6c3e21887fc8a00ba5a48b70a21bddafa81884ec
[linux-2.6.git] / drivers / net / wireless / zd1211rw / zd_mac.c
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21  */
22
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/usb.h>
26 #include <linux/jiffies.h>
27 #include <net/ieee80211_radiotap.h>
28
29 #include "zd_def.h"
30 #include "zd_chip.h"
31 #include "zd_mac.h"
32 #include "zd_rf.h"
33
34 struct zd_reg_alpha2_map {
35         u32 reg;
36         char alpha2[2];
37 };
38
39 static struct zd_reg_alpha2_map reg_alpha2_map[] = {
40         { ZD_REGDOMAIN_FCC, "US" },
41         { ZD_REGDOMAIN_IC, "CA" },
42         { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
43         { ZD_REGDOMAIN_JAPAN, "JP" },
44         { ZD_REGDOMAIN_JAPAN_ADD, "JP" },
45         { ZD_REGDOMAIN_SPAIN, "ES" },
46         { ZD_REGDOMAIN_FRANCE, "FR" },
47 };
48
49 /* This table contains the hardware specific values for the modulation rates. */
50 static const struct ieee80211_rate zd_rates[] = {
51         { .bitrate = 10,
52           .hw_value = ZD_CCK_RATE_1M, },
53         { .bitrate = 20,
54           .hw_value = ZD_CCK_RATE_2M,
55           .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
56           .flags = IEEE80211_RATE_SHORT_PREAMBLE },
57         { .bitrate = 55,
58           .hw_value = ZD_CCK_RATE_5_5M,
59           .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
60           .flags = IEEE80211_RATE_SHORT_PREAMBLE },
61         { .bitrate = 110,
62           .hw_value = ZD_CCK_RATE_11M,
63           .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
64           .flags = IEEE80211_RATE_SHORT_PREAMBLE },
65         { .bitrate = 60,
66           .hw_value = ZD_OFDM_RATE_6M,
67           .flags = 0 },
68         { .bitrate = 90,
69           .hw_value = ZD_OFDM_RATE_9M,
70           .flags = 0 },
71         { .bitrate = 120,
72           .hw_value = ZD_OFDM_RATE_12M,
73           .flags = 0 },
74         { .bitrate = 180,
75           .hw_value = ZD_OFDM_RATE_18M,
76           .flags = 0 },
77         { .bitrate = 240,
78           .hw_value = ZD_OFDM_RATE_24M,
79           .flags = 0 },
80         { .bitrate = 360,
81           .hw_value = ZD_OFDM_RATE_36M,
82           .flags = 0 },
83         { .bitrate = 480,
84           .hw_value = ZD_OFDM_RATE_48M,
85           .flags = 0 },
86         { .bitrate = 540,
87           .hw_value = ZD_OFDM_RATE_54M,
88           .flags = 0 },
89 };
90
91 static const struct ieee80211_channel zd_channels[] = {
92         { .center_freq = 2412, .hw_value = 1 },
93         { .center_freq = 2417, .hw_value = 2 },
94         { .center_freq = 2422, .hw_value = 3 },
95         { .center_freq = 2427, .hw_value = 4 },
96         { .center_freq = 2432, .hw_value = 5 },
97         { .center_freq = 2437, .hw_value = 6 },
98         { .center_freq = 2442, .hw_value = 7 },
99         { .center_freq = 2447, .hw_value = 8 },
100         { .center_freq = 2452, .hw_value = 9 },
101         { .center_freq = 2457, .hw_value = 10 },
102         { .center_freq = 2462, .hw_value = 11 },
103         { .center_freq = 2467, .hw_value = 12 },
104         { .center_freq = 2472, .hw_value = 13 },
105         { .center_freq = 2484, .hw_value = 14 },
106 };
107
108 static void housekeeping_init(struct zd_mac *mac);
109 static void housekeeping_enable(struct zd_mac *mac);
110 static void housekeeping_disable(struct zd_mac *mac);
111
112 static int zd_reg2alpha2(u8 regdomain, char *alpha2)
113 {
114         unsigned int i;
115         struct zd_reg_alpha2_map *reg_map;
116         for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
117                 reg_map = &reg_alpha2_map[i];
118                 if (regdomain == reg_map->reg) {
119                         alpha2[0] = reg_map->alpha2[0];
120                         alpha2[1] = reg_map->alpha2[1];
121                         return 0;
122                 }
123         }
124         return 1;
125 }
126
127 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
128 {
129         int r;
130         u8 addr[ETH_ALEN];
131         struct zd_mac *mac = zd_hw_mac(hw);
132
133         r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
