rt2x00: Add per-interface structure
[linux-2.6.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Register access.
40  * All access to the CSR registers will go through the methods
41  * rt2500usb_register_read and rt2500usb_register_write.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers BBPCSR and RFCSR to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attampt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  * If the usb_cache_mutex is already held then the _lock variants must
51  * be used instead.
52  */
53 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
54                                            const unsigned int offset,
55                                            u16 *value)
56 {
57         __le16 reg;
58         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
59                                       USB_VENDOR_REQUEST_IN, offset,
60                                       &reg, sizeof(u16), REGISTER_TIMEOUT);
61         *value = le16_to_cpu(reg);
62 }
63
64 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
65                                                 const unsigned int offset,
66                                                 u16 *value)
67 {
68         __le16 reg;
69         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
70                                        USB_VENDOR_REQUEST_IN, offset,
71                                        &reg, sizeof(u16), REGISTER_TIMEOUT);
72         *value = le16_to_cpu(reg);
73 }
74
75 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
76                                                 const unsigned int offset,
77                                                 void *value, const u16 length)
78 {
79         int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
80         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
81                                       USB_VENDOR_REQUEST_IN, offset,
82                                       value, length, timeout);
83 }
84
85 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
86                                             const unsigned int offset,
87                                             u16 value)
88 {
89         __le16 reg = cpu_to_le16(value);
90         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
91                                       USB_VENDOR_REQUEST_OUT, offset,
92                                       &reg, sizeof(u16), REGISTER_TIMEOUT);
93 }
94
95 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
96                                                  const unsigned int offset,
97                                                  u16 value)
98 {
99         __le16 reg = cpu_to_le16(value);
100         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
101                                        USB_VENDOR_REQUEST_OUT, offset,
102                                        &reg, sizeof(u16), REGISTER_TIMEOUT);
103 }
104
105 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
106                                                  const unsigned int offset,
107                                                  void *value, const u16 length)
108 {
109         int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
110         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
111                                       USB_VENDOR_REQUEST_OUT, offset,
112                                       value, length, timeout);
113 }
114
115 static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
116 {
117         u16 reg;
118         unsigned int i;
119
120         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
121                 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, &reg);
122                 if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
123                         break;
124                 udelay(REGISTER_BUSY_DELAY);
125         }
126
127         return reg;
128 }
129
130 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
131                                 const unsigned int word, const u8 value)
132 {
133         u16 reg;
134
135         mutex_lock(&rt2x00dev->usb_cache_mutex);
136
137         /*
138          * Wait until the BBP becomes ready.
139          */
140         reg = rt2500usb_bbp_check(rt2x00dev);
141         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
142                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
143                 mutex_unlock(&rt2x00dev->usb_cache_mutex);
144                 return;
145         }
146
147         /*
148          * Write the data into the BBP.
149          */
150         reg = 0;
151         rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
152         rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
153         rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
154
155         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
156
157         mutex_unlock(&rt2x00dev->usb_cache_mutex);
158 }
159
160 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
161                                const unsigned int word, u8 *value)
162 {
163         u16 reg;
164
165         mutex_lock(&rt2x00dev->usb_cache_mutex);
166
167         /*
168          * Wait until the BBP becomes ready.
169          */
170         reg = rt2500usb_bbp_check(rt2x00dev);
171         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
172                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
173                 return;
174         }
175
176         /*
177          * Write the request into the BBP.
178          */
179         reg = 0;
180         rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
181         rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
182
183         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
184
185         /*
186          * Wait until the BBP becomes ready.
