regulator: Add and use rdev_<level> macros
[linux-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34
35 #define rdev_err(rdev, fmt, ...)                                        \
36         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
37 #define rdev_warn(rdev, fmt, ...)                                       \
38         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39 #define rdev_info(rdev, fmt, ...)                                       \
40         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_dbg(rdev, fmt, ...)                                        \
42         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43
44 static DEFINE_MUTEX(regulator_list_mutex);
45 static LIST_HEAD(regulator_list);
46 static LIST_HEAD(regulator_map_list);
47 static int has_full_constraints;
48 static bool board_wants_dummy_regulator;
49
50 /*
51  * struct regulator_map
52  *
53  * Used to provide symbolic supply names to devices.
54  */
55 struct regulator_map {
56         struct list_head list;
57         const char *dev_name;   /* The dev_name() for the consumer */
58         const char *supply;
59         struct regulator_dev *regulator;
60 };
61
62 /*
63  * struct regulator
64  *
65  * One for each consumer device.
66  */
67 struct regulator {
68         struct device *dev;
69         struct list_head list;
70         int uA_load;
71         int min_uV;
72         int max_uV;
73         char *supply_name;
74         struct device_attribute dev_attr;
75         struct regulator_dev *rdev;
76 };
77
78 static int _regulator_is_enabled(struct regulator_dev *rdev);
79 static int _regulator_disable(struct regulator_dev *rdev,
80                 struct regulator_dev **supply_rdev_ptr);
81 static int _regulator_get_voltage(struct regulator_dev *rdev);
82 static int _regulator_get_current_limit(struct regulator_dev *rdev);
83 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
84 static void _notifier_call_chain(struct regulator_dev *rdev,
85                                   unsigned long event, void *data);
86
87 static const char *rdev_get_name(struct regulator_dev *rdev)
88 {
89         if (rdev->constraints && rdev->constraints->name)
90                 return rdev->constraints->name;
91         else if (rdev->desc->name)
92                 return rdev->desc->name;
93         else
94                 return "";
95 }
96
97 /* gets the regulator for a given consumer device */
98 static struct regulator *get_device_regulator(struct device *dev)
99 {
100         struct regulator *regulator = NULL;
101         struct regulator_dev *rdev;
102
103         mutex_lock(&regulator_list_mutex);
104         list_for_each_entry(rdev, &regulator_list, list) {
105                 mutex_lock(&rdev->mutex);
106                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
107                         if (regulator->dev == dev) {
108                                 mutex_unlock(&rdev->mutex);
109                                 mutex_unlock(&regulator_list_mutex);
110                                 return regulator;
111                         }
112                 }
113                 mutex_unlock(&rdev->mutex);
114         }
115         mutex_unlock(&regulator_list_mutex);
116         return NULL;
117 }
118
119 /* Platform voltage constraint check */
120 static int regulator_check_voltage(struct regulator_dev *rdev,
121                                    int *min_uV, int *max_uV)
122 {
123         BUG_ON(*min_uV > *max_uV);
124
125         if (!rdev->constraints) {
126                 rdev_err(rdev, "no constraints\n");
127                 return -ENODEV;
128         }
129         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130                 rdev_err(rdev, "operation not allowed\n");
131                 return -EPERM;
132         }
133
134         if (*max_uV > rdev->constraints->max_uV)
135                 *max_uV = rdev->constraints->max_uV;
136         if (*min_uV < rdev->constraints->min_uV)
137                 *min_uV = rdev->constraints->min_uV;
138
139         if (*min_uV > *max_uV)
140                 return -EINVAL;
141
142         return 0;
143 }
144
145 /* current constraint check */
146 static int regulator_check_current_limit(struct regulator_dev *rdev,
147                                         int *min_uA, int *max_uA)
148 {
149         BUG_ON(*min_uA > *max_uA);
150
151         if (!rdev->constraints) {
152                 rdev_err(rdev, "no constraints\n");
153                 return -ENODEV;
154         }
155         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
156                 rdev_err(rdev, "operation not allowed\n");
157                 return -EPERM;
158         }
159
160         if (*max_uA > rdev->constraints->max_uA)
161                 *max_uA = rdev->constraints->max_uA;
162         if (*min_uA < rdev->constraints->min_uA)
163                 *min_uA = rdev->constraints->min_uA;
164
165         if (*min_uA > *max_uA)
166                 return -EINVAL;
167
168         return 0;
169 }
170
171 /* operating mode constraint check */
172 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
173 {
174         switch (mode) {
175         case REGULATOR_MODE_FAST:
176         case REGULATOR_MODE_NORMAL:
177         case REGULATOR_MODE_IDLE:
178         case REGULATOR_MODE_STANDBY:
179                 break;
180         default:
181                 return -EINVAL;
182         }
183
184         if (!rdev->constraints) {
185                 rdev_err(rdev, "no constraints\n");
186                 return -ENODEV;
187         }
188         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
189                 rdev_err(rdev, "operation not allowed\n");
190                 return -EPERM;
191         }
192         if (!(rdev->constraints->valid_modes_mask & mode)) {
193                 rdev_err(rdev, "invalid mode %x\n", mode);
194                 return -EINVAL;
195         }
196         return 0;
197 }
198
199 /* dynamic regulator mode switching constraint check */
200 static int regulator_check_drms(struct regulator_dev *rdev)
201 {
202         if (!rdev->constraints) {
203                 rdev_err(rdev, "no constraints\n");
204                 return -ENODEV;
205         }
206         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
207                 rdev_err(rdev, "operation not allowed\n");
208                 return -EPERM;
209         }
210         return 0;
211 }
212
213 static ssize_t device_requested_uA_show(struct device *dev,
214                              struct device_attribute *attr, char *buf)
215 {
216         struct regulator *regulator;
217
218         regulator = get_device_regulator(dev);
219         if (regulator == NULL)
220                 return 0;
221
222         return sprintf(buf, "%d\n", regulator->uA_load);
223 }
224
225 static ssize_t regulator_uV_show(struct device *dev,
226                                 struct device_attribute *attr, char *buf)
227 {
228         struct regulator_dev *rdev = dev_get_drvdata(dev);
229         ssize_t ret;
230
231         mutex_lock(&rdev->mutex);
232         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
233         mutex_unlock(&rdev->mutex);
234
235         return ret;
236 }
237 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
238
239 static ssize_t regulator_uA_show(struct device *dev,
240                                 struct device_attribute *attr, char *buf)
241 {
242         struct regulator_dev *rdev = dev_get_drvdata(dev);
243
244         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
245 }
246 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
247
248 static ssize_t regulator_name_show(struct device *dev,
249                              struct device_attribute *attr, char *buf)
250 {
251         struct regulator_dev *rdev = dev_get_drvdata(dev);
252
253         return sprintf(buf, "%s\n", rdev_get_name(rdev));
254 }
255
256 static ssize_t regulator_print_opmode(char *buf, int mode)
257 {
258         switch (mode) {
259         case REGULATOR_MODE_FAST:
260                 return sprintf(buf, "fast\n");
261         case REGULATOR_MODE_NORMAL:
262                 return sprintf(buf, "normal\n");
263         case REGULATOR_MODE_IDLE:
264                 return sprintf(buf, "idle\n");
265         case REGULATOR_MODE_STANDBY:
266                 return sprintf(buf, "standby\n");
267         }
268         return sprintf(buf, "unknown\n");
269 }
270
271 static ssize_t regulator_opmode_show(struct device *dev,
272                                     struct device_attribute *attr, char *buf)
273 {
274         struct regulator_dev *rdev = dev_get_drvdata(dev);
275
276         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
277 }
278 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
279
280 static ssize_t regulator_print_state(char *buf, int state)
281 {
282         if (state > 0)
283                 return sprintf(buf, "enabled\n");
284         else if (state == 0)
285                 return sprintf(buf, "disabled\n");
286         else
287                 return sprintf(buf, "unknown\n");
288 }
289
290 static ssize_t regulator_state_show(struct device *dev,
291                                    struct device_attribute *attr, char *buf)
292 {
293         struct regulator_dev *rdev = dev_get_drvdata(dev);
294         ssize_t ret;
295
296         mutex_lock(&rdev->mutex);
297         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
298         mutex_unlock(&rdev->mutex);
299
300         return ret;
301 }
302 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
303
304 static ssize_t regulator_status_show(struct device *dev,
305                                    struct device_attribute *attr, char *buf)
306 {
307         struct regulator_dev *rdev = dev_get_drvdata(dev);
308         int status;
309         char *label;
310
311         status = rdev->desc->ops->get_status(rdev);
312         if (status < 0)
313                 return status;
314
315         switch (status) {
316         case REGULATOR_STATUS_OFF:
317                 label = "off";
318                 break;
319         case REGULATOR_STATUS_ON:
320                 label = "on";
321                 break;
322         case REGULATOR_STATUS_ERROR:
323                 label = "error";
324                 break;
325         case REGULATOR_STATUS_FAST:
326                 label = "fast";
327                 break;
328         case REGULATOR_STATUS_NORMAL:
329                 label = "normal";
330                 break;
331         case REGULATOR_STATUS_IDLE:
332                 label = "idle";
333                 break;
334         case REGULATOR_STATUS_STANDBY:
335                 label = "standby";
336                 break;
337         default:
338                 return -ERANGE;
339         }
340
341         return sprintf(buf, "%s\n", label);
342 }
343 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
344
345 static ssize_t regulator_min_uA_show(struct device *dev,
346                                     struct device_attribute *attr, char *buf)
347 {
348         struct regulator_dev *rdev = dev_get_drvdata(dev);
349
350         if (!rdev->constraints)
351                 return sprintf(buf, "constraint not defined\n");
352
353         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
354 }
355 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
356
357 static ssize_t regulator_max_uA_show(struct device *dev,
358                                     struct device_attribute *attr, char *buf)
359 {
360         struct regulator_dev *rdev = dev_get_drvdata(dev);
361
362         if (!rdev->constraints)
363                 return sprintf(buf, "constraint not defined\n");
364
365         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
366 }
367 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
368
369 static ssize_t regulator_min_uV_show(struct device *dev,
370                                     struct device_attribute *attr, char *buf)
371 {
372         struct regulator_dev *rdev = dev_get_drvdata(dev);
373
374         if (!rdev->constraints)
375                 return sprintf(buf, "constraint not defined\n");
376
377         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
378 }
379 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
380
381 static ssize_t regulator_max_uV_show(struct device *dev,
382                                     struct device_attribute *attr, char *buf)
383 {
384         struct regulator_dev *rdev = dev_get_drvdata(dev);
385
386         if (!rdev->constraints)
387                 return sprintf(buf, "constraint not defined\n");
388
389         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
390 }
391 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
392
393 static ssize_t regulator_total_uA_show(struct device *dev,
394                                       struct device_attribute *attr, char *buf)
395 {
396         struct regulator_dev *rdev = dev_get_drvdata(dev);
397         struct regulator *regulator;
398         int uA = 0;
399
400         mutex_lock(&rdev->mutex);
401         list_for_each_entry(regulator, &rdev->consumer_list, list)
402                 uA += regulator->uA_load;
403         mutex_unlock(&rdev->mutex);
404         return sprintf(buf, "%d\n", uA);
405 }