134         if (r)
135                 return r;
136
137         SET_IEEE80211_PERM_ADDR(hw, addr);
138
139         return 0;
140 }
141
142 int zd_mac_init_hw(struct ieee80211_hw *hw)
143 {
144         int r;
145         struct zd_mac *mac = zd_hw_mac(hw);
146         struct zd_chip *chip = &mac->chip;
147         char alpha2[2];
148         u8 default_regdomain;
149
150         r = zd_chip_enable_int(chip);
151         if (r)
152                 goto out;
153         r = zd_chip_init_hw(chip);
154         if (r)
155                 goto disable_int;
156
157         ZD_ASSERT(!irqs_disabled());
158
159         r = zd_read_regdomain(chip, &default_regdomain);
160         if (r)
161                 goto disable_int;
162         spin_lock_irq(&mac->lock);
163         mac->regdomain = mac->default_regdomain = default_regdomain;
164         spin_unlock_irq(&mac->lock);
165
166         /* We must inform the device that we are doing encryption/decryption in
167          * software at the moment. */
168         r = zd_set_encryption_type(chip, ENC_SNIFFER);
169         if (r)
170                 goto disable_int;
171
172         r = zd_reg2alpha2(mac->regdomain, alpha2);
173         if (!r)
174                 regulatory_hint(hw->wiphy, alpha2, NULL);
175
176         r = 0;
177 disable_int:
178         zd_chip_disable_int(chip);
179 out:
180         return r;
181 }
182
183 void zd_mac_clear(struct zd_mac *mac)
184 {
185         flush_workqueue(zd_workqueue);
186         zd_chip_clear(&mac->chip);
187         ZD_ASSERT(!spin_is_locked(&mac->lock));
188         ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
189 }
190
191 static int set_rx_filter(struct zd_mac *mac)
192 {
193         unsigned long flags;
194         u32 filter = STA_RX_FILTER;
195
196         spin_lock_irqsave(&mac->lock, flags);
197         if (mac->pass_ctrl)
198                 filter |= RX_FILTER_CTRL;
199         spin_unlock_irqrestore(&mac->lock, flags);
200
201         return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
202 }
203
204 static int set_mc_hash(struct zd_mac *mac)
205 {
206         struct zd_mc_hash hash;
207         zd_mc_clear(&hash);
208         return zd_chip_set_multicast_hash(&mac->chip, &hash);
209 }
210
211 static int zd_op_start(struct ieee80211_hw *hw)
212 {
213         struct zd_mac *mac = zd_hw_mac(hw);
214         struct zd_chip *chip = &mac->chip;
215         struct zd_usb *usb = &chip->usb;
216         int r;
217
218         if (!usb->initialized) {
219                 r = zd_usb_init_hw(usb);
220                 if (r)
221                         goto out;
222         }
223
224         r = zd_chip_enable_int(chip);
225         if (r < 0)
226                 goto out;
227
228         r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
229         if (r < 0)
230                 goto disable_int;
231         r = set_rx_filter(mac);
232         if (r)
233                 goto disable_int;
234         r = set_mc_hash(mac);
235         if (r)
236                 goto disable_int;
237         r = zd_chip_switch_radio_on(chip);
238         if (r < 0)
239                 goto disable_int;
240         r = zd_chip_enable_rxtx(chip);
241         if (r < 0)
242                 goto disable_radio;
243         r = zd_chip_enable_hwint(chip);
244         if (r < 0)
245                 goto disable_rxtx;
246
247         housekeeping_enable(mac);
248         return 0;
249 disable_rxtx:
250         zd_chip_disable_rxtx(chip);
251 disable_radio:
252         zd_chip_switch_radio_off(chip);
253 disable_int:
254         zd_chip_disable_int(chip);
255 out:
256         return r;
257 }
258
259 static void zd_op_stop(struct ieee80211_hw *hw)
260 {
261         struct zd_mac *mac = zd_hw_mac(hw);
262         struct zd_chip *chip = &mac->chip;
263         struct sk_buff *skb;
264         struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
265
266         /* The order here deliberately is a little different from the open()
267          * method, since we need to make sure there is no opportunity for RX
268          * frames to be processed by mac80211 after we have stopped it.
