regulator: Take into account the requirements of all consumers
[linux-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34
35 #define rdev_err(rdev, fmt, ...)                                        \
36         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
37 #define rdev_warn(rdev, fmt, ...)                                       \
38         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39 #define rdev_info(rdev, fmt, ...)                                       \
40         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_dbg(rdev, fmt, ...)                                        \
42         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43
44 static DEFINE_MUTEX(regulator_list_mutex);
45 static LIST_HEAD(regulator_list);
46 static LIST_HEAD(regulator_map_list);
47 static int has_full_constraints;
48 static bool board_wants_dummy_regulator;
49
50 /*
51  * struct regulator_map
52  *
53  * Used to provide symbolic supply names to devices.
54  */
55 struct regulator_map {
56         struct list_head list;
57         const char *dev_name;   /* The dev_name() for the consumer */
58         const char *supply;
59         struct regulator_dev *regulator;
60 };
61
62 /*
63  * struct regulator
64  *
65  * One for each consumer device.
66  */
67 struct regulator {
68         struct device *dev;
69         struct list_head list;
70         int uA_load;
71         int min_uV;
72         int max_uV;
73         char *supply_name;
74         struct device_attribute dev_attr;
75         struct regulator_dev *rdev;
76 };
77
78 static int _regulator_is_enabled(struct regulator_dev *rdev);
79 static int _regulator_disable(struct regulator_dev *rdev,
80                 struct regulator_dev **supply_rdev_ptr);
81 static int _regulator_get_voltage(struct regulator_dev *rdev);
82 static int _regulator_get_current_limit(struct regulator_dev *rdev);
83 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
84 static void _notifier_call_chain(struct regulator_dev *rdev,
85                                   unsigned long event, void *data);
86
87 static const char *rdev_get_name(struct regulator_dev *rdev)
88 {
89         if (rdev->constraints && rdev->constraints->name)
90                 return rdev->constraints->name;
91         else if (rdev->desc->name)
92                 return rdev->desc->name;
93         else
94                 return "";
95 }
96
97 /* gets the regulator for a given consumer device */
98 static struct regulator *get_device_regulator(struct device *dev)
99 {
100         struct regulator *regulator = NULL;
101         struct regulator_dev *rdev;
102
103         mutex_lock(&regulator_list_mutex);
104         list_for_each_entry(rdev, &regulator_list, list) {
105                 mutex_lock(&rdev->mutex);
106                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
107                         if (regulator->dev == dev) {
108                                 mutex_unlock(&rdev->mutex);
109                                 mutex_unlock(&regulator_list_mutex);
110                                 return regulator;
111                         }
112                 }
113                 mutex_unlock(&rdev->mutex);
114         }
115         mutex_unlock(&regulator_list_mutex);
116         return NULL;
117 }
118
119 /* Platform voltage constraint check */
120 static int regulator_check_voltage(struct regulator_dev *rdev,
121                                    int *min_uV, int *max_uV)
122 {
123         BUG_ON(*min_uV > *max_uV);
124
125         if (!rdev->constraints) {
126                 rdev_err(rdev, "no constraints\n");
127                 return -ENODEV;
128         }
129         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130                 rdev_err(rdev, "operation not allowed\n");
131                 return -EPERM;
132         }
133
134         if (*max_uV > rdev->constraints->max_uV)
135                 *max_uV = rdev->constraints->max_uV;
136         if (*min_uV < rdev->constraints->min_uV)
137                 *min_uV = rdev->constraints->min_uV;
138
139         if (*min_uV > *max_uV)
140                 return -EINVAL;
141
142         return 0;
143 }
144
145 /* Make sure we select a voltage that suits the needs of all
146  * regulator consumers
147  */
148 static int regulator_check_consumers(struct regulator_dev *rdev,
149                                      int *min_uV, int *max_uV)
150 {
151         struct regulator *regulator;
152
153         list_for_each_entry(regulator, &rdev->consumer_list, list) {
154                 if (*max_uV > regulator->max_uV)
155                         *max_uV = regulator->max_uV;
156                 if (*min_uV < regulator->min_uV)
157                         *min_uV = regulator->min_uV;
158         }
159
160         if (*min_uV > *max_uV)
161                 return -EINVAL;
162
163         return 0;
164 }
165
166 /* current constraint check */
167 static int regulator_check_current_limit(struct regulator_dev *rdev,
168                                         int *min_uA, int *max_uA)
169 {
170         BUG_ON(*min_uA > *max_uA);
171
172         if (!rdev->constraints) {
173                 rdev_err(rdev, "no constraints\n");
174                 return -ENODEV;
175         }
176         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
177                 rdev_err(rdev, "operation not allowed\n");
178                 return -EPERM;
179         }
180
181         if (*max_uA > rdev->constraints->max_uA)
182                 *max_uA = rdev->constraints->max_uA;
183         if (*min_uA < rdev->constraints->min_uA)
184                 *min_uA = rdev->constraints->min_uA;
185
186         if (*min_uA > *max_uA)
187                 return -EINVAL;
188
189         return 0;
190 }
191
192 /* operating mode constraint check */
193 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
194 {
195         switch (mode) {
196         case REGULATOR_MODE_FAST:
197         case REGULATOR_MODE_NORMAL:
198         case REGULATOR_MODE_IDLE:
199         case REGULATOR_MODE_STANDBY:
200                 break;
201         default:
202                 return -EINVAL;
203         }
204
205         if (!rdev->constraints) {
206                 rdev_err(rdev, "no constraints\n");
207                 return -ENODEV;
208         }
209         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
210                 rdev_err(rdev, "operation not allowed\n");
211                 return -EPERM;
212         }
213         if (!(rdev->constraints->valid_modes_mask & mode)) {
214                 rdev_err(rdev, "invalid mode %x\n", mode);
215                 return -EINVAL;
216         }
217         return 0;
218 }
219
220 /* dynamic regulator mode switching constraint check */
221 static int regulator_check_drms(struct regulator_dev *rdev)
222 {
223         if (!rdev->constraints) {
224                 rdev_err(rdev, "no constraints\n");
225                 return -ENODEV;
226         }
227         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
228                 rdev_err(rdev, "operation not allowed\n");
229                 return -EPERM;
230         }
231         return 0;
232 }
233
234 static ssize_t device_requested_uA_show(struct device *dev,
235                              struct device_attribute *attr, char *buf)
236 {
237         struct regulator *regulator;
238
239         regulator = get_device_regulator(dev);
240         if (regulator == NULL)
241                 return 0;
242
243         return sprintf(buf, "%d\n", regulator->uA_load);
244 }
245
246 static ssize_t regulator_uV_show(struct device *dev,
247                                 struct device_attribute *attr, char *buf)
248 {
249         struct regulator_dev *rdev = dev_get_drvdata(dev);
250         ssize_t ret;
251
252         mutex_lock(&rdev->mutex);
253         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
254         mutex_unlock(&rdev->mutex);
255
256         return ret;
257 }
258 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
259
260 static ssize_t regulator_uA_show(struct device *dev,
261                                 struct device_attribute *attr, char *buf)
262 {
263         struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
266 }
267 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
268
269 static ssize_t regulator_name_show(struct device *dev,
270                              struct device_attribute *attr, char *buf)
271 {
272         struct regulator_dev *rdev = dev_get_drvdata(dev);
273
274         return sprintf(buf, "%s\n", rdev_get_name(rdev));
275 }
276
277 static ssize_t regulator_print_opmode(char *buf, int mode)
278 {
279         switch (mode) {
280         case REGULATOR_MODE_FAST:
281                 return sprintf(buf, "fast\n");
282         case REGULATOR_MODE_NORMAL:
283                 return sprintf(buf, "normal\n");
284         case REGULATOR_MODE_IDLE:
285                 return sprintf(buf, "idle\n");
286         case REGULATOR_MODE_STANDBY:
287                 return sprintf(buf, "standby\n");
288         }
289         return sprintf(buf, "unknown\n");
290 }
291
292 static ssize_t regulator_opmode_show(struct device *dev,
293                                     struct device_attribute *attr, char *buf)
294 {
295         struct regulator_dev *rdev = dev_get_drvdata(dev);
296
297         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
298 }
299 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
300
301 static ssize_t regulator_print_state(char *buf, int state)
302 {
303         if (state > 0)
304                 return sprintf(buf, "enabled\n");
305         else if (state == 0)
306                 return sprintf(buf, "disabled\n");
307         else
308                 return sprintf(buf, "unknown\n");
309 }
310
311 static ssize_t regulator_state_show(struct device *dev,
312                                    struct device_attribute *attr, char *buf)
313 {
314         struct regulator_dev *rdev = dev_get_drvdata(dev);
315         ssize_t ret;
316
317         mutex_lock(&rdev->mutex);
318         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
319         mutex_unlock(&rdev->mutex);
320
321         return ret;
322 }
323 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
324
325 static ssize_t regulator_status_show(struct device *dev,
326                                    struct device_attribute *attr, char *buf)
327 {
328         struct regulator_dev *rdev = dev_get_drvdata(dev);
329         int status;
330         char *label;
331
332         status = rdev->desc->ops->get_status(rdev);
333         if (status < 0)
334                 return status;
335
336         switch (status) {
337         case REGULATOR_STATUS_OFF:
338                 label = "off";
339                 break;
340         case REGULATOR_STATUS_ON:
341                 label = "on";
342                 break;
343         case REGULATOR_STATUS_ERROR:
344                 label = "error";
345                 break;
346         case REGULATOR_STATUS_FAST:
347                 label = "fast";
348                 break;
349         case REGULATOR_STATUS_NORMAL:
350                 label = "normal";
351                 break;
352         case REGULATOR_STATUS_IDLE:
353                 label = "idle";
354                 break;
355         case REGULATOR_STATUS_STANDBY:
356                 label = "standby";
357                 break;
358         default:
359                 return -ERANGE;
360         }
361
362         return sprintf(buf, "%s\n", label);
363 }
364 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
365
366 static ssize_t regulator_min_uA_show(struct device *dev,
367                                     struct device_attribute *attr, char *buf)
368 {
369         struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371         if (!rdev->constraints)
372                 return sprintf(buf, "constraint not defined\n");
373
374         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
375 }
376 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
377
378 static ssize_t regulator_max_uA_show(struct device *dev,
379                                     struct device_attribute *attr, char *buf)
380 {
381         struct regulator_dev *rdev = dev_get_drvdata(dev);
382
383         if (!rdev->constraints)
384                 return sprintf(buf, "constraint not defined\n");
385
386         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
387 }
388 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
389
390 static ssize_t regulator_min_uV_show(struct device *dev,
391                                     struct device_attribute *attr, char *buf)
392 {
393         struct regulator_dev *rdev = dev_get_drvdata(dev);
394
395         if (!rdev->constraints)
396                 return sprintf(buf, "constraint not defined\n");
397
398         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
399 }
400 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
401
402 static ssize_t regulator_max_uV_show(struct device *dev,
403                                     struct device_attribute *attr, char *buf)
404 {
405         struct regulator_dev *rdev = dev_get_drvdata(dev);
406
407         if (!rdev->constraints)
408                 return sprintf(buf, "constraint not defined\n");
409
410         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
411 }
412 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
413
414 static ssize_t regulator_total_uA_show(struct device *dev,
415                                       struct device_attribute *attr, char *buf)
416 {
417         struct regulator_dev *rdev = dev_get_drvdata(dev);
