchronize_full_domain(&async_domain);
2543
2544         /* If any consumer failed we need to unwind any that succeeded */
2545         for (i = 0; i < num_consumers; i++) {
2546                 if (consumers[i].ret != 0) {
2547                         ret = consumers[i].ret;
2548                         goto err;
2549                 }
2550         }
2551
2552         return 0;
2553
2554 err:
2555         for (i = 0; i < num_consumers; i++)
2556                 if (consumers[i].ret == 0)
2557                         regulator_disable(consumers[i].consumer);
2558                 else
2559                         pr_err("Failed to enable %s: %d\n",
2560                                consumers[i].supply, consumers[i].ret);
2561
2562         return ret;
2563 }
2564 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2565
2566 /**
2567  * regulator_bulk_disable - disable multiple regulator consumers
2568  *
2569  * @num_consumers: Number of consumers
2570  * @consumers:     Consumer data; clients are stored here.
2571  * @return         0 on success, an errno on failure
2572  *
2573  * This convenience API allows consumers to disable multiple regulator
2574  * clients in a single API call.  If any consumers cannot be enabled
2575  * then any others that were disabled will be disabled again prior to
2576  * return.
2577  */
2578 int regulator_bulk_disable(int num_consumers,
2579                            struct regulator_bulk_data *consumers)
2580 {
2581         int i;
2582         int ret;
2583
2584         for (i = 0; i < num_consumers; i++) {
2585                 ret = regulator_disable(consumers[i].consumer);
2586                 if (ret != 0)
2587                         goto err;
2588         }
2589
2590         return 0;
2591
2592 err:
2593         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2594         for (--i; i >= 0; --i)
2595                 regulator_enable(consumers[i].consumer);
2596
2597         return ret;
2598 }
2599 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2600
2601 /**
2602  * regulator_bulk_force_disable - force disable multiple regulator consumers
2603  *
2604  * @num_consumers: Number of consumers
2605  * @consumers:     Consumer data; clients are stored here.
2606  * @return         0 on success, an errno on failure
2607  *
2608  * This convenience API allows consumers to forcibly disable multiple regulator
2609  * clients in a single API call.
2610  * NOTE: This should be used for situations when device damage will
2611  * likely occur if the regulators are not disabled (e.g. over temp).
2612  * Although regulator_force_disable function call for some consumers can
2613  * return error numbers, the function is called for all consumers.
2614  */
2615 int regulator_bulk_force_disable(int num_consumers,
2616                            struct regulator_bulk_data *consumers)
2617 {
2618         int i;
2619         int ret;
2620
2621         for (i = 0; i < num_consumers; i++)
2622                 consumers[i].ret =
2623                             regulator_force_disable(consumers[i].consumer);
2624
2625         for (i = 0; i < num_consumers; i++) {
2626                 if (consumers[i].ret != 0) {
2627                         ret = consumers[i].ret;
2628                         goto out;
2629                 }
2630         }
2631
2632         return 0;
2633 out:
2634         return ret;
2635 }
2636 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2637
2638 /**
2639  * regulator_bulk_free - free multiple regulator consumers
2640  *
2641  * @num_consumers: Number of consumers
2642  * @consumers:     Consumer data; clients are stored here.
2643  *
2644  * This convenience API allows consumers to free multiple regulator
2645  * clients in a single API call.
2646  */
2647 void regulator_bulk_free(int num_consumers,
2648                          struct regulator_bulk_data *consumers)
2649 {
2650         int i;
2651
2652         for (i = 0; i < num_consumers; i++) {
2653                 regulator_put(consumers[i].consumer);
2654                 consumers[i].consumer = NULL;
2655         }
2656 }
2657 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2658
2659 /**
2660  * regulator_notifier_call_chain - call regulator event notifier
2661  * @rdev: regulator source
2662  * @event: notifier block
2663  * @data: callback-specific data.
2664  *
2665  * Called by regulator drivers to notify clients a regulator event has
2666  * occurred. We also notify regulator clients downstream.
2667  * Note lock must be held by caller.
