Merge remote-tracking branch 'regulator/for-linus' into regulator-next
[linux-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/async.h>
24 #include <linux/err.h>
25 #include <linux/mutex.h>
26 #include <linux/suspend.h>
27 #include <linux/delay.h>
28 #include <linux/of.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 #ifdef CONFIG_DEBUG_FS
58 static struct dentry *debugfs_root;
59 #endif
60
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67         struct list_head list;
68         const char *dev_name;   /* The dev_name() for the consumer */
69         const char *supply;
70         struct regulator_dev *regulator;
71 };
72
73 /*
74  * struct regulator
75  *
76  * One for each consumer device.
77  */
78 struct regulator {
79         struct device *dev;
80         struct list_head list;
81         int uA_load;
82         int min_uV;
83         int max_uV;
84         char *supply_name;
85         struct device_attribute dev_attr;
86         struct regulator_dev *rdev;
87 #ifdef CONFIG_DEBUG_FS
88         struct dentry *debugfs;
89 #endif
90 };
91
92 static int _regulator_is_enabled(struct regulator_dev *rdev);
93 static int _regulator_disable(struct regulator_dev *rdev);
94 static int _regulator_get_voltage(struct regulator_dev *rdev);
95 static int _regulator_get_current_limit(struct regulator_dev *rdev);
96 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
97 static void _notifier_call_chain(struct regulator_dev *rdev,
98                                   unsigned long event, void *data);
99 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
100                                      int min_uV, int max_uV);
101 static struct regulator *create_regulator(struct regulator_dev *rdev,
102                                           struct device *dev,
103                                           const char *supply_name);
104
105 static const char *rdev_get_name(struct regulator_dev *rdev)
106 {
107         if (rdev->constraints && rdev->constraints->name)
108                 return rdev->constraints->name;
109         else if (rdev->desc->name)
110                 return rdev->desc->name;
111         else
112                 return "";
113 }
114
115 /* gets the regulator for a given consumer device */
116 static struct regulator *get_device_regulator(struct device *dev)
117 {
118         struct regulator *regulator = NULL;
119         struct regulator_dev *rdev;
120
121         mutex_lock(&regulator_list_mutex);
122         list_for_each_entry(rdev, &regulator_list, list) {
123                 mutex_lock(&rdev->mutex);
124                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
125                         if (regulator->dev == dev) {
126                                 mutex_unlock(&rdev->mutex);
127                                 mutex_unlock(&regulator_list_mutex);
128                                 return regulator;
129                         }
130                 }
131                 mutex_unlock(&rdev->mutex);
132         }
133         mutex_unlock(&regulator_list_mutex);
134         return NULL;
135 }
136
137 /**
138  * of_get_regulator - get a regulator device node based on supply name
139  * @dev: Device pointer for the consumer (of regulator) device
140  * @supply: regulator supply name
141  *
142  * Extract the regulator device node corresponding to the supply name.
143  * retruns the device node corresponding to the regulator if found, else
144  * returns NULL.
145  */
146 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
147 {
148         struct device_node *regnode = NULL;
149         char prop_name[32]; /* 32 is max size of property name */
150
151         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
152
153         snprintf(prop_name, 32, "%s-supply", supply);
154         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
155
156         if (!regnode) {
157                 dev_warn(dev, "%s property in node %s references invalid phandle",
158                                 prop_name, dev->of_node->full_name);
159                 return NULL;
160         }
161         return regnode;
162 }
163
164 /* Platform voltage constraint check */
165 static int regulator_check_voltage(struct regulator_dev *rdev,
166                                    int *min_uV, int *max_uV)
167 {
168         BUG_ON(*min_uV > *max_uV);
169
170         if (!rdev->constraints) {
171                 rdev_err(rdev, "no constraints\n");
172                 return -ENODEV;
173         }
174         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175                 rdev_err(rdev, "operation not allowed\n");
176                 return -EPERM;
177         }
178
179         if (*max_uV > rdev->constraints->max_uV)
180                 *max_uV = rdev->constraints->max_uV;
181         if (*min_uV < rdev->constraints->min_uV)
182                 *min_uV = rdev->constraints->min_uV;
183
184         if (*min_uV > *max_uV) {
185                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186                          *min_uV, *max_uV);
187                 return -EINVAL;
188         }
189
190         return 0;
191 }
192
193 /* Make sure we select a voltage that suits the needs of all
194  * regulator consumers
195  */
196 static int regulator_check_consumers(struct regulator_dev *rdev,
197                                      int *min_uV, int *max_uV)
198 {
199         struct regulator *regulator;
200
201         list_for_each_entry(regulator, &rdev->consumer_list, list) {
202                 /*
203                  * Assume consumers that didn't say anything are OK
204                  * with anything in the constraint range.
205                  */
206                 if (!regulator->min_uV && !regulator->max_uV)
207                         continue;
208
209                 if (*max_uV > regulator->max_uV)
210                         *max_uV = regulator->max_uV;
211                 if (*min_uV < regulator->min_uV)
212                         *min_uV = regulator->min_uV;
213         }
214
215         if (*min_uV > *max_uV)
216                 return -EINVAL;
217
218         return 0;
219 }
220
221 /* current constraint check */
222 static int regulator_check_current_limit(struct regulator_dev *rdev,
223                                         int *min_uA, int *max_uA)
224 {
225         BUG_ON(*min_uA > *max_uA);
226
227         if (!rdev->constraints) {
228                 rdev_err(rdev, "no constraints\n");
229                 return -ENODEV;
230         }
231         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
232                 rdev_err(rdev, "operation not allowed\n");
233                 return -EPERM;
234         }
235
236         if (*max_uA > rdev->constraints->max_uA)
237                 *max_uA = rdev->constraints->max_uA;
238         if (*min_uA < rdev->constraints->min_uA)
239                 *min_uA = rdev->constraints->min_uA;
240
241         if (*min_uA > *max_uA) {
242                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
243                          *min_uA, *max_uA);
244                 return -EINVAL;
245         }
246
247         return 0;
248 }
249
250 /* operating mode constraint check */
251 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
252 {
253         switch (*mode) {
254         case REGULATOR_MODE_FAST:
255         case REGULATOR_MODE_NORMAL:
256         case REGULATOR_MODE_IDLE:
257         case REGULATOR_MODE_STANDBY:
258                 break;
259         default:
260                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
261                 return -EINVAL;
262         }
263
264         if (!rdev->constraints) {
265                 rdev_err(rdev, "no constraints\n");
266                 return -ENODEV;
267         }
268         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
269                 rdev_err(rdev, "operation not allowed\n");
270                 return -EPERM;
271         }
272
273         /* The modes are bitmasks, the most power hungry modes having
274          * the lowest values. If the requested mode isn't supported
275          * try higher modes. */
276         while (*mode) {
277                 if (rdev->constraints->valid_modes_mask & *mode)
278                         return 0;
279                 *mode /= 2;
280         }
281
282         return -EINVAL;
283 }
284
285 /* dynamic regulator mode switching constraint check */
286 static int regulator_check_drms(struct regulator_dev *rdev)
287 {
288         if (!rdev->constraints) {
289                 rdev_err(rdev, "no constraints\n");
290                 return -ENODEV;
291         }
292         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
293                 rdev_err(rdev, "operation not allowed\n");
294                 return -EPERM;
295         }
296         return 0;
297 }
298
299 static ssize_t device_requested_uA_show(struct device *dev,
300                              struct device_attribute *attr, char *buf)
301 {
302         struct regulator *regulator;
303
304         regulator = get_device_regulator(dev);
305         if (regulator == NULL)
306                 return 0;
307
308         return sprintf(buf, "%d\n", regulator->uA_load);
309 }
310
311 static ssize_t regulator_uV_show(struct device *dev,
312                                 struct device_attribute *attr, char *buf)
313 {
314         struct regulator_dev *rdev = dev_get_drvdata(dev);
315         ssize_t ret;
316
317         mutex_lock(&rdev->mutex);
318         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
319         mutex_unlock(&rdev->mutex);
320
321         return ret;
322 }
323 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
324
325 static ssize_t regulator_uA_show(struct device *dev,
326                                 struct device_attribute *attr, char *buf)
327 {
328         struct regulator_dev *rdev = dev_get_drvdata(dev);
329
330         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
331 }
332 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
333
334 static ssize_t regulator_name_show(struct device *dev,
335                              struct device_attribute *attr, char *buf)
336 {
337         struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339         return sprintf(buf, "%s\n", rdev_get_name(rdev));
340 }
341
342 static ssize_t regulator_print_opmode(char *buf, int mode)
343 {
344         switch (mode) {
345         case REGULATOR_MODE_FAST:
346                 return sprintf(buf, "fast\n");
347         case REGULATOR_MODE_NORMAL:
348                 return sprintf(buf, "normal\n");
349         case REGULATOR_MODE_IDLE:
350                 return sprintf(buf, "idle\n");
351         case REGULATOR_MODE_STANDBY:
352                 return sprintf(buf, "standby\n");
353         }
354         return sprintf(buf, "unknown\n");
355 }
356
357 static ssize_t regulator_opmode_show(struct device *dev,
358                                     struct device_attribute *attr, char *buf)
359 {
360         struct regulator_dev *rdev = dev_get_drvdata(dev);
361
362         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363 }
364 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365
366 static ssize_t regulator_print_state(char *buf, int state)
367 {
368         if (state > 0)
369                 return sprintf(buf, "enabled\n");
370         else if (state == 0)
371                 return sprintf(buf, "disabled\n");
372         else
373                 return sprintf(buf, "unknown\n");
374 }
375
376 static ssize_t regulator_state_show(struct device *dev,
377                                    struct device_attribute *attr, char *buf)
378 {
379         struct regulator_dev *rdev = dev_get_drvdata(dev);
380         ssize_t ret;
381
382         mutex_lock(&rdev->mutex);
383         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384         mutex_unlock(&rdev->mutex);
385
386         return ret;
387 }
388 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389
390 static ssize_t regulator_status_show(struct device *dev,
391                                    struct device_attribute *attr, char *buf)
392 {
393         struct regulator_dev *rdev = dev_get_drvdata(dev);
394         int status;
395         char *label;
396
397         status = rdev->desc->ops->get_status(rdev);
398         if (status < 0)
399                 return status;
400
401         switch (status) {
402         case REGULATOR_STATUS_OFF:
403                 label = "off";
404                 break;
405         case REGULATOR_STATUS_ON:
406                 label = "on";
407                 break;
408         case REGULATOR_STATUS_ERROR:
409                 label = "error";
410                 break;
411         case REGULATOR_STATUS_FAST:
412                 label = "fast";
413                 break;
414         case REGULATOR_STATUS_NORMAL:
415                 label = "normal";
416                 break;
417         case REGULATOR_STATUS_IDLE:
418                 label = "idle";
419                 break;
420         case REGULATOR_STATUS_STANDBY:
421                 label = "standby";
422                 break;
423         default:
424                 return -ERANGE;
425         }
426
427         return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432                                     struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436         if (!rdev->constraints)
437                 return sprintf(buf, "constraint not defined\n");
438
439         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444                                     struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         if (!rdev->constraints)
449                 return sprintf(buf, "constraint not defined\n");
450
451         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456                                     struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         if (!rdev->constraints)
461                 return sprintf(buf, "constraint not defined\n");
462
463         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468                                     struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         if (!rdev->constraints)
473                 return sprintf(buf, "constraint not defined\n");
474
475         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480                                       struct device_attribute *attr, char *buf)
481 {
482         struct regulator_dev *rdev = dev_get_drvdata(dev);
483         struct regulator *regulator;
484         int uA = 0;
485
486         mutex_lock(&rdev->mutex);
487         list_for_each_entry(regulator, &rdev->consumer_list, list)
488                 uA += regulator->uA_load;
489         mutex_unlock(&rdev->mutex);
490         return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t regulator_num_users_show(struct device *dev,
495                                       struct device_attribute *attr, char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498         return sprintf(buf, "%d\n", rdev->use_count);
499 }
500
501 static ssize_t regulator_type_show(struct device *dev,
502                                   struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         switch (rdev->desc->type) {
507         case REGULATOR_VOLTAGE:
508                 return sprintf(buf, "voltage\n");
509         case REGULATOR_CURRENT:
510                 return sprintf(buf, "current\n");
511         }
512         return sprintf(buf, "unknown\n");
513 }
514
515 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
516                                 struct device_attribute *attr, char *buf)
517 {
518         struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
521 }
522 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
523                 regulator_suspend_mem_uV_show, NULL);
524
525 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
526                                 struct device_attribute *attr, char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
531 }
532 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
533                 regulator_suspend_disk_uV_show, NULL);
534
535 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
536                                 struct device_attribute *attr, char *buf)
537 {
538         struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
541 }
542 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
543                 regulator_suspend_standby_uV_show, NULL);
544
545 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
546                                 struct device_attribute *attr, char *buf)
547 {
548         struct regulator_dev *rdev = dev_get_drvdata(dev);
549
550         return regulator_print_opmode(buf,
551                 rdev->constraints->state_mem.mode);
552 }
553 static DEVICE_ATTR(suspend_mem_mode, 0444,
554                 regulator_suspend_mem_mode_show, NULL);
555
556 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
557                                 struct device_attribute *attr, char *buf)
558 {
559         struct regulator_dev *rdev = dev_get_drvdata(dev);
560
561         return regulator_print_opmode(buf,
562                 rdev->constraints->state_disk.mode);
563 }
564 static DEVICE_ATTR(suspend_disk_mode, 0444,
565                 regulator_suspend_disk_mode_show, NULL);
566
567 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
568                                 struct device_attribute *attr, char *buf)
569 {
570         struct regulator_dev *rdev = dev_get_drvdata(dev);
571
572         return regulator_print_opmode(buf,
573                 rdev->constraints->state_standby.mode);
574 }
575 static DEVICE_ATTR(suspend_standby_mode, 0444,
576                 regulator_suspend_standby_mode_show, NULL);
577
578 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
579                                    struct device_attribute *attr, char *buf)
580 {
581         struct regulator_dev *rdev = dev_get_drvdata(dev);
582
583         return regulator_print_state(buf,
584                         rdev->constraints->state_mem.enabled);
585 }
586 static DEVICE_ATTR(suspend_mem_state, 0444,
587                 regulator_suspend_mem_state_show, NULL);
588
589 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
590                                    struct device_attribute *attr, char *buf)
591 {
592         struct regulator_dev *rdev = dev_get_drvdata(dev);
593
594         return regulator_print_state(buf,
595                         rdev->constraints->state_disk.enabled);
596 }
597 static DEVICE_ATTR(suspend_disk_state, 0444,
598                 regulator_suspend_disk_state_show, NULL);
599
600 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
601                                    struct device_attribute *attr, char *buf)
602 {
603         struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605         return regulator_print_state(buf,
606                         rdev->constraints->state_standby.enabled);
607 }
608 static DEVICE_ATTR(suspend_standby_state, 0444,
609                 regulator_suspend_standby_state_show, NULL);
610
611
612 /*
613  * These are the only attributes are present for all regulators.
