e5fedf968c19475e2a20750c7a38d719ed056078
[linux-2.6.git] / drivers / net / wireless / zd1211rw / zd_mac.c
1 /* zd_mac.c
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License as published by
5  * the Free Software Foundation; either version 2 of the License, or
6  * (at your option) any later version.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  */
17
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/wireless.h>
21 #include <linux/usb.h>
22 #include <linux/jiffies.h>
23 #include <net/ieee80211_radiotap.h>
24
25 #include "zd_def.h"
26 #include "zd_chip.h"
27 #include "zd_mac.h"
28 #include "zd_ieee80211.h"
29 #include "zd_netdev.h"
30 #include "zd_rf.h"
31 #include "zd_util.h"
32
33 static void ieee_init(struct ieee80211_device *ieee);
34 static void softmac_init(struct ieee80211softmac_device *sm);
35
36 static void housekeeping_init(struct zd_mac *mac);
37 static void housekeeping_enable(struct zd_mac *mac);
38 static void housekeeping_disable(struct zd_mac *mac);
39
40 int zd_mac_init(struct zd_mac *mac,
41                 struct net_device *netdev,
42                 struct usb_interface *intf)
43 {
44         struct ieee80211_device *ieee = zd_netdev_ieee80211(netdev);
45
46         memset(mac, 0, sizeof(*mac));
47         spin_lock_init(&mac->lock);
48         mac->netdev = netdev;
49
50         ieee_init(ieee);
51         softmac_init(ieee80211_priv(netdev));
52         zd_chip_init(&mac->chip, netdev, intf);
53         housekeeping_init(mac);
54         return 0;
55 }
56
57 static int reset_channel(struct zd_mac *mac)
58 {
59         int r;
60         unsigned long flags;
61         const struct channel_range *range;
62
63         spin_lock_irqsave(&mac->lock, flags);
64         range = zd_channel_range(mac->regdomain);
65         if (!range->start) {
66                 r = -EINVAL;
67                 goto out;
68         }
69         mac->requested_channel = range->start;
70         r = 0;
71 out:
72         spin_unlock_irqrestore(&mac->lock, flags);
73         return r;
74 }
75
76 int zd_mac_init_hw(struct zd_mac *mac, u8 device_type)
77 {
78         int r;
79         struct zd_chip *chip = &mac->chip;
80         u8 addr[ETH_ALEN];
81         u8 default_regdomain;
82
83         r = zd_chip_enable_int(chip);
84         if (r)
85                 goto out;
86         r = zd_chip_init_hw(chip, device_type);
87         if (r)
88                 goto disable_int;
89
90         zd_get_e2p_mac_addr(chip, addr);
91         r = zd_write_mac_addr(chip, addr);
92         if (r)
93                 goto disable_int;
94         ZD_ASSERT(!irqs_disabled());
95         spin_lock_irq(&mac->lock);
96         memcpy(mac->netdev->dev_addr, addr, ETH_ALEN);
97         spin_unlock_irq(&mac->lock);
98
99         r = zd_read_regdomain(chip, &default_regdomain);
100         if (r)
101                 goto disable_int;
102         if (!zd_regdomain_supported(default_regdomain)) {
103                 dev_dbg_f(zd_mac_dev(mac),
104                           "Regulatory Domain %#04x is not supported.\n",
105                           default_regdomain);
106                 r = -EINVAL;
107                 goto disable_int;
108         }
109         spin_lock_irq(&mac->lock);
110         mac->regdomain = mac->default_regdomain = default_regdomain;
111         spin_unlock_irq(&mac->lock);
112         r = reset_channel(mac);
113         if (r)
114                 goto disable_int;
115
116         /* We must inform the device that we are doing encryption/decryption in
117          * software at the moment. */
118         r = zd_set_encryption_type(chip, ENC_SNIFFER);
119         if (r)
120                 goto disable_int;
121
122         r = zd_geo_init(zd_mac_to_ieee80211(mac), mac->regdomain);
123         if (r)
124                 goto disable_int;
125
126         r = 0;
127 disable_int:
128         zd_chip_disable_int(chip);
129 out:
130         return r;
131 }
132
133 void zd_mac_clear(struct zd_mac *mac)
134 {
135         zd_chip_clear(&mac->chip);
136         ZD_ASSERT(!spin_is_locked(&mac->lock));
137         ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
138 }
139
140 static int reset_mode(struct zd_mac *mac)
141 {
142         struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
143         struct zd_ioreq32 ioreqs[3] = {
144                 { CR_RX_FILTER, STA_RX_FILTER },
145                 { CR_SNIFFER_ON, 0U },
146         };
147
148         if (ieee->iw_mode == IW_MODE_MONITOR) {
149                 ioreqs[0].value = 0xffffffff;
150                 ioreqs[1].value = 0x1;
151                 ioreqs[2].value = ENC_SNIFFER;
152         }
153
154         return zd_iowrite32a(&mac->chip, ioreqs, 3);
155 }
156
157 int zd_mac_open(struct net_device *netdev)
158 {
159         struct zd_mac *mac = zd_netdev_mac(netdev);
160         struct zd_chip *chip = &mac->chip;
161         int r;
162
163         r = zd_chip_enable_int(chip);
164         if (r < 0)
165                 goto out;
166
167         r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
168         if (r < 0)
169                 goto disable_int;
170         r = reset_mode(mac);
171         if (r)
172                 goto disable_int;
173         r = zd_chip_switch_radio_on(chip);
174         if (r < 0)
175                 goto disable_int;
176         r = zd_chip_set_channel(chip, mac->requested_channel);
177         if (r < 0)
178                 goto disable_radio;
179         r = zd_chip_enable_rx(chip);
180         if (r < 0)
181                 goto disable_radio;
182         r = zd_chip_enable_hwint(chip);
183         if (r < 0)
184                 goto disable_rx;
185
186         housekeeping_enable(mac);
187         ieee80211softmac_start(netdev);
188         return 0;
189 disable_rx:
190         zd_chip_disable_rx(chip);
191 disable_radio:
192         zd_chip_switch_radio_off(chip);
193 disable_int:
194         zd_chip_disable_int(chip);
195 out:
196         return r;
197 }
198
199 int zd_mac_stop(struct net_device *netdev)
200 {
201         struct zd_mac *mac = zd_netdev_mac(netdev);
202         struct zd_chip *chip = &mac->chip;
203
204         netif_stop_queue(netdev);
205
206         /*
207          * The order here deliberately is a little different from the open()
208          * method, since we need to make sure there is no opportunity for RX
209          * frames to be processed by softmac after we have stopped it.
