rt2x00: Refactor beacon code to make use of start- and stop_queue
[linux-2.6.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
33
34 /*
35  * Radio control handlers.
36  */
37 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
38 {
39         int status;
40
41         /*
42          * Don't enable the radio twice.
43          * And check if the hardware button has been disabled.
44          */
45         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
46                 return 0;
47
48         /*
49          * Initialize all data queues.
50          */
51         rt2x00queue_init_queues(rt2x00dev);
52
53         /*
54          * Enable radio.
55          */
56         status =
57             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
58         if (status)
59                 return status;
60
61         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
62
63         rt2x00leds_led_radio(rt2x00dev, true);
64         rt2x00led_led_activity(rt2x00dev, true);
65
66         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
67
68         /*
69          * Enable queues.
70          */
71         rt2x00queue_start_queues(rt2x00dev);
72         rt2x00link_start_tuner(rt2x00dev);
73
74         /*
75          * Start watchdog monitoring.
76          */
77         rt2x00link_start_watchdog(rt2x00dev);
78
79         return 0;
80 }
81
82 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
83 {
84         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
85                 return;
86
87         /*
88          * Stop watchdog monitoring.
89          */
90         rt2x00link_stop_watchdog(rt2x00dev);
91
92         /*
93          * Stop all queues
94          */
95         rt2x00link_stop_tuner(rt2x00dev);
96         rt2x00queue_stop_queues(rt2x00dev);
97         rt2x00queue_flush_queues(rt2x00dev, true);
98
99         /*
100          * Disable radio.
101          */
102         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
103         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
104         rt2x00led_led_activity(rt2x00dev, false);
105         rt2x00leds_led_radio(rt2x00dev, false);
106 }
107
108 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
109                                           struct ieee80211_vif *vif)
110 {
111         struct rt2x00_dev *rt2x00dev = data;
112         struct rt2x00_intf *intf = vif_to_intf(vif);
113
114         /*
115          * It is possible the radio was disabled while the work had been
116          * scheduled. If that happens we should return here immediately,
117          * note that in the spinlock protected area above the delayed_flags
118          * have been cleared correctly.
119          */
120         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
121                 return;
122
123         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
124                 rt2x00queue_update_beacon(rt2x00dev, vif);
125 }
126
127 static void rt2x00lib_intf_scheduled(struct work_struct *work)
128 {
129         struct rt2x00_dev *rt2x00dev =
130             container_of(work, struct rt2x00_dev, intf_work);
131
132         /*
133          * Iterate over each interface and perform the
134          * requested configurations.
135          */
136         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
137                                             rt2x00lib_intf_scheduled_iter,
138                                             rt2x00dev);
139 }
140
141 /*
142  * Interrupt context handlers.
143  */
144 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
145                                      struct ieee80211_vif *vif)
146 {
147         struct rt2x00_dev *rt2x00dev = data;
148         struct sk_buff *skb;
149
150         /*
151          * Only AP mode interfaces do broad- and multicast buffering
152          */
153         if (vif->type != NL80211_IFTYPE_AP)
154                 return;
155
156         /*
157          * Send out buffered broad- and multicast frames
158          */
159         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
160         while (skb) {
161                 rt2x00mac_tx(rt2x00dev->hw, skb);
162                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
163         }
164 }
165
166 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
167                                         struct ieee80211_vif *vif)
168 {
169         struct rt2x00_dev *rt2x00dev = data;
170
171         if (vif->type != NL80211_IFTYPE_AP &&
172             vif->type != NL80211_IFTYPE_ADHOC &&
173             vif->type != NL80211_IFTYPE_MESH_POINT &&
174             vif->type != NL80211_IFTYPE_WDS)
175                 return;
176
177         rt2x00queue_update_beacon(rt2x00dev, vif);
178 }
179
180 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
181 {
182         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
183                 return;
184
185         /* send buffered bc/mc frames out for every bssid */
186         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
187                                             rt2x00lib_bc_buffer_iter,
188                                             rt2x00dev);
189         /*
190          * Devices with pre tbtt interrupt don't need to update the beacon
191          * here as they will fetch the next beacon directly prior to
192          * transmission.