269          */
270
271         zd_chip_disable_rxtx(chip);
272         housekeeping_disable(mac);
273         flush_workqueue(zd_workqueue);
274
275         zd_chip_disable_hwint(chip);
276         zd_chip_switch_radio_off(chip);
277         zd_chip_disable_int(chip);
278
279
280         while ((skb = skb_dequeue(ack_wait_queue)))
281                 dev_kfree_skb_any(skb);
282 }
283
284 /**
285  * tx_status - reports tx status of a packet if required
286  * @hw - a &struct ieee80211_hw pointer
287  * @skb - a sk-buffer
288  * @flags: extra flags to set in the TX status info
289  * @ackssi: ACK signal strength
290  * @success - True for successfull transmission of the frame
291  *
292  * This information calls ieee80211_tx_status_irqsafe() if required by the
293  * control information. It copies the control information into the status
294  * information.
295  *
296  * If no status information has been requested, the skb is freed.
297  */
298 static void tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
299                       u32 flags, int ackssi, bool success)
300 {
301         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
302
303         memset(&info->status, 0, sizeof(info->status));
304
305         if (!success)
306                 info->status.excessive_retries = 1;
307         info->flags |= flags;
308         info->status.ack_signal = ackssi;
309         ieee80211_tx_status_irqsafe(hw, skb);
310 }
311
312 /**
313  * zd_mac_tx_failed - callback for failed frames
314  * @dev: the mac80211 wireless device
315  *
316  * This function is called if a frame couldn't be succesfully be
317  * transferred. The first frame from the tx queue, will be selected and
318  * reported as error to the upper layers.
319  */
320 void zd_mac_tx_failed(struct ieee80211_hw *hw)
321 {
322         struct sk_buff_head *q = &zd_hw_mac(hw)->ack_wait_queue;
323         struct sk_buff *skb;
324
325         skb = skb_dequeue(q);
326         if (skb == NULL)
327                 return;
328
329         tx_status(hw, skb, 0, 0, 0);
330 }
331
332 /**
333  * zd_mac_tx_to_dev - callback for USB layer
334  * @skb: a &sk_buff pointer
335  * @error: error value, 0 if transmission successful
336  *
337  * Informs the MAC layer that the frame has successfully transferred to the
338  * device. If an ACK is required and the transfer to the device has been
339  * successful, the packets are put on the @ack_wait_queue with
340  * the control set removed.
341  */
342 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
343 {
344         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
345         struct ieee80211_hw *hw = info->driver_data[0];
346
347         skb_pull(skb, sizeof(struct zd_ctrlset));
348         if (unlikely(error ||
349             (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
350                 tx_status(hw, skb, 0, 0, !error);
351         } else {
352                 struct sk_buff_head *q =
353                         &zd_hw_mac(hw)->ack_wait_queue;
354
355                 skb_queue_tail(q, skb);
356                 while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS)
357                         zd_mac_tx_failed(hw);
358         }
359 }
360
361 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
362 {
363         /* ZD_PURE_RATE() must be used to remove the modulation type flag of
364          * the zd-rate values.
