rt2x00: Restrict interface between rt2x00link and drivers
[linux-2.6.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41  * Allow hardware encryption to be disabled.
42  */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48  * Register access.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  */
58 #define WAIT_FOR_BBP(__dev, __reg) \
59         rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61         rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62 #define WAIT_FOR_MCU(__dev, __reg) \
63         rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64                                H2M_MAILBOX_CSR_OWNER, (__reg))
65
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67                               const unsigned int word, const u8 value)
68 {
69         u32 reg;
70
71         mutex_lock(&rt2x00dev->csr_mutex);
72
73         /*
74          * Wait until the BBP becomes available, afterwards we
75          * can safely write the new data into the register.
76          */
77         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78                 reg = 0;
79                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
85         }
86
87         mutex_unlock(&rt2x00dev->csr_mutex);
88 }
89
90 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
91                              const unsigned int word, u8 *value)
92 {
93         u32 reg;
94
95         mutex_lock(&rt2x00dev->csr_mutex);
96
97         /*
98          * Wait until the BBP becomes available, afterwards we
99          * can safely write the read request into the register.
100          * After the data has been written, we wait until hardware
101          * returns the correct value, if at any time the register
102          * doesn't become available in time, reg will be 0xffffffff
103          * which means we return 0xff to the caller.
104          */
105         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106                 reg = 0;
107                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110
111                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
112
113                 WAIT_FOR_BBP(rt2x00dev, &reg);
114         }
115
116         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117
118         mutex_unlock(&rt2x00dev->csr_mutex);
119 }
120
121 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
122                              const unsigned int word, const u32 value)
123 {
124         u32 reg;
125
126         if (!word)
127                 return;
128
129         mutex_lock(&rt2x00dev->csr_mutex);
130
131         /*
132          * Wait until the RF becomes available, afterwards we
133          * can safely write the new data into the register.
134          */
135         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
136                 reg = 0;
137                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
138                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
139                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
140                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
141
142                 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
143                 rt2x00_rf_write(rt2x00dev, word, value);
144         }
145
146         mutex_unlock(&rt2x00dev->csr_mutex);
147 }
148
149 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
150                                 const u8 command, const u8 token,
151                                 const u8 arg0, const u8 arg1)
152 {
153         u32 reg;
154
155         mutex_lock(&rt2x00dev->csr_mutex);
156
157         /*
158          * Wait until the MCU becomes available, afterwards we
159          * can safely write the new data into the register.
160          */
161         if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
162                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
163                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
164                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
165                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
166                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
167
168                 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
169                 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
170                 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
171                 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
172         }
173
174         mutex_unlock(&rt2x00dev->csr_mutex);
175
176 }
177
178 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
179 {
180         struct rt2x00_dev *rt2x00dev = eeprom->data;
181         u32 reg;
182
183         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
184
185         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
186         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
187         eeprom->reg_data_clock =
188             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
189         eeprom->reg_chip_select =
190             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
191 }
192
193 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
194 {
195         struct rt2x00_dev *rt2x00dev = eeprom->data;
196         u32 reg = 0;
197
198         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
199         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
200         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
201                            !!eeprom->reg_data_clock);
202         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
203                            !!eeprom->reg_chip_select);
204
205         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
206 }
207
208 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
209 static const struct rt2x00debug rt61pci_rt2x00debug = {
210         .owner  = THIS_MODULE,
211         .csr    = {
212                 .read           = rt2x00pci_register_read,
213                 .write          = rt2x00pci_register_write,
214                 .flags          = RT2X00DEBUGFS_OFFSET,
215                 .word_base      = CSR_REG_BASE,
216                 .word_size      = sizeof(u32),
217                 .word_count     = CSR_REG_SIZE / sizeof(u32),
218         },
219         .eeprom = {
220                 .read           = rt2x00_eeprom_read,
221                 .write          = rt2x00_eeprom_write,
222                 .word_base      = EEPROM_BASE,
223                 .word_size      = sizeof(u16),
224                 .word_count     = EEPROM_SIZE / sizeof(u16),
225         },
226         .bbp    = {
227                 .read           = rt61pci_bbp_read,
228                 .write          = rt61pci_bbp_write,
229                 .word_base      = BBP_BASE,
230                 .word_size      = sizeof(u8),
231                 .word_count     = BBP_SIZE / sizeof(u8),
232         },
233         .rf     = {
234                 .read           = rt2x00_rf_read,
235                 .write          = rt61pci_rf_write,
236                 .word_base      = RF_BASE,
237                 .word_size      = sizeof(u32),
238                 .word_count     = RF_SIZE / sizeof(u32),
239         },
240 };
241 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
242
243 #ifdef CONFIG_RT2X00_LIB_RFKILL
244 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
245 {
246         u32 reg;
247
248         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
249         return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
250 }
251 #else
252 #define rt61pci_rfkill_poll     NULL
253 #endif /* CONFIG_RT2X00_LIB_RFKILL */
254
255 #ifdef CONFIG_RT2X00_LIB_LEDS
256 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
257                                    enum led_brightness brightness)
258 {
259         struct rt2x00_led *led =
260             container_of(led_cdev, struct rt2x00_led, led_dev);
261         unsigned int enabled = brightness != LED_OFF;
262         unsigned int a_mode =
263             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
264         unsigned int bg_mode =
265             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
266
267         if (led->type == LED_TYPE_RADIO) {
268                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
269                                    MCU_LEDCS_RADIO_STATUS, enabled);
270
271                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
272                                     (led->rt2x00dev->led_mcu_reg & 0xff),
273                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
274         } else if (led->type == LED_TYPE_ASSOC) {
275                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
276                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
277                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
278                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
279
280                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
281                                     (led->rt2x00dev->led_mcu_reg & 0xff),
282                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
283         } else if (led->type == LED_TYPE_QUALITY) {
284                 /*
285                  * The brightness is divided into 6 levels (0 - 5),
286                  * this means we need to convert the brightness
287                  * argument into the matching level within that range.
288                  */
289                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
290                                     brightness / (LED_FULL / 6), 0);
291         }
292 }
293
294 static int rt61pci_blink_set(struct led_classdev *led_cdev,
295                              unsigned long *delay_on,
296                              unsigned long *delay_off)
297 {
298         struct rt2x00_led *led =
299             container_of(led_cdev, struct rt2x00_led, led_dev);
300         u32 reg;
301
302         rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
303         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
304         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
305         rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
306
307         return 0;
308 }
309
310 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
311                              struct rt2x00_led *led,
312                              enum led_type type)
313 {
314         led->rt2x00dev = rt2x00dev;
315         led->type = type;
316         led->led_dev.brightness_set = rt61pci_brightness_set;
317         led->led_dev.blink_set = rt61pci_blink_set;
318         led->flags = LED_INITIALIZED;
319 }
320 #endif /* CONFIG_RT2X00_LIB_LEDS */
321
322 /*
323  * Configuration handlers.
324  */
325 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
326                                      struct rt2x00lib_crypto *crypto,
327                                      struct ieee80211_key_conf *key)
328 {
329         struct hw_key_entry key_entry;
330         struct rt2x00_field32 field;
331         u32 mask;
332         u32 reg;
333
334         if (crypto->cmd == SET_KEY) {
335                 /*
336                  * rt2x00lib can't determine the correct free
337                  * key_idx for shared keys. We have 1 register
338                  * with key valid bits. The goal is simple, read
339                  * the register, if that is full we have no slots
340                  * left.
341                  * Note that each BSS is allowed to have up to 4
342                  * shared keys, so put a mask over the allowed
343                  * entries.
344                  */
345                 mask = (0xf << crypto->bssidx);
346
347                 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
348                 reg &= mask;
349
350                 if (reg && reg == mask)
351                         return -ENOSPC;
352
353                 key->hw_key_idx += reg ? ffz(reg) : 0;
354
355                 /*
356                  * Upload key to hardware
357                  */
358                 memcpy(key_entry.key, crypto->key,
359                        sizeof(key_entry.key));
360                 memcpy(key_entry.tx_mic, crypto->tx_mic,
361                        sizeof(key_entry.tx_mic));
362                 memcpy(key_entry.rx_mic, crypto->rx_mic,
363                        sizeof(key_entry.rx_mic));
364
365                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
366                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
367                                               &key_entry, sizeof(key_entry));
368
369                 /*
370                  * The cipher types are stored over 2 registers.
