regulator: Add devm_regulator_get()
[linux-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/async.h>
24 #include <linux/err.h>
25 #include <linux/mutex.h>
26 #include <linux/suspend.h>
27 #include <linux/delay.h>
28 #include <linux/of.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 #ifdef CONFIG_DEBUG_FS
58 static struct dentry *debugfs_root;
59 #endif
60
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67         struct list_head list;
68         const char *dev_name;   /* The dev_name() for the consumer */
69         const char *supply;
70         struct regulator_dev *regulator;
71 };
72
73 /*
74  * struct regulator
75  *
76  * One for each consumer device.
77  */
78 struct regulator {
79         struct device *dev;
80         struct list_head list;
81         int uA_load;
82         int min_uV;
83         int max_uV;
84         char *supply_name;
85         struct device_attribute dev_attr;
86         struct regulator_dev *rdev;
87 #ifdef CONFIG_DEBUG_FS
88         struct dentry *debugfs;
89 #endif
90 };
91
92 static int _regulator_is_enabled(struct regulator_dev *rdev);
93 static int _regulator_disable(struct regulator_dev *rdev);
94 static int _regulator_get_voltage(struct regulator_dev *rdev);
95 static int _regulator_get_current_limit(struct regulator_dev *rdev);
96 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
97 static void _notifier_call_chain(struct regulator_dev *rdev,
98                                   unsigned long event, void *data);
99 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
100                                      int min_uV, int max_uV);
101 static struct regulator *create_regulator(struct regulator_dev *rdev,
102                                           struct device *dev,
103                                           const char *supply_name);
104
105 static const char *rdev_get_name(struct regulator_dev *rdev)
106 {
107         if (rdev->constraints && rdev->constraints->name)
108                 return rdev->constraints->name;
109         else if (rdev->desc->name)
110                 return rdev->desc->name;
111         else
112                 return "";
113 }
114
115 /* gets the regulator for a given consumer device */
116 static struct regulator *get_device_regulator(struct device *dev)
117 {
118         struct regulator *regulator = NULL;
119         struct regulator_dev *rdev;
120
121         mutex_lock(&regulator_list_mutex);
122         list_for_each_entry(rdev, &regulator_list, list) {
123                 mutex_lock(&rdev->mutex);
124                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
125                         if (regulator->dev == dev) {
126                                 mutex_unlock(&rdev->mutex);
127                                 mutex_unlock(&regulator_list_mutex);
128                                 return regulator;
129                         }
130                 }
131                 mutex_unlock(&rdev->mutex);
132         }
133         mutex_unlock(&regulator_list_mutex);
134         return NULL;
135 }
136
137 /**
138  * of_get_regulator - get a regulator device node based on supply name
139  * @dev: Device pointer for the consumer (of regulator) device
140  * @supply: regulator supply name
141  *
142  * Extract the regulator device node corresponding to the supply name.
143  * retruns the device node corresponding to the regulator if found, else
144  * returns NULL.
145  */
146 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
147 {
148         struct device_node *regnode = NULL;
149         char prop_name[32]; /* 32 is max size of property name */
150
151         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
152
153         snprintf(prop_name, 32, "%s-supply", supply);
154         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
155
156         if (!regnode) {
157                 dev_warn(dev, "%s property in node %s references invalid phandle",
158                                 prop_name, dev->of_node->full_name);
159                 return NULL;
160         }
161         return regnode;
162 }
163
164 /* Platform voltage constraint check */
165 static int regulator_check_voltage(struct regulator_dev *rdev,
166                                    int *min_uV, int *max_uV)
167 {
168         BUG_ON(*min_uV > *max_uV);
169
170         if (!rdev->constraints) {
171                 rdev_err(rdev, "no constraints\n");
172                 return -ENODEV;
173         }
174         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175                 rdev_err(rdev, "operation not allowed\n");
176                 return -EPERM;
177         }
178
179         if (*max_uV > rdev->constraints->max_uV)
180                 *max_uV = rdev->constraints->max_uV;
181         if (*min_uV < rdev->constraints->min_uV)
182                 *min_uV = rdev->constraints->min_uV;
183
184         if (*min_uV > *max_uV) {
185                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186                          *min_uV, *max_uV);
187                 return -EINVAL;
188         }
189
190         return 0;
191 }
192
193 /* Make sure we select a voltage that suits the needs of all
194  * regulator consumers
195  */
196 static int regulator_check_consumers(struct regulator_dev *rdev,
197                                      int *min_uV, int *max_uV)
198 {
199         struct regulator *regulator;
200
201         list_for_each_entry(regulator, &rdev->consumer_list, list) {
202                 /*
203                  * Assume consumers that didn't say anything are OK
204                  * with anything in the constraint range.
205                  */
206                 if (!regulator->min_uV && !regulator->max_uV)
207                         continue;
208
209                 if (*max_uV > regulator->max_uV)
210                         *max_uV = regulator->max_uV;
211                 if (*min_uV < regulator->min_uV)
212                         *min_uV = regulator->min_uV;
213         }
214
215         if (*min_uV > *max_uV)
216                 return -EINVAL;
217
218         return 0;
219 }
220
221 /* current constraint check */
222 static int regulator_check_current_limit(struct regulator_dev *rdev,
223                                         int *min_uA, int *max_uA)
224 {
225         BUG_ON(*min_uA > *max_uA);
226
227         if (!rdev->constraints) {
228                 rdev_err(rdev, "no constraints\n");
229                 return -ENODEV;
230         }
231         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
232                 rdev_err(rdev, "operation not allowed\n");
233                 return -EPERM;
234         }
235
236         if (*max_uA > rdev->constraints->max_uA)
237                 *max_uA = rdev->constraints->max_uA;
238         if (*min_uA < rdev->constraints->min_uA)
239                 *min_uA = rdev->constraints->min_uA;
240
241         if (*min_uA > *max_uA) {
242                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
243                          *min_uA, *max_uA);
244                 return -EINVAL;
245         }
246
247         return 0;
248 }
249
250 /* operating mode constraint check */
251 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
252 {
253         switch (*mode) {
254         case REGULATOR_MODE_FAST:
255         case REGULATOR_MODE_NORMAL:
256         case REGULATOR_MODE_IDLE:
257         case REGULATOR_MODE_STANDBY:
258                 break;
259         default:
260                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
261                 return -EINVAL;
262         }
263
264         if (!rdev->constraints) {
265                 rdev_err(rdev, "no constraints\n");
266                 return -ENODEV;
267         }
268         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
269                 rdev_err(rdev, "operation not allowed\n");
270                 return -EPERM;
271         }
272
273         /* The modes are bitmasks, the most power hungry modes having
274          * the lowest values. If the requested mode isn't supported
275          * try higher modes. */
276         while (*mode) {
277                 if (rdev->constraints->valid_modes_mask & *mode)
278                         return 0;
279                 *mode /= 2;
280         }
281
282         return -EINVAL;
283 }
284
285 /* dynamic regulator mode switching constraint check */
286 static int regulator_check_drms(struct regulator_dev *rdev)
287 {
288         if (!rdev->constraints) {
289                 rdev_err(rdev, "no constraints\n");
290                 return -ENODEV;
291         }
292         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
293                 rdev_err(rdev, "operation not allowed\n");
294                 return -EPERM;
295         }
296         return 0;
297 }
298
299 static ssize_t device_requested_uA_show(struct device *dev,
300                              struct device_attribute *attr, char *buf)
301 {
302         struct regulator *regulator;
303
304         regulator = get_device_regulator(dev);
305         if (regulator == NULL)
306                 return 0;
307
308         return sprintf(buf, "%d\n", regulator->uA_load);
309 }
310
311 static ssize_t regulator_uV_show(struct device *dev,
312                                 struct device_attribute *attr, char *buf)
313 {
314         struct regulator_dev *rdev = dev_get_drvdata(dev);
315         ssize_t ret;
316
317         mutex_lock(&rdev->mutex);
318         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
319         mutex_unlock(&rdev->mutex);
320
321         return ret;
322 }
323 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
324
325 static ssize_t regulator_uA_show(struct device *dev,
326                                 struct device_attribute *attr, char *buf)
327 {
328         struct regulator_dev *rdev = dev_get_drvdata(dev);
329
330         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
331 }
332 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
333
334 static ssize_t regulator_name_show(struct device *dev,
335                              struct device_attribute *attr, char *buf)
336 {
337         struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339         return sprintf(buf, "%s\n", rdev_get_name(rdev));
340 }
341
342 static ssize_t regulator_print_opmode(char *buf, int mode)
343 {
344         switch (mode) {
345         case REGULATOR_MODE_FAST:
346                 return sprintf(buf, "fast\n");
347         case REGULATOR_MODE_NORMAL:
348                 return sprintf(buf, "normal\n");
349         case REGULATOR_MODE_IDLE:
350                 return sprintf(buf, "idle\n");
351         case REGULATOR_MODE_STANDBY:
352                 return sprintf(buf, "standby\n");
353         }
354         return sprintf(buf, "unknown\n");
355 }
356
357 static ssize_t regulator_opmode_show(struct device *dev,
358                                     struct device_attribute *attr, char *buf)
359 {
360         struct regulator_dev *rdev = dev_get_drvdata(dev);
361
362         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363 }
364 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365
366 static ssize_t regulator_print_state(char *buf, int state)
367 {
368         if (state > 0)
369                 return sprintf(buf, "enabled\n");
370         else if (state == 0)
371                 return sprintf(buf, "disabled\n");
372         else
373                 return sprintf(buf, "unknown\n");
374 }
375
376 static ssize_t regulator_state_show(struct device *dev,
377                                    struct device_attribute *attr, char *buf)
378 {
379         struct regulator_dev *rdev = dev_get_drvdata(dev);
380         ssize_t ret;
381
382         mutex_lock(&rdev->mutex);
383         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384         mutex_unlock(&rdev->mutex);
385
386         return ret;
387 }
388 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389
390 static ssize_t regulator_status_show(struct device *dev,
391                                    struct device_attribute *attr, char *buf)
392 {
393         struct regulator_dev *rdev = dev_get_drvdata(dev);
394         int status;
395         char *label;
396
397         status = rdev->desc->ops->get_status(rdev);
398         if (status < 0)
399                 return status;
400
401         switch (status) {
402         case REGULATOR_STATUS_OFF:
403                 label = "off";
404                 break;
405         case REGULATOR_STATUS_ON:
406                 label = "on";
407                 break;
408         case REGULATOR_STATUS_ERROR:
409                 label = "error";
410                 break;
411         case REGULATOR_STATUS_FAST:
412                 label = "fast";
413                 break;
414         case REGULATOR_STATUS_NORMAL:
415                 label = "normal";
416                 break;
417         case REGULATOR_STATUS_IDLE:
418                 label = "idle";
419                 break;
420         case REGULATOR_STATUS_STANDBY:
421                 label = "standby";
422                 break;
423         default:
424                 return -ERANGE;
425         }
426
427         return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432                                     struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436         if (!rdev->constraints)
437                 return sprintf(buf, "constraint not defined\n");
438
439         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444                                     struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         if (!rdev->constraints)
449                 return sprintf(buf, "constraint not defined\n");
450
451         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456                                     struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         if (!rdev->constraints)
461                 return sprintf(buf, "constraint not defined\n");
462
463         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468                                     struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         if (!rdev->constraints)
473                 return sprintf(buf, "constraint not defined\n");
474
475         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480                                       struct device_attribute *attr, char *buf)
481 {
482         struct regulator_dev *rdev = dev_get_drvdata(dev);
483         struct regulator *regulator;
484         int uA = 0;
485
486         mutex_lock(&rdev->mutex);
487         list_for_each_entry(regulator, &rdev->consumer_list, list)
488                 uA += regulator->uA_load;
489         mutex_unlock(&rdev->mutex);
490         return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t regulator_num_users_show(struct device *dev,
495                                       struct device_attribute *attr, char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498         return sprintf(buf, "%d\n", rdev->use_count);
499 }
500
501 static ssize_t regulator_type_show(struct device *dev,
502                                   struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         switch (rdev->desc->type) {
507         case REGULATOR_VOLTAGE:
508                 return sprintf(buf, "voltage\n");
509         case REGULATOR_CURRENT:
510                 return sprintf(buf, "current\n");
511         }
512         return sprintf(buf, "unknown\n");
513 }
514
515 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
516                                 struct device_attribute *attr, char *buf)
517 {
518         struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
521 }
522 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
523                 regulator_suspend_mem_uV_show, NULL);
524
525 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
526                                 struct device_attribute *attr, char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
531 }
532 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
533                 regulator_suspend_disk_uV_show, NULL);
534
535 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
536                                 struct device_attribute *attr, char *buf)
537 {
538         struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
541 }
542 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
543                 regulator_suspend_standby_uV_show, NULL);
544
545 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
546                                 struct device_attribute *attr, char *buf)
547 {
548         struct regulator_dev *rdev = dev_get_drvdata(dev);
549
550         return regulator_print_opmode(buf,
551                 rdev->constraints->state_mem.mode);
552 }
553 static DEVICE_ATTR(suspend_mem_mode, 0444,
554                 regulator_suspend_mem_mode_show, NULL);
555
556 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
557                                 struct device_attribute *attr, char *buf)
558 {
559         struct regulator_dev *rdev = dev_get_drvdata(dev);
560
561         return regulator_print_opmode(buf,
562                 rdev->constraints->state_disk.mode);
563 }
564 static DEVICE_ATTR(suspend_disk_mode, 0444,
565                 regulator_suspend_disk_mode_show, NULL);
566
567 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
568                                 struct device_attribute *attr, char *buf)
569 {
570         struct regulator_dev *rdev = dev_get_drvdata(dev);
571
572         return regulator_print_opmode(buf,
573                 rdev->constraints->state_standby.mode);
574 }
575 static DEVICE_ATTR(suspend_standby_mode, 0444,
576                 regulator_suspend_standby_mode_show, NULL);
577
578 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
579                                    struct device_attribute *attr, char *buf)
580 {
581         struct regulator_dev *rdev = dev_get_drvdata(dev);
582
583         return regulator_print_state(buf,
584                         rdev->constraints->state_mem.enabled);
585 }
586 static DEVICE_ATTR(suspend_mem_state, 0444,
587                 regulator_suspend_mem_state_show, NULL);
588
589 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
590                                    struct device_attribute *attr, char *buf)
591 {
592         struct regulator_dev *rdev = dev_get_drvdata(dev);
593
594         return regulator_print_state(buf,
595                         rdev->constraints->state_disk.enabled);
596 }
597 static DEVICE_ATTR(suspend_disk_state, 0444,
598                 regulator_suspend_disk_state_show, NULL);
599
600 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
601                                    struct device_attribute *attr, char *buf)
602 {
603         struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605         return regulator_print_state(buf,
606                         rdev->constraints->state_standby.enabled);
607 }
608 static DEVICE_ATTR(suspend_standby_state, 0444,
609                 regulator_suspend_standby_state_show, NULL);
610
611
612 /*
613  * These are the only attributes are present for all regulators.
