drm/i915: SDVO hotplug have different interrupt status bits for i915/i965/g4x
[linux-2.6.git] / drivers / power / ab8500_fg.c
1 /*
2  * Copyright (C) ST-Ericsson AB 2012
3  *
4  * Main and Back-up battery management driver.
5  *
6  * Note: Backup battery management is required in case of Li-Ion battery and not
7  * for capacitive battery. HREF boards have capacitive battery and hence backup
8  * battery management is not used and the supported code is available in this
9  * driver.
10  *
11  * License Terms: GNU General Public License v2
12  * Author:
13  *      Johan Palsson <johan.palsson@stericsson.com>
14  *      Karl Komierowski <karl.komierowski@stericsson.com>
15  *      Arun R Murthy <arun.murthy@stericsson.com>
16  */
17
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/mfd/abx500/ab8500.h>
26 #include <linux/mfd/abx500.h>
27 #include <linux/slab.h>
28 #include <linux/mfd/abx500/ab8500-bm.h>
29 #include <linux/delay.h>
30 #include <linux/mfd/abx500/ab8500-gpadc.h>
31 #include <linux/mfd/abx500.h>
32 #include <linux/time.h>
33 #include <linux/completion.h>
34
35 #define MILLI_TO_MICRO                  1000
36 #define FG_LSB_IN_MA                    1627
37 #define QLSB_NANO_AMP_HOURS_X10         1129
38 #define INS_CURR_TIMEOUT                (3 * HZ)
39
40 #define SEC_TO_SAMPLE(S)                (S * 4)
41
42 #define NBR_AVG_SAMPLES                 20
43
44 #define LOW_BAT_CHECK_INTERVAL          (2 * HZ)
45
46 #define VALID_CAPACITY_SEC              (45 * 60) /* 45 minutes */
47 #define BATT_OK_MIN                     2360 /* mV */
48 #define BATT_OK_INCREMENT               50 /* mV */
49 #define BATT_OK_MAX_NR_INCREMENTS       0xE
50
51 /* FG constants */
52 #define BATT_OVV                        0x01
53
54 #define interpolate(x, x1, y1, x2, y2) \
55         ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
56
57 #define to_ab8500_fg_device_info(x) container_of((x), \
58         struct ab8500_fg, fg_psy);
59
60 /**
61  * struct ab8500_fg_interrupts - ab8500 fg interupts
62  * @name:       name of the interrupt
63  * @isr         function pointer to the isr
64  */
65 struct ab8500_fg_interrupts {
66         char *name;
67         irqreturn_t (*isr)(int irq, void *data);
68 };
69
70 enum ab8500_fg_discharge_state {
71         AB8500_FG_DISCHARGE_INIT,
72         AB8500_FG_DISCHARGE_INITMEASURING,
73         AB8500_FG_DISCHARGE_INIT_RECOVERY,
74         AB8500_FG_DISCHARGE_RECOVERY,
75         AB8500_FG_DISCHARGE_READOUT_INIT,
76         AB8500_FG_DISCHARGE_READOUT,
77         AB8500_FG_DISCHARGE_WAKEUP,
78 };
79
80 static char *discharge_state[] = {
81         "DISCHARGE_INIT",
82         "DISCHARGE_INITMEASURING",
83         "DISCHARGE_INIT_RECOVERY",
84         "DISCHARGE_RECOVERY",
85         "DISCHARGE_READOUT_INIT",
86         "DISCHARGE_READOUT",
87         "DISCHARGE_WAKEUP",
88 };
89
90 enum ab8500_fg_charge_state {
91         AB8500_FG_CHARGE_INIT,
92         AB8500_FG_CHARGE_READOUT,
93 };
94
95 static char *charge_state[] = {
96         "CHARGE_INIT",
97         "CHARGE_READOUT",
98 };
99
100 enum ab8500_fg_calibration_state {
101         AB8500_FG_CALIB_INIT,
102         AB8500_FG_CALIB_WAIT,
103         AB8500_FG_CALIB_END,
104 };
105
106 struct ab8500_fg_avg_cap {
107         int avg;
108         int samples[NBR_AVG_SAMPLES];
109         __kernel_time_t time_stamps[NBR_AVG_SAMPLES];
110         int pos;
111         int nbr_samples;
112         int sum;
113 };
114
115 struct ab8500_fg_battery_capacity {
116         int max_mah_design;
117         int max_mah;
118         int mah;
119         int permille;
120         int level;
121         int prev_mah;
122         int prev_percent;
123         int prev_level;
124         int user_mah;
125 };
126
127 struct ab8500_fg_flags {
128         bool fg_enabled;
129         bool conv_done;
130         bool charging;
131         bool fully_charged;
132         bool force_full;
133         bool low_bat_delay;
134         bool low_bat;
135         bool bat_ovv;
136         bool batt_unknown;
137         bool calibrate;
138         bool user_cap;
139         bool batt_id_received;
140 };
141
142 struct inst_curr_result_list {
143         struct list_head list;
144         int *result;
145 };
146
147 /**
148  * struct ab8500_fg - ab8500 FG device information
149  * @dev:                Pointer to the structure device
150  * @node:               a list of AB8500 FGs, hence prepared for reentrance
151  * @irq                 holds the CCEOC interrupt number
152  * @vbat:               Battery voltage in mV
153  * @vbat_nom:           Nominal battery voltage in mV
154  * @inst_curr:          Instantenous battery current in mA
155  * @avg_curr:           Average battery current in mA
156  * @bat_temp            battery temperature
157  * @fg_samples:         Number of samples used in the FG accumulation
158  * @accu_charge:        Accumulated charge from the last conversion
159  * @recovery_cnt:       Counter for recovery mode
160  * @high_curr_cnt:      Counter for high current mode
161  * @init_cnt:           Counter for init mode
162  * @recovery_needed:    Indicate if recovery is needed
163  * @high_curr_mode:     Indicate if we're in high current mode
164  * @init_capacity:      Indicate if initial capacity measuring should be done
165  * @turn_off_fg:        True if fg was off before current measurement
166  * @calib_state         State during offset calibration
167  * @discharge_state:    Current discharge state
168  * @charge_state:       Current charge state
169  * @ab8500_fg_complete  Completion struct used for the instant current reading
170  * @flags:              Structure for information about events triggered
171  * @bat_cap:            Structure for battery capacity specific parameters
172  * @avg_cap:            Average capacity filter
173  * @parent:             Pointer to the struct ab8500
174  * @gpadc:              Pointer to the struct gpadc
175  * @pdata:              Pointer to the abx500_fg platform data
176  * @bat:                Pointer to the abx500_bm platform data
177  * @fg_psy:             Structure that holds the FG specific battery properties
178  * @fg_wq:              Work queue for running the FG algorithm
179  * @fg_periodic_work:   Work to run the FG algorithm periodically
180  * @fg_low_bat_work:    Work to check low bat condition
181  * @fg_reinit_work      Work used to reset and reinitialise the FG algorithm
182  * @fg_work:            Work to run the FG algorithm instantly
183  * @fg_acc_cur_work:    Work to read the FG accumulator
184  * @fg_check_hw_failure_work:   Work for checking HW state
185  * @cc_lock:            Mutex for locking the CC
186  * @fg_kobject:         Structure of type kobject
187  */
188 struct ab8500_fg {
189         struct device *dev;
190         struct list_head node;
191         int irq;
192         int vbat;
193         int vbat_nom;
194         int inst_curr;
195         int avg_curr;
196         int bat_temp;
197         int fg_samples;
198         int accu_charge;
199         int recovery_cnt;
200         int high_curr_cnt;
201         int init_cnt;
202         bool recovery_needed;
203         bool high_curr_mode;
204         bool init_capacity;
205         bool turn_off_fg;
206         enum ab8500_fg_calibration_state calib_state;
207         enum ab8500_fg_discharge_state discharge_state;
208         enum ab8500_fg_charge_state charge_state;
209         struct completion ab8500_fg_complete;
210         struct ab8500_fg_flags flags;
211         struct ab8500_fg_battery_capacity bat_cap;
212         struct ab8500_fg_avg_cap avg_cap;
213         struct ab8500 *parent;
214         struct ab8500_gpadc *gpadc;
215         struct abx500_fg_platform_data *pdata;
216         struct abx500_bm_data *bat;
217         struct power_supply fg_psy;
218         struct workqueue_struct *fg_wq;
219         struct delayed_work fg_periodic_work;
220         struct delayed_work fg_low_bat_work;
221         struct delayed_work fg_reinit_work;
222         struct work_struct fg_work;
223         struct work_struct fg_acc_cur_work;
224         struct delayed_work fg_check_hw_failure_work;
225         struct mutex cc_lock;
226         struct kobject fg_kobject;
227 };
228 static LIST_HEAD(ab8500_fg_list);
229
230 /**
231  * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
232  * (i.e. the first fuel gauge in the instance list)
233  */
234 struct ab8500_fg *ab8500_fg_get(void)
235 {
236         struct ab8500_fg *fg;
237
238         if (list_empty(&ab8500_fg_list))
239                 return NULL;
240
241         fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
242         return fg;
243 }
244
245 /* Main battery properties */
246 static enum power_supply_property ab8500_fg_props[] = {
247         POWER_SUPPLY_PROP_VOLTAGE_NOW,
248         POWER_SUPPLY_PROP_CURRENT_NOW,
249         POWER_SUPPLY_PROP_CURRENT_AVG,
250         POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
251         POWER_SUPPLY_PROP_ENERGY_FULL,
252         POWER_SUPPLY_PROP_ENERGY_NOW,
253         POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
254         POWER_SUPPLY_PROP_CHARGE_FULL,
255         POWER_SUPPLY_PROP_CHARGE_NOW,
256         POWER_SUPPLY_PROP_CAPACITY,
257         POWER_SUPPLY_PROP_CAPACITY_LEVEL,
258 };
259
260 /*
261  * This array maps the raw hex value to lowbat voltage used by the AB8500
262  * Values taken from the UM0836
263  */
264 static int ab8500_fg_lowbat_voltage_map[] = {
265         2300 ,
266         2325 ,
267         2350 ,
268         2375 ,
269         2400 ,
270         2425 ,
271         2450 ,
272         2475 ,
273         2500 ,
274         2525 ,
275         2550 ,
276         2575 ,
277         2600 ,
278         2625 ,
279         2650 ,
280         2675 ,
281         2700 ,
282         2725 ,
283         2750 ,
284         2775 ,
285         2800 ,
286         2825 ,
287         2850 ,
288         2875 ,
289         2900 ,
290         2925 ,
291         2950 ,
292         2975 ,
293         3000 ,
294         3025 ,
295         3050 ,
296         3075 ,
297         3100 ,
298         3125 ,
299         3150 ,
300         3175 ,
301         3200 ,
302         3225 ,
303         3250 ,
304         3275 ,
305         3300 ,
306         3325 ,
307         3350 ,
308         3375 ,
309         3400 ,
310         3425 ,
311         3450 ,
312         3475 ,
313         3500 ,
314         3525 ,
315         3550 ,
316         3575 ,
317         3600 ,
318         3625 ,
319         3650 ,
320         3675 ,
321         3700 ,
322         3725 ,
323         3750 ,
324         3775 ,
325         3800 ,
326         3825 ,
327         3850 ,
328         3850 ,
329 };
330
331 static u8 ab8500_volt_to_regval(int voltage)
332 {
333         int i;
334
335         if (voltage < ab8500_fg_lowbat_voltage_map[0])
336                 return 0;
337
338         for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
339                 if (voltage < ab8500_fg_lowbat_voltage_map[i])
340                         return (u8) i - 1;
341         }
342
343         /* If not captured above, return index of last element */
344         return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
345 }
346
347 /**
348  * ab8500_fg_is_low_curr() - Low or high current mode
349  * @di:         pointer to the ab8500_fg structure
350  * @curr:       the current to base or our decision on
351  *
352  * Low current mode if the current consumption is below a certain threshold
353  */
354 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
355 {
356         /*
357          * We want to know if we're in low current mode
358          */
359         if (curr > -di->bat->fg_params->high_curr_threshold)
360                 return true;
361         else
362                 return false;
363 }
364
365 /**
366  * ab8500_fg_add_cap_sample() - Add capacity to average filter
367  * @di:         pointer to the ab8500_fg structure