614  * Other attributes are a function of regulator functionality.
615  */
616 static struct device_attribute regulator_dev_attrs[] = {
617         __ATTR(name, 0444, regulator_name_show, NULL),
618         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
619         __ATTR(type, 0444, regulator_type_show, NULL),
620         __ATTR_NULL,
621 };
622
623 static void regulator_dev_release(struct device *dev)
624 {
625         struct regulator_dev *rdev = dev_get_drvdata(dev);
626         kfree(rdev);
627 }
628
629 static struct class regulator_class = {
630         .name = "regulator",
631         .dev_release = regulator_dev_release,
632         .dev_attrs = regulator_dev_attrs,
633 };
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static void drms_uA_update(struct regulator_dev *rdev)
638 {
639         struct regulator *sibling;
640         int current_uA = 0, output_uV, input_uV, err;
641         unsigned int mode;
642
643         err = regulator_check_drms(rdev);
644         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645             (!rdev->desc->ops->get_voltage &&
646              !rdev->desc->ops->get_voltage_sel) ||
647             !rdev->desc->ops->set_mode)
648                 return;
649
650         /* get output voltage */
651         output_uV = _regulator_get_voltage(rdev);
652         if (output_uV <= 0)
653                 return;
654
655         /* get input voltage */
656         input_uV = 0;
657         if (rdev->supply)
658                 input_uV = _regulator_get_voltage(rdev);
659         if (input_uV <= 0)
660                 input_uV = rdev->constraints->input_uV;
661         if (input_uV <= 0)
662                 return;
663
664         /* calc total requested load */
665         list_for_each_entry(sibling, &rdev->consumer_list, list)
666                 current_uA += sibling->uA_load;
667
668         /* now get the optimum mode for our new total regulator load */
669         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
670                                                   output_uV, current_uA);
671
672         /* check the new mode is allowed */
673         err = regulator_mode_constrain(rdev, &mode);
674         if (err == 0)
675                 rdev->desc->ops->set_mode(rdev, mode);
676 }
677
678 static int suspend_set_state(struct regulator_dev *rdev,
679         struct regulator_state *rstate)
680 {
681         int ret = 0;
682         bool can_set_state;
683
684         can_set_state = rdev->desc->ops->set_suspend_enable &&
685                 rdev->desc->ops->set_suspend_disable;
686
687         /* If we have no suspend mode configration don't set anything;
688          * only warn if the driver actually makes the suspend mode
689          * configurable.
690          */
691         if (!rstate->enabled && !rstate->disabled) {
692                 if (can_set_state)
693                         rdev_warn(rdev, "No configuration\n");
694                 return 0;
695         }
696
697         if (rstate->enabled && rstate->disabled) {
698                 rdev_err(rdev, "invalid configuration\n");
699                 return -EINVAL;
700         }
701
702         if (!can_set_state) {
703                 rdev_err(rdev, "no way to set suspend state\n");
704                 return -EINVAL;
705         }
706
707         if (rstate->enabled)
708                 ret = rdev->desc->ops->set_suspend_enable(rdev);
709         else
710                 ret = rdev->desc->ops->set_suspend_disable(rdev);
711         if (ret < 0) {
712                 rdev_err(rdev, "failed to enabled/disable\n");
713                 return ret;
714         }
715
716         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718                 if (ret < 0) {
719                         rdev_err(rdev, "failed to set voltage\n");
720                         return ret;
721                 }
722         }
723
724         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726                 if (ret < 0) {
727                         rdev_err(rdev, "failed to set mode\n");
728                         return ret;
729                 }
730         }
731         return ret;
732 }
733
734 /* locks held by caller */
735 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736 {
737         if (!rdev->constraints)
738                 return -EINVAL;
739
740         switch (state) {
741         case PM_SUSPEND_STANDBY:
742                 return suspend_set_state(rdev,
743                         &rdev->constraints->state_standby);
744         case PM_SUSPEND_MEM:
745                 return suspend_set_state(rdev,
746                         &rdev->constraints->state_mem);
747         case PM_SUSPEND_MAX:
748                 return suspend_set_state(rdev,
749                         &rdev->constraints->state_disk);
750         default:
751                 return -EINVAL;
752         }
753 }
754
755 static void print_constraints(struct regulator_dev *rdev)
756 {
757         struct regulation_constraints *constraints = rdev->constraints;
758         char buf[80] = "";
759         int count = 0;
760         int ret;
761
762         if (constraints->min_uV && constraints->max_uV) {
763                 if (constraints->min_uV == constraints->max_uV)
764                         count += sprintf(buf + count, "%d mV ",
765                                          constraints->min_uV / 1000);
766                 else
767                         count += sprintf(buf + count, "%d <--> %d mV ",
768                                          constraints->min_uV / 1000,
769                                          constraints->max_uV / 1000);
770         }
771
772         if (!constraints->min_uV ||
773             constraints->min_uV != constraints->max_uV) {
774                 ret = _regulator_get_voltage(rdev);
775                 if (ret > 0)
776                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
777         }
778
779         if (constraints->uV_offset)
780                 count += sprintf(buf, "%dmV offset ",
781                                  constraints->uV_offset / 1000);
782
783         if (constraints->min_uA && constraints->max_uA) {
784                 if (constraints->min_uA == constraints->max_uA)
785                         count += sprintf(buf + count, "%d mA ",
786                                          constraints->min_uA / 1000);
787                 else
788                         count += sprintf(buf + count, "%d <--> %d mA ",
789                                          constraints->min_uA / 1000,
790                                          constraints->max_uA / 1000);
791         }
792
793         if (!constraints->min_uA ||
794             constraints->min_uA != constraints->max_uA) {
795                 ret = _regulator_get_current_limit(rdev);
796                 if (ret > 0)
797                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
798         }
799
800         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801                 count += sprintf(buf + count, "fast ");
802         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803                 count += sprintf(buf + count, "normal ");
804         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805                 count += sprintf(buf + count, "idle ");
806         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807                 count += sprintf(buf + count, "standby");
808
809         rdev_info(rdev, "%s\n", buf);
810 }
811
812 static int machine_constraints_voltage(struct regulator_dev *rdev,
813         struct regulation_constraints *constraints)
814 {
815         struct regulator_ops *ops = rdev->desc->ops;
816         int ret;
817
818         /* do we need to apply the constraint voltage */
819         if (rdev->constraints->apply_uV &&
820             rdev->constraints->min_uV == rdev->constraints->max_uV) {
821                 ret = _regulator_do_set_voltage(rdev,
822                                                 rdev->constraints->min_uV,
823                                                 rdev->constraints->max_uV);
824                 if (ret < 0) {
825                         rdev_err(rdev, "failed to apply %duV constraint\n",
826                                  rdev->constraints->min_uV);
827                         return ret;
828                 }
829         }
830
831         /* constrain machine-level voltage specs to fit
832          * the actual range supported by this regulator.
833          */
834         if (ops->list_voltage && rdev->desc->n_voltages) {
835                 int     count = rdev->desc->n_voltages;
836                 int     i;
837                 int     min_uV = INT_MAX;
838                 int     max_uV = INT_MIN;
839                 int     cmin = constraints->min_uV;
840                 int     cmax = constraints->max_uV;
841
842                 /* it's safe to autoconfigure fixed-voltage supplies
843                    and the constraints are used by list_voltage. */
844                 if (count == 1 && !cmin) {
845                         cmin = 1;
846                         cmax = INT_MAX;
847                         constraints->min_uV = cmin;
848                         constraints->max_uV = cmax;
849                 }
850
851                 /* voltage constraints are optional */
852                 if ((cmin == 0) && (cmax == 0))
853                         return 0;
854
855                 /* else require explicit machine-level constraints */
856                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
857                         rdev_err(rdev, "invalid voltage constraints\n");
858                         return -EINVAL;
859                 }
860
861                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
862                 for (i = 0; i < count; i++) {
863                         int     value;
864
865                         value = ops->list_voltage(rdev, i);
866                         if (value <= 0)
867                                 continue;
868
869                         /* maybe adjust [min_uV..max_uV] */
870                         if (value >= cmin && value < min_uV)
871                                 min_uV = value;
872                         if (value <= cmax && value > max_uV)
873                                 max_uV = value;
874                 }
875
876                 /* final: [min_uV..max_uV] valid iff constraints valid */
877                 if (max_uV < min_uV) {
878                         rdev_err(rdev, "unsupportable voltage constraints\n");
879                         return -EINVAL;
880                 }
881
882                 /* use regulator's subset of machine constraints */
883                 if (constraints->min_uV < min_uV) {
884                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
885                                  constraints->min_uV, min_uV);
886                         constraints->min_uV = min_uV;
887                 }
888                 if (constraints->max_uV > max_uV) {
889                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
890                                  constraints->max_uV, max_uV);
891                         constraints->max_uV = max_uV;
892                 }
893         }
894
895         return 0;
896 }
897
898 /**
899  * set_machine_constraints - sets regulator constraints
900  * @rdev: regulator source
901  * @constraints: constraints to apply
902  *
903  * Allows platform initialisation code to define and constrain
904  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
905  * Constraints *must* be set by platform code in order for some
906  * regulator operations to proceed i.e. set_voltage, set_current_limit,
907  * set_mode.