2668  */
2669 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2670                                   unsigned long event, void *data)
2671 {
2672         _notifier_call_chain(rdev, event, data);
2673         return NOTIFY_DONE;
2674
2675 }
2676 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2677
2678 /**
2679  * regulator_mode_to_status - convert a regulator mode into a status
2680  *
2681  * @mode: Mode to convert
2682  *
2683  * Convert a regulator mode into a status.
2684  */
2685 int regulator_mode_to_status(unsigned int mode)
2686 {
2687         switch (mode) {
2688         case REGULATOR_MODE_FAST:
2689                 return REGULATOR_STATUS_FAST;
2690         case REGULATOR_MODE_NORMAL:
2691                 return REGULATOR_STATUS_NORMAL;
2692         case REGULATOR_MODE_IDLE:
2693                 return REGULATOR_STATUS_IDLE;
2694         case REGULATOR_STATUS_STANDBY:
2695                 return REGULATOR_STATUS_STANDBY;
2696         default:
2697                 return 0;
2698         }
2699 }
2700 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2701
2702 /*
2703  * To avoid cluttering sysfs (and memory) with useless state, only
2704  * create attributes that can be meaningfully displayed.
2705  */
2706 static int add_regulator_attributes(struct regulator_dev *rdev)
2707 {
2708         struct device           *dev = &rdev->dev;
2709         struct regulator_ops    *ops = rdev->desc->ops;
2710         int                     status = 0;
2711
2712         /* some attributes need specific methods to be displayed */
2713         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2714             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2715                 status = device_create_file(dev, &dev_attr_microvolts);
2716                 if (status < 0)
2717                         return status;
2718         }
2719         if (ops->get_current_limit) {
2720                 status = device_create_file(dev, &dev_attr_microamps);
2721                 if (status < 0)
2722                         return status;
2723         }
2724         if (ops->get_mode) {
2725                 status = device_create_file(dev, &dev_attr_opmode);
2726                 if (status < 0)
2727                         return status;
2728         }
2729         if (ops->is_enabled) {
2730                 status = device_create_file(dev, &dev_attr_state);
2731                 if (status < 0)
2732                         return status;
2733         }
2734         if (ops->get_status) {
2735                 status = device_create_file(dev, &dev_attr_status);
2736                 if (status < 0)
2737                         return status;
2738         }
2739
2740         /* some attributes are type-specific */
2741         if (rdev->desc->type == REGULATOR_CURRENT) {
2742                 status = device_create_file(dev, &dev_attr_requested_microamps);
2743                 if (status < 0)
2744                         return status;
2745         }
2746
2747         /* all the other attributes exist to support constraints;
2748          * don't show them if there are no constraints, or if the
2749          * relevant supporting methods are missing.
2750          */
2751         if (!rdev->constraints)
2752                 return status;
2753
2754         /* constraints need specific supporting methods */
2755         if (ops->set_voltage || ops->set_voltage_sel) {
2756                 status = device_create_file(dev, &dev_attr_min_microvolts);
2757                 if (status < 0)
2758                         return status;
2759                 status = device_create_file(dev, &dev_attr_max_microvolts);
2760                 if (status < 0)
2761                         return status;
2762         }
2763         if (ops->set_current_limit) {
2764                 status = device_create_file(dev, &dev_attr_min_microamps);
2765                 if (status < 0)
2766                         return status;
2767                 status = device_create_file(dev, &dev_attr_max_microamps);
2768                 if (status < 0)
2769                         return status;
2770         }
2771
2772         /* suspend mode constraints need multiple supporting methods */
2773         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2774                 return status;
2775
2776         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2777         if (status < 0)
2778                 return status;
2779         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2780         if (status < 0)
2781                 return status;
2782         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2783         if (status < 0)
2784                 return status;
2785
2786         if (ops->set_suspend_voltage) {