371                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
372                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
373                  * Using the correct defines correctly will cause overhead,
374                  * so just calculate the correct offset.
375                  */
376                 if (key->hw_key_idx < 8) {
377                         field.bit_offset = (3 * key->hw_key_idx);
378                         field.bit_mask = 0x7 << field.bit_offset;
379
380                         rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
381                         rt2x00_set_field32(&reg, field, crypto->cipher);
382                         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
383                 } else {
384                         field.bit_offset = (3 * (key->hw_key_idx - 8));
385                         field.bit_mask = 0x7 << field.bit_offset;
386
387                         rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
388                         rt2x00_set_field32(&reg, field, crypto->cipher);
389                         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
390                 }
391
392                 /*
393                  * The driver does not support the IV/EIV generation
394                  * in hardware. However it doesn't support the IV/EIV
395                  * inside the ieee80211 frame either, but requires it
396                  * to be provided seperately for the descriptor.
397                  * rt2x00lib will cut the IV/EIV data out of all frames
398                  * given to us by mac80211, but we must tell mac80211
399                  * to generate the IV/EIV data.
400                  */
401                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
402         }
403
404         /*
405          * SEC_CSR0 contains only single-bit fields to indicate
406          * a particular key is valid. Because using the FIELD32()
407          * defines directly will cause a lot of overhead we use
408          * a calculation to determine the correct bit directly.
409          */
410         mask = 1 << key->hw_key_idx;
411
412         rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
413         if (crypto->cmd == SET_KEY)
414                 reg |= mask;
415         else if (crypto->cmd == DISABLE_KEY)
416                 reg &= ~mask;
417         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
418
419         return 0;
420 }
421
422 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
423                                        struct rt2x00lib_crypto *crypto,
424                                        struct ieee80211_key_conf *key)
425 {
426         struct hw_pairwise_ta_entry addr_entry;
427         struct hw_key_entry key_entry;
428         u32 mask;
429         u32 reg;
430
431         if (crypto->cmd == SET_KEY) {
432                 /*
433                  * rt2x00lib can't determine the correct free
434                  * key_idx for pairwise keys. We have 2 registers
435                  * with key valid bits. The goal is simple, read
436                  * the first register, if that is full move to
437                  * the next register.
438                  * When both registers are full, we drop the key,
439                  * otherwise we use the first invalid entry.
440                  */
441                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
442                 if (reg && reg == ~0) {
443                         key->hw_key_idx = 32;
444                         rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
445                         if (reg && reg == ~0)
446                                 return -ENOSPC;
447                 }
448
449                 key->hw_key_idx += reg ? ffz(reg) : 0;
450
451                 /*
452                  * Upload key to hardware
453                  */
454                 memcpy(key_entry.key, crypto->key,
455                        sizeof(key_entry.key));
456                 memcpy(key_entry.tx_mic, crypto->tx_mic,
457                        sizeof(key_entry.tx_mic));
458                 memcpy(key_entry.rx_mic, crypto->rx_mic,
459                        sizeof(key_entry.rx_mic));
460
461                 memset(&addr_entry, 0, sizeof(addr_entry));
462                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
463                 addr_entry.cipher = crypto->cipher;
464
465                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
466                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
467                                               &key_entry, sizeof(key_entry));
468
469                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
470                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
471                                               &addr_entry, sizeof(addr_entry));
472
473                 /*
474                  * Enable pairwise lookup table for given BSS idx,
475                  * without this received frames will not be decrypted
476                  * by the hardware.
477                  */
478                 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
479                 reg |= (1 << crypto->bssidx);
480                 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
481
482                 /*
483                  * The driver does not support the IV/EIV generation
484                  * in hardware. However it doesn't support the IV/EIV
485                  * inside the ieee80211 frame either, but requires it
486                  * to be provided seperately for the descriptor.
487                  * rt2x00lib will cut the IV/EIV data out of all frames
488                  * given to us by mac80211, but we must tell mac80211
489                  * to generate the IV/EIV data.
490                  */
491                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
492         }
493
494         /*
495          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
496          * a particular key is valid. Because using the FIELD32()
497          * defines directly will cause a lot of overhead we use
498          * a calculation to determine the correct bit directly.
499          */
500         if (key->hw_key_idx < 32) {
501                 mask = 1 << key->hw_key_idx;
502
503                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
504                 if (crypto->cmd == SET_KEY)
505                         reg |= mask;
506                 else if (crypto->cmd == DISABLE_KEY)
507                         reg &= ~mask;
508                 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
509         } else {
510                 mask = 1 << (key->hw_key_idx - 32);
511
512                 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
513                 if (crypto->cmd == SET_KEY)
514                         reg |= mask;
515                 else if (crypto->cmd == DISABLE_KEY)
516                         reg &= ~mask;
517                 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
518         }
519
520         return 0;
521 }
522
523 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
524                                   const unsigned int filter_flags)
525 {
526         u32 reg;
527
528         /*
529          * Start configuration steps.
530          * Note that the version error will always be dropped
531          * and broadcast frames will always be accepted since
532          * there is no filter for it at this time.
533          */
534         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
535         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
536                            !(filter_flags & FIF_FCSFAIL));
537         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
538                            !(filter_flags & FIF_PLCPFAIL));
539         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
540                            !(filter_flags & FIF_CONTROL));
541         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
542                            !(filter_flags & FIF_PROMISC_IN_BSS));
543         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
544                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
545                            !rt2x00dev->intf_ap_count);
546         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
547         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
548                            !(filter_flags & FIF_ALLMULTI));
549         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
550         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
551                            !(filter_flags & FIF_CONTROL));
552         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
553 }
554
555 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
556                                 struct rt2x00_intf *intf,
557                                 struct rt2x00intf_conf *conf,
558                                 const unsigned int flags)
559 {
560         unsigned int beacon_base;
561         u32 reg;
562
563         if (flags & CONFIG_UPDATE_TYPE) {
564                 /*
565                  * Clear current synchronisation setup.
566                  * For the Beacon base registers we only need to clear
567                  * the first byte since that byte contains the VALID and OWNER
568                  * bits which (when set to 0) will invalidate the entire beacon.
569                  */
570                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
571                 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
572
573                 /*
574                  * Enable synchronisation.
575                  */
576                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
577                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
578                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
579                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
580                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
581         }
582
583         if (flags & CONFIG_UPDATE_MAC) {
584                 reg = le32_to_cpu(conf->mac[1]);
585                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
586                 conf->mac[1] = cpu_to_le32(reg);
587
588                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
589                                               conf->mac, sizeof(conf->mac));
590         }
591
592         if (flags & CONFIG_UPDATE_BSSID) {
593                 reg = le32_to_cpu(conf->bssid[1]);
594                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
595                 conf->bssid[1] = cpu_to_le32(reg);
596
597                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
598                                               conf->bssid, sizeof(conf->bssid));
599         }
600 }
601
602 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
603                                struct rt2x00lib_erp *erp)
604 {
605         u32 reg;
606
607         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
608         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
609         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
610
611         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
612         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
613                            !!erp->short_preamble);
614         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
615
616         rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
617
618         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
619         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
620         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
621
622         rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
623         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
624         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
625         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
626         rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
627 }
628
629 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
630                                       struct antenna_setup *ant)
631 {
632         u8 r3;
633         u8 r4;
634         u8 r77;
635
636         rt61pci_bbp_read(rt2x00dev, 3, &r3);
637         rt61pci_bbp_read(rt2x00dev, 4, &r4);
638         rt61pci_bbp_read(rt2x00dev, 77, &r77);
639
640         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
641                           rt2x00_rf(&rt2x00dev->chip, RF5325));
642
643         /*
644          * Configure the RX antenna.
645          */
646         switch (ant->rx) {
647         case ANTENNA_HW_DIVERSITY:
648                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
649                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
650                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
651                 break;
652         case ANTENNA_A:
653                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
654                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
655                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
656                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
657                 else
658                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
659                 break;
660         case ANTENNA_B:
661         default:
662                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
663                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
664                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
665                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
666                 else
667                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
668                 break;
669         }
670
671         rt61pci_bbp_write(rt2x00dev, 77, r77);
672         rt61pci_bbp_write(rt2x00dev, 3, r3);
673         rt61pci_bbp_write(rt2x00dev, 4, r4);
674 }
675
676 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
677                                       struct antenna_setup *ant)
678 {
679         u8 r3;
680         u8 r4;
681         u8 r77;
682
683         rt61pci_bbp_read(rt2x00dev, 3, &r3);
684         rt61pci_bbp_read(rt2x00dev, 4, &r4);
685         rt61pci_bbp_read(rt2x00dev, 77, &r77);
686
687         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
688                           rt2x00_rf(&rt2x00dev->chip, RF2529));
689         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
690                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
691
692         /*
693          * Configure the RX antenna.