614  * Other attributes are a function of regulator functionality.
615  */
616 static struct device_attribute regulator_dev_attrs[] = {
617         __ATTR(name, 0444, regulator_name_show, NULL),
618         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
619         __ATTR(type, 0444, regulator_type_show, NULL),
620         __ATTR_NULL,
621 };
622
623 static void regulator_dev_release(struct device *dev)
624 {
625         struct regulator_dev *rdev = dev_get_drvdata(dev);
626         kfree(rdev);
627 }
628
629 static struct class regulator_class = {
630         .name = "regulator",
631         .dev_release = regulator_dev_release,
632         .dev_attrs = regulator_dev_attrs,
633 };
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636  * consumer load. All locks held by caller */
637 static void drms_uA_update(struct regulator_dev *rdev)
638 {
639         struct regulator *sibling;
640         int current_uA = 0, output_uV, input_uV, err;
641         unsigned int mode;
642
643         err = regulator_check_drms(rdev);
644         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645             (!rdev->desc->ops->get_voltage &&
646              !rdev->desc->ops->get_voltage_sel) ||
647             !rdev->desc->ops->set_mode)
648                 return;
649
650         /* get output voltage */
651         output_uV = _regulator_get_voltage(rdev);
652         if (output_uV <= 0)
653                 return;
654
655         /* get input voltage */
656         input_uV = 0;
657         if (rdev->supply)
658                 input_uV = _regulator_get_voltage(rdev);
659         if (input_uV <= 0)
660                 input_uV = rdev->constraints->input_uV;
661         if (input_uV <= 0)
662                 return;
663
664         /* calc total requested load */
665         list_for_each_entry(sibling, &rdev->consumer_list, list)
666                 current_uA += sibling->uA_load;
667
668         /* now get the optimum mode for our new total regulator load */
669         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
670                                                   output_uV, current_uA);
671
672         /* check the new mode is allowed */
673         err = regulator_mode_constrain(rdev, &mode);
674         if (err == 0)
675                 rdev->desc->ops->set_mode(rdev, mode);
676 }
677
678 static int suspend_set_state(struct regulator_dev *rdev,
679         struct regulator_state *rstate)
680 {
681         int ret = 0;
682         bool can_set_state;
683
684         can_set_state = rdev->desc->ops->set_suspend_enable &&
685                 rdev->desc->ops->set_suspend_disable;
686
687         /* If we have no suspend mode configration don't set anything;
688          * only warn if the driver actually makes the suspend mode
689          * configurable.
690          */
691         if (!rstate->enabled && !rstate->disabled) {
692                 if (can_set_state)
693                         rdev_warn(rdev, "No configuration\n");
694                 return 0;
695         }
696
697         if (rstate->enabled && rstate->disabled) {
698                 rdev_err(rdev, "invalid configuration\n");
699                 return -EINVAL;
700         }
701
702         if (!can_set_state) {
703                 rdev_err(rdev, "no way to set suspend state\n");
704                 return -EINVAL;
705         }
706
707         if (rstate->enabled)
708                 ret = rdev->desc->ops->set_suspend_enable(rdev);
709         else
710                 ret = rdev->desc->ops->set_suspend_disable(rdev);
711         if (ret < 0) {
712                 rdev_err(rdev, "failed to enabled/disable\n");
713                 return ret;
714         }
715
716         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718                 if (ret < 0) {
719                         rdev_err(rdev, "failed to set voltage\n");
720                         return ret;
721                 }
722         }
723
724         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726                 if (ret < 0) {
727                         rdev_err(rdev, "failed to set mode\n");
728                         return ret;
729                 }
730         }
731         return ret;
732 }
733
734 /* locks held by caller */
735 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736 {
737         if (!rdev->constraints)
738                 return -EINVAL;
739
740         switch (state) {
741         case PM_SUSPEND_STANDBY:
742                 return suspend_set_state(rdev,
743                         &rdev->constraints->state_standby);
744         case PM_SUSPEND_MEM:
745                 return suspend_set_state(rdev,
746                         &rdev->constraints->state_mem);
747         case PM_SUSPEND_MAX:
748                 return suspend_set_state(rdev,
749                         &rdev->constraints->state_disk);
750         default:
751                 return -EINVAL;
752         }
753 }
754
755 static void print_constraints(struct regulator_dev *rdev)
756 {
757         struct regulation_constraints *constraints = rdev->constraints;
758         char buf[80] = "";
759         int count = 0;
760         int ret;
761
762         if (constraints->min_uV && constraints->max_uV) {
763                 if (constraints->min_uV == constraints->max_uV)
764                         count += sprintf(buf + count, "%d mV ",
765                                          constraints->min_uV / 1000);
766                 else
767                         count += sprintf(buf + count, "%d <--> %d mV ",
768                                          constraints->min_uV / 1000,
769                                          constraints->max_uV / 1000);
770         }
771
772         if (!constraints->min_uV ||
773             constraints->min_uV != constraints->max_uV) {
774                 ret = _regulator_get_voltage(rdev);
775                 if (ret > 0)
776                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
777         }
778
779         if (constraints->uV_offset)
780                 count += sprintf(buf, "%dmV offset ",
781                                  constraints->uV_offset / 1000);
782
783         if (constraints->min_uA && constraints->max_uA) {
784                 if (constraints->min_uA == constraints->max_uA)
785                         count += sprintf(buf + count, "%d mA ",
786                                          constraints->min_uA / 1000);
787                 else
788                         count += sprintf(buf + count, "%d <--> %d mA ",
789                                          constraints->min_uA / 1000,
790                                          constraints->max_uA / 1000);
791         }
792
793         if (!constraints->min_uA ||
794             constraints->min_uA != constraints->max_uA) {
795                 ret = _regulator_get_current_limit(rdev);
796                 if (ret > 0)
797                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
798         }
799
800         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801                 count += sprintf(buf + count, "fast ");
802         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803                 count += sprintf(buf + count, "normal ");
804         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805                 count += sprintf(buf + count, "idle ");
806         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807                 count += sprintf(buf + count, "standby");
808
809         rdev_info(rdev, "%s\n", buf);
810 }
811
812 static int machine_constraints_voltage(struct regulator_dev *rdev,
813         struct regulation_constraints *constraints)
814 {
815         struct regulator_ops *ops = rdev->desc->ops;
816         int ret;
817
818         /* do we need to apply the constraint voltage */
819         if (rdev->constraints->apply_uV &&
820             rdev->constraints->min_uV == rdev->constraints->max_uV) {
821                 ret = _regulator_do_set_voltage(rdev,
822                                                 rdev->constraints->min_uV,
823                                                 rdev->constraints->max_uV);
824                 if (ret < 0) {
825                         rdev_err(rdev, "failed to apply %duV constraint\n",
826                                  rdev->constraints->min_uV);
827                         return ret;
828                 }
829         }
830
831         /* constrain machine-level voltage specs to fit
832          * the actual range supported by this regulator.
833          */
834         if (ops->list_voltage && rdev->desc->n_voltages) {
835                 int     count = rdev->desc->n_voltages;
836                 int     i;
837                 int     min_uV = INT_MAX;
838                 int     max_uV = INT_MIN;
839                 int     cmin = constraints->min_uV;
840                 int     cmax = constraints->max_uV;
841
842                 /* it's safe to autoconfigure fixed-voltage supplies
843                    and the constraints are used by list_voltage. */
844                 if (count == 1 && !cmin) {
845                         cmin = 1;
846                         cmax = INT_MAX;
847                         constraints->min_uV = cmin;
848                         constraints->max_uV = cmax;
849                 }
850
851                 /* voltage constraints are optional */
852                 if ((cmin == 0) && (cmax == 0))
853                         return 0;
854
855                 /* else require explicit machine-level constraints */
856                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
857                         rdev_err(rdev, "invalid voltage constraints\n");
858                         return -EINVAL;
859                 }
860
861                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
862                 for (i = 0; i < count; i++) {
863                         int     value;
864
865                         value = ops->list_voltage(rdev, i);
866                         if (value <= 0)
867                                 continue;
868
869                         /* maybe adjust [min_uV..max_uV] */
870                         if (value >= cmin && value < min_uV)
871                                 min_uV = value;
872                         if (value <= cmax && value > max_uV)
873                                 max_uV = value;
874                 }
875
876                 /* final: [min_uV..max_uV] valid iff constraints valid */
877                 if (max_uV < min_uV) {
878                         rdev_err(rdev, "unsupportable voltage constraints\n");
879                         return -EINVAL;
880                 }
881
882                 /* use regulator's subset of machine constraints */
883                 if (constraints->min_uV < min_uV) {
884                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
885                                  constraints->min_uV, min_uV);
886                         constraints->min_uV = min_uV;
887                 }
888                 if (constraints->max_uV > max_uV) {
889                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
890                                  constraints->max_uV, max_uV);
891                         constraints->max_uV = max_uV;
892                 }
893         }
894
895         return 0;
896 }
897
898 /**
899  * set_machine_constraints - sets regulator constraints
900  * @rdev: regulator source
901  * @constraints: constraints to apply
902  *
903  * Allows platform initialisation code to define and constrain
904  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
905  * Constraints *must* be set by platform code in order for some
906  * regulator operations to proceed i.e. set_voltage, set_current_limit,
907  * set_mode.