193          */
194         if (test_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags))
195                 return;
196
197         /* fetch next beacon */
198         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
199                                             rt2x00lib_beaconupdate_iter,
200                                             rt2x00dev);
201 }
202 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
203
204 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
205 {
206         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
207                 return;
208
209         /* fetch next beacon */
210         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
211                                             rt2x00lib_beaconupdate_iter,
212                                             rt2x00dev);
213 }
214 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
215
216 void rt2x00lib_dmastart(struct queue_entry *entry)
217 {
218         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
219         rt2x00queue_index_inc(entry->queue, Q_INDEX);
220 }
221 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
222
223 void rt2x00lib_dmadone(struct queue_entry *entry)
224 {
225         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
226         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
227         rt2x00queue_index_inc(entry->queue, Q_INDEX_DMA_DONE);
228 }
229 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
230
231 void rt2x00lib_txdone(struct queue_entry *entry,
232                       struct txdone_entry_desc *txdesc)
233 {
234         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
235         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
236         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
237         unsigned int header_length, i;
238         u8 rate_idx, rate_flags, retry_rates;
239         u8 skbdesc_flags = skbdesc->flags;
240         bool success;
241
242         /*
243          * Unmap the skb.
244          */
245         rt2x00queue_unmap_skb(entry);
246
247         /*
248          * Remove the extra tx headroom from the skb.
249          */
250         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
251
252         /*
253          * Signal that the TX descriptor is no longer in the skb.
254          */
255         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
256
257         /*
258          * Determine the length of 802.11 header.
259          */
260         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
261
262         /*
263          * Remove L2 padding which was added during
264          */
265         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
266                 rt2x00queue_remove_l2pad(entry->skb, header_length);
267
268         /*
269          * If the IV/EIV data was stripped from the frame before it was
270          * passed to the hardware, we should now reinsert it again because
271          * mac80211 will expect the same data to be present it the
272          * frame as it was passed to us.
273          */
274         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
275                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
276
277         /*
278          * Send frame to debugfs immediately, after this call is completed
279          * we are going to overwrite the skb->cb array.
280          */
281         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
282
283         /*
284          * Determine if the frame has been successfully transmitted.
285          */
286         success =
287             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
288             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
289
290         /*
291          * Update TX statistics.
292          */
293         rt2x00dev->link.qual.tx_success += success;
294         rt2x00dev->link.qual.tx_failed += !success;
295
296         rate_idx = skbdesc->tx_rate_idx;
297         rate_flags = skbdesc->tx_rate_flags;
298         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
299             (txdesc->retry + 1) : 1;
300
301         /*
302          * Initialize TX status
303          */
304         memset(&tx_info->status, 0, sizeof(tx_info->status));
305         tx_info->status.ack_signal = 0;
306
307         /*
308          * Frame was send with retries, hardware tried
309          * different rates to send out the frame, at each
310          * retry it lowered the rate 1 step except when the
311          * lowest rate was used.
312          */
313         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
314                 tx_info->status.rates[i].idx = rate_idx - i;
315                 tx_info->status.rates[i].flags = rate_flags;
316
317                 if (rate_idx - i == 0) {
318                         /*
319                          * The lowest rate (index 0) was used until the
320                          * number of max retries was reached.
321                          */
322                         tx_info->status.rates[i].count = retry_rates - i;
323                         i++;
324                         break;
325                 }
326                 tx_info->status.rates[i].count = 1;
327         }
328         if (i < (IEEE80211_TX_MAX_RATES - 1))
329                 tx_info->status.rates[i].idx = -1; /* terminate */
330
331         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
332                 if (success)
333                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
334                 else
335                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
336         }
337
338         /*
339          * Every single frame has it's own tx status, hence report
340          * every frame as ampdu of size 1.
341          *
342          * TODO: if we can find out how many frames were aggregated
343          * by the hw we could provide the real ampdu_len to mac80211
344          * which would allow the rc algorithm to better decide on
345          * which rates are suitable.