418         struct regulator *regulator;
419         int uA = 0;
420
421         mutex_lock(&rdev->mutex);
422         list_for_each_entry(regulator, &rdev->consumer_list, list)
423                 uA += regulator->uA_load;
424         mutex_unlock(&rdev->mutex);
425         return sprintf(buf, "%d\n", uA);
426 }
427 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
428
429 static ssize_t regulator_num_users_show(struct device *dev,
430                                       struct device_attribute *attr, char *buf)
431 {
432         struct regulator_dev *rdev = dev_get_drvdata(dev);
433         return sprintf(buf, "%d\n", rdev->use_count);
434 }
435
436 static ssize_t regulator_type_show(struct device *dev,
437                                   struct device_attribute *attr, char *buf)
438 {
439         struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441         switch (rdev->desc->type) {
442         case REGULATOR_VOLTAGE:
443                 return sprintf(buf, "voltage\n");
444         case REGULATOR_CURRENT:
445                 return sprintf(buf, "current\n");
446         }
447         return sprintf(buf, "unknown\n");
448 }
449
450 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
451                                 struct device_attribute *attr, char *buf)
452 {
453         struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
456 }
457 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
458                 regulator_suspend_mem_uV_show, NULL);
459
460 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
461                                 struct device_attribute *attr, char *buf)
462 {
463         struct regulator_dev *rdev = dev_get_drvdata(dev);
464
465         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
466 }
467 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
468                 regulator_suspend_disk_uV_show, NULL);
469
470 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
471                                 struct device_attribute *attr, char *buf)
472 {
473         struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
476 }
477 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
478                 regulator_suspend_standby_uV_show, NULL);
479
480 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
481                                 struct device_attribute *attr, char *buf)
482 {
483         struct regulator_dev *rdev = dev_get_drvdata(dev);
484
485         return regulator_print_opmode(buf,
486                 rdev->constraints->state_mem.mode);
487 }
488 static DEVICE_ATTR(suspend_mem_mode, 0444,
489                 regulator_suspend_mem_mode_show, NULL);
490
491 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
492                                 struct device_attribute *attr, char *buf)
493 {
494         struct regulator_dev *rdev = dev_get_drvdata(dev);
495
496         return regulator_print_opmode(buf,
497                 rdev->constraints->state_disk.mode);
498 }
499 static DEVICE_ATTR(suspend_disk_mode, 0444,
500                 regulator_suspend_disk_mode_show, NULL);
501
502 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
503                                 struct device_attribute *attr, char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         return regulator_print_opmode(buf,
508                 rdev->constraints->state_standby.mode);
509 }
510 static DEVICE_ATTR(suspend_standby_mode, 0444,
511                 regulator_suspend_standby_mode_show, NULL);
512
513 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
514                                    struct device_attribute *attr, char *buf)
515 {
516         struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518         return regulator_print_state(buf,
519                         rdev->constraints->state_mem.enabled);
520 }
521 static DEVICE_ATTR(suspend_mem_state, 0444,
522                 regulator_suspend_mem_state_show, NULL);
523
524 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
525                                    struct device_attribute *attr, char *buf)
526 {
527         struct regulator_dev *rdev = dev_get_drvdata(dev);
528
529         return regulator_print_state(buf,
530                         rdev->constraints->state_disk.enabled);
531 }
532 static DEVICE_ATTR(suspend_disk_state, 0444,
533                 regulator_suspend_disk_state_show, NULL);
534
535 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
536                                    struct device_attribute *attr, char *buf)
537 {
538         struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540         return regulator_print_state(buf,
541                         rdev->constraints->state_standby.enabled);
542 }
543 static DEVICE_ATTR(suspend_standby_state, 0444,
544                 regulator_suspend_standby_state_show, NULL);
545
546
547 /*
548  * These are the only attributes are present for all regulators.
549  * Other attributes are a function of regulator functionality.
550  */
551 static struct device_attribute regulator_dev_attrs[] = {
552         __ATTR(name, 0444, regulator_name_show, NULL),
553         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
554         __ATTR(type, 0444, regulator_type_show, NULL),
555         __ATTR_NULL,
556 };
557
558 static void regulator_dev_release(struct device *dev)
559 {
560         struct regulator_dev *rdev = dev_get_drvdata(dev);
561         kfree(rdev);
562 }
563
564 static struct class regulator_class = {
565         .name = "regulator",
566         .dev_release = regulator_dev_release,
567         .dev_attrs = regulator_dev_attrs,
568 };
569
570 /* Calculate the new optimum regulator operating mode based on the new total
571  * consumer load. All locks held by caller */
572 static void drms_uA_update(struct regulator_dev *rdev)
573 {
574         struct regulator *sibling;
575         int current_uA = 0, output_uV, input_uV, err;
576         unsigned int mode;
577
578         err = regulator_check_drms(rdev);
579         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
580             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
581                 return;
582
583         /* get output voltage */
584         output_uV = rdev->desc->ops->get_voltage(rdev);
585         if (output_uV <= 0)
586                 return;
587
588         /* get input voltage */
589         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
590                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
591         else
592                 input_uV = rdev->constraints->input_uV;
593         if (input_uV <= 0)
594                 return;
595
596         /* calc total requested load */
597         list_for_each_entry(sibling, &rdev->consumer_list, list)
598                 current_uA += sibling->uA_load;
599
600         /* now get the optimum mode for our new total regulator load */
601         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
602                                                   output_uV, current_uA);
603
604         /* check the new mode is allowed */
605         err = regulator_check_mode(rdev, mode);
606         if (err == 0)
607                 rdev->desc->ops->set_mode(rdev, mode);
608 }
609
610 static int suspend_set_state(struct regulator_dev *rdev,
611         struct regulator_state *rstate)
612 {
613         int ret = 0;
614         bool can_set_state;
615
616         can_set_state = rdev->desc->ops->set_suspend_enable &&
617                 rdev->desc->ops->set_suspend_disable;
618
619         /* If we have no suspend mode configration don't set anything;
620          * only warn if the driver actually makes the suspend mode
621          * configurable.
622          */
623         if (!rstate->enabled && !rstate->disabled) {
624                 if (can_set_state)
625                         rdev_warn(rdev, "No configuration\n");
626                 return 0;
627         }
628
629         if (rstate->enabled && rstate->disabled) {
630                 rdev_err(rdev, "invalid configuration\n");
631                 return -EINVAL;
632         }
633
634         if (!can_set_state) {
635                 rdev_err(rdev, "no way to set suspend state\n");
636                 return -EINVAL;
637         }
638
639         if (rstate->enabled)
640                 ret = rdev->desc->ops->set_suspend_enable(rdev);
641         else
642                 ret = rdev->desc->ops->set_suspend_disable(rdev);
643         if (ret < 0) {
644                 rdev_err(rdev, "failed to enabled/disable\n");
645                 return ret;
646         }
647
648         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
649                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
650                 if (ret < 0) {
651                         rdev_err(rdev, "failed to set voltage\n");
652                         return ret;
653                 }
654         }
655
656         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
657                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
658                 if (ret < 0) {
659                         rdev_err(rdev, "failed to set mode\n");
660                         return ret;
661                 }
662         }
663         return ret;
664 }
665
666 /* locks held by caller */
667 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
668 {
669         if (!rdev->constraints)
670                 return -EINVAL;
671
672         switch (state) {
673         case PM_SUSPEND_STANDBY:
674                 return suspend_set_state(rdev,
675                         &rdev->constraints->state_standby);
676         case PM_SUSPEND_MEM:
677                 return suspend_set_state(rdev,
678                         &rdev->constraints->state_mem);
679         case PM_SUSPEND_MAX:
680                 return suspend_set_state(rdev,
681                         &rdev->constraints->state_disk);
682         default:
683                 return -EINVAL;
684         }
685 }
686
687 static void print_constraints(struct regulator_dev *rdev)
688 {
689         struct regulation_constraints *constraints = rdev->constraints;
690         char buf[80] = "";
691         int count = 0;
692         int ret;
693
694         if (constraints->min_uV && constraints->max_uV) {
695                 if (constraints->min_uV == constraints->max_uV)
696                         count += sprintf(buf + count, "%d mV ",
697                                          constraints->min_uV / 1000);
698                 else
699                         count += sprintf(buf + count, "%d <--> %d mV ",
700                                          constraints->min_uV / 1000,
701                                          constraints->max_uV / 1000);
702         }
703
704         if (!constraints->min_uV ||
705             constraints->min_uV != constraints->max_uV) {
706                 ret = _regulator_get_voltage(rdev);
707                 if (ret > 0)
708                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
709         }
710
711         if (constraints->min_uA && constraints->max_uA) {
712                 if (constraints->min_uA == constraints->max_uA)
713                         count += sprintf(buf + count, "%d mA ",
714                                          constraints->min_uA / 1000);
715                 else
716                         count += sprintf(buf + count, "%d <--> %d mA ",
717                                          constraints->min_uA / 1000,
718                                          constraints->max_uA / 1000);
719         }
720
721         if (!constraints->min_uA ||
722             constraints->min_uA != constraints->max_uA) {
723                 ret = _regulator_get_current_limit(rdev);
724                 if (ret > 0)
725                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
726         }
727
728         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
729                 count += sprintf(buf + count, "fast ");
730         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
731                 count += sprintf(buf + count, "normal ");
732         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
733                 count += sprintf(buf + count, "idle ");
734         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
735                 count += sprintf(buf + count, "standby");
736
737         rdev_info(rdev, "regulator: %s\n", buf);
738 }
739
740 static int machine_constraints_voltage(struct regulator_dev *rdev,
741         struct regulation_constraints *constraints)
742 {
743         struct regulator_ops *ops = rdev->desc->ops;
744         int ret;
745         unsigned selector;
746
747         /* do we need to apply the constraint voltage */
748         if (rdev->constraints->apply_uV &&
749                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
750                 ops->set_voltage) {
751                 ret = ops->set_voltage(rdev,
752                                        rdev->constraints->min_uV,
753                                        rdev->constraints->max_uV,
754                                        &selector);
755                         if (ret < 0) {
756                                 rdev_err(rdev, "failed to apply %duV constraint\n",
757                                          rdev->constraints->min_uV);
758                                 rdev->constraints = NULL;
759                                 return ret;
760                         }
761         }
762
763         /* constrain machine-level voltage specs to fit
764          * the actual range supported by this regulator.