2787                 status = device_create_file(dev,
2788                                 &dev_attr_suspend_standby_microvolts);
2789                 if (status < 0)
2790                         return status;
2791                 status = device_create_file(dev,
2792                                 &dev_attr_suspend_mem_microvolts);
2793                 if (status < 0)
2794                         return status;
2795                 status = device_create_file(dev,
2796                                 &dev_attr_suspend_disk_microvolts);
2797                 if (status < 0)
2798                         return status;
2799         }
2800
2801         if (ops->set_suspend_mode) {
2802                 status = device_create_file(dev,
2803                                 &dev_attr_suspend_standby_mode);
2804                 if (status < 0)
2805                         return status;
2806                 status = device_create_file(dev,
2807                                 &dev_attr_suspend_mem_mode);
2808                 if (status < 0)
2809                         return status;
2810                 status = device_create_file(dev,
2811                                 &dev_attr_suspend_disk_mode);
2812                 if (status < 0)
2813                         return status;
2814         }
2815
2816         return status;
2817 }
2818
2819 static void rdev_init_debugfs(struct regulator_dev *rdev)
2820 {
2821 #ifdef CONFIG_DEBUG_FS
2822         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2823         if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2824                 rdev_warn(rdev, "Failed to create debugfs directory\n");
2825                 rdev->debugfs = NULL;
2826                 return;
2827         }
2828
2829         debugfs_create_u32("use_count", 0444, rdev->debugfs,
2830                            &rdev->use_count);
2831         debugfs_create_u32("open_count", 0444, rdev->debugfs,
2832                            &rdev->open_count);
2833 #endif
2834 }
2835
2836 /**
2837  * regulator_register - register regulator
2838  * @regulator_desc: regulator to register
2839  * @dev: struct device for the regulator
2840  * @init_data: platform provided init data, passed through by driver
2841  * @driver_data: private regulator data
2842  * @of_node: OpenFirmware node to parse for device tree bindings (may be
2843  *           NULL).
2844  *
2845  * Called by regulator drivers to register a regulator.
2846  * Returns 0 on success.
2847  */
2848 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2849         struct device *dev, const struct regulator_init_data *init_data,
2850         void *driver_data, struct device_node *of_node)
2851 {
2852         const struct regulation_constraints *constraints = NULL;
2853         static atomic_t regulator_no = ATOMIC_INIT(0);
2854         struct regulator_dev *rdev;
2855         int ret, i;
2856         const char *supply = NULL;
2857
2858         if (regulator_desc == NULL)
2859                 return ERR_PTR(-EINVAL);
2860
2861         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2862                 return ERR_PTR(-EINVAL);
2863
2864         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2865             regulator_desc->type != REGULATOR_CURRENT)
2866                 return ERR_PTR(-EINVAL);
2867
2868         /* Only one of each should be implemented */
2869         WARN_ON(regulator_desc->ops->get_voltage &&
2870                 regulator_desc->ops->get_voltage_sel);
2871         WARN_ON(regulator_desc->ops->set_voltage &&
2872                 regulator_desc->ops->set_voltage_sel);
2873
2874         /* If we're using selectors we must implement list_voltage. */
2875         if (regulator_desc->ops->get_voltage_sel &&
2876             !regulator_desc->ops->list_voltage) {
2877                 return ERR_PTR(-EINVAL);
2878         }
2879         if (regulator_desc->ops->set_voltage_sel &&
2880             !regulator_desc->ops->list_voltage) {
2881                 return ERR_PTR(-EINVAL);
2882         }
2883
2884         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2885         if (rdev == NULL)
2886                 return ERR_PTR(-ENOMEM);
2887
2888         mutex_lock(&regulator_list_mutex);
2889
2890         mutex_init(&rdev->mutex);
2891         rdev->reg_data = driver_data;
2892         rdev->owner = regulator_desc->owner;
2893         rdev->desc = regulator_desc;
2894         INIT_LIST_HEAD(&rdev->consumer_list);
2895         INIT_LIST_HEAD(&rdev->list);
2896         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2897         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2898
2899         /* preform any regulator specific init */
2900         if (init_data && init_data->regulator_init) {
2901                 ret = init_data->regulator_init(rdev->reg_data);