210          */
211
212         zd_chip_disable_rx(chip);
213         housekeeping_disable(mac);
214         ieee80211softmac_stop(netdev);
215
216         zd_chip_disable_hwint(chip);
217         zd_chip_switch_radio_off(chip);
218         zd_chip_disable_int(chip);
219
220         return 0;
221 }
222
223 int zd_mac_set_mac_address(struct net_device *netdev, void *p)
224 {
225         int r;
226         unsigned long flags;
227         struct sockaddr *addr = p;
228         struct zd_mac *mac = zd_netdev_mac(netdev);
229         struct zd_chip *chip = &mac->chip;
230
231         if (!is_valid_ether_addr(addr->sa_data))
232                 return -EADDRNOTAVAIL;
233
234         dev_dbg_f(zd_mac_dev(mac),
235                   "Setting MAC to " MAC_FMT "\n", MAC_ARG(addr->sa_data));
236
237         r = zd_write_mac_addr(chip, addr->sa_data);
238         if (r)
239                 return r;
240
241         spin_lock_irqsave(&mac->lock, flags);
242         memcpy(netdev->dev_addr, addr->sa_data, ETH_ALEN);
243         spin_unlock_irqrestore(&mac->lock, flags);
244
245         return 0;
246 }
247
248 int zd_mac_set_regdomain(struct zd_mac *mac, u8 regdomain)
249 {
250         int r;
251         u8 channel;
252
253         ZD_ASSERT(!irqs_disabled());
254         spin_lock_irq(&mac->lock);
255         if (regdomain == 0) {
256                 regdomain = mac->default_regdomain;
257         }
258         if (!zd_regdomain_supported(regdomain)) {
259                 spin_unlock_irq(&mac->lock);
260                 return -EINVAL;
261         }
262         mac->regdomain = regdomain;
263         channel = mac->requested_channel;
264         spin_unlock_irq(&mac->lock);
265
266         r = zd_geo_init(zd_mac_to_ieee80211(mac), regdomain);
267         if (r)
268                 return r;
269         if (!zd_regdomain_supports_channel(regdomain, channel)) {
270                 r = reset_channel(mac);
271                 if (r)
272                         return r;
273         }
274
275         return 0;
276 }
277
278 u8 zd_mac_get_regdomain(struct zd_mac *mac)
279 {
280         unsigned long flags;
281         u8 regdomain;
282
283         spin_lock_irqsave(&mac->lock, flags);
284         regdomain = mac->regdomain;
285         spin_unlock_irqrestore(&mac->lock, flags);
286         return regdomain;
287 }
288
289 static void set_channel(struct net_device *netdev, u8 channel)
290 {
291         struct zd_mac *mac = zd_netdev_mac(netdev);
292
293         dev_dbg_f(zd_mac_dev(mac), "channel %d\n", channel);
294
295         zd_chip_set_channel(&mac->chip, channel);
296 }
297
298 /* TODO: Should not work in Managed mode. */
299 int zd_mac_request_channel(struct zd_mac *mac, u8 channel)
300 {
301         unsigned long lock_flags;
302         struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
303
304         if (ieee->iw_mode == IW_MODE_INFRA)
305                 return -EPERM;
306
307         spin_lock_irqsave(&mac->lock, lock_flags);
308         if (!zd_regdomain_supports_channel(mac->regdomain, channel)) {
309                 spin_unlock_irqrestore(&mac->lock, lock_flags);
310                 return -EINVAL;
311         }
312         mac->requested_channel = channel;
313         spin_unlock_irqrestore(&mac->lock, lock_flags);
314         if (netif_running(mac->netdev))
315                 return zd_chip_set_channel(&mac->chip, channel);
316         else
317                 return 0;
318 }
319
320 int zd_mac_get_channel(struct zd_mac *mac, u8 *channel, u8 *flags)
321 {
322         struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
323
324         *channel = zd_chip_get_channel(&mac->chip);
325         if (ieee->iw_mode != IW_MODE_INFRA) {
326                 spin_lock_irq(&mac->lock);
327                 *flags = *channel == mac->requested_channel ?