765          */
766         if (ops->list_voltage && rdev->desc->n_voltages) {
767                 int     count = rdev->desc->n_voltages;
768                 int     i;
769                 int     min_uV = INT_MAX;
770                 int     max_uV = INT_MIN;
771                 int     cmin = constraints->min_uV;
772                 int     cmax = constraints->max_uV;
773
774                 /* it's safe to autoconfigure fixed-voltage supplies
775                    and the constraints are used by list_voltage. */
776                 if (count == 1 && !cmin) {
777                         cmin = 1;
778                         cmax = INT_MAX;
779                         constraints->min_uV = cmin;
780                         constraints->max_uV = cmax;
781                 }
782
783                 /* voltage constraints are optional */
784                 if ((cmin == 0) && (cmax == 0))
785                         return 0;
786
787                 /* else require explicit machine-level constraints */
788                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
789                         rdev_err(rdev, "invalid voltage constraints\n");
790                         return -EINVAL;
791                 }
792
793                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
794                 for (i = 0; i < count; i++) {
795                         int     value;
796
797                         value = ops->list_voltage(rdev, i);
798                         if (value <= 0)
799                                 continue;
800
801                         /* maybe adjust [min_uV..max_uV] */
802                         if (value >= cmin && value < min_uV)
803                                 min_uV = value;
804                         if (value <= cmax && value > max_uV)
805                                 max_uV = value;
806                 }
807
808                 /* final: [min_uV..max_uV] valid iff constraints valid */
809                 if (max_uV < min_uV) {
810                         rdev_err(rdev, "unsupportable voltage constraints\n");
811                         return -EINVAL;
812                 }
813
814                 /* use regulator's subset of machine constraints */
815                 if (constraints->min_uV < min_uV) {
816                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
817                                  constraints->min_uV, min_uV);
818                         constraints->min_uV = min_uV;
819                 }
820                 if (constraints->max_uV > max_uV) {
821                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
822                                  constraints->max_uV, max_uV);
823                         constraints->max_uV = max_uV;
824                 }
825         }
826
827         return 0;
828 }
829
830 /**
831  * set_machine_constraints - sets regulator constraints
832  * @rdev: regulator source
833  * @constraints: constraints to apply
834  *
835  * Allows platform initialisation code to define and constrain
836  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
837  * Constraints *must* be set by platform code in order for some
838  * regulator operations to proceed i.e. set_voltage, set_current_limit,
839  * set_mode.
840  */
841 static int set_machine_constraints(struct regulator_dev *rdev,
842         const struct regulation_constraints *constraints)
843 {
844         int ret = 0;
845         struct regulator_ops *ops = rdev->desc->ops;
846
847         rdev->constraints = kmemdup(constraints, sizeof(*constraints),
848                                     GFP_KERNEL);
849         if (!rdev->constraints)
850                 return -ENOMEM;
851
852         ret = machine_constraints_voltage(rdev, rdev->constraints);
853         if (ret != 0)
854                 goto out;
855
856         /* do we need to setup our suspend state */
857         if (constraints->initial_state) {
858                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
859                 if (ret < 0) {
860                         rdev_err(rdev, "failed to set suspend state\n");
861                         rdev->constraints = NULL;
862                         goto out;
863                 }
864         }
865
866         if (constraints->initial_mode) {
867                 if (!ops->set_mode) {
868                         rdev_err(rdev, "no set_mode operation\n");
869                         ret = -EINVAL;
870                         goto out;
871                 }
872
873                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
874                 if (ret < 0) {
875                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
876                         goto out;
877                 }
878         }
879
880         /* If the constraints say the regulator should be on at this point
881          * and we have control then make sure it is enabled.
882          */
883         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
884             ops->enable) {
885                 ret = ops->enable(rdev);
886                 if (ret < 0) {
887                         rdev_err(rdev, "failed to enable\n");
888                         rdev->constraints = NULL;
889                         goto out;
890                 }
891         }
892
893         print_constraints(rdev);
894 out:
895         return ret;
896 }
897
898 /**
899  * set_supply - set regulator supply regulator
900  * @rdev: regulator name
901  * @supply_rdev: supply regulator name
902  *
903  * Called by platform initialisation code to set the supply regulator for this
904  * regulator. This ensures that a regulators supply will also be enabled by the
905  * core if it's child is enabled.
906  */
907 static int set_supply(struct regulator_dev *rdev,
908         struct regulator_dev *supply_rdev)
909 {
910         int err;
911
912         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
913                                 "supply");
914         if (err) {
915                 rdev_err(rdev, "could not add device link %s err %d\n",
916                          supply_rdev->dev.kobj.name, err);
917                        goto out;
918         }
919         rdev->supply = supply_rdev;
920         list_add(&rdev->slist, &supply_rdev->supply_list);
921 out:
922         return err;
923 }
924
925 /**
926  * set_consumer_device_supply - Bind a regulator to a symbolic supply
927  * @rdev:         regulator source
928  * @consumer_dev: device the supply applies to
929  * @consumer_dev_name: dev_name() string for device supply applies to
930  * @supply:       symbolic name for supply
931  *
932  * Allows platform initialisation code to map physical regulator
933  * sources to symbolic names for supplies for use by devices.  Devices
934  * should use these symbolic names to request regulators, avoiding the
935  * need to provide board-specific regulator names as platform data.
936  *
937  * Only one of consumer_dev and consumer_dev_name may be specified.
938  */
939 static int set_consumer_device_supply(struct regulator_dev *rdev,
940         struct device *consumer_dev, const char *consumer_dev_name,
941         const char *supply)
942 {
943         struct regulator_map *node;
944         int has_dev;
945
946         if (consumer_dev && consumer_dev_name)
947                 return -EINVAL;
948
949         if (!consumer_dev_name && consumer_dev)
950                 consumer_dev_name = dev_name(consumer_dev);
951
952         if (supply == NULL)
953                 return -EINVAL;
954
955         if (consumer_dev_name != NULL)
956                 has_dev = 1;
957         else
958                 has_dev = 0;
959
960         list_for_each_entry(node, &regulator_map_list, list) {
961                 if (node->dev_name && consumer_dev_name) {
962                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
963                                 continue;
964                 } else if (node->dev_name || consumer_dev_name) {
965                         continue;
966                 }
967
968                 if (strcmp(node->supply, supply) != 0)
969                         continue;
970
971                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
972                         dev_name(&node->regulator->dev),
973                         node->regulator->desc->name,
974                         supply,
975                         dev_name(&rdev->dev), rdev_get_name(rdev));
976                 return -EBUSY;
977         }
978
979         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
980         if (node == NULL)
981                 return -ENOMEM;
982
983         node->regulator = rdev;
984         node->supply = supply;
985
986         if (has_dev) {
987                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
988                 if (node->dev_name == NULL) {
989                         kfree(node);
990                         return -ENOMEM;
991                 }
992         }
993
994         list_add(&node->list, &regulator_map_list);
995         return 0;
996 }
997
998 static void unset_regulator_supplies(struct regulator_dev *rdev)
999 {
1000         struct regulator_map *node, *n;
1001
1002         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1003                 if (rdev == node->regulator) {
1004                         list_del(&node->list);
1005                         kfree(node->dev_name);
1006                         kfree(node);
1007                 }
1008         }
1009 }
1010
1011 #define REG_STR_SIZE    32
1012
1013 static struct regulator *create_regulator(struct regulator_dev *rdev,
1014                                           struct device *dev,
1015                                           const char *supply_name)
1016 {
1017         struct regulator *regulator;
1018         char buf[REG_STR_SIZE];
1019         int err, size;
1020
1021         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1022         if (regulator == NULL)
1023                 return NULL;
1024
1025         mutex_lock(&rdev->mutex);
1026         regulator->rdev = rdev;
1027         list_add(&regulator->list, &rdev->consumer_list);
1028
1029         if (dev) {
1030                 /* create a 'requested_microamps_name' sysfs entry */
1031                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1032                         supply_name);
1033                 if (size >= REG_STR_SIZE)
1034                         goto overflow_err;
1035
1036                 regulator->dev = dev;
1037                 sysfs_attr_init(&regulator->dev_attr.attr);
1038                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1039                 if (regulator->dev_attr.attr.name == NULL)
1040                         goto attr_name_err;
1041
1042                 regulator->dev_attr.attr.mode = 0444;
1043                 regulator->dev_attr.show = device_requested_uA_show;
1044                 err = device_create_file(dev, &regulator->dev_attr);
1045                 if (err < 0) {
1046                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1047                         goto attr_name_err;
1048                 }
1049
1050                 /* also add a link to the device sysfs entry */
1051                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1052                                  dev->kobj.name, supply_name);
1053                 if (size >= REG_STR_SIZE)
1054                         goto attr_err;
1055
1056                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1057                 if (regulator->supply_name == NULL)
1058                         goto attr_err;
1059
1060                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1061                                         buf);
1062                 if (err) {
1063                         rdev_warn(rdev, "could not add device link %s err %d\n",
1064                                   dev->kobj.name, err);
1065                         goto link_name_err;
1066                 }
1067         }
1068         mutex_unlock(&rdev->mutex);
1069         return regulator;
1070 link_name_err:
1071         kfree(regulator->supply_name);
1072 attr_err:
1073         device_remove_file(regulator->dev, &regulator->dev_attr);
1074 attr_name_err:
1075         kfree(regulator->dev_attr.attr.name);
1076 overflow_err:
1077         list_del(&regulator->list);
1078         kfree(regulator);
1079         mutex_unlock(&rdev->mutex);
1080         return NULL;
1081 }
1082
1083 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1084 {
1085         if (!rdev->desc->ops->enable_time)
1086                 return 0;
1087         return rdev->desc->ops->enable_time(rdev);
1088 }
1089
1090 /* Internal regulator request function */
1091 static struct regulator *_regulator_get(struct device *dev, const char *id,
1092                                         int exclusive)
1093 {
1094         struct regulator_dev *rdev;
1095         struct regulator_map *map;
1096         struct regulator *regulator = ERR_PTR(-ENODEV);
1097         const char *devname = NULL;
1098         int ret;
1099
1100         if (id == NULL) {
1101                 pr_err("get() with no identifier\n");
1102                 return regulator;
1103         }
1104
1105         if (dev)
1106                 devname = dev_name(dev);
1107
1108         mutex_lock(&regulator_list_mutex);
1109
1110         list_for_each_entry(map, &regulator_map_list, list) {
1111                 /* If the mapping has a device set up it must match */
1112                 if (map->dev_name &&
1113                     (!devname || strcmp(map->dev_name, devname)))
1114                         continue;
1115
1116                 if (strcmp(map->supply, id) == 0) {
1117                         rdev = map->regulator;
1118                         goto found;
1119                 }
1120         }
1121
1122         if (board_wants_dummy_regulator) {
1123                 rdev = dummy_regulator_rdev;
1124                 goto found;
1125         }
1126
1127 #ifdef CONFIG_REGULATOR_DUMMY
1128         if (!devname)
1129                 devname = "deviceless";
1130
1131         /* If the board didn't flag that it was fully constrained then
1132          * substitute in a dummy regulator so consumers can continue.