406 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
407
408 static ssize_t regulator_num_users_show(struct device *dev,
409                                       struct device_attribute *attr, char *buf)
410 {
411         struct regulator_dev *rdev = dev_get_drvdata(dev);
412         return sprintf(buf, "%d\n", rdev->use_count);
413 }
414
415 static ssize_t regulator_type_show(struct device *dev,
416                                   struct device_attribute *attr, char *buf)
417 {
418         struct regulator_dev *rdev = dev_get_drvdata(dev);
419
420         switch (rdev->desc->type) {
421         case REGULATOR_VOLTAGE:
422                 return sprintf(buf, "voltage\n");
423         case REGULATOR_CURRENT:
424                 return sprintf(buf, "current\n");
425         }
426         return sprintf(buf, "unknown\n");
427 }
428
429 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
430                                 struct device_attribute *attr, char *buf)
431 {
432         struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
435 }
436 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
437                 regulator_suspend_mem_uV_show, NULL);
438
439 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
440                                 struct device_attribute *attr, char *buf)
441 {
442         struct regulator_dev *rdev = dev_get_drvdata(dev);
443
444         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
445 }
446 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
447                 regulator_suspend_disk_uV_show, NULL);
448
449 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
450                                 struct device_attribute *attr, char *buf)
451 {
452         struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
455 }
456 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
457                 regulator_suspend_standby_uV_show, NULL);
458
459 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
460                                 struct device_attribute *attr, char *buf)
461 {
462         struct regulator_dev *rdev = dev_get_drvdata(dev);
463
464         return regulator_print_opmode(buf,
465                 rdev->constraints->state_mem.mode);
466 }
467 static DEVICE_ATTR(suspend_mem_mode, 0444,
468                 regulator_suspend_mem_mode_show, NULL);
469
470 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
471                                 struct device_attribute *attr, char *buf)
472 {
473         struct regulator_dev *rdev = dev_get_drvdata(dev);
474
475         return regulator_print_opmode(buf,
476                 rdev->constraints->state_disk.mode);
477 }
478 static DEVICE_ATTR(suspend_disk_mode, 0444,
479                 regulator_suspend_disk_mode_show, NULL);
480
481 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
482                                 struct device_attribute *attr, char *buf)
483 {
484         struct regulator_dev *rdev = dev_get_drvdata(dev);
485
486         return regulator_print_opmode(buf,
487                 rdev->constraints->state_standby.mode);
488 }
489 static DEVICE_ATTR(suspend_standby_mode, 0444,
490                 regulator_suspend_standby_mode_show, NULL);
491
492 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
493                                    struct device_attribute *attr, char *buf)
494 {
495         struct regulator_dev *rdev = dev_get_drvdata(dev);
496
497         return regulator_print_state(buf,
498                         rdev->constraints->state_mem.enabled);
499 }
500 static DEVICE_ATTR(suspend_mem_state, 0444,
501                 regulator_suspend_mem_state_show, NULL);
502
503 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
504                                    struct device_attribute *attr, char *buf)
505 {
506         struct regulator_dev *rdev = dev_get_drvdata(dev);
507
508         return regulator_print_state(buf,
509                         rdev->constraints->state_disk.enabled);
510 }
511 static DEVICE_ATTR(suspend_disk_state, 0444,
512                 regulator_suspend_disk_state_show, NULL);
513
514 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
515                                    struct device_attribute *attr, char *buf)
516 {
517         struct regulator_dev *rdev = dev_get_drvdata(dev);
518
519         return regulator_print_state(buf,
520                         rdev->constraints->state_standby.enabled);
521 }
522 static DEVICE_ATTR(suspend_standby_state, 0444,
523                 regulator_suspend_standby_state_show, NULL);
524
525
526 /*
527  * These are the only attributes are present for all regulators.
528  * Other attributes are a function of regulator functionality.
529  */
530 static struct device_attribute regulator_dev_attrs[] = {
531         __ATTR(name, 0444, regulator_name_show, NULL),
532         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
533         __ATTR(type, 0444, regulator_type_show, NULL),
534         __ATTR_NULL,
535 };
536
537 static void regulator_dev_release(struct device *dev)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540         kfree(rdev);
541 }
542
543 static struct class regulator_class = {
544         .name = "regulator",
545         .dev_release = regulator_dev_release,
546         .dev_attrs = regulator_dev_attrs,
547 };
548
549 /* Calculate the new optimum regulator operating mode based on the new total
550  * consumer load. All locks held by caller */
551 static void drms_uA_update(struct regulator_dev *rdev)
552 {
553         struct regulator *sibling;
554         int current_uA = 0, output_uV, input_uV, err;
555         unsigned int mode;
556
557         err = regulator_check_drms(rdev);
558         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
559             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
560                 return;
561
562         /* get output voltage */
563         output_uV = rdev->desc->ops->get_voltage(rdev);
564         if (output_uV <= 0)
565                 return;
566
567         /* get input voltage */
568         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
569                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
570         else
571                 input_uV = rdev->constraints->input_uV;
572         if (input_uV <= 0)
573                 return;
574
575         /* calc total requested load */
576         list_for_each_entry(sibling, &rdev->consumer_list, list)
577                 current_uA += sibling->uA_load;
578
579         /* now get the optimum mode for our new total regulator load */
580         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
581                                                   output_uV, current_uA);
582
583         /* check the new mode is allowed */
584         err = regulator_check_mode(rdev, mode);
585         if (err == 0)
586                 rdev->desc->ops->set_mode(rdev, mode);
587 }
588
589 static int suspend_set_state(struct regulator_dev *rdev,
590         struct regulator_state *rstate)
591 {
592         int ret = 0;
593         bool can_set_state;
594
595         can_set_state = rdev->desc->ops->set_suspend_enable &&
596                 rdev->desc->ops->set_suspend_disable;
597
598         /* If we have no suspend mode configration don't set anything;
599          * only warn if the driver actually makes the suspend mode
600          * configurable.
601          */
602         if (!rstate->enabled && !rstate->disabled) {
603                 if (can_set_state)
604                         rdev_warn(rdev, "No configuration\n");
605                 return 0;
606         }
607
608         if (rstate->enabled && rstate->disabled) {
609                 rdev_err(rdev, "invalid configuration\n");
610                 return -EINVAL;
611         }
612
613         if (!can_set_state) {
614                 rdev_err(rdev, "no way to set suspend state\n");
615                 return -EINVAL;
616         }
617
618         if (rstate->enabled)
619                 ret = rdev->desc->ops->set_suspend_enable(rdev);
620         else
621                 ret = rdev->desc->ops->set_suspend_disable(rdev);
622         if (ret < 0) {
623                 rdev_err(rdev, "failed to enabled/disable\n");
624                 return ret;
625         }
626
627         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
628                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
629                 if (ret < 0) {
630                         rdev_err(rdev, "failed to set voltage\n");
631                         return ret;
632                 }
633         }
634
635         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
636                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
637                 if (ret < 0) {
638                         rdev_err(rdev, "failed to set mode\n");
639                         return ret;
640                 }
641         }
642         return ret;
643 }
644
645 /* locks held by caller */
646 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
647 {
648         if (!rdev->constraints)
649                 return -EINVAL;
650
651         switch (state) {
652         case PM_SUSPEND_STANDBY:
653                 return suspend_set_state(rdev,
654                         &rdev->constraints->state_standby);
655         case PM_SUSPEND_MEM:
656                 return suspend_set_state(rdev,
657                         &rdev->constraints->state_mem);
658         case PM_SUSPEND_MAX:
659                 return suspend_set_state(rdev,
660                         &rdev->constraints->state_disk);
661         default:
662                 return -EINVAL;
663         }
664 }
665
666 static void print_constraints(struct regulator_dev *rdev)
667 {
668         struct regulation_constraints *constraints = rdev->constraints;
669         char buf[80] = "";
670         int count = 0;
671         int ret;
672
673         if (constraints->min_uV && constraints->max_uV) {
674                 if (constraints->min_uV == constraints->max_uV)
675                         count += sprintf(buf + count, "%d mV ",
676                                          constraints->min_uV / 1000);
677                 else
678                         count += sprintf(buf + count, "%d <--> %d mV ",
679                                          constraints->min_uV / 1000,
680                                          constraints->max_uV / 1000);
681         }
682
683         if (!constraints->min_uV ||
684             constraints->min_uV != constraints->max_uV) {
685                 ret = _regulator_get_voltage(rdev);
686                 if (ret > 0)
687                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
688         }
689
690         if (constraints->min_uA && constraints->max_uA) {
691                 if (constraints->min_uA == constraints->max_uA)
692                         count += sprintf(buf + count, "%d mA ",
693                                          constraints->min_uA / 1000);
694                 else
695                         count += sprintf(buf + count, "%d <--> %d mA ",
696                                          constraints->min_uA / 1000,
697                                          constraints->max_uA / 1000);
698         }
699
700         if (!constraints->min_uA ||
701             constraints->min_uA != constraints->max_uA) {
702                 ret = _regulator_get_current_limit(rdev);
703                 if (ret > 0)
704                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
705         }
706
707         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
708                 count += sprintf(buf + count, "fast ");
709         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
710                 count += sprintf(buf + count, "normal ");
711         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
712                 count += sprintf(buf + count, "idle ");
713         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
714                 count += sprintf(buf + count, "standby");
715
716         rdev_info(rdev, "regulator: %s\n", buf);
717 }
718
719 static int machine_constraints_voltage(struct regulator_dev *rdev,
720         struct regulation_constraints *constraints)
721 {
722         struct regulator_ops *ops = rdev->desc->ops;
723         int ret;
724         unsigned selector;
725
726         /* do we need to apply the constraint voltage */
727         if (rdev->constraints->apply_uV &&
728                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
729                 ops->set_voltage) {
730                 ret = ops->set_voltage(rdev,
731                                        rdev->constraints->min_uV,
732                                        rdev->constraints->max_uV,
733                                        &selector);
734                         if (ret < 0) {
735                                 rdev_err(rdev, "failed to apply %duV constraint\n",
736                                          rdev->constraints->min_uV);
737                                 rdev->constraints = NULL;
738                                 return ret;
739                         }
740         }
741
742         /* constrain machine-level voltage specs to fit
743          * the actual range supported by this regulator.