908  */
909 static int set_machine_constraints(struct regulator_dev *rdev,
910         const struct regulation_constraints *constraints)
911 {
912         int ret = 0;
913         struct regulator_ops *ops = rdev->desc->ops;
914
915         rdev->constraints = kmemdup(constraints, sizeof(*constraints),
916                                     GFP_KERNEL);
917         if (!rdev->constraints)
918                 return -ENOMEM;
919
920         ret = machine_constraints_voltage(rdev, rdev->constraints);
921         if (ret != 0)
922                 goto out;
923
924         /* do we need to setup our suspend state */
925         if (constraints->initial_state) {
926                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
927                 if (ret < 0) {
928                         rdev_err(rdev, "failed to set suspend state\n");
929                         goto out;
930                 }
931         }
932
933         if (constraints->initial_mode) {
934                 if (!ops->set_mode) {
935                         rdev_err(rdev, "no set_mode operation\n");
936                         ret = -EINVAL;
937                         goto out;
938                 }
939
940                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
941                 if (ret < 0) {
942                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
943                         goto out;
944                 }
945         }
946
947         /* If the constraints say the regulator should be on at this point
948          * and we have control then make sure it is enabled.
949          */
950         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
951             ops->enable) {
952                 ret = ops->enable(rdev);
953                 if (ret < 0) {
954                         rdev_err(rdev, "failed to enable\n");
955                         goto out;
956                 }
957         }
958
959         print_constraints(rdev);
960         return 0;
961 out:
962         kfree(rdev->constraints);
963         rdev->constraints = NULL;
964         return ret;
965 }
966
967 /**
968  * set_supply - set regulator supply regulator
969  * @rdev: regulator name
970  * @supply_rdev: supply regulator name
971  *
972  * Called by platform initialisation code to set the supply regulator for this
973  * regulator. This ensures that a regulators supply will also be enabled by the
974  * core if it's child is enabled.
975  */
976 static int set_supply(struct regulator_dev *rdev,
977                       struct regulator_dev *supply_rdev)
978 {
979         int err;
980
981         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
982
983         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
984         if (IS_ERR(rdev->supply)) {
985                 err = PTR_ERR(rdev->supply);
986                 rdev->supply = NULL;
987                 return err;
988         }
989
990         return 0;
991 }
992
993 /**
994  * set_consumer_device_supply - Bind a regulator to a symbolic supply
995  * @rdev:         regulator source
996  * @consumer_dev: device the supply applies to
997  * @consumer_dev_name: dev_name() string for device supply applies to
998  * @supply:       symbolic name for supply
999  *
1000  * Allows platform initialisation code to map physical regulator
1001  * sources to symbolic names for supplies for use by devices.  Devices
1002  * should use these symbolic names to request regulators, avoiding the
1003  * need to provide board-specific regulator names as platform data.
1004  *
1005  * Only one of consumer_dev and consumer_dev_name may be specified.
1006  */
1007 static int set_consumer_device_supply(struct regulator_dev *rdev,
1008         struct device *consumer_dev, const char *consumer_dev_name,
1009         const char *supply)
1010 {
1011         struct regulator_map *node;
1012         int has_dev;
1013
1014         if (consumer_dev && consumer_dev_name)
1015                 return -EINVAL;
1016
1017         if (!consumer_dev_name && consumer_dev)
1018                 consumer_dev_name = dev_name(consumer_dev);
1019
1020         if (supply == NULL)
1021                 return -EINVAL;
1022
1023         if (consumer_dev_name != NULL)
1024                 has_dev = 1;
1025         else
1026                 has_dev = 0;
1027
1028         list_for_each_entry(node, &regulator_map_list, list) {
1029                 if (node->dev_name && consumer_dev_name) {
1030                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1031                                 continue;
1032                 } else if (node->dev_name || consumer_dev_name) {
1033                         continue;
1034                 }
1035
1036                 if (strcmp(node->supply, supply) != 0)
1037                         continue;
1038
1039                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1040                         dev_name(&node->regulator->dev),
1041                         node->regulator->desc->name,
1042                         supply,
1043                         dev_name(&rdev->dev), rdev_get_name(rdev));
1044                 return -EBUSY;
1045         }
1046
1047         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1048         if (node == NULL)
1049                 return -ENOMEM;
1050
1051         node->regulator = rdev;
1052         node->supply = supply;
1053
1054         if (has_dev) {
1055                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1056                 if (node->dev_name == NULL) {
1057                         kfree(node);
1058                         return -ENOMEM;
1059                 }
1060         }
1061
1062         list_add(&node->list, &regulator_map_list);
1063         return 0;
1064 }
1065
1066 static void unset_regulator_supplies(struct regulator_dev *rdev)
1067 {
1068         struct regulator_map *node, *n;
1069
1070         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1071                 if (rdev == node->regulator) {
1072                         list_del(&node->list);
1073                         kfree(node->dev_name);
1074                         kfree(node);
1075                 }
1076         }
1077 }
1078
1079 #define REG_STR_SIZE    64
1080
1081 static struct regulator *create_regulator(struct regulator_dev *rdev,
1082                                           struct device *dev,
1083                                           const char *supply_name)
1084 {
1085         struct regulator *regulator;
1086         char buf[REG_STR_SIZE];
1087         int err, size;
1088
1089         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1090         if (regulator == NULL)
1091                 return NULL;
1092
1093         mutex_lock(&rdev->mutex);
1094         regulator->rdev = rdev;
1095         list_add(&regulator->list, &rdev->consumer_list);
1096
1097         if (dev) {
1098                 /* create a 'requested_microamps_name' sysfs entry */
1099                 size = scnprintf(buf, REG_STR_SIZE,
1100                                  "microamps_requested_%s-%s",
1101                                  dev_name(dev), supply_name);
1102                 if (size >= REG_STR_SIZE)
1103                         goto overflow_err;
1104
1105                 regulator->dev = dev;
1106                 sysfs_attr_init(&regulator->dev_attr.attr);
1107                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1108                 if (regulator->dev_attr.attr.name == NULL)
1109                         goto attr_name_err;
1110
1111                 regulator->dev_attr.attr.mode = 0444;
1112                 regulator->dev_attr.show = device_requested_uA_show;
1113                 err = device_create_file(dev, &regulator->dev_attr);
1114                 if (err < 0) {
1115                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1116                         goto attr_name_err;
1117                 }
1118
1119                 /* also add a link to the device sysfs entry */
1120                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1121                                  dev->kobj.name, supply_name);
1122                 if (size >= REG_STR_SIZE)
1123                         goto attr_err;
1124
1125                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1126                 if (regulator->supply_name == NULL)
1127                         goto attr_err;
1128
1129                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1130                                         buf);
1131                 if (err) {
1132                         rdev_warn(rdev, "could not add device link %s err %d\n",
1133                                   dev->kobj.name, err);
1134                         goto link_name_err;
1135                 }
1136         } else {
1137                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1138                 if (regulator->supply_name == NULL)
1139                         goto attr_err;
1140         }
1141
1142 #ifdef CONFIG_DEBUG_FS
1143         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1144                                                 rdev->debugfs);
1145         if (IS_ERR_OR_NULL(regulator->debugfs)) {
1146                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1147                 regulator->debugfs = NULL;
1148         } else {
1149                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1150                                    &regulator->uA_load);
1151                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1152                                    &regulator->min_uV);
1153                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1154                                    &regulator->max_uV);
1155         }
1156 #endif
1157
1158         mutex_unlock(&rdev->mutex);
1159         return regulator;
1160 link_name_err:
1161         kfree(regulator->supply_name);
1162 attr_err:
1163         device_remove_file(regulator->dev, &regulator->dev_attr);
1164 attr_name_err:
1165         kfree(regulator->dev_attr.attr.name);
1166 overflow_err:
1167         list_del(&regulator->list);
1168         kfree(regulator);
1169         mutex_unlock(&rdev->mutex);
1170         return NULL;
1171 }
1172
1173 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1174 {
1175         if (!rdev->desc->ops->enable_time)
1176                 return 0;
1177         return rdev->desc->ops->enable_time(rdev);
1178 }
1179
1180 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1181                                                          const char *supply)
1182 {
1183         struct regulator_dev *r;
1184         struct device_node *node;
1185
1186         /* first do a dt based lookup */
1187         if (dev && dev->of_node) {
1188                 node = of_get_regulator(dev, supply);
1189                 if (node)
1190                         list_for_each_entry(r, &regulator_list, list)
1191                                 if (r->dev.parent &&
1192                                         node == r->dev.of_node)
1193                                         return r;
1194         }
1195
1196         /* if not found, try doing it non-dt way */
1197         list_for_each_entry(r, &regulator_list, list)
1198                 if (strcmp(rdev_get_name(r), supply) == 0)
1199                         return r;
1200
1201         return NULL;
1202 }
1203
1204 /* Internal regulator request function */
1205 static struct regulator *_regulator_get(struct device *dev, const char *id,
1206                                         int exclusive)
1207 {
1208         struct regulator_dev *rdev;
1209         struct regulator_map *map;
1210         struct regulator *regulator = ERR_PTR(-ENODEV);
1211         const char *devname = NULL;
1212         int ret;
1213
1214         if (id == NULL) {
1215                 pr_err("get() with no identifier\n");
1216                 return regulator;
1217         }
1218
1219         if (dev)
1220                 devname = dev_name(dev);
1221
1222         mutex_lock(&regulator_list_mutex);
1223
1224         rdev = regulator_dev_lookup(dev, id);
1225         if (rdev)
1226                 goto found;
1227
1228         list_for_each_entry(map, &regulator_map_list, list) {
1229                 /* If the mapping has a device set up it must match */
1230                 if (map->dev_name &&
1231                     (!devname || strcmp(map->dev_name, devname)))
1232                         continue;
1233
1234                 if (strcmp(map->supply, id) == 0) {
1235                         rdev = map->regulator;
1236                         goto found;
1237                 }
1238         }
1239
1240         if (board_wants_dummy_regulator) {
1241                 rdev = dummy_regulator_rdev;
1242                 goto found;
1243         }
1244
1245 #ifdef CONFIG_REGULATOR_DUMMY
1246         if (!devname)
1247                 devname = "deviceless";
1248
1249         /* If the board didn't flag that it was fully constrained then
1250          * substitute in a dummy regulator so consumers can continue.
1251          */
1252         if (!has_full_constraints) {
1253                 pr_warn("%s supply %s not found, using dummy regulator\n",
1254                         devname, id);
1255                 rdev = dummy_regulator_rdev;
1256                 goto found;
1257         }
1258 #endif
1259
1260         mutex_unlock(&regulator_list_mutex);
1261         return regulator;
1262
1263 found:
1264         if (rdev->exclusive) {
1265                 regulator = ERR_PTR(-EPERM);
1266                 goto out;
1267         }
1268
1269         if (exclusive && rdev->open_count) {
1270                 regulator = ERR_PTR(-EBUSY);
1271                 goto out;
1272         }
1273
1274         if (!try_module_get(rdev->owner))
1275                 goto out;
1276
1277         regulator = create_regulator(rdev, dev, id);
1278         if (regulator == NULL) {
1279                 regulator = ERR_PTR(-ENOMEM);
1280                 module_put(rdev->owner);
1281         }
1282
1283         rdev->open_count++;
1284         if (exclusive) {
1285                 rdev->exclusive = 1;
1286
1287                 ret = _regulator_is_enabled(rdev);
1288                 if (ret > 0)
1289                         rdev->use_count = 1;
1290                 else
1291                         rdev->use_count = 0;
1292         }
1293
1294 out:
1295         mutex_unlock(&regulator_list_mutex);
1296
1297         return regulator;
1298 }
1299
1300 /**
1301  * regulator_get - lookup and obtain a reference to a regulator.