1133          */
1134         if (!has_full_constraints) {
1135                 pr_warn("%s supply %s not found, using dummy regulator\n",
1136                         devname, id);
1137                 rdev = dummy_regulator_rdev;
1138                 goto found;
1139         }
1140 #endif
1141
1142         mutex_unlock(&regulator_list_mutex);
1143         return regulator;
1144
1145 found:
1146         if (rdev->exclusive) {
1147                 regulator = ERR_PTR(-EPERM);
1148                 goto out;
1149         }
1150
1151         if (exclusive && rdev->open_count) {
1152                 regulator = ERR_PTR(-EBUSY);
1153                 goto out;
1154         }
1155
1156         if (!try_module_get(rdev->owner))
1157                 goto out;
1158
1159         regulator = create_regulator(rdev, dev, id);
1160         if (regulator == NULL) {
1161                 regulator = ERR_PTR(-ENOMEM);
1162                 module_put(rdev->owner);
1163         }
1164
1165         rdev->open_count++;
1166         if (exclusive) {
1167                 rdev->exclusive = 1;
1168
1169                 ret = _regulator_is_enabled(rdev);
1170                 if (ret > 0)
1171                         rdev->use_count = 1;
1172                 else
1173                         rdev->use_count = 0;
1174         }
1175
1176 out:
1177         mutex_unlock(&regulator_list_mutex);
1178
1179         return regulator;
1180 }
1181
1182 /**
1183  * regulator_get - lookup and obtain a reference to a regulator.
1184  * @dev: device for regulator "consumer"
1185  * @id: Supply name or regulator ID.
1186  *
1187  * Returns a struct regulator corresponding to the regulator producer,
1188  * or IS_ERR() condition containing errno.
1189  *
1190  * Use of supply names configured via regulator_set_device_supply() is
1191  * strongly encouraged.  It is recommended that the supply name used
1192  * should match the name used for the supply and/or the relevant
1193  * device pins in the datasheet.
1194  */
1195 struct regulator *regulator_get(struct device *dev, const char *id)
1196 {
1197         return _regulator_get(dev, id, 0);
1198 }
1199 EXPORT_SYMBOL_GPL(regulator_get);
1200
1201 /**
1202  * regulator_get_exclusive - obtain exclusive access to a regulator.
1203  * @dev: device for regulator "consumer"
1204  * @id: Supply name or regulator ID.
1205  *
1206  * Returns a struct regulator corresponding to the regulator producer,
1207  * or IS_ERR() condition containing errno.  Other consumers will be
1208  * unable to obtain this reference is held and the use count for the
1209  * regulator will be initialised to reflect the current state of the
1210  * regulator.
1211  *
1212  * This is intended for use by consumers which cannot tolerate shared
1213  * use of the regulator such as those which need to force the
1214  * regulator off for correct operation of the hardware they are
1215  * controlling.
1216  *
1217  * Use of supply names configured via regulator_set_device_supply() is
1218  * strongly encouraged.  It is recommended that the supply name used
1219  * should match the name used for the supply and/or the relevant
1220  * device pins in the datasheet.
1221  */
1222 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1223 {
1224         return _regulator_get(dev, id, 1);
1225 }
1226 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1227
1228 /**
1229  * regulator_put - "free" the regulator source
1230  * @regulator: regulator source
1231  *
1232  * Note: drivers must ensure that all regulator_enable calls made on this
1233  * regulator source are balanced by regulator_disable calls prior to calling
1234  * this function.
1235  */
1236 void regulator_put(struct regulator *regulator)
1237 {
1238         struct regulator_dev *rdev;
1239
1240         if (regulator == NULL || IS_ERR(regulator))
1241                 return;
1242
1243         mutex_lock(&regulator_list_mutex);
1244         rdev = regulator->rdev;
1245
1246         /* remove any sysfs entries */
1247         if (regulator->dev) {
1248                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1249                 kfree(regulator->supply_name);
1250                 device_remove_file(regulator->dev, &regulator->dev_attr);
1251                 kfree(regulator->dev_attr.attr.name);
1252         }
1253         list_del(&regulator->list);
1254         kfree(regulator);
1255
1256         rdev->open_count--;
1257         rdev->exclusive = 0;
1258
1259         module_put(rdev->owner);
1260         mutex_unlock(&regulator_list_mutex);
1261 }
1262 EXPORT_SYMBOL_GPL(regulator_put);
1263
1264 static int _regulator_can_change_status(struct regulator_dev *rdev)
1265 {
1266         if (!rdev->constraints)
1267                 return 0;
1268
1269         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1270                 return 1;
1271         else
1272                 return 0;
1273 }
1274
1275 /* locks held by regulator_enable() */
1276 static int _regulator_enable(struct regulator_dev *rdev)
1277 {
1278         int ret, delay;
1279
1280         if (rdev->use_count == 0) {
1281                 /* do we need to enable the supply regulator first */
1282                 if (rdev->supply) {
1283                         mutex_lock(&rdev->supply->mutex);
1284                         ret = _regulator_enable(rdev->supply);
1285                         mutex_unlock(&rdev->supply->mutex);
1286                         if (ret < 0) {
1287                                 rdev_err(rdev, "failed to enable: %d\n", ret);
1288                                 return ret;
1289                         }
1290                 }
1291         }
1292
1293         /* check voltage and requested load before enabling */
1294         if (rdev->constraints &&
1295             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1296                 drms_uA_update(rdev);
1297
1298         if (rdev->use_count == 0) {
1299                 /* The regulator may on if it's not switchable or left on */
1300                 ret = _regulator_is_enabled(rdev);
1301                 if (ret == -EINVAL || ret == 0) {
1302                         if (!_regulator_can_change_status(rdev))
1303                                 return -EPERM;
1304
1305                         if (!rdev->desc->ops->enable)
1306                                 return -EINVAL;
1307
1308                         /* Query before enabling in case configuration
1309                          * dependant.  */
1310                         ret = _regulator_get_enable_time(rdev);
1311                         if (ret >= 0) {
1312                                 delay = ret;
1313                         } else {
1314                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1315                                            ret);
1316                                 delay = 0;
1317                         }
1318
1319                         trace_regulator_enable(rdev_get_name(rdev));
1320
1321                         /* Allow the regulator to ramp; it would be useful
1322                          * to extend this for bulk operations so that the
1323                          * regulators can ramp together.  */
1324                         ret = rdev->desc->ops->enable(rdev);
1325                         if (ret < 0)
1326                                 return ret;
1327
1328                         trace_regulator_enable_delay(rdev_get_name(rdev));
1329
1330                         if (delay >= 1000) {
1331                                 mdelay(delay / 1000);
1332                                 udelay(delay % 1000);
1333                         } else if (delay) {
1334                                 udelay(delay);
1335                         }
1336
1337                         trace_regulator_enable_complete(rdev_get_name(rdev));
1338
1339                 } else if (ret < 0) {
1340                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1341                         return ret;
1342                 }
1343                 /* Fallthrough on positive return values - already enabled */
1344         }
1345
1346         rdev->use_count++;
1347
1348         return 0;
1349 }
1350
1351 /**
1352  * regulator_enable - enable regulator output
1353  * @regulator: regulator source
1354  *
1355  * Request that the regulator be enabled with the regulator output at
1356  * the predefined voltage or current value.  Calls to regulator_enable()
1357  * must be balanced with calls to regulator_disable().
1358  *
1359  * NOTE: the output value can be set by other drivers, boot loader or may be
1360  * hardwired in the regulator.