368  * @sample:     the capacity in mAh to add to the filter
369  *
370  * A capacity is added to the filter and a new mean capacity is calculated and
371  * returned
372  */
373 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
374 {
375         struct timespec ts;
376         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
377
378         getnstimeofday(&ts);
379
380         do {
381                 avg->sum += sample - avg->samples[avg->pos];
382                 avg->samples[avg->pos] = sample;
383                 avg->time_stamps[avg->pos] = ts.tv_sec;
384                 avg->pos++;
385
386                 if (avg->pos == NBR_AVG_SAMPLES)
387                         avg->pos = 0;
388
389                 if (avg->nbr_samples < NBR_AVG_SAMPLES)
390                         avg->nbr_samples++;
391
392                 /*
393                  * Check the time stamp for each sample. If too old,
394                  * replace with latest sample
395                  */
396         } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
397
398         avg->avg = avg->sum / avg->nbr_samples;
399
400         return avg->avg;
401 }
402
403 /**
404  * ab8500_fg_clear_cap_samples() - Clear average filter
405  * @di:         pointer to the ab8500_fg structure
406  *
407  * The capacity filter is is reset to zero.
408  */
409 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
410 {
411         int i;
412         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
413
414         avg->pos = 0;
415         avg->nbr_samples = 0;
416         avg->sum = 0;
417         avg->avg = 0;
418
419         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
420                 avg->samples[i] = 0;
421                 avg->time_stamps[i] = 0;
422         }
423 }
424
425 /**
426  * ab8500_fg_fill_cap_sample() - Fill average filter
427  * @di:         pointer to the ab8500_fg structure
428  * @sample:     the capacity in mAh to fill the filter with
429  *
430  * The capacity filter is filled with a capacity in mAh
431  */
432 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
433 {
434         int i;
435         struct timespec ts;
436         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
437
438         getnstimeofday(&ts);
439
440         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
441                 avg->samples[i] = sample;
442                 avg->time_stamps[i] = ts.tv_sec;
443         }
444
445         avg->pos = 0;
446         avg->nbr_samples = NBR_AVG_SAMPLES;
447         avg->sum = sample * NBR_AVG_SAMPLES;
448         avg->avg = sample;
449 }
450
451 /**
452  * ab8500_fg_coulomb_counter() - enable coulomb counter
453  * @di:         pointer to the ab8500_fg structure
454  * @enable:     enable/disable
455  *
456  * Enable/Disable coulomb counter.
457  * On failure returns negative value.
458  */
459 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
460 {
461         int ret = 0;
462         mutex_lock(&di->cc_lock);
463         if (enable) {
464                 /* To be able to reprogram the number of samples, we have to
465                  * first stop the CC and then enable it again */
466                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
467                         AB8500_RTC_CC_CONF_REG, 0x00);
468                 if (ret)
469                         goto cc_err;
470
471                 /* Program the samples */
472                 ret = abx500_set_register_interruptible(di->dev,
473                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
474                         di->fg_samples);
475                 if (ret)
476                         goto cc_err;
477
478                 /* Start the CC */
479                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
480                         AB8500_RTC_CC_CONF_REG,
481                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
482                 if (ret)
483                         goto cc_err;
484
485                 di->flags.fg_enabled = true;
486         } else {
487                 /* Clear any pending read requests */
488                 ret = abx500_set_register_interruptible(di->dev,
489                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
490                 if (ret)
491                         goto cc_err;
492
493                 ret = abx500_set_register_interruptible(di->dev,
494                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
495                 if (ret)
496                         goto cc_err;
497
498                 /* Stop the CC */
499                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
500                         AB8500_RTC_CC_CONF_REG, 0);
501                 if (ret)
502                         goto cc_err;
503
504                 di->flags.fg_enabled = false;
505
506         }
507         dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
508                 enable, di->fg_samples);
509
510         mutex_unlock(&di->cc_lock);
511
512         return ret;
513 cc_err:
514         dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
515         mutex_unlock(&di->cc_lock);
516         return ret;
517 }
518
519 /**
520  * ab8500_fg_inst_curr_start() - start battery instantaneous current
521  * @di:         pointer to the ab8500_fg structure
522  *
523  * Returns 0 or error code
524  * Note: This is part "one" and has to be called before
525  * ab8500_fg_inst_curr_finalize()
526  */
527  int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
528 {
529         u8 reg_val;
530         int ret;
531
532         mutex_lock(&di->cc_lock);
533
534         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
535                 AB8500_RTC_CC_CONF_REG, &reg_val);
536         if (ret < 0)
537                 goto fail;
538
539         if (!(reg_val & CC_PWR_UP_ENA)) {
540                 dev_dbg(di->dev, "%s Enable FG\n", __func__);
541                 di->turn_off_fg = true;
542
543                 /* Program the samples */
544                 ret = abx500_set_register_interruptible(di->dev,
545                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
546                         SEC_TO_SAMPLE(10));
547                 if (ret)
548                         goto fail;
549
550                 /* Start the CC */
551                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
552                         AB8500_RTC_CC_CONF_REG,
553                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
554                 if (ret)
555                         goto fail;
556         } else {
557                 di->turn_off_fg = false;
558         }
559
560         /* Return and WFI */
561         INIT_COMPLETION(di->ab8500_fg_complete);
562         enable_irq(di->irq);
563
564         /* Note: cc_lock is still locked */
565         return 0;
566 fail:
567         mutex_unlock(&di->cc_lock);
568         return ret;
569 }
570
571 /**
572  * ab8500_fg_inst_curr_done() - check if fg conversion is done
573  * @di:         pointer to the ab8500_fg structure
574  *
575  * Returns 1 if conversion done, 0 if still waiting
576  */
577 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
578 {
579         return completion_done(&di->ab8500_fg_complete);
580 }
581
582 /**
583  * ab8500_fg_inst_curr_finalize() - battery instantaneous current
584  * @di:         pointer to the ab8500_fg structure
585  * @res:        battery instantenous current(on success)
586  *
587  * Returns 0 or an error code
588  * Note: This is part "two" and has to be called at earliest 250 ms
589  * after ab8500_fg_inst_curr_start()
590  */
591 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
592 {
593         u8 low, high;
594         int val;
595         int ret;
596         int timeout;
597
598         if (!completion_done(&di->ab8500_fg_complete)) {
599                 timeout = wait_for_completion_timeout(&di->ab8500_fg_complete,
600                         INS_CURR_TIMEOUT);
601                 dev_dbg(di->dev, "Finalize time: %d ms\n",
602                         ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
603                 if (!timeout) {
604                         ret = -ETIME;
605                         disable_irq(di->irq);
606                         dev_err(di->dev, "completion timed out [%d]\n",
607                                 __LINE__);
608                         goto fail;
609                 }
610         }
611
612         disable_irq(di->irq);
613
614         ret = abx500_mask_and_set_register_interruptible(di->dev,
615                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
616                         READ_REQ, READ_REQ);
617
618         /* 100uS between read request and read is needed */
619         usleep_range(100, 100);
620
621         /* Read CC Sample conversion value Low and high */
622         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
623                 AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
624         if (ret < 0)
625                 goto fail;
626
627         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
628                 AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
629         if (ret < 0)
630                 goto fail;
631
632         /*
633          * negative value for Discharging
634          * convert 2's compliment into decimal
635          */
636         if (high & 0x10)
637                 val = (low | (high << 8) | 0xFFFFE000);
638         else
639                 val = (low | (high << 8));
640
641         /*
642          * Convert to unit value in mA
643          * Full scale input voltage is
644          * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
645          * Given a 250ms conversion cycle time the LSB corresponds
646          * to 112.9 nAh. Convert to current by dividing by the conversion
647          * time in hours (250ms = 1 / (3600 * 4)h)
648          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
649          */
650         val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
651                 (1000 * di->bat->fg_res);
652
653         if (di->turn_off_fg) {
654                 dev_dbg(di->dev, "%s Disable FG\n", __func__);
655
656                 /* Clear any pending read requests */
657                 ret = abx500_set_register_interruptible(di->dev,
658                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
659                 if (ret)
660                         goto fail;
661
662                 /* Stop the CC */
663                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
664                         AB8500_RTC_CC_CONF_REG, 0);
665                 if (ret)
666                         goto fail;
667         }
668         mutex_unlock(&di->cc_lock);
669         (*res) = val;
670
671         return 0;
672 fail:
673         mutex_unlock(&di->cc_lock);
674         return ret;
675 }
676
677 /**
678  * ab8500_fg_inst_curr_blocking() - battery instantaneous current
679  * @di:         pointer to the ab8500_fg structure
680  * @res:        battery instantenous current(on success)
681  *
682  * Returns 0 else error code
683  */
684 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
685 {
686         int ret;
687         int res = 0;
688
689         ret = ab8500_fg_inst_curr_start(di);
690         if (ret) {
691                 dev_err(di->dev, "Failed to initialize fg_inst\n");
692                 return 0;
693         }
694
695         ret = ab8500_fg_inst_curr_finalize(di, &res);
696         if (ret) {
697                 dev_err(di->dev, "Failed to finalize fg_inst\n");
698                 return 0;
699         }
700
701         return res;
702 }
703
704 /**
705  * ab8500_fg_acc_cur_work() - average battery current
706  * @work:       pointer to the work_struct structure
707  *
708  * Updated the average battery current obtained from the
709  * coulomb counter.