1302  * @dev: device for regulator "consumer"
1303  * @id: Supply name or regulator ID.
1304  *
1305  * Returns a struct regulator corresponding to the regulator producer,
1306  * or IS_ERR() condition containing errno.
1307  *
1308  * Use of supply names configured via regulator_set_device_supply() is
1309  * strongly encouraged.  It is recommended that the supply name used
1310  * should match the name used for the supply and/or the relevant
1311  * device pins in the datasheet.
1312  */
1313 struct regulator *regulator_get(struct device *dev, const char *id)
1314 {
1315         return _regulator_get(dev, id, 0);
1316 }
1317 EXPORT_SYMBOL_GPL(regulator_get);
1318
1319 /**
1320  * regulator_get_exclusive - obtain exclusive access to a regulator.
1321  * @dev: device for regulator "consumer"
1322  * @id: Supply name or regulator ID.
1323  *
1324  * Returns a struct regulator corresponding to the regulator producer,
1325  * or IS_ERR() condition containing errno.  Other consumers will be
1326  * unable to obtain this reference is held and the use count for the
1327  * regulator will be initialised to reflect the current state of the
1328  * regulator.
1329  *
1330  * This is intended for use by consumers which cannot tolerate shared
1331  * use of the regulator such as those which need to force the
1332  * regulator off for correct operation of the hardware they are
1333  * controlling.
1334  *
1335  * Use of supply names configured via regulator_set_device_supply() is
1336  * strongly encouraged.  It is recommended that the supply name used
1337  * should match the name used for the supply and/or the relevant
1338  * device pins in the datasheet.
1339  */
1340 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1341 {
1342         return _regulator_get(dev, id, 1);
1343 }
1344 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1345
1346 /**
1347  * regulator_put - "free" the regulator source
1348  * @regulator: regulator source
1349  *
1350  * Note: drivers must ensure that all regulator_enable calls made on this
1351  * regulator source are balanced by regulator_disable calls prior to calling
1352  * this function.
1353  */
1354 void regulator_put(struct regulator *regulator)
1355 {
1356         struct regulator_dev *rdev;
1357
1358         if (regulator == NULL || IS_ERR(regulator))
1359                 return;
1360
1361         mutex_lock(&regulator_list_mutex);
1362         rdev = regulator->rdev;
1363
1364 #ifdef CONFIG_DEBUG_FS
1365         debugfs_remove_recursive(regulator->debugfs);
1366 #endif
1367
1368         /* remove any sysfs entries */
1369         if (regulator->dev) {
1370                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1371                 device_remove_file(regulator->dev, &regulator->dev_attr);
1372                 kfree(regulator->dev_attr.attr.name);
1373         }
1374         kfree(regulator->supply_name);
1375         list_del(&regulator->list);
1376         kfree(regulator);
1377
1378         rdev->open_count--;
1379         rdev->exclusive = 0;
1380
1381         module_put(rdev->owner);
1382         mutex_unlock(&regulator_list_mutex);
1383 }
1384 EXPORT_SYMBOL_GPL(regulator_put);
1385
1386 static int _regulator_can_change_status(struct regulator_dev *rdev)
1387 {
1388         if (!rdev->constraints)
1389                 return 0;
1390
1391         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1392                 return 1;
1393         else
1394                 return 0;
1395 }
1396
1397 /* locks held by regulator_enable() */
1398 static int _regulator_enable(struct regulator_dev *rdev)
1399 {
1400         int ret, delay;
1401
1402         /* check voltage and requested load before enabling */
1403         if (rdev->constraints &&
1404             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1405                 drms_uA_update(rdev);
1406
1407         if (rdev->use_count == 0) {
1408                 /* The regulator may on if it's not switchable or left on */
1409                 ret = _regulator_is_enabled(rdev);
1410                 if (ret == -EINVAL || ret == 0) {
1411                         if (!_regulator_can_change_status(rdev))
1412                                 return -EPERM;
1413
1414                         if (!rdev->desc->ops->enable)
1415                                 return -EINVAL;
1416
1417                         /* Query before enabling in case configuration
1418                          * dependent.  */
1419                         ret = _regulator_get_enable_time(rdev);
1420                         if (ret >= 0) {
1421                                 delay = ret;
1422                         } else {
1423                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1424                                            ret);
1425                                 delay = 0;
1426                         }
1427
1428                         trace_regulator_enable(rdev_get_name(rdev));
1429
1430                         /* Allow the regulator to ramp; it would be useful
1431                          * to extend this for bulk operations so that the
1432                          * regulators can ramp together.  */
1433                         ret = rdev->desc->ops->enable(rdev);
1434                         if (ret < 0)
1435                                 return ret;
1436
1437                         trace_regulator_enable_delay(rdev_get_name(rdev));
1438
1439                         if (delay >= 1000) {
1440                                 mdelay(delay / 1000);
1441                                 udelay(delay % 1000);
1442                         } else if (delay) {
1443                                 udelay(delay);
1444                         }
1445
1446                         trace_regulator_enable_complete(rdev_get_name(rdev));
1447
1448                 } else if (ret < 0) {
1449                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1450                         return ret;
1451                 }
1452                 /* Fallthrough on positive return values - already enabled */
1453         }
1454
1455         rdev->use_count++;
1456
1457         return 0;
1458 }
1459
1460 /**
1461  * regulator_enable - enable regulator output
1462  * @regulator: regulator source
1463  *
1464  * Request that the regulator be enabled with the regulator output at
1465  * the predefined voltage or current value.  Calls to regulator_enable()
1466  * must be balanced with calls to regulator_disable().
1467  *
1468  * NOTE: the output value can be set by other drivers, boot loader or may be
1469  * hardwired in the regulator.
1470  */
1471 int regulator_enable(struct regulator *regulator)
1472 {
1473         struct regulator_dev *rdev = regulator->rdev;
1474         int ret = 0;
1475
1476         if (rdev->supply) {
1477                 ret = regulator_enable(rdev->supply);
1478                 if (ret != 0)
1479                         return ret;
1480         }
1481
1482         mutex_lock(&rdev->mutex);
1483         ret = _regulator_enable(rdev);
1484         mutex_unlock(&rdev->mutex);
1485
1486         if (ret != 0 && rdev->supply)
1487                 regulator_disable(rdev->supply);
1488
1489         return ret;
1490 }
1491 EXPORT_SYMBOL_GPL(regulator_enable);
1492
1493 /* locks held by regulator_disable() */
1494 static int _regulator_disable(struct regulator_dev *rdev)
1495 {
1496         int ret = 0;
1497
1498         if (WARN(rdev->use_count <= 0,
1499                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1500                 return -EIO;
1501
1502         /* are we the last user and permitted to disable ? */
1503         if (rdev->use_count == 1 &&
1504             (rdev->constraints && !rdev->constraints->always_on)) {
1505
1506                 /* we are last user */
1507                 if (_regulator_can_change_status(rdev) &&
1508                     rdev->desc->ops->disable) {
1509                         trace_regulator_disable(rdev_get_name(rdev));
1510
1511                         ret = rdev->desc->ops->disable(rdev);
1512                         if (ret < 0) {
1513                                 rdev_err(rdev, "failed to disable\n");
1514                                 return ret;
1515                         }
1516
1517                         trace_regulator_disable_complete(rdev_get_name(rdev));
1518
1519                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1520                                              NULL);
1521                 }
1522
1523                 rdev->use_count = 0;
1524         } else if (rdev->use_count > 1) {
1525
1526                 if (rdev->constraints &&
1527                         (rdev->constraints->valid_ops_mask &
1528                         REGULATOR_CHANGE_DRMS))
1529                         drms_uA_update(rdev);
1530
1531                 rdev->use_count--;
1532         }
1533
1534         return ret;
1535 }
1536
1537 /**
1538  * regulator_disable - disable regulator output
1539  * @regulator: regulator source
1540  *
1541  * Disable the regulator output voltage or current.  Calls to
1542  * regulator_enable() must be balanced with calls to
1543  * regulator_disable().
1544  *
1545  * NOTE: this will only disable the regulator output if no other consumer
1546  * devices have it enabled, the regulator device supports disabling and
1547  * machine constraints permit this operation.
1548  */
1549 int regulator_disable(struct regulator *regulator)
1550 {
1551         struct regulator_dev *rdev = regulator->rdev;
1552         int ret = 0;
1553
1554         mutex_lock(&rdev->mutex);
1555         ret = _regulator_disable(rdev);
1556         mutex_unlock(&rdev->mutex);
1557
1558         if (ret == 0 && rdev->supply)
1559                 regulator_disable(rdev->supply);
1560
1561         return ret;
1562 }
1563 EXPORT_SYMBOL_GPL(regulator_disable);
1564
1565 /* locks held by regulator_force_disable() */
1566 static int _regulator_force_disable(struct regulator_dev *rdev)
1567 {
1568         int ret = 0;
1569
1570         /* force disable */
1571         if (rdev->desc->ops->disable) {
1572                 /* ah well, who wants to live forever... */
1573                 ret = rdev->desc->ops->disable(rdev);
1574                 if (ret < 0) {
1575                         rdev_err(rdev, "failed to force disable\n");
1576                         return ret;
1577                 }
1578                 /* notify other consumers that power has been forced off */
1579                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1580                         REGULATOR_EVENT_DISABLE, NULL);
1581         }
1582
1583         return ret;
1584 }
1585
1586 /**
1587  * regulator_force_disable - force disable regulator output
1588  * @regulator: regulator source
1589  *
1590  * Forcibly disable the regulator output voltage or current.
1591  * NOTE: this *will* disable the regulator output even if other consumer
1592  * devices have it enabled. This should be used for situations when device
1593  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1594  */
1595 int regulator_force_disable(struct regulator *regulator)
1596 {
1597         struct regulator_dev *rdev = regulator->rdev;
1598         int ret;
1599
1600         mutex_lock(&rdev->mutex);
1601         regulator->uA_load = 0;
1602         ret = _regulator_force_disable(regulator->rdev);
1603         mutex_unlock(&rdev->mutex);
1604
1605         if (rdev->supply)
1606                 while (rdev->open_count--)
1607                         regulator_disable(rdev->supply);
1608
1609         return ret;
1610 }
1611 EXPORT_SYMBOL_GPL(regulator_force_disable);
1612
1613 static void regulator_disable_work(struct work_struct *work)
1614 {
1615         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1616                                                   disable_work.work);
1617         int count, i, ret;
1618
1619         mutex_lock(&rdev->mutex);
1620
1621         BUG_ON(!rdev->deferred_disables);
1622
1623         count = rdev->deferred_disables;
1624         rdev->deferred_disables = 0;
1625
1626         for (i = 0; i < count; i++) {
1627                 ret = _regulator_disable(rdev);
1628                 if (ret != 0)
1629                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1630         }
1631
1632         mutex_unlock(&rdev->mutex);
1633
1634         if (rdev->supply) {
1635                 for (i = 0; i < count; i++) {
1636                         ret = regulator_disable(rdev->supply);
1637                         if (ret != 0) {
1638                                 rdev_err(rdev,
1639                                          "Supply disable failed: %d\n", ret);
1640                         }
1641                 }
1642         }
1643 }
1644
1645 /**
1646  * regulator_disable_deferred - disable regulator output with delay
1647  * @regulator: regulator source
1648  * @ms: miliseconds until the regulator is disabled
1649  *
1650  * Execute regulator_disable() on the regulator after a delay.  This
1651  * is intended for use with devices that require some time to quiesce.