908  */
909 static int set_machine_constraints(struct regulator_dev *rdev,
910         const struct regulation_constraints *constraints)
911 {
912         int ret = 0;
913         struct regulator_ops *ops = rdev->desc->ops;
914
915         if (constraints)
916                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
917                                             GFP_KERNEL);
918         else
919                 rdev->constraints = kzalloc(sizeof(*constraints),
920                                             GFP_KERNEL);
921         if (!rdev->constraints)
922                 return -ENOMEM;
923
924         ret = machine_constraints_voltage(rdev, rdev->constraints);
925         if (ret != 0)
926                 goto out;
927
928         /* do we need to setup our suspend state */
929         if (rdev->constraints->initial_state) {
930                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
931                 if (ret < 0) {
932                         rdev_err(rdev, "failed to set suspend state\n");
933                         goto out;
934                 }
935         }
936
937         if (rdev->constraints->initial_mode) {
938                 if (!ops->set_mode) {
939                         rdev_err(rdev, "no set_mode operation\n");
940                         ret = -EINVAL;
941                         goto out;
942                 }
943
944                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
945                 if (ret < 0) {
946                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
947                         goto out;
948                 }
949         }
950
951         /* If the constraints say the regulator should be on at this point
952          * and we have control then make sure it is enabled.
953          */
954         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
955             ops->enable) {
956                 ret = ops->enable(rdev);
957                 if (ret < 0) {
958                         rdev_err(rdev, "failed to enable\n");
959                         goto out;
960                 }
961         }
962
963         print_constraints(rdev);
964         return 0;
965 out:
966         kfree(rdev->constraints);
967         rdev->constraints = NULL;
968         return ret;
969 }
970
971 /**
972  * set_supply - set regulator supply regulator
973  * @rdev: regulator name
974  * @supply_rdev: supply regulator name
975  *
976  * Called by platform initialisation code to set the supply regulator for this
977  * regulator. This ensures that a regulators supply will also be enabled by the
978  * core if it's child is enabled.
979  */
980 static int set_supply(struct regulator_dev *rdev,
981                       struct regulator_dev *supply_rdev)
982 {
983         int err;
984
985         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
986
987         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
988         if (rdev->supply == NULL) {
989                 err = -ENOMEM;
990                 return err;
991         }
992
993         return 0;
994 }
995
996 /**
997  * set_consumer_device_supply - Bind a regulator to a symbolic supply
998  * @rdev:         regulator source
999  * @consumer_dev: device the supply applies to
1000  * @consumer_dev_name: dev_name() string for device supply applies to
1001  * @supply:       symbolic name for supply
1002  *
1003  * Allows platform initialisation code to map physical regulator
1004  * sources to symbolic names for supplies for use by devices.  Devices
1005  * should use these symbolic names to request regulators, avoiding the
1006  * need to provide board-specific regulator names as platform data.
1007  *
1008  * Only one of consumer_dev and consumer_dev_name may be specified.
1009  */
1010 static int set_consumer_device_supply(struct regulator_dev *rdev,
1011         struct device *consumer_dev, const char *consumer_dev_name,
1012         const char *supply)
1013 {
1014         struct regulator_map *node;
1015         int has_dev;
1016
1017         if (consumer_dev && consumer_dev_name)
1018                 return -EINVAL;
1019
1020         if (!consumer_dev_name && consumer_dev)
1021                 consumer_dev_name = dev_name(consumer_dev);
1022
1023         if (supply == NULL)
1024                 return -EINVAL;
1025
1026         if (consumer_dev_name != NULL)
1027                 has_dev = 1;
1028         else
1029                 has_dev = 0;
1030
1031         list_for_each_entry(node, &regulator_map_list, list) {
1032                 if (node->dev_name && consumer_dev_name) {
1033                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1034                                 continue;
1035                 } else if (node->dev_name || consumer_dev_name) {
1036                         continue;
1037                 }
1038
1039                 if (strcmp(node->supply, supply) != 0)
1040                         continue;
1041
1042                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1043                         dev_name(&node->regulator->dev),
1044                         node->regulator->desc->name,
1045                         supply,
1046                         dev_name(&rdev->dev), rdev_get_name(rdev));
1047                 return -EBUSY;
1048         }
1049
1050         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1051         if (node == NULL)
1052                 return -ENOMEM;
1053
1054         node->regulator = rdev;
1055         node->supply = supply;
1056
1057         if (has_dev) {
1058                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1059                 if (node->dev_name == NULL) {
1060                         kfree(node);
1061                         return -ENOMEM;
1062                 }
1063         }
1064
1065         list_add(&node->list, &regulator_map_list);
1066         return 0;
1067 }
1068
1069 static void unset_regulator_supplies(struct regulator_dev *rdev)
1070 {
1071         struct regulator_map *node, *n;
1072
1073         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1074                 if (rdev == node->regulator) {
1075                         list_del(&node->list);
1076                         kfree(node->dev_name);
1077                         kfree(node);
1078                 }
1079         }
1080 }
1081
1082 #define REG_STR_SIZE    64
1083
1084 static struct regulator *create_regulator(struct regulator_dev *rdev,
1085                                           struct device *dev,
1086                                           const char *supply_name)
1087 {
1088         struct regulator *regulator;
1089         char buf[REG_STR_SIZE];
1090         int err, size;
1091
1092         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1093         if (regulator == NULL)
1094                 return NULL;
1095
1096         mutex_lock(&rdev->mutex);
1097         regulator->rdev = rdev;
1098         list_add(&regulator->list, &rdev->consumer_list);
1099
1100         if (dev) {
1101                 /* create a 'requested_microamps_name' sysfs entry */
1102                 size = scnprintf(buf, REG_STR_SIZE,
1103                                  "microamps_requested_%s-%s",
1104                                  dev_name(dev), supply_name);
1105                 if (size >= REG_STR_SIZE)
1106                         goto overflow_err;
1107
1108                 regulator->dev = dev;
1109                 sysfs_attr_init(&regulator->dev_attr.attr);
1110                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1111                 if (regulator->dev_attr.attr.name == NULL)
1112                         goto attr_name_err;
1113
1114                 regulator->dev_attr.attr.mode = 0444;
1115                 regulator->dev_attr.show = device_requested_uA_show;
1116                 err = device_create_file(dev, &regulator->dev_attr);
1117                 if (err < 0) {
1118                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1119                         goto attr_name_err;
1120                 }
1121
1122                 /* also add a link to the device sysfs entry */
1123                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1124                                  dev->kobj.name, supply_name);
1125                 if (size >= REG_STR_SIZE)
1126                         goto attr_err;
1127
1128                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1129                 if (regulator->supply_name == NULL)
1130                         goto attr_err;
1131
1132                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1133                                         buf);
1134                 if (err) {
1135                         rdev_warn(rdev, "could not add device link %s err %d\n",
1136                                   dev->kobj.name, err);
1137                         goto link_name_err;
1138                 }
1139         } else {
1140                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1141                 if (regulator->supply_name == NULL)
1142                         goto attr_err;
1143         }
1144
1145 #ifdef CONFIG_DEBUG_FS
1146         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1147                                                 rdev->debugfs);
1148         if (IS_ERR_OR_NULL(regulator->debugfs)) {
1149                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1150                 regulator->debugfs = NULL;
1151         } else {
1152                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1153                                    &regulator->uA_load);
1154                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1155                                    &regulator->min_uV);
1156                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1157                                    &regulator->max_uV);
1158         }
1159 #endif
1160
1161         mutex_unlock(&rdev->mutex);
1162         return regulator;
1163 link_name_err:
1164         kfree(regulator->supply_name);
1165 attr_err:
1166         device_remove_file(regulator->dev, &regulator->dev_attr);
1167 attr_name_err:
1168         kfree(regulator->dev_attr.attr.name);
1169 overflow_err:
1170         list_del(&regulator->list);
1171         kfree(regulator);
1172         mutex_unlock(&rdev->mutex);
1173         return NULL;
1174 }
1175
1176 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1177 {
1178         if (!rdev->desc->ops->enable_time)
1179                 return 0;
1180         return rdev->desc->ops->enable_time(rdev);
1181 }
1182
1183 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1184                                                          const char *supply)
1185 {
1186         struct regulator_dev *r;
1187         struct device_node *node;
1188
1189         /* first do a dt based lookup */
1190         if (dev && dev->of_node) {
1191                 node = of_get_regulator(dev, supply);
1192                 if (node)
1193                         list_for_each_entry(r, &regulator_list, list)
1194                                 if (r->dev.parent &&
1195                                         node == r->dev.of_node)
1196                                         return r;
1197         }
1198
1199         /* if not found, try doing it non-dt way */
1200         list_for_each_entry(r, &regulator_list, list)
1201                 if (strcmp(rdev_get_name(r), supply) == 0)
1202                         return r;
1203
1204         return NULL;
1205 }
1206
1207 /* Internal regulator request function */
1208 static struct regulator *_regulator_get(struct device *dev, const char *id,
1209                                         int exclusive)
1210 {
1211         struct regulator_dev *rdev;
1212         struct regulator_map *map;
1213         struct regulator *regulator = ERR_PTR(-ENODEV);
1214         const char *devname = NULL;
1215         int ret;
1216
1217         if (id == NULL) {
1218                 pr_err("get() with no identifier\n");
1219                 return regulator;
1220         }
1221
1222         if (dev)
1223                 devname = dev_name(dev);
1224
1225         mutex_lock(&regulator_list_mutex);
1226
1227         rdev = regulator_dev_lookup(dev, id);
1228         if (rdev)
1229                 goto found;
1230
1231         list_for_each_entry(map, &regulator_map_list, list) {
1232                 /* If the mapping has a device set up it must match */
1233                 if (map->dev_name &&
1234                     (!devname || strcmp(map->dev_name, devname)))
1235                         continue;
1236
1237                 if (strcmp(map->supply, id) == 0) {
1238                         rdev = map->regulator;
1239                         goto found;
1240                 }
1241         }
1242
1243         if (board_wants_dummy_regulator) {
1244                 rdev = dummy_regulator_rdev;
1245                 goto found;
1246         }
1247
1248 #ifdef CONFIG_REGULATOR_DUMMY
1249         if (!devname)
1250                 devname = "deviceless";
1251
1252         /* If the board didn't flag that it was fully constrained then
1253          * substitute in a dummy regulator so consumers can continue.
1254          */
1255         if (!has_full_constraints) {
1256                 pr_warn("%s supply %s not found, using dummy regulator\n",
1257                         devname, id);
1258                 rdev = dummy_regulator_rdev;
1259                 goto found;
1260         }
1261 #endif
1262
1263         mutex_unlock(&regulator_list_mutex);
1264         return regulator;
1265
1266 found:
1267         if (rdev->exclusive) {
1268                 regulator = ERR_PTR(-EPERM);
1269                 goto out;
1270         }
1271
1272         if (exclusive && rdev->open_count) {
1273                 regulator = ERR_PTR(-EBUSY);
1274                 goto out;
1275         }
1276
1277         if (!try_module_get(rdev->owner))
1278                 goto out;
1279
1280         regulator = create_regulator(rdev, dev, id);
1281         if (regulator == NULL) {
1282                 regulator = ERR_PTR(-ENOMEM);
1283                 module_put(rdev->owner);
1284                 goto out;
1285         }
1286
1287         rdev->open_count++;
1288         if (exclusive) {
1289                 rdev->exclusive = 1;
1290
1291                 ret = _regulator_is_enabled(rdev);
1292                 if (ret > 0)
1293                         rdev->use_count = 1;
1294                 else
1295                         rdev->use_count = 0;
1296         }
1297
1298 out:
1299         mutex_unlock(&regulator_list_mutex);
1300
1301         return regulator;
1302 }
1303
1304 /**
1305  * regulator_get - lookup and obtain a reference to a regulator.
1306  * @dev: device for regulator "consumer"
1307  * @id: Supply name or regulator ID.
1308  *
1309  * Returns a struct regulator corresponding to the regulator producer,
1310  * or IS_ERR() condition containing errno.