744          */
745         if (ops->list_voltage && rdev->desc->n_voltages) {
746                 int     count = rdev->desc->n_voltages;
747                 int     i;
748                 int     min_uV = INT_MAX;
749                 int     max_uV = INT_MIN;
750                 int     cmin = constraints->min_uV;
751                 int     cmax = constraints->max_uV;
752
753                 /* it's safe to autoconfigure fixed-voltage supplies
754                    and the constraints are used by list_voltage. */
755                 if (count == 1 && !cmin) {
756                         cmin = 1;
757                         cmax = INT_MAX;
758                         constraints->min_uV = cmin;
759                         constraints->max_uV = cmax;
760                 }
761
762                 /* voltage constraints are optional */
763                 if ((cmin == 0) && (cmax == 0))
764                         return 0;
765
766                 /* else require explicit machine-level constraints */
767                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
768                         rdev_err(rdev, "invalid voltage constraints\n");
769                         return -EINVAL;
770                 }
771
772                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
773                 for (i = 0; i < count; i++) {
774                         int     value;
775
776                         value = ops->list_voltage(rdev, i);
777                         if (value <= 0)
778                                 continue;
779
780                         /* maybe adjust [min_uV..max_uV] */
781                         if (value >= cmin && value < min_uV)
782                                 min_uV = value;
783                         if (value <= cmax && value > max_uV)
784                                 max_uV = value;
785                 }
786
787                 /* final: [min_uV..max_uV] valid iff constraints valid */
788                 if (max_uV < min_uV) {
789                         rdev_err(rdev, "unsupportable voltage constraints\n");
790                         return -EINVAL;
791                 }
792
793                 /* use regulator's subset of machine constraints */
794                 if (constraints->min_uV < min_uV) {
795                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
796                                  constraints->min_uV, min_uV);
797                         constraints->min_uV = min_uV;
798                 }
799                 if (constraints->max_uV > max_uV) {
800                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
801                                  constraints->max_uV, max_uV);
802                         constraints->max_uV = max_uV;
803                 }
804         }
805
806         return 0;
807 }
808
809 /**
810  * set_machine_constraints - sets regulator constraints
811  * @rdev: regulator source
812  * @constraints: constraints to apply
813  *
814  * Allows platform initialisation code to define and constrain
815  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
816  * Constraints *must* be set by platform code in order for some
817  * regulator operations to proceed i.e. set_voltage, set_current_limit,
818  * set_mode.
819  */
820 static int set_machine_constraints(struct regulator_dev *rdev,
821         const struct regulation_constraints *constraints)
822 {
823         int ret = 0;
824         struct regulator_ops *ops = rdev->desc->ops;
825
826         rdev->constraints = kmemdup(constraints, sizeof(*constraints),
827                                     GFP_KERNEL);
828         if (!rdev->constraints)
829                 return -ENOMEM;
830
831         ret = machine_constraints_voltage(rdev, rdev->constraints);
832         if (ret != 0)
833                 goto out;
834
835         /* do we need to setup our suspend state */
836         if (constraints->initial_state) {
837                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
838                 if (ret < 0) {
839                         rdev_err(rdev, "failed to set suspend state\n");
840                         rdev->constraints = NULL;
841                         goto out;
842                 }
843         }
844
845         if (constraints->initial_mode) {
846                 if (!ops->set_mode) {
847                         rdev_err(rdev, "no set_mode operation\n");
848                         ret = -EINVAL;
849                         goto out;
850                 }
851
852                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
853                 if (ret < 0) {
854                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
855                         goto out;
856                 }
857         }
858
859         /* If the constraints say the regulator should be on at this point
860          * and we have control then make sure it is enabled.
861          */
862         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
863             ops->enable) {
864                 ret = ops->enable(rdev);
865                 if (ret < 0) {
866                         rdev_err(rdev, "failed to enable\n");
867                         rdev->constraints = NULL;
868                         goto out;
869                 }
870         }
871
872         print_constraints(rdev);
873 out:
874         return ret;
875 }
876
877 /**
878  * set_supply - set regulator supply regulator
879  * @rdev: regulator name
880  * @supply_rdev: supply regulator name
881  *
882  * Called by platform initialisation code to set the supply regulator for this
883  * regulator. This ensures that a regulators supply will also be enabled by the
884  * core if it's child is enabled.
885  */
886 static int set_supply(struct regulator_dev *rdev,
887         struct regulator_dev *supply_rdev)
888 {
889         int err;
890
891         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
892                                 "supply");
893         if (err) {
894                 rdev_err(rdev, "could not add device link %s err %d\n",
895                          supply_rdev->dev.kobj.name, err);
896                        goto out;
897         }
898         rdev->supply = supply_rdev;
899         list_add(&rdev->slist, &supply_rdev->supply_list);
900 out:
901         return err;
902 }
903
904 /**
905  * set_consumer_device_supply - Bind a regulator to a symbolic supply
906  * @rdev:         regulator source
907  * @consumer_dev: device the supply applies to
908  * @consumer_dev_name: dev_name() string for device supply applies to
909  * @supply:       symbolic name for supply
910  *
911  * Allows platform initialisation code to map physical regulator
912  * sources to symbolic names for supplies for use by devices.  Devices
913  * should use these symbolic names to request regulators, avoiding the
914  * need to provide board-specific regulator names as platform data.
915  *
916  * Only one of consumer_dev and consumer_dev_name may be specified.
917  */
918 static int set_consumer_device_supply(struct regulator_dev *rdev,
919         struct device *consumer_dev, const char *consumer_dev_name,
920         const char *supply)
921 {
922         struct regulator_map *node;
923         int has_dev;
924
925         if (consumer_dev && consumer_dev_name)
926                 return -EINVAL;
927
928         if (!consumer_dev_name && consumer_dev)
929                 consumer_dev_name = dev_name(consumer_dev);
930
931         if (supply == NULL)
932                 return -EINVAL;
933
934         if (consumer_dev_name != NULL)
935                 has_dev = 1;
936         else
937                 has_dev = 0;
938
939         list_for_each_entry(node, &regulator_map_list, list) {
940                 if (node->dev_name && consumer_dev_name) {
941                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
942                                 continue;
943                 } else if (node->dev_name || consumer_dev_name) {
944                         continue;
945                 }
946
947                 if (strcmp(node->supply, supply) != 0)
948                         continue;
949
950                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
951                         dev_name(&node->regulator->dev),
952                         node->regulator->desc->name,
953                         supply,
954                         dev_name(&rdev->dev), rdev_get_name(rdev));
955                 return -EBUSY;
956         }
957
958         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
959         if (node == NULL)
960                 return -ENOMEM;
961
962         node->regulator = rdev;
963         node->supply = supply;
964
965         if (has_dev) {
966                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
967                 if (node->dev_name == NULL) {
968                         kfree(node);
969                         return -ENOMEM;
970                 }
971         }
972
973         list_add(&node->list, &regulator_map_list);
974         return 0;
975 }
976
977 static void unset_regulator_supplies(struct regulator_dev *rdev)
978 {
979         struct regulator_map *node, *n;
980
981         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
982                 if (rdev == node->regulator) {
983                         list_del(&node->list);
984                         kfree(node->dev_name);
985                         kfree(node);
986                 }
987         }
988 }
989
990 #define REG_STR_SIZE    32
991
992 static struct regulator *create_regulator(struct regulator_dev *rdev,
993                                           struct device *dev,
994                                           const char *supply_name)
995 {
996         struct regulator *regulator;
997         char buf[REG_STR_SIZE];
998         int err, size;
999
1000         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1001         if (regulator == NULL)
1002                 return NULL;
1003
1004         mutex_lock(&rdev->mutex);
1005         regulator->rdev = rdev;
1006         list_add(&regulator->list, &rdev->consumer_list);
1007
1008         if (dev) {
1009                 /* create a 'requested_microamps_name' sysfs entry */
1010                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1011                         supply_name);
1012                 if (size >= REG_STR_SIZE)
1013                         goto overflow_err;
1014
1015                 regulator->dev = dev;
1016                 sysfs_attr_init(&regulator->dev_attr.attr);
1017                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1018                 if (regulator->dev_attr.attr.name == NULL)
1019                         goto attr_name_err;
1020
1021                 regulator->dev_attr.attr.mode = 0444;
1022                 regulator->dev_attr.show = device_requested_uA_show;
1023                 err = device_create_file(dev, &regulator->dev_attr);
1024                 if (err < 0) {
1025                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1026                         goto attr_name_err;
1027                 }
1028
1029                 /* also add a link to the device sysfs entry */
1030                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1031                                  dev->kobj.name, supply_name);
1032                 if (size >= REG_STR_SIZE)
1033                         goto attr_err;
1034
1035                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1036                 if (regulator->supply_name == NULL)
1037                         goto attr_err;
1038
1039                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1040                                         buf);
1041                 if (err) {
1042                         rdev_warn(rdev, "could not add device link %s err %d\n",
1043                                   dev->kobj.name, err);
1044                         goto link_name_err;
1045                 }
1046         }
1047         mutex_unlock(&rdev->mutex);
1048         return regulator;
1049 link_name_err:
1050         kfree(regulator->supply_name);
1051 attr_err:
1052         device_remove_file(regulator->dev, &regulator->dev_attr);
1053 attr_name_err:
1054         kfree(regulator->dev_attr.attr.name);
1055 overflow_err:
1056         list_del(&regulator->list);
1057         kfree(regulator);
1058         mutex_unlock(&rdev->mutex);
1059         return NULL;
1060 }
1061
1062 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1063 {
1064         if (!rdev->desc->ops->enable_time)
1065                 return 0;
1066         return rdev->desc->ops->enable_time(rdev);
1067 }
1068
1069 /* Internal regulator request function */
1070 static struct regulator *_regulator_get(struct device *dev, const char *id,
1071                                         int exclusive)
1072 {
1073         struct regulator_dev *rdev;
1074         struct regulator_map *map;
1075         struct regulator *regulator = ERR_PTR(-ENODEV);
1076         const char *devname = NULL;
1077         int ret;
1078
1079         if (id == NULL) {
1080                 pr_err("get() with no identifier\n");
1081                 return regulator;
1082         }
1083
1084         if (dev)
1085                 devname = dev_name(dev);
1086
1087         mutex_lock(&regulator_list_mutex);
1088
1089         list_for_each_entry(map, &regulator_map_list, list) {
1090                 /* If the mapping has a device set up it must match */
1091                 if (map->dev_name &&
1092                     (!devname || strcmp(map->dev_name, devname)))
1093                         continue;
1094
1095                 if (strcmp(map->supply, id) == 0) {
1096                         rdev = map->regulator;
1097                         goto found;
1098                 }
1099         }
1100
1101         if (board_wants_dummy_regulator) {
1102                 rdev = dummy_regulator_rdev;
1103                 goto found;
1104         }
1105
1106 #ifdef CONFIG_REGULATOR_DUMMY
1107         if (!devname)
1108                 devname = "deviceless";
1109
1110         /* If the board didn't flag that it was fully constrained then
1111          * substitute in a dummy regulator so consumers can continue.