1652  *
1653  * NOTE: this will only disable the regulator output if no other consumer
1654  * devices have it enabled, the regulator device supports disabling and
1655  * machine constraints permit this operation.
1656  */
1657 int regulator_disable_deferred(struct regulator *regulator, int ms)
1658 {
1659         struct regulator_dev *rdev = regulator->rdev;
1660         int ret;
1661
1662         mutex_lock(&rdev->mutex);
1663         rdev->deferred_disables++;
1664         mutex_unlock(&rdev->mutex);
1665
1666         ret = schedule_delayed_work(&rdev->disable_work,
1667                                     msecs_to_jiffies(ms));
1668         if (ret < 0)
1669                 return ret;
1670         else
1671                 return 0;
1672 }
1673 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1674
1675 static int _regulator_is_enabled(struct regulator_dev *rdev)
1676 {
1677         /* If we don't know then assume that the regulator is always on */
1678         if (!rdev->desc->ops->is_enabled)
1679                 return 1;
1680
1681         return rdev->desc->ops->is_enabled(rdev);
1682 }
1683
1684 /**
1685  * regulator_is_enabled - is the regulator output enabled
1686  * @regulator: regulator source
1687  *
1688  * Returns positive if the regulator driver backing the source/client
1689  * has requested that the device be enabled, zero if it hasn't, else a
1690  * negative errno code.
1691  *
1692  * Note that the device backing this regulator handle can have multiple
1693  * users, so it might be enabled even if regulator_enable() was never
1694  * called for this particular source.
1695  */
1696 int regulator_is_enabled(struct regulator *regulator)
1697 {
1698         int ret;
1699
1700         mutex_lock(&regulator->rdev->mutex);
1701         ret = _regulator_is_enabled(regulator->rdev);
1702         mutex_unlock(&regulator->rdev->mutex);
1703
1704         return ret;
1705 }
1706 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1707
1708 /**
1709  * regulator_count_voltages - count regulator_list_voltage() selectors
1710  * @regulator: regulator source
1711  *
1712  * Returns number of selectors, or negative errno.  Selectors are
1713  * numbered starting at zero, and typically correspond to bitfields
1714  * in hardware registers.
1715  */
1716 int regulator_count_voltages(struct regulator *regulator)
1717 {
1718         struct regulator_dev    *rdev = regulator->rdev;
1719
1720         return rdev->desc->n_voltages ? : -EINVAL;
1721 }
1722 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1723
1724 /**
1725  * regulator_list_voltage - enumerate supported voltages
1726  * @regulator: regulator source
1727  * @selector: identify voltage to list
1728  * Context: can sleep
1729  *
1730  * Returns a voltage that can be passed to @regulator_set_voltage(),
1731  * zero if this selector code can't be used on this system, or a
1732  * negative errno.
1733  */
1734 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1735 {
1736         struct regulator_dev    *rdev = regulator->rdev;
1737         struct regulator_ops    *ops = rdev->desc->ops;
1738         int                     ret;
1739
1740         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1741                 return -EINVAL;
1742
1743         mutex_lock(&rdev->mutex);
1744         ret = ops->list_voltage(rdev, selector);
1745         mutex_unlock(&rdev->mutex);
1746
1747         if (ret > 0) {
1748                 if (ret < rdev->constraints->min_uV)
1749                         ret = 0;
1750                 else if (ret > rdev->constraints->max_uV)
1751                         ret = 0;
1752         }
1753
1754         return ret;
1755 }
1756 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1757
1758 /**
1759  * regulator_is_supported_voltage - check if a voltage range can be supported
1760  *
1761  * @regulator: Regulator to check.
1762  * @min_uV: Minimum required voltage in uV.
1763  * @max_uV: Maximum required voltage in uV.
1764  *
1765  * Returns a boolean or a negative error code.
1766  */
1767 int regulator_is_supported_voltage(struct regulator *regulator,
1768                                    int min_uV, int max_uV)
1769 {
1770         int i, voltages, ret;
1771
1772         ret = regulator_count_voltages(regulator);
1773         if (ret < 0)
1774                 return ret;
1775         voltages = ret;
1776
1777         for (i = 0; i < voltages; i++) {
1778                 ret = regulator_list_voltage(regulator, i);
1779
1780                 if (ret >= min_uV && ret <= max_uV)
1781                         return 1;
1782         }
1783
1784         return 0;
1785 }
1786
1787 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1788                                      int min_uV, int max_uV)
1789 {
1790         int ret;
1791         int delay = 0;
1792         unsigned int selector;
1793
1794         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1795
1796         min_uV += rdev->constraints->uV_offset;
1797         max_uV += rdev->constraints->uV_offset;
1798
1799         if (rdev->desc->ops->set_voltage) {
1800                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1801                                                    &selector);
1802
1803                 if (rdev->desc->ops->list_voltage)
1804                         selector = rdev->desc->ops->list_voltage(rdev,
1805                                                                  selector);
1806                 else
1807                         selector = -1;
1808         } else if (rdev->desc->ops->set_voltage_sel) {
1809                 int best_val = INT_MAX;
1810                 int i;
1811
1812                 selector = 0;
1813
1814                 /* Find the smallest voltage that falls within the specified
1815                  * range.
1816                  */
1817                 for (i = 0; i < rdev->desc->n_voltages; i++) {
1818                         ret = rdev->desc->ops->list_voltage(rdev, i);
1819                         if (ret < 0)
1820                                 continue;
1821
1822                         if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1823                                 best_val = ret;
1824                                 selector = i;
1825                         }
1826                 }
1827
1828                 /*
1829                  * If we can't obtain the old selector there is not enough
1830                  * info to call set_voltage_time_sel().
1831                  */
1832                 if (rdev->desc->ops->set_voltage_time_sel &&
1833                     rdev->desc->ops->get_voltage_sel) {
1834                         unsigned int old_selector = 0;
1835
1836                         ret = rdev->desc->ops->get_voltage_sel(rdev);
1837                         if (ret < 0)
1838                                 return ret;
1839                         old_selector = ret;
1840                         delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1841                                                 old_selector, selector);
1842                 }
1843
1844                 if (best_val != INT_MAX) {
1845                         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1846                         selector = best_val;
1847                 } else {
1848                         ret = -EINVAL;
1849                 }
1850         } else {
1851                 ret = -EINVAL;
1852         }
1853
1854         /* Insert any necessary delays */
1855         if (delay >= 1000) {
1856                 mdelay(delay / 1000);
1857                 udelay(delay % 1000);
1858         } else if (delay) {
1859                 udelay(delay);
1860         }
1861
1862         if (ret == 0)
1863                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1864                                      NULL);
1865
1866         trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1867
1868         return ret;
1869 }
1870
1871 /**
1872  * regulator_set_voltage - set regulator output voltage
1873  * @regulator: regulator source
1874  * @min_uV: Minimum required voltage in uV
1875  * @max_uV: Maximum acceptable voltage in uV
1876  *
1877  * Sets a voltage regulator to the desired output voltage. This can be set
1878  * during any regulator state. IOW, regulator can be disabled or enabled.
1879  *
1880  * If the regulator is enabled then the voltage will change to the new value
1881  * immediately otherwise if the regulator is disabled the regulator will
1882  * output at the new voltage when enabled.
1883  *
1884  * NOTE: If the regulator is shared between several devices then the lowest
1885  * request voltage that meets the system constraints will be used.
1886  * Regulator system constraints must be set for this regulator before
1887  * calling this function otherwise this call will fail.
1888  */
1889 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1890 {
1891         struct regulator_dev *rdev = regulator->rdev;
1892         int ret = 0;
1893
1894         mutex_lock(&rdev->mutex);
1895
1896         /* If we're setting the same range as last time the change
1897          * should be a noop (some cpufreq implementations use the same
1898          * voltage for multiple frequencies, for example).
1899          */
1900         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1901                 goto out;
1902
1903         /* sanity check */
1904         if (!rdev->desc->ops->set_voltage &&
1905             !rdev->desc->ops->set_voltage_sel) {
1906                 ret = -EINVAL;
1907                 goto out;
1908         }
1909
1910         /* constraints check */
1911         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1912         if (ret < 0)
1913                 goto out;
1914         regulator->min_uV = min_uV;
1915         regulator->max_uV = max_uV;
1916
1917         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1918         if (ret < 0)
1919                 goto out;
1920
1921         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1922
1923 out:
1924         mutex_unlock(&rdev->mutex);
1925         return ret;
1926 }
1927 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1928
1929 /**
1930  * regulator_set_voltage_time - get raise/fall time
1931  * @regulator: regulator source
1932  * @old_uV: starting voltage in microvolts
1933  * @new_uV: target voltage in microvolts
1934  *
1935  * Provided with the starting and ending voltage, this function attempts to
1936  * calculate the time in microseconds required to rise or fall to this new
1937  * voltage.
1938  */
1939 int regulator_set_voltage_time(struct regulator *regulator,
1940                                int old_uV, int new_uV)
1941 {
1942         struct regulator_dev    *rdev = regulator->rdev;
1943         struct regulator_ops    *ops = rdev->desc->ops;
1944         int old_sel = -1;
1945         int new_sel = -1;
1946         int voltage;
1947         int i;
1948
1949         /* Currently requires operations to do this */
1950         if (!ops->list_voltage || !ops->set_voltage_time_sel
1951             || !rdev->desc->n_voltages)
1952                 return -EINVAL;
1953
1954         for (i = 0; i < rdev->desc->n_voltages; i++) {
1955                 /* We only look for exact voltage matches here */
1956                 voltage = regulator_list_voltage(regulator, i);
1957                 if (voltage < 0)
1958                         return -EINVAL;
1959                 if (voltage == 0)
1960                         continue;
1961                 if (voltage == old_uV)
1962                         old_sel = i;
1963                 if (voltage == new_uV)
1964                         new_sel = i;
1965         }
1966
1967         if (old_sel < 0 || new_sel < 0)
1968                 return -EINVAL;
1969
1970         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1971 }
1972 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1973
1974 /**
1975  * regulator_sync_voltage - re-apply last regulator output voltage
1976  * @regulator: regulator source
1977  *
1978  * Re-apply the last configured voltage.  This is intended to be used
1979  * where some external control source the consumer is cooperating with
1980  * has caused the configured voltage to change.
1981  */
1982 int regulator_sync_voltage(struct regulator *regulator)
1983 {
1984         struct regulator_dev *rdev = regulator->rdev;
1985         int ret, min_uV, max_uV;
1986
1987         mutex_lock(&rdev->mutex);
1988
1989         if (!rdev->desc->ops->set_voltage &&
1990             !rdev->desc->ops->set_voltage_sel) {
1991                 ret = -EINVAL;
1992                 goto out;
1993         }
1994
1995         /* This is only going to work if we've had a voltage configured. */
1996         if (!regulator->min_uV && !regulator->max_uV) {
1997                 ret = -EINVAL;
1998                 goto out;
1999         }
2000
2001         min_uV = regulator->min_uV;
2002         max_uV = regulator->max_uV;
2003
2004         /* This should be a paranoia check... */
2005         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2006         if (ret < 0)
2007                 goto out;
2008
2009         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2010         if (ret < 0)
2011                 goto out;
2012
2013         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2014
2015 out:
2016         mutex_unlock(&rdev->mutex);
2017         return ret;
2018 }
2019 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2020
2021 static int _regulator_get_voltage(struct regulator_dev *rdev)
2022 {
2023         int sel, ret;
2024
2025         if (rdev->desc->ops->get_voltage_sel) {
2026                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2027                 if (sel < 0)
2028                         return sel;
2029                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2030         } else if (rdev->desc->ops->get_voltage) {
2031                 ret = rdev->desc->ops->get_voltage(rdev);
2032         } else {
2033                 return -EINVAL;
2034         }
2035
2036         if (ret < 0)
2037                 return ret;
2038         return ret - rdev->constraints->uV_offset;
2039 }
2040
2041 /**
2042  * regulator_get_voltage - get regulator output voltage
2043  * @regulator: regulator source
2044  *
2045  * This returns the current regulator voltage in uV.