1311  *
1312  * Use of supply names configured via regulator_set_device_supply() is
1313  * strongly encouraged.  It is recommended that the supply name used
1314  * should match the name used for the supply and/or the relevant
1315  * device pins in the datasheet.
1316  */
1317 struct regulator *regulator_get(struct device *dev, const char *id)
1318 {
1319         return _regulator_get(dev, id, 0);
1320 }
1321 EXPORT_SYMBOL_GPL(regulator_get);
1322
1323 static void devm_regulator_release(struct device *dev, void *res)
1324 {
1325         regulator_put(*(struct regulator **)res);
1326 }
1327
1328 /**
1329  * devm_regulator_get - Resource managed regulator_get()
1330  * @dev: device for regulator "consumer"
1331  * @id: Supply name or regulator ID.
1332  *
1333  * Managed regulator_get(). Regulators returned from this function are
1334  * automatically regulator_put() on driver detach. See regulator_get() for more
1335  * information.
1336  */
1337 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1338 {
1339         struct regulator **ptr, *regulator;
1340
1341         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1342         if (!ptr)
1343                 return ERR_PTR(-ENOMEM);
1344
1345         regulator = regulator_get(dev, id);
1346         if (!IS_ERR(regulator)) {
1347                 *ptr = regulator;
1348                 devres_add(dev, ptr);
1349         } else {
1350                 devres_free(ptr);
1351         }
1352
1353         return regulator;
1354 }
1355 EXPORT_SYMBOL_GPL(devm_regulator_get);
1356
1357 /**
1358  * regulator_get_exclusive - obtain exclusive access to a regulator.
1359  * @dev: device for regulator "consumer"
1360  * @id: Supply name or regulator ID.
1361  *
1362  * Returns a struct regulator corresponding to the regulator producer,
1363  * or IS_ERR() condition containing errno.  Other consumers will be
1364  * unable to obtain this reference is held and the use count for the
1365  * regulator will be initialised to reflect the current state of the
1366  * regulator.
1367  *
1368  * This is intended for use by consumers which cannot tolerate shared
1369  * use of the regulator such as those which need to force the
1370  * regulator off for correct operation of the hardware they are
1371  * controlling.
1372  *
1373  * Use of supply names configured via regulator_set_device_supply() is
1374  * strongly encouraged.  It is recommended that the supply name used
1375  * should match the name used for the supply and/or the relevant
1376  * device pins in the datasheet.
1377  */
1378 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1379 {
1380         return _regulator_get(dev, id, 1);
1381 }
1382 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1383
1384 /**
1385  * regulator_put - "free" the regulator source
1386  * @regulator: regulator source
1387  *
1388  * Note: drivers must ensure that all regulator_enable calls made on this
1389  * regulator source are balanced by regulator_disable calls prior to calling
1390  * this function.
1391  */
1392 void regulator_put(struct regulator *regulator)
1393 {
1394         struct regulator_dev *rdev;
1395
1396         if (regulator == NULL || IS_ERR(regulator))
1397                 return;
1398
1399         mutex_lock(&regulator_list_mutex);
1400         rdev = regulator->rdev;
1401
1402 #ifdef CONFIG_DEBUG_FS
1403         debugfs_remove_recursive(regulator->debugfs);
1404 #endif
1405
1406         /* remove any sysfs entries */
1407         if (regulator->dev) {
1408                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1409                 device_remove_file(regulator->dev, &regulator->dev_attr);
1410                 kfree(regulator->dev_attr.attr.name);
1411         }
1412         kfree(regulator->supply_name);
1413         list_del(&regulator->list);
1414         kfree(regulator);
1415
1416         rdev->open_count--;
1417         rdev->exclusive = 0;
1418
1419         module_put(rdev->owner);
1420         mutex_unlock(&regulator_list_mutex);
1421 }
1422 EXPORT_SYMBOL_GPL(regulator_put);
1423
1424 static int _regulator_can_change_status(struct regulator_dev *rdev)
1425 {
1426         if (!rdev->constraints)
1427                 return 0;
1428
1429         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1430                 return 1;
1431         else
1432                 return 0;
1433 }
1434
1435 /* locks held by regulator_enable() */
1436 static int _regulator_enable(struct regulator_dev *rdev)
1437 {
1438         int ret, delay;
1439
1440         /* check voltage and requested load before enabling */
1441         if (rdev->constraints &&
1442             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1443                 drms_uA_update(rdev);
1444
1445         if (rdev->use_count == 0) {
1446                 /* The regulator may on if it's not switchable or left on */
1447                 ret = _regulator_is_enabled(rdev);
1448                 if (ret == -EINVAL || ret == 0) {
1449                         if (!_regulator_can_change_status(rdev))
1450                                 return -EPERM;
1451
1452                         if (!rdev->desc->ops->enable)
1453                                 return -EINVAL;
1454
1455                         /* Query before enabling in case configuration
1456                          * dependent.  */
1457                         ret = _regulator_get_enable_time(rdev);
1458                         if (ret >= 0) {
1459                                 delay = ret;
1460                         } else {
1461                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1462                                            ret);
1463                                 delay = 0;
1464                         }
1465
1466                         trace_regulator_enable(rdev_get_name(rdev));
1467
1468                         /* Allow the regulator to ramp; it would be useful
1469                          * to extend this for bulk operations so that the
1470                          * regulators can ramp together.  */
1471                         ret = rdev->desc->ops->enable(rdev);
1472                         if (ret < 0)
1473                                 return ret;
1474
1475                         trace_regulator_enable_delay(rdev_get_name(rdev));
1476
1477                         if (delay >= 1000) {
1478                                 mdelay(delay / 1000);
1479                                 udelay(delay % 1000);
1480                         } else if (delay) {
1481                                 udelay(delay);
1482                         }
1483
1484                         trace_regulator_enable_complete(rdev_get_name(rdev));
1485
1486                 } else if (ret < 0) {
1487                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1488                         return ret;
1489                 }
1490                 /* Fallthrough on positive return values - already enabled */
1491         }
1492
1493         rdev->use_count++;
1494
1495         return 0;
1496 }
1497
1498 /**
1499  * regulator_enable - enable regulator output
1500  * @regulator: regulator source
1501  *
1502  * Request that the regulator be enabled with the regulator output at
1503  * the predefined voltage or current value.  Calls to regulator_enable()
1504  * must be balanced with calls to regulator_disable().
1505  *
1506  * NOTE: the output value can be set by other drivers, boot loader or may be
1507  * hardwired in the regulator.
1508  */
1509 int regulator_enable(struct regulator *regulator)
1510 {
1511         struct regulator_dev *rdev = regulator->rdev;
1512         int ret = 0;
1513
1514         if (rdev->supply) {
1515                 ret = regulator_enable(rdev->supply);
1516                 if (ret != 0)
1517                         return ret;
1518         }
1519
1520         mutex_lock(&rdev->mutex);
1521         ret = _regulator_enable(rdev);
1522         mutex_unlock(&rdev->mutex);
1523
1524         if (ret != 0 && rdev->supply)
1525                 regulator_disable(rdev->supply);
1526
1527         return ret;
1528 }
1529 EXPORT_SYMBOL_GPL(regulator_enable);
1530
1531 /* locks held by regulator_disable() */
1532 static int _regulator_disable(struct regulator_dev *rdev)
1533 {
1534         int ret = 0;
1535
1536         if (WARN(rdev->use_count <= 0,
1537                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1538                 return -EIO;
1539
1540         /* are we the last user and permitted to disable ? */
1541         if (rdev->use_count == 1 &&
1542             (rdev->constraints && !rdev->constraints->always_on)) {
1543
1544                 /* we are last user */
1545                 if (_regulator_can_change_status(rdev) &&
1546                     rdev->desc->ops->disable) {
1547                         trace_regulator_disable(rdev_get_name(rdev));
1548
1549                         ret = rdev->desc->ops->disable(rdev);
1550                         if (ret < 0) {
1551                                 rdev_err(rdev, "failed to disable\n");
1552                                 return ret;
1553                         }
1554
1555                         trace_regulator_disable_complete(rdev_get_name(rdev));
1556
1557                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1558                                              NULL);
1559                 }
1560
1561                 rdev->use_count = 0;
1562         } else if (rdev->use_count > 1) {
1563
1564                 if (rdev->constraints &&
1565                         (rdev->constraints->valid_ops_mask &
1566                         REGULATOR_CHANGE_DRMS))
1567                         drms_uA_update(rdev);
1568
1569                 rdev->use_count--;
1570         }
1571
1572         return ret;
1573 }
1574
1575 /**
1576  * regulator_disable - disable regulator output
1577  * @regulator: regulator source
1578  *
1579  * Disable the regulator output voltage or current.  Calls to
1580  * regulator_enable() must be balanced with calls to
1581  * regulator_disable().
1582  *
1583  * NOTE: this will only disable the regulator output if no other consumer
1584  * devices have it enabled, the regulator device supports disabling and
1585  * machine constraints permit this operation.
1586  */
1587 int regulator_disable(struct regulator *regulator)
1588 {
1589         struct regulator_dev *rdev = regulator->rdev;
1590         int ret = 0;
1591
1592         mutex_lock(&rdev->mutex);
1593         ret = _regulator_disable(rdev);
1594         mutex_unlock(&rdev->mutex);
1595
1596         if (ret == 0 && rdev->supply)
1597                 regulator_disable(rdev->supply);
1598
1599         return ret;
1600 }
1601 EXPORT_SYMBOL_GPL(regulator_disable);
1602
1603 /* locks held by regulator_force_disable() */
1604 static int _regulator_force_disable(struct regulator_dev *rdev)
1605 {
1606         int ret = 0;
1607
1608         /* force disable */
1609         if (rdev->desc->ops->disable) {
1610                 /* ah well, who wants to live forever... */
1611                 ret = rdev->desc->ops->disable(rdev);
1612                 if (ret < 0) {
1613                         rdev_err(rdev, "failed to force disable\n");
1614                         return ret;
1615                 }
1616                 /* notify other consumers that power has been forced off */
1617                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1618                         REGULATOR_EVENT_DISABLE, NULL);
1619         }
1620
1621         return ret;
1622 }
1623
1624 /**
1625  * regulator_force_disable - force disable regulator output
1626  * @regulator: regulator source
1627  *
1628  * Forcibly disable the regulator output voltage or current.
1629  * NOTE: this *will* disable the regulator output even if other consumer
1630  * devices have it enabled. This should be used for situations when device
1631  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1632  */
1633 int regulator_force_disable(struct regulator *regulator)
1634 {
1635         struct regulator_dev *rdev = regulator->rdev;
1636         int ret;
1637
1638         mutex_lock(&rdev->mutex);
1639         regulator->uA_load = 0;
1640         ret = _regulator_force_disable(regulator->rdev);
1641         mutex_unlock(&rdev->mutex);
1642
1643         if (rdev->supply)
1644                 while (rdev->open_count--)
1645                         regulator_disable(rdev->supply);
1646
1647         return ret;
1648 }
1649 EXPORT_SYMBOL_GPL(regulator_force_disable);
1650
1651 static void regulator_disable_work(struct work_struct *work)
1652 {
1653         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1654                                                   disable_work.work);
1655         int count, i, ret;
1656
1657         mutex_lock(&rdev->mutex);
1658
1659         BUG_ON(!rdev->deferred_disables);
1660
1661         count = rdev->deferred_disables;
1662         rdev->deferred_disables = 0;
1663
1664         for (i = 0; i < count; i++) {
1665                 ret = _regulator_disable(rdev);
1666                 if (ret != 0)
1667                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1668         }
1669
1670         mutex_unlock(&rdev->mutex);
1671
1672         if (rdev->supply) {
1673                 for (i = 0; i < count; i++) {
1674                         ret = regulator_disable(rdev->supply);
1675                         if (ret != 0) {
1676                                 rdev_err(rdev,
1677                                          "Supply disable failed: %d\n", ret);
1678                         }
1679                 }
1680         }
1681 }
1682
1683 /**
1684  * regulator_disable_deferred - disable regulator output with delay
1685  * @regulator: regulator source
1686  * @ms: miliseconds until the regulator is disabled
1687  *
1688  * Execute regulator_disable() on the regulator after a delay.  This
1689  * is intended for use with devices that require some time to quiesce.