710  */
711 static void ab8500_fg_acc_cur_work(struct work_struct *work)
712 {
713         int val;
714         int ret;
715         u8 low, med, high;
716
717         struct ab8500_fg *di = container_of(work,
718                 struct ab8500_fg, fg_acc_cur_work);
719
720         mutex_lock(&di->cc_lock);
721         ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
722                 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
723         if (ret)
724                 goto exit;
725
726         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
727                 AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
728         if (ret < 0)
729                 goto exit;
730
731         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
732                 AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
733         if (ret < 0)
734                 goto exit;
735
736         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
737                 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
738         if (ret < 0)
739                 goto exit;
740
741         /* Check for sign bit in case of negative value, 2's compliment */
742         if (high & 0x10)
743                 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
744         else
745                 val = (low | (med << 8) | (high << 16));
746
747         /*
748          * Convert to uAh
749          * Given a 250ms conversion cycle time the LSB corresponds
750          * to 112.9 nAh.
751          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
752          */
753         di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
754                 (100 * di->bat->fg_res);
755
756         /*
757          * Convert to unit value in mA
758          * Full scale input voltage is
759          * 66.660mV => LSB = 66.660mV/(4096*res) = 1.627mA
760          * Given a 250ms conversion cycle time the LSB corresponds
761          * to 112.9 nAh. Convert to current by dividing by the conversion
762          * time in hours (= samples / (3600 * 4)h)
763          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
764          */
765         di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
766                 (1000 * di->bat->fg_res * (di->fg_samples / 4));
767
768         di->flags.conv_done = true;
769
770         mutex_unlock(&di->cc_lock);
771
772         queue_work(di->fg_wq, &di->fg_work);
773
774         return;
775 exit:
776         dev_err(di->dev,
777                 "Failed to read or write gas gauge registers\n");
778         mutex_unlock(&di->cc_lock);
779         queue_work(di->fg_wq, &di->fg_work);
780 }
781
782 /**
783  * ab8500_fg_bat_voltage() - get battery voltage
784  * @di:         pointer to the ab8500_fg structure
785  *
786  * Returns battery voltage(on success) else error code
787  */
788 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
789 {
790         int vbat;
791         static int prev;
792
793         vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
794         if (vbat < 0) {
795                 dev_err(di->dev,
796                         "%s gpadc conversion failed, using previous value\n",
797                         __func__);
798                 return prev;
799         }
800
801         prev = vbat;
802         return vbat;
803 }
804
805 /**
806  * ab8500_fg_volt_to_capacity() - Voltage based capacity
807  * @di:         pointer to the ab8500_fg structure
808  * @voltage:    The voltage to convert to a capacity
809  *
810  * Returns battery capacity in per mille based on voltage
811  */
812 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
813 {
814         int i, tbl_size;
815         struct abx500_v_to_cap *tbl;
816         int cap = 0;
817
818         tbl = di->bat->bat_type[di->bat->batt_id].v_to_cap_tbl,
819         tbl_size = di->bat->bat_type[di->bat->batt_id].n_v_cap_tbl_elements;
820
821         for (i = 0; i < tbl_size; ++i) {
822                 if (voltage > tbl[i].voltage)
823                         break;
824         }
825
826         if ((i > 0) && (i < tbl_size)) {
827                 cap = interpolate(voltage,
828                         tbl[i].voltage,
829                         tbl[i].capacity * 10,
830                         tbl[i-1].voltage,
831                         tbl[i-1].capacity * 10);
832         } else if (i == 0) {
833                 cap = 1000;
834         } else {
835                 cap = 0;
836         }
837
838         dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
839                 __func__, voltage, cap);
840
841         return cap;
842 }
843
844 /**
845  * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
846  * @di:         pointer to the ab8500_fg structure
847  *
848  * Returns battery capacity based on battery voltage that is not compensated
849  * for the voltage drop due to the load
850  */
851 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
852 {
853         di->vbat = ab8500_fg_bat_voltage(di);
854         return ab8500_fg_volt_to_capacity(di, di->vbat);
855 }
856
857 /**
858  * ab8500_fg_battery_resistance() - Returns the battery inner resistance
859  * @di:         pointer to the ab8500_fg structure
860  *
861  * Returns battery inner resistance added with the fuel gauge resistor value
862  * to get the total resistance in the whole link from gnd to bat+ node.
863  */
864 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
865 {
866         int i, tbl_size;
867         struct batres_vs_temp *tbl;
868         int resist = 0;
869
870         tbl = di->bat->bat_type[di->bat->batt_id].batres_tbl;
871         tbl_size = di->bat->bat_type[di->bat->batt_id].n_batres_tbl_elements;
872
873         for (i = 0; i < tbl_size; ++i) {
874                 if (di->bat_temp / 10 > tbl[i].temp)
875                         break;
876         }
877
878         if ((i > 0) && (i < tbl_size)) {
879                 resist = interpolate(di->bat_temp / 10,
880                         tbl[i].temp,
881                         tbl[i].resist,
882                         tbl[i-1].temp,
883                         tbl[i-1].resist);
884         } else if (i == 0) {
885                 resist = tbl[0].resist;
886         } else {
887                 resist = tbl[tbl_size - 1].resist;
888         }
889
890         dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
891             " fg resistance %d, total: %d (mOhm)\n",
892                 __func__, di->bat_temp, resist, di->bat->fg_res / 10,
893                 (di->bat->fg_res / 10) + resist);
894
895         /* fg_res variable is in 0.1mOhm */
896         resist += di->bat->fg_res / 10;
897
898         return resist;
899 }
900
901 /**
902  * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
903  * @di:         pointer to the ab8500_fg structure
904  *
905  * Returns battery capacity based on battery voltage that is load compensated
906  * for the voltage drop
907  */
908 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
909 {
910         int vbat_comp, res;
911         int i = 0;
912         int vbat = 0;
913
914         ab8500_fg_inst_curr_start(di);
915
916         do {
917                 vbat += ab8500_fg_bat_voltage(di);
918                 i++;
919                 msleep(5);
920         } while (!ab8500_fg_inst_curr_done(di));
921
922         ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
923
924         di->vbat = vbat / i;
925         res = ab8500_fg_battery_resistance(di);
926
927         /* Use Ohms law to get the load compensated voltage */
928         vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
929
930         dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
931                 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
932                 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
933
934         return ab8500_fg_volt_to_capacity(di, vbat_comp);
935 }
936
937 /**
938  * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
939  * @di:         pointer to the ab8500_fg structure
940  * @cap_mah:    capacity in mAh
941  *
942  * Converts capacity in mAh to capacity in permille
943  */
944 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
945 {
946         return (cap_mah * 1000) / di->bat_cap.max_mah_design;
947 }
948
949 /**
950  * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
951  * @di:         pointer to the ab8500_fg structure
952  * @cap_pm:     capacity in permille
953  *
954  * Converts capacity in permille to capacity in mAh
955  */
956 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
957 {
958         return cap_pm * di->bat_cap.max_mah_design / 1000;
959 }
960
961 /**
962  * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
963  * @di:         pointer to the ab8500_fg structure
964  * @cap_mah:    capacity in mAh
965  *
966  * Converts capacity in mAh to capacity in uWh
967  */
968 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
969 {
970         u64 div_res;
971         u32 div_rem;
972
973         div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
974         div_rem = do_div(div_res, 1000);
975
976         /* Make sure to round upwards if necessary */
977         if (div_rem >= 1000 / 2)
978                 div_res++;
979
980         return (int) div_res;
981 }
982
983 /**
984  * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
985  * @di:         pointer to the ab8500_fg structure
986  *
987  * Return the capacity in mAh based on previous calculated capcity and the FG
988  * accumulator register value. The filter is filled with this capacity
989  */
990 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
991 {
992         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
993                 __func__,
994                 di->bat_cap.mah,
995                 di->accu_charge);
996
997         /* Capacity should not be less than 0 */
998         if (di->bat_cap.mah + di->accu_charge > 0)
999                 di->bat_cap.mah += di->accu_charge;
1000         else
1001                 di->bat_cap.mah = 0;
1002         /*
1003          * We force capacity to 100% once when the algorithm
1004          * reports that it's full.
1005          */
1006         if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1007                 di->flags.force_full) {
1008                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1009         }
1010
1011         ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1012         di->bat_cap.permille =
1013                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1014
1015         /* We need to update battery voltage and inst current when charging */
1016         di->vbat = ab8500_fg_bat_voltage(di);
1017         di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1018
1019         return di->bat_cap.mah;
1020 }
1021
1022 /**
1023  * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1024  * @di:         pointer to the ab8500_fg structure
1025  * @comp:       if voltage should be load compensated before capacity calc
1026  *
1027  * Return the capacity in mAh based on the battery voltage. The voltage can
1028  * either be load compensated or not. This value is added to the filter and a
1029  * new mean value is calculated and returned.