365          */
366         static const u8 rate_divisor[] = {
367                 [ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
368                 [ZD_PURE_RATE(ZD_CCK_RATE_2M)]   =  2,
369                 /* Bits must be doubled. */
370                 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
371                 [ZD_PURE_RATE(ZD_CCK_RATE_11M)]  = 11,
372                 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
373                 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
374                 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
375                 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
376                 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
377                 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
378                 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
379                 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
380         };
381
382         u32 bits = (u32)tx_length * 8;
383         u32 divisor;
384
385         divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
386         if (divisor == 0)
387                 return -EINVAL;
388
389         switch (zd_rate) {
390         case ZD_CCK_RATE_5_5M:
391                 bits = (2*bits) + 10; /* round up to the next integer */
392                 break;
393         case ZD_CCK_RATE_11M:
394                 if (service) {
395                         u32 t = bits % 11;
396                         *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
397                         if (0 < t && t <= 3) {
398                                 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
399                         }
400                 }
401                 bits += 10; /* round up to the next integer */
402                 break;
403         }
404
405         return bits/divisor;
406 }
407
408 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
409                            struct ieee80211_hdr *header, u32 flags)
410 {
411         /*
412          * CONTROL TODO:
413          * - if backoff needed, enable bit 0
414          * - if burst (backoff not needed) disable bit 0
415          */
416
417         cs->control = 0;
418
419         /* First fragment */
420         if (flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
421                 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
422
423         /* Multicast */
424         if (is_multicast_ether_addr(header->addr1))
425                 cs->control |= ZD_CS_MULTICAST;
426
427         /* PS-POLL */
428         if (ieee80211_is_pspoll(header->frame_control))
429                 cs->control |= ZD_CS_PS_POLL_FRAME;
430
431         if (flags & IEEE80211_TX_CTL_USE_RTS_CTS)
432                 cs->control |= ZD_CS_RTS;
433
434         if (flags & IEEE80211_TX_CTL_USE_CTS_PROTECT)
435                 cs->control |= ZD_CS_SELF_CTS;
436
437         /* FIXME: Management frame? */
438 }
439
440 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon)
441 {
442         struct zd_mac *mac = zd_hw_mac(hw);
443         int r;
444         u32 tmp, j = 0;
445         /* 4 more bytes for tail CRC */
446         u32 full_len = beacon->len + 4;
447
448         r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 0);
449         if (r < 0)
450                 return r;
451         r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
452         if (r < 0)
453                 return r;
454
455         while (tmp & 0x2) {
456                 r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
457                 if (r < 0)
458                         return r;
459                 if ((++j % 100) == 0) {
460                         printk(KERN_ERR "CR_BCN_FIFO_SEMAPHORE not ready\n");
461                         if (j >= 500)  {
462                                 printk(KERN_ERR "Giving up beacon config.\n");
463                                 return -ETIMEDOUT;
464                         }
465                 }
466                 msleep(1);
467         }
468
469         r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, full_len - 1);
470         if (r < 0)
471                 return r;
472         if (zd_chip_is_zd1211b(&mac->chip)) {
473                 r = zd_iowrite32(&mac->chip, CR_BCN_LENGTH, full_len - 1);
474                 if (r < 0)
475                         return r;
476         }
477
478         for (j = 0 ; j < beacon->len; j++) {
479                 r = zd_iowrite32(&mac->chip, CR_BCN_FIFO,
480                                 *((u8 *)(beacon->data + j)));
481                 if (r < 0)
482                         return r;
483         }
484
485         for (j = 0; j < 4; j++) {
486                 r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, 0x0);
487                 if (r < 0)
488                         return r;
489         }
490
491         r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 1);
492         if (r < 0)
493                 return r;
494
495         /* 802.11b/g 2.4G CCK 1Mb
496          * 802.11a, not yet implemented, uses different values (see GPL vendor
497          * driver)
498          */
499         return zd_iowrite32(&mac->chip, CR_BCN_PLCP_CFG, 0x00000400 |
500                         (full_len << 19));
501 }
502
503 static int fill_ctrlset(struct zd_mac *mac,
504                         struct sk_buff *skb)
505 {
506         int r;
507         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
508         unsigned int frag_len = skb->len + FCS_LEN;
509         unsigned int packet_length;
510         struct ieee80211_rate *txrate;
511         struct zd_ctrlset *cs = (struct zd_ctrlset *)
512                 skb_push(skb, sizeof(struct zd_ctrlset));
513         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
514
515         ZD_ASSERT(frag_len <= 0xffff);
516
517         txrate = ieee80211_get_tx_rate(mac->hw, info);
518
519         cs->modulation = txrate->hw_value;
520         if (info->flags & IEEE80211_TX_CTL_SHORT_PREAMBLE)
521                 cs->modulation = txrate->hw_value_short;
522
523         cs->tx_length = cpu_to_le16(frag_len);
524
525         cs_set_control(mac, cs, hdr, info->flags);
526
527         packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
528         ZD_ASSERT(packet_length <= 0xffff);
529         /* ZD1211B: Computing the length difference this way, gives us
530          * flexibility to compute the packet length.