694          */
695         switch (ant->rx) {
696         case ANTENNA_HW_DIVERSITY:
697                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
698                 break;
699         case ANTENNA_A:
700                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
701                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
702                 break;
703         case ANTENNA_B:
704         default:
705                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
706                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
707                 break;
708         }
709
710         rt61pci_bbp_write(rt2x00dev, 77, r77);
711         rt61pci_bbp_write(rt2x00dev, 3, r3);
712         rt61pci_bbp_write(rt2x00dev, 4, r4);
713 }
714
715 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
716                                            const int p1, const int p2)
717 {
718         u32 reg;
719
720         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
721
722         rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
723         rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
724
725         rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
726         rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
727
728         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
729 }
730
731 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
732                                         struct antenna_setup *ant)
733 {
734         u8 r3;
735         u8 r4;
736         u8 r77;
737
738         rt61pci_bbp_read(rt2x00dev, 3, &r3);
739         rt61pci_bbp_read(rt2x00dev, 4, &r4);
740         rt61pci_bbp_read(rt2x00dev, 77, &r77);
741
742         /*
743          * Configure the RX antenna.
744          */
745         switch (ant->rx) {
746         case ANTENNA_A:
747                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
748                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
749                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
750                 break;
751         case ANTENNA_HW_DIVERSITY:
752                 /*
753                  * FIXME: Antenna selection for the rf 2529 is very confusing
754                  * in the legacy driver. Just default to antenna B until the
755                  * legacy code can be properly translated into rt2x00 code.
756                  */
757         case ANTENNA_B:
758         default:
759                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
760                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
761                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
762                 break;
763         }
764
765         rt61pci_bbp_write(rt2x00dev, 77, r77);
766         rt61pci_bbp_write(rt2x00dev, 3, r3);
767         rt61pci_bbp_write(rt2x00dev, 4, r4);
768 }
769
770 struct antenna_sel {
771         u8 word;
772         /*
773          * value[0] -> non-LNA
774          * value[1] -> LNA
775          */
776         u8 value[2];
777 };
778
779 static const struct antenna_sel antenna_sel_a[] = {
780         { 96,  { 0x58, 0x78 } },
781         { 104, { 0x38, 0x48 } },
782         { 75,  { 0xfe, 0x80 } },
783         { 86,  { 0xfe, 0x80 } },
784         { 88,  { 0xfe, 0x80 } },
785         { 35,  { 0x60, 0x60 } },
786         { 97,  { 0x58, 0x58 } },
787         { 98,  { 0x58, 0x58 } },
788 };
789
790 static const struct antenna_sel antenna_sel_bg[] = {
791         { 96,  { 0x48, 0x68 } },
792         { 104, { 0x2c, 0x3c } },
793         { 75,  { 0xfe, 0x80 } },
794         { 86,  { 0xfe, 0x80 } },
795         { 88,  { 0xfe, 0x80 } },
796         { 35,  { 0x50, 0x50 } },
797         { 97,  { 0x48, 0x48 } },
798         { 98,  { 0x48, 0x48 } },
799 };
800
801 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
802                                struct antenna_setup *ant)
803 {
804         const struct antenna_sel *sel;
805         unsigned int lna;
806         unsigned int i;
807         u32 reg;
808
809         /*
810          * We should never come here because rt2x00lib is supposed
811          * to catch this and send us the correct antenna explicitely.
812          */
813         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
814                ant->tx == ANTENNA_SW_DIVERSITY);
815
816         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
817                 sel = antenna_sel_a;
818                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
819         } else {
820                 sel = antenna_sel_bg;
821                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
822         }
823
824         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
825                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
826
827         rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
828
829         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
830                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
831         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
832                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
833
834         rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
835
836         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
837             rt2x00_rf(&rt2x00dev->chip, RF5325))
838                 rt61pci_config_antenna_5x(rt2x00dev, ant);
839         else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
840                 rt61pci_config_antenna_2x(rt2x00dev, ant);
841         else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
842                 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
843                         rt61pci_config_antenna_2x(rt2x00dev, ant);
844                 else
845                         rt61pci_config_antenna_2529(rt2x00dev, ant);
846         }
847 }
848
849 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
850                                     struct rt2x00lib_conf *libconf)
851 {
852         u16 eeprom;
853         short lna_gain = 0;
854
855         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
856                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
857                         lna_gain += 14;
858
859                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
860                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
861         } else {
862                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
863                         lna_gain += 14;
864
865                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
866                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
867         }
868
869         rt2x00dev->lna_gain = lna_gain;
870 }
871
872 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
873                                    struct rf_channel *rf, const int txpower)
874 {
875         u8 r3;
876         u8 r94;
877         u8 smart;
878
879         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
880         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
881
882         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
883                   rt2x00_rf(&rt2x00dev->chip, RF2527));
884
885         rt61pci_bbp_read(rt2x00dev, 3, &r3);
886         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
887         rt61pci_bbp_write(rt2x00dev, 3, r3);
888
889         r94 = 6;
890         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
891                 r94 += txpower - MAX_TXPOWER;
892         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
893                 r94 += txpower;
894         rt61pci_bbp_write(rt2x00dev, 94, r94);
895
896         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
897         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
898         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
899         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
900
901         udelay(200);
902
903         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
904         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
905         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
906         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
907
908         udelay(200);
909
910         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
911         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
912         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
913         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
914
915         msleep(1);
916 }
917
918 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
919                                    const int txpower)
920 {
921         struct rf_channel rf;
922
923         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
924         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
925         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
926         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
927
928         rt61pci_config_channel(rt2x00dev, &rf, txpower);
929 }
930
931 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
932                                     struct rt2x00lib_conf *libconf)
933 {
934         u32 reg;
935
936         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
937         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
938                            libconf->conf->long_frame_max_tx_count);
939         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
940                            libconf->conf->short_frame_max_tx_count);
941         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
942 }
943
944 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
945                                     struct rt2x00lib_conf *libconf)
946 {
947         u32 reg;
948
949         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
950         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
951         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
952
953         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
954         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
955         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
956
957         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
958         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
959                            libconf->conf->beacon_int * 16);
960         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
961 }
962
963 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
964                                 struct rt2x00lib_conf *libconf)
965 {
966         enum dev_state state =
967             (libconf->conf->flags & IEEE80211_CONF_PS) ?
968                 STATE_SLEEP : STATE_AWAKE;
969         u32 reg;
970
971         if (state == STATE_SLEEP) {
972                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
973                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
974                                    libconf->conf->beacon_int - 10);
975                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
976                                    libconf->conf->listen_interval - 1);
977                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
978
979                 /* We must first disable autowake before it can be enabled */
980                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
981                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
982
983                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
984                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
985
986                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
987                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
988                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
989
990                 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
991         } else {
992                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
993                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
994                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
995                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
996                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
997                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
998
999                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
1000                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
1001                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
1002
1003                 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
1004         }
1005 }
1006
1007 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
1008                            struct rt2x00lib_conf *libconf,
1009                            const unsigned int flags)
1010 {
1011         /* Always recalculate LNA gain before changing configuration */
1012         rt61pci_config_lna_gain(rt2x00dev, libconf);
1013
1014         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
1015                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
1016                                        libconf->conf->power_level);
1017         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1018             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1019                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1020         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1021                 rt61pci_config_retry_limit(rt2x00dev, libconf);
1022         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
1023                 rt61pci_config_duration(rt2x00dev, libconf);
1024         if (flags & IEEE80211_CONF_CHANGE_PS)
1025                 rt61pci_config_ps(rt2x00dev, libconf);
1026 }
1027
1028 /*
1029  * Link tuning
1030  */
1031 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1032                                struct link_qual *qual)
1033 {
1034         u32 reg;
1035
1036         /*
1037          * Update FCS error count from register.
1038          */
1039         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1040         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1041
1042         /*
1043          * Update False CCA count from register.