1030  */
1031 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1032 {
1033         int permille, mah;
1034
1035         if (comp)
1036                 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1037         else
1038                 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1039
1040         mah = ab8500_fg_convert_permille_to_mah(di, permille);
1041
1042         di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1043         di->bat_cap.permille =
1044                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1045
1046         return di->bat_cap.mah;
1047 }
1048
1049 /**
1050  * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1051  * @di:         pointer to the ab8500_fg structure
1052  *
1053  * Return the capacity in mAh based on previous calculated capcity and the FG
1054  * accumulator register value. This value is added to the filter and a
1055  * new mean value is calculated and returned.
1056  */
1057 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1058 {
1059         int permille_volt, permille;
1060
1061         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1062                 __func__,
1063                 di->bat_cap.mah,
1064                 di->accu_charge);
1065
1066         /* Capacity should not be less than 0 */
1067         if (di->bat_cap.mah + di->accu_charge > 0)
1068                 di->bat_cap.mah += di->accu_charge;
1069         else
1070                 di->bat_cap.mah = 0;
1071
1072         if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1073                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1074
1075         /*
1076          * Check against voltage based capacity. It can not be lower
1077          * than what the uncompensated voltage says
1078          */
1079         permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1080         permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1081
1082         if (permille < permille_volt) {
1083                 di->bat_cap.permille = permille_volt;
1084                 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1085                         di->bat_cap.permille);
1086
1087                 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1088                         __func__,
1089                         permille,
1090                         permille_volt);
1091
1092                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1093         } else {
1094                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1095                 di->bat_cap.permille =
1096                         ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1097         }
1098
1099         return di->bat_cap.mah;
1100 }
1101
1102 /**
1103  * ab8500_fg_capacity_level() - Get the battery capacity level
1104  * @di:         pointer to the ab8500_fg structure
1105  *
1106  * Get the battery capacity level based on the capacity in percent
1107  */
1108 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1109 {
1110         int ret, percent;
1111
1112         percent = di->bat_cap.permille / 10;
1113
1114         if (percent <= di->bat->cap_levels->critical ||
1115                 di->flags.low_bat)
1116                 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1117         else if (percent <= di->bat->cap_levels->low)
1118                 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1119         else if (percent <= di->bat->cap_levels->normal)
1120                 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1121         else if (percent <= di->bat->cap_levels->high)
1122                 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1123         else
1124                 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1125
1126         return ret;
1127 }
1128
1129 /**
1130  * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1131  * @di:         pointer to the ab8500_fg structure
1132  * @init:       capacity is allowed to go up in init mode
1133  *
1134  * Check if capacity or capacity limit has changed and notify the system
1135  * about it using the power_supply framework
1136  */
1137 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1138 {
1139         bool changed = false;
1140
1141         di->bat_cap.level = ab8500_fg_capacity_level(di);
1142
1143         if (di->bat_cap.level != di->bat_cap.prev_level) {
1144                 /*
1145                  * We do not allow reported capacity level to go up
1146                  * unless we're charging or if we're in init
1147                  */
1148                 if (!(!di->flags.charging && di->bat_cap.level >
1149                         di->bat_cap.prev_level) || init) {
1150                         dev_dbg(di->dev, "level changed from %d to %d\n",
1151                                 di->bat_cap.prev_level,
1152                                 di->bat_cap.level);
1153                         di->bat_cap.prev_level = di->bat_cap.level;
1154                         changed = true;
1155                 } else {
1156                         dev_dbg(di->dev, "level not allowed to go up "
1157                                 "since no charger is connected: %d to %d\n",
1158                                 di->bat_cap.prev_level,
1159                                 di->bat_cap.level);
1160                 }
1161         }
1162
1163         /*
1164          * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1165          * shutdown
1166          */
1167         if (di->flags.low_bat) {
1168                 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1169                 di->bat_cap.prev_percent = 0;
1170                 di->bat_cap.permille = 0;
1171                 di->bat_cap.prev_mah = 0;
1172                 di->bat_cap.mah = 0;
1173                 changed = true;
1174         } else if (di->flags.fully_charged) {
1175                 /*
1176                  * We report 100% if algorithm reported fully charged
1177                  * unless capacity drops too much
1178                  */
1179                 if (di->flags.force_full) {
1180                         di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1181                         di->bat_cap.prev_mah = di->bat_cap.mah;
1182                 } else if (!di->flags.force_full &&
1183                         di->bat_cap.prev_percent !=
1184                         (di->bat_cap.permille) / 10 &&
1185                         (di->bat_cap.permille / 10) <
1186                         di->bat->fg_params->maint_thres) {
1187                         dev_dbg(di->dev,
1188                                 "battery reported full "
1189                                 "but capacity dropping: %d\n",
1190                                 di->bat_cap.permille / 10);
1191                         di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1192                         di->bat_cap.prev_mah = di->bat_cap.mah;
1193
1194                         changed = true;
1195                 }
1196         } else if (di->bat_cap.prev_percent != di->bat_cap.permille / 10) {
1197                 if (di->bat_cap.permille / 10 == 0) {
1198                         /*
1199                          * We will not report 0% unless we've got
1200                          * the LOW_BAT IRQ, no matter what the FG
1201                          * algorithm says.
1202                          */
1203                         di->bat_cap.prev_percent = 1;
1204                         di->bat_cap.permille = 1;
1205                         di->bat_cap.prev_mah = 1;
1206                         di->bat_cap.mah = 1;
1207
1208                         changed = true;
1209                 } else if (!(!di->flags.charging &&
1210                         (di->bat_cap.permille / 10) >
1211                         di->bat_cap.prev_percent) || init) {
1212                         /*
1213                          * We do not allow reported capacity to go up
1214                          * unless we're charging or if we're in init
1215                          */
1216                         dev_dbg(di->dev,
1217                                 "capacity changed from %d to %d (%d)\n",
1218                                 di->bat_cap.prev_percent,
1219                                 di->bat_cap.permille / 10,
1220                                 di->bat_cap.permille);
1221                         di->bat_cap.prev_percent = di->bat_cap.permille / 10;
1222                         di->bat_cap.prev_mah = di->bat_cap.mah;
1223
1224                         changed = true;
1225                 } else {
1226                         dev_dbg(di->dev, "capacity not allowed to go up since "
1227                                 "no charger is connected: %d to %d (%d)\n",
1228                                 di->bat_cap.prev_percent,
1229                                 di->bat_cap.permille / 10,
1230                                 di->bat_cap.permille);
1231                 }
1232         }
1233
1234         if (changed) {
1235                 power_supply_changed(&di->fg_psy);
1236                 if (di->flags.fully_charged && di->flags.force_full) {
1237                         dev_dbg(di->dev, "Battery full, notifying.\n");
1238                         di->flags.force_full = false;
1239                         sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1240                 }
1241                 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1242         }
1243 }
1244
1245 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1246         enum ab8500_fg_charge_state new_state)
1247 {
1248         dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1249                 di->charge_state,
1250                 charge_state[di->charge_state],
1251                 new_state,
1252                 charge_state[new_state]);
1253
1254         di->charge_state = new_state;
1255 }
1256
1257 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1258         enum ab8500_fg_discharge_state new_state)
1259 {
1260         dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1261                 di->discharge_state,
1262                 discharge_state[di->discharge_state],
1263                 new_state,
1264                 discharge_state[new_state]);
1265
1266         di->discharge_state = new_state;
1267 }
1268
1269 /**
1270  * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1271  * @di:         pointer to the ab8500_fg structure
1272  *
1273  * Battery capacity calculation state machine for when we're charging
1274  */
1275 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1276 {
1277         /*
1278          * If we change to discharge mode
1279          * we should start with recovery
1280          */
1281         if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1282                 ab8500_fg_discharge_state_to(di,
1283                         AB8500_FG_DISCHARGE_INIT_RECOVERY);
1284
1285         switch (di->charge_state) {
1286         case AB8500_FG_CHARGE_INIT:
1287                 di->fg_samples = SEC_TO_SAMPLE(
1288                         di->bat->fg_params->accu_charging);
1289
1290                 ab8500_fg_coulomb_counter(di, true);
1291                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1292
1293                 break;
1294
1295         case AB8500_FG_CHARGE_READOUT:
1296                 /*
1297                  * Read the FG and calculate the new capacity
1298                  */
1299                 mutex_lock(&di->cc_lock);
1300                 if (!di->flags.conv_done) {
1301                         /* Wasn't the CC IRQ that got us here */
1302                         mutex_unlock(&di->cc_lock);
1303                         dev_dbg(di->dev, "%s CC conv not done\n",
1304                                 __func__);
1305
1306                         break;
1307                 }
1308                 di->flags.conv_done = false;
1309                 mutex_unlock(&di->cc_lock);
1310
1311                 ab8500_fg_calc_cap_charging(di);
1312
1313                 break;
1314
1315         default:
1316                 break;
1317         }
1318
1319         /* Check capacity limits */
1320         ab8500_fg_check_capacity_limits(di, false);
1321 }
1322
1323 static void force_capacity(struct ab8500_fg *di)
1324 {
1325         int cap;
1326
1327         ab8500_fg_clear_cap_samples(di);
1328         cap = di->bat_cap.user_mah;
1329         if (cap > di->bat_cap.max_mah_design) {
1330                 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1331                         " %d\n", cap, di->bat_cap.max_mah_design);
1332                 cap = di->bat_cap.max_mah_design;
1333         }
1334         ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1335         di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1336         di->bat_cap.mah = cap;
1337         ab8500_fg_check_capacity_limits(di, true);
1338 }
1339
1340 static bool check_sysfs_capacity(struct ab8500_fg *di)
1341 {
1342         int cap, lower, upper;
1343         int cap_permille;
1344
1345         cap = di->bat_cap.user_mah;
1346
1347         cap_permille = ab8500_fg_convert_mah_to_permille(di,
1348                 di->bat_cap.user_mah);
1349
1350         lower = di->bat_cap.permille - di->bat->fg_params->user_cap_limit * 10;
1351         upper = di->bat_cap.permille + di->bat->fg_params->user_cap_limit * 10;
1352
1353         if (lower < 0)
1354                 lower = 0;
1355         /* 1000 is permille, -> 100 percent */
1356         if (upper > 1000)
1357                 upper = 1000;
1358
1359         dev_dbg(di->dev, "Capacity limits:"
1360                 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1361                 lower, cap_permille, upper, cap, di->bat_cap.mah);
1362
1363         /* If within limits, use the saved capacity and exit estimation...*/
1364         if (cap_permille > lower && cap_permille < upper) {
1365                 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1366                 force_capacity(di);
1367                 return true;
1368         }
1369         dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1370         return false;
1371 }
1372
1373 /**
1374  * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1375  * @di:         pointer to the ab8500_fg structure
1376  *
1377  * Battery capacity calculation state machine for when we're discharging
1378  */
1379 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1380 {
1381         int sleep_time;
1382
1383         /* If we change to charge mode we should start with init */
1384         if (di->charge_state != AB8500_FG_CHARGE_INIT)
1385                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1386
1387         switch (di->discharge_state) {
1388         case AB8500_FG_DISCHARGE_INIT:
1389                 /* We use the FG IRQ to work on */
1390                 di->init_cnt = 0;
1391                 di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer);
1392                 ab8500_fg_coulomb_counter(di, true);
1393                 ab8500_fg_discharge_state_to(di,
1394                         AB8500_FG_DISCHARGE_INITMEASURING);
1395
1396                 /* Intentional fallthrough */
1397         case AB8500_FG_DISCHARGE_INITMEASURING:
1398                 /*
1399                  * Discard a number of samples during startup.