531          */
532         cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
533                         packet_length - frag_len : packet_length);
534
535         /*
536          * CURRENT LENGTH:
537          * - transmit frame length in microseconds
538          * - seems to be derived from frame length
539          * - see Cal_Us_Service() in zdinlinef.h
540          * - if macp->bTxBurstEnable is enabled, then multiply by 4
541          *  - bTxBurstEnable is never set in the vendor driver
542          *
543          * SERVICE:
544          * - "for PLCP configuration"
545          * - always 0 except in some situations at 802.11b 11M
546          * - see line 53 of zdinlinef.h
547          */
548         cs->service = 0;
549         r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
550                                  le16_to_cpu(cs->tx_length));
551         if (r < 0)
552                 return r;
553         cs->current_length = cpu_to_le16(r);
554         cs->next_frame_length = 0;
555
556         return 0;
557 }
558
559 /**
560  * zd_op_tx - transmits a network frame to the device
561  *
562  * @dev: mac80211 hardware device
563  * @skb: socket buffer
564  * @control: the control structure
565  *
566  * This function transmit an IEEE 802.11 network frame to the device. The
567  * control block of the skbuff will be initialized. If necessary the incoming
568  * mac80211 queues will be stopped.
569  */
570 static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
571 {
572         struct zd_mac *mac = zd_hw_mac(hw);
573         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
574         int r;
575
576         r = fill_ctrlset(mac, skb);
577         if (r)
578                 return r;
579
580         info->driver_data[0] = hw;
581
582         r = zd_usb_tx(&mac->chip.usb, skb);
583         if (r)
584                 return r;
585         return 0;
586 }
587
588 /**
589  * filter_ack - filters incoming packets for acknowledgements
590  * @dev: the mac80211 device
591  * @rx_hdr: received header
592  * @stats: the status for the received packet
593  *
594  * This functions looks for ACK packets and tries to match them with the
595  * frames in the tx queue. If a match is found the frame will be dequeued and
596  * the upper layers is informed about the successful transmission. If
597  * mac80211 queues have been stopped and the number of frames still to be
598  * transmitted is low the queues will be opened again.
599  *
600  * Returns 1 if the frame was an ACK, 0 if it was ignored.
601  */
602 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
603                       struct ieee80211_rx_status *stats)
604 {
605         struct sk_buff *skb;
606         struct sk_buff_head *q;
607         unsigned long flags;
608
609         if (!ieee80211_is_ack(rx_hdr->frame_control))
610                 return 0;
611
612         q = &zd_hw_mac(hw)->ack_wait_queue;
613         spin_lock_irqsave(&q->lock, flags);
614         skb_queue_walk(q, skb) {
615                 struct ieee80211_hdr *tx_hdr;
616
617                 tx_hdr = (struct ieee80211_hdr *)skb->data;
618                 if (likely(!compare_ether_addr(tx_hdr->addr2, rx_hdr->addr1)))
619                 {
620                         __skb_unlink(skb, q);
621                         tx_status(hw, skb, IEEE80211_TX_STAT_ACK, stats->signal, 1);
622                         goto out;
623                 }
624         }
625 out:
626         spin_unlock_irqrestore(&q->lock, flags);
627         return 1;
628 }
629
630 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
631 {
632         struct zd_mac *mac = zd_hw_mac(hw);
633         struct ieee80211_rx_status stats;
634         const struct rx_status *status;
635         struct sk_buff *skb;
636         int bad_frame = 0;
637         __le16 fc;
638         int need_padding;
639         int i;
640         u8 rate;
641
642         if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
643                      FCS_LEN + sizeof(struct rx_status))
644                 return -EINVAL;
645
646         memset(&stats, 0, sizeof(stats));
647
648         /* Note about pass_failed_fcs and pass_ctrl access below:
649          * mac locking intentionally omitted here, as this is the only unlocked
650          * reader and the only writer is configure_filter. Plus, if there were
651          * any races accessing these variables, it wouldn't really matter.