328                         MAC_FIXED_CHANNEL : 0;
329                 spin_unlock(&mac->lock);
330         } else {
331                 *flags = 0;
332         }
333         dev_dbg_f(zd_mac_dev(mac), "channel %u flags %u\n", *channel, *flags);
334         return 0;
335 }
336
337 /* If wrong rate is given, we are falling back to the slowest rate: 1MBit/s */
338 static u8 cs_typed_rate(u8 cs_rate)
339 {
340         static const u8 typed_rates[16] = {
341                 [ZD_CS_CCK_RATE_1M]     = ZD_CS_CCK|ZD_CS_CCK_RATE_1M,
342                 [ZD_CS_CCK_RATE_2M]     = ZD_CS_CCK|ZD_CS_CCK_RATE_2M,
343                 [ZD_CS_CCK_RATE_5_5M]   = ZD_CS_CCK|ZD_CS_CCK_RATE_5_5M,
344                 [ZD_CS_CCK_RATE_11M]    = ZD_CS_CCK|ZD_CS_CCK_RATE_11M,
345                 [ZD_OFDM_RATE_6M]       = ZD_CS_OFDM|ZD_OFDM_RATE_6M,
346                 [ZD_OFDM_RATE_9M]       = ZD_CS_OFDM|ZD_OFDM_RATE_9M,
347                 [ZD_OFDM_RATE_12M]      = ZD_CS_OFDM|ZD_OFDM_RATE_12M,
348                 [ZD_OFDM_RATE_18M]      = ZD_CS_OFDM|ZD_OFDM_RATE_18M,
349                 [ZD_OFDM_RATE_24M]      = ZD_CS_OFDM|ZD_OFDM_RATE_24M,
350                 [ZD_OFDM_RATE_36M]      = ZD_CS_OFDM|ZD_OFDM_RATE_36M,
351                 [ZD_OFDM_RATE_48M]      = ZD_CS_OFDM|ZD_OFDM_RATE_48M,
352                 [ZD_OFDM_RATE_54M]      = ZD_CS_OFDM|ZD_OFDM_RATE_54M,
353         };
354
355         ZD_ASSERT(ZD_CS_RATE_MASK == 0x0f);
356         return typed_rates[cs_rate & ZD_CS_RATE_MASK];
357 }
358
359 /* Fallback to lowest rate, if rate is unknown. */
360 static u8 rate_to_cs_rate(u8 rate)
361 {
362         switch (rate) {
363         case IEEE80211_CCK_RATE_2MB:
364                 return ZD_CS_CCK_RATE_2M;
365         case IEEE80211_CCK_RATE_5MB:
366                 return ZD_CS_CCK_RATE_5_5M;
367         case IEEE80211_CCK_RATE_11MB:
368                 return ZD_CS_CCK_RATE_11M;
369         case IEEE80211_OFDM_RATE_6MB:
370                 return ZD_OFDM_RATE_6M;
371         case IEEE80211_OFDM_RATE_9MB:
372                 return ZD_OFDM_RATE_9M;
373         case IEEE80211_OFDM_RATE_12MB:
374                 return ZD_OFDM_RATE_12M;
375         case IEEE80211_OFDM_RATE_18MB:
376                 return ZD_OFDM_RATE_18M;
377         case IEEE80211_OFDM_RATE_24MB:
378                 return ZD_OFDM_RATE_24M;
379         case IEEE80211_OFDM_RATE_36MB:
380                 return ZD_OFDM_RATE_36M;
381         case IEEE80211_OFDM_RATE_48MB:
382                 return ZD_OFDM_RATE_48M;
383         case IEEE80211_OFDM_RATE_54MB:
384                 return ZD_OFDM_RATE_54M;
385         }
386         return ZD_CS_CCK_RATE_1M;
387 }
388
389 int zd_mac_set_mode(struct zd_mac *mac, u32 mode)
390 {
391         struct ieee80211_device *ieee;
392
393         switch (mode) {
394         case IW_MODE_AUTO:
395         case IW_MODE_ADHOC:
396         case IW_MODE_INFRA:
397                 mac->netdev->type = ARPHRD_ETHER;
398                 break;
399         case IW_MODE_MONITOR:
400                 mac->netdev->type = ARPHRD_IEEE80211_RADIOTAP;
401                 break;
402         default:
403                 dev_dbg_f(zd_mac_dev(mac), "wrong mode %u\n", mode);
404                 return -EINVAL;
405         }
406
407         ieee = zd_mac_to_ieee80211(mac);
408         ZD_ASSERT(!irqs_disabled());
409         spin_lock_irq(&ieee->lock);
410         ieee->iw_mode = mode;
411         spin_unlock_irq(&ieee->lock);
412
413         if (netif_running(mac->netdev))
414                 return reset_mode(mac);
415
416         return 0;
417 }
418
419 int zd_mac_get_mode(struct zd_mac *mac, u32 *mode)
420 {
421         unsigned long flags;
422         struct ieee80211_device *ieee;
423
424         ieee = zd_mac_to_ieee80211(mac);
425         spin_lock_irqsave(&ieee->lock, flags);
426         *mode = ieee->iw_mode;
427         spin_unlock_irqrestore(&ieee->lock, flags);
428         return 0;
429 }
430
431 int zd_mac_get_range(struct zd_mac *mac, struct iw_range *range)
432 {
433         int i;
434         const struct channel_range *channel_range;
435         u8 regdomain;
436
437         memset(range, 0, sizeof(*range));
438
439         /* FIXME: Not so important and depends on the mode. For 802.11g
440          * usually this value is used. It seems to be that Bit/s number is
441          * given here.