1400                  * After that, use compensated voltage for a few
1401                  * samples to get an initial capacity.
1402                  * Then go to READOUT
1403                  */
1404                 sleep_time = di->bat->fg_params->init_timer;
1405
1406                 /* Discard the first [x] seconds */
1407                 if (di->init_cnt >
1408                         di->bat->fg_params->init_discard_time) {
1409                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1410
1411                         ab8500_fg_check_capacity_limits(di, true);
1412                 }
1413
1414                 di->init_cnt += sleep_time;
1415                 if (di->init_cnt > di->bat->fg_params->init_total_time)
1416                         ab8500_fg_discharge_state_to(di,
1417                                 AB8500_FG_DISCHARGE_READOUT_INIT);
1418
1419                 break;
1420
1421         case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1422                 di->recovery_cnt = 0;
1423                 di->recovery_needed = true;
1424                 ab8500_fg_discharge_state_to(di,
1425                         AB8500_FG_DISCHARGE_RECOVERY);
1426
1427                 /* Intentional fallthrough */
1428
1429         case AB8500_FG_DISCHARGE_RECOVERY:
1430                 sleep_time = di->bat->fg_params->recovery_sleep_timer;
1431
1432                 /*
1433                  * We should check the power consumption
1434                  * If low, go to READOUT (after x min) or
1435                  * RECOVERY_SLEEP if time left.
1436                  * If high, go to READOUT
1437                  */
1438                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1439
1440                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1441                         if (di->recovery_cnt >
1442                                 di->bat->fg_params->recovery_total_time) {
1443                                 di->fg_samples = SEC_TO_SAMPLE(
1444                                         di->bat->fg_params->accu_high_curr);
1445                                 ab8500_fg_coulomb_counter(di, true);
1446                                 ab8500_fg_discharge_state_to(di,
1447                                         AB8500_FG_DISCHARGE_READOUT);
1448                                 di->recovery_needed = false;
1449                         } else {
1450                                 queue_delayed_work(di->fg_wq,
1451                                         &di->fg_periodic_work,
1452                                         sleep_time * HZ);
1453                         }
1454                         di->recovery_cnt += sleep_time;
1455                 } else {
1456                         di->fg_samples = SEC_TO_SAMPLE(
1457                                 di->bat->fg_params->accu_high_curr);
1458                         ab8500_fg_coulomb_counter(di, true);
1459                         ab8500_fg_discharge_state_to(di,
1460                                 AB8500_FG_DISCHARGE_READOUT);
1461                 }
1462                 break;
1463
1464         case AB8500_FG_DISCHARGE_READOUT_INIT:
1465                 di->fg_samples = SEC_TO_SAMPLE(
1466                         di->bat->fg_params->accu_high_curr);
1467                 ab8500_fg_coulomb_counter(di, true);
1468                 ab8500_fg_discharge_state_to(di,
1469                                 AB8500_FG_DISCHARGE_READOUT);
1470                 break;
1471
1472         case AB8500_FG_DISCHARGE_READOUT:
1473                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1474
1475                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1476                         /* Detect mode change */
1477                         if (di->high_curr_mode) {
1478                                 di->high_curr_mode = false;
1479                                 di->high_curr_cnt = 0;
1480                         }
1481
1482                         if (di->recovery_needed) {
1483                                 ab8500_fg_discharge_state_to(di,
1484                                         AB8500_FG_DISCHARGE_RECOVERY);
1485
1486                                 queue_delayed_work(di->fg_wq,
1487                                         &di->fg_periodic_work, 0);
1488
1489                                 break;
1490                         }
1491
1492                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1493                 } else {
1494                         mutex_lock(&di->cc_lock);
1495                         if (!di->flags.conv_done) {
1496                                 /* Wasn't the CC IRQ that got us here */
1497                                 mutex_unlock(&di->cc_lock);
1498                                 dev_dbg(di->dev, "%s CC conv not done\n",
1499                                         __func__);
1500
1501                                 break;
1502                         }
1503                         di->flags.conv_done = false;
1504                         mutex_unlock(&di->cc_lock);
1505
1506                         /* Detect mode change */
1507                         if (!di->high_curr_mode) {
1508                                 di->high_curr_mode = true;
1509                                 di->high_curr_cnt = 0;
1510                         }
1511
1512                         di->high_curr_cnt +=
1513                                 di->bat->fg_params->accu_high_curr;
1514                         if (di->high_curr_cnt >
1515                                 di->bat->fg_params->high_curr_time)
1516                                 di->recovery_needed = true;
1517
1518                         ab8500_fg_calc_cap_discharge_fg(di);
1519                 }
1520
1521                 ab8500_fg_check_capacity_limits(di, false);
1522
1523                 break;
1524
1525         case AB8500_FG_DISCHARGE_WAKEUP:
1526                 ab8500_fg_coulomb_counter(di, true);
1527                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1528
1529                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1530
1531                 di->fg_samples = SEC_TO_SAMPLE(
1532                         di->bat->fg_params->accu_high_curr);
1533                 ab8500_fg_coulomb_counter(di, true);
1534                 ab8500_fg_discharge_state_to(di,
1535                                 AB8500_FG_DISCHARGE_READOUT);
1536
1537                 ab8500_fg_check_capacity_limits(di, false);
1538
1539                 break;
1540
1541         default:
1542                 break;
1543         }
1544 }
1545
1546 /**
1547  * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1548  * @di:         pointer to the ab8500_fg structure
1549  *
1550  */
1551 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1552 {
1553         int ret;
1554
1555         switch (di->calib_state) {
1556         case AB8500_FG_CALIB_INIT:
1557                 dev_dbg(di->dev, "Calibration ongoing...\n");
1558
1559                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1560                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1561                         CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1562                 if (ret < 0)
1563                         goto err;
1564
1565                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1566                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1567                         CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1568                 if (ret < 0)
1569                         goto err;
1570                 di->calib_state = AB8500_FG_CALIB_WAIT;
1571                 break;
1572         case AB8500_FG_CALIB_END:
1573                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1574                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1575                         CC_MUXOFFSET, CC_MUXOFFSET);
1576                 if (ret < 0)
1577                         goto err;
1578                 di->flags.calibrate = false;
1579                 dev_dbg(di->dev, "Calibration done...\n");
1580                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1581                 break;
1582         case AB8500_FG_CALIB_WAIT:
1583                 dev_dbg(di->dev, "Calibration WFI\n");
1584         default:
1585                 break;
1586         }
1587         return;
1588 err:
1589         /* Something went wrong, don't calibrate then */
1590         dev_err(di->dev, "failed to calibrate the CC\n");
1591         di->flags.calibrate = false;
1592         di->calib_state = AB8500_FG_CALIB_INIT;
1593         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1594 }
1595
1596 /**
1597  * ab8500_fg_algorithm() - Entry point for the FG algorithm
1598  * @di:         pointer to the ab8500_fg structure
1599  *
1600  * Entry point for the battery capacity calculation state machine
1601  */
1602 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1603 {
1604         if (di->flags.calibrate)
1605                 ab8500_fg_algorithm_calibrate(di);
1606         else {
1607                 if (di->flags.charging)
1608                         ab8500_fg_algorithm_charging(di);
1609                 else
1610                         ab8500_fg_algorithm_discharging(di);
1611         }
1612
1613         dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d "
1614                 "%d %d %d %d %d %d %d\n",
1615                 di->bat_cap.max_mah_design,
1616                 di->bat_cap.mah,
1617                 di->bat_cap.permille,
1618                 di->bat_cap.level,
1619                 di->bat_cap.prev_mah,
1620                 di->bat_cap.prev_percent,
1621                 di->bat_cap.prev_level,
1622                 di->vbat,
1623                 di->inst_curr,
1624                 di->avg_curr,
1625                 di->accu_charge,
1626                 di->flags.charging,
1627                 di->charge_state,
1628                 di->discharge_state,
1629                 di->high_curr_mode,
1630                 di->recovery_needed);
1631 }
1632
1633 /**
1634  * ab8500_fg_periodic_work() - Run the FG state machine periodically
1635  * @work:       pointer to the work_struct structure
1636  *
1637  * Work queue function for periodic work
1638  */
1639 static void ab8500_fg_periodic_work(struct work_struct *work)
1640 {
1641         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1642                 fg_periodic_work.work);
1643
1644         if (di->init_capacity) {
1645                 /* A dummy read that will return 0 */
1646                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1647                 /* Get an initial capacity calculation */
1648                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1649                 ab8500_fg_check_capacity_limits(di, true);
1650                 di->init_capacity = false;
1651
1652                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1653         } else if (di->flags.user_cap) {
1654                 if (check_sysfs_capacity(di)) {
1655                         ab8500_fg_check_capacity_limits(di, true);
1656                         if (di->flags.charging)
1657                                 ab8500_fg_charge_state_to(di,
1658                                         AB8500_FG_CHARGE_INIT);
1659                         else
1660                                 ab8500_fg_discharge_state_to(di,
1661                                         AB8500_FG_DISCHARGE_READOUT_INIT);
1662                 }
1663                 di->flags.user_cap = false;
1664                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1665         } else
1666                 ab8500_fg_algorithm(di);
1667
1668 }
1669
1670 /**
1671  * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1672  * @work:       pointer to the work_struct structure
1673  *
1674  * Work queue function for checking the OVV_BAT condition
1675  */
1676 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1677 {
1678         int ret;
1679         u8 reg_value;
1680
1681         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1682                 fg_check_hw_failure_work.work);
1683
1684         /*
1685          * If we have had a battery over-voltage situation,
1686          * check ovv-bit to see if it should be reset.