1690  *
1691  * NOTE: this will only disable the regulator output if no other consumer
1692  * devices have it enabled, the regulator device supports disabling and
1693  * machine constraints permit this operation.
1694  */
1695 int regulator_disable_deferred(struct regulator *regulator, int ms)
1696 {
1697         struct regulator_dev *rdev = regulator->rdev;
1698         int ret;
1699
1700         mutex_lock(&rdev->mutex);
1701         rdev->deferred_disables++;
1702         mutex_unlock(&rdev->mutex);
1703
1704         ret = schedule_delayed_work(&rdev->disable_work,
1705                                     msecs_to_jiffies(ms));
1706         if (ret < 0)
1707                 return ret;
1708         else
1709                 return 0;
1710 }
1711 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1712
1713 static int _regulator_is_enabled(struct regulator_dev *rdev)
1714 {
1715         /* If we don't know then assume that the regulator is always on */
1716         if (!rdev->desc->ops->is_enabled)
1717                 return 1;
1718
1719         return rdev->desc->ops->is_enabled(rdev);
1720 }
1721
1722 /**
1723  * regulator_is_enabled - is the regulator output enabled
1724  * @regulator: regulator source
1725  *
1726  * Returns positive if the regulator driver backing the source/client
1727  * has requested that the device be enabled, zero if it hasn't, else a
1728  * negative errno code.
1729  *
1730  * Note that the device backing this regulator handle can have multiple
1731  * users, so it might be enabled even if regulator_enable() was never
1732  * called for this particular source.
1733  */
1734 int regulator_is_enabled(struct regulator *regulator)
1735 {
1736         int ret;
1737
1738         mutex_lock(&regulator->rdev->mutex);
1739         ret = _regulator_is_enabled(regulator->rdev);
1740         mutex_unlock(&regulator->rdev->mutex);
1741
1742         return ret;
1743 }
1744 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1745
1746 /**
1747  * regulator_count_voltages - count regulator_list_voltage() selectors
1748  * @regulator: regulator source
1749  *
1750  * Returns number of selectors, or negative errno.  Selectors are
1751  * numbered starting at zero, and typically correspond to bitfields
1752  * in hardware registers.
1753  */
1754 int regulator_count_voltages(struct regulator *regulator)
1755 {
1756         struct regulator_dev    *rdev = regulator->rdev;
1757
1758         return rdev->desc->n_voltages ? : -EINVAL;
1759 }
1760 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1761
1762 /**
1763  * regulator_list_voltage - enumerate supported voltages
1764  * @regulator: regulator source
1765  * @selector: identify voltage to list
1766  * Context: can sleep
1767  *
1768  * Returns a voltage that can be passed to @regulator_set_voltage(),
1769  * zero if this selector code can't be used on this system, or a
1770  * negative errno.
1771  */
1772 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1773 {
1774         struct regulator_dev    *rdev = regulator->rdev;
1775         struct regulator_ops    *ops = rdev->desc->ops;
1776         int                     ret;
1777
1778         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1779                 return -EINVAL;
1780
1781         mutex_lock(&rdev->mutex);
1782         ret = ops->list_voltage(rdev, selector);
1783         mutex_unlock(&rdev->mutex);
1784
1785         if (ret > 0) {
1786                 if (ret < rdev->constraints->min_uV)
1787                         ret = 0;
1788                 else if (ret > rdev->constraints->max_uV)
1789                         ret = 0;
1790         }
1791
1792         return ret;
1793 }
1794 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1795
1796 /**
1797  * regulator_is_supported_voltage - check if a voltage range can be supported
1798  *
1799  * @regulator: Regulator to check.
1800  * @min_uV: Minimum required voltage in uV.
1801  * @max_uV: Maximum required voltage in uV.
1802  *
1803  * Returns a boolean or a negative error code.
1804  */
1805 int regulator_is_supported_voltage(struct regulator *regulator,
1806                                    int min_uV, int max_uV)
1807 {
1808         int i, voltages, ret;
1809
1810         ret = regulator_count_voltages(regulator);
1811         if (ret < 0)
1812                 return ret;
1813         voltages = ret;
1814
1815         for (i = 0; i < voltages; i++) {
1816                 ret = regulator_list_voltage(regulator, i);
1817
1818                 if (ret >= min_uV && ret <= max_uV)
1819                         return 1;
1820         }
1821
1822         return 0;
1823 }
1824 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1825
1826 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1827                                      int min_uV, int max_uV)
1828 {
1829         int ret;
1830         int delay = 0;
1831         unsigned int selector;
1832
1833         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1834
1835         min_uV += rdev->constraints->uV_offset;
1836         max_uV += rdev->constraints->uV_offset;
1837
1838         if (rdev->desc->ops->set_voltage) {
1839                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1840                                                    &selector);
1841
1842                 if (rdev->desc->ops->list_voltage)
1843                         selector = rdev->desc->ops->list_voltage(rdev,
1844                                                                  selector);
1845                 else
1846                         selector = -1;
1847         } else if (rdev->desc->ops->set_voltage_sel) {
1848                 int best_val = INT_MAX;
1849                 int i;
1850
1851                 selector = 0;
1852
1853                 /* Find the smallest voltage that falls within the specified
1854                  * range.
1855                  */
1856                 for (i = 0; i < rdev->desc->n_voltages; i++) {
1857                         ret = rdev->desc->ops->list_voltage(rdev, i);
1858                         if (ret < 0)
1859                                 continue;
1860
1861                         if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1862                                 best_val = ret;
1863                                 selector = i;
1864                         }
1865                 }
1866
1867                 /*
1868                  * If we can't obtain the old selector there is not enough
1869                  * info to call set_voltage_time_sel().
1870                  */
1871                 if (rdev->desc->ops->set_voltage_time_sel &&
1872                     rdev->desc->ops->get_voltage_sel) {
1873                         unsigned int old_selector = 0;
1874
1875                         ret = rdev->desc->ops->get_voltage_sel(rdev);
1876                         if (ret < 0)
1877                                 return ret;
1878                         old_selector = ret;
1879                         delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1880                                                 old_selector, selector);
1881                 }
1882
1883                 if (best_val != INT_MAX) {
1884                         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1885                         selector = best_val;
1886                 } else {
1887                         ret = -EINVAL;
1888                 }
1889         } else {
1890                 ret = -EINVAL;
1891         }
1892
1893         /* Insert any necessary delays */
1894         if (delay >= 1000) {
1895                 mdelay(delay / 1000);
1896                 udelay(delay % 1000);
1897         } else if (delay) {
1898                 udelay(delay);
1899         }
1900
1901         if (ret == 0)
1902                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1903                                      NULL);
1904
1905         trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1906
1907         return ret;
1908 }
1909
1910 /**
1911  * regulator_set_voltage - set regulator output voltage
1912  * @regulator: regulator source
1913  * @min_uV: Minimum required voltage in uV
1914  * @max_uV: Maximum acceptable voltage in uV
1915  *
1916  * Sets a voltage regulator to the desired output voltage. This can be set
1917  * during any regulator state. IOW, regulator can be disabled or enabled.
1918  *
1919  * If the regulator is enabled then the voltage will change to the new value
1920  * immediately otherwise if the regulator is disabled the regulator will
1921  * output at the new voltage when enabled.
1922  *
1923  * NOTE: If the regulator is shared between several devices then the lowest
1924  * request voltage that meets the system constraints will be used.
1925  * Regulator system constraints must be set for this regulator before
1926  * calling this function otherwise this call will fail.
1927  */
1928 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1929 {
1930         struct regulator_dev *rdev = regulator->rdev;
1931         int ret = 0;
1932
1933         mutex_lock(&rdev->mutex);
1934
1935         /* If we're setting the same range as last time the change
1936          * should be a noop (some cpufreq implementations use the same
1937          * voltage for multiple frequencies, for example).
1938          */
1939         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1940                 goto out;
1941
1942         /* sanity check */
1943         if (!rdev->desc->ops->set_voltage &&
1944             !rdev->desc->ops->set_voltage_sel) {
1945                 ret = -EINVAL;
1946                 goto out;
1947         }
1948
1949         /* constraints check */
1950         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1951         if (ret < 0)
1952                 goto out;
1953         regulator->min_uV = min_uV;
1954         regulator->max_uV = max_uV;
1955
1956         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1957         if (ret < 0)
1958                 goto out;
1959
1960         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1961
1962 out:
1963         mutex_unlock(&rdev->mutex);
1964         return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1967
1968 /**
1969  * regulator_set_voltage_time - get raise/fall time
1970  * @regulator: regulator source
1971  * @old_uV: starting voltage in microvolts
1972  * @new_uV: target voltage in microvolts
1973  *
1974  * Provided with the starting and ending voltage, this function attempts to
1975  * calculate the time in microseconds required to rise or fall to this new
1976  * voltage.
1977  */
1978 int regulator_set_voltage_time(struct regulator *regulator,
1979                                int old_uV, int new_uV)
1980 {
1981         struct regulator_dev    *rdev = regulator->rdev;
1982         struct regulator_ops    *ops = rdev->desc->ops;
1983         int old_sel = -1;
1984         int new_sel = -1;
1985         int voltage;
1986         int i;
1987
1988         /* Currently requires operations to do this */
1989         if (!ops->list_voltage || !ops->set_voltage_time_sel
1990             || !rdev->desc->n_voltages)
1991                 return -EINVAL;
1992
1993         for (i = 0; i < rdev->desc->n_voltages; i++) {
1994                 /* We only look for exact voltage matches here */
1995                 voltage = regulator_list_voltage(regulator, i);
1996                 if (voltage < 0)
1997                         return -EINVAL;
1998                 if (voltage == 0)
1999                         continue;
2000                 if (voltage == old_uV)
2001                         old_sel = i;
2002                 if (voltage == new_uV)
2003                         new_sel = i;
2004         }
2005
2006         if (old_sel < 0 || new_sel < 0)
2007                 return -EINVAL;
2008
2009         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2010 }
2011 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2012
2013 /**
2014  * regulator_sync_voltage - re-apply last regulator output voltage
2015  * @regulator: regulator source
2016  *
2017  * Re-apply the last configured voltage.  This is intended to be used
2018  * where some external control source the consumer is cooperating with
2019  * has caused the configured voltage to change.
2020  */
2021 int regulator_sync_voltage(struct regulator *regulator)
2022 {
2023         struct regulator_dev *rdev = regulator->rdev;
2024         int ret, min_uV, max_uV;
2025
2026         mutex_lock(&rdev->mutex);
2027
2028         if (!rdev->desc->ops->set_voltage &&
2029             !rdev->desc->ops->set_voltage_sel) {
2030                 ret = -EINVAL;
2031                 goto out;
2032         }
2033
2034         /* This is only going to work if we've had a voltage configured. */
2035         if (!regulator->min_uV && !regulator->max_uV) {
2036                 ret = -EINVAL;
2037                 goto out;
2038         }
2039
2040         min_uV = regulator->min_uV;
2041         max_uV = regulator->max_uV;
2042
2043         /* This should be a paranoia check... */
2044         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2045         if (ret < 0)
2046                 goto out;
2047
2048         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2049         if (ret < 0)
2050                 goto out;
2051
2052         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2053
2054 out:
2055         mutex_unlock(&rdev->mutex);
2056         return ret;
2057 }
2058 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2059
2060 static int _regulator_get_voltage(struct regulator_dev *rdev)
2061 {
2062         int sel, ret;
2063
2064         if (rdev->desc->ops->get_voltage_sel) {
2065                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2066                 if (sel < 0)
2067                         return sel;
2068                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2069         } else if (rdev->desc->ops->get_voltage) {
2070                 ret = rdev->desc->ops->get_voltage(rdev);
2071         } else {
2072                 return -EINVAL;
2073         }
2074
2075         if (ret < 0)
2076                 return ret;
2077         return ret - rdev->constraints->uV_offset;
2078 }
2079
2080 /**
2081  * regulator_get_voltage - get regulator output voltage
2082  * @regulator: regulator source
2083  *
2084  * This returns the current regulator voltage in uV.