1361  */
1362 int regulator_enable(struct regulator *regulator)
1363 {
1364         struct regulator_dev *rdev = regulator->rdev;
1365         int ret = 0;
1366
1367         mutex_lock(&rdev->mutex);
1368         ret = _regulator_enable(rdev);
1369         mutex_unlock(&rdev->mutex);
1370         return ret;
1371 }
1372 EXPORT_SYMBOL_GPL(regulator_enable);
1373
1374 /* locks held by regulator_disable() */
1375 static int _regulator_disable(struct regulator_dev *rdev,
1376                 struct regulator_dev **supply_rdev_ptr)
1377 {
1378         int ret = 0;
1379         *supply_rdev_ptr = NULL;
1380
1381         if (WARN(rdev->use_count <= 0,
1382                         "unbalanced disables for %s\n",
1383                         rdev_get_name(rdev)))
1384                 return -EIO;
1385
1386         /* are we the last user and permitted to disable ? */
1387         if (rdev->use_count == 1 &&
1388             (rdev->constraints && !rdev->constraints->always_on)) {
1389
1390                 /* we are last user */
1391                 if (_regulator_can_change_status(rdev) &&
1392                     rdev->desc->ops->disable) {
1393                         trace_regulator_disable(rdev_get_name(rdev));
1394
1395                         ret = rdev->desc->ops->disable(rdev);
1396                         if (ret < 0) {
1397                                 rdev_err(rdev, "failed to disable\n");
1398                                 return ret;
1399                         }
1400
1401                         trace_regulator_disable_complete(rdev_get_name(rdev));
1402
1403                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1404                                              NULL);
1405                 }
1406
1407                 /* decrease our supplies ref count and disable if required */
1408                 *supply_rdev_ptr = rdev->supply;
1409
1410                 rdev->use_count = 0;
1411         } else if (rdev->use_count > 1) {
1412
1413                 if (rdev->constraints &&
1414                         (rdev->constraints->valid_ops_mask &
1415                         REGULATOR_CHANGE_DRMS))
1416                         drms_uA_update(rdev);
1417
1418                 rdev->use_count--;
1419         }
1420         return ret;
1421 }
1422
1423 /**
1424  * regulator_disable - disable regulator output
1425  * @regulator: regulator source
1426  *
1427  * Disable the regulator output voltage or current.  Calls to
1428  * regulator_enable() must be balanced with calls to
1429  * regulator_disable().
1430  *
1431  * NOTE: this will only disable the regulator output if no other consumer
1432  * devices have it enabled, the regulator device supports disabling and
1433  * machine constraints permit this operation.
1434  */
1435 int regulator_disable(struct regulator *regulator)
1436 {
1437         struct regulator_dev *rdev = regulator->rdev;
1438         struct regulator_dev *supply_rdev = NULL;
1439         int ret = 0;
1440
1441         mutex_lock(&rdev->mutex);
1442         ret = _regulator_disable(rdev, &supply_rdev);
1443         mutex_unlock(&rdev->mutex);
1444
1445         /* decrease our supplies ref count and disable if required */
1446         while (supply_rdev != NULL) {
1447                 rdev = supply_rdev;
1448
1449                 mutex_lock(&rdev->mutex);
1450                 _regulator_disable(rdev, &supply_rdev);
1451                 mutex_unlock(&rdev->mutex);
1452         }
1453
1454         return ret;
1455 }
1456 EXPORT_SYMBOL_GPL(regulator_disable);
1457
1458 /* locks held by regulator_force_disable() */
1459 static int _regulator_force_disable(struct regulator_dev *rdev,
1460                 struct regulator_dev **supply_rdev_ptr)
1461 {
1462         int ret = 0;
1463
1464         /* force disable */
1465         if (rdev->desc->ops->disable) {
1466                 /* ah well, who wants to live forever... */
1467                 ret = rdev->desc->ops->disable(rdev);
1468                 if (ret < 0) {
1469                         rdev_err(rdev, "failed to force disable\n");
1470                         return ret;
1471                 }
1472                 /* notify other consumers that power has been forced off */
1473                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1474                         REGULATOR_EVENT_DISABLE, NULL);
1475         }
1476
1477         /* decrease our supplies ref count and disable if required */
1478         *supply_rdev_ptr = rdev->supply;
1479
1480         rdev->use_count = 0;
1481         return ret;
1482 }
1483
1484 /**
1485  * regulator_force_disable - force disable regulator output
1486  * @regulator: regulator source
1487  *
1488  * Forcibly disable the regulator output voltage or current.
1489  * NOTE: this *will* disable the regulator output even if other consumer
1490  * devices have it enabled. This should be used for situations when device
1491  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1492  */
1493 int regulator_force_disable(struct regulator *regulator)
1494 {
1495         struct regulator_dev *supply_rdev = NULL;
1496         int ret;
1497
1498         mutex_lock(&regulator->rdev->mutex);
1499         regulator->uA_load = 0;
1500         ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1501         mutex_unlock(&regulator->rdev->mutex);
1502
1503         if (supply_rdev)
1504                 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1505
1506         return ret;
1507 }
1508 EXPORT_SYMBOL_GPL(regulator_force_disable);
1509
1510 static int _regulator_is_enabled(struct regulator_dev *rdev)
1511 {
1512         /* If we don't know then assume that the regulator is always on */
1513         if (!rdev->desc->ops->is_enabled)
1514                 return 1;
1515
1516         return rdev->desc->ops->is_enabled(rdev);
1517 }
1518
1519 /**
1520  * regulator_is_enabled - is the regulator output enabled
1521  * @regulator: regulator source
1522  *
1523  * Returns positive if the regulator driver backing the source/client
1524  * has requested that the device be enabled, zero if it hasn't, else a
1525  * negative errno code.
1526  *
1527  * Note that the device backing this regulator handle can have multiple
1528  * users, so it might be enabled even if regulator_enable() was never
1529  * called for this particular source.
1530  */
1531 int regulator_is_enabled(struct regulator *regulator)
1532 {
1533         int ret;
1534
1535         mutex_lock(&regulator->rdev->mutex);
1536         ret = _regulator_is_enabled(regulator->rdev);
1537         mutex_unlock(&regulator->rdev->mutex);
1538
1539         return ret;
1540 }
1541 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1542
1543 /**
1544  * regulator_count_voltages - count regulator_list_voltage() selectors
1545  * @regulator: regulator source
1546  *
1547  * Returns number of selectors, or negative errno.  Selectors are
1548  * numbered starting at zero, and typically correspond to bitfields
1549  * in hardware registers.
1550  */
1551 int regulator_count_voltages(struct regulator *regulator)
1552 {
1553         struct regulator_dev    *rdev = regulator->rdev;
1554
1555         return rdev->desc->n_voltages ? : -EINVAL;
1556 }
1557 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1558
1559 /**
1560  * regulator_list_voltage - enumerate supported voltages
1561  * @regulator: regulator source
1562  * @selector: identify voltage to list
1563  * Context: can sleep
1564  *
1565  * Returns a voltage that can be passed to @regulator_set_voltage(),
1566  * zero if this selector code can't be used on this system, or a
1567  * negative errno.
1568  */
1569 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1570 {
1571         struct regulator_dev    *rdev = regulator->rdev;
1572         struct regulator_ops    *ops = rdev->desc->ops;
1573         int                     ret;
1574
1575         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1576                 return -EINVAL;
1577
1578         mutex_lock(&rdev->mutex);
1579         ret = ops->list_voltage(rdev, selector);
1580         mutex_unlock(&rdev->mutex);
1581
1582         if (ret > 0) {
1583                 if (ret < rdev->constraints->min_uV)
1584                         ret = 0;
1585                 else if (ret > rdev->constraints->max_uV)
1586                         ret = 0;
1587         }
1588
1589         return ret;
1590 }
1591 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1592
1593 /**
1594  * regulator_is_supported_voltage - check if a voltage range can be supported
1595  *
1596  * @regulator: Regulator to check.
1597  * @min_uV: Minimum required voltage in uV.
1598  * @max_uV: Maximum required voltage in uV.
1599  *
1600  * Returns a boolean or a negative error code.
1601  */
1602 int regulator_is_supported_voltage(struct regulator *regulator,
1603                                    int min_uV, int max_uV)
1604 {
1605         int i, voltages, ret;
1606
1607         ret = regulator_count_voltages(regulator);
1608         if (ret < 0)
1609                 return ret;
1610         voltages = ret;
1611
1612         for (i = 0; i < voltages; i++) {
1613                 ret = regulator_list_voltage(regulator, i);
1614
1615                 if (ret >= min_uV && ret <= max_uV)
1616                         return 1;
1617         }
1618
1619         return 0;
1620 }
1621
1622 /**
1623  * regulator_set_voltage - set regulator output voltage
1624  * @regulator: regulator source
1625  * @min_uV: Minimum required voltage in uV
1626  * @max_uV: Maximum acceptable voltage in uV
1627  *
1628  * Sets a voltage regulator to the desired output voltage. This can be set
1629  * during any regulator state. IOW, regulator can be disabled or enabled.
1630  *
1631  * If the regulator is enabled then the voltage will change to the new value
1632  * immediately otherwise if the regulator is disabled the regulator will
1633  * output at the new voltage when enabled.
1634  *
1635  * NOTE: If the regulator is shared between several devices then the lowest
1636  * request voltage that meets the system constraints will be used.
1637  * Regulator system constraints must be set for this regulator before
1638  * calling this function otherwise this call will fail.
1639  */
1640 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1641 {
1642         struct regulator_dev *rdev = regulator->rdev;
1643         int ret;
1644         unsigned selector;
1645
1646         mutex_lock(&rdev->mutex);
1647
1648         /* sanity check */
1649         if (!rdev->desc->ops->set_voltage) {
1650                 ret = -EINVAL;
1651                 goto out;
1652         }
1653
1654         /* constraints check */
1655         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1656         if (ret < 0)
1657                 goto out;
1658         regulator->min_uV = min_uV;
1659         regulator->max_uV = max_uV;
1660
1661         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1662         if (ret < 0)
1663                 goto out;
1664
1665         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1666
1667         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, &selector);
1668
1669         if (rdev->desc->ops->list_voltage)
1670                 selector = rdev->desc->ops->list_voltage(rdev, selector);
1671         else
1672                 selector = -1;
1673
1674         trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1675
1676 out:
1677         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1678         mutex_unlock(&rdev->mutex);
1679         return ret;
1680 }
1681 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1682
1683 static int _regulator_get_voltage(struct regulator_dev *rdev)
1684 {
1685         /* sanity check */
1686         if (rdev->desc->ops->get_voltage)
1687                 return rdev->desc->ops->get_voltage(rdev);
1688         else
1689                 return -EINVAL;
1690 }
1691
1692 /**
1693  * regulator_get_voltage - get regulator output voltage
1694  * @regulator: regulator source
1695  *
1696  * This returns the current regulator voltage in uV.