2902                 if (ret < 0)
2903                         goto clean;
2904         }
2905
2906         /* register with sysfs */
2907         rdev->dev.class = &regulator_class;
2908         rdev->dev.of_node = of_node;
2909         rdev->dev.parent = dev;
2910         dev_set_name(&rdev->dev, "regulator.%d",
2911                      atomic_inc_return(&regulator_no) - 1);
2912         ret = device_register(&rdev->dev);
2913         if (ret != 0) {
2914                 put_device(&rdev->dev);
2915                 goto clean;
2916         }
2917
2918         dev_set_drvdata(&rdev->dev, rdev);
2919
2920         /* set regulator constraints */
2921         if (init_data)
2922                 constraints = &init_data->constraints;
2923
2924         ret = set_machine_constraints(rdev, constraints);
2925         if (ret < 0)
2926                 goto scrub;
2927
2928         /* add attributes supported by this regulator */
2929         ret = add_regulator_attributes(rdev);
2930         if (ret < 0)
2931                 goto scrub;
2932
2933         if (init_data && init_data->supply_regulator)
2934                 supply = init_data->supply_regulator;
2935         else if (regulator_desc->supply_name)
2936                 supply = regulator_desc->supply_name;
2937
2938         if (supply) {
2939                 struct regulator_dev *r;
2940
2941                 r = regulator_dev_lookup(dev, supply);
2942
2943                 if (!r) {
2944                         dev_err(dev, "Failed to find supply %s\n", supply);
2945                         ret = -ENODEV;
2946                         goto scrub;
2947                 }
2948
2949                 ret = set_supply(rdev, r);
2950                 if (ret < 0)
2951                         goto scrub;
2952
2953                 /* Enable supply if rail is enabled */
2954                 if (rdev->desc->ops->is_enabled &&
2955                                 rdev->desc->ops->is_enabled(rdev)) {
2956                         ret = regulator_enable(rdev->supply);
2957                         if (ret < 0)
2958                                 goto scrub;
2959                 }
2960         }
2961
2962         /* add consumers devices */
2963         if (init_data) {
2964                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2965                         ret = set_consumer_device_supply(rdev,
2966                                 init_data->consumer_supplies[i].dev,
2967                                 init_data->consumer_supplies[i].dev_name,
2968                                 init_data->consumer_supplies[i].supply);
2969                         if (ret < 0) {
2970                                 dev_err(dev, "Failed to set supply %s\n",
2971                                         init_data->consumer_supplies[i].supply);
2972                                 goto unset_supplies;
2973                         }
2974                 }
2975         }
2976
2977         list_add(&rdev->list, &regulator_list);
2978
2979         rdev_init_debugfs(rdev);
2980 out:
2981         mutex_unlock(&regulator_list_mutex);
2982         return rdev;
2983
2984 unset_supplies:
2985         unset_regulator_supplies(rdev);
2986
2987 scrub:
2988         kfree(rdev->constraints);
2989         device_unregister(&rdev->dev);
2990         /* device core frees rdev */
2991         rdev = ERR_PTR(ret);
2992         goto out;
2993
2994 clean:
2995         kfree(rdev);
2996         rdev = ERR_PTR(ret);
2997         goto out;
2998 }
2999 EXPORT_SYMBOL_GPL(regulator_register);
3000
3001 /**
3002  * regulator_unregister - unregister regulator
3003  * @rdev: regulator to unregister
3004  *
3005  * Called by regulator drivers to unregister a regulator.
3006  */
3007 void regulator_unregister(struct regulator_dev *rdev)
3008 {
3009         if (rdev == NULL)
3010                 return;
3011
3012         mutex_lock(&regulator_list_mutex);
3013 #ifdef CONFIG_DEBUG_FS
3014         debugfs_remove_recursive(rdev->debugfs);
3015 #endif
3016         flush_work_sync(&rdev->disable_work.work);
3017         WARN_ON(rdev->open_count);
3018         unset_regulator_supplies(rdev);
3019         list_del(&rdev->list);
3020         if (rdev->supply)
3021                 regulator_put(rdev->supply);
3022         kfree(rdev->constraints);
3023         device_unregister(&rdev->dev);
3024         mutex_unlock(&regulator_list_mutex);
3025 }
3026 EXPORT_SYMBOL_GPL(regulator_unregister);
3027
3028 /**
3029  * regulator_suspend_prepare - prepare regulators for system wide suspend
3030  * @state: system suspend state
3031  *
3032  * Configure each regulator with it's suspend operating parameters for state.
3033  * This will usually be called by machine suspend code prior to supending.