1044          */
1045         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1046         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1047 }
1048
1049 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1050                                    struct link_qual *qual, u8 vgc_level)
1051 {
1052         if (qual->vgc_level != vgc_level) {
1053                 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1054                 qual->vgc_level = vgc_level;
1055                 qual->vgc_level_reg = vgc_level;
1056         }
1057 }
1058
1059 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1060                                 struct link_qual *qual)
1061 {
1062         rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1063 }
1064
1065 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1066                                struct link_qual *qual, const u32 count)
1067 {
1068         u8 up_bound;
1069         u8 low_bound;
1070
1071         /*
1072          * Determine r17 bounds.
1073          */
1074         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1075                 low_bound = 0x28;
1076                 up_bound = 0x48;
1077                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1078                         low_bound += 0x10;
1079                         up_bound += 0x10;
1080                 }
1081         } else {
1082                 low_bound = 0x20;
1083                 up_bound = 0x40;
1084                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1085                         low_bound += 0x10;
1086                         up_bound += 0x10;
1087                 }
1088         }
1089
1090         /*
1091          * If we are not associated, we should go straight to the
1092          * dynamic CCA tuning.
1093          */
1094         if (!rt2x00dev->intf_associated)
1095                 goto dynamic_cca_tune;
1096
1097         /*
1098          * Special big-R17 for very short distance
1099          */
1100         if (qual->rssi >= -35) {
1101                 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1102                 return;
1103         }
1104
1105         /*
1106          * Special big-R17 for short distance
1107          */
1108         if (qual->rssi >= -58) {
1109                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1110                 return;
1111         }
1112
1113         /*
1114          * Special big-R17 for middle-short distance
1115          */
1116         if (qual->rssi >= -66) {
1117                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1118                 return;
1119         }
1120
1121         /*
1122          * Special mid-R17 for middle distance
1123          */
1124         if (qual->rssi >= -74) {
1125                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1126                 return;
1127         }
1128
1129         /*
1130          * Special case: Change up_bound based on the rssi.
1131          * Lower up_bound when rssi is weaker then -74 dBm.
1132          */
1133         up_bound -= 2 * (-74 - qual->rssi);
1134         if (low_bound > up_bound)
1135                 up_bound = low_bound;
1136
1137         if (qual->vgc_level > up_bound) {
1138                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1139                 return;
1140         }
1141
1142 dynamic_cca_tune:
1143
1144         /*
1145          * r17 does not yet exceed upper limit, continue and base
1146          * the r17 tuning on the false CCA count.
1147          */
1148         if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1149                 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1150         else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1151                 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1152 }
1153
1154 /*
1155  * Firmware functions
1156  */
1157 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1158 {
1159         char *fw_name;
1160
1161         switch (rt2x00dev->chip.rt) {
1162         case RT2561:
1163                 fw_name = FIRMWARE_RT2561;
1164                 break;
1165         case RT2561s:
1166                 fw_name = FIRMWARE_RT2561s;
1167                 break;
1168         case RT2661:
1169                 fw_name = FIRMWARE_RT2661;
1170                 break;
1171         default:
1172                 fw_name = NULL;
1173                 break;
1174         }
1175
1176         return fw_name;
1177 }
1178
1179 static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
1180 {
1181         u16 crc;
1182
1183         /*
1184          * Use the crc itu-t algorithm.
1185          * The last 2 bytes in the firmware array are the crc checksum itself,
1186          * this means that we should never pass those 2 bytes to the crc
1187          * algorithm.
1188          */
1189         crc = crc_itu_t(0, data, len - 2);
1190         crc = crc_itu_t_byte(crc, 0);
1191         crc = crc_itu_t_byte(crc, 0);
1192
1193         return crc;
1194 }
1195
1196 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1197                                  const size_t len)
1198 {
1199         int i;
1200         u32 reg;
1201
1202         /*
1203          * Wait for stable hardware.
1204          */
1205         for (i = 0; i < 100; i++) {
1206                 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1207                 if (reg)
1208                         break;
1209                 msleep(1);
1210         }
1211
1212         if (!reg) {
1213                 ERROR(rt2x00dev, "Unstable hardware.\n");
1214                 return -EBUSY;
1215         }
1216
1217         /*
1218          * Prepare MCU and mailbox for firmware loading.
1219          */
1220         reg = 0;
1221         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1222         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1223         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1224         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1225         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1226
1227         /*
1228          * Write firmware to device.
1229          */
1230         reg = 0;
1231         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1232         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1233         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1234
1235         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1236                                       data, len);
1237
1238         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1239         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1240
1241         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1242         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1243
1244         for (i = 0; i < 100; i++) {
1245                 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1246                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1247                         break;
1248                 msleep(1);
1249         }
1250
1251         if (i == 100) {
1252                 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1253                 return -EBUSY;
1254         }
1255
1256         /*
1257          * Hardware needs another millisecond before it is ready.
1258          */
1259         msleep(1);
1260
1261         /*
1262          * Reset MAC and BBP registers.
1263          */
1264         reg = 0;
1265         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1266         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1267         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1268
1269         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1270         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1271         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1272         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1273
1274         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1275         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1276         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1277
1278         return 0;
1279 }
1280
1281 /*
1282  * Initialization functions.
1283  */
1284 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1285 {
1286         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1287         u32 word;
1288
1289         if (entry->queue->qid == QID_RX) {
1290                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1291
1292                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1293         } else {
1294                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1295
1296                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1297                         rt2x00_get_field32(word, TXD_W0_VALID));
1298         }
1299 }
1300
1301 static void rt61pci_clear_entry(struct queue_entry *entry)
1302 {
1303         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1304         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1305         u32 word;
1306
1307         if (entry->queue->qid == QID_RX) {
1308                 rt2x00_desc_read(entry_priv->desc, 5, &word);
1309                 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1310                                    skbdesc->skb_dma);
1311                 rt2x00_desc_write(entry_priv->desc, 5, word);
1312
1313                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1314                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1315                 rt2x00_desc_write(entry_priv->desc, 0, word);
1316         } else {
1317                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1318                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1319                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1320                 rt2x00_desc_write(entry_priv->desc, 0, word);
1321         }
1322 }
1323
1324 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1325 {
1326         struct queue_entry_priv_pci *entry_priv;
1327         u32 reg;
1328
1329         /*
1330          * Initialize registers.
1331          */
1332         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1333         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1334                            rt2x00dev->tx[0].limit);
1335         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1336                            rt2x00dev->tx[1].limit);
1337         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1338                            rt2x00dev->tx[2].limit);
1339         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1340                            rt2x00dev->tx[3].limit);
1341         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1342
1343         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1344         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1345                            rt2x00dev->tx[0].desc_size / 4);
1346         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1347
1348         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1349         rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1350         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1351                            entry_priv->desc_dma);
1352         rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1353
1354         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1355         rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1356         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1357                            entry_priv->desc_dma);
1358         rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1359
1360         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1361         rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1362         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1363                            entry_priv->desc_dma);
1364         rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1365
1366         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1367         rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1368         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1369                            entry_priv->desc_dma);
1370         rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1371
1372         rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1373         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1374         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1375                            rt2x00dev->rx->desc_size / 4);
1376         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1377         rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1378
1379         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1380         rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1381         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1382                            entry_priv->desc_dma);
1383         rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1384
1385         rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1386         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1387         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1388         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1389         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1390         rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1391
1392         rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1393         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1394         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1395         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1396         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1397         rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1398
1399         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1400         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1401         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1402
1403         return 0;
1404 }
1405
1406 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1407 {
1408         u32 reg;
1409
1410         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1411         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1412         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1413         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1414         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1415
1416         rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1417         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1418         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1419         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1420         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1421         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1422         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1423         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1424         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1425         rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1426
1427         /*
1428          * CCK TXD BBP registers
1429          */
1430         rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1431         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1432         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1433         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1434         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1435         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1436         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1437         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1438         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1439         rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1440
1441         /*
1442          * OFDM TXD BBP registers
1443          */
1444         rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1445         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1446         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1447         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1448         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1449         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1450         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1451         rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1452
1453         rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1454         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1455         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1456         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1457         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1458         rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1459
1460         rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1461         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1462         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1463         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1464         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1465         rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1466
1467         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1468         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1469         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1470         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1471         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1472         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1473         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1474         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1475
1476         rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1477
1478         rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1479
1480         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1481         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1482         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1483
1484         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1485
1486         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1487                 return -EBUSY;
1488
1489         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1490
1491         /*
1492          * Invalidate all Shared Keys (SEC_CSR0),
1493          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1494          */
1495         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1496         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1497         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1498
1499         rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1500         rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1501         rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1502         rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1503
1504         rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1505
1506         rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1507
1508         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1509
1510         /*
1511          * Clear all beacons
1512          * For the Beacon base registers we only need to clear
1513          * the first byte since that byte contains the VALID and OWNER
1514          * bits which (when set to 0) will invalidate the entire beacon.