652          * If mac80211 ever provides a way for us to access filter flags
653          * from outside configure_filter, we could improve on this. Also, this
654          * situation may change once we implement some kind of DMA-into-skb
655          * RX path. */
656
657         /* Caller has to ensure that length >= sizeof(struct rx_status). */
658         status = (struct rx_status *)
659                 (buffer + (length - sizeof(struct rx_status)));
660         if (status->frame_status & ZD_RX_ERROR) {
661                 if (mac->pass_failed_fcs &&
662                                 (status->frame_status & ZD_RX_CRC32_ERROR)) {
663                         stats.flag |= RX_FLAG_FAILED_FCS_CRC;
664                         bad_frame = 1;
665                 } else {
666                         return -EINVAL;
667                 }
668         }
669
670         stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
671         stats.band = IEEE80211_BAND_2GHZ;
672         stats.signal = status->signal_strength;
673         stats.qual = zd_rx_qual_percent(buffer,
674                                           length - sizeof(struct rx_status),
675                                           status);
676
677         rate = zd_rx_rate(buffer, status);
678
679         /* todo: return index in the big switches in zd_rx_rate instead */
680         for (i = 0; i < mac->band.n_bitrates; i++)
681                 if (rate == mac->band.bitrates[i].hw_value)
682                         stats.rate_idx = i;
683
684         length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
685         buffer += ZD_PLCP_HEADER_SIZE;
686
687         /* Except for bad frames, filter each frame to see if it is an ACK, in
688          * which case our internal TX tracking is updated. Normally we then
689          * bail here as there's no need to pass ACKs on up to the stack, but
690          * there is also the case where the stack has requested us to pass
691          * control frames on up (pass_ctrl) which we must consider. */
692         if (!bad_frame &&
693                         filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
694                         && !mac->pass_ctrl)
695                 return 0;
696
697         fc = *(__le16 *)buffer;
698         need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
699
700         skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
701         if (skb == NULL)
702                 return -ENOMEM;
703         if (need_padding) {
704                 /* Make sure the the payload data is 4 byte aligned. */
705                 skb_reserve(skb, 2);
706         }
707
708         memcpy(skb_put(skb, length), buffer, length);
709
710         ieee80211_rx_irqsafe(hw, skb, &stats);
711         return 0;
712 }
713
714 static int zd_op_add_interface(struct ieee80211_hw *hw,
715                                 struct ieee80211_if_init_conf *conf)
716 {
717         struct zd_mac *mac = zd_hw_mac(hw);
718
719         /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
720         if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
721                 return -EOPNOTSUPP;
722
723         switch (conf->type) {
724         case NL80211_IFTYPE_MONITOR:
725         case NL80211_IFTYPE_MESH_POINT:
726         case NL80211_IFTYPE_STATION:
727         case NL80211_IFTYPE_ADHOC:
728                 mac->type = conf->type;
729                 break;
730         default:
731                 return -EOPNOTSUPP;
732         }
733
734         return zd_write_mac_addr(&mac->chip, conf->mac_addr);
735 }
736
737 static void zd_op_remove_interface(struct ieee80211_hw *hw,
738                                     struct ieee80211_if_init_conf *conf)
739 {
740         struct zd_mac *mac = zd_hw_mac(hw);
741         mac->type = NL80211_IFTYPE_UNSPECIFIED;
742         zd_set_beacon_interval(&mac->chip, 0);
743         zd_write_mac_addr(&mac->chip, NULL);
744 }
745
746 static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
747 {
748         struct zd_mac *mac = zd_hw_mac(hw);
749         struct ieee80211_conf *conf = &hw->conf;
750
751         return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
752 }
753
754 static int zd_op_config_interface(struct ieee80211_hw *hw,
755                                   struct ieee80211_vif *vif,
756                                    struct ieee80211_if_conf *conf)
757 {
758         struct zd_mac *mac = zd_hw_mac(hw);
759         int associated;
760         int r;
761
762         if (mac->type == NL80211_IFTYPE_MESH_POINT ||
763             mac->type == NL80211_IFTYPE_ADHOC) {
764                 associated = true;
765                 if (conf->changed & IEEE80211_IFCC_BEACON) {
766                         struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
767
768                         if (!beacon)
769                                 return -ENOMEM;
770                         r = zd_mac_config_beacon(hw, beacon);
771                         if (r < 0)
772                                 return r;