346          */
347         if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
348                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
349                 tx_info->status.ampdu_len = 1;
350                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
351         }
352
353         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
354                 if (success)
355                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
356                 else
357                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
358         }
359
360         /*
361          * Only send the status report to mac80211 when it's a frame
362          * that originated in mac80211. If this was a extra frame coming
363          * through a mac80211 library call (RTS/CTS) then we should not
364          * send the status report back.
365          */
366         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
367                 if (test_bit(DRIVER_REQUIRE_TASKLET_CONTEXT, &rt2x00dev->flags))
368                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
369                 else
370                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
371         } else
372                 dev_kfree_skb_any(entry->skb);
373
374         /*
375          * Make this entry available for reuse.
376          */
377         entry->skb = NULL;
378         entry->flags = 0;
379
380         rt2x00dev->ops->lib->clear_entry(entry);
381
382         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
383
384         /*
385          * If the data queue was below the threshold before the txdone
386          * handler we must make sure the packet queue in the mac80211 stack
387          * is reenabled when the txdone handler has finished.
388          */
389         if (!rt2x00queue_threshold(entry->queue))
390                 rt2x00queue_unpause_queue(entry->queue);
391 }
392 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
393
394 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
395 {
396         struct txdone_entry_desc txdesc;
397
398         txdesc.flags = 0;
399         __set_bit(status, &txdesc.flags);
400         txdesc.retry = 0;
401
402         rt2x00lib_txdone(entry, &txdesc);
403 }
404 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
405
406 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
407                                         struct rxdone_entry_desc *rxdesc)
408 {
409         struct ieee80211_supported_band *sband;
410         const struct rt2x00_rate *rate;
411         unsigned int i;
412         int signal = rxdesc->signal;
413         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
414
415         switch (rxdesc->rate_mode) {
416         case RATE_MODE_CCK:
417         case RATE_MODE_OFDM:
418                 /*
419                  * For non-HT rates the MCS value needs to contain the
420                  * actually used rate modulation (CCK or OFDM).
421                  */
422                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
423                         signal = RATE_MCS(rxdesc->rate_mode, signal);
424
425                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
426                 for (i = 0; i < sband->n_bitrates; i++) {
427                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
428                         if (((type == RXDONE_SIGNAL_PLCP) &&
429                              (rate->plcp == signal)) ||
430                             ((type == RXDONE_SIGNAL_BITRATE) &&
431                               (rate->bitrate == signal)) ||
432                             ((type == RXDONE_SIGNAL_MCS) &&
433                               (rate->mcs == signal))) {
434                                 return i;
435                         }
436                 }
437                 break;
438         case RATE_MODE_HT_MIX:
439         case RATE_MODE_HT_GREENFIELD:
440                 if (signal >= 0 && signal <= 76)
441                         return signal;
442                 break;
443         default:
444                 break;
445         }
446
447         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
448                 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
449                 rxdesc->rate_mode, signal, type);
450         return 0;
451 }
452
453 void rt2x00lib_rxdone(struct queue_entry *entry)
454 {
455         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
456         struct rxdone_entry_desc rxdesc;
457         struct sk_buff *skb;
458         struct ieee80211_rx_status *rx_status;
459         unsigned int header_length;
460         int rate_idx;
461
462         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
463             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
464                 goto submit_entry;
465
466         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
467                 goto submit_entry;
468
469         /*
470          * Allocate a new sk_buffer. If no new buffer available, drop the
471          * received frame and reuse the existing buffer.
472          */
473         skb = rt2x00queue_alloc_rxskb(entry);
474         if (!skb)
475                 goto submit_entry;
476
477         /*
478          * Unmap the skb.
479          */
480         rt2x00queue_unmap_skb(entry);
481
482         /*
483          * Extract the RXD details.
484          */
485         memset(&rxdesc, 0, sizeof(rxdesc));
486         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
487
488         /*
489          * The data behind the ieee80211 header must be
490          * aligned on a 4 byte boundary.
491          */
492         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
493
494         /*
495          * Hardware might have stripped the IV/EIV/ICV data,
496          * in that case it is possible that the data was
497          * provided separately (through hardware descriptor)
498          * in which case we should reinsert the data into the frame.