1112          */
1113         if (!has_full_constraints) {
1114                 pr_warn("%s supply %s not found, using dummy regulator\n",
1115                         devname, id);
1116                 rdev = dummy_regulator_rdev;
1117                 goto found;
1118         }
1119 #endif
1120
1121         mutex_unlock(&regulator_list_mutex);
1122         return regulator;
1123
1124 found:
1125         if (rdev->exclusive) {
1126                 regulator = ERR_PTR(-EPERM);
1127                 goto out;
1128         }
1129
1130         if (exclusive && rdev->open_count) {
1131                 regulator = ERR_PTR(-EBUSY);
1132                 goto out;
1133         }
1134
1135         if (!try_module_get(rdev->owner))
1136                 goto out;
1137
1138         regulator = create_regulator(rdev, dev, id);
1139         if (regulator == NULL) {
1140                 regulator = ERR_PTR(-ENOMEM);
1141                 module_put(rdev->owner);
1142         }
1143
1144         rdev->open_count++;
1145         if (exclusive) {
1146                 rdev->exclusive = 1;
1147
1148                 ret = _regulator_is_enabled(rdev);
1149                 if (ret > 0)
1150                         rdev->use_count = 1;
1151                 else
1152                         rdev->use_count = 0;
1153         }
1154
1155 out:
1156         mutex_unlock(&regulator_list_mutex);
1157
1158         return regulator;
1159 }
1160
1161 /**
1162  * regulator_get - lookup and obtain a reference to a regulator.
1163  * @dev: device for regulator "consumer"
1164  * @id: Supply name or regulator ID.
1165  *
1166  * Returns a struct regulator corresponding to the regulator producer,
1167  * or IS_ERR() condition containing errno.
1168  *
1169  * Use of supply names configured via regulator_set_device_supply() is
1170  * strongly encouraged.  It is recommended that the supply name used
1171  * should match the name used for the supply and/or the relevant
1172  * device pins in the datasheet.
1173  */
1174 struct regulator *regulator_get(struct device *dev, const char *id)
1175 {
1176         return _regulator_get(dev, id, 0);
1177 }
1178 EXPORT_SYMBOL_GPL(regulator_get);
1179
1180 /**
1181  * regulator_get_exclusive - obtain exclusive access to a regulator.
1182  * @dev: device for regulator "consumer"
1183  * @id: Supply name or regulator ID.
1184  *
1185  * Returns a struct regulator corresponding to the regulator producer,
1186  * or IS_ERR() condition containing errno.  Other consumers will be
1187  * unable to obtain this reference is held and the use count for the
1188  * regulator will be initialised to reflect the current state of the
1189  * regulator.
1190  *
1191  * This is intended for use by consumers which cannot tolerate shared
1192  * use of the regulator such as those which need to force the
1193  * regulator off for correct operation of the hardware they are
1194  * controlling.
1195  *
1196  * Use of supply names configured via regulator_set_device_supply() is
1197  * strongly encouraged.  It is recommended that the supply name used
1198  * should match the name used for the supply and/or the relevant
1199  * device pins in the datasheet.
1200  */
1201 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1202 {
1203         return _regulator_get(dev, id, 1);
1204 }
1205 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1206
1207 /**
1208  * regulator_put - "free" the regulator source
1209  * @regulator: regulator source
1210  *
1211  * Note: drivers must ensure that all regulator_enable calls made on this
1212  * regulator source are balanced by regulator_disable calls prior to calling
1213  * this function.
1214  */
1215 void regulator_put(struct regulator *regulator)
1216 {
1217         struct regulator_dev *rdev;
1218
1219         if (regulator == NULL || IS_ERR(regulator))
1220                 return;
1221
1222         mutex_lock(&regulator_list_mutex);
1223         rdev = regulator->rdev;
1224
1225         /* remove any sysfs entries */
1226         if (regulator->dev) {
1227                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1228                 kfree(regulator->supply_name);
1229                 device_remove_file(regulator->dev, &regulator->dev_attr);
1230                 kfree(regulator->dev_attr.attr.name);
1231         }
1232         list_del(&regulator->list);
1233         kfree(regulator);
1234
1235         rdev->open_count--;
1236         rdev->exclusive = 0;
1237
1238         module_put(rdev->owner);
1239         mutex_unlock(&regulator_list_mutex);
1240 }
1241 EXPORT_SYMBOL_GPL(regulator_put);
1242
1243 static int _regulator_can_change_status(struct regulator_dev *rdev)
1244 {
1245         if (!rdev->constraints)
1246                 return 0;
1247
1248         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1249                 return 1;
1250         else
1251                 return 0;
1252 }
1253
1254 /* locks held by regulator_enable() */
1255 static int _regulator_enable(struct regulator_dev *rdev)
1256 {
1257         int ret, delay;
1258
1259         if (rdev->use_count == 0) {
1260                 /* do we need to enable the supply regulator first */
1261                 if (rdev->supply) {
1262                         mutex_lock(&rdev->supply->mutex);
1263                         ret = _regulator_enable(rdev->supply);
1264                         mutex_unlock(&rdev->supply->mutex);
1265                         if (ret < 0) {
1266                                 rdev_err(rdev, "failed to enable: %d\n", ret);
1267                                 return ret;
1268                         }
1269                 }
1270         }
1271
1272         /* check voltage and requested load before enabling */
1273         if (rdev->constraints &&
1274             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1275                 drms_uA_update(rdev);
1276
1277         if (rdev->use_count == 0) {
1278                 /* The regulator may on if it's not switchable or left on */
1279                 ret = _regulator_is_enabled(rdev);
1280                 if (ret == -EINVAL || ret == 0) {
1281                         if (!_regulator_can_change_status(rdev))
1282                                 return -EPERM;
1283
1284                         if (!rdev->desc->ops->enable)
1285                                 return -EINVAL;
1286
1287                         /* Query before enabling in case configuration
1288                          * dependant.  */
1289                         ret = _regulator_get_enable_time(rdev);
1290                         if (ret >= 0) {
1291                                 delay = ret;
1292                         } else {
1293                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1294                                            ret);
1295                                 delay = 0;
1296                         }
1297
1298                         trace_regulator_enable(rdev_get_name(rdev));
1299
1300                         /* Allow the regulator to ramp; it would be useful
1301                          * to extend this for bulk operations so that the
1302                          * regulators can ramp together.  */
1303                         ret = rdev->desc->ops->enable(rdev);
1304                         if (ret < 0)
1305                                 return ret;
1306
1307                         trace_regulator_enable_delay(rdev_get_name(rdev));
1308
1309                         if (delay >= 1000) {
1310                                 mdelay(delay / 1000);
1311                                 udelay(delay % 1000);
1312                         } else if (delay) {
1313                                 udelay(delay);
1314                         }
1315
1316                         trace_regulator_enable_complete(rdev_get_name(rdev));
1317
1318                 } else if (ret < 0) {
1319                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1320                         return ret;
1321                 }
1322                 /* Fallthrough on positive return values - already enabled */
1323         }
1324
1325         rdev->use_count++;
1326
1327         return 0;
1328 }
1329
1330 /**
1331  * regulator_enable - enable regulator output
1332  * @regulator: regulator source
1333  *
1334  * Request that the regulator be enabled with the regulator output at
1335  * the predefined voltage or current value.  Calls to regulator_enable()
1336  * must be balanced with calls to regulator_disable().
1337  *
1338  * NOTE: the output value can be set by other drivers, boot loader or may be
1339  * hardwired in the regulator.