773                         r = zd_set_beacon_interval(&mac->chip, BCN_MODE_IBSS |
774                                         hw->conf.beacon_int);
775                         if (r < 0)
776                                 return r;
777                         kfree_skb(beacon);
778                 }
779         } else
780                 associated = is_valid_ether_addr(conf->bssid);
781
782         spin_lock_irq(&mac->lock);
783         mac->associated = associated;
784         spin_unlock_irq(&mac->lock);
785
786         /* TODO: do hardware bssid filtering */
787         return 0;
788 }
789
790 static void zd_process_intr(struct work_struct *work)
791 {
792         u16 int_status;
793         struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
794
795         int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer+4));
796         if (int_status & INT_CFG_NEXT_BCN) {
797                 if (net_ratelimit())
798                         dev_dbg_f(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");
799         } else
800                 dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
801
802         zd_chip_enable_hwint(&mac->chip);
803 }
804
805
806 static void set_multicast_hash_handler(struct work_struct *work)
807 {
808         struct zd_mac *mac =
809                 container_of(work, struct zd_mac, set_multicast_hash_work);
810         struct zd_mc_hash hash;
811
812         spin_lock_irq(&mac->lock);
813         hash = mac->multicast_hash;
814         spin_unlock_irq(&mac->lock);
815
816         zd_chip_set_multicast_hash(&mac->chip, &hash);
817 }
818
819 static void set_rx_filter_handler(struct work_struct *work)
820 {
821         struct zd_mac *mac =
822                 container_of(work, struct zd_mac, set_rx_filter_work);
823         int r;
824
825         dev_dbg_f(zd_mac_dev(mac), "\n");
826         r = set_rx_filter(mac);
827         if (r)
828                 dev_err(zd_mac_dev(mac), "set_rx_filter_handler error %d\n", r);
829 }
830
831 #define SUPPORTED_FIF_FLAGS \
832         (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
833         FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
834 static void zd_op_configure_filter(struct ieee80211_hw *hw,
835                         unsigned int changed_flags,
836                         unsigned int *new_flags,
837                         int mc_count, struct dev_mc_list *mclist)
838 {
839         struct zd_mc_hash hash;
840         struct zd_mac *mac = zd_hw_mac(hw);
841         unsigned long flags;
842         int i;
843
844         /* Only deal with supported flags */
845         changed_flags &= SUPPORTED_FIF_FLAGS;
846         *new_flags &= SUPPORTED_FIF_FLAGS;
847
848         /* changed_flags is always populated but this driver
849          * doesn't support all FIF flags so its possible we don't
850          * need to do anything */
851         if (!changed_flags)
852                 return;
853
854         if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI)) {
855                 zd_mc_add_all(&hash);
856         } else {
857                 zd_mc_clear(&hash);
858                 for (i = 0; i < mc_count; i++) {
859                         if (!mclist)
860                                 break;
861                         dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n",
862                                   mclist->dmi_addr);
863                         zd_mc_add_addr(&hash, mclist->dmi_addr);
864                         mclist = mclist->next;
865                 }
866         }
867
868         spin_lock_irqsave(&mac->lock, flags);
869         mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
870         mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
871         mac->multicast_hash = hash;
872         spin_unlock_irqrestore(&mac->lock, flags);
873         queue_work(zd_workqueue, &mac->set_multicast_hash_work);
874
875         if (changed_flags & FIF_CONTROL)
876                 queue_work(zd_workqueue, &mac->set_rx_filter_work);
877
878         /* no handling required for FIF_OTHER_BSS as we don't currently
879          * do BSSID filtering */
880         /* FIXME: in future it would be nice to enable the probe response
881          * filter (so that the driver doesn't see them) until
882          * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
883          * have to schedule work to enable prbresp reception, which might
884          * happen too late. For now we'll just listen and forward them all the
885          * time. */
886 }
887
888 static void set_rts_cts_work(struct work_struct *work)
889 {
890         struct zd_mac *mac =
891                 container_of(work, struct zd_mac, set_rts_cts_work);
892         unsigned long flags;
893         unsigned int short_preamble;
894
895         mutex_lock(&mac->chip.mutex);
896
897         spin_lock_irqsave(&mac->lock, flags);
898         mac->updating_rts_rate = 0;
899         short_preamble = mac->short_preamble;
900         spin_unlock_irqrestore(&mac->lock, flags);
901
902         zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