1515          */
1516         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1517         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1518         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1519         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1520
1521         /*
1522          * We must clear the error counters.
1523          * These registers are cleared on read,
1524          * so we may pass a useless variable to store the value.
1525          */
1526         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1527         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1528         rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1529
1530         /*
1531          * Reset MAC and BBP registers.
1532          */
1533         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1534         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1535         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1536         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1537
1538         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1539         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1540         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1541         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1542
1543         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1544         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1545         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1546
1547         return 0;
1548 }
1549
1550 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1551 {
1552         unsigned int i;
1553         u8 value;
1554
1555         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1556                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1557                 if ((value != 0xff) && (value != 0x00))
1558                         return 0;
1559                 udelay(REGISTER_BUSY_DELAY);
1560         }
1561
1562         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1563         return -EACCES;
1564 }
1565
1566 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1567 {
1568         unsigned int i;
1569         u16 eeprom;
1570         u8 reg_id;
1571         u8 value;
1572
1573         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1574                 return -EACCES;
1575
1576         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1577         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1578         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1579         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1580         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1581         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1582         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1583         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1584         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1585         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1586         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1587         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1588         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1589         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1590         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1591         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1592         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1593         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1594         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1595         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1596         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1597         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1598         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1599         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1600
1601         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1602                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1603
1604                 if (eeprom != 0xffff && eeprom != 0x0000) {
1605                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1606                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1607                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1608                 }
1609         }
1610
1611         return 0;
1612 }
1613
1614 /*
1615  * Device state switch handlers.
1616  */
1617 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1618                               enum dev_state state)
1619 {
1620         u32 reg;
1621
1622         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1623         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1624                            (state == STATE_RADIO_RX_OFF) ||
1625                            (state == STATE_RADIO_RX_OFF_LINK));
1626         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1627 }
1628
1629 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1630                                enum dev_state state)
1631 {
1632         int mask = (state == STATE_RADIO_IRQ_OFF);
1633         u32 reg;
1634
1635         /*
1636          * When interrupts are being enabled, the interrupt registers
1637          * should clear the register to assure a clean state.
1638          */
1639         if (state == STATE_RADIO_IRQ_ON) {
1640                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1641                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1642
1643                 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1644                 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1645         }
1646
1647         /*
1648          * Only toggle the interrupts bits we are going to use.
1649          * Non-checked interrupt bits are disabled by default.
1650          */
1651         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1652         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1653         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1654         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1655         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1656         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1657
1658         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1659         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1660         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1661         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1662         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1663         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1664         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1665         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1666         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1667         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1668 }
1669
1670 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1671 {
1672         u32 reg;
1673
1674         /*
1675          * Initialize all registers.
1676          */
1677         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1678                      rt61pci_init_registers(rt2x00dev) ||
1679                      rt61pci_init_bbp(rt2x00dev)))
1680                 return -EIO;
1681
1682         /*
1683          * Enable RX.
1684          */
1685         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1686         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1687         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1688
1689         return 0;
1690 }
1691
1692 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1693 {
1694         u32 reg;
1695
1696         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1697
1698         /*
1699          * Disable synchronisation.
1700          */
1701         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1702
1703         /*
1704          * Cancel RX and TX.
1705          */
1706         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1707         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1708         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1709         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1710         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1711         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1712 }
1713
1714 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1715 {
1716         u32 reg;
1717         unsigned int i;
1718         char put_to_sleep;
1719
1720         put_to_sleep = (state != STATE_AWAKE);
1721
1722         rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1723         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1724         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1725         rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1726
1727         /*
1728          * Device is not guaranteed to be in the requested state yet.
1729          * We must wait until the register indicates that the
1730          * device has entered the correct state.
1731          */
1732         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1733                 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1734                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1735                 if (state == !put_to_sleep)
1736                         return 0;
1737                 msleep(10);
1738         }
1739
1740         return -EBUSY;
1741 }
1742
1743 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1744                                     enum dev_state state)
1745 {
1746         int retval = 0;
1747
1748         switch (state) {
1749         case STATE_RADIO_ON:
1750                 retval = rt61pci_enable_radio(rt2x00dev);
1751                 break;
1752         case STATE_RADIO_OFF:
1753                 rt61pci_disable_radio(rt2x00dev);
1754                 break;
1755         case STATE_RADIO_RX_ON:
1756         case STATE_RADIO_RX_ON_LINK:
1757         case STATE_RADIO_RX_OFF:
1758         case STATE_RADIO_RX_OFF_LINK:
1759                 rt61pci_toggle_rx(rt2x00dev, state);
1760                 break;
1761         case STATE_RADIO_IRQ_ON:
1762         case STATE_RADIO_IRQ_OFF:
1763                 rt61pci_toggle_irq(rt2x00dev, state);
1764                 break;
1765         case STATE_DEEP_SLEEP:
1766         case STATE_SLEEP:
1767         case STATE_STANDBY:
1768         case STATE_AWAKE:
1769                 retval = rt61pci_set_state(rt2x00dev, state);
1770                 break;
1771         default:
1772                 retval = -ENOTSUPP;
1773                 break;
1774         }
1775
1776         if (unlikely(retval))
1777                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1778                       state, retval);
1779
1780         return retval;
1781 }
1782
1783 /*
1784  * TX descriptor initialization
1785  */
1786 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1787                                   struct sk_buff *skb,
1788                                   struct txentry_desc *txdesc)
1789 {
1790         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1791         __le32 *txd = skbdesc->desc;
1792         u32 word;
1793
1794         /*
1795          * Start writing the descriptor words.
1796          */
1797         rt2x00_desc_read(txd, 1, &word);
1798         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1799         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1800         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1801         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1802         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1803         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1804                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1805         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1806         rt2x00_desc_write(txd, 1, word);
1807
1808         rt2x00_desc_read(txd, 2, &word);
1809         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1810         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1811         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1812         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1813         rt2x00_desc_write(txd, 2, word);
1814
1815         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1816                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1817                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1818         }
1819
1820         rt2x00_desc_read(txd, 5, &word);
1821         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1822         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1823                            skbdesc->entry->entry_idx);
1824         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1825                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1826         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1827         rt2x00_desc_write(txd, 5, word);
1828
1829         rt2x00_desc_read(txd, 6, &word);
1830         rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1831                            skbdesc->skb_dma);
1832         rt2x00_desc_write(txd, 6, word);
1833
1834         if (skbdesc->desc_len > TXINFO_SIZE) {
1835                 rt2x00_desc_read(txd, 11, &word);
1836                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1837                 rt2x00_desc_write(txd, 11, word);
1838         }
1839
1840         rt2x00_desc_read(txd, 0, &word);
1841         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1842         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1843         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1844                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1845         rt2x00_set_field32(&word, TXD_W0_ACK,
1846                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1847         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1848                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1849         rt2x00_set_field32(&word, TXD_W0_OFDM,
1850                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1851         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1852         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1853                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1854         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1855                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1856         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1857                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1858         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1859         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1860         rt2x00_set_field32(&word, TXD_W0_BURST,
1861                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1862         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1863         rt2x00_desc_write(txd, 0, word);
1864 }
1865
1866 /*
1867  * TX data initialization
1868  */
1869 static void rt61pci_write_beacon(struct queue_entry *entry)
1870 {
1871         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1872         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1873         unsigned int beacon_base;
1874         u32 reg;
1875
1876         /*
1877          * Disable beaconing while we are reloading the beacon data,
1878          * otherwise we might be sending out invalid data.
1879          */
1880         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1881         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1882         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1883         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1884         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1885
1886         /*
1887          * Write entire beacon with descriptor to register.