2085  *
2086  * NOTE: If the regulator is disabled it will return the voltage value. This
2087  * function should not be used to determine regulator state.
2088  */
2089 int regulator_get_voltage(struct regulator *regulator)
2090 {
2091         int ret;
2092
2093         mutex_lock(&regulator->rdev->mutex);
2094
2095         ret = _regulator_get_voltage(regulator->rdev);
2096
2097         mutex_unlock(&regulator->rdev->mutex);
2098
2099         return ret;
2100 }
2101 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2102
2103 /**
2104  * regulator_set_current_limit - set regulator output current limit
2105  * @regulator: regulator source
2106  * @min_uA: Minimuum supported current in uA
2107  * @max_uA: Maximum supported current in uA
2108  *
2109  * Sets current sink to the desired output current. This can be set during
2110  * any regulator state. IOW, regulator can be disabled or enabled.
2111  *
2112  * If the regulator is enabled then the current will change to the new value
2113  * immediately otherwise if the regulator is disabled the regulator will
2114  * output at the new current when enabled.
2115  *
2116  * NOTE: Regulator system constraints must be set for this regulator before
2117  * calling this function otherwise this call will fail.
2118  */
2119 int regulator_set_current_limit(struct regulator *regulator,
2120                                int min_uA, int max_uA)
2121 {
2122         struct regulator_dev *rdev = regulator->rdev;
2123         int ret;
2124
2125         mutex_lock(&rdev->mutex);
2126
2127         /* sanity check */
2128         if (!rdev->desc->ops->set_current_limit) {
2129                 ret = -EINVAL;
2130                 goto out;
2131         }
2132
2133         /* constraints check */
2134         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2135         if (ret < 0)
2136                 goto out;
2137
2138         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2139 out:
2140         mutex_unlock(&rdev->mutex);
2141         return ret;
2142 }
2143 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2144
2145 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2146 {
2147         int ret;
2148
2149         mutex_lock(&rdev->mutex);
2150
2151         /* sanity check */
2152         if (!rdev->desc->ops->get_current_limit) {
2153                 ret = -EINVAL;
2154                 goto out;
2155         }
2156
2157         ret = rdev->desc->ops->get_current_limit(rdev);
2158 out:
2159         mutex_unlock(&rdev->mutex);
2160         return ret;
2161 }
2162
2163 /**
2164  * regulator_get_current_limit - get regulator output current
2165  * @regulator: regulator source
2166  *
2167  * This returns the current supplied by the specified current sink in uA.
2168  *
2169  * NOTE: If the regulator is disabled it will return the current value. This
2170  * function should not be used to determine regulator state.
2171  */
2172 int regulator_get_current_limit(struct regulator *regulator)
2173 {
2174         return _regulator_get_current_limit(regulator->rdev);
2175 }
2176 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2177
2178 /**
2179  * regulator_set_mode - set regulator operating mode
2180  * @regulator: regulator source
2181  * @mode: operating mode - one of the REGULATOR_MODE constants
2182  *
2183  * Set regulator operating mode to increase regulator efficiency or improve
2184  * regulation performance.
2185  *
2186  * NOTE: Regulator system constraints must be set for this regulator before
2187  * calling this function otherwise this call will fail.
2188  */
2189 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2190 {
2191         struct regulator_dev *rdev = regulator->rdev;
2192         int ret;
2193         int regulator_curr_mode;
2194
2195         mutex_lock(&rdev->mutex);
2196
2197         /* sanity check */
2198         if (!rdev->desc->ops->set_mode) {
2199                 ret = -EINVAL;
2200                 goto out;
2201         }
2202
2203         /* return if the same mode is requested */
2204         if (rdev->desc->ops->get_mode) {
2205                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2206                 if (regulator_curr_mode == mode) {
2207                         ret = 0;
2208                         goto out;
2209                 }
2210         }
2211
2212         /* constraints check */
2213         ret = regulator_mode_constrain(rdev, &mode);
2214         if (ret < 0)
2215                 goto out;
2216
2217         ret = rdev->desc->ops->set_mode(rdev, mode);
2218 out:
2219         mutex_unlock(&rdev->mutex);
2220         return ret;
2221 }
2222 EXPORT_SYMBOL_GPL(regulator_set_mode);
2223
2224 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2225 {
2226         int ret;
2227
2228         mutex_lock(&rdev->mutex);
2229
2230         /* sanity check */
2231         if (!rdev->desc->ops->get_mode) {
2232                 ret = -EINVAL;
2233                 goto out;
2234         }
2235
2236         ret = rdev->desc->ops->get_mode(rdev);
2237 out:
2238         mutex_unlock(&rdev->mutex);
2239         return ret;
2240 }
2241
2242 /**
2243  * regulator_get_mode - get regulator operating mode
2244  * @regulator: regulator source
2245  *
2246  * Get the current regulator operating mode.
2247  */
2248 unsigned int regulator_get_mode(struct regulator *regulator)
2249 {
2250         return _regulator_get_mode(regulator->rdev);
2251 }
2252 EXPORT_SYMBOL_GPL(regulator_get_mode);
2253
2254 /**
2255  * regulator_set_optimum_mode - set regulator optimum operating mode
2256  * @regulator: regulator source
2257  * @uA_load: load current
2258  *
2259  * Notifies the regulator core of a new device load. This is then used by
2260  * DRMS (if enabled by constraints) to set the most efficient regulator
2261  * operating mode for the new regulator loading.
2262  *
2263  * Consumer devices notify their supply regulator of the maximum power
2264  * they will require (can be taken from device datasheet in the power
2265  * consumption tables) when they change operational status and hence power
2266  * state. Examples of operational state changes that can affect power
2267  * consumption are :-
2268  *
2269  *    o Device is opened / closed.
2270  *    o Device I/O is about to begin or has just finished.
2271  *    o Device is idling in between work.
2272  *
2273  * This information is also exported via sysfs to userspace.
2274  *
2275  * DRMS will sum the total requested load on the regulator and change
2276  * to the most efficient operating mode if platform constraints allow.
2277  *
2278  * Returns the new regulator mode or error.
2279  */
2280 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2281 {
2282         struct regulator_dev *rdev = regulator->rdev;
2283         struct regulator *consumer;
2284         int ret, output_uV, input_uV, total_uA_load = 0;
2285         unsigned int mode;
2286
2287         mutex_lock(&rdev->mutex);
2288
2289         /*
2290          * first check to see if we can set modes at all, otherwise just
2291          * tell the consumer everything is OK.
2292          */
2293         regulator->uA_load = uA_load;
2294         ret = regulator_check_drms(rdev);
2295         if (ret < 0) {
2296                 ret = 0;
2297                 goto out;
2298         }
2299
2300         if (!rdev->desc->ops->get_optimum_mode)
2301                 goto out;
2302
2303         /*
2304          * we can actually do this so any errors are indicators of
2305          * potential real failure.
2306          */
2307         ret = -EINVAL;
2308
2309         /* get output voltage */
2310         output_uV = _regulator_get_voltage(rdev);
2311         if (output_uV <= 0) {
2312                 rdev_err(rdev, "invalid output voltage found\n");
2313                 goto out;
2314         }
2315
2316         /* get input voltage */
2317         input_uV = 0;
2318         if (rdev->supply)
2319                 input_uV = regulator_get_voltage(rdev->supply);
2320         if (input_uV <= 0)
2321                 input_uV = rdev->constraints->input_uV;
2322         if (input_uV <= 0) {
2323                 rdev_err(rdev, "invalid input voltage found\n");
2324                 goto out;
2325         }
2326
2327         /* calc total requested load for this regulator */
2328         list_for_each_entry(consumer, &rdev->consumer_list, list)
2329                 total_uA_load += consumer->uA_load;
2330
2331         mode = rdev->desc->ops->get_optimum_mode(rdev,
2332                                                  input_uV, output_uV,
2333                                                  total_uA_load);
2334         ret = regulator_mode_constrain(rdev, &mode);
2335         if (ret < 0) {
2336                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2337                          total_uA_load, input_uV, output_uV);
2338                 goto out;
2339         }
2340
2341         ret = rdev->desc->ops->set_mode(rdev, mode);
2342         if (ret < 0) {
2343                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2344                 goto out;
2345         }
2346         ret = mode;
2347 out:
2348         mutex_unlock(&rdev->mutex);
2349         return ret;
2350 }
2351 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2352
2353 /**
2354  * regulator_register_notifier - register regulator event notifier
2355  * @regulator: regulator source
2356  * @nb: notifier block
2357  *
2358  * Register notifier block to receive regulator events.
2359  */
2360 int regulator_register_notifier(struct regulator *regulator,
2361                               struct notifier_block *nb)
2362 {
2363         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2364                                                 nb);
2365 }
2366 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2367
2368 /**
2369  * regulator_unregister_notifier - unregister regulator event notifier
2370  * @regulator: regulator source
2371  * @nb: notifier block
2372  *
2373  * Unregister regulator event notifier block.
2374  */
2375 int regulator_unregister_notifier(struct regulator *regulator,
2376                                 struct notifier_block *nb)
2377 {
2378         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2379                                                   nb);
2380 }
2381 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2382
2383 /* notify regulator consumers and downstream regulator consumers.
2384  * Note mutex must be held by caller.
2385  */
2386 static void _notifier_call_chain(struct regulator_dev *rdev,
2387                                   unsigned long event, void *data)
2388 {
2389         /* call rdev chain first */
2390         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2391 }
2392
2393 /**
2394  * regulator_bulk_get - get multiple regulator consumers
2395  *
2396  * @dev:           Device to supply
2397  * @num_consumers: Number of consumers to register
2398  * @consumers:     Configuration of consumers; clients are stored here.
2399  *
2400  * @return 0 on success, an errno on failure.
2401  *
2402  * This helper function allows drivers to get several regulator
2403  * consumers in one operation.  If any of the regulators cannot be
2404  * acquired then any regulators that were allocated will be freed
2405  * before returning to the caller.
2406  */
2407 int regulator_bulk_get(struct device *dev, int num_consumers,
2408                        struct regulator_bulk_data *consumers)
2409 {
2410         int i;
2411         int ret;
2412
2413         for (i = 0; i < num_consumers; i++)
2414                 consumers[i].consumer = NULL;
2415
2416         for (i = 0; i < num_consumers; i++) {
2417                 consumers[i].consumer = regulator_get(dev,
2418                                                       consumers[i].supply);
2419                 if (IS_ERR(consumers[i].consumer)) {
2420                         ret = PTR_ERR(consumers[i].consumer);
2421                         dev_err(dev, "Failed to get supply '%s': %d\n",
2422                                 consumers[i].supply, ret);
2423                         consumers[i].consumer = NULL;
2424                         goto err;
2425                 }
2426         }
2427
2428         return 0;
2429
2430 err:
2431         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2432                 regulator_put(consumers[i].consumer);
2433
2434         return ret;
2435 }
2436 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2437
2438 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2439 {
2440         struct regulator_bulk_data *bulk = data;
2441
2442         bulk->ret = regulator_enable(bulk->consumer);
2443 }
2444
2445 /**
2446  * regulator_bulk_enable - enable multiple regulator consumers
2447  *
2448  * @num_consumers: Number of consumers
2449  * @consumers:     Consumer data; clients are stored here.
2450  * @return         0 on success, an errno on failure
2451  *
2452  * This convenience API allows consumers to enable multiple regulator
2453  * clients in a single API call.  If any consumers cannot be enabled
2454  * then any others that were enabled will be disabled again prior to
2455  * return.
2456  */
2457 int regulator_bulk_enable(int num_consumers,
2458                           struct regulator_bulk_data *consumers)
2459 {
2460         LIST_HEAD(async_domain);
2461         int i;
2462         int ret = 0;
2463
2464         for (i = 0; i < num_consumers; i++)
2465                 async_schedule_domain(regulator_bulk_enable_async,
2466                                       &consumers[i], &async_domain);
2467
2468         async_synchronize_full_domain(&async_domain);
2469
2470         /* If any consumer failed we need to unwind any that succeeded */
2471         for (i = 0; i < num_consumers; i++) {
2472                 if (consumers[i].ret != 0) {
2473                         ret = consumers[i].ret;
2474                         goto err;
2475                 }
2476         }
2477
2478         return 0;
2479
2480 err:
2481         for (i = 0; i < num_consumers; i++)
2482                 if (consumers[i].ret == 0)
2483                         regulator_disable(consumers[i].consumer);
2484                 else
2485                         pr_err("Failed to enable %s: %d\n",
2486                                consumers[i].supply, consumers[i].ret);
2487
2488         return ret;
2489 }
2490 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2491
2492 /**
2493  * regulator_bulk_disable - disable multiple regulator consumers
2494  *
2495  * @num_consumers: Number of consumers
2496  * @consumers:     Consumer data; clients are stored here.