499          */
500         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
501             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
502                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
503                                           &rxdesc);
504         else if (header_length &&
505                  (rxdesc.size > header_length) &&
506                  (rxdesc.dev_flags & RXDONE_L2PAD))
507                 rt2x00queue_remove_l2pad(entry->skb, header_length);
508         else
509                 rt2x00queue_align_payload(entry->skb, header_length);
510
511         /* Trim buffer to correct size */
512         skb_trim(entry->skb, rxdesc.size);
513
514         /*
515          * Translate the signal to the correct bitrate index.
516          */
517         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
518         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
519             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
520                 rxdesc.flags |= RX_FLAG_HT;
521
522         /*
523          * Update extra components
524          */
525         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
526         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
527         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
528
529         /*
530          * Initialize RX status information, and send frame
531          * to mac80211.
532          */
533         rx_status = IEEE80211_SKB_RXCB(entry->skb);
534         rx_status->mactime = rxdesc.timestamp;
535         rx_status->band = rt2x00dev->curr_band;
536         rx_status->freq = rt2x00dev->curr_freq;
537         rx_status->rate_idx = rate_idx;
538         rx_status->signal = rxdesc.rssi;
539         rx_status->flag = rxdesc.flags;
540         rx_status->antenna = rt2x00dev->link.ant.active.rx;
541
542         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
543
544         /*
545          * Replace the skb with the freshly allocated one.
546          */
547         entry->skb = skb;
548
549 submit_entry:
550         entry->flags = 0;
551         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
552         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
553             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
554                 rt2x00dev->ops->lib->clear_entry(entry);
555 }
556 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
557
558 /*
559  * Driver initialization handlers.
560  */
561 const struct rt2x00_rate rt2x00_supported_rates[12] = {
562         {
563                 .flags = DEV_RATE_CCK,
564                 .bitrate = 10,
565                 .ratemask = BIT(0),
566                 .plcp = 0x00,
567                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
568         },
569         {
570                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
571                 .bitrate = 20,
572                 .ratemask = BIT(1),
573                 .plcp = 0x01,
574                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
575         },
576         {
577                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
578                 .bitrate = 55,
579                 .ratemask = BIT(2),
580                 .plcp = 0x02,
581                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
582         },
583         {
584                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
585                 .bitrate = 110,
586                 .ratemask = BIT(3),
587                 .plcp = 0x03,
588                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
589         },
590         {
591                 .flags = DEV_RATE_OFDM,
592                 .bitrate = 60,
593                 .ratemask = BIT(4),
594                 .plcp = 0x0b,
595                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
596         },
597         {
598                 .flags = DEV_RATE_OFDM,
599                 .bitrate = 90,
600                 .ratemask = BIT(5),
601                 .plcp = 0x0f,
602                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
603         },
604         {
605                 .flags = DEV_RATE_OFDM,
606                 .bitrate = 120,
607                 .ratemask = BIT(6),
608                 .plcp = 0x0a,
609                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
610         },
611         {
612                 .flags = DEV_RATE_OFDM,
613                 .bitrate = 180,
614                 .ratemask = BIT(7),
615                 .plcp = 0x0e,
616                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
617         },
618         {
619                 .flags = DEV_RATE_OFDM,
620                 .bitrate = 240,
621                 .ratemask = BIT(8),
622                 .plcp = 0x09,
623                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
624         },
625         {
626                 .flags = DEV_RATE_OFDM,
627                 .bitrate = 360,
628                 .ratemask = BIT(9),
629                 .plcp = 0x0d,
630                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
631         },
632         {
633                 .flags = DEV_RATE_OFDM,
634                 .bitrate = 480,
635                 .ratemask = BIT(10),
636                 .plcp = 0x08,
637                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
638         },
639         {
640                 .flags = DEV_RATE_OFDM,
641                 .bitrate = 540,
642                 .ratemask = BIT(11),
643                 .plcp = 0x0c,
644                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
645         },
646 };
647
648 static void rt2x00lib_channel(struct ieee80211_channel *entry,
649                               const int channel, const int tx_power,
650                               const int value)
651 {
652         /* XXX: this assumption about the band is wrong for 802.11j */
653         entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
654         entry->center_freq = ieee80211_channel_to_frequency(channel,
655                                                             entry->band);
656         entry->hw_value = value;