442          */
443         range->throughput = 27 * 1000 * 1000;
444
445         range->max_qual.qual = 100;
446         range->max_qual.level = 100;
447
448         /* FIXME: Needs still to be tuned. */
449         range->avg_qual.qual = 71;
450         range->avg_qual.level = 80;
451
452         /* FIXME: depends on standard? */
453         range->min_rts = 256;
454         range->max_rts = 2346;
455
456         range->min_frag = MIN_FRAG_THRESHOLD;
457         range->max_frag = MAX_FRAG_THRESHOLD;
458
459         range->max_encoding_tokens = WEP_KEYS;
460         range->num_encoding_sizes = 2;
461         range->encoding_size[0] = 5;
462         range->encoding_size[1] = WEP_KEY_LEN;
463
464         range->we_version_compiled = WIRELESS_EXT;
465         range->we_version_source = 20;
466
467         ZD_ASSERT(!irqs_disabled());
468         spin_lock_irq(&mac->lock);
469         regdomain = mac->regdomain;
470         spin_unlock_irq(&mac->lock);
471         channel_range = zd_channel_range(regdomain);
472
473         range->num_channels = channel_range->end - channel_range->start;
474         range->old_num_channels = range->num_channels;
475         range->num_frequency = range->num_channels;
476         range->old_num_frequency = range->num_frequency;
477
478         for (i = 0; i < range->num_frequency; i++) {
479                 struct iw_freq *freq = &range->freq[i];
480                 freq->i = channel_range->start + i;
481                 zd_channel_to_freq(freq, freq->i);
482         }
483
484         return 0;
485 }
486
487 static int zd_calc_tx_length_us(u8 *service, u8 cs_rate, u16 tx_length)
488 {
489         static const u8 rate_divisor[] = {
490                 [ZD_CS_CCK_RATE_1M]     =  1,
491                 [ZD_CS_CCK_RATE_2M]     =  2,
492                 [ZD_CS_CCK_RATE_5_5M]   = 11, /* bits must be doubled */
493                 [ZD_CS_CCK_RATE_11M]    = 11,
494                 [ZD_OFDM_RATE_6M]       =  6,
495                 [ZD_OFDM_RATE_9M]       =  9,
496                 [ZD_OFDM_RATE_12M]      = 12,
497                 [ZD_OFDM_RATE_18M]      = 18,
498                 [ZD_OFDM_RATE_24M]      = 24,
499                 [ZD_OFDM_RATE_36M]      = 36,
500                 [ZD_OFDM_RATE_48M]      = 48,
501                 [ZD_OFDM_RATE_54M]      = 54,
502         };
503
504         u32 bits = (u32)tx_length * 8;
505         u32 divisor;
506
507         divisor = rate_divisor[cs_rate];
508         if (divisor == 0)
509                 return -EINVAL;
510
511         switch (cs_rate) {
512         case ZD_CS_CCK_RATE_5_5M:
513                 bits = (2*bits) + 10; /* round up to the next integer */
514                 break;
515         case ZD_CS_CCK_RATE_11M:
516                 if (service) {
517                         u32 t = bits % 11;
518                         *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
519                         if (0 < t && t <= 3) {
520                                 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
521                         }
522                 }
523                 bits += 10; /* round up to the next integer */
524                 break;
525         }
526
527         return bits/divisor;
528 }
529
530 enum {
531         R2M_SHORT_PREAMBLE = 0x01,
532         R2M_11A            = 0x02,
533 };
534
535 static u8 cs_rate_to_modulation(u8 cs_rate, int flags)
536 {
537         u8 modulation;
538
539         modulation = cs_typed_rate(cs_rate);
540         if (flags & R2M_SHORT_PREAMBLE) {
541                 switch (ZD_CS_RATE(modulation)) {
542                 case ZD_CS_CCK_RATE_2M:
543                 case ZD_CS_CCK_RATE_5_5M:
544                 case ZD_CS_CCK_RATE_11M:
545                         modulation |= ZD_CS_CCK_PREA_SHORT;
546                         return modulation;
547                 }
548         }
549         if (flags & R2M_11A) {
550                 if (ZD_CS_TYPE(modulation) == ZD_CS_OFDM)
551                         modulation |= ZD_CS_OFDM_MODE_11A;
552         }
553         return modulation;
554 }
555
556 static void cs_set_modulation(struct zd_mac *mac, struct zd_ctrlset *cs,
557                               struct ieee80211_hdr_4addr *hdr)
558 {
559         struct ieee80211softmac_device *softmac = ieee80211_priv(mac->netdev);
560         u16 ftype = WLAN_FC_GET_TYPE(le16_to_cpu(hdr->frame_ctl));
561         u8 rate, cs_rate;
562         int is_mgt = (ftype == IEEE80211_FTYPE_MGMT) != 0;
563
564         /* FIXME: 802.11a? short preamble? */
565         rate = ieee80211softmac_suggest_txrate(softmac,
566                 is_multicast_ether_addr(hdr->addr1), is_mgt);
567
568         cs_rate = rate_to_cs_rate(rate);
569         cs->modulation = cs_rate_to_modulation(cs_rate, 0);
570 }
571
572 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
573                            struct ieee80211_hdr_4addr *header)
574 {
575         unsigned int tx_length = le16_to_cpu(cs->tx_length);
576         u16 fctl = le16_to_cpu(header->frame_ctl);
577         u16 ftype = WLAN_FC_GET_TYPE(fctl);
578         u16 stype = WLAN_FC_GET_STYPE(fctl);
579
580         /*
581          * CONTROL:
582          * - start at 0x00
583          * - if fragment 0, enable bit 0
584          * - if backoff needed, enable bit 0
585          * - if burst (backoff not needed) disable bit 0
586          * - if multicast, enable bit 1
587          * - if PS-POLL frame, enable bit 2
588          * - if in INDEPENDENT_BSS mode and zd1205_DestPowerSave, then enable
589          *   bit 4 (FIXME: wtf)