2497  * @return         0 on success, an errno on failure
2498  *
2499  * This convenience API allows consumers to disable multiple regulator
2500  * clients in a single API call.  If any consumers cannot be enabled
2501  * then any others that were disabled will be disabled again prior to
2502  * return.
2503  */
2504 int regulator_bulk_disable(int num_consumers,
2505                            struct regulator_bulk_data *consumers)
2506 {
2507         int i;
2508         int ret;
2509
2510         for (i = 0; i < num_consumers; i++) {
2511                 ret = regulator_disable(consumers[i].consumer);
2512                 if (ret != 0)
2513                         goto err;
2514         }
2515
2516         return 0;
2517
2518 err:
2519         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2520         for (--i; i >= 0; --i)
2521                 regulator_enable(consumers[i].consumer);
2522
2523         return ret;
2524 }
2525 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2526
2527 /**
2528  * regulator_bulk_force_disable - force disable multiple regulator consumers
2529  *
2530  * @num_consumers: Number of consumers
2531  * @consumers:     Consumer data; clients are stored here.
2532  * @return         0 on success, an errno on failure
2533  *
2534  * This convenience API allows consumers to forcibly disable multiple regulator
2535  * clients in a single API call.
2536  * NOTE: This should be used for situations when device damage will
2537  * likely occur if the regulators are not disabled (e.g. over temp).
2538  * Although regulator_force_disable function call for some consumers can
2539  * return error numbers, the function is called for all consumers.
2540  */
2541 int regulator_bulk_force_disable(int num_consumers,
2542                            struct regulator_bulk_data *consumers)
2543 {
2544         int i;
2545         int ret;
2546
2547         for (i = 0; i < num_consumers; i++)
2548                 consumers[i].ret =
2549                             regulator_force_disable(consumers[i].consumer);
2550
2551         for (i = 0; i < num_consumers; i++) {
2552                 if (consumers[i].ret != 0) {
2553                         ret = consumers[i].ret;
2554                         goto out;
2555                 }
2556         }
2557
2558         return 0;
2559 out:
2560         return ret;
2561 }
2562 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2563
2564 /**
2565  * regulator_bulk_free - free multiple regulator consumers
2566  *
2567  * @num_consumers: Number of consumers
2568  * @consumers:     Consumer data; clients are stored here.
2569  *
2570  * This convenience API allows consumers to free multiple regulator
2571  * clients in a single API call.
2572  */
2573 void regulator_bulk_free(int num_consumers,
2574                          struct regulator_bulk_data *consumers)
2575 {
2576         int i;
2577
2578         for (i = 0; i < num_consumers; i++) {
2579                 regulator_put(consumers[i].consumer);
2580                 consumers[i].consumer = NULL;
2581         }
2582 }
2583 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2584
2585 /**
2586  * regulator_notifier_call_chain - call regulator event notifier
2587  * @rdev: regulator source
2588  * @event: notifier block
2589  * @data: callback-specific data.
2590  *
2591  * Called by regulator drivers to notify clients a regulator event has
2592  * occurred. We also notify regulator clients downstream.
2593  * Note lock must be held by caller.
2594  */
2595 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2596                                   unsigned long event, void *data)
2597 {
2598         _notifier_call_chain(rdev, event, data);
2599         return NOTIFY_DONE;
2600
2601 }
2602 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2603
2604 /**
2605  * regulator_mode_to_status - convert a regulator mode into a status
2606  *
2607  * @mode: Mode to convert
2608  *
2609  * Convert a regulator mode into a status.
2610  */
2611 int regulator_mode_to_status(unsigned int mode)
2612 {
2613         switch (mode) {
2614         case REGULATOR_MODE_FAST:
2615                 return REGULATOR_STATUS_FAST;
2616         case REGULATOR_MODE_NORMAL:
2617                 return REGULATOR_STATUS_NORMAL;
2618         case REGULATOR_MODE_IDLE:
2619                 return REGULATOR_STATUS_IDLE;
2620         case REGULATOR_STATUS_STANDBY:
2621                 return REGULATOR_STATUS_STANDBY;
2622         default:
2623                 return 0;
2624         }
2625 }
2626 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2627
2628 /*
2629  * To avoid cluttering sysfs (and memory) with useless state, only
2630  * create attributes that can be meaningfully displayed.
2631  */
2632 static int add_regulator_attributes(struct regulator_dev *rdev)
2633 {
2634         struct device           *dev = &rdev->dev;
2635         struct regulator_ops    *ops = rdev->desc->ops;
2636         int                     status = 0;
2637
2638         /* some attributes need specific methods to be displayed */
2639         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2640             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2641                 status = device_create_file(dev, &dev_attr_microvolts);
2642                 if (status < 0)
2643                         return status;
2644         }
2645         if (ops->get_current_limit) {
2646                 status = device_create_file(dev, &dev_attr_microamps);
2647                 if (status < 0)
2648                         return status;
2649         }
2650         if (ops->get_mode) {
2651                 status = device_create_file(dev, &dev_attr_opmode);
2652                 if (status < 0)
2653                         return status;
2654         }
2655         if (ops->is_enabled) {
2656                 status = device_create_file(dev, &dev_attr_state);
2657                 if (status < 0)
2658                         return status;
2659         }
2660         if (ops->get_status) {
2661                 status = device_create_file(dev, &dev_attr_status);
2662                 if (status < 0)
2663                         return status;
2664         }
2665
2666         /* some attributes are type-specific */
2667         if (rdev->desc->type == REGULATOR_CURRENT) {
2668                 status = device_create_file(dev, &dev_attr_requested_microamps);
2669                 if (status < 0)
2670                         return status;
2671         }
2672
2673         /* all the other attributes exist to support constraints;
2674          * don't show them if there are no constraints, or if the
2675          * relevant supporting methods are missing.
2676          */
2677         if (!rdev->constraints)
2678                 return status;
2679
2680         /* constraints need specific supporting methods */
2681         if (ops->set_voltage || ops->set_voltage_sel) {
2682                 status = device_create_file(dev, &dev_attr_min_microvolts);
2683                 if (status < 0)
2684                         return status;
2685                 status = device_create_file(dev, &dev_attr_max_microvolts);
2686                 if (status < 0)
2687                         return status;
2688         }
2689         if (ops->set_current_limit) {
2690                 status = device_create_file(dev, &dev_attr_min_microamps);
2691                 if (status < 0)
2692                         return status;
2693                 status = device_create_file(dev, &dev_attr_max_microamps);
2694                 if (status < 0)
2695                         return status;
2696         }
2697
2698         /* suspend mode constraints need multiple supporting methods */
2699         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2700                 return status;
2701
2702         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2703         if (status < 0)
2704                 return status;
2705         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2706         if (status < 0)
2707                 return status;
2708         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2709         if (status < 0)
2710                 return status;
2711
2712         if (ops->set_suspend_voltage) {
2713                 status = device_create_file(dev,
2714                                 &dev_attr_suspend_standby_microvolts);
2715                 if (status < 0)
2716                         return status;
2717                 status = device_create_file(dev,
2718                                 &dev_attr_suspend_mem_microvolts);
2719                 if (status < 0)
2720                         return status;
2721                 status = device_create_file(dev,
2722                                 &dev_attr_suspend_disk_microvolts);
2723                 if (status < 0)
2724                         return status;
2725         }
2726
2727         if (ops->set_suspend_mode) {
2728                 status = device_create_file(dev,
2729                                 &dev_attr_suspend_standby_mode);
2730                 if (status < 0)
2731                         return status;
2732                 status = device_create_file(dev,
2733                                 &dev_attr_suspend_mem_mode);
2734                 if (status < 0)
2735                         return status;
2736                 status = device_create_file(dev,
2737                                 &dev_attr_suspend_disk_mode);
2738                 if (status < 0)
2739                         return status;
2740         }
2741
2742         return status;
2743 }
2744
2745 static void rdev_init_debugfs(struct regulator_dev *rdev)
2746 {
2747 #ifdef CONFIG_DEBUG_FS
2748         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2749         if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2750                 rdev_warn(rdev, "Failed to create debugfs directory\n");
2751                 rdev->debugfs = NULL;
2752                 return;
2753         }
2754
2755         debugfs_create_u32("use_count", 0444, rdev->debugfs,
2756                            &rdev->use_count);
2757         debugfs_create_u32("open_count", 0444, rdev->debugfs,
2758                            &rdev->open_count);
2759 #endif
2760 }
2761
2762 /**
2763  * regulator_register - register regulator
2764  * @regulator_desc: regulator to register
2765  * @dev: struct device for the regulator
2766  * @init_data: platform provided init data, passed through by driver
2767  * @driver_data: private regulator data
2768  *
2769  * Called by regulator drivers to register a regulator.
2770  * Returns 0 on success.
2771  */
2772 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2773         struct device *dev, const struct regulator_init_data *init_data,
2774         void *driver_data, struct device_node *of_node)
2775 {
2776         const struct regulation_constraints *constraints = NULL;
2777         static atomic_t regulator_no = ATOMIC_INIT(0);
2778         struct regulator_dev *rdev;
2779         int ret, i;
2780         const char *supply = NULL;
2781
2782         if (regulator_desc == NULL)
2783                 return ERR_PTR(-EINVAL);
2784
2785         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2786                 return ERR_PTR(-EINVAL);
2787
2788         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2789             regulator_desc->type != REGULATOR_CURRENT)
2790                 return ERR_PTR(-EINVAL);
2791
2792         /* Only one of each should be implemented */
2793         WARN_ON(regulator_desc->ops->get_voltage &&
2794                 regulator_desc->ops->get_voltage_sel);
2795         WARN_ON(regulator_desc->ops->set_voltage &&
2796                 regulator_desc->ops->set_voltage_sel);
2797
2798         /* If we're using selectors we must implement list_voltage. */
2799         if (regulator_desc->ops->get_voltage_sel &&
2800             !regulator_desc->ops->list_voltage) {
2801                 return ERR_PTR(-EINVAL);
2802         }
2803         if (regulator_desc->ops->set_voltage_sel &&
2804             !regulator_desc->ops->list_voltage) {
2805                 return ERR_PTR(-EINVAL);
2806         }
2807
2808         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2809         if (rdev == NULL)
2810                 return ERR_PTR(-ENOMEM);
2811
2812         mutex_lock(&regulator_list_mutex);
2813
2814         mutex_init(&rdev->mutex);
2815         rdev->reg_data = driver_data;
2816         rdev->owner = regulator_desc->owner;
2817         rdev->desc = regulator_desc;
2818         INIT_LIST_HEAD(&rdev->consumer_list);
2819         INIT_LIST_HEAD(&rdev->list);
2820         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2821         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2822
2823         /* preform any regulator specific init */
2824         if (init_data && init_data->regulator_init) {
2825                 ret = init_data->regulator_init(rdev->reg_data);
2826                 if (ret < 0)
2827                         goto clean;
2828         }
2829
2830         /* register with sysfs */
2831         rdev->dev.class = &regulator_class;
2832         rdev->dev.of_node = of_node;
2833         rdev->dev.parent = dev;
2834         dev_set_name(&rdev->dev, "regulator.%d",
2835                      atomic_inc_return(&regulator_no) - 1);
2836         ret = device_register(&rdev->dev);
2837         if (ret != 0) {
2838                 put_device(&rdev->dev);
2839                 goto clean;
2840         }
2841
2842         dev_set_drvdata(&rdev->dev, rdev);
2843
2844         /* set regulator constraints */
2845         if (init_data)
2846                 constraints = &init_data->constraints;
2847
2848         ret = set_machine_constraints(rdev, constraints);
2849         if (ret < 0)
2850                 goto scrub;
2851
2852         /* add attributes supported by this regulator */
2853         ret = add_regulator_attributes(rdev);
2854         if (ret < 0)
2855                 goto scrub;
2856
2857         if (init_data && init_data->supply_regulator)
2858                 supply = init_data->supply_regulator;
2859         else if (regulator_desc->supply_name)
2860                 supply = regulator_desc->supply_name;
2861
2862         if (supply) {
2863                 struct regulator_dev *r;
2864
2865                 r = regulator_dev_lookup(dev, supply);
2866
2867                 if (!r) {
2868                         dev_err(dev, "Failed to find supply %s\n", supply);
2869                         ret = -ENODEV;
2870                         goto scrub;
2871                 }
2872
2873                 ret = set_supply(rdev, r);
2874                 if (ret < 0)
2875                         goto scrub;
2876
2877                 /* Enable supply if rail is enabled */
2878                 if (rdev->desc->ops->is_enabled &&
2879                                 rdev->desc->ops->is_enabled(rdev)) {
2880                         ret = regulator_enable(rdev->supply);
2881                         if (ret < 0)
2882                                 goto scrub;
2883                 }
2884         }
2885
2886         /* add consumers devices */
2887         if (init_data) {
2888                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2889                         ret = set_consumer_device_supply(rdev,
2890                                 init_data->consumer_supplies[i].dev,
2891                                 init_data->consumer_supplies[i].dev_name,
2892                                 init_data->consumer_supplies[i].supply);
2893                         if (ret < 0) {
2894                                 dev_err(dev, "Failed to set supply %s\n",
2895                                         init_data->consumer_supplies[i].supply);
2896                                 goto unset_supplies;
2897                         }
2898                 }
2899         }
2900
2901         list_add(&rdev->list, &regulator_list);
2902
2903         rdev_init_debugfs(rdev);
2904 out:
2905         mutex_unlock(&regulator_list_mutex);
2906         return rdev;
2907
2908 unset_supplies:
2909         unset_regulator_supplies(rdev);
2910
2911 scrub:
2912         kfree(rdev->constraints);
2913         device_unregister(&rdev->dev);
2914         /* device core frees rdev */
2915         rdev = ERR_PTR(ret);
2916         goto out;
2917
2918 clean:
2919         kfree(rdev);
2920         rdev = ERR_PTR(ret);
2921         goto out;
2922 }
2923 EXPORT_SYMBOL_GPL(regulator_register);
2924
2925 /**
2926  * regulator_unregister - unregister regulator
2927  * @rdev: regulator to unregister
2928  *
2929  * Called by regulator drivers to unregister a regulator.