1340  */
1341 int regulator_enable(struct regulator *regulator)
1342 {
1343         struct regulator_dev *rdev = regulator->rdev;
1344         int ret = 0;
1345
1346         mutex_lock(&rdev->mutex);
1347         ret = _regulator_enable(rdev);
1348         mutex_unlock(&rdev->mutex);
1349         return ret;
1350 }
1351 EXPORT_SYMBOL_GPL(regulator_enable);
1352
1353 /* locks held by regulator_disable() */
1354 static int _regulator_disable(struct regulator_dev *rdev,
1355                 struct regulator_dev **supply_rdev_ptr)
1356 {
1357         int ret = 0;
1358         *supply_rdev_ptr = NULL;
1359
1360         if (WARN(rdev->use_count <= 0,
1361                         "unbalanced disables for %s\n",
1362                         rdev_get_name(rdev)))
1363                 return -EIO;
1364
1365         /* are we the last user and permitted to disable ? */
1366         if (rdev->use_count == 1 &&
1367             (rdev->constraints && !rdev->constraints->always_on)) {
1368
1369                 /* we are last user */
1370                 if (_regulator_can_change_status(rdev) &&
1371                     rdev->desc->ops->disable) {
1372                         trace_regulator_disable(rdev_get_name(rdev));
1373
1374                         ret = rdev->desc->ops->disable(rdev);
1375                         if (ret < 0) {
1376                                 rdev_err(rdev, "failed to disable\n");
1377                                 return ret;
1378                         }
1379
1380                         trace_regulator_disable_complete(rdev_get_name(rdev));
1381
1382                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1383                                              NULL);
1384                 }
1385
1386                 /* decrease our supplies ref count and disable if required */
1387                 *supply_rdev_ptr = rdev->supply;
1388
1389                 rdev->use_count = 0;
1390         } else if (rdev->use_count > 1) {
1391
1392                 if (rdev->constraints &&
1393                         (rdev->constraints->valid_ops_mask &
1394                         REGULATOR_CHANGE_DRMS))
1395                         drms_uA_update(rdev);
1396
1397                 rdev->use_count--;
1398         }
1399         return ret;
1400 }
1401
1402 /**
1403  * regulator_disable - disable regulator output
1404  * @regulator: regulator source
1405  *
1406  * Disable the regulator output voltage or current.  Calls to
1407  * regulator_enable() must be balanced with calls to
1408  * regulator_disable().
1409  *
1410  * NOTE: this will only disable the regulator output if no other consumer
1411  * devices have it enabled, the regulator device supports disabling and
1412  * machine constraints permit this operation.
1413  */
1414 int regulator_disable(struct regulator *regulator)
1415 {
1416         struct regulator_dev *rdev = regulator->rdev;
1417         struct regulator_dev *supply_rdev = NULL;
1418         int ret = 0;
1419
1420         mutex_lock(&rdev->mutex);
1421         ret = _regulator_disable(rdev, &supply_rdev);
1422         mutex_unlock(&rdev->mutex);
1423
1424         /* decrease our supplies ref count and disable if required */
1425         while (supply_rdev != NULL) {
1426                 rdev = supply_rdev;
1427
1428                 mutex_lock(&rdev->mutex);
1429                 _regulator_disable(rdev, &supply_rdev);
1430                 mutex_unlock(&rdev->mutex);
1431         }
1432
1433         return ret;
1434 }
1435 EXPORT_SYMBOL_GPL(regulator_disable);
1436
1437 /* locks held by regulator_force_disable() */
1438 static int _regulator_force_disable(struct regulator_dev *rdev,
1439                 struct regulator_dev **supply_rdev_ptr)
1440 {
1441         int ret = 0;
1442
1443         /* force disable */
1444         if (rdev->desc->ops->disable) {
1445                 /* ah well, who wants to live forever... */
1446                 ret = rdev->desc->ops->disable(rdev);
1447                 if (ret < 0) {
1448                         rdev_err(rdev, "failed to force disable\n");
1449                         return ret;
1450                 }
1451                 /* notify other consumers that power has been forced off */
1452                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1453                         REGULATOR_EVENT_DISABLE, NULL);
1454         }
1455
1456         /* decrease our supplies ref count and disable if required */
1457         *supply_rdev_ptr = rdev->supply;
1458
1459         rdev->use_count = 0;
1460         return ret;
1461 }
1462
1463 /**
1464  * regulator_force_disable - force disable regulator output
1465  * @regulator: regulator source
1466  *
1467  * Forcibly disable the regulator output voltage or current.
1468  * NOTE: this *will* disable the regulator output even if other consumer
1469  * devices have it enabled. This should be used for situations when device
1470  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1471  */
1472 int regulator_force_disable(struct regulator *regulator)
1473 {
1474         struct regulator_dev *supply_rdev = NULL;
1475         int ret;
1476
1477         mutex_lock(&regulator->rdev->mutex);
1478         regulator->uA_load = 0;
1479         ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1480         mutex_unlock(&regulator->rdev->mutex);
1481
1482         if (supply_rdev)
1483                 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1484
1485         return ret;
1486 }
1487 EXPORT_SYMBOL_GPL(regulator_force_disable);
1488
1489 static int _regulator_is_enabled(struct regulator_dev *rdev)
1490 {
1491         /* If we don't know then assume that the regulator is always on */
1492         if (!rdev->desc->ops->is_enabled)
1493                 return 1;
1494
1495         return rdev->desc->ops->is_enabled(rdev);
1496 }
1497
1498 /**
1499  * regulator_is_enabled - is the regulator output enabled
1500  * @regulator: regulator source
1501  *
1502  * Returns positive if the regulator driver backing the source/client
1503  * has requested that the device be enabled, zero if it hasn't, else a
1504  * negative errno code.
1505  *
1506  * Note that the device backing this regulator handle can have multiple
1507  * users, so it might be enabled even if regulator_enable() was never
1508  * called for this particular source.
1509  */
1510 int regulator_is_enabled(struct regulator *regulator)
1511 {
1512         int ret;
1513
1514         mutex_lock(&regulator->rdev->mutex);
1515         ret = _regulator_is_enabled(regulator->rdev);
1516         mutex_unlock(&regulator->rdev->mutex);
1517
1518         return ret;
1519 }
1520 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1521
1522 /**
1523  * regulator_count_voltages - count regulator_list_voltage() selectors
1524  * @regulator: regulator source
1525  *
1526  * Returns number of selectors, or negative errno.  Selectors are
1527  * numbered starting at zero, and typically correspond to bitfields
1528  * in hardware registers.
1529  */
1530 int regulator_count_voltages(struct regulator *regulator)
1531 {
1532         struct regulator_dev    *rdev = regulator->rdev;
1533
1534         return rdev->desc->n_voltages ? : -EINVAL;
1535 }
1536 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1537
1538 /**
1539  * regulator_list_voltage - enumerate supported voltages
1540  * @regulator: regulator source
1541  * @selector: identify voltage to list
1542  * Context: can sleep
1543  *
1544  * Returns a voltage that can be passed to @regulator_set_voltage(),
1545  * zero if this selector code can't be used on this system, or a
1546  * negative errno.
1547  */
1548 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1549 {
1550         struct regulator_dev    *rdev = regulator->rdev;
1551         struct regulator_ops    *ops = rdev->desc->ops;
1552         int                     ret;
1553
1554         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1555                 return -EINVAL;
1556
1557         mutex_lock(&rdev->mutex);
1558         ret = ops->list_voltage(rdev, selector);
1559         mutex_unlock(&rdev->mutex);
1560
1561         if (ret > 0) {
1562                 if (ret < rdev->constraints->min_uV)
1563                         ret = 0;
1564                 else if (ret > rdev->constraints->max_uV)
1565                         ret = 0;
1566         }
1567
1568         return ret;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1571
1572 /**
1573  * regulator_is_supported_voltage - check if a voltage range can be supported
1574  *
1575  * @regulator: Regulator to check.
1576  * @min_uV: Minimum required voltage in uV.
1577  * @max_uV: Maximum required voltage in uV.
1578  *
1579  * Returns a boolean or a negative error code.
1580  */
1581 int regulator_is_supported_voltage(struct regulator *regulator,
1582                                    int min_uV, int max_uV)
1583 {
1584         int i, voltages, ret;
1585
1586         ret = regulator_count_voltages(regulator);
1587         if (ret < 0)
1588                 return ret;
1589         voltages = ret;
1590
1591         for (i = 0; i < voltages; i++) {
1592                 ret = regulator_list_voltage(regulator, i);
1593
1594                 if (ret >= min_uV && ret <= max_uV)
1595                         return 1;
1596         }
1597
1598         return 0;
1599 }
1600
1601 /**
1602  * regulator_set_voltage - set regulator output voltage
1603  * @regulator: regulator source
1604  * @min_uV: Minimum required voltage in uV
1605  * @max_uV: Maximum acceptable voltage in uV
1606  *
1607  * Sets a voltage regulator to the desired output voltage. This can be set
1608  * during any regulator state. IOW, regulator can be disabled or enabled.
1609  *
1610  * If the regulator is enabled then the voltage will change to the new value
1611  * immediately otherwise if the regulator is disabled the regulator will
1612  * output at the new voltage when enabled.
1613  *
1614  * NOTE: If the regulator is shared between several devices then the lowest
1615  * request voltage that meets the system constraints will be used.
1616  * Regulator system constraints must be set for this regulator before
1617  * calling this function otherwise this call will fail.
1618  */
1619 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1620 {
1621         struct regulator_dev *rdev = regulator->rdev;
1622         int ret;
1623         unsigned selector;
1624
1625         mutex_lock(&rdev->mutex);
1626
1627         /* sanity check */
1628         if (!rdev->desc->ops->set_voltage) {
1629                 ret = -EINVAL;
1630                 goto out;
1631         }
1632
1633         /* constraints check */
1634         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1635         if (ret < 0)
1636                 goto out;
1637         regulator->min_uV = min_uV;
1638         regulator->max_uV = max_uV;
1639
1640         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1641
1642         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, &selector);
1643
1644         if (rdev->desc->ops->list_voltage)
1645                 selector = rdev->desc->ops->list_voltage(rdev, selector);
1646         else
1647                 selector = -1;
1648
1649         trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1650
1651 out:
1652         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1653         mutex_unlock(&rdev->mutex);
1654         return ret;
1655 }
1656 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1657
1658 static int _regulator_get_voltage(struct regulator_dev *rdev)
1659 {
1660         /* sanity check */
1661         if (rdev->desc->ops->get_voltage)
1662                 return rdev->desc->ops->get_voltage(rdev);
1663         else
1664                 return -EINVAL;
1665 }
1666
1667 /**
1668  * regulator_get_voltage - get regulator output voltage
1669  * @regulator: regulator source
1670  *
1671  * This returns the current regulator voltage in uV.