590          * - if frag_len > RTS threshold, set bit 5 as long if it isnt
591          *   multicast or mgt
592          * - if bit 5 is set, and we are in OFDM mode, unset bit 5 and set bit
593          *   7
594          */
595
596         cs->control = 0;
597
598         /* First fragment */
599         if (WLAN_GET_SEQ_FRAG(le16_to_cpu(header->seq_ctl)) == 0)
600                 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
601
602         /* Multicast */
603         if (is_multicast_ether_addr(header->addr1))
604                 cs->control |= ZD_CS_MULTICAST;
605
606         /* PS-POLL */
607         if (stype == IEEE80211_STYPE_PSPOLL)
608                 cs->control |= ZD_CS_PS_POLL_FRAME;
609
610         if (!is_multicast_ether_addr(header->addr1) &&
611             ftype != IEEE80211_FTYPE_MGMT &&
612             tx_length > zd_netdev_ieee80211(mac->netdev)->rts)
613         {
614                 /* FIXME: check the logic */
615                 if (ZD_CS_TYPE(cs->modulation) == ZD_CS_OFDM) {
616                         /* 802.11g */
617                         cs->control |= ZD_CS_SELF_CTS;
618                 } else { /* 802.11b */
619                         cs->control |= ZD_CS_RTS;
620                 }
621         }
622
623         /* FIXME: Management frame? */
624 }
625
626 static int fill_ctrlset(struct zd_mac *mac,
627                         struct ieee80211_txb *txb,
628                         int frag_num)
629 {
630         int r;
631         struct sk_buff *skb = txb->fragments[frag_num];
632         struct ieee80211_hdr_4addr *hdr =
633                 (struct ieee80211_hdr_4addr *) skb->data;
634         unsigned int frag_len = skb->len + IEEE80211_FCS_LEN;
635         unsigned int next_frag_len;
636         unsigned int packet_length;
637         struct zd_ctrlset *cs = (struct zd_ctrlset *)
638                 skb_push(skb, sizeof(struct zd_ctrlset));
639
640         if (frag_num+1  < txb->nr_frags) {
641                 next_frag_len = txb->fragments[frag_num+1]->len +
642                                 IEEE80211_FCS_LEN;
643         } else {
644                 next_frag_len = 0;
645         }
646         ZD_ASSERT(frag_len <= 0xffff);
647         ZD_ASSERT(next_frag_len <= 0xffff);
648
649         cs_set_modulation(mac, cs, hdr);
650
651         cs->tx_length = cpu_to_le16(frag_len);
652
653         cs_set_control(mac, cs, hdr);
654
655         packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
656         ZD_ASSERT(packet_length <= 0xffff);
657         /* ZD1211B: Computing the length difference this way, gives us
658          * flexibility to compute the packet length.
659          */
660         cs->packet_length = cpu_to_le16(mac->chip.is_zd1211b ?
661                         packet_length - frag_len : packet_length);
662
663         /*
664          * CURRENT LENGTH:
665          * - transmit frame length in microseconds
666          * - seems to be derived from frame length
667          * - see Cal_Us_Service() in zdinlinef.h
668          * - if macp->bTxBurstEnable is enabled, then multiply by 4
669          *  - bTxBurstEnable is never set in the vendor driver
670          *
671          * SERVICE:
672          * - "for PLCP configuration"
673          * - always 0 except in some situations at 802.11b 11M
674          * - see line 53 of zdinlinef.h
675          */
676         cs->service = 0;
677         r = zd_calc_tx_length_us(&cs->service, ZD_CS_RATE(cs->modulation),
678                                  le16_to_cpu(cs->tx_length));
679         if (r < 0)
680                 return r;
681         cs->current_length = cpu_to_le16(r);
682
683         if (next_frag_len == 0) {
684                 cs->next_frame_length = 0;
685         } else {
686                 r = zd_calc_tx_length_us(NULL, ZD_CS_RATE(cs->modulation),
687                                          next_frag_len);
688                 if (r < 0)
689                         return r;
690                 cs->next_frame_length = cpu_to_le16(r);
691         }
692
693         return 0;
694 }
695
696 static int zd_mac_tx(struct zd_mac *mac, struct ieee80211_txb *txb, int pri)
697 {
698         int i, r;
699
700         for (i = 0; i < txb->nr_frags; i++) {
701                 struct sk_buff *skb = txb->fragments[i];
702
703                 r = fill_ctrlset(mac, txb, i);
704                 if (r)
705                         return r;
706                 r = zd_usb_tx(&mac->chip.usb, skb->data, skb->len);
707                 if (r)
708                         return r;
709         }
710
711         /* FIXME: shouldn't this be handled by the upper layers? */
712         mac->netdev->trans_start = jiffies;
713
714         ieee80211_txb_free(txb);
715         return 0;
716 }
717
718 struct zd_rt_hdr {
719         struct ieee80211_radiotap_header rt_hdr;
720         u8  rt_flags;
721         u8  rt_rate;
722         u16 rt_channel;
723         u16 rt_chbitmask;
724 } __attribute__((packed));
725
726 static void fill_rt_header(void *buffer, struct zd_mac *mac,
727                            const struct ieee80211_rx_stats *stats,
728                            const struct rx_status *status)
729 {
730         struct zd_rt_hdr *hdr = buffer;
731
732         hdr->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
733         hdr->rt_hdr.it_pad = 0;
734         hdr->rt_hdr.it_len = cpu_to_le16(sizeof(struct zd_rt_hdr));
735         hdr->rt_hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
736                                  (1 << IEEE80211_RADIOTAP_CHANNEL) |
737                                  (1 << IEEE80211_RADIOTAP_RATE));