1687          */
1688         if (di->flags.bat_ovv) {
1689                 ret = abx500_get_register_interruptible(di->dev,
1690                         AB8500_CHARGER, AB8500_CH_STAT_REG,
1691                         &reg_value);
1692                 if (ret < 0) {
1693                         dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1694                         return;
1695                 }
1696                 if ((reg_value & BATT_OVV) != BATT_OVV) {
1697                         dev_dbg(di->dev, "Battery recovered from OVV\n");
1698                         di->flags.bat_ovv = false;
1699                         power_supply_changed(&di->fg_psy);
1700                         return;
1701                 }
1702
1703                 /* Not yet recovered from ovv, reschedule this test */
1704                 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1705                                    round_jiffies(HZ));
1706         }
1707 }
1708
1709 /**
1710  * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1711  * @work:       pointer to the work_struct structure
1712  *
1713  * Work queue function for checking the LOW_BAT condition
1714  */
1715 static void ab8500_fg_low_bat_work(struct work_struct *work)
1716 {
1717         int vbat;
1718
1719         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1720                 fg_low_bat_work.work);
1721
1722         vbat = ab8500_fg_bat_voltage(di);
1723
1724         /* Check if LOW_BAT still fulfilled */
1725         if (vbat < di->bat->fg_params->lowbat_threshold) {
1726                 di->flags.low_bat = true;
1727                 dev_warn(di->dev, "Battery voltage still LOW\n");
1728
1729                 /*
1730                  * We need to re-schedule this check to be able to detect
1731                  * if the voltage increases again during charging
1732                  */
1733                 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1734                         round_jiffies(LOW_BAT_CHECK_INTERVAL));
1735         } else {
1736                 di->flags.low_bat = false;
1737                 dev_warn(di->dev, "Battery voltage OK again\n");
1738         }
1739
1740         /* This is needed to dispatch LOW_BAT */
1741         ab8500_fg_check_capacity_limits(di, false);
1742
1743         /* Set this flag to check if LOW_BAT IRQ still occurs */
1744         di->flags.low_bat_delay = false;
1745 }
1746
1747 /**
1748  * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1749  * to the target voltage.
1750  * @di:       pointer to the ab8500_fg structure
1751  * @target    target voltage
1752  *
1753  * Returns bit pattern closest to the target voltage
1754  * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1755  */
1756
1757 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1758 {
1759         if (target > BATT_OK_MIN +
1760                 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1761                 return BATT_OK_MAX_NR_INCREMENTS;
1762         if (target < BATT_OK_MIN)
1763                 return 0;
1764         return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1765 }
1766
1767 /**
1768  * ab8500_fg_battok_init_hw_register - init battok levels
1769  * @di:       pointer to the ab8500_fg structure
1770  *
1771  */
1772
1773 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1774 {
1775         int selected;
1776         int sel0;
1777         int sel1;
1778         int cbp_sel0;
1779         int cbp_sel1;
1780         int ret;
1781         int new_val;
1782
1783         sel0 = di->bat->fg_params->battok_falling_th_sel0;
1784         sel1 = di->bat->fg_params->battok_raising_th_sel1;
1785
1786         cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1787         cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1788
1789         selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1790
1791         if (selected != sel0)
1792                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1793                         sel0, selected, cbp_sel0);
1794
1795         selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1796
1797         if (selected != sel1)
1798                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1799                         sel1, selected, cbp_sel1);
1800
1801         new_val = cbp_sel0 | (cbp_sel1 << 4);
1802
1803         dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1804         ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1805                 AB8500_BATT_OK_REG, new_val);
1806         return ret;
1807 }
1808
1809 /**
1810  * ab8500_fg_instant_work() - Run the FG state machine instantly
1811  * @work:       pointer to the work_struct structure
1812  *
1813  * Work queue function for instant work
1814  */
1815 static void ab8500_fg_instant_work(struct work_struct *work)
1816 {
1817         struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1818
1819         ab8500_fg_algorithm(di);
1820 }
1821
1822 /**
1823  * ab8500_fg_cc_data_end_handler() - isr to get battery avg current.
1824  * @irq:       interrupt number
1825  * @_di:       pointer to the ab8500_fg structure
1826  *
1827  * Returns IRQ status(IRQ_HANDLED)
1828  */
1829 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1830 {
1831         struct ab8500_fg *di = _di;
1832         complete(&di->ab8500_fg_complete);
1833         return IRQ_HANDLED;
1834 }
1835
1836 /**
1837  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1838  * @irq:       interrupt number
1839  * @_di:       pointer to the ab8500_fg structure
1840  *
1841  * Returns IRQ status(IRQ_HANDLED)
1842  */
1843 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
1844 {
1845         struct ab8500_fg *di = _di;
1846         di->calib_state = AB8500_FG_CALIB_END;
1847         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1848         return IRQ_HANDLED;
1849 }
1850
1851 /**
1852  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
1853  * @irq:       interrupt number
1854  * @_di:       pointer to the ab8500_fg structure
1855  *
1856  * Returns IRQ status(IRQ_HANDLED)
1857  */
1858 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
1859 {
1860         struct ab8500_fg *di = _di;
1861
1862         queue_work(di->fg_wq, &di->fg_acc_cur_work);
1863
1864         return IRQ_HANDLED;
1865 }
1866
1867 /**
1868  * ab8500_fg_batt_ovv_handler() - Battery OVV occured
1869  * @irq:       interrupt number
1870  * @_di:       pointer to the ab8500_fg structure
1871  *
1872  * Returns IRQ status(IRQ_HANDLED)
1873  */
1874 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
1875 {
1876         struct ab8500_fg *di = _di;
1877
1878         dev_dbg(di->dev, "Battery OVV\n");
1879         di->flags.bat_ovv = true;
1880         power_supply_changed(&di->fg_psy);
1881
1882         /* Schedule a new HW failure check */
1883         queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
1884
1885         return IRQ_HANDLED;
1886 }
1887
1888 /**
1889  * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
1890  * @irq:       interrupt number
1891  * @_di:       pointer to the ab8500_fg structure
1892  *
1893  * Returns IRQ status(IRQ_HANDLED)
1894  */
1895 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
1896 {
1897         struct ab8500_fg *di = _di;
1898
1899         if (!di->flags.low_bat_delay) {
1900                 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
1901                 di->flags.low_bat_delay = true;
1902                 /*
1903                  * Start a timer to check LOW_BAT again after some time
1904                  * This is done to avoid shutdown on single voltage dips
1905                  */
1906                 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1907                         round_jiffies(LOW_BAT_CHECK_INTERVAL));
1908         }
1909         return IRQ_HANDLED;
1910 }
1911
1912 /**
1913  * ab8500_fg_get_property() - get the fg properties
1914  * @psy:        pointer to the power_supply structure
1915  * @psp:        pointer to the power_supply_property structure
1916  * @val:        pointer to the power_supply_propval union
1917  *
1918  * This function gets called when an application tries to get the
1919  * fg properties by reading the sysfs files.