3034  */
3035 int regulator_suspend_prepare(suspend_state_t state)
3036 {
3037         struct regulator_dev *rdev;
3038         int ret = 0;
3039
3040         /* ON is handled by regulator active state */
3041         if (state == PM_SUSPEND_ON)
3042                 return -EINVAL;
3043
3044         mutex_lock(&regulator_list_mutex);
3045         list_for_each_entry(rdev, &regulator_list, list) {
3046
3047                 mutex_lock(&rdev->mutex);
3048                 ret = suspend_prepare(rdev, state);
3049                 mutex_unlock(&rdev->mutex);
3050
3051                 if (ret < 0) {
3052                         rdev_err(rdev, "failed to prepare\n");
3053                         goto out;
3054                 }
3055         }
3056 out:
3057         mutex_unlock(&regulator_list_mutex);
3058         return ret;
3059 }
3060 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3061
3062 /**
3063  * regulator_suspend_finish - resume regulators from system wide suspend
3064  *
3065  * Turn on regulators that might be turned off by regulator_suspend_prepare
3066  * and that should be turned on according to the regulators properties.
3067  */
3068 int regulator_suspend_finish(void)
3069 {
3070         struct regulator_dev *rdev;
3071         int ret = 0, error;
3072
3073         mutex_lock(&regulator_list_mutex);
3074         list_for_each_entry(rdev, &regulator_list, list) {
3075                 struct regulator_ops *ops = rdev->desc->ops;
3076
3077                 mutex_lock(&rdev->mutex);
3078                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3079                                 ops->enable) {
3080                         error = ops->enable(rdev);
3081                         if (error)
3082                                 ret = error;
3083                 } else {
3084                         if (!has_full_constraints)
3085                                 goto unlock;
3086                         if (!ops->disable)
3087                                 goto unlock;
3088                         if (ops->is_enabled && !ops->is_enabled(rdev))
3089                                 goto unlock;
3090
3091                         error = ops->disable(rdev);
3092                         if (error)
3093                                 ret = error;
3094                 }
3095 unlock:
3096                 mutex_unlock(&rdev->mutex);
3097         }
3098         mutex_unlock(&regulator_list_mutex);
3099         return ret;
3100 }
3101 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3102
3103 /**
3104  * regulator_has_full_constraints - the system has fully specified constraints
3105  *
3106  * Calling this function will cause the regulator API to disable all
3107  * regulators which have a zero use count and don't have an always_on
3108  * constraint in a late_initcall.
3109  *
3110  * The intention is that this will become the default behaviour in a
3111  * future kernel release so users are encouraged to use this facility
3112  * now.
3113  */
3114 void regulator_has_full_constraints(void)
3115 {
3116         has_full_constraints = 1;
3117 }
3118 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3119
3120 /**
3121  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3122  *
3123  * Calling this function will cause the regulator API to provide a
3124  * dummy regulator to consumers if no physical regulator is found,
3125  * allowing most consumers to proceed as though a regulator were
3126  * configured.  This allows systems such as those with software
3127  * controllable regulators for the CPU core only to be brought up more
3128  * readily.
3129  */
3130 void regulator_use_dummy_regulator(void)
3131 {
3132         board_wants_dummy_regulator = true;
3133 }
3134 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3135
3136 /**
3137  * rdev_get_drvdata - get rdev regulator driver data
3138  * @rdev: regulator
3139  *
3140  * Get rdev regulator driver private data. This call can be used in the
3141  * regulator driver context.
3142  */
3143 void *rdev_get_drvdata(struct regulator_dev *rdev)
3144 {
3145         return rdev->reg_data;
3146 }
3147 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3148
3149 /**
3150  * regulator_get_drvdata - get regulator driver data
3151  * @regulator: regulator
3152  *
3153  * Get regulator driver private data. This call can be used in the consumer
3154  * driver context when non API regulator specific functions need to be called.