738
739         hdr->rt_flags = 0;
740         if (status->decryption_type & (ZD_RX_WEP64|ZD_RX_WEP128|ZD_RX_WEP256))
741                 hdr->rt_flags |= IEEE80211_RADIOTAP_F_WEP;
742
743         hdr->rt_rate = stats->rate / 5;
744
745         /* FIXME: 802.11a */
746         hdr->rt_channel = cpu_to_le16(ieee80211chan2mhz(
747                                              _zd_chip_get_channel(&mac->chip)));
748         hdr->rt_chbitmask = cpu_to_le16(IEEE80211_CHAN_2GHZ |
749                 ((status->frame_status & ZD_RX_FRAME_MODULATION_MASK) ==
750                 ZD_RX_OFDM ? IEEE80211_CHAN_OFDM : IEEE80211_CHAN_CCK));
751 }
752
753 /* Returns 1 if the data packet is for us and 0 otherwise. */
754 static int is_data_packet_for_us(struct ieee80211_device *ieee,
755                                  struct ieee80211_hdr_4addr *hdr)
756 {
757         struct net_device *netdev = ieee->dev;
758         u16 fc = le16_to_cpu(hdr->frame_ctl);
759
760         ZD_ASSERT(WLAN_FC_GET_TYPE(fc) == IEEE80211_FTYPE_DATA);
761
762         switch (ieee->iw_mode) {
763         case IW_MODE_ADHOC:
764                 if ((fc & (IEEE80211_FCTL_TODS|IEEE80211_FCTL_FROMDS)) != 0 ||
765                     memcmp(hdr->addr3, ieee->bssid, ETH_ALEN) != 0)
766                         return 0;
767                 break;
768         case IW_MODE_AUTO:
769         case IW_MODE_INFRA:
770                 if ((fc & (IEEE80211_FCTL_TODS|IEEE80211_FCTL_FROMDS)) !=
771                     IEEE80211_FCTL_FROMDS ||
772                     memcmp(hdr->addr2, ieee->bssid, ETH_ALEN) != 0)
773                         return 0;
774                 break;
775         default:
776                 ZD_ASSERT(ieee->iw_mode != IW_MODE_MONITOR);
777                 return 0;
778         }
779
780         return memcmp(hdr->addr1, netdev->dev_addr, ETH_ALEN) == 0 ||
781                is_multicast_ether_addr(hdr->addr1) ||
782                (netdev->flags & IFF_PROMISC);
783 }
784
785 /* Filters receiving packets. If it returns 1 send it to ieee80211_rx, if 0
786  * return. If an error is detected -EINVAL is returned. ieee80211_rx_mgt() is
787  * called here.
788  *
789  * It has been based on ieee80211_rx_any.
790  */
791 static int filter_rx(struct ieee80211_device *ieee,
792                      const u8 *buffer, unsigned int length,
793                      struct ieee80211_rx_stats *stats)
794 {
795         struct ieee80211_hdr_4addr *hdr;
796         u16 fc;
797
798         if (ieee->iw_mode == IW_MODE_MONITOR)
799                 return 1;
800
801         hdr = (struct ieee80211_hdr_4addr *)buffer;
802         fc = le16_to_cpu(hdr->frame_ctl);
803         if ((fc & IEEE80211_FCTL_VERS) != 0)
804                 return -EINVAL;
805
806         switch (WLAN_FC_GET_TYPE(fc)) {
807         case IEEE80211_FTYPE_MGMT:
808                 if (length < sizeof(struct ieee80211_hdr_3addr))
809                         return -EINVAL;
810                 ieee80211_rx_mgt(ieee, hdr, stats);
811                 return 0;
812         case IEEE80211_FTYPE_CTL:
813                 /* Ignore invalid short buffers */
814                 return 0;
815         case IEEE80211_FTYPE_DATA:
816                 if (length < sizeof(struct ieee80211_hdr_3addr))
817                         return -EINVAL;
818                 return is_data_packet_for_us(ieee, hdr);
819         }
820
821         return -EINVAL;
822 }
823
824 static void update_qual_rssi(struct zd_mac *mac,
825                              const u8 *buffer, unsigned int length,
826                              u8 qual_percent, u8 rssi_percent)
827 {
828         unsigned long flags;
829         struct ieee80211_hdr_3addr *hdr;
830         int i;
831
832         hdr = (struct ieee80211_hdr_3addr *)buffer;
833         if (length < offsetof(struct ieee80211_hdr_3addr, addr3))
834                 return;
835         if (memcmp(hdr->addr2, zd_mac_to_ieee80211(mac)->bssid, ETH_ALEN) != 0)
836                 return;
837
838         spin_lock_irqsave(&mac->lock, flags);
839         i = mac->stats_count % ZD_MAC_STATS_BUFFER_SIZE;
840         mac->qual_buffer[i] = qual_percent;
841         mac->rssi_buffer[i] = rssi_percent;
842         mac->stats_count++;
843         spin_unlock_irqrestore(&mac->lock, flags);
844 }
845
846 static int fill_rx_stats(struct ieee80211_rx_stats *stats,
847                          const struct rx_status **pstatus,
848                          struct zd_mac *mac,
849                          const u8 *buffer, unsigned int length)
850 {
851         const struct rx_status *status;
852
853         *pstatus = status = zd_tail(buffer, length, sizeof(struct rx_status));
854         if (status->frame_status & ZD_RX_ERROR) {
855                 /* FIXME: update? */
856                 return -EINVAL;
857         }
858         memset(stats, 0, sizeof(struct ieee80211_rx_stats));
859         stats->len = length - (ZD_PLCP_HEADER_SIZE + IEEE80211_FCS_LEN +
860                                + sizeof(struct rx_status));
861         /* FIXME: 802.11a */
862         stats->freq = IEEE80211_24GHZ_BAND;
863         stats->received_channel = _zd_chip_get_channel(&mac->chip);
864         stats->rssi = zd_rx_strength_percent(status->signal_strength);
865         stats->signal = zd_rx_qual_percent(buffer,
866                                           length - sizeof(struct rx_status),
867                                           status);
868         stats->mask = IEEE80211_STATMASK_RSSI | IEEE80211_STATMASK_SIGNAL;
869         stats->rate = zd_rx_rate(buffer, status);