1888          */
1889         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1890         rt2x00pci_register_multiwrite(rt2x00dev,
1891                                       beacon_base,
1892                                       skbdesc->desc, skbdesc->desc_len);
1893         rt2x00pci_register_multiwrite(rt2x00dev,
1894                                       beacon_base + skbdesc->desc_len,
1895                                       entry->skb->data, entry->skb->len);
1896
1897         /*
1898          * Clean up beacon skb.
1899          */
1900         dev_kfree_skb_any(entry->skb);
1901         entry->skb = NULL;
1902 }
1903
1904 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1905                                   const enum data_queue_qid queue)
1906 {
1907         u32 reg;
1908
1909         if (queue == QID_BEACON) {
1910                 /*
1911                  * For Wi-Fi faily generated beacons between participating
1912                  * stations. Set TBTT phase adaptive adjustment step to 8us.
1913                  */
1914                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1915
1916                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1917                 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1918                         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1919                         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1920                         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1921                         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1922                 }
1923                 return;
1924         }
1925
1926         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1927         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1928         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1929         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1930         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1931         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1932 }
1933
1934 /*
1935  * RX control handlers
1936  */
1937 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1938 {
1939         u8 offset = rt2x00dev->lna_gain;
1940         u8 lna;
1941
1942         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1943         switch (lna) {
1944         case 3:
1945                 offset += 90;
1946                 break;
1947         case 2:
1948                 offset += 74;
1949                 break;
1950         case 1:
1951                 offset += 64;
1952                 break;
1953         default:
1954                 return 0;
1955         }
1956
1957         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1958                 if (lna == 3 || lna == 2)
1959                         offset += 10;
1960         }
1961
1962         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1963 }
1964
1965 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1966                                 struct rxdone_entry_desc *rxdesc)
1967 {
1968         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1969         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1970         u32 word0;
1971         u32 word1;
1972
1973         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1974         rt2x00_desc_read(entry_priv->desc, 1, &word1);
1975
1976         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1977                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1978
1979         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1980                 rxdesc->cipher =
1981                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1982                 rxdesc->cipher_status =
1983                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1984         }
1985
1986         if (rxdesc->cipher != CIPHER_NONE) {
1987                 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1988                 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
1989                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1990
1991                 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
1992                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1993
1994                 /*
1995                  * Hardware has stripped IV/EIV data from 802.11 frame during
1996                  * decryption. It has provided the data seperately but rt2x00lib
1997                  * should decide if it should be reinserted.
1998                  */
1999                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2000
2001                 /*
2002                  * FIXME: Legacy driver indicates that the frame does
2003                  * contain the Michael Mic. Unfortunately, in rt2x00
2004                  * the MIC seems to be missing completely...
2005                  */
2006                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2007
2008                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2009                         rxdesc->flags |= RX_FLAG_DECRYPTED;
2010                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2011                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2012         }
2013
2014         /*
2015          * Obtain the status about this packet.
2016          * When frame was received with an OFDM bitrate,
2017          * the signal is the PLCP value. If it was received with
2018          * a CCK bitrate the signal is the rate in 100kbit/s.
2019          */
2020         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2021         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2022         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2023
2024         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2025                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2026         else
2027                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2028         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2029                 rxdesc->dev_flags |= RXDONE_MY_BSS;
2030 }
2031
2032 /*
2033  * Interrupt functions.
2034  */
2035 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2036 {
2037         struct data_queue *queue;
2038         struct queue_entry *entry;
2039         struct queue_entry *entry_done;
2040         struct queue_entry_priv_pci *entry_priv;
2041         struct txdone_entry_desc txdesc;
2042         u32 word;
2043         u32 reg;
2044         u32 old_reg;
2045         int type;
2046         int index;
2047
2048         /*
2049          * During each loop we will compare the freshly read
2050          * STA_CSR4 register value with the value read from
2051          * the previous loop. If the 2 values are equal then
2052          * we should stop processing because the chance it
2053          * quite big that the device has been unplugged and
2054          * we risk going into an endless loop.
2055          */
2056         old_reg = 0;
2057
2058         while (1) {
2059                 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2060                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2061                         break;
2062
2063                 if (old_reg == reg)
2064                         break;
2065                 old_reg = reg;
2066
2067                 /*
2068                  * Skip this entry when it contains an invalid
2069                  * queue identication number.
2070                  */
2071                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2072                 queue = rt2x00queue_get_queue(rt2x00dev, type);
2073                 if (unlikely(!queue))
2074                         continue;
2075
2076                 /*
2077                  * Skip this entry when it contains an invalid
2078                  * index number.
2079                  */
2080                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2081                 if (unlikely(index >= queue->limit))
2082                         continue;
2083
2084                 entry = &queue->entries[index];
2085                 entry_priv = entry->priv_data;
2086                 rt2x00_desc_read(entry_priv->desc, 0, &word);
2087
2088                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2089                     !rt2x00_get_field32(word, TXD_W0_VALID))
2090                         return;
2091
2092                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2093                 while (entry != entry_done) {
2094                         /* Catch up.
2095                          * Just report any entries we missed as failed.
2096                          */
2097                         WARNING(rt2x00dev,
2098                                 "TX status report missed for entry %d\n",
2099                                 entry_done->entry_idx);
2100
2101                         txdesc.flags = 0;
2102                         __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2103                         txdesc.retry = 0;
2104
2105                         rt2x00lib_txdone(entry_done, &txdesc);
2106                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2107                 }
2108
2109                 /*
2110                  * Obtain the status about this packet.
2111                  */
2112                 txdesc.flags = 0;
2113                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2114                 case 0: /* Success, maybe with retry */
2115                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2116                         break;
2117                 case 6: /* Failure, excessive retries */
2118                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2119                         /* Don't break, this is a failed frame! */
2120                 default: /* Failure */
2121                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2122                 }
2123                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2124
2125                 rt2x00lib_txdone(entry, &txdesc);
2126         }
2127 }
2128
2129 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2130 {
2131         struct rt2x00_dev *rt2x00dev = dev_instance;
2132         u32 reg_mcu;
2133         u32 reg;
2134
2135         /*
2136          * Get the interrupt sources & saved to local variable.
2137          * Write register value back to clear pending interrupts.
2138          */
2139         rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2140         rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2141
2142         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2143         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2144
2145         if (!reg && !reg_mcu)
2146                 return IRQ_NONE;
2147
2148         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2149                 return IRQ_HANDLED;
2150
2151         /*
2152          * Handle interrupts, walk through all bits
2153          * and run the tasks, the bits are checked in order of
2154          * priority.
2155          */
2156
2157         /*
2158          * 1 - Rx ring done interrupt.
2159          */
2160         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2161                 rt2x00pci_rxdone(rt2x00dev);
2162
2163         /*
2164          * 2 - Tx ring done interrupt.
2165          */
2166         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2167                 rt61pci_txdone(rt2x00dev);
2168
2169         /*
2170          * 3 - Handle MCU command done.
2171          */
2172         if (reg_mcu)
2173                 rt2x00pci_register_write(rt2x00dev,
2174                                          M2H_CMD_DONE_CSR, 0xffffffff);
2175
2176         return IRQ_HANDLED;
2177 }
2178
2179 /*
2180  * Device probe functions.
2181  */
2182 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2183 {
2184         struct eeprom_93cx6 eeprom;
2185         u32 reg;
2186         u16 word;
2187         u8 *mac;
2188         s8 value;
2189
2190         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2191
2192         eeprom.data = rt2x00dev;
2193         eeprom.register_read = rt61pci_eepromregister_read;
2194         eeprom.register_write = rt61pci_eepromregister_write;
2195         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2196             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2197         eeprom.reg_data_in = 0;
2198         eeprom.reg_data_out = 0;
2199         eeprom.reg_data_clock = 0;
2200         eeprom.reg_chip_select = 0;
2201
2202         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2203                                EEPROM_SIZE / sizeof(u16));
2204
2205         /*
2206          * Start validation of the data that has been read.