1672  *
1673  * NOTE: If the regulator is disabled it will return the voltage value. This
1674  * function should not be used to determine regulator state.
1675  */
1676 int regulator_get_voltage(struct regulator *regulator)
1677 {
1678         int ret;
1679
1680         mutex_lock(&regulator->rdev->mutex);
1681
1682         ret = _regulator_get_voltage(regulator->rdev);
1683
1684         mutex_unlock(&regulator->rdev->mutex);
1685
1686         return ret;
1687 }
1688 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1689
1690 /**
1691  * regulator_set_current_limit - set regulator output current limit
1692  * @regulator: regulator source
1693  * @min_uA: Minimuum supported current in uA
1694  * @max_uA: Maximum supported current in uA
1695  *
1696  * Sets current sink to the desired output current. This can be set during
1697  * any regulator state. IOW, regulator can be disabled or enabled.
1698  *
1699  * If the regulator is enabled then the current will change to the new value
1700  * immediately otherwise if the regulator is disabled the regulator will
1701  * output at the new current when enabled.
1702  *
1703  * NOTE: Regulator system constraints must be set for this regulator before
1704  * calling this function otherwise this call will fail.
1705  */
1706 int regulator_set_current_limit(struct regulator *regulator,
1707                                int min_uA, int max_uA)
1708 {
1709         struct regulator_dev *rdev = regulator->rdev;
1710         int ret;
1711
1712         mutex_lock(&rdev->mutex);
1713
1714         /* sanity check */
1715         if (!rdev->desc->ops->set_current_limit) {
1716                 ret = -EINVAL;
1717                 goto out;
1718         }
1719
1720         /* constraints check */
1721         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1722         if (ret < 0)
1723                 goto out;
1724
1725         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1726 out:
1727         mutex_unlock(&rdev->mutex);
1728         return ret;
1729 }
1730 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1731
1732 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1733 {
1734         int ret;
1735
1736         mutex_lock(&rdev->mutex);
1737
1738         /* sanity check */
1739         if (!rdev->desc->ops->get_current_limit) {
1740                 ret = -EINVAL;
1741                 goto out;
1742         }
1743
1744         ret = rdev->desc->ops->get_current_limit(rdev);
1745 out:
1746         mutex_unlock(&rdev->mutex);
1747         return ret;
1748 }
1749
1750 /**
1751  * regulator_get_current_limit - get regulator output current
1752  * @regulator: regulator source
1753  *
1754  * This returns the current supplied by the specified current sink in uA.
1755  *
1756  * NOTE: If the regulator is disabled it will return the current value. This
1757  * function should not be used to determine regulator state.
1758  */
1759 int regulator_get_current_limit(struct regulator *regulator)
1760 {
1761         return _regulator_get_current_limit(regulator->rdev);
1762 }
1763 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1764
1765 /**
1766  * regulator_set_mode - set regulator operating mode
1767  * @regulator: regulator source
1768  * @mode: operating mode - one of the REGULATOR_MODE constants
1769  *
1770  * Set regulator operating mode to increase regulator efficiency or improve
1771  * regulation performance.
1772  *
1773  * NOTE: Regulator system constraints must be set for this regulator before
1774  * calling this function otherwise this call will fail.
1775  */
1776 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1777 {
1778         struct regulator_dev *rdev = regulator->rdev;
1779         int ret;
1780         int regulator_curr_mode;
1781
1782         mutex_lock(&rdev->mutex);
1783
1784         /* sanity check */
1785         if (!rdev->desc->ops->set_mode) {
1786                 ret = -EINVAL;
1787                 goto out;
1788         }
1789
1790         /* return if the same mode is requested */
1791         if (rdev->desc->ops->get_mode) {
1792                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1793                 if (regulator_curr_mode == mode) {
1794                         ret = 0;
1795                         goto out;
1796                 }
1797         }
1798
1799         /* constraints check */
1800         ret = regulator_check_mode(rdev, mode);
1801         if (ret < 0)
1802                 goto out;
1803
1804         ret = rdev->desc->ops->set_mode(rdev, mode);
1805 out:
1806         mutex_unlock(&rdev->mutex);
1807         return ret;
1808 }
1809 EXPORT_SYMBOL_GPL(regulator_set_mode);
1810
1811 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1812 {
1813         int ret;
1814
1815         mutex_lock(&rdev->mutex);
1816
1817         /* sanity check */
1818         if (!rdev->desc->ops->get_mode) {
1819                 ret = -EINVAL;
1820                 goto out;
1821         }
1822
1823         ret = rdev->desc->ops->get_mode(rdev);
1824 out:
1825         mutex_unlock(&rdev->mutex);
1826         return ret;
1827 }
1828
1829 /**
1830  * regulator_get_mode - get regulator operating mode
1831  * @regulator: regulator source
1832  *
1833  * Get the current regulator operating mode.
1834  */
1835 unsigned int regulator_get_mode(struct regulator *regulator)
1836 {
1837         return _regulator_get_mode(regulator->rdev);
1838 }
1839 EXPORT_SYMBOL_GPL(regulator_get_mode);
1840
1841 /**
1842  * regulator_set_optimum_mode - set regulator optimum operating mode
1843  * @regulator: regulator source
1844  * @uA_load: load current
1845  *
1846  * Notifies the regulator core of a new device load. This is then used by
1847  * DRMS (if enabled by constraints) to set the most efficient regulator
1848  * operating mode for the new regulator loading.
1849  *
1850  * Consumer devices notify their supply regulator of the maximum power
1851  * they will require (can be taken from device datasheet in the power
1852  * consumption tables) when they change operational status and hence power
1853  * state. Examples of operational state changes that can affect power
1854  * consumption are :-
1855  *
1856  *    o Device is opened / closed.
1857  *    o Device I/O is about to begin or has just finished.
1858  *    o Device is idling in between work.
1859  *
1860  * This information is also exported via sysfs to userspace.
1861  *
1862  * DRMS will sum the total requested load on the regulator and change
1863  * to the most efficient operating mode if platform constraints allow.
1864  *
1865  * Returns the new regulator mode or error.
1866  */
1867 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1868 {
1869         struct regulator_dev *rdev = regulator->rdev;
1870         struct regulator *consumer;
1871         int ret, output_uV, input_uV, total_uA_load = 0;
1872         unsigned int mode;
1873
1874         mutex_lock(&rdev->mutex);
1875
1876         regulator->uA_load = uA_load;
1877         ret = regulator_check_drms(rdev);
1878         if (ret < 0)
1879                 goto out;
1880         ret = -EINVAL;
1881
1882         /* sanity check */
1883         if (!rdev->desc->ops->get_optimum_mode)
1884                 goto out;
1885
1886         /* get output voltage */
1887         output_uV = rdev->desc->ops->get_voltage(rdev);
1888         if (output_uV <= 0) {
1889                 rdev_err(rdev, "invalid output voltage found\n");
1890                 goto out;
1891         }
1892
1893         /* get input voltage */
1894         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1895                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1896         else
1897                 input_uV = rdev->constraints->input_uV;
1898         if (input_uV <= 0) {
1899                 rdev_err(rdev, "invalid input voltage found\n");
1900                 goto out;
1901         }
1902
1903         /* calc total requested load for this regulator */
1904         list_for_each_entry(consumer, &rdev->consumer_list, list)
1905                 total_uA_load += consumer->uA_load;
1906
1907         mode = rdev->desc->ops->get_optimum_mode(rdev,
1908                                                  input_uV, output_uV,
1909                                                  total_uA_load);
1910         ret = regulator_check_mode(rdev, mode);
1911         if (ret < 0) {
1912                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
1913                          total_uA_load, input_uV, output_uV);
1914                 goto out;
1915         }
1916
1917         ret = rdev->desc->ops->set_mode(rdev, mode);
1918         if (ret < 0) {
1919                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
1920                 goto out;
1921         }
1922         ret = mode;
1923 out:
1924         mutex_unlock(&rdev->mutex);
1925         return ret;
1926 }
1927 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1928
1929 /**
1930  * regulator_register_notifier - register regulator event notifier
1931  * @regulator: regulator source
1932  * @nb: notifier block
1933  *
1934  * Register notifier block to receive regulator events.
1935  */
1936 int regulator_register_notifier(struct regulator *regulator,
1937                               struct notifier_block *nb)
1938 {
1939         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1940                                                 nb);
1941 }
1942 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1943
1944 /**
1945  * regulator_unregister_notifier - unregister regulator event notifier
1946  * @regulator: regulator source
1947  * @nb: notifier block
1948  *
1949  * Unregister regulator event notifier block.
1950  */
1951 int regulator_unregister_notifier(struct regulator *regulator,
1952                                 struct notifier_block *nb)
1953 {
1954         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1955                                                   nb);
1956 }
1957 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1958
1959 /* notify regulator consumers and downstream regulator consumers.
1960  * Note mutex must be held by caller.
1961  */
1962 static void _notifier_call_chain(struct regulator_dev *rdev,
1963                                   unsigned long event, void *data)
1964 {
1965         struct regulator_dev *_rdev;
1966
1967         /* call rdev chain first */
1968         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1969
1970         /* now notify regulator we supply */
1971         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1972                 mutex_lock(&_rdev->mutex);
1973                 _notifier_call_chain(_rdev, event, data);
1974                 mutex_unlock(&_rdev->mutex);
1975         }
1976 }
1977
1978 /**
1979  * regulator_bulk_get - get multiple regulator consumers
1980  *
1981  * @dev:           Device to supply
1982  * @num_consumers: Number of consumers to register
1983  * @consumers:     Configuration of consumers; clients are stored here.
1984  *
1985  * @return 0 on success, an errno on failure.
1986  *
1987  * This helper function allows drivers to get several regulator
1988  * consumers in one operation.  If any of the regulators cannot be
1989  * acquired then any regulators that were allocated will be freed
1990  * before returning to the caller.