657         entry->max_power = tx_power;
658         entry->max_antenna_gain = 0xff;
659 }
660
661 static void rt2x00lib_rate(struct ieee80211_rate *entry,
662                            const u16 index, const struct rt2x00_rate *rate)
663 {
664         entry->flags = 0;
665         entry->bitrate = rate->bitrate;
666         entry->hw_value = index;
667         entry->hw_value_short = index;
668
669         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
670                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
671 }
672
673 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
674                                     struct hw_mode_spec *spec)
675 {
676         struct ieee80211_hw *hw = rt2x00dev->hw;
677         struct ieee80211_channel *channels;
678         struct ieee80211_rate *rates;
679         unsigned int num_rates;
680         unsigned int i;
681
682         num_rates = 0;
683         if (spec->supported_rates & SUPPORT_RATE_CCK)
684                 num_rates += 4;
685         if (spec->supported_rates & SUPPORT_RATE_OFDM)
686                 num_rates += 8;
687
688         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
689         if (!channels)
690                 return -ENOMEM;
691
692         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
693         if (!rates)
694                 goto exit_free_channels;
695
696         /*
697          * Initialize Rate list.
698          */
699         for (i = 0; i < num_rates; i++)
700                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
701
702         /*
703          * Initialize Channel list.
704          */
705         for (i = 0; i < spec->num_channels; i++) {
706                 rt2x00lib_channel(&channels[i],
707                                   spec->channels[i].channel,
708                                   spec->channels_info[i].max_power, i);
709         }
710
711         /*
712          * Intitialize 802.11b, 802.11g
713          * Rates: CCK, OFDM.
714          * Channels: 2.4 GHz
715          */
716         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
717                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
718                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
719                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
720                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
721                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
722                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
723                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
724                        &spec->ht, sizeof(spec->ht));
725         }
726
727         /*
728          * Intitialize 802.11a
729          * Rates: OFDM.
730          * Channels: OFDM, UNII, HiperLAN2.
731          */
732         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
733                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
734                     spec->num_channels - 14;
735                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
736                     num_rates - 4;
737                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
738                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
739                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
740                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
741                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
742                        &spec->ht, sizeof(spec->ht));
743         }
744
745         return 0;
746
747  exit_free_channels:
748         kfree(channels);
749         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
750         return -ENOMEM;
751 }
752
753 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
754 {
755         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
756                 ieee80211_unregister_hw(rt2x00dev->hw);
757
758         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
759                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
760                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
761                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
762                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
763         }
764
765         kfree(rt2x00dev->spec.channels_info);
766 }
767
768 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
769 {
770         struct hw_mode_spec *spec = &rt2x00dev->spec;
771         int status;
772
773         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
774                 return 0;
775
776         /*
777          * Initialize HW modes.
778          */
779         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
780         if (status)
781                 return status;
782
783         /*
784          * Initialize HW fields.
785          */
786         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
787
788         /*
789          * Initialize extra TX headroom required.
790          */
791         rt2x00dev->hw->extra_tx_headroom =
792                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
793                       rt2x00dev->ops->extra_tx_headroom);
794
795         /*
796          * Take TX headroom required for alignment into account.
797          */
798         if (test_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags))
799                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
800         else if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags))
801                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
802
803         /*
804          * Allocate tx status FIFO for driver use.
805          */
806         if (test_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags)) {
807                 /*
808                  * Allocate txstatus fifo and tasklet, we use a size of 512
809                  * for the kfifo which is big enough to store 512/4=128 tx
810                  * status reports. In the worst case (tx status for all tx
811                  * queues gets reported before we've got a chance to handle
812                  * them) 24*4=384 tx status reports need to be cached.