2207          */
2208         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2209         if (!is_valid_ether_addr(mac)) {
2210                 random_ether_addr(mac);
2211                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2212         }
2213
2214         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2215         if (word == 0xffff) {
2216                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2217                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2218                                    ANTENNA_B);
2219                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2220                                    ANTENNA_B);
2221                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2222                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2223                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2224                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2225                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2226                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2227         }
2228
2229         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2230         if (word == 0xffff) {
2231                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2232                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2233                 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
2234                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2235                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2236                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2237                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2238                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2239         }
2240
2241         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2242         if (word == 0xffff) {
2243                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2244                                    LED_MODE_DEFAULT);
2245                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2246                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2247         }
2248
2249         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2250         if (word == 0xffff) {
2251                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2252                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2253                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2254                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2255         }
2256
2257         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2258         if (word == 0xffff) {
2259                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2260                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2261                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2262                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2263         } else {
2264                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2265                 if (value < -10 || value > 10)
2266                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2267                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2268                 if (value < -10 || value > 10)
2269                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2270                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2271         }
2272
2273         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2274         if (word == 0xffff) {
2275                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2276                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2277                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2278                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2279         } else {
2280                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2281                 if (value < -10 || value > 10)
2282                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2283                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2284                 if (value < -10 || value > 10)
2285                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2286                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2287         }
2288
2289         return 0;
2290 }
2291
2292 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2293 {
2294         u32 reg;
2295         u16 value;
2296         u16 eeprom;
2297         u16 device;
2298
2299         /*
2300          * Read EEPROM word for configuration.
2301          */
2302         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2303
2304         /*
2305          * Identify RF chipset.
2306          * To determine the RT chip we have to read the
2307          * PCI header of the device.
2308          */
2309         pci_read_config_word(to_pci_dev(rt2x00dev->dev),
2310                              PCI_CONFIG_HEADER_DEVICE, &device);
2311         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2312         rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2313         rt2x00_set_chip(rt2x00dev, device, value, reg);
2314
2315         if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2316             !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2317             !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2318             !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2319                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2320                 return -ENODEV;
2321         }
2322
2323         /*
2324          * Determine number of antenna's.
2325          */
2326         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2327                 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2328
2329         /*
2330          * Identify default antenna configuration.
2331          */
2332         rt2x00dev->default_ant.tx =
2333             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2334         rt2x00dev->default_ant.rx =
2335             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2336
2337         /*
2338          * Read the Frame type.
2339          */
2340         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2341                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2342
2343         /*
2344          * Detect if this device has an hardware controlled radio.
2345          */
2346 #ifdef CONFIG_RT2X00_LIB_RFKILL
2347         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2348                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2349 #endif /* CONFIG_RT2X00_LIB_RFKILL */
2350
2351         /*
2352          * Read frequency offset and RF programming sequence.
2353          */
2354         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2355         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2356                 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2357
2358         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2359
2360         /*
2361          * Read external LNA informations.
2362          */
2363         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2364
2365         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2366                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2367         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2368                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2369
2370         /*
2371          * When working with a RF2529 chip without double antenna
2372          * the antenna settings should be gathered from the NIC
2373          * eeprom word.
2374          */
2375         if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2376             !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2377                 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2378                 case 0:
2379                         rt2x00dev->default_ant.tx = ANTENNA_B;
2380                         rt2x00dev->default_ant.rx = ANTENNA_A;
2381                         break;
2382                 case 1:
2383                         rt2x00dev->default_ant.tx = ANTENNA_B;
2384                         rt2x00dev->default_ant.rx = ANTENNA_B;
2385                         break;
2386                 case 2:
2387                         rt2x00dev->default_ant.tx = ANTENNA_A;
2388                         rt2x00dev->default_ant.rx = ANTENNA_A;
2389                         break;
2390                 case 3:
2391                         rt2x00dev->default_ant.tx = ANTENNA_A;
2392                         rt2x00dev->default_ant.rx = ANTENNA_B;
2393                         break;
2394                 }
2395
2396                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2397                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2398                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2399                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2400         }
2401
2402         /*
2403          * Store led settings, for correct led behaviour.
2404          * If the eeprom value is invalid,
2405          * switch to default led mode.
2406          */
2407 #ifdef CONFIG_RT2X00_LIB_LEDS
2408         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2409         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2410
2411         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2412         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2413         if (value == LED_MODE_SIGNAL_STRENGTH)
2414                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2415                                  LED_TYPE_QUALITY);
2416
2417         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2418         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2419                            rt2x00_get_field16(eeprom,
2420                                               EEPROM_LED_POLARITY_GPIO_0));
2421         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2422                            rt2x00_get_field16(eeprom,
2423                                               EEPROM_LED_POLARITY_GPIO_1));
2424         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2425                            rt2x00_get_field16(eeprom,
2426                                               EEPROM_LED_POLARITY_GPIO_2));
2427         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2428                            rt2x00_get_field16(eeprom,
2429                                               EEPROM_LED_POLARITY_GPIO_3));
2430         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2431                            rt2x00_get_field16(eeprom,
2432                                               EEPROM_LED_POLARITY_GPIO_4));
2433         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2434                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2435         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2436                            rt2x00_get_field16(eeprom,
2437                                               EEPROM_LED_POLARITY_RDY_G));
2438         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2439                            rt2x00_get_field16(eeprom,
2440                                               EEPROM_LED_POLARITY_RDY_A));
2441 #endif /* CONFIG_RT2X00_LIB_LEDS */
2442
2443         return 0;
2444 }
2445
2446 /*
2447  * RF value list for RF5225 & RF5325
2448  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2449  */
2450 static const struct rf_channel rf_vals_noseq[] = {
2451         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2452         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2453         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2454         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2455         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2456         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2457         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2458         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2459         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2460         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2461         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2462         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2463         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2464         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2465
2466         /* 802.11 UNI / HyperLan 2 */
2467         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2468         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2469         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2470         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2471         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2472         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2473         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2474         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2475
2476         /* 802.11 HyperLan 2 */
2477         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2478         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2479         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2480         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2481         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2482         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2483         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2484         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2485         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2486         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2487
2488         /* 802.11 UNII */
2489         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2490         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2491         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2492         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2493         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2494         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2495
2496         /* MMAC(Japan)J52 ch 34,38,42,46 */
2497         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2498         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2499         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2500         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2501 };
2502
2503 /*
2504  * RF value list for RF5225 & RF5325
2505  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2506  */
2507 static const struct rf_channel rf_vals_seq[] = {
2508         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2509         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2510         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2511         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2512         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2513         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2514         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2515         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2516         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2517         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2518         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2519         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2520         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2521         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2522
2523         /* 802.11 UNI / HyperLan 2 */
2524         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2525         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2526         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2527         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2528         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2529         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2530         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2531         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2532
2533         /* 802.11 HyperLan 2 */
2534         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2535         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2536         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2537         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2538         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2539         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2540         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2541         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2542         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2543         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2544
2545         /* 802.11 UNII */
2546         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2547         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2548         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2549         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2550         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2551         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2552
2553         /* MMAC(Japan)J52 ch 34,38,42,46 */
2554         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2555         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2556         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2557         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2558 };
2559
2560 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2561 {
2562         struct hw_mode_spec *spec = &rt2x00dev->spec;
2563         struct channel_info *info;
2564         char *tx_power;
2565         unsigned int i;
2566
2567         /*
2568          * Initialize all hw fields.
2569          */
2570         rt2x00dev->hw->flags =
2571             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2572             IEEE80211_HW_SIGNAL_DBM;
2573         rt2x00dev->hw->extra_tx_headroom = 0;
2574
2575         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2576         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2577                                 rt2x00_eeprom_addr(rt2x00dev,
2578                                                    EEPROM_MAC_ADDR_0));
2579
2580         /*
2581          * Initialize hw_mode information.
2582          */
2583         spec->supported_bands = SUPPORT_BAND_2GHZ;
2584         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2585
2586         if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2587                 spec->num_channels = 14;
2588                 spec->channels = rf_vals_noseq;
2589         } else {
2590                 spec->num_channels = 14;
2591                 spec->channels = rf_vals_seq;
2592         }
2593
2594         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2595             rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2596                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2597                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2598         }
2599
2600         /*
2601          * Create channel information array
2602          */
2603         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2604         if (!info)
2605                 return -ENOMEM;
2606
2607         spec->channels_info = info;
2608
2609         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2610         for (i = 0; i < 14; i++)
2611                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2612
2613         if (spec->num_channels > 14) {
2614                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2615                 for (i = 14; i < spec->num_channels; i++)
2616                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2617         }
2618
2619         return 0;
2620 }
2621
2622 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2623 {
2624         int retval;
2625
2626         /*
2627          * Allocate eeprom data.
2628          */
2629         retval = rt61pci_validate_eeprom(rt2x00dev);
2630         if (retval)
2631                 return retval;
2632
2633         retval = rt61pci_init_eeprom(rt2x00dev);
2634         if (retval)
2635                 return retval;
2636
2637         /*
2638          * Initialize hw specifications.