1697  *
1698  * NOTE: If the regulator is disabled it will return the voltage value. This
1699  * function should not be used to determine regulator state.
1700  */
1701 int regulator_get_voltage(struct regulator *regulator)
1702 {
1703         int ret;
1704
1705         mutex_lock(&regulator->rdev->mutex);
1706
1707         ret = _regulator_get_voltage(regulator->rdev);
1708
1709         mutex_unlock(&regulator->rdev->mutex);
1710
1711         return ret;
1712 }
1713 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1714
1715 /**
1716  * regulator_set_current_limit - set regulator output current limit
1717  * @regulator: regulator source
1718  * @min_uA: Minimuum supported current in uA
1719  * @max_uA: Maximum supported current in uA
1720  *
1721  * Sets current sink to the desired output current. This can be set during
1722  * any regulator state. IOW, regulator can be disabled or enabled.
1723  *
1724  * If the regulator is enabled then the current will change to the new value
1725  * immediately otherwise if the regulator is disabled the regulator will
1726  * output at the new current when enabled.
1727  *
1728  * NOTE: Regulator system constraints must be set for this regulator before
1729  * calling this function otherwise this call will fail.
1730  */
1731 int regulator_set_current_limit(struct regulator *regulator,
1732                                int min_uA, int max_uA)
1733 {
1734         struct regulator_dev *rdev = regulator->rdev;
1735         int ret;
1736
1737         mutex_lock(&rdev->mutex);
1738
1739         /* sanity check */
1740         if (!rdev->desc->ops->set_current_limit) {
1741                 ret = -EINVAL;
1742                 goto out;
1743         }
1744
1745         /* constraints check */
1746         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1747         if (ret < 0)
1748                 goto out;
1749
1750         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1751 out:
1752         mutex_unlock(&rdev->mutex);
1753         return ret;
1754 }
1755 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1756
1757 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1758 {
1759         int ret;
1760
1761         mutex_lock(&rdev->mutex);
1762
1763         /* sanity check */
1764         if (!rdev->desc->ops->get_current_limit) {
1765                 ret = -EINVAL;
1766                 goto out;
1767         }
1768
1769         ret = rdev->desc->ops->get_current_limit(rdev);
1770 out:
1771         mutex_unlock(&rdev->mutex);
1772         return ret;
1773 }
1774
1775 /**
1776  * regulator_get_current_limit - get regulator output current
1777  * @regulator: regulator source
1778  *
1779  * This returns the current supplied by the specified current sink in uA.
1780  *
1781  * NOTE: If the regulator is disabled it will return the current value. This
1782  * function should not be used to determine regulator state.
1783  */
1784 int regulator_get_current_limit(struct regulator *regulator)
1785 {
1786         return _regulator_get_current_limit(regulator->rdev);
1787 }
1788 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1789
1790 /**
1791  * regulator_set_mode - set regulator operating mode
1792  * @regulator: regulator source
1793  * @mode: operating mode - one of the REGULATOR_MODE constants
1794  *
1795  * Set regulator operating mode to increase regulator efficiency or improve
1796  * regulation performance.
1797  *
1798  * NOTE: Regulator system constraints must be set for this regulator before
1799  * calling this function otherwise this call will fail.
1800  */
1801 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1802 {
1803         struct regulator_dev *rdev = regulator->rdev;
1804         int ret;
1805         int regulator_curr_mode;
1806
1807         mutex_lock(&rdev->mutex);
1808
1809         /* sanity check */
1810         if (!rdev->desc->ops->set_mode) {
1811                 ret = -EINVAL;
1812                 goto out;
1813         }
1814
1815         /* return if the same mode is requested */
1816         if (rdev->desc->ops->get_mode) {
1817                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1818                 if (regulator_curr_mode == mode) {
1819                         ret = 0;
1820                         goto out;
1821                 }
1822         }
1823
1824         /* constraints check */
1825         ret = regulator_check_mode(rdev, mode);
1826         if (ret < 0)
1827                 goto out;
1828
1829         ret = rdev->desc->ops->set_mode(rdev, mode);
1830 out:
1831         mutex_unlock(&rdev->mutex);
1832         return ret;
1833 }
1834 EXPORT_SYMBOL_GPL(regulator_set_mode);
1835
1836 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1837 {
1838         int ret;
1839
1840         mutex_lock(&rdev->mutex);
1841
1842         /* sanity check */
1843         if (!rdev->desc->ops->get_mode) {
1844                 ret = -EINVAL;
1845                 goto out;
1846         }
1847
1848         ret = rdev->desc->ops->get_mode(rdev);
1849 out:
1850         mutex_unlock(&rdev->mutex);
1851         return ret;
1852 }
1853
1854 /**
1855  * regulator_get_mode - get regulator operating mode
1856  * @regulator: regulator source
1857  *
1858  * Get the current regulator operating mode.
1859  */
1860 unsigned int regulator_get_mode(struct regulator *regulator)
1861 {
1862         return _regulator_get_mode(regulator->rdev);
1863 }
1864 EXPORT_SYMBOL_GPL(regulator_get_mode);
1865
1866 /**
1867  * regulator_set_optimum_mode - set regulator optimum operating mode
1868  * @regulator: regulator source
1869  * @uA_load: load current
1870  *
1871  * Notifies the regulator core of a new device load. This is then used by
1872  * DRMS (if enabled by constraints) to set the most efficient regulator
1873  * operating mode for the new regulator loading.
1874  *
1875  * Consumer devices notify their supply regulator of the maximum power
1876  * they will require (can be taken from device datasheet in the power
1877  * consumption tables) when they change operational status and hence power
1878  * state. Examples of operational state changes that can affect power
1879  * consumption are :-
1880  *
1881  *    o Device is opened / closed.
1882  *    o Device I/O is about to begin or has just finished.
1883  *    o Device is idling in between work.
1884  *
1885  * This information is also exported via sysfs to userspace.
1886  *
1887  * DRMS will sum the total requested load on the regulator and change
1888  * to the most efficient operating mode if platform constraints allow.
1889  *
1890  * Returns the new regulator mode or error.
1891  */
1892 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1893 {
1894         struct regulator_dev *rdev = regulator->rdev;
1895         struct regulator *consumer;
1896         int ret, output_uV, input_uV, total_uA_load = 0;
1897         unsigned int mode;
1898
1899         mutex_lock(&rdev->mutex);
1900
1901         regulator->uA_load = uA_load;
1902         ret = regulator_check_drms(rdev);
1903         if (ret < 0)
1904                 goto out;
1905         ret = -EINVAL;
1906
1907         /* sanity check */
1908         if (!rdev->desc->ops->get_optimum_mode)
1909                 goto out;
1910
1911         /* get output voltage */
1912         output_uV = rdev->desc->ops->get_voltage(rdev);
1913         if (output_uV <= 0) {
1914                 rdev_err(rdev, "invalid output voltage found\n");
1915                 goto out;
1916         }
1917
1918         /* get input voltage */
1919         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1920                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1921         else
1922                 input_uV = rdev->constraints->input_uV;
1923         if (input_uV <= 0) {
1924                 rdev_err(rdev, "invalid input voltage found\n");
1925                 goto out;
1926         }
1927
1928         /* calc total requested load for this regulator */
1929         list_for_each_entry(consumer, &rdev->consumer_list, list)
1930                 total_uA_load += consumer->uA_load;
1931
1932         mode = rdev->desc->ops->get_optimum_mode(rdev,
1933                                                  input_uV, output_uV,
1934                                                  total_uA_load);
1935         ret = regulator_check_mode(rdev, mode);
1936         if (ret < 0) {
1937                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
1938                          total_uA_load, input_uV, output_uV);
1939                 goto out;
1940         }
1941
1942         ret = rdev->desc->ops->set_mode(rdev, mode);
1943         if (ret < 0) {
1944                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
1945                 goto out;
1946         }
1947         ret = mode;
1948 out:
1949         mutex_unlock(&rdev->mutex);
1950         return ret;
1951 }
1952 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1953
1954 /**
1955  * regulator_register_notifier - register regulator event notifier
1956  * @regulator: regulator source
1957  * @nb: notifier block
1958  *
1959  * Register notifier block to receive regulator events.
1960  */
1961 int regulator_register_notifier(struct regulator *regulator,
1962                               struct notifier_block *nb)
1963 {
1964         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1965                                                 nb);
1966 }
1967 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1968
1969 /**
1970  * regulator_unregister_notifier - unregister regulator event notifier
1971  * @regulator: regulator source
1972  * @nb: notifier block
1973  *
1974  * Unregister regulator event notifier block.
1975  */
1976 int regulator_unregister_notifier(struct regulator *regulator,
1977                                 struct notifier_block *nb)
1978 {
1979         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1980                                                   nb);
1981 }
1982 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1983
1984 /* notify regulator consumers and downstream regulator consumers.
1985  * Note mutex must be held by caller.
1986  */
1987 static void _notifier_call_chain(struct regulator_dev *rdev,
1988                                   unsigned long event, void *data)
1989 {
1990         struct regulator_dev *_rdev;
1991
1992         /* call rdev chain first */
1993         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1994
1995         /* now notify regulator we supply */
1996         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1997                 mutex_lock(&_rdev->mutex);
1998                 _notifier_call_chain(_rdev, event, data);
1999                 mutex_unlock(&_rdev->mutex);
2000         }
2001 }
2002
2003 /**
2004  * regulator_bulk_get - get multiple regulator consumers
2005  *
2006  * @dev:           Device to supply
2007  * @num_consumers: Number of consumers to register
2008  * @consumers:     Configuration of consumers; clients are stored here.
2009  *
2010  * @return 0 on success, an errno on failure.
2011  *
2012  * This helper function allows drivers to get several regulator
2013  * consumers in one operation.  If any of the regulators cannot be
2014  * acquired then any regulators that were allocated will be freed
2015  * before returning to the caller.