2046  *
2047  * NOTE: If the regulator is disabled it will return the voltage value. This
2048  * function should not be used to determine regulator state.
2049  */
2050 int regulator_get_voltage(struct regulator *regulator)
2051 {
2052         int ret;
2053
2054         mutex_lock(&regulator->rdev->mutex);
2055
2056         ret = _regulator_get_voltage(regulator->rdev);
2057
2058         mutex_unlock(&regulator->rdev->mutex);
2059
2060         return ret;
2061 }
2062 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2063
2064 /**
2065  * regulator_set_current_limit - set regulator output current limit
2066  * @regulator: regulator source
2067  * @min_uA: Minimuum supported current in uA
2068  * @max_uA: Maximum supported current in uA
2069  *
2070  * Sets current sink to the desired output current. This can be set during
2071  * any regulator state. IOW, regulator can be disabled or enabled.
2072  *
2073  * If the regulator is enabled then the current will change to the new value
2074  * immediately otherwise if the regulator is disabled the regulator will
2075  * output at the new current when enabled.
2076  *
2077  * NOTE: Regulator system constraints must be set for this regulator before
2078  * calling this function otherwise this call will fail.
2079  */
2080 int regulator_set_current_limit(struct regulator *regulator,
2081                                int min_uA, int max_uA)
2082 {
2083         struct regulator_dev *rdev = regulator->rdev;
2084         int ret;
2085
2086         mutex_lock(&rdev->mutex);
2087
2088         /* sanity check */
2089         if (!rdev->desc->ops->set_current_limit) {
2090                 ret = -EINVAL;
2091                 goto out;
2092         }
2093
2094         /* constraints check */
2095         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2096         if (ret < 0)
2097                 goto out;
2098
2099         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2100 out:
2101         mutex_unlock(&rdev->mutex);
2102         return ret;
2103 }
2104 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2105
2106 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2107 {
2108         int ret;
2109
2110         mutex_lock(&rdev->mutex);
2111
2112         /* sanity check */
2113         if (!rdev->desc->ops->get_current_limit) {
2114                 ret = -EINVAL;
2115                 goto out;
2116         }
2117
2118         ret = rdev->desc->ops->get_current_limit(rdev);
2119 out:
2120         mutex_unlock(&rdev->mutex);
2121         return ret;
2122 }
2123
2124 /**
2125  * regulator_get_current_limit - get regulator output current
2126  * @regulator: regulator source
2127  *
2128  * This returns the current supplied by the specified current sink in uA.
2129  *
2130  * NOTE: If the regulator is disabled it will return the current value. This
2131  * function should not be used to determine regulator state.
2132  */
2133 int regulator_get_current_limit(struct regulator *regulator)
2134 {
2135         return _regulator_get_current_limit(regulator->rdev);
2136 }
2137 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2138
2139 /**
2140  * regulator_set_mode - set regulator operating mode
2141  * @regulator: regulator source
2142  * @mode: operating mode - one of the REGULATOR_MODE constants
2143  *
2144  * Set regulator operating mode to increase regulator efficiency or improve
2145  * regulation performance.
2146  *
2147  * NOTE: Regulator system constraints must be set for this regulator before
2148  * calling this function otherwise this call will fail.
2149  */
2150 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2151 {
2152         struct regulator_dev *rdev = regulator->rdev;
2153         int ret;
2154         int regulator_curr_mode;
2155
2156         mutex_lock(&rdev->mutex);
2157
2158         /* sanity check */
2159         if (!rdev->desc->ops->set_mode) {
2160                 ret = -EINVAL;
2161                 goto out;
2162         }
2163
2164         /* return if the same mode is requested */
2165         if (rdev->desc->ops->get_mode) {
2166                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2167                 if (regulator_curr_mode == mode) {
2168                         ret = 0;
2169                         goto out;
2170                 }
2171         }
2172
2173         /* constraints check */
2174         ret = regulator_mode_constrain(rdev, &mode);
2175         if (ret < 0)
2176                 goto out;
2177
2178         ret = rdev->desc->ops->set_mode(rdev, mode);
2179 out:
2180         mutex_unlock(&rdev->mutex);
2181         return ret;
2182 }
2183 EXPORT_SYMBOL_GPL(regulator_set_mode);
2184
2185 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2186 {
2187         int ret;
2188
2189         mutex_lock(&rdev->mutex);
2190
2191         /* sanity check */
2192         if (!rdev->desc->ops->get_mode) {
2193                 ret = -EINVAL;
2194                 goto out;
2195         }
2196
2197         ret = rdev->desc->ops->get_mode(rdev);
2198 out:
2199         mutex_unlock(&rdev->mutex);
2200         return ret;
2201 }
2202
2203 /**
2204  * regulator_get_mode - get regulator operating mode
2205  * @regulator: regulator source
2206  *
2207  * Get the current regulator operating mode.
2208  */
2209 unsigned int regulator_get_mode(struct regulator *regulator)
2210 {
2211         return _regulator_get_mode(regulator->rdev);
2212 }
2213 EXPORT_SYMBOL_GPL(regulator_get_mode);
2214
2215 /**
2216  * regulator_set_optimum_mode - set regulator optimum operating mode
2217  * @regulator: regulator source
2218  * @uA_load: load current
2219  *
2220  * Notifies the regulator core of a new device load. This is then used by
2221  * DRMS (if enabled by constraints) to set the most efficient regulator
2222  * operating mode for the new regulator loading.
2223  *
2224  * Consumer devices notify their supply regulator of the maximum power
2225  * they will require (can be taken from device datasheet in the power
2226  * consumption tables) when they change operational status and hence power
2227  * state. Examples of operational state changes that can affect power
2228  * consumption are :-
2229  *
2230  *    o Device is opened / closed.
2231  *    o Device I/O is about to begin or has just finished.
2232  *    o Device is idling in between work.
2233  *
2234  * This information is also exported via sysfs to userspace.
2235  *
2236  * DRMS will sum the total requested load on the regulator and change
2237  * to the most efficient operating mode if platform constraints allow.
2238  *
2239  * Returns the new regulator mode or error.
2240  */
2241 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2242 {
2243         struct regulator_dev *rdev = regulator->rdev;
2244         struct regulator *consumer;
2245         int ret, output_uV, input_uV, total_uA_load = 0;
2246         unsigned int mode;
2247
2248         mutex_lock(&rdev->mutex);
2249
2250         /*
2251          * first check to see if we can set modes at all, otherwise just
2252          * tell the consumer everything is OK.
2253          */
2254         regulator->uA_load = uA_load;
2255         ret = regulator_check_drms(rdev);
2256         if (ret < 0) {
2257                 ret = 0;
2258                 goto out;
2259         }
2260
2261         if (!rdev->desc->ops->get_optimum_mode)
2262                 goto out;
2263
2264         /*
2265          * we can actually do this so any errors are indicators of
2266          * potential real failure.
2267          */
2268         ret = -EINVAL;
2269
2270         /* get output voltage */
2271         output_uV = _regulator_get_voltage(rdev);
2272         if (output_uV <= 0) {
2273                 rdev_err(rdev, "invalid output voltage found\n");
2274                 goto out;
2275         }
2276
2277         /* get input voltage */
2278         input_uV = 0;
2279         if (rdev->supply)
2280                 input_uV = regulator_get_voltage(rdev->supply);
2281         if (input_uV <= 0)
2282                 input_uV = rdev->constraints->input_uV;
2283         if (input_uV <= 0) {
2284                 rdev_err(rdev, "invalid input voltage found\n");
2285                 goto out;
2286         }
2287
2288         /* calc total requested load for this regulator */
2289         list_for_each_entry(consumer, &rdev->consumer_list, list)
2290                 total_uA_load += consumer->uA_load;
2291
2292         mode = rdev->desc->ops->get_optimum_mode(rdev,
2293                                                  input_uV, output_uV,
2294                                                  total_uA_load);
2295         ret = regulator_mode_constrain(rdev, &mode);
2296         if (ret < 0) {
2297                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2298                          total_uA_load, input_uV, output_uV);
2299                 goto out;
2300         }
2301
2302         ret = rdev->desc->ops->set_mode(rdev, mode);
2303         if (ret < 0) {
2304                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2305                 goto out;
2306         }
2307         ret = mode;
2308 out:
2309         mutex_unlock(&rdev->mutex);
2310         return ret;
2311 }
2312 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2313
2314 /**
2315  * regulator_register_notifier - register regulator event notifier
2316  * @regulator: regulator source
2317  * @nb: notifier block
2318  *
2319  * Register notifier block to receive regulator events.
2320  */
2321 int regulator_register_notifier(struct regulator *regulator,
2322                               struct notifier_block *nb)
2323 {
2324         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2325                                                 nb);
2326 }
2327 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2328
2329 /**
2330  * regulator_unregister_notifier - unregister regulator event notifier
2331  * @regulator: regulator source
2332  * @nb: notifier block
2333  *
2334  * Unregister regulator event notifier block.
2335  */
2336 int regulator_unregister_notifier(struct regulator *regulator,
2337                                 struct notifier_block *nb)
2338 {
2339         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2340                                                   nb);
2341 }
2342 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2343
2344 /* notify regulator consumers and downstream regulator consumers.
2345  * Note mutex must be held by caller.
2346  */
2347 static void _notifier_call_chain(struct regulator_dev *rdev,
2348                                   unsigned long event, void *data)
2349 {
2350         /* call rdev chain first */
2351         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2352 }
2353
2354 /**
2355  * regulator_bulk_get - get multiple regulator consumers
2356  *
2357  * @dev:           Device to supply
2358  * @num_consumers: Number of consumers to register
2359  * @consumers:     Configuration of consumers; clients are stored here.
2360  *
2361  * @return 0 on success, an errno on failure.
2362  *
2363  * This helper function allows drivers to get several regulator
2364  * consumers in one operation.  If any of the regulators cannot be
2365  * acquired then any regulators that were allocated will be freed
2366  * before returning to the caller.
2367  */
2368 int regulator_bulk_get(struct device *dev, int num_consumers,
2369                        struct regulator_bulk_data *consumers)
2370 {
2371         int i;
2372         int ret;
2373
2374         for (i = 0; i < num_consumers; i++)
2375                 consumers[i].consumer = NULL;
2376
2377         for (i = 0; i < num_consumers; i++) {
2378                 consumers[i].consumer = regulator_get(dev,
2379                                                       consumers[i].supply);
2380                 if (IS_ERR(consumers[i].consumer)) {
2381                         ret = PTR_ERR(consumers[i].consumer);
2382                         dev_err(dev, "Failed to get supply '%s': %d\n",
2383                                 consumers[i].supply, ret);
2384                         consumers[i].consumer = NULL;
2385                         goto err;
2386                 }
2387         }
2388
2389         return 0;
2390
2391 err:
2392         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2393                 regulator_put(consumers[i].consumer);
2394
2395         return ret;
2396 }
2397 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2398
2399 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2400 {
2401         struct regulator_bulk_data *bulk = data;
2402
2403         bulk->ret = regulator_enable(bulk->consumer);
2404 }
2405
2406 /**
2407  * regulator_bulk_enable - enable multiple regulator consumers
2408  *
2409  * @num_consumers: Number of consumers
2410  * @consumers:     Consumer data; clients are stored here.