2639          */
2640         retval = rt61pci_probe_hw_mode(rt2x00dev);
2641         if (retval)
2642                 return retval;
2643
2644         /*
2645          * This device requires firmware and DMA mapped skbs.
2646          */
2647         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2648         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2649         if (!modparam_nohwcrypt)
2650                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2651
2652         /*
2653          * Set the rssi offset.
2654          */
2655         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2656
2657         return 0;
2658 }
2659
2660 /*
2661  * IEEE80211 stack callback functions.
2662  */
2663 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2664                            const struct ieee80211_tx_queue_params *params)
2665 {
2666         struct rt2x00_dev *rt2x00dev = hw->priv;
2667         struct data_queue *queue;
2668         struct rt2x00_field32 field;
2669         int retval;
2670         u32 reg;
2671
2672         /*
2673          * First pass the configuration through rt2x00lib, that will
2674          * update the queue settings and validate the input. After that
2675          * we are free to update the registers based on the value
2676          * in the queue parameter.
2677          */
2678         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2679         if (retval)
2680                 return retval;
2681
2682         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2683
2684         /* Update WMM TXOP register */
2685         if (queue_idx < 2) {
2686                 field.bit_offset = queue_idx * 16;
2687                 field.bit_mask = 0xffff << field.bit_offset;
2688
2689                 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
2690                 rt2x00_set_field32(&reg, field, queue->txop);
2691                 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2692         } else if (queue_idx < 4) {
2693                 field.bit_offset = (queue_idx - 2) * 16;
2694                 field.bit_mask = 0xffff << field.bit_offset;
2695
2696                 rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
2697                 rt2x00_set_field32(&reg, field, queue->txop);
2698                 rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2699         }
2700
2701         /* Update WMM registers */
2702         field.bit_offset = queue_idx * 4;
2703         field.bit_mask = 0xf << field.bit_offset;
2704
2705         rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2706         rt2x00_set_field32(&reg, field, queue->aifs);
2707         rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2708
2709         rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2710         rt2x00_set_field32(&reg, field, queue->cw_min);
2711         rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2712
2713         rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2714         rt2x00_set_field32(&reg, field, queue->cw_max);
2715         rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2716
2717         return 0;
2718 }
2719
2720 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2721 {
2722         struct rt2x00_dev *rt2x00dev = hw->priv;
2723         u64 tsf;
2724         u32 reg;
2725
2726         rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2727         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2728         rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2729         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2730
2731         return tsf;
2732 }
2733
2734 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2735         .tx                     = rt2x00mac_tx,
2736         .start                  = rt2x00mac_start,
2737         .stop                   = rt2x00mac_stop,
2738         .add_interface          = rt2x00mac_add_interface,
2739         .remove_interface       = rt2x00mac_remove_interface,
2740         .config                 = rt2x00mac_config,
2741         .config_interface       = rt2x00mac_config_interface,
2742         .configure_filter       = rt2x00mac_configure_filter,
2743         .set_key                = rt2x00mac_set_key,
2744         .get_stats              = rt2x00mac_get_stats,
2745         .bss_info_changed       = rt2x00mac_bss_info_changed,
2746         .conf_tx                = rt61pci_conf_tx,
2747         .get_tx_stats           = rt2x00mac_get_tx_stats,
2748         .get_tsf                = rt61pci_get_tsf,
2749 };
2750
2751 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2752         .irq_handler            = rt61pci_interrupt,
2753         .probe_hw               = rt61pci_probe_hw,
2754         .get_firmware_name      = rt61pci_get_firmware_name,
2755         .get_firmware_crc       = rt61pci_get_firmware_crc,
2756         .load_firmware          = rt61pci_load_firmware,
2757         .initialize             = rt2x00pci_initialize,
2758         .uninitialize           = rt2x00pci_uninitialize,
2759         .get_entry_state        = rt61pci_get_entry_state,
2760         .clear_entry            = rt61pci_clear_entry,
2761         .set_device_state       = rt61pci_set_device_state,
2762         .rfkill_poll            = rt61pci_rfkill_poll,
2763         .link_stats             = rt61pci_link_stats,
2764         .reset_tuner            = rt61pci_reset_tuner,
2765         .link_tuner             = rt61pci_link_tuner,
2766         .write_tx_desc          = rt61pci_write_tx_desc,
2767         .write_tx_data          = rt2x00pci_write_tx_data,
2768         .write_beacon           = rt61pci_write_beacon,
2769         .kick_tx_queue          = rt61pci_kick_tx_queue,
2770         .fill_rxdone            = rt61pci_fill_rxdone,
2771         .config_shared_key      = rt61pci_config_shared_key,
2772         .config_pairwise_key    = rt61pci_config_pairwise_key,
2773         .config_filter          = rt61pci_config_filter,
2774         .config_intf            = rt61pci_config_intf,
2775         .config_erp             = rt61pci_config_erp,
2776         .config_ant             = rt61pci_config_ant,
2777         .config                 = rt61pci_config,
2778 };
2779
2780 static const struct data_queue_desc rt61pci_queue_rx = {
2781         .entry_num              = RX_ENTRIES,
2782         .data_size              = DATA_FRAME_SIZE,
2783         .desc_size              = RXD_DESC_SIZE,
2784         .priv_size              = sizeof(struct queue_entry_priv_pci),
2785 };
2786
2787 static const struct data_queue_desc rt61pci_queue_tx = {
2788         .entry_num              = TX_ENTRIES,
2789         .data_size              = DATA_FRAME_SIZE,
2790         .desc_size              = TXD_DESC_SIZE,
2791         .priv_size              = sizeof(struct queue_entry_priv_pci),
2792 };
2793
2794 static const struct data_queue_desc rt61pci_queue_bcn = {
2795         .entry_num              = 4 * BEACON_ENTRIES,
2796         .data_size              = 0, /* No DMA required for beacons */
2797         .desc_size              = TXINFO_SIZE,
2798         .priv_size              = sizeof(struct queue_entry_priv_pci),
2799 };
2800
2801 static const struct rt2x00_ops rt61pci_ops = {
2802         .name           = KBUILD_MODNAME,
2803         .max_sta_intf   = 1,
2804         .max_ap_intf    = 4,
2805         .eeprom_size    = EEPROM_SIZE,
2806         .rf_size        = RF_SIZE,
2807         .tx_queues      = NUM_TX_QUEUES,
2808         .rx             = &rt61pci_queue_rx,
2809         .tx             = &rt61pci_queue_tx,
2810         .bcn            = &rt61pci_queue_bcn,
2811         .lib            = &rt61pci_rt2x00_ops,
2812         .hw             = &rt61pci_mac80211_ops,
2813 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2814         .debugfs        = &rt61pci_rt2x00debug,
2815 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2816 };
2817
2818 /*
2819  * RT61pci module information.
2820  */
2821 static struct pci_device_id rt61pci_device_table[] = {
2822         /* RT2561s */
2823         { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2824         /* RT2561 v2 */
2825         { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2826         /* RT2661 */
2827         { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2828         { 0, }
2829 };
2830
2831 MODULE_AUTHOR(DRV_PROJECT);
2832 MODULE_VERSION(DRV_VERSION);
2833 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2834 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2835                         "PCI & PCMCIA chipset based cards");
2836 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2837 MODULE_FIRMWARE(FIRMWARE_RT2561);
2838 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2839 MODULE_FIRMWARE(FIRMWARE_RT2661);
2840 MODULE_LICENSE("GPL");
2841
2842 static struct pci_driver rt61pci_driver = {
2843         .name           = KBUILD_MODNAME,
2844         .id_table       = rt61pci_device_table,
2845         .probe          = rt2x00pci_probe,
2846         .remove         = __devexit_p(rt2x00pci_remove),
2847         .suspend        = rt2x00pci_suspend,
2848         .resume         = rt2x00pci_resume,
2849 };
2850
2851 static int __init rt61pci_init(void)
2852 {
2853         return pci_register_driver(&rt61pci_driver);
2854 }
2855
2856 static void __exit rt61pci_exit(void)
2857 {
2858         pci_unregister_driver(&rt61pci_driver);
2859 }
2860
2861 module_init(rt61pci_init);
2862 module_exit(rt61pci_exit);