2016  */
2017 int regulator_bulk_get(struct device *dev, int num_consumers,
2018                        struct regulator_bulk_data *consumers)
2019 {
2020         int i;
2021         int ret;
2022
2023         for (i = 0; i < num_consumers; i++)
2024                 consumers[i].consumer = NULL;
2025
2026         for (i = 0; i < num_consumers; i++) {
2027                 consumers[i].consumer = regulator_get(dev,
2028                                                       consumers[i].supply);
2029                 if (IS_ERR(consumers[i].consumer)) {
2030                         ret = PTR_ERR(consumers[i].consumer);
2031                         dev_err(dev, "Failed to get supply '%s': %d\n",
2032                                 consumers[i].supply, ret);
2033                         consumers[i].consumer = NULL;
2034                         goto err;
2035                 }
2036         }
2037
2038         return 0;
2039
2040 err:
2041         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2042                 regulator_put(consumers[i].consumer);
2043
2044         return ret;
2045 }
2046 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2047
2048 /**
2049  * regulator_bulk_enable - enable multiple regulator consumers
2050  *
2051  * @num_consumers: Number of consumers
2052  * @consumers:     Consumer data; clients are stored here.
2053  * @return         0 on success, an errno on failure
2054  *
2055  * This convenience API allows consumers to enable multiple regulator
2056  * clients in a single API call.  If any consumers cannot be enabled
2057  * then any others that were enabled will be disabled again prior to
2058  * return.
2059  */
2060 int regulator_bulk_enable(int num_consumers,
2061                           struct regulator_bulk_data *consumers)
2062 {
2063         int i;
2064         int ret;
2065
2066         for (i = 0; i < num_consumers; i++) {
2067                 ret = regulator_enable(consumers[i].consumer);
2068                 if (ret != 0)
2069                         goto err;
2070         }
2071
2072         return 0;
2073
2074 err:
2075         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2076         for (--i; i >= 0; --i)
2077                 regulator_disable(consumers[i].consumer);
2078
2079         return ret;
2080 }
2081 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2082
2083 /**
2084  * regulator_bulk_disable - disable multiple regulator consumers
2085  *
2086  * @num_consumers: Number of consumers
2087  * @consumers:     Consumer data; clients are stored here.
2088  * @return         0 on success, an errno on failure
2089  *
2090  * This convenience API allows consumers to disable multiple regulator
2091  * clients in a single API call.  If any consumers cannot be enabled
2092  * then any others that were disabled will be disabled again prior to
2093  * return.
2094  */
2095 int regulator_bulk_disable(int num_consumers,
2096                            struct regulator_bulk_data *consumers)
2097 {
2098         int i;
2099         int ret;
2100
2101         for (i = 0; i < num_consumers; i++) {
2102                 ret = regulator_disable(consumers[i].consumer);
2103                 if (ret != 0)
2104                         goto err;
2105         }
2106
2107         return 0;
2108
2109 err:
2110         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2111         for (--i; i >= 0; --i)
2112                 regulator_enable(consumers[i].consumer);
2113
2114         return ret;
2115 }
2116 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2117
2118 /**
2119  * regulator_bulk_free - free multiple regulator consumers
2120  *
2121  * @num_consumers: Number of consumers
2122  * @consumers:     Consumer data; clients are stored here.
2123  *
2124  * This convenience API allows consumers to free multiple regulator
2125  * clients in a single API call.
2126  */
2127 void regulator_bulk_free(int num_consumers,
2128                          struct regulator_bulk_data *consumers)
2129 {
2130         int i;
2131
2132         for (i = 0; i < num_consumers; i++) {
2133                 regulator_put(consumers[i].consumer);
2134                 consumers[i].consumer = NULL;
2135         }
2136 }
2137 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2138
2139 /**
2140  * regulator_notifier_call_chain - call regulator event notifier
2141  * @rdev: regulator source
2142  * @event: notifier block
2143  * @data: callback-specific data.
2144  *
2145  * Called by regulator drivers to notify clients a regulator event has
2146  * occurred. We also notify regulator clients downstream.
2147  * Note lock must be held by caller.
2148  */
2149 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2150                                   unsigned long event, void *data)
2151 {
2152         _notifier_call_chain(rdev, event, data);
2153         return NOTIFY_DONE;
2154
2155 }
2156 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2157
2158 /**
2159  * regulator_mode_to_status - convert a regulator mode into a status
2160  *
2161  * @mode: Mode to convert
2162  *
2163  * Convert a regulator mode into a status.
2164  */
2165 int regulator_mode_to_status(unsigned int mode)
2166 {
2167         switch (mode) {
2168         case REGULATOR_MODE_FAST:
2169                 return REGULATOR_STATUS_FAST;
2170         case REGULATOR_MODE_NORMAL:
2171                 return REGULATOR_STATUS_NORMAL;
2172         case REGULATOR_MODE_IDLE:
2173                 return REGULATOR_STATUS_IDLE;
2174         case REGULATOR_STATUS_STANDBY:
2175                 return REGULATOR_STATUS_STANDBY;
2176         default:
2177                 return 0;
2178         }
2179 }
2180 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2181
2182 /*
2183  * To avoid cluttering sysfs (and memory) with useless state, only
2184  * create attributes that can be meaningfully displayed.
2185  */
2186 static int add_regulator_attributes(struct regulator_dev *rdev)
2187 {
2188         struct device           *dev = &rdev->dev;
2189         struct regulator_ops    *ops = rdev->desc->ops;
2190         int                     status = 0;
2191
2192         /* some attributes need specific methods to be displayed */
2193         if (ops->get_voltage) {
2194                 status = device_create_file(dev, &dev_attr_microvolts);
2195                 if (status < 0)
2196                         return status;
2197         }
2198         if (ops->get_current_limit) {
2199                 status = device_create_file(dev, &dev_attr_microamps);
2200                 if (status < 0)
2201                         return status;
2202         }
2203         if (ops->get_mode) {
2204                 status = device_create_file(dev, &dev_attr_opmode);
2205                 if (status < 0)
2206                         return status;
2207         }
2208         if (ops->is_enabled) {
2209                 status = device_create_file(dev, &dev_attr_state);
2210                 if (status < 0)
2211                         return status;
2212         }
2213         if (ops->get_status) {
2214                 status = device_create_file(dev, &dev_attr_status);
2215                 if (status < 0)
2216                         return status;
2217         }
2218
2219         /* some attributes are type-specific */
2220         if (rdev->desc->type == REGULATOR_CURRENT) {
2221                 status = device_create_file(dev, &dev_attr_requested_microamps);
2222                 if (status < 0)
2223                         return status;
2224         }
2225
2226         /* all the other attributes exist to support constraints;
2227          * don't show them if there are no constraints, or if the
2228          * relevant supporting methods are missing.
2229          */
2230         if (!rdev->constraints)
2231                 return status;
2232
2233         /* constraints need specific supporting methods */
2234         if (ops->set_voltage) {
2235                 status = device_create_file(dev, &dev_attr_min_microvolts);
2236                 if (status < 0)
2237                         return status;
2238                 status = device_create_file(dev, &dev_attr_max_microvolts);
2239                 if (status < 0)
2240                         return status;
2241         }
2242         if (ops->set_current_limit) {
2243                 status = device_create_file(dev, &dev_attr_min_microamps);
2244                 if (status < 0)
2245                         return status;
2246                 status = device_create_file(dev, &dev_attr_max_microamps);
2247                 if (status < 0)
2248                         return status;
2249         }
2250
2251         /* suspend mode constraints need multiple supporting methods */
2252         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2253                 return status;
2254
2255         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2256         if (status < 0)
2257                 return status;
2258         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2259         if (status < 0)
2260                 return status;
2261         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2262         if (status < 0)
2263                 return status;
2264
2265         if (ops->set_suspend_voltage) {
2266                 status = device_create_file(dev,
2267                                 &dev_attr_suspend_standby_microvolts);
2268                 if (status < 0)
2269                         return status;
2270                 status = device_create_file(dev,
2271                                 &dev_attr_suspend_mem_microvolts);
2272                 if (status < 0)
2273                         return status;
2274                 status = device_create_file(dev,
2275                                 &dev_attr_suspend_disk_microvolts);
2276                 if (status < 0)
2277                         return status;
2278         }
2279
2280         if (ops->set_suspend_mode) {
2281                 status = device_create_file(dev,
2282                                 &dev_attr_suspend_standby_mode);
2283                 if (status < 0)
2284                         return status;
2285                 status = device_create_file(dev,
2286                                 &dev_attr_suspend_mem_mode);
2287                 if (status < 0)
2288                         return status;
2289                 status = device_create_file(dev,
2290                                 &dev_attr_suspend_disk_mode);
2291                 if (status < 0)
2292                         return status;
2293         }
2294
2295         return status;
2296 }
2297
2298 /**
2299  * regulator_register - register regulator
2300  * @regulator_desc: regulator to register
2301  * @dev: struct device for the regulator
2302  * @init_data: platform provided init data, passed through by driver
2303  * @driver_data: private regulator data
2304  *
2305  * Called by regulator drivers to register a regulator.
2306  * Returns 0 on success.