2411  * @return         0 on success, an errno on failure
2412  *
2413  * This convenience API allows consumers to enable multiple regulator
2414  * clients in a single API call.  If any consumers cannot be enabled
2415  * then any others that were enabled will be disabled again prior to
2416  * return.
2417  */
2418 int regulator_bulk_enable(int num_consumers,
2419                           struct regulator_bulk_data *consumers)
2420 {
2421         LIST_HEAD(async_domain);
2422         int i;
2423         int ret = 0;
2424
2425         for (i = 0; i < num_consumers; i++)
2426                 async_schedule_domain(regulator_bulk_enable_async,
2427                                       &consumers[i], &async_domain);
2428
2429         async_synchronize_full_domain(&async_domain);
2430
2431         /* If any consumer failed we need to unwind any that succeeded */
2432         for (i = 0; i < num_consumers; i++) {
2433                 if (consumers[i].ret != 0) {
2434                         ret = consumers[i].ret;
2435                         goto err;
2436                 }
2437         }
2438
2439         return 0;
2440
2441 err:
2442         for (i = 0; i < num_consumers; i++)
2443                 if (consumers[i].ret == 0)
2444                         regulator_disable(consumers[i].consumer);
2445                 else
2446                         pr_err("Failed to enable %s: %d\n",
2447                                consumers[i].supply, consumers[i].ret);
2448
2449         return ret;
2450 }
2451 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2452
2453 /**
2454  * regulator_bulk_disable - disable multiple regulator consumers
2455  *
2456  * @num_consumers: Number of consumers
2457  * @consumers:     Consumer data; clients are stored here.
2458  * @return         0 on success, an errno on failure
2459  *
2460  * This convenience API allows consumers to disable multiple regulator
2461  * clients in a single API call.  If any consumers cannot be enabled
2462  * then any others that were disabled will be disabled again prior to
2463  * return.
2464  */
2465 int regulator_bulk_disable(int num_consumers,
2466                            struct regulator_bulk_data *consumers)
2467 {
2468         int i;
2469         int ret;
2470
2471         for (i = 0; i < num_consumers; i++) {
2472                 ret = regulator_disable(consumers[i].consumer);
2473                 if (ret != 0)
2474                         goto err;
2475         }
2476
2477         return 0;
2478
2479 err:
2480         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2481         for (--i; i >= 0; --i)
2482                 regulator_enable(consumers[i].consumer);
2483
2484         return ret;
2485 }
2486 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2487
2488 /**
2489  * regulator_bulk_free - free multiple regulator consumers
2490  *
2491  * @num_consumers: Number of consumers
2492  * @consumers:     Consumer data; clients are stored here.
2493  *
2494  * This convenience API allows consumers to free multiple regulator
2495  * clients in a single API call.
2496  */
2497 void regulator_bulk_free(int num_consumers,
2498                          struct regulator_bulk_data *consumers)
2499 {
2500         int i;
2501
2502         for (i = 0; i < num_consumers; i++) {
2503                 regulator_put(consumers[i].consumer);
2504                 consumers[i].consumer = NULL;
2505         }
2506 }
2507 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2508
2509 /**
2510  * regulator_notifier_call_chain - call regulator event notifier
2511  * @rdev: regulator source
2512  * @event: notifier block
2513  * @data: callback-specific data.
2514  *
2515  * Called by regulator drivers to notify clients a regulator event has
2516  * occurred. We also notify regulator clients downstream.
2517  * Note lock must be held by caller.
2518  */
2519 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2520                                   unsigned long event, void *data)
2521 {
2522         _notifier_call_chain(rdev, event, data);
2523         return NOTIFY_DONE;
2524
2525 }
2526 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2527
2528 /**
2529  * regulator_mode_to_status - convert a regulator mode into a status
2530  *
2531  * @mode: Mode to convert
2532  *
2533  * Convert a regulator mode into a status.
2534  */
2535 int regulator_mode_to_status(unsigned int mode)
2536 {
2537         switch (mode) {
2538         case REGULATOR_MODE_FAST:
2539                 return REGULATOR_STATUS_FAST;
2540         case REGULATOR_MODE_NORMAL:
2541                 return REGULATOR_STATUS_NORMAL;
2542         case REGULATOR_MODE_IDLE:
2543                 return REGULATOR_STATUS_IDLE;
2544         case REGULATOR_STATUS_STANDBY:
2545                 return REGULATOR_STATUS_STANDBY;
2546         default:
2547                 return 0;
2548         }
2549 }
2550 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2551
2552 /*
2553  * To avoid cluttering sysfs (and memory) with useless state, only
2554  * create attributes that can be meaningfully displayed.
2555  */
2556 static int add_regulator_attributes(struct regulator_dev *rdev)
2557 {
2558         struct device           *dev = &rdev->dev;
2559         struct regulator_ops    *ops = rdev->desc->ops;
2560         int                     status = 0;
2561
2562         /* some attributes need specific methods to be displayed */
2563         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2564             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2565                 status = device_create_file(dev, &dev_attr_microvolts);
2566                 if (status < 0)
2567                         return status;
2568         }
2569         if (ops->get_current_limit) {
2570                 status = device_create_file(dev, &dev_attr_microamps);
2571                 if (status < 0)
2572                         return status;
2573         }
2574         if (ops->get_mode) {
2575                 status = device_create_file(dev, &dev_attr_opmode);
2576                 if (status < 0)
2577                         return status;
2578         }
2579         if (ops->is_enabled) {
2580                 status = device_create_file(dev, &dev_attr_state);
2581                 if (status < 0)
2582                         return status;
2583         }
2584         if (ops->get_status) {
2585                 status = device_create_file(dev, &dev_attr_status);
2586                 if (status < 0)
2587                         return status;
2588         }
2589
2590         /* some attributes are type-specific */
2591         if (rdev->desc->type == REGULATOR_CURRENT) {
2592                 status = device_create_file(dev, &dev_attr_requested_microamps);
2593                 if (status < 0)
2594                         return status;
2595         }
2596
2597         /* all the other attributes exist to support constraints;
2598          * don't show them if there are no constraints, or if the
2599          * relevant supporting methods are missing.
2600          */
2601         if (!rdev->constraints)
2602                 return status;
2603
2604         /* constraints need specific supporting methods */
2605         if (ops->set_voltage || ops->set_voltage_sel) {
2606                 status = device_create_file(dev, &dev_attr_min_microvolts);
2607                 if (status < 0)
2608                         return status;
2609                 status = device_create_file(dev, &dev_attr_max_microvolts);
2610                 if (status < 0)
2611                         return status;
2612         }
2613         if (ops->set_current_limit) {
2614                 status = device_create_file(dev, &dev_attr_min_microamps);
2615                 if (status < 0)
2616                         return status;
2617                 status = device_create_file(dev, &dev_attr_max_microamps);
2618                 if (status < 0)
2619                         return status;
2620         }
2621
2622         /* suspend mode constraints need multiple supporting methods */
2623         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2624                 return status;
2625
2626         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2627         if (status < 0)
2628                 return status;
2629         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2630         if (status < 0)
2631                 return status;
2632         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2633         if (status < 0)
2634                 return status;
2635
2636         if (ops->set_suspend_voltage) {
2637                 status = device_create_file(dev,
2638                                 &dev_attr_suspend_standby_microvolts);
2639                 if (status < 0)
2640                         return status;
2641                 status = device_create_file(dev,
2642                                 &dev_attr_suspend_mem_microvolts);
2643                 if (status < 0)
2644                         return status;
2645                 status = device_create_file(dev,
2646                                 &dev_attr_suspend_disk_microvolts);
2647                 if (status < 0)
2648                         return status;
2649         }
2650
2651         if (ops->set_suspend_mode) {
2652                 status = device_create_file(dev,
2653                                 &dev_attr_suspend_standby_mode);
2654                 if (status < 0)
2655                         return status;
2656                 status = device_create_file(dev,
2657                                 &dev_attr_suspend_mem_mode);
2658                 if (status < 0)
2659                         return status;
2660                 status = device_create_file(dev,
2661                                 &dev_attr_suspend_disk_mode);
2662                 if (status < 0)
2663                         return status;
2664         }
2665
2666         return status;
2667 }
2668
2669 static void rdev_init_debugfs(struct regulator_dev *rdev)
2670 {
2671 #ifdef CONFIG_DEBUG_FS
2672         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2673         if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2674                 rdev_warn(rdev, "Failed to create debugfs directory\n");
2675                 rdev->debugfs = NULL;
2676                 return;
2677         }
2678
2679         debugfs_create_u32("use_count", 0444, rdev->debugfs,
2680                            &rdev->use_count);
2681         debugfs_create_u32("open_count", 0444, rdev->debugfs,
2682                            &rdev->open_count);
2683 #endif
2684 }
2685
2686 /**
2687  * regulator_register - register regulator
2688  * @regulator_desc: regulator to register
2689  * @dev: struct device for the regulator
2690  * @init_data: platform provided init data, passed through by driver
2691  * @driver_data: private regulator data
2692  *
2693  * Called by regulator drivers to register a regulator.
2694  * Returns 0 on success.
2695  */
2696 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2697         struct device *dev, const struct regulator_init_data *init_data,
2698         void *driver_data, struct device_node *of_node)
2699 {
2700         static atomic_t regulator_no = ATOMIC_INIT(0);
2701         struct regulator_dev *rdev;
2702         int ret, i;
2703         const char *supply = NULL;
2704
2705         if (regulator_desc == NULL)
2706                 return ERR_PTR(-EINVAL);
2707
2708         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2709                 return ERR_PTR(-EINVAL);
2710
2711         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2712             regulator_desc->type != REGULATOR_CURRENT)
2713                 return ERR_PTR(-EINVAL);
2714
2715         if (!init_data)
2716                 return ERR_PTR(-EINVAL);
2717
2718         /* Only one of each should be implemented */
2719         WARN_ON(regulator_desc->ops->get_voltage &&
2720                 regulator_desc->ops->get_voltage_sel);
2721         WARN_ON(regulator_desc->ops->set_voltage &&
2722                 regulator_desc->ops->set_voltage_sel);
2723
2724         /* If we're using selectors we must implement list_voltage. */
2725         if (regulator_desc->ops->get_voltage_sel &&
2726             !regulator_desc->ops->list_voltage) {
2727                 return ERR_PTR(-EINVAL);
2728         }
2729         if (regulator_desc->ops->set_voltage_sel &&
2730             !regulator_desc->ops->list_voltage) {
2731                 return ERR_PTR(-EINVAL);
2732         }
2733
2734         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2735         if (rdev == NULL)
2736                 return ERR_PTR(-ENOMEM);
2737
2738         mutex_lock(&regulator_list_mutex);
2739
2740         mutex_init(&rdev->mutex);
2741         rdev->reg_data = driver_data;
2742         rdev->owner = regulator_desc->owner;
2743         rdev->desc = regulator_desc;
2744         INIT_LIST_HEAD(&rdev->consumer_list);
2745         INIT_LIST_HEAD(&rdev->list);
2746         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2747         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2748
2749         /* preform any regulator specific init */
2750         if (init_data->regulator_init) {
2751                 ret = init_data->regulator_init(rdev->reg_data);
2752                 if (ret < 0)
2753                         goto clean;
2754         }
2755
2756         /* register with sysfs */
2757         rdev->dev.class = &regulator_class;
2758         rdev->dev.of_node = of_node;
2759         rdev->dev.parent = dev;
2760         dev_set_name(&rdev->dev, "regulator.%d",
2761                      atomic_inc_return(&regulator_no) - 1);
2762         ret = device_register(&rdev->dev);
2763         if (ret != 0) {
2764                 put_device(&rdev->dev);
2765                 goto clean;
2766         }
2767
2768         dev_set_drvdata(&rdev->dev, rdev);
2769
2770         /* set regulator constraints */
2771         ret = set_machine_constraints(rdev, &init_data->constraints);
2772         if (ret < 0)
2773                 goto scrub;
2774
2775         /* add attributes supported by this regulator */
2776         ret = add_regulator_attributes(rdev);
2777         if (ret < 0)
2778                 goto scrub;
2779
2780         if (init_data->supply_regulator)
2781                 supply = init_data->supply_regulator;
2782         else if (regulator_desc->supply_name)
2783                 supply = regulator_desc->supply_name;
2784
2785         if (supply) {
2786                 struct regulator_dev *r;
2787
2788                 r = regulator_dev_lookup(dev, supply);
2789
2790                 if (!r) {
2791                         dev_err(dev, "Failed to find supply %s\n", supply);
2792                         ret = -ENODEV;
2793                         goto scrub;
2794                 }
2795
2796                 ret = set_supply(rdev, r);
2797                 if (ret < 0)
2798                         goto scrub;
2799         }
2800
2801         /* add consumers devices */
2802         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2803                 ret = set_consumer_device_supply(rdev,
2804                         init_data->consumer_supplies[i].dev,
2805                         init_data->consumer_supplies[i].dev_name,
2806                         init_data->consumer_supplies[i].supply);
2807                 if (ret < 0) {
2808                         dev_err(dev, "Failed to set supply %s\n",
2809                                 init_data->consumer_supplies[i].supply);
2810                         goto unset_supplies;
2811                 }
2812         }
2813
2814         list_add(&rdev->list, &regulator_list);
2815
2816         rdev_init_debugfs(rdev);
2817 out:
2818         mutex_unlock(&regulator_list_mutex);
2819         return rdev;
2820
2821 unset_supplies:
2822         unset_regulator_supplies(rdev);
2823
2824 scrub:
2825         kfree(rdev->constraints);
2826         device_unregister(&rdev->dev);
2827         /* device core frees rdev */
2828         rdev = ERR_PTR(ret);
2829         goto out;
2830
2831 clean:
2832         kfree(rdev);
2833         rdev = ERR_PTR(ret);
2834         goto out;
2835 }
2836 EXPORT_SYMBOL_GPL(regulator_register);
2837
2838 /**
2839  * regulator_unregister - unregister regulator
2840  * @rdev: regulator to unregister
2841  *
2842  * Called by regulator drivers to unregister a regulator.