1920  * voltage_now:         battery voltage
1921  * current_now:         battery instant current
1922  * current_avg:         battery average current
1923  * charge_full_design:  capacity where battery is considered full
1924  * charge_now:          battery capacity in nAh
1925  * capacity:            capacity in percent
1926  * capacity_level:      capacity level
1927  *
1928  * Returns error code in case of failure else 0 on success
1929  */
1930 static int ab8500_fg_get_property(struct power_supply *psy,
1931         enum power_supply_property psp,
1932         union power_supply_propval *val)
1933 {
1934         struct ab8500_fg *di;
1935
1936         di = to_ab8500_fg_device_info(psy);
1937
1938         /*
1939          * If battery is identified as unknown and charging of unknown
1940          * batteries is disabled, we always report 100% capacity and
1941          * capacity level UNKNOWN, since we can't calculate
1942          * remaining capacity
1943          */
1944
1945         switch (psp) {
1946         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1947                 if (di->flags.bat_ovv)
1948                         val->intval = BATT_OVV_VALUE * 1000;
1949                 else
1950                         val->intval = di->vbat * 1000;
1951                 break;
1952         case POWER_SUPPLY_PROP_CURRENT_NOW:
1953                 val->intval = di->inst_curr * 1000;
1954                 break;
1955         case POWER_SUPPLY_PROP_CURRENT_AVG:
1956                 val->intval = di->avg_curr * 1000;
1957                 break;
1958         case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
1959                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
1960                                 di->bat_cap.max_mah_design);
1961                 break;
1962         case POWER_SUPPLY_PROP_ENERGY_FULL:
1963                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
1964                                 di->bat_cap.max_mah);
1965                 break;
1966         case POWER_SUPPLY_PROP_ENERGY_NOW:
1967                 if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1968                                 di->flags.batt_id_received)
1969                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
1970                                         di->bat_cap.max_mah);
1971                 else
1972                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
1973                                         di->bat_cap.prev_mah);
1974                 break;
1975         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
1976                 val->intval = di->bat_cap.max_mah_design;
1977                 break;
1978         case POWER_SUPPLY_PROP_CHARGE_FULL:
1979                 val->intval = di->bat_cap.max_mah;
1980                 break;
1981         case POWER_SUPPLY_PROP_CHARGE_NOW:
1982                 if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1983                                 di->flags.batt_id_received)
1984                         val->intval = di->bat_cap.max_mah;
1985                 else
1986                         val->intval = di->bat_cap.prev_mah;
1987                 break;
1988         case POWER_SUPPLY_PROP_CAPACITY:
1989                 if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1990                                 di->flags.batt_id_received)
1991                         val->intval = 100;
1992                 else
1993                         val->intval = di->bat_cap.prev_percent;
1994                 break;
1995         case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1996                 if (di->flags.batt_unknown && !di->bat->chg_unknown_bat &&
1997                                 di->flags.batt_id_received)
1998                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1999                 else
2000                         val->intval = di->bat_cap.prev_level;
2001                 break;
2002         default:
2003                 return -EINVAL;
2004         }
2005         return 0;
2006 }
2007
2008 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2009 {
2010         struct power_supply *psy;
2011         struct power_supply *ext;
2012         struct ab8500_fg *di;
2013         union power_supply_propval ret;
2014         int i, j;
2015         bool psy_found = false;
2016
2017         psy = (struct power_supply *)data;
2018         ext = dev_get_drvdata(dev);
2019         di = to_ab8500_fg_device_info(psy);
2020
2021         /*
2022          * For all psy where the name of your driver
2023          * appears in any supplied_to
2024          */
2025         for (i = 0; i < ext->num_supplicants; i++) {
2026                 if (!strcmp(ext->supplied_to[i], psy->name))
2027                         psy_found = true;
2028         }
2029
2030         if (!psy_found)
2031                 return 0;
2032
2033         /* Go through all properties for the psy */
2034         for (j = 0; j < ext->num_properties; j++) {
2035                 enum power_supply_property prop;
2036                 prop = ext->properties[j];
2037
2038                 if (ext->get_property(ext, prop, &ret))
2039                         continue;
2040
2041                 switch (prop) {
2042                 case POWER_SUPPLY_PROP_STATUS:
2043                         switch (ext->type) {
2044                         case POWER_SUPPLY_TYPE_BATTERY:
2045                                 switch (ret.intval) {
2046                                 case POWER_SUPPLY_STATUS_UNKNOWN:
2047                                 case POWER_SUPPLY_STATUS_DISCHARGING:
2048                                 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2049                                         if (!di->flags.charging)
2050                                                 break;
2051                                         di->flags.charging = false;
2052                                         di->flags.fully_charged = false;
2053                                         queue_work(di->fg_wq, &di->fg_work);
2054                                         break;
2055                                 case POWER_SUPPLY_STATUS_FULL:
2056                                         if (di->flags.fully_charged)
2057                                                 break;
2058                                         di->flags.fully_charged = true;
2059                                         di->flags.force_full = true;
2060                                         /* Save current capacity as maximum */
2061                                         di->bat_cap.max_mah = di->bat_cap.mah;
2062                                         queue_work(di->fg_wq, &di->fg_work);
2063                                         break;
2064                                 case POWER_SUPPLY_STATUS_CHARGING:
2065                                         if (di->flags.charging)
2066                                                 break;
2067                                         di->flags.charging = true;
2068                                         di->flags.fully_charged = false;
2069                                         queue_work(di->fg_wq, &di->fg_work);
2070                                         break;
2071                                 };
2072                         default:
2073                                 break;
2074                         };
2075                         break;
2076                 case POWER_SUPPLY_PROP_TECHNOLOGY:
2077                         switch (ext->type) {
2078                         case POWER_SUPPLY_TYPE_BATTERY:
2079                                 if (!di->flags.batt_id_received) {
2080                                         const struct abx500_battery_type *b;
2081
2082                                         b = &(di->bat->bat_type[di->bat->batt_id]);
2083
2084                                         di->flags.batt_id_received = true;
2085
2086                                         di->bat_cap.max_mah_design =
2087                                                 MILLI_TO_MICRO *
2088                                                 b->charge_full_design;
2089
2090                                         di->bat_cap.max_mah =
2091                                                 di->bat_cap.max_mah_design;
2092
2093                                         di->vbat_nom = b->nominal_voltage;
2094                                 }
2095
2096                                 if (ret.intval)
2097                                         di->flags.batt_unknown = false;
2098                                 else
2099                                         di->flags.batt_unknown = true;
2100                                 break;
2101                         default:
2102                                 break;
2103                         }
2104                         break;
2105                 case POWER_SUPPLY_PROP_TEMP:
2106                         switch (ext->type) {
2107                         case POWER_SUPPLY_TYPE_BATTERY:
2108                             if (di->flags.batt_id_received)
2109                                 di->bat_temp = ret.intval;
2110                                 break;
2111                         default:
2112                                 break;
2113                         }
2114                         break;
2115                 default:
2116                         break;
2117                 }
2118         }
2119         return 0;
2120 }
2121
2122 /**
2123  * ab8500_fg_init_hw_registers() - Set up FG related registers
2124  * @di:         pointer to the ab8500_fg structure
2125  *
2126  * Set up battery OVV, low battery voltage registers
2127  */
2128 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2129 {
2130         int ret;
2131
2132         /* Set VBAT OVV threshold */
2133         ret = abx500_mask_and_set_register_interruptible(di->dev,
2134                 AB8500_CHARGER,
2135                 AB8500_BATT_OVV,
2136                 BATT_OVV_TH_4P75,
2137                 BATT_OVV_TH_4P75);
2138         if (ret) {
2139                 dev_err(di->dev, "failed to set BATT_OVV\n");
2140                 goto out;
2141         }
2142
2143         /* Enable VBAT OVV detection */
2144         ret = abx500_mask_and_set_register_interruptible(di->dev,
2145                 AB8500_CHARGER,
2146                 AB8500_BATT_OVV,
2147                 BATT_OVV_ENA,
2148                 BATT_OVV_ENA);
2149         if (ret) {
2150                 dev_err(di->dev, "failed to enable BATT_OVV\n");
2151                 goto out;
2152         }
2153
2154         /* Low Battery Voltage */
2155         ret = abx500_set_register_interruptible(di->dev,
2156                 AB8500_SYS_CTRL2_BLOCK,
2157                 AB8500_LOW_BAT_REG,
2158                 ab8500_volt_to_regval(
2159                         di->bat->fg_params->lowbat_threshold) << 1 |
2160                 LOW_BAT_ENABLE);
2161         if (ret) {
2162                 dev_err(di->dev, "%s write failed\n", __func__);
2163                 goto out;
2164         }
2165
2166         /* Battery OK threshold */
2167         ret = ab8500_fg_battok_init_hw_register(di);
2168         if (ret) {
2169                 dev_err(di->dev, "BattOk init write failed.\n");
2170                 goto out;
2171         }
2172 out:
2173         return ret;
2174 }
2175
2176 /**
2177  * ab8500_fg_external_power_changed() - callback for power supply changes
2178  * @psy:       pointer to the structure power_supply
2179  *
2180  * This function is the entry point of the pointer external_power_changed
2181  * of the structure power_supply.
2182  * This function gets executed when there is a change in any external power
2183  * supply that this driver needs to be notified of.
2184  */
2185 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2186 {
2187         struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
2188
2189         class_for_each_device(power_supply_class, NULL,
2190                 &di->fg_psy, ab8500_fg_get_ext_psy_data);
2191 }
2192
2193 /**
2194  * abab8500_fg_reinit_work() - work to reset the FG algorithm
2195  * @work:       pointer to the work_struct structure
2196  *
2197  * Used to reset the current battery capacity to be able to
2198  * retrigger a new voltage base capacity calculation. For
2199  * test and verification purpose.
2200  */
2201 static void ab8500_fg_reinit_work(struct work_struct *work)
2202 {
2203         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2204                 fg_reinit_work.work);
2205
2206         if (di->flags.calibrate == false) {
2207                 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2208                 ab8500_fg_clear_cap_samples(di);
2209                 ab8500_fg_calc_cap_discharge_voltage(di, true);
2210                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2211                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2212                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2213
2214         } else {
2215                 dev_err(di->dev, "Residual offset calibration ongoing "
2216                         "retrying..\n");
2217                 /* Wait one second until next try*/
2218                 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2219                         round_jiffies(1));
2220         }
2221 }
2222
2223 /**
2224  * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2225  *
2226  * This function can be used to force the FG algorithm to recalculate a new
2227  * voltage based battery capacity.
2228  */
2229 void ab8500_fg_reinit(void)
2230 {
2231         struct ab8500_fg *di = ab8500_fg_get();
2232         /* User won't be notified if a null pointer returned. */
2233         if (di != NULL)
2234                 queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
2235 }
2236
2237 /* Exposure to the sysfs interface */
2238
2239 struct ab8500_fg_sysfs_entry {
2240         struct attribute attr;
2241         ssize_t (*show)(struct ab8500_fg *, char *);
2242         ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2243 };
2244
2245 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2246 {
2247         return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2248 }
2249
2250 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2251                                  size_t count)
2252 {
2253         unsigned long charge_full;
2254         ssize_t ret = -EINVAL;
2255
2256         ret = strict_strtoul(buf, 10, &charge_full);
2257
2258         dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2259
2260         if (!ret) {
2261                 di->bat_cap.max_mah = (int) charge_full;
2262                 ret = count;
2263         }
2264         return ret;
2265 }
2266
2267 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2268 {
2269         return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2270 }
2271
2272 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2273                                  size_t count)
2274 {
2275         unsigned long charge_now;
2276         ssize_t ret;
2277
2278         ret = strict_strtoul(buf, 10, &charge_now);
2279
2280         dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2281                 ret, charge_now, di->bat_cap.prev_mah);
2282
2283         if (!ret) {
2284                 di->bat_cap.user_mah = (int) charge_now;
2285                 di->flags.user_cap = true;
2286                 ret = count;
2287                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2288         }
2289         return ret;
2290 }
2291
2292 static struct ab8500_fg_sysfs_entry charge_full_attr =
2293         __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2294
2295 static struct ab8500_fg_sysfs_entry charge_now_attr =
2296         __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2297
2298 static ssize_t
2299 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2300 {
2301         struct ab8500_fg_sysfs_entry *entry;
2302         struct ab8500_fg *di;
2303
2304         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2305         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2306
2307         if (!entry->show)
2308                 return -EIO;
2309
2310         return entry->show(di, buf);
2311 }
2312 static ssize_t
2313 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2314                 size_t count)
2315 {
2316         struct ab8500_fg_sysfs_entry *entry;
2317         struct ab8500_fg *di;
2318
2319         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2320         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2321
2322         if (!entry->store)
2323                 return -EIO;
2324
2325         return entry->store(di, buf, count);
2326 }
2327
2328 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2329         .show = ab8500_fg_show,
2330         .store = ab8500_fg_store,
2331 };
2332
2333 static struct attribute *ab8500_fg_attrs[] = {
2334         &charge_full_attr.attr,
2335         &charge_now_attr.attr,
2336         NULL,
2337 };
2338
2339 static struct kobj_type ab8500_fg_ktype = {
2340         .sysfs_ops = &ab8500_fg_sysfs_ops,
2341         .default_attrs = ab8500_fg_attrs,
2342 };
2343
2344 /**
2345  * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2346  * @di:                pointer to the struct ab8500_chargalg
2347  *
2348  * This function removes the entry in sysfs.