813                  */
814                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, 512,
815                                      GFP_KERNEL);
816                 if (status)
817                         return status;
818
819                 /* tasklet for processing the tx status reports. */
820                 if (rt2x00dev->ops->lib->txstatus_tasklet)
821                         tasklet_init(&rt2x00dev->txstatus_tasklet,
822                                      rt2x00dev->ops->lib->txstatus_tasklet,
823                                      (unsigned long)rt2x00dev);
824
825         }
826
827         /*
828          * Register HW.
829          */
830         status = ieee80211_register_hw(rt2x00dev->hw);
831         if (status)
832                 return status;
833
834         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
835
836         return 0;
837 }
838
839 /*
840  * Initialization/uninitialization handlers.
841  */
842 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
843 {
844         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
845                 return;
846
847         /*
848          * Unregister extra components.
849          */
850         rt2x00rfkill_unregister(rt2x00dev);
851
852         /*
853          * Allow the HW to uninitialize.
854          */
855         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
856
857         /*
858          * Free allocated queue entries.
859          */
860         rt2x00queue_uninitialize(rt2x00dev);
861 }
862
863 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
864 {
865         int status;
866
867         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
868                 return 0;
869
870         /*
871          * Allocate all queue entries.
872          */
873         status = rt2x00queue_initialize(rt2x00dev);
874         if (status)
875                 return status;
876
877         /*
878          * Initialize the device.
879          */
880         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
881         if (status) {
882                 rt2x00queue_uninitialize(rt2x00dev);
883                 return status;
884         }
885
886         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
887
888         /*
889          * Register the extra components.
890          */
891         rt2x00rfkill_register(rt2x00dev);
892
893         return 0;
894 }
895
896 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
897 {
898         int retval;
899
900         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
901                 return 0;
902
903         /*
904          * If this is the first interface which is added,
905          * we should load the firmware now.
906          */
907         retval = rt2x00lib_load_firmware(rt2x00dev);
908         if (retval)
909                 return retval;
910
911         /*
912          * Initialize the device.
913          */
914         retval = rt2x00lib_initialize(rt2x00dev);
915         if (retval)
916                 return retval;
917
918         rt2x00dev->intf_ap_count = 0;
919         rt2x00dev->intf_sta_count = 0;
920         rt2x00dev->intf_associated = 0;
921
922         /* Enable the radio */
923         retval = rt2x00lib_enable_radio(rt2x00dev);
924         if (retval)
925                 return retval;
926
927         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
928
929         return 0;
930 }
931
932 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
933 {
934         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
935                 return;
936
937         /*
938          * Perhaps we can add something smarter here,
939          * but for now just disabling the radio should do.
940          */
941         rt2x00lib_disable_radio(rt2x00dev);
942
943         rt2x00dev->intf_ap_count = 0;
944         rt2x00dev->intf_sta_count = 0;
945         rt2x00dev->intf_associated = 0;
946 }
947
948 /*
949  * driver allocation handlers.
950  */
951 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
952 {
953         int retval = -ENOMEM;
954
955         mutex_init(&rt2x00dev->csr_mutex);
956
957         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
958
959         /*
960          * Make room for rt2x00_intf inside the per-interface
961          * structure ieee80211_vif.
962          */
963         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
964
965         /*
966          * Determine which operating modes are supported, all modes
967          * which require beaconing, depend on the availability of
968          * beacon entries.
969          */
970         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
971         if (rt2x00dev->ops->bcn->entry_num > 0)
972                 rt2x00dev->hw->wiphy->interface_modes |=
973                     BIT(NL80211_IFTYPE_ADHOC) |
974                     BIT(NL80211_IFTYPE_AP) |
975                     BIT(NL80211_IFTYPE_MESH_POINT) |
976                     BIT(NL80211_IFTYPE_WDS);
977
978         /*
979          * Initialize configuration work.
980          */
981         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
982
983         /*
984          * Let the driver probe the device to detect the capabilities.
985          */
986         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
987         if (retval) {
988                 ERROR(rt2x00dev, "Failed to allocate device.\n");
989                 goto exit;
990         }
991
992         /*
993          * Allocate queue array.