2843  */
2844 void regulator_unregister(struct regulator_dev *rdev)
2845 {
2846         if (rdev == NULL)
2847                 return;
2848
2849         mutex_lock(&regulator_list_mutex);
2850 #ifdef CONFIG_DEBUG_FS
2851         debugfs_remove_recursive(rdev->debugfs);
2852 #endif
2853         flush_work_sync(&rdev->disable_work.work);
2854         WARN_ON(rdev->open_count);
2855         unset_regulator_supplies(rdev);
2856         list_del(&rdev->list);
2857         if (rdev->supply)
2858                 regulator_put(rdev->supply);
2859         kfree(rdev->constraints);
2860         device_unregister(&rdev->dev);
2861         mutex_unlock(&regulator_list_mutex);
2862 }
2863 EXPORT_SYMBOL_GPL(regulator_unregister);
2864
2865 /**
2866  * regulator_suspend_prepare - prepare regulators for system wide suspend
2867  * @state: system suspend state
2868  *
2869  * Configure each regulator with it's suspend operating parameters for state.
2870  * This will usually be called by machine suspend code prior to supending.
2871  */
2872 int regulator_suspend_prepare(suspend_state_t state)
2873 {
2874         struct regulator_dev *rdev;
2875         int ret = 0;
2876
2877         /* ON is handled by regulator active state */
2878         if (state == PM_SUSPEND_ON)
2879                 return -EINVAL;
2880
2881         mutex_lock(&regulator_list_mutex);
2882         list_for_each_entry(rdev, &regulator_list, list) {
2883
2884                 mutex_lock(&rdev->mutex);
2885                 ret = suspend_prepare(rdev, state);
2886                 mutex_unlock(&rdev->mutex);
2887
2888                 if (ret < 0) {
2889                         rdev_err(rdev, "failed to prepare\n");
2890                         goto out;
2891                 }
2892         }
2893 out:
2894         mutex_unlock(&regulator_list_mutex);
2895         return ret;
2896 }
2897 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2898
2899 /**
2900  * regulator_suspend_finish - resume regulators from system wide suspend
2901  *
2902  * Turn on regulators that might be turned off by regulator_suspend_prepare
2903  * and that should be turned on according to the regulators properties.
2904  */
2905 int regulator_suspend_finish(void)
2906 {
2907         struct regulator_dev *rdev;
2908         int ret = 0, error;
2909
2910         mutex_lock(&regulator_list_mutex);
2911         list_for_each_entry(rdev, &regulator_list, list) {
2912                 struct regulator_ops *ops = rdev->desc->ops;
2913
2914                 mutex_lock(&rdev->mutex);
2915                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2916                                 ops->enable) {
2917                         error = ops->enable(rdev);
2918                         if (error)
2919                                 ret = error;
2920                 } else {
2921                         if (!has_full_constraints)
2922                                 goto unlock;
2923                         if (!ops->disable)
2924                                 goto unlock;
2925                         if (ops->is_enabled && !ops->is_enabled(rdev))
2926                                 goto unlock;
2927
2928                         error = ops->disable(rdev);
2929                         if (error)
2930                                 ret = error;
2931                 }
2932 unlock:
2933                 mutex_unlock(&rdev->mutex);
2934         }
2935         mutex_unlock(&regulator_list_mutex);
2936         return ret;
2937 }
2938 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2939
2940 /**
2941  * regulator_has_full_constraints - the system has fully specified constraints
2942  *
2943  * Calling this function will cause the regulator API to disable all
2944  * regulators which have a zero use count and don't have an always_on
2945  * constraint in a late_initcall.
2946  *
2947  * The intention is that this will become the default behaviour in a
2948  * future kernel release so users are encouraged to use this facility
2949  * now.
2950  */
2951 void regulator_has_full_constraints(void)
2952 {
2953         has_full_constraints = 1;
2954 }
2955 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2956
2957 /**
2958  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2959  *
2960  * Calling this function will cause the regulator API to provide a
2961  * dummy regulator to consumers if no physical regulator is found,
2962  * allowing most consumers to proceed as though a regulator were
2963  * configured.  This allows systems such as those with software
2964  * controllable regulators for the CPU core only to be brought up more
2965  * readily.
2966  */
2967 void regulator_use_dummy_regulator(void)
2968 {
2969         board_wants_dummy_regulator = true;
2970 }
2971 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2972
2973 /**
2974  * rdev_get_drvdata - get rdev regulator driver data
2975  * @rdev: regulator
2976  *
2977  * Get rdev regulator driver private data. This call can be used in the
2978  * regulator driver context.
2979  */
2980 void *rdev_get_drvdata(struct regulator_dev *rdev)
2981 {
2982         return rdev->reg_data;
2983 }
2984 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2985
2986 /**
2987  * regulator_get_drvdata - get regulator driver data
2988  * @regulator: regulator
2989  *
2990  * Get regulator driver private data. This call can be used in the consumer
2991  * driver context when non API regulator specific functions need to be called.
2992  */
2993 void *regulator_get_drvdata(struct regulator *regulator)
2994 {
2995         return regulator->rdev->reg_data;
2996 }
2997 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2998
2999 /**
3000  * regulator_set_drvdata - set regulator driver data
3001  * @regulator: regulator
3002  * @data: data
3003  */
3004 void regulator_set_drvdata(struct regulator *regulator, void *data)
3005 {
3006         regulator->rdev->reg_data = data;
3007 }
3008 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3009
3010 /**
3011  * regulator_get_id - get regulator ID
3012  * @rdev: regulator
3013  */
3014 int rdev_get_id(struct regulator_dev *rdev)
3015 {
3016         return rdev->desc->id;
3017 }
3018 EXPORT_SYMBOL_GPL(rdev_get_id);
3019
3020 struct device *rdev_get_dev(struct regulator_dev *rdev)
3021 {
3022         return &rdev->dev;
3023 }
3024 EXPORT_SYMBOL_GPL(rdev_get_dev);
3025
3026 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3027 {
3028         return reg_init_data->driver_data;
3029 }
3030 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3031
3032 #ifdef CONFIG_DEBUG_FS
3033 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3034                                     size_t count, loff_t *ppos)
3035 {
3036         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3037         ssize_t len, ret = 0;
3038         struct regulator_map *map;
3039
3040         if (!buf)
3041                 return -ENOMEM;
3042
3043         list_for_each_entry(map, &regulator_map_list, list) {
3044                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3045                                "%s -> %s.%s\n",
3046                                rdev_get_name(map->regulator), map->dev_name,
3047                                map->supply);
3048                 if (len >= 0)
3049                         ret += len;
3050                 if (ret > PAGE_SIZE) {
3051                         ret = PAGE_SIZE;
3052                         break;
3053                 }
3054         }
3055
3056         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3057
3058         kfree(buf);
3059
3060         return ret;
3061 }
3062
3063 static const struct file_operations supply_map_fops = {
3064         .read = supply_map_read_file,
3065         .llseek = default_llseek,
3066 };
3067 #endif
3068
3069 static int __init regulator_init(void)
3070 {
3071         int ret;
3072
3073         ret = class_register(&regulator_class);
3074
3075 #ifdef CONFIG_DEBUG_FS
3076         debugfs_root = debugfs_create_dir("regulator", NULL);
3077         if (IS_ERR(debugfs_root) || !debugfs_root) {
3078                 pr_warn("regulator: Failed to create debugfs directory\n");
3079                 debugfs_root = NULL;
3080         }
3081
3082         if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3083                                        NULL, &supply_map_fops)))
3084                 pr_warn("regulator: Failed to create supplies debugfs\n");
3085 #endif
3086
3087         regulator_dummy_init();
3088
3089         return ret;
3090 }
3091
3092 /* init early to allow our consumers to complete system booting */
3093 core_initcall(regulator_init);
3094
3095 static int __init regulator_init_complete(void)
3096 {
3097         struct regulator_dev *rdev;
3098         struct regulator_ops *ops;
3099         struct regulation_constraints *c;
3100         int enabled, ret;
3101
3102         mutex_lock(&regulator_list_mutex);
3103
3104         /* If we have a full configuration then disable any regulators
3105          * which are not in use or always_on.  This will become the
3106          * default behaviour in the future.
3107          */
3108         list_for_each_entry(rdev, &regulator_list, list) {
3109                 ops = rdev->desc->ops;
3110                 c = rdev->constraints;
3111
3112                 if (!ops->disable || (c && c->always_on))
3113                         continue;
3114
3115                 mutex_lock(&rdev->mutex);
3116
3117                 if (rdev->use_count)
3118                         goto unlock;
3119
3120                 /* If we can't read the status assume it's on. */
3121                 if (ops->is_enabled)
3122                         enabled = ops->is_enabled(rdev);
3123                 else
3124                         enabled = 1;
3125
3126                 if (!enabled)
3127                         goto unlock;
3128
3129                 if (has_full_constraints) {
3130                         /* We log since this may kill the system if it
3131                          * goes wrong. */
3132                         rdev_info(rdev, "disabling\n");
3133                         ret = ops->disable(rdev);
3134                         if (ret != 0) {
3135                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3136                         }
3137                 } else {
3138                         /* The intention is that in future we will
3139                          * assume that full constraints are provided
3140                          * so warn even if we aren't going to do
3141                          * anything here.
3142                          */
3143                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3144                 }
3145
3146 unlock:
3147                 mutex_unlock(&rdev->mutex);
3148         }
3149
3150         mutex_unlock(&regulator_list_mutex);
3151
3152         return 0;
3153 }
3154 late_initcall(regulator_init_complete);