1991  */
1992 int regulator_bulk_get(struct device *dev, int num_consumers,
1993                        struct regulator_bulk_data *consumers)
1994 {
1995         int i;
1996         int ret;
1997
1998         for (i = 0; i < num_consumers; i++)
1999                 consumers[i].consumer = NULL;
2000
2001         for (i = 0; i < num_consumers; i++) {
2002                 consumers[i].consumer = regulator_get(dev,
2003                                                       consumers[i].supply);
2004                 if (IS_ERR(consumers[i].consumer)) {
2005                         ret = PTR_ERR(consumers[i].consumer);
2006                         dev_err(dev, "Failed to get supply '%s': %d\n",
2007                                 consumers[i].supply, ret);
2008                         consumers[i].consumer = NULL;
2009                         goto err;
2010                 }
2011         }
2012
2013         return 0;
2014
2015 err:
2016         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2017                 regulator_put(consumers[i].consumer);
2018
2019         return ret;
2020 }
2021 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2022
2023 /**
2024  * regulator_bulk_enable - enable multiple regulator consumers
2025  *
2026  * @num_consumers: Number of consumers
2027  * @consumers:     Consumer data; clients are stored here.
2028  * @return         0 on success, an errno on failure
2029  *
2030  * This convenience API allows consumers to enable multiple regulator
2031  * clients in a single API call.  If any consumers cannot be enabled
2032  * then any others that were enabled will be disabled again prior to
2033  * return.
2034  */
2035 int regulator_bulk_enable(int num_consumers,
2036                           struct regulator_bulk_data *consumers)
2037 {
2038         int i;
2039         int ret;
2040
2041         for (i = 0; i < num_consumers; i++) {
2042                 ret = regulator_enable(consumers[i].consumer);
2043                 if (ret != 0)
2044                         goto err;
2045         }
2046
2047         return 0;
2048
2049 err:
2050         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2051         for (--i; i >= 0; --i)
2052                 regulator_disable(consumers[i].consumer);
2053
2054         return ret;
2055 }
2056 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2057
2058 /**
2059  * regulator_bulk_disable - disable multiple regulator consumers
2060  *
2061  * @num_consumers: Number of consumers
2062  * @consumers:     Consumer data; clients are stored here.
2063  * @return         0 on success, an errno on failure
2064  *
2065  * This convenience API allows consumers to disable multiple regulator
2066  * clients in a single API call.  If any consumers cannot be enabled
2067  * then any others that were disabled will be disabled again prior to
2068  * return.
2069  */
2070 int regulator_bulk_disable(int num_consumers,
2071                            struct regulator_bulk_data *consumers)
2072 {
2073         int i;
2074         int ret;
2075
2076         for (i = 0; i < num_consumers; i++) {
2077                 ret = regulator_disable(consumers[i].consumer);
2078                 if (ret != 0)
2079                         goto err;
2080         }
2081
2082         return 0;
2083
2084 err:
2085         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2086         for (--i; i >= 0; --i)
2087                 regulator_enable(consumers[i].consumer);
2088
2089         return ret;
2090 }
2091 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2092
2093 /**
2094  * regulator_bulk_free - free multiple regulator consumers
2095  *
2096  * @num_consumers: Number of consumers
2097  * @consumers:     Consumer data; clients are stored here.
2098  *
2099  * This convenience API allows consumers to free multiple regulator
2100  * clients in a single API call.
2101  */
2102 void regulator_bulk_free(int num_consumers,
2103                          struct regulator_bulk_data *consumers)
2104 {
2105         int i;
2106
2107         for (i = 0; i < num_consumers; i++) {
2108                 regulator_put(consumers[i].consumer);
2109                 consumers[i].consumer = NULL;
2110         }
2111 }
2112 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2113
2114 /**
2115  * regulator_notifier_call_chain - call regulator event notifier
2116  * @rdev: regulator source
2117  * @event: notifier block
2118  * @data: callback-specific data.
2119  *
2120  * Called by regulator drivers to notify clients a regulator event has
2121  * occurred. We also notify regulator clients downstream.
2122  * Note lock must be held by caller.
2123  */
2124 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2125                                   unsigned long event, void *data)
2126 {
2127         _notifier_call_chain(rdev, event, data);
2128         return NOTIFY_DONE;
2129
2130 }
2131 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2132
2133 /**
2134  * regulator_mode_to_status - convert a regulator mode into a status
2135  *
2136  * @mode: Mode to convert
2137  *
2138  * Convert a regulator mode into a status.
2139  */
2140 int regulator_mode_to_status(unsigned int mode)
2141 {
2142         switch (mode) {
2143         case REGULATOR_MODE_FAST:
2144                 return REGULATOR_STATUS_FAST;
2145         case REGULATOR_MODE_NORMAL:
2146                 return REGULATOR_STATUS_NORMAL;
2147         case REGULATOR_MODE_IDLE:
2148                 return REGULATOR_STATUS_IDLE;
2149         case REGULATOR_STATUS_STANDBY:
2150                 return REGULATOR_STATUS_STANDBY;
2151         default:
2152                 return 0;
2153         }
2154 }
2155 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2156
2157 /*
2158  * To avoid cluttering sysfs (and memory) with useless state, only
2159  * create attributes that can be meaningfully displayed.
2160  */
2161 static int add_regulator_attributes(struct regulator_dev *rdev)
2162 {
2163         struct device           *dev = &rdev->dev;
2164         struct regulator_ops    *ops = rdev->desc->ops;
2165         int                     status = 0;
2166
2167         /* some attributes need specific methods to be displayed */
2168         if (ops->get_voltage) {
2169                 status = device_create_file(dev, &dev_attr_microvolts);
2170                 if (status < 0)
2171                         return status;
2172         }
2173         if (ops->get_current_limit) {
2174                 status = device_create_file(dev, &dev_attr_microamps);
2175                 if (status < 0)
2176                         return status;
2177         }
2178         if (ops->get_mode) {
2179                 status = device_create_file(dev, &dev_attr_opmode);
2180                 if (status < 0)
2181                         return status;
2182         }
2183         if (ops->is_enabled) {
2184                 status = device_create_file(dev, &dev_attr_state);
2185                 if (status < 0)
2186                         return status;
2187         }
2188         if (ops->get_status) {
2189                 status = device_create_file(dev, &dev_attr_status);
2190                 if (status < 0)
2191                         return status;
2192         }
2193
2194         /* some attributes are type-specific */
2195         if (rdev->desc->type == REGULATOR_CURRENT) {
2196                 status = device_create_file(dev, &dev_attr_requested_microamps);
2197                 if (status < 0)
2198                         return status;
2199         }
2200
2201         /* all the other attributes exist to support constraints;
2202          * don't show them if there are no constraints, or if the
2203          * relevant supporting methods are missing.
2204          */
2205         if (!rdev->constraints)
2206                 return status;
2207
2208         /* constraints need specific supporting methods */
2209         if (ops->set_voltage) {
2210                 status = device_create_file(dev, &dev_attr_min_microvolts);
2211                 if (status < 0)
2212                         return status;
2213                 status = device_create_file(dev, &dev_attr_max_microvolts);
2214                 if (status < 0)
2215                         return status;
2216         }
2217         if (ops->set_current_limit) {
2218                 status = device_create_file(dev, &dev_attr_min_microamps);
2219                 if (status < 0)
2220                         return status;
2221                 status = device_create_file(dev, &dev_attr_max_microamps);
2222                 if (status < 0)
2223                         return status;
2224         }
2225
2226         /* suspend mode constraints need multiple supporting methods */
2227         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2228                 return status;
2229
2230         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2231         if (status < 0)
2232                 return status;
2233         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2234         if (status < 0)
2235                 return status;
2236         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2237         if (status < 0)
2238                 return status;
2239
2240         if (ops->set_suspend_voltage) {
2241                 status = device_create_file(dev,
2242                                 &dev_attr_suspend_standby_microvolts);
2243                 if (status < 0)
2244                         return status;
2245                 status = device_create_file(dev,
2246                                 &dev_attr_suspend_mem_microvolts);
2247                 if (status < 0)
2248                         return status;
2249                 status = device_create_file(dev,
2250                                 &dev_attr_suspend_disk_microvolts);
2251                 if (status < 0)
2252                         return status;
2253         }
2254
2255         if (ops->set_suspend_mode) {
2256                 status = device_create_file(dev,
2257                                 &dev_attr_suspend_standby_mode);
2258                 if (status < 0)
2259                         return status;
2260                 status = device_create_file(dev,
2261                                 &dev_attr_suspend_mem_mode);
2262                 if (status < 0)
2263                         return status;
2264                 status = device_create_file(dev,
2265                                 &dev_attr_suspend_disk_mode);
2266                 if (status < 0)
2267                         return status;
2268         }
2269
2270         return status;
2271 }
2272
2273 /**
2274  * regulator_register - register regulator
2275  * @regulator_desc: regulator to register
2276  * @dev: struct device for the regulator
2277  * @init_data: platform provided init data, passed through by driver
2278  * @driver_data: private regulator data
2279  *
2280  * Called by regulator drivers to register a regulator.
2281  * Returns 0 on success.