994          */
995         retval = rt2x00queue_allocate(rt2x00dev);
996         if (retval)
997                 goto exit;
998
999         /*
1000          * Initialize ieee80211 structure.
1001          */
1002         retval = rt2x00lib_probe_hw(rt2x00dev);
1003         if (retval) {
1004                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1005                 goto exit;
1006         }
1007
1008         /*
1009          * Register extra components.
1010          */
1011         rt2x00link_register(rt2x00dev);
1012         rt2x00leds_register(rt2x00dev);
1013         rt2x00debug_register(rt2x00dev);
1014
1015         return 0;
1016
1017 exit:
1018         rt2x00lib_remove_dev(rt2x00dev);
1019
1020         return retval;
1021 }
1022 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1023
1024 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1025 {
1026         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1027
1028         /*
1029          * Disable radio.
1030          */
1031         rt2x00lib_disable_radio(rt2x00dev);
1032
1033         /*
1034          * Stop all work.
1035          */
1036         cancel_work_sync(&rt2x00dev->intf_work);
1037         cancel_work_sync(&rt2x00dev->rxdone_work);
1038         cancel_work_sync(&rt2x00dev->txdone_work);
1039
1040         /*
1041          * Free the tx status fifo.
1042          */
1043         kfifo_free(&rt2x00dev->txstatus_fifo);
1044
1045         /*
1046          * Kill the tx status tasklet.
1047          */
1048         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1049
1050         /*
1051          * Uninitialize device.
1052          */
1053         rt2x00lib_uninitialize(rt2x00dev);
1054
1055         /*
1056          * Free extra components
1057          */
1058         rt2x00debug_deregister(rt2x00dev);
1059         rt2x00leds_unregister(rt2x00dev);
1060
1061         /*
1062          * Free ieee80211_hw memory.
1063          */
1064         rt2x00lib_remove_hw(rt2x00dev);
1065
1066         /*
1067          * Free firmware image.
1068          */
1069         rt2x00lib_free_firmware(rt2x00dev);
1070
1071         /*
1072          * Free queue structures.
1073          */
1074         rt2x00queue_free(rt2x00dev);
1075 }
1076 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1077
1078 /*
1079  * Device state handlers
1080  */
1081 #ifdef CONFIG_PM
1082 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1083 {
1084         NOTICE(rt2x00dev, "Going to sleep.\n");
1085
1086         /*
1087          * Prevent mac80211 from accessing driver while suspended.
1088          */
1089         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1090                 return 0;
1091
1092         /*
1093          * Cleanup as much as possible.
1094          */
1095         rt2x00lib_uninitialize(rt2x00dev);
1096
1097         /*
1098          * Suspend/disable extra components.
1099          */
1100         rt2x00leds_suspend(rt2x00dev);
1101         rt2x00debug_deregister(rt2x00dev);
1102
1103         /*
1104          * Set device mode to sleep for power management,
1105          * on some hardware this call seems to consistently fail.
1106          * From the specifications it is hard to tell why it fails,
1107          * and if this is a "bad thing".
1108          * Overall it is safe to just ignore the failure and
1109          * continue suspending. The only downside is that the
1110          * device will not be in optimal power save mode, but with
1111          * the radio and the other components already disabled the
1112          * device is as good as disabled.
1113          */
1114         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1115                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1116                         "continue suspending.\n");
1117
1118         return 0;
1119 }
1120 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1121
1122 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1123 {
1124         NOTICE(rt2x00dev, "Waking up.\n");
1125
1126         /*
1127          * Restore/enable extra components.
1128          */
1129         rt2x00debug_register(rt2x00dev);
1130         rt2x00leds_resume(rt2x00dev);
1131
1132         /*
1133          * We are ready again to receive requests from mac80211.
1134          */
1135         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1136
1137         return 0;
1138 }
1139 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1140 #endif /* CONFIG_PM */
1141
1142 /*
1143  * rt2x00lib module information.
1144  */
1145 MODULE_AUTHOR(DRV_PROJECT);
1146 MODULE_VERSION(DRV_VERSION);
1147 MODULE_DESCRIPTION("rt2x00 library");
1148 MODULE_LICENSE("GPL");