903         mutex_unlock(&mac->chip.mutex);
904 }
905
906 static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
907                                    struct ieee80211_vif *vif,
908                                    struct ieee80211_bss_conf *bss_conf,
909                                    u32 changes)
910 {
911         struct zd_mac *mac = zd_hw_mac(hw);
912         unsigned long flags;
913
914         dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
915
916         if (changes & BSS_CHANGED_ERP_PREAMBLE) {
917                 spin_lock_irqsave(&mac->lock, flags);
918                 mac->short_preamble = bss_conf->use_short_preamble;
919                 if (!mac->updating_rts_rate) {
920                         mac->updating_rts_rate = 1;
921                         /* FIXME: should disable TX here, until work has
922                          * completed and RTS_CTS reg is updated */
923                         queue_work(zd_workqueue, &mac->set_rts_cts_work);
924                 }
925                 spin_unlock_irqrestore(&mac->lock, flags);
926         }
927 }
928
929 static const struct ieee80211_ops zd_ops = {
930         .tx                     = zd_op_tx,
931         .start                  = zd_op_start,
932         .stop                   = zd_op_stop,
933         .add_interface          = zd_op_add_interface,
934         .remove_interface       = zd_op_remove_interface,
935         .config                 = zd_op_config,
936         .config_interface       = zd_op_config_interface,
937         .configure_filter       = zd_op_configure_filter,
938         .bss_info_changed       = zd_op_bss_info_changed,
939 };
940
941 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
942 {
943         struct zd_mac *mac;
944         struct ieee80211_hw *hw;
945
946         hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
947         if (!hw) {
948                 dev_dbg_f(&intf->dev, "out of memory\n");
949                 return NULL;
950         }
951
952         mac = zd_hw_mac(hw);
953
954         memset(mac, 0, sizeof(*mac));
955         spin_lock_init(&mac->lock);
956         mac->hw = hw;
957
958         mac->type = NL80211_IFTYPE_UNSPECIFIED;
959
960         memcpy(mac->channels, zd_channels, sizeof(zd_channels));
961         memcpy(mac->rates, zd_rates, sizeof(zd_rates));
962         mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
963         mac->band.bitrates = mac->rates;
964         mac->band.n_channels = ARRAY_SIZE(zd_channels);
965         mac->band.channels = mac->channels;
966
967         hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
968
969         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
970                     IEEE80211_HW_SIGNAL_DB;
971
972         hw->wiphy->interface_modes =
973                 BIT(NL80211_IFTYPE_MESH_POINT) |
974                 BIT(NL80211_IFTYPE_STATION) |
975                 BIT(NL80211_IFTYPE_ADHOC);
976
977         hw->max_signal = 100;
978         hw->queues = 1;
979         hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
980
981         skb_queue_head_init(&mac->ack_wait_queue);
982
983         zd_chip_init(&mac->chip, hw, intf);
984         housekeeping_init(mac);
985         INIT_WORK(&mac->set_multicast_hash_work, set_multicast_hash_handler);
986         INIT_WORK(&mac->set_rts_cts_work, set_rts_cts_work);
987         INIT_WORK(&mac->set_rx_filter_work, set_rx_filter_handler);
988         INIT_WORK(&mac->process_intr, zd_process_intr);
989
990         SET_IEEE80211_DEV(hw, &intf->dev);
991         return hw;
992 }
993
994 #define LINK_LED_WORK_DELAY HZ
995
996 static void link_led_handler(struct work_struct *work)
997 {
998         struct zd_mac *mac =
999                 container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1000         struct zd_chip *chip = &mac->chip;
1001         int is_associated;
1002         int r;
1003
1004         spin_lock_irq(&mac->lock);
1005         is_associated = mac->associated;
1006         spin_unlock_irq(&mac->lock);
1007
1008         r = zd_chip_control_leds(chip,
1009                                  is_associated ? LED_ASSOCIATED : LED_SCANNING);
1010         if (r)
1011                 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1012
1013         queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1014                            LINK_LED_WORK_DELAY);
1015 }
1016
1017 static void housekeeping_init(struct zd_mac *mac)
1018 {
1019         INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1020 }
1021
1022 static void housekeeping_enable(struct zd_mac *mac)
1023 {
1024         dev_dbg_f(zd_mac_dev(mac), "\n");
1025         queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1026                            0);
1027 }
1028
1029 static void housekeeping_disable(struct zd_mac *mac)
1030 {
1031         dev_dbg_f(zd_mac_dev(mac), "\n");
1032         cancel_rearming_delayed_workqueue(zd_workqueue,
1033                 &mac->housekeeping.link_led_work);
1034         zd_chip_control_leds(&mac->chip, LED_OFF);
1035 }