870         if (stats->rate)
871                 stats->mask |= IEEE80211_STATMASK_RATE;
872
873         return 0;
874 }
875
876 int zd_mac_rx(struct zd_mac *mac, const u8 *buffer, unsigned int length)
877 {
878         int r;
879         struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
880         struct ieee80211_rx_stats stats;
881         const struct rx_status *status;
882         struct sk_buff *skb;
883
884         if (length < ZD_PLCP_HEADER_SIZE + IEEE80211_1ADDR_LEN +
885                      IEEE80211_FCS_LEN + sizeof(struct rx_status))
886                 return -EINVAL;
887
888         r = fill_rx_stats(&stats, &status, mac, buffer, length);
889         if (r)
890                 return r;
891
892         length -= ZD_PLCP_HEADER_SIZE+IEEE80211_FCS_LEN+
893                   sizeof(struct rx_status);
894         buffer += ZD_PLCP_HEADER_SIZE;
895
896         update_qual_rssi(mac, buffer, length, stats.signal, stats.rssi);
897
898         r = filter_rx(ieee, buffer, length, &stats);
899         if (r <= 0)
900                 return r;
901
902         skb = dev_alloc_skb(sizeof(struct zd_rt_hdr) + length);
903         if (!skb)
904                 return -ENOMEM;
905         if (ieee->iw_mode == IW_MODE_MONITOR)
906                 fill_rt_header(skb_put(skb, sizeof(struct zd_rt_hdr)), mac,
907                                &stats, status);
908         memcpy(skb_put(skb, length), buffer, length);
909
910         r = ieee80211_rx(ieee, skb, &stats);
911         if (!r) {
912                 ZD_ASSERT(in_irq());
913                 dev_kfree_skb_irq(skb);
914         }
915         return 0;
916 }
917
918 static int netdev_tx(struct ieee80211_txb *txb, struct net_device *netdev,
919                      int pri)
920 {
921         return zd_mac_tx(zd_netdev_mac(netdev), txb, pri);
922 }
923
924 static void set_security(struct net_device *netdev,
925                          struct ieee80211_security *sec)
926 {
927         struct ieee80211_device *ieee = zd_netdev_ieee80211(netdev);
928         struct ieee80211_security *secinfo = &ieee->sec;
929         int keyidx;
930
931         dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)), "\n");
932
933         for (keyidx = 0; keyidx<WEP_KEYS; keyidx++)
934                 if (sec->flags & (1<<keyidx)) {
935                         secinfo->encode_alg[keyidx] = sec->encode_alg[keyidx];
936                         secinfo->key_sizes[keyidx] = sec->key_sizes[keyidx];
937                         memcpy(secinfo->keys[keyidx], sec->keys[keyidx],
938                                SCM_KEY_LEN);
939                 }
940
941         if (sec->flags & SEC_ACTIVE_KEY) {
942                 secinfo->active_key = sec->active_key;
943                 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
944                         "   .active_key = %d\n", sec->active_key);
945         }
946         if (sec->flags & SEC_UNICAST_GROUP) {
947                 secinfo->unicast_uses_group = sec->unicast_uses_group;
948                 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
949                         "   .unicast_uses_group = %d\n",
950                         sec->unicast_uses_group);
951         }
952         if (sec->flags & SEC_LEVEL) {
953                 secinfo->level = sec->level;
954                 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
955                         "   .level = %d\n", sec->level);
956         }
957         if (sec->flags & SEC_ENABLED) {
958                 secinfo->enabled = sec->enabled;
959                 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
960                         "   .enabled = %d\n", sec->enabled);
961         }
962         if (sec->flags & SEC_ENCRYPT) {
963                 secinfo->encrypt = sec->encrypt;
964                 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
965                         "   .encrypt = %d\n", sec->encrypt);
966         }
967         if (sec->flags & SEC_AUTH_MODE) {
968                 secinfo->auth_mode = sec->auth_mode;
969                 dev_dbg_f(zd_mac_dev(zd_netdev_mac(netdev)),
970                         "   .auth_mode = %d\n", sec->auth_mode);
971         }
972 }
973
974 static void ieee_init(struct ieee80211_device *ieee)
975 {
976         ieee->mode = IEEE_B | IEEE_G;
977         ieee->freq_band = IEEE80211_24GHZ_BAND;
978         ieee->modulation = IEEE80211_OFDM_MODULATION | IEEE80211_CCK_MODULATION;
979         ieee->tx_headroom = sizeof(struct zd_ctrlset);
980         ieee->set_security = set_security;
981         ieee->hard_start_xmit = netdev_tx;
982
983         /* Software encryption/decryption for now */
984         ieee->host_build_iv = 0;
985         ieee->host_encrypt = 1;
986         ieee->host_decrypt = 1;
987
988         /* FIXME: default to managed mode, until ieee80211 and zd1211rw can
989          * correctly support AUTO */
990         ieee->iw_mode = IW_MODE_INFRA;
991 }
992
993 static void softmac_init(struct ieee80211softmac_device *sm)
994 {
995         sm->set_channel = set_channel;
996 }
997
998 struct iw_statistics *zd_mac_get_wireless_stats(struct net_device *ndev)
999 {
1000         struct zd_mac *mac = zd_netdev_mac(ndev);
1001         struct iw_statistics *iw_stats = &mac->iw_stats;
1002         unsigned int i, count, qual_total, rssi_total;
1003
1004         memset(iw_stats, 0, sizeof(struct iw_statistics));
1005         /* We are not setting the status, because ieee->state is not updated
1006          * at all and this driver doesn't track authentication state.