187          */
188         reg = rt2500usb_bbp_check(rt2x00dev);
189         if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
190                 ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
191                 *value = 0xff;
192                 mutex_unlock(&rt2x00dev->usb_cache_mutex);
193                 return;
194         }
195
196         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
197         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
198
199         mutex_unlock(&rt2x00dev->usb_cache_mutex);
200 }
201
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203                                const unsigned int word, const u32 value)
204 {
205         u16 reg;
206         unsigned int i;
207
208         if (!word)
209                 return;
210
211         mutex_lock(&rt2x00dev->usb_cache_mutex);
212
213         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
214                 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, &reg);
215                 if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
216                         goto rf_write;
217                 udelay(REGISTER_BUSY_DELAY);
218         }
219
220         mutex_unlock(&rt2x00dev->usb_cache_mutex);
221         ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
222         return;
223
224 rf_write:
225         reg = 0;
226         rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
227         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
228
229         reg = 0;
230         rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
231         rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
232         rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
233         rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
234
235         rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
236         rt2x00_rf_write(rt2x00dev, word, value);
237
238         mutex_unlock(&rt2x00dev->usb_cache_mutex);
239 }
240
241 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
242 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
243
244 static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
245                                const unsigned int word, u32 *data)
246 {
247         rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
248 }
249
250 static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
251                                 const unsigned int word, u32 data)
252 {
253         rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
254 }
255
256 static const struct rt2x00debug rt2500usb_rt2x00debug = {
257         .owner  = THIS_MODULE,
258         .csr    = {
259                 .read           = rt2500usb_read_csr,
260                 .write          = rt2500usb_write_csr,
261                 .word_size      = sizeof(u16),
262                 .word_count     = CSR_REG_SIZE / sizeof(u16),
263         },
264         .eeprom = {
265                 .read           = rt2x00_eeprom_read,
266                 .write          = rt2x00_eeprom_write,
267                 .word_size      = sizeof(u16),
268                 .word_count     = EEPROM_SIZE / sizeof(u16),
269         },
270         .bbp    = {
271                 .read           = rt2500usb_bbp_read,
272                 .write          = rt2500usb_bbp_write,
273                 .word_size      = sizeof(u8),
274                 .word_count     = BBP_SIZE / sizeof(u8),
275         },
276         .rf     = {
277                 .read           = rt2x00_rf_read,
278                 .write          = rt2500usb_rf_write,
279                 .word_size      = sizeof(u32),
280                 .word_count     = RF_SIZE / sizeof(u32),
281         },
282 };
283 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
284
285 /*
286  * Configuration handlers.
287  */
288 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
289                                   struct rt2x00_intf *intf,
290                                   struct rt2x00intf_conf *conf,
291                                   const unsigned int flags)
292 {
293         unsigned int bcn_preload;
294         u16 reg;
295
296         if (flags & CONFIG_UPDATE_TYPE) {
297                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
298
299                 /*
300                  * Enable beacon config
301                  */
302                 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
303                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
304                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
305                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
306                                    2 * (conf->type != IEEE80211_IF_TYPE_STA));
307                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
308
309                 /*
310                  * Enable synchronisation.
311                  */
312                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
313                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
314                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
315
316                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
317                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
318                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN,
319                                    (conf->sync == TSF_SYNC_BEACON));
320                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
321                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
322                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
323         }
324
325         if (flags & CONFIG_UPDATE_MAC)
326                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
327                                               (3 * sizeof(__le16)));
328
329         if (flags & CONFIG_UPDATE_BSSID)
330                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
331                                               (3 * sizeof(__le16)));
332 }
333
334 static int rt2500usb_config_preamble(struct rt2x00_dev *rt2x00dev,
335                                      const int short_preamble,
336                                      const int ack_timeout,
337                                      const int ack_consume_time)
338 {
339         u16 reg;
340
341         /*
342          * When in atomic context, we should let rt2x00lib
343          * try this configuration again later.
344          */
345         if (in_atomic())
346                 return -EAGAIN;
347
348         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
349         rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, ack_timeout);
350         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
351
352         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
353         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
354                            !!short_preamble);
355         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
356
357         return 0;
358 }
359
360 static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
361                                      const int phymode,
362                                      const int basic_rate_mask)
363 {
364         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
365
366         if (phymode == HWMODE_B) {
367                 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x000b);
368                 rt2500usb_register_write(rt2x00dev, MAC_CSR12, 0x0040);
369         } else {
370                 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0005);
371                 rt2500usb_register_write(rt2x00dev, MAC_CSR12, 0x016c);
372         }
373 }
374
375 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
376                                      struct rf_channel *rf, const int txpower)
377 {
378         /*
379          * Set TXpower.
380          */
381         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
382
383         /*
384          * For RT2525E we should first set the channel to half band higher.
385          */
386         if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
387                 static const u32 vals[] = {
388                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
389                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
390                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
391                         0x00000902, 0x00000906
392                 };
393
394                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
395                 if (rf->rf4)
396                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
397         }
398
399         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
400         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
401         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
402         if (rf->rf4)
403                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
404 }
405
406 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
407                                      const int txpower)
408 {
409         u32 rf3;
410
411         rt2x00_rf_read(rt2x00dev, 3, &rf3);
412         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
413         rt2500usb_rf_write(rt2x00dev, 3, rf3);
414 }
415
416 static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
417                                      struct antenna_setup *ant)
418 {
419         u8 r2;
420         u8 r14;
421         u16 csr5;
422         u16 csr6;
423
424         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
425         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
426         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
427         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
428
429         /*
430          * Configure the TX antenna.