2930  */
2931 void regulator_unregister(struct regulator_dev *rdev)
2932 {
2933         if (rdev == NULL)
2934                 return;
2935
2936         mutex_lock(&regulator_list_mutex);
2937 #ifdef CONFIG_DEBUG_FS
2938         debugfs_remove_recursive(rdev->debugfs);
2939 #endif
2940         flush_work_sync(&rdev->disable_work.work);
2941         WARN_ON(rdev->open_count);
2942         unset_regulator_supplies(rdev);
2943         list_del(&rdev->list);
2944         if (rdev->supply)
2945                 regulator_put(rdev->supply);
2946         kfree(rdev->constraints);
2947         device_unregister(&rdev->dev);
2948         mutex_unlock(&regulator_list_mutex);
2949 }
2950 EXPORT_SYMBOL_GPL(regulator_unregister);
2951
2952 /**
2953  * regulator_suspend_prepare - prepare regulators for system wide suspend
2954  * @state: system suspend state
2955  *
2956  * Configure each regulator with it's suspend operating parameters for state.
2957  * This will usually be called by machine suspend code prior to supending.
2958  */
2959 int regulator_suspend_prepare(suspend_state_t state)
2960 {
2961         struct regulator_dev *rdev;
2962         int ret = 0;
2963
2964         /* ON is handled by regulator active state */
2965         if (state == PM_SUSPEND_ON)
2966                 return -EINVAL;
2967
2968         mutex_lock(&regulator_list_mutex);
2969         list_for_each_entry(rdev, &regulator_list, list) {
2970
2971                 mutex_lock(&rdev->mutex);
2972                 ret = suspend_prepare(rdev, state);
2973                 mutex_unlock(&rdev->mutex);
2974
2975                 if (ret < 0) {
2976                         rdev_err(rdev, "failed to prepare\n");
2977                         goto out;
2978                 }
2979         }
2980 out:
2981         mutex_unlock(&regulator_list_mutex);
2982         return ret;
2983 }
2984 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2985
2986 /**
2987  * regulator_suspend_finish - resume regulators from system wide suspend
2988  *
2989  * Turn on regulators that might be turned off by regulator_suspend_prepare
2990  * and that should be turned on according to the regulators properties.
2991  */
2992 int regulator_suspend_finish(void)
2993 {
2994         struct regulator_dev *rdev;
2995         int ret = 0, error;
2996
2997         mutex_lock(&regulator_list_mutex);
2998         list_for_each_entry(rdev, &regulator_list, list) {
2999                 struct regulator_ops *ops = rdev->desc->ops;
3000
3001                 mutex_lock(&rdev->mutex);
3002                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3003                                 ops->enable) {
3004                         error = ops->enable(rdev);
3005                         if (error)
3006                                 ret = error;
3007                 } else {
3008                         if (!has_full_constraints)
3009                                 goto unlock;
3010                         if (!ops->disable)
3011                                 goto unlock;
3012                         if (ops->is_enabled && !ops->is_enabled(rdev))
3013                                 goto unlock;
3014
3015                         error = ops->disable(rdev);
3016                         if (error)
3017                                 ret = error;
3018                 }
3019 unlock:
3020                 mutex_unlock(&rdev->mutex);
3021         }
3022         mutex_unlock(&regulator_list_mutex);
3023         return ret;
3024 }
3025 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3026
3027 /**
3028  * regulator_has_full_constraints - the system has fully specified constraints
3029  *
3030  * Calling this function will cause the regulator API to disable all
3031  * regulators which have a zero use count and don't have an always_on
3032  * constraint in a late_initcall.
3033  *
3034  * The intention is that this will become the default behaviour in a
3035  * future kernel release so users are encouraged to use this facility
3036  * now.
3037  */
3038 void regulator_has_full_constraints(void)
3039 {
3040         has_full_constraints = 1;
3041 }
3042 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3043
3044 /**
3045  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3046  *
3047  * Calling this function will cause the regulator API to provide a
3048  * dummy regulator to consumers if no physical regulator is found,
3049  * allowing most consumers to proceed as though a regulator were
3050  * configured.  This allows systems such as those with software
3051  * controllable regulators for the CPU core only to be brought up more
3052  * readily.
3053  */
3054 void regulator_use_dummy_regulator(void)
3055 {
3056         board_wants_dummy_regulator = true;
3057 }
3058 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3059
3060 /**
3061  * rdev_get_drvdata - get rdev regulator driver data
3062  * @rdev: regulator
3063  *
3064  * Get rdev regulator driver private data. This call can be used in the
3065  * regulator driver context.
3066  */
3067 void *rdev_get_drvdata(struct regulator_dev *rdev)
3068 {
3069         return rdev->reg_data;
3070 }
3071 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3072
3073 /**
3074  * regulator_get_drvdata - get regulator driver data
3075  * @regulator: regulator
3076  *
3077  * Get regulator driver private data. This call can be used in the consumer
3078  * driver context when non API regulator specific functions need to be called.
3079  */
3080 void *regulator_get_drvdata(struct regulator *regulator)
3081 {
3082         return regulator->rdev->reg_data;
3083 }
3084 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3085
3086 /**
3087  * regulator_set_drvdata - set regulator driver data
3088  * @regulator: regulator
3089  * @data: data
3090  */
3091 void regulator_set_drvdata(struct regulator *regulator, void *data)
3092 {
3093         regulator->rdev->reg_data = data;
3094 }
3095 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3096
3097 /**
3098  * regulator_get_id - get regulator ID
3099  * @rdev: regulator
3100  */
3101 int rdev_get_id(struct regulator_dev *rdev)
3102 {
3103         return rdev->desc->id;
3104 }
3105 EXPORT_SYMBOL_GPL(rdev_get_id);
3106
3107 struct device *rdev_get_dev(struct regulator_dev *rdev)
3108 {
3109         return &rdev->dev;
3110 }
3111 EXPORT_SYMBOL_GPL(rdev_get_dev);
3112
3113 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3114 {
3115         return reg_init_data->driver_data;
3116 }
3117 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3118
3119 #ifdef CONFIG_DEBUG_FS
3120 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3121                                     size_t count, loff_t *ppos)
3122 {
3123         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3124         ssize_t len, ret = 0;
3125         struct regulator_map *map;
3126
3127         if (!buf)
3128                 return -ENOMEM;
3129
3130         list_for_each_entry(map, &regulator_map_list, list) {
3131                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3132                                "%s -> %s.%s\n",
3133                                rdev_get_name(map->regulator), map->dev_name,
3134                                map->supply);
3135                 if (len >= 0)
3136                         ret += len;
3137                 if (ret > PAGE_SIZE) {
3138                         ret = PAGE_SIZE;
3139                         break;
3140                 }
3141         }
3142
3143         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3144
3145         kfree(buf);
3146
3147         return ret;
3148 }
3149
3150 static const struct file_operations supply_map_fops = {
3151         .read = supply_map_read_file,
3152         .llseek = default_llseek,
3153 };
3154 #endif
3155
3156 static int __init regulator_init(void)
3157 {
3158         int ret;
3159
3160         ret = class_register(&regulator_class);
3161
3162 #ifdef CONFIG_DEBUG_FS
3163         debugfs_root = debugfs_create_dir("regulator", NULL);
3164         if (IS_ERR(debugfs_root) || !debugfs_root) {
3165                 pr_warn("regulator: Failed to create debugfs directory\n");
3166                 debugfs_root = NULL;
3167         }
3168
3169         if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3170                                        NULL, &supply_map_fops)))
3171                 pr_warn("regulator: Failed to create supplies debugfs\n");
3172 #endif
3173
3174         regulator_dummy_init();
3175
3176         return ret;
3177 }
3178
3179 /* init early to allow our consumers to complete system booting */
3180 core_initcall(regulator_init);
3181
3182 static int __init regulator_init_complete(void)
3183 {
3184         struct regulator_dev *rdev;
3185         struct regulator_ops *ops;
3186         struct regulation_constraints *c;
3187         int enabled, ret;
3188
3189         mutex_lock(&regulator_list_mutex);
3190
3191         /* If we have a full configuration then disable any regulators
3192          * which are not in use or always_on.  This will become the
3193          * default behaviour in the future.
3194          */
3195         list_for_each_entry(rdev, &regulator_list, list) {
3196                 ops = rdev->desc->ops;
3197                 c = rdev->constraints;
3198
3199                 if (!ops->disable || (c && c->always_on))
3200                         continue;
3201
3202                 mutex_lock(&rdev->mutex);
3203
3204                 if (rdev->use_count)
3205                         goto unlock;
3206
3207                 /* If we can't read the status assume it's on. */
3208                 if (ops->is_enabled)
3209                         enabled = ops->is_enabled(rdev);
3210                 else
3211                         enabled = 1;
3212
3213                 if (!enabled)
3214                         goto unlock;
3215
3216                 if (has_full_constraints) {
3217                         /* We log since this may kill the system if it
3218                          * goes wrong. */
3219                         rdev_info(rdev, "disabling\n");
3220                         ret = ops->disable(rdev);
3221                         if (ret != 0) {
3222                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3223                         }
3224                 } else {
3225                         /* The intention is that in future we will
3226                          * assume that full constraints are provided
3227                          * so warn even if we aren't going to do
3228                          * anything here.
3229                          */
3230                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3231                 }
3232
3233 unlock:
3234                 mutex_unlock(&rdev->mutex);
3235         }
3236
3237         mutex_unlock(&regulator_list_mutex);
3238
3239         return 0;
3240 }
3241 late_initcall(regulator_init_complete);