1007          */
1008         spin_lock_irq(&mac->lock);
1009         count = mac->stats_count < ZD_MAC_STATS_BUFFER_SIZE ?
1010                 mac->stats_count : ZD_MAC_STATS_BUFFER_SIZE;
1011         qual_total = rssi_total = 0;
1012         for (i = 0; i < count; i++) {
1013                 qual_total += mac->qual_buffer[i];
1014                 rssi_total += mac->rssi_buffer[i];
1015         }
1016         spin_unlock_irq(&mac->lock);
1017         iw_stats->qual.updated = IW_QUAL_NOISE_INVALID;
1018         if (count > 0) {
1019                 iw_stats->qual.qual = qual_total / count;
1020                 iw_stats->qual.level = rssi_total / count;
1021                 iw_stats->qual.updated |=
1022                         IW_QUAL_QUAL_UPDATED|IW_QUAL_LEVEL_UPDATED;
1023         } else {
1024                 iw_stats->qual.updated |=
1025                         IW_QUAL_QUAL_INVALID|IW_QUAL_LEVEL_INVALID;
1026         }
1027         /* TODO: update counter */
1028         return iw_stats;
1029 }
1030
1031 #ifdef DEBUG
1032 static const char* decryption_types[] = {
1033         [ZD_RX_NO_WEP] = "none",
1034         [ZD_RX_WEP64] = "WEP64",
1035         [ZD_RX_TKIP] = "TKIP",
1036         [ZD_RX_AES] = "AES",
1037         [ZD_RX_WEP128] = "WEP128",
1038         [ZD_RX_WEP256] = "WEP256",
1039 };
1040
1041 static const char *decryption_type_string(u8 type)
1042 {
1043         const char *s;
1044
1045         if (type < ARRAY_SIZE(decryption_types)) {
1046                 s = decryption_types[type];
1047         } else {
1048                 s = NULL;
1049         }
1050         return s ? s : "unknown";
1051 }
1052
1053 static int is_ofdm(u8 frame_status)
1054 {
1055         return (frame_status & ZD_RX_OFDM);
1056 }
1057
1058 void zd_dump_rx_status(const struct rx_status *status)
1059 {
1060         const char* modulation;
1061         u8 quality;
1062
1063         if (is_ofdm(status->frame_status)) {
1064                 modulation = "ofdm";
1065                 quality = status->signal_quality_ofdm;
1066         } else {
1067                 modulation = "cck";
1068                 quality = status->signal_quality_cck;
1069         }
1070         pr_debug("rx status %s strength %#04x qual %#04x decryption %s\n",
1071                 modulation, status->signal_strength, quality,
1072                 decryption_type_string(status->decryption_type));
1073         if (status->frame_status & ZD_RX_ERROR) {
1074                 pr_debug("rx error %s%s%s%s%s%s\n",
1075                         (status->frame_status & ZD_RX_TIMEOUT_ERROR) ?
1076                                 "timeout " : "",
1077                         (status->frame_status & ZD_RX_FIFO_OVERRUN_ERROR) ?
1078                                 "fifo " : "",
1079                         (status->frame_status & ZD_RX_DECRYPTION_ERROR) ?
1080                                 "decryption " : "",
1081                         (status->frame_status & ZD_RX_CRC32_ERROR) ?
1082                                 "crc32 " : "",
1083                         (status->frame_status & ZD_RX_NO_ADDR1_MATCH_ERROR) ?
1084                                 "addr1 " : "",
1085                         (status->frame_status & ZD_RX_CRC16_ERROR) ?
1086                                 "crc16" : "");
1087         }
1088 }
1089 #endif /* DEBUG */
1090
1091 #define LINK_LED_WORK_DELAY HZ
1092
1093 static void link_led_handler(void *p)
1094 {
1095         struct zd_mac *mac = p;
1096         struct zd_chip *chip = &mac->chip;
1097         struct ieee80211softmac_device *sm = ieee80211_priv(mac->netdev);
1098         int is_associated;
1099         int r;
1100
1101         spin_lock_irq(&mac->lock);
1102         is_associated = sm->associnfo.associated != 0;
1103         spin_unlock_irq(&mac->lock);
1104
1105         r = zd_chip_control_leds(chip,
1106                                  is_associated ? LED_ASSOCIATED : LED_SCANNING);
1107         if (r)
1108                 dev_err(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1109
1110         queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1111                            LINK_LED_WORK_DELAY);
1112 }
1113
1114 static void housekeeping_init(struct zd_mac *mac)
1115 {
1116         INIT_WORK(&mac->housekeeping.link_led_work, link_led_handler, mac);
1117 }
1118
1119 static void housekeeping_enable(struct zd_mac *mac)
1120 {
1121         dev_dbg_f(zd_mac_dev(mac), "\n");
1122         queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1123                            0);
1124 }
1125
1126 static void housekeeping_disable(struct zd_mac *mac)
1127 {
1128         dev_dbg_f(zd_mac_dev(mac), "\n");
1129         cancel_rearming_delayed_workqueue(zd_workqueue,
1130                 &mac->housekeeping.link_led_work);
1131         zd_chip_control_leds(&mac->chip, LED_OFF);
1132 }