2349  */
2350 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2351 {
2352         kobject_del(&di->fg_kobject);
2353 }
2354
2355 /**
2356  * ab8500_chargalg_sysfs_init() - init of sysfs entry
2357  * @di:                pointer to the struct ab8500_chargalg
2358  *
2359  * This function adds an entry in sysfs.
2360  * Returns error code in case of failure else 0(on success)
2361  */
2362 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2363 {
2364         int ret = 0;
2365
2366         ret = kobject_init_and_add(&di->fg_kobject,
2367                 &ab8500_fg_ktype,
2368                 NULL, "battery");
2369         if (ret < 0)
2370                 dev_err(di->dev, "failed to create sysfs entry\n");
2371
2372         return ret;
2373 }
2374 /* Exposure to the sysfs interface <<END>> */
2375
2376 #if defined(CONFIG_PM)
2377 static int ab8500_fg_resume(struct platform_device *pdev)
2378 {
2379         struct ab8500_fg *di = platform_get_drvdata(pdev);
2380
2381         /*
2382          * Change state if we're not charging. If we're charging we will wake
2383          * up on the FG IRQ
2384          */
2385         if (!di->flags.charging) {
2386                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2387                 queue_work(di->fg_wq, &di->fg_work);
2388         }
2389
2390         return 0;
2391 }
2392
2393 static int ab8500_fg_suspend(struct platform_device *pdev,
2394         pm_message_t state)
2395 {
2396         struct ab8500_fg *di = platform_get_drvdata(pdev);
2397
2398         flush_delayed_work(&di->fg_periodic_work);
2399
2400         /*
2401          * If the FG is enabled we will disable it before going to suspend
2402          * only if we're not charging
2403          */
2404         if (di->flags.fg_enabled && !di->flags.charging)
2405                 ab8500_fg_coulomb_counter(di, false);
2406
2407         return 0;
2408 }
2409 #else
2410 #define ab8500_fg_suspend      NULL
2411 #define ab8500_fg_resume       NULL
2412 #endif
2413
2414 static int __devexit ab8500_fg_remove(struct platform_device *pdev)
2415 {
2416         int ret = 0;
2417         struct ab8500_fg *di = platform_get_drvdata(pdev);
2418
2419         list_del(&di->node);
2420
2421         /* Disable coulomb counter */
2422         ret = ab8500_fg_coulomb_counter(di, false);
2423         if (ret)
2424                 dev_err(di->dev, "failed to disable coulomb counter\n");
2425
2426         destroy_workqueue(di->fg_wq);
2427         ab8500_fg_sysfs_exit(di);
2428
2429         flush_scheduled_work();
2430         power_supply_unregister(&di->fg_psy);
2431         platform_set_drvdata(pdev, NULL);
2432         kfree(di);
2433         return ret;
2434 }
2435
2436 /* ab8500 fg driver interrupts and their respective isr */
2437 static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
2438         {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
2439         {"BATT_OVV", ab8500_fg_batt_ovv_handler},
2440         {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
2441         {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
2442         {"CCEOC", ab8500_fg_cc_data_end_handler},
2443 };
2444
2445 static int __devinit ab8500_fg_probe(struct platform_device *pdev)
2446 {
2447         int i, irq;
2448         int ret = 0;
2449         struct abx500_bm_plat_data *plat_data;
2450
2451         struct ab8500_fg *di =
2452                 kzalloc(sizeof(struct ab8500_fg), GFP_KERNEL);
2453         if (!di)
2454                 return -ENOMEM;
2455
2456         mutex_init(&di->cc_lock);
2457
2458         /* get parent data */
2459         di->dev = &pdev->dev;
2460         di->parent = dev_get_drvdata(pdev->dev.parent);
2461         di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
2462
2463         /* get fg specific platform data */
2464         plat_data = pdev->dev.platform_data;
2465         di->pdata = plat_data->fg;
2466         if (!di->pdata) {
2467                 dev_err(di->dev, "no fg platform data supplied\n");
2468                 ret = -EINVAL;
2469                 goto free_device_info;
2470         }
2471
2472         /* get battery specific platform data */
2473         di->bat = plat_data->battery;
2474         if (!di->bat) {
2475                 dev_err(di->dev, "no battery platform data supplied\n");
2476                 ret = -EINVAL;
2477                 goto free_device_info;
2478         }
2479
2480         di->fg_psy.name = "ab8500_fg";
2481         di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
2482         di->fg_psy.properties = ab8500_fg_props;
2483         di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
2484         di->fg_psy.get_property = ab8500_fg_get_property;
2485         di->fg_psy.supplied_to = di->pdata->supplied_to;
2486         di->fg_psy.num_supplicants = di->pdata->num_supplicants;
2487         di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
2488
2489         di->bat_cap.max_mah_design = MILLI_TO_MICRO *
2490                 di->bat->bat_type[di->bat->batt_id].charge_full_design;
2491
2492         di->bat_cap.max_mah = di->bat_cap.max_mah_design;
2493
2494         di->vbat_nom = di->bat->bat_type[di->bat->batt_id].nominal_voltage;
2495
2496         di->init_capacity = true;
2497
2498         ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2499         ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2500
2501         /* Create a work queue for running the FG algorithm */
2502         di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
2503         if (di->fg_wq == NULL) {
2504                 dev_err(di->dev, "failed to create work queue\n");
2505                 goto free_device_info;
2506         }
2507
2508         /* Init work for running the fg algorithm instantly */
2509         INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
2510
2511         /* Init work for getting the battery accumulated current */
2512         INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
2513
2514         /* Init work for reinitialising the fg algorithm */
2515         INIT_DELAYED_WORK_DEFERRABLE(&di->fg_reinit_work,
2516                 ab8500_fg_reinit_work);
2517
2518         /* Work delayed Queue to run the state machine */
2519         INIT_DELAYED_WORK_DEFERRABLE(&di->fg_periodic_work,
2520                 ab8500_fg_periodic_work);
2521
2522         /* Work to check low battery condition */
2523         INIT_DELAYED_WORK_DEFERRABLE(&di->fg_low_bat_work,
2524                 ab8500_fg_low_bat_work);
2525
2526         /* Init work for HW failure check */
2527         INIT_DELAYED_WORK_DEFERRABLE(&di->fg_check_hw_failure_work,
2528                 ab8500_fg_check_hw_failure_work);
2529
2530         /* Initialize OVV, and other registers */
2531         ret = ab8500_fg_init_hw_registers(di);
2532         if (ret) {
2533                 dev_err(di->dev, "failed to initialize registers\n");
2534                 goto free_inst_curr_wq;
2535         }
2536
2537         /* Consider battery unknown until we're informed otherwise */
2538         di->flags.batt_unknown = true;
2539         di->flags.batt_id_received = false;
2540
2541         /* Register FG power supply class */
2542         ret = power_supply_register(di->dev, &di->fg_psy);
2543         if (ret) {
2544                 dev_err(di->dev, "failed to register FG psy\n");
2545                 goto free_inst_curr_wq;
2546         }
2547
2548         di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer);
2549         ab8500_fg_coulomb_counter(di, true);
2550
2551         /* Initialize completion used to notify completion of inst current */
2552         init_completion(&di->ab8500_fg_complete);
2553
2554         /* Register interrupts */
2555         for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
2556                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2557                 ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
2558                         IRQF_SHARED | IRQF_NO_SUSPEND,
2559                         ab8500_fg_irq[i].name, di);
2560
2561                 if (ret != 0) {
2562                         dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
2563                                 , ab8500_fg_irq[i].name, irq, ret);
2564                         goto free_irq;
2565                 }
2566                 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
2567                         ab8500_fg_irq[i].name, irq, ret);
2568         }
2569         di->irq = platform_get_irq_byname(pdev, "CCEOC");
2570         disable_irq(di->irq);
2571
2572         platform_set_drvdata(pdev, di);
2573
2574         ret = ab8500_fg_sysfs_init(di);
2575         if (ret) {
2576                 dev_err(di->dev, "failed to create sysfs entry\n");
2577                 goto free_irq;
2578         }
2579
2580         /* Calibrate the fg first time */
2581         di->flags.calibrate = true;
2582         di->calib_state = AB8500_FG_CALIB_INIT;
2583
2584         /* Use room temp as default value until we get an update from driver. */
2585         di->bat_temp = 210;
2586
2587         /* Run the FG algorithm */
2588         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2589
2590         list_add_tail(&di->node, &ab8500_fg_list);
2591
2592         return ret;
2593
2594 free_irq:
2595         power_supply_unregister(&di->fg_psy);
2596
2597         /* We also have to free all successfully registered irqs */
2598         for (i = i - 1; i >= 0; i--) {
2599                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
2600                 free_irq(irq, di);
2601         }
2602 free_inst_curr_wq:
2603         destroy_workqueue(di->fg_wq);
2604 free_device_info:
2605         kfree(di);
2606
2607         return ret;
2608 }
2609
2610 static struct platform_driver ab8500_fg_driver = {
2611         .probe = ab8500_fg_probe,
2612         .remove = __devexit_p(ab8500_fg_remove),
2613         .suspend = ab8500_fg_suspend,
2614         .resume = ab8500_fg_resume,
2615         .driver = {
2616                 .name = "ab8500-fg",
2617                 .owner = THIS_MODULE,
2618         },
2619 };
2620
2621 static int __init ab8500_fg_init(void)
2622 {
2623         return platform_driver_register(&ab8500_fg_driver);
2624 }
2625
2626 static void __exit ab8500_fg_exit(void)
2627 {
2628         platform_driver_unregister(&ab8500_fg_driver);
2629 }
2630
2631 subsys_initcall_sync(ab8500_fg_init);
2632 module_exit(ab8500_fg_exit);
2633
2634 MODULE_LICENSE("GPL v2");
2635 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
2636 MODULE_ALIAS("platform:ab8500-fg");
2637 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");