3155  */
3156 void *regulator_get_drvdata(struct regulator *regulator)
3157 {
3158         return regulator->rdev->reg_data;
3159 }
3160 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3161
3162 /**
3163  * regulator_set_drvdata - set regulator driver data
3164  * @regulator: regulator
3165  * @data: data
3166  */
3167 void regulator_set_drvdata(struct regulator *regulator, void *data)
3168 {
3169         regulator->rdev->reg_data = data;
3170 }
3171 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3172
3173 /**
3174  * regulator_get_id - get regulator ID
3175  * @rdev: regulator
3176  */
3177 int rdev_get_id(struct regulator_dev *rdev)
3178 {
3179         return rdev->desc->id;
3180 }
3181 EXPORT_SYMBOL_GPL(rdev_get_id);
3182
3183 struct device *rdev_get_dev(struct regulator_dev *rdev)
3184 {
3185         return &rdev->dev;
3186 }
3187 EXPORT_SYMBOL_GPL(rdev_get_dev);
3188
3189 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3190 {
3191         return reg_init_data->driver_data;
3192 }
3193 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3194
3195 #ifdef CONFIG_DEBUG_FS
3196 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3197                                     size_t count, loff_t *ppos)
3198 {
3199         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3200         ssize_t len, ret = 0;
3201         struct regulator_map *map;
3202
3203         if (!buf)
3204                 return -ENOMEM;
3205
3206         list_for_each_entry(map, &regulator_map_list, list) {
3207                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3208                                "%s -> %s.%s\n",
3209                                rdev_get_name(map->regulator), map->dev_name,
3210                                map->supply);
3211                 if (len >= 0)
3212                         ret += len;
3213                 if (ret > PAGE_SIZE) {
3214                         ret = PAGE_SIZE;
3215                         break;
3216                 }
3217         }
3218
3219         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3220
3221         kfree(buf);
3222
3223         return ret;
3224 }
3225
3226 static const struct file_operations supply_map_fops = {
3227         .read = supply_map_read_file,
3228         .llseek = default_llseek,
3229 };
3230 #endif
3231
3232 static int __init regulator_init(void)
3233 {
3234         int ret;
3235
3236         ret = class_register(&regulator_class);
3237
3238 #ifdef CONFIG_DEBUG_FS
3239         debugfs_root = debugfs_create_dir("regulator", NULL);
3240         if (IS_ERR(debugfs_root) || !debugfs_root) {
3241                 pr_warn("regulator: Failed to create debugfs directory\n");
3242                 debugfs_root = NULL;
3243         }
3244
3245         if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3246                                        NULL, &supply_map_fops)))
3247                 pr_warn("regulator: Failed to create supplies debugfs\n");
3248 #endif
3249
3250         regulator_dummy_init();
3251
3252         return ret;
3253 }
3254
3255 /* init early to allow our consumers to complete system booting */
3256 core_initcall(regulator_init);
3257
3258 static int __init regulator_init_complete(void)
3259 {
3260         struct regulator_dev *rdev;
3261         struct regulator_ops *ops;
3262         struct regulation_constraints *c;
3263         int enabled, ret;
3264
3265         mutex_lock(&regulator_list_mutex);
3266
3267         /* If we have a full configuration then disable any regulators
3268          * which are not in use or always_on.  This will become the
3269          * default behaviour in the future.
3270          */
3271         list_for_each_entry(rdev, &regulator_list, list) {
3272                 ops = rdev->desc->ops;
3273                 c = rdev->constraints;
3274
3275                 if (!ops->disable || (c && c->always_on))
3276                         continue;
3277
3278                 mutex_lock(&rdev->mutex);
3279
3280                 if (rdev->use_count)
3281                         goto unlock;
3282
3283                 /* If we can't read the status assume it's on. */
3284                 if (ops->is_enabled)
3285                         enabled = ops->is_enabled(rdev);
3286                 else
3287                         enabled = 1;
3288
3289                 if (!enabled)
3290                         goto unlock;
3291
3292                 if (has_full_constraints) {
3293                         /* We log since this may kill the system if it
3294                          * goes wrong. */
3295                         rdev_info(rdev, "disabling\n");
3296                         ret = ops->disable(rdev);
3297                         if (ret != 0) {
3298                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3299                         }
3300                 } else {
3301                         /* The intention is that in future we will
3302                          * assume that full constraints are provided
3303                          * so warn even if we aren't going to do
3304                          * anything here.
3305                          */
3306                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3307                 }
3308
3309 unlock:
3310                 mutex_unlock(&rdev->mutex);
3311         }
3312
3313         mutex_unlock(&regulator_list_mutex);
3314
3315         return 0;
3316 }
3317 late_initcall(regulator_init_complete);