431          */
432         switch (ant->tx) {
433         case ANTENNA_HW_DIVERSITY:
434                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
435                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
436                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
437                 break;
438         case ANTENNA_A:
439                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
440                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
441                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
442                 break;
443         case ANTENNA_SW_DIVERSITY:
444                 /*
445                  * NOTE: We should never come here because rt2x00lib is
446                  * supposed to catch this and send us the correct antenna
447                  * explicitely. However we are nog going to bug about this.
448                  * Instead, just default to antenna B.
449                  */
450         case ANTENNA_B:
451                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
452                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
453                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
454                 break;
455         }
456
457         /*
458          * Configure the RX antenna.
459          */
460         switch (ant->rx) {
461         case ANTENNA_HW_DIVERSITY:
462                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
463                 break;
464         case ANTENNA_A:
465                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
466                 break;
467         case ANTENNA_SW_DIVERSITY:
468                 /*
469                  * NOTE: We should never come here because rt2x00lib is
470                  * supposed to catch this and send us the correct antenna
471                  * explicitely. However we are nog going to bug about this.
472                  * Instead, just default to antenna B.
473                  */
474         case ANTENNA_B:
475                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
476                 break;
477         }
478
479         /*
480          * RT2525E and RT5222 need to flip TX I/Q
481          */
482         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
483             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
484                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
485                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
486                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
487
488                 /*
489                  * RT2525E does not need RX I/Q Flip.
490                  */
491                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
492                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
493         } else {
494                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
495                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
496         }
497
498         rt2500usb_bbp_write(rt2x00dev, 2, r2);
499         rt2500usb_bbp_write(rt2x00dev, 14, r14);
500         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
501         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
502 }
503
504 static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
505                                       struct rt2x00lib_conf *libconf)
506 {
507         u16 reg;
508
509         rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
510
511         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
512         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
513                            libconf->conf->beacon_int * 4);
514         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
515 }
516
517 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
518                              struct rt2x00lib_conf *libconf,
519                              const unsigned int flags)
520 {
521         if (flags & CONFIG_UPDATE_PHYMODE)
522                 rt2500usb_config_phymode(rt2x00dev, libconf->phymode,
523                                          libconf->basic_rates);
524         if (flags & CONFIG_UPDATE_CHANNEL)
525                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
526                                          libconf->conf->power_level);
527         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
528                 rt2500usb_config_txpower(rt2x00dev,
529                                          libconf->conf->power_level);
530         if (flags & CONFIG_UPDATE_ANTENNA)
531                 rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
532         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
533                 rt2500usb_config_duration(rt2x00dev, libconf);
534 }
535
536 /*
537  * LED functions.
538  */
539 static void rt2500usb_enable_led(struct rt2x00_dev *rt2x00dev)
540 {
541         u16 reg;
542
543         rt2500usb_register_read(rt2x00dev, MAC_CSR21, &reg);
544         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, 70);
545         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, 30);
546         rt2500usb_register_write(rt2x00dev, MAC_CSR21, reg);
547
548         rt2500usb_register_read(rt2x00dev, MAC_CSR20, &reg);
549         rt2x00_set_field16(&reg, MAC_CSR20_LINK,
550                            (rt2x00dev->led_mode != LED_MODE_ASUS));
551         rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY,
552                            (rt2x00dev->led_mode != LED_MODE_TXRX_ACTIVITY));
553         rt2500usb_register_write(rt2x00dev, MAC_CSR20, reg);
554 }
555
556 static void rt2500usb_disable_led(struct rt2x00_dev *rt2x00dev)
557 {
558         u16 reg;
559
560         rt2500usb_register_read(rt2x00dev, MAC_CSR20, &reg);
561         rt2x00_set_field16(&reg, MAC_CSR20_LINK, 0);
562         rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, 0);
563         rt2500usb_register_write(rt2x00dev, MAC_CSR20, reg);
564 }
565
566 /*
567  * Link tuning
568  */
569 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
570                                  struct link_qual *qual)
571 {
572         u16 reg;
573
574         /*
575          * Update FCS error count from register.
576          */
577         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
578         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
579
580         /*
581          * Update False CCA count from register.
582          */
583         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
584         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
585 }
586
587 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
588 {
589         u16 eeprom;
590         u16 value;
591
592         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
593         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
594         rt2500usb_bbp_write(rt2x00dev, 24, value);
595
596         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
597         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
598         rt2500usb_bbp_write(rt2x00dev, 25, value);
599
600         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
601         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
602         rt2500usb_bbp_write(rt2x00dev, 61, value);
603
604         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
605