2307  */
2308 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2309         struct device *dev, const struct regulator_init_data *init_data,
2310         void *driver_data)
2311 {
2312         static atomic_t regulator_no = ATOMIC_INIT(0);
2313         struct regulator_dev *rdev;
2314         int ret, i;
2315
2316         if (regulator_desc == NULL)
2317                 return ERR_PTR(-EINVAL);
2318
2319         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2320                 return ERR_PTR(-EINVAL);
2321
2322         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2323             regulator_desc->type != REGULATOR_CURRENT)
2324                 return ERR_PTR(-EINVAL);
2325
2326         if (!init_data)
2327                 return ERR_PTR(-EINVAL);
2328
2329         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2330         if (rdev == NULL)
2331                 return ERR_PTR(-ENOMEM);
2332
2333         mutex_lock(&regulator_list_mutex);
2334
2335         mutex_init(&rdev->mutex);
2336         rdev->reg_data = driver_data;
2337         rdev->owner = regulator_desc->owner;
2338         rdev->desc = regulator_desc;
2339         INIT_LIST_HEAD(&rdev->consumer_list);
2340         INIT_LIST_HEAD(&rdev->supply_list);
2341         INIT_LIST_HEAD(&rdev->list);
2342         INIT_LIST_HEAD(&rdev->slist);
2343         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2344
2345         /* preform any regulator specific init */
2346         if (init_data->regulator_init) {
2347                 ret = init_data->regulator_init(rdev->reg_data);
2348                 if (ret < 0)
2349                         goto clean;
2350         }
2351
2352         /* register with sysfs */
2353         rdev->dev.class = &regulator_class;
2354         rdev->dev.parent = dev;
2355         dev_set_name(&rdev->dev, "regulator.%d",
2356                      atomic_inc_return(&regulator_no) - 1);
2357         ret = device_register(&rdev->dev);
2358         if (ret != 0) {
2359                 put_device(&rdev->dev);
2360                 goto clean;
2361         }
2362
2363         dev_set_drvdata(&rdev->dev, rdev);
2364
2365         /* set regulator constraints */
2366         ret = set_machine_constraints(rdev, &init_data->constraints);
2367         if (ret < 0)
2368                 goto scrub;
2369
2370         /* add attributes supported by this regulator */
2371         ret = add_regulator_attributes(rdev);
2372         if (ret < 0)
2373                 goto scrub;
2374
2375         /* set supply regulator if it exists */
2376         if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2377                 dev_err(dev,
2378                         "Supply regulator specified by both name and dev\n");
2379                 ret = -EINVAL;
2380                 goto scrub;
2381         }
2382
2383         if (init_data->supply_regulator) {
2384                 struct regulator_dev *r;
2385                 int found = 0;
2386
2387                 list_for_each_entry(r, &regulator_list, list) {
2388                         if (strcmp(rdev_get_name(r),
2389                                    init_data->supply_regulator) == 0) {
2390                                 found = 1;
2391                                 break;
2392                         }
2393                 }
2394
2395                 if (!found) {
2396                         dev_err(dev, "Failed to find supply %s\n",
2397                                 init_data->supply_regulator);
2398                         ret = -ENODEV;
2399                         goto scrub;
2400                 }
2401
2402                 ret = set_supply(rdev, r);
2403                 if (ret < 0)
2404                         goto scrub;
2405         }
2406
2407         if (init_data->supply_regulator_dev) {
2408                 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2409                 ret = set_supply(rdev,
2410                         dev_get_drvdata(init_data->supply_regulator_dev));
2411                 if (ret < 0)
2412                         goto scrub;
2413         }
2414
2415         /* add consumers devices */
2416         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2417                 ret = set_consumer_device_supply(rdev,
2418                         init_data->consumer_supplies[i].dev,
2419                         init_data->consumer_supplies[i].dev_name,
2420                         init_data->consumer_supplies[i].supply);
2421                 if (ret < 0)
2422                         goto unset_supplies;
2423         }
2424
2425         list_add(&rdev->list, &regulator_list);
2426 out:
2427         mutex_unlock(&regulator_list_mutex);
2428         return rdev;
2429
2430 unset_supplies:
2431         unset_regulator_supplies(rdev);
2432
2433 scrub:
2434         device_unregister(&rdev->dev);
2435         /* device core frees rdev */
2436         rdev = ERR_PTR(ret);
2437         goto out;
2438
2439 clean:
2440         kfree(rdev);
2441         rdev = ERR_PTR(ret);
2442         goto out;
2443 }
2444 EXPORT_SYMBOL_GPL(regulator_register);
2445
2446 /**
2447  * regulator_unregister - unregister regulator
2448  * @rdev: regulator to unregister
2449  *
2450  * Called by regulator drivers to unregister a regulator.
2451  */
2452 void regulator_unregister(struct regulator_dev *rdev)
2453 {
2454         if (rdev == NULL)
2455                 return;
2456
2457         mutex_lock(&regulator_list_mutex);
2458         WARN_ON(rdev->open_count);
2459         unset_regulator_supplies(rdev);
2460         list_del(&rdev->list);
2461         if (rdev->supply)
2462                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2463         device_unregister(&rdev->dev);
2464         kfree(rdev->constraints);
2465         mutex_unlock(&regulator_list_mutex);
2466 }
2467 EXPORT_SYMBOL_GPL(regulator_unregister);
2468
2469 /**
2470  * regulator_suspend_prepare - prepare regulators for system wide suspend
2471  * @state: system suspend state
2472  *
2473  * Configure each regulator with it's suspend operating parameters for state.
2474  * This will usually be called by machine suspend code prior to supending.
2475  */
2476 int regulator_suspend_prepare(suspend_state_t state)
2477 {
2478         struct regulator_dev *rdev;
2479         int ret = 0;
2480
2481         /* ON is handled by regulator active state */
2482         if (state == PM_SUSPEND_ON)
2483                 return -EINVAL;
2484
2485         mutex_lock(&regulator_list_mutex);
2486         list_for_each_entry(rdev, &regulator_list, list) {
2487
2488                 mutex_lock(&rdev->mutex);
2489                 ret = suspend_prepare(rdev, state);
2490                 mutex_unlock(&rdev->mutex);
2491
2492                 if (ret < 0) {
2493                         rdev_err(rdev, "failed to prepare\n");
2494                         goto out;
2495                 }
2496         }
2497 out:
2498         mutex_unlock(&regulator_list_mutex);
2499         return ret;
2500 }
2501 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2502
2503 /**
2504  * regulator_has_full_constraints - the system has fully specified constraints
2505  *
2506  * Calling this function will cause the regulator API to disable all
2507  * regulators which have a zero use count and don't have an always_on
2508  * constraint in a late_initcall.
2509  *
2510  * The intention is that this will become the default behaviour in a
2511  * future kernel release so users are encouraged to use this facility
2512  * now.
2513  */
2514 void regulator_has_full_constraints(void)
2515 {
2516         has_full_constraints = 1;
2517 }
2518 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2519
2520 /**
2521  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2522  *
2523  * Calling this function will cause the regulator API to provide a
2524  * dummy regulator to consumers if no physical regulator is found,
2525  * allowing most consumers to proceed as though a regulator were
2526  * configured.  This allows systems such as those with software
2527  * controllable regulators for the CPU core only to be brought up more
2528  * readily.
2529  */
2530 void regulator_use_dummy_regulator(void)
2531 {
2532         board_wants_dummy_regulator = true;
2533 }
2534 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2535
2536 /**
2537  * rdev_get_drvdata - get rdev regulator driver data
2538  * @rdev: regulator
2539  *
2540  * Get rdev regulator driver private data. This call can be used in the
2541  * regulator driver context.
2542  */
2543 void *rdev_get_drvdata(struct regulator_dev *rdev)
2544 {
2545         return rdev->reg_data;
2546 }
2547 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2548
2549 /**
2550  * regulator_get_drvdata - get regulator driver data
2551  * @regulator: regulator
2552  *
2553  * Get regulator driver private data. This call can be used in the consumer
2554  * driver context when non API regulator specific functions need to be called.
2555  */
2556 void *regulator_get_drvdata(struct regulator *regulator)
2557 {
2558         return regulator->rdev->reg_data;
2559 }
2560 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2561
2562 /**
2563  * regulator_set_drvdata - set regulator driver data
2564  * @regulator: regulator
2565  * @data: data
2566  */
2567 void regulator_set_drvdata(struct regulator *regulator, void *data)
2568 {
2569         regulator->rdev->reg_data = data;
2570 }
2571 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2572
2573 /**
2574  * regulator_get_id - get regulator ID
2575  * @rdev: regulator
2576  */
2577 int rdev_get_id(struct regulator_dev *rdev)
2578 {
2579         return rdev->desc->id;
2580 }
2581 EXPORT_SYMBOL_GPL(rdev_get_id);
2582
2583 struct device *rdev_get_dev(struct regulator_dev *rdev)
2584 {
2585         return &rdev->dev;
2586 }
2587 EXPORT_SYMBOL_GPL(rdev_get_dev);
2588
2589 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2590 {
2591         return reg_init_data->driver_data;
2592 }
2593 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2594
2595 static int __init regulator_init(void)
2596 {
2597         int ret;
2598
2599         ret = class_register(&regulator_class);
2600
2601         regulator_dummy_init();
2602
2603         return ret;
2604 }
2605
2606 /* init early to allow our consumers to complete system booting */
2607 core_initcall(regulator_init);
2608
2609 static int __init regulator_init_complete(void)
2610 {
2611         struct regulator_dev *rdev;
2612         struct regulator_ops *ops;
2613         struct regulation_constraints *c;
2614         int enabled, ret;
2615
2616         mutex_lock(&regulator_list_mutex);
2617
2618         /* If we have a full configuration then disable any regulators
2619          * which are not in use or always_on.  This will become the
2620          * default behaviour in the future.
2621          */
2622         list_for_each_entry(rdev, &regulator_list, list) {
2623                 ops = rdev->desc->ops;
2624                 c = rdev->constraints;
2625
2626                 if (!ops->disable || (c && c->always_on))
2627                         continue;
2628
2629                 mutex_lock(&rdev->mutex);
2630
2631                 if (rdev->use_count)
2632                         goto unlock;
2633
2634                 /* If we can't read the status assume it's on. */
2635                 if (ops->is_enabled)
2636                         enabled = ops->is_enabled(rdev);
2637                 else
2638                         enabled = 1;
2639
2640                 if (!enabled)
2641                         goto unlock;
2642
2643                 if (has_full_constraints) {
2644                         /* We log since this may kill the system if it
2645                          * goes wrong. */
2646                         rdev_info(rdev, "disabling\n");
2647                         ret = ops->disable(rdev);
2648                         if (ret != 0) {
2649                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
2650                         }
2651                 } else {
2652                         /* The intention is that in future we will
2653                          * assume that full constraints are provided
2654                          * so warn even if we aren't going to do
2655                          * anything here.
2656                          */
2657                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
2658                 }
2659
2660 unlock:
2661                 mutex_unlock(&rdev->mutex);
2662         }
2663
2664         mutex_unlock(&regulator_list_mutex);
2665
2666         return 0;
2667 }
2668 late_initcall(regulator_init_complete);