2282  */
2283 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2284         struct device *dev, const struct regulator_init_data *init_data,
2285         void *driver_data)
2286 {
2287         static atomic_t regulator_no = ATOMIC_INIT(0);
2288         struct regulator_dev *rdev;
2289         int ret, i;
2290
2291         if (regulator_desc == NULL)
2292                 return ERR_PTR(-EINVAL);
2293
2294         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2295                 return ERR_PTR(-EINVAL);
2296
2297         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2298             regulator_desc->type != REGULATOR_CURRENT)
2299                 return ERR_PTR(-EINVAL);
2300
2301         if (!init_data)
2302                 return ERR_PTR(-EINVAL);
2303
2304         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2305         if (rdev == NULL)
2306                 return ERR_PTR(-ENOMEM);
2307
2308         mutex_lock(&regulator_list_mutex);
2309
2310         mutex_init(&rdev->mutex);
2311         rdev->reg_data = driver_data;
2312         rdev->owner = regulator_desc->owner;
2313         rdev->desc = regulator_desc;
2314         INIT_LIST_HEAD(&rdev->consumer_list);
2315         INIT_LIST_HEAD(&rdev->supply_list);
2316         INIT_LIST_HEAD(&rdev->list);
2317         INIT_LIST_HEAD(&rdev->slist);
2318         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2319
2320         /* preform any regulator specific init */
2321         if (init_data->regulator_init) {
2322                 ret = init_data->regulator_init(rdev->reg_data);
2323                 if (ret < 0)
2324                         goto clean;
2325         }
2326
2327         /* register with sysfs */
2328         rdev->dev.class = &regulator_class;
2329         rdev->dev.parent = dev;
2330         dev_set_name(&rdev->dev, "regulator.%d",
2331                      atomic_inc_return(&regulator_no) - 1);
2332         ret = device_register(&rdev->dev);
2333         if (ret != 0) {
2334                 put_device(&rdev->dev);
2335                 goto clean;
2336         }
2337
2338         dev_set_drvdata(&rdev->dev, rdev);
2339
2340         /* set regulator constraints */
2341         ret = set_machine_constraints(rdev, &init_data->constraints);
2342         if (ret < 0)
2343                 goto scrub;
2344
2345         /* add attributes supported by this regulator */
2346         ret = add_regulator_attributes(rdev);
2347         if (ret < 0)
2348                 goto scrub;
2349
2350         /* set supply regulator if it exists */
2351         if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2352                 dev_err(dev,
2353                         "Supply regulator specified by both name and dev\n");
2354                 ret = -EINVAL;
2355                 goto scrub;
2356         }
2357
2358         if (init_data->supply_regulator) {
2359                 struct regulator_dev *r;
2360                 int found = 0;
2361
2362                 list_for_each_entry(r, &regulator_list, list) {
2363                         if (strcmp(rdev_get_name(r),
2364                                    init_data->supply_regulator) == 0) {
2365                                 found = 1;
2366                                 break;
2367                         }
2368                 }
2369
2370                 if (!found) {
2371                         dev_err(dev, "Failed to find supply %s\n",
2372                                 init_data->supply_regulator);
2373                         ret = -ENODEV;
2374                         goto scrub;
2375                 }
2376
2377                 ret = set_supply(rdev, r);
2378                 if (ret < 0)
2379                         goto scrub;
2380         }
2381
2382         if (init_data->supply_regulator_dev) {
2383                 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2384                 ret = set_supply(rdev,
2385                         dev_get_drvdata(init_data->supply_regulator_dev));
2386                 if (ret < 0)
2387                         goto scrub;
2388         }
2389
2390         /* add consumers devices */
2391         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2392                 ret = set_consumer_device_supply(rdev,
2393                         init_data->consumer_supplies[i].dev,
2394                         init_data->consumer_supplies[i].dev_name,
2395                         init_data->consumer_supplies[i].supply);
2396                 if (ret < 0)
2397                         goto unset_supplies;
2398         }
2399
2400         list_add(&rdev->list, &regulator_list);
2401 out:
2402         mutex_unlock(&regulator_list_mutex);
2403         return rdev;
2404
2405 unset_supplies:
2406         unset_regulator_supplies(rdev);
2407
2408 scrub:
2409         device_unregister(&rdev->dev);
2410         /* device core frees rdev */
2411         rdev = ERR_PTR(ret);
2412         goto out;
2413
2414 clean:
2415         kfree(rdev);
2416         rdev = ERR_PTR(ret);
2417         goto out;
2418 }
2419 EXPORT_SYMBOL_GPL(regulator_register);
2420
2421 /**
2422  * regulator_unregister - unregister regulator
2423  * @rdev: regulator to unregister
2424  *
2425  * Called by regulator drivers to unregister a regulator.
2426  */
2427 void regulator_unregister(struct regulator_dev *rdev)
2428 {
2429         if (rdev == NULL)
2430                 return;
2431
2432         mutex_lock(&regulator_list_mutex);
2433         WARN_ON(rdev->open_count);
2434         unset_regulator_supplies(rdev);
2435         list_del(&rdev->list);
2436         if (rdev->supply)
2437                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2438         device_unregister(&rdev->dev);
2439         kfree(rdev->constraints);
2440         mutex_unlock(&regulator_list_mutex);
2441 }
2442 EXPORT_SYMBOL_GPL(regulator_unregister);
2443
2444 /**
2445  * regulator_suspend_prepare - prepare regulators for system wide suspend
2446  * @state: system suspend state
2447  *
2448  * Configure each regulator with it's suspend operating parameters for state.
2449  * This will usually be called by machine suspend code prior to supending.
2450  */
2451 int regulator_suspend_prepare(suspend_state_t state)
2452 {
2453         struct regulator_dev *rdev;
2454         int ret = 0;
2455
2456         /* ON is handled by regulator active state */
2457         if (state == PM_SUSPEND_ON)
2458                 return -EINVAL;
2459
2460         mutex_lock(&regulator_list_mutex);
2461         list_for_each_entry(rdev, &regulator_list, list) {
2462
2463                 mutex_lock(&rdev->mutex);
2464                 ret = suspend_prepare(rdev, state);
2465                 mutex_unlock(&rdev->mutex);
2466
2467                 if (ret < 0) {
2468                         rdev_err(rdev, "failed to prepare\n");
2469                         goto out;
2470                 }
2471         }
2472 out:
2473         mutex_unlock(&regulator_list_mutex);
2474         return ret;
2475 }
2476 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2477
2478 /**
2479  * regulator_has_full_constraints - the system has fully specified constraints
2480  *
2481  * Calling this function will cause the regulator API to disable all
2482  * regulators which have a zero use count and don't have an always_on
2483  * constraint in a late_initcall.
2484  *
2485  * The intention is that this will become the default behaviour in a
2486  * future kernel release so users are encouraged to use this facility
2487  * now.
2488  */
2489 void regulator_has_full_constraints(void)
2490 {
2491         has_full_constraints = 1;
2492 }
2493 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2494
2495 /**
2496  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2497  *
2498  * Calling this function will cause the regulator API to provide a
2499  * dummy regulator to consumers if no physical regulator is found,
2500  * allowing most consumers to proceed as though a regulator were
2501  * configured.  This allows systems such as those with software
2502  * controllable regulators for the CPU core only to be brought up more
2503  * readily.
2504  */
2505 void regulator_use_dummy_regulator(void)
2506 {
2507         board_wants_dummy_regulator = true;
2508 }
2509 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2510
2511 /**
2512  * rdev_get_drvdata - get rdev regulator driver data
2513  * @rdev: regulator
2514  *
2515  * Get rdev regulator driver private data. This call can be used in the
2516  * regulator driver context.
2517  */
2518 void *rdev_get_drvdata(struct regulator_dev *rdev)
2519 {
2520         return rdev->reg_data;
2521 }
2522 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2523
2524 /**
2525  * regulator_get_drvdata - get regulator driver data
2526  * @regulator: regulator
2527  *
2528  * Get regulator driver private data. This call can be used in the consumer
2529  * driver context when non API regulator specific functions need to be called.
2530  */
2531 void *regulator_get_drvdata(struct regulator *regulator)
2532 {
2533         return regulator->rdev->reg_data;
2534 }
2535 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2536
2537 /**
2538  * regulator_set_drvdata - set regulator driver data
2539  * @regulator: regulator
2540  * @data: data
2541  */
2542 void regulator_set_drvdata(struct regulator *regulator, void *data)
2543 {
2544         regulator->rdev->reg_data = data;
2545 }
2546 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2547
2548 /**
2549  * regulator_get_id - get regulator ID
2550  * @rdev: regulator
2551  */
2552 int rdev_get_id(struct regulator_dev *rdev)
2553 {
2554         return rdev->desc->id;
2555 }
2556 EXPORT_SYMBOL_GPL(rdev_get_id);
2557
2558 struct device *rdev_get_dev(struct regulator_dev *rdev)
2559 {
2560         return &rdev->dev;
2561 }
2562 EXPORT_SYMBOL_GPL(rdev_get_dev);
2563
2564 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2565 {
2566         return reg_init_data->driver_data;
2567 }
2568 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2569
2570 static int __init regulator_init(void)
2571 {
2572         int ret;
2573
2574         ret = class_register(&regulator_class);
2575
2576         regulator_dummy_init();
2577
2578         return ret;
2579 }
2580
2581 /* init early to allow our consumers to complete system booting */
2582 core_initcall(regulator_init);
2583
2584 static int __init regulator_init_complete(void)
2585 {
2586         struct regulator_dev *rdev;
2587         struct regulator_ops *ops;
2588         struct regulation_constraints *c;
2589         int enabled, ret;
2590
2591         mutex_lock(&regulator_list_mutex);
2592
2593         /* If we have a full configuration then disable any regulators
2594          * which are not in use or always_on.  This will become the
2595          * default behaviour in the future.
2596          */
2597         list_for_each_entry(rdev, &regulator_list, list) {
2598                 ops = rdev->desc->ops;
2599                 c = rdev->constraints;
2600
2601                 if (!ops->disable || (c && c->always_on))
2602                         continue;
2603
2604                 mutex_lock(&rdev->mutex);
2605
2606                 if (rdev->use_count)
2607                         goto unlock;
2608
2609                 /* If we can't read the status assume it's on. */
2610                 if (ops->is_enabled)
2611                         enabled = ops->is_enabled(rdev);
2612                 else
2613                         enabled = 1;
2614
2615                 if (!enabled)
2616                         goto unlock;
2617
2618                 if (has_full_constraints) {
2619                         /* We log since this may kill the system if it
2620                          * goes wrong. */
2621                         rdev_info(rdev, "disabling\n");
2622                         ret = ops->disable(rdev);
2623                         if (ret != 0) {
2624                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
2625                         }
2626                 } else {
2627                         /* The intention is that in future we will
2628                          * assume that full constraints are provided
2629                          * so warn even if we aren't going to do
2630                          * anything here.
2631                          */
2632                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
2633                 }
2634
2635 unlock:
2636                 mutex_unlock(&rdev->mutex);
2637         }
2638
2639         mutex_unlock(&regulator_list_mutex);
2640
2641         return 0;
2642 }
2643 late_initcall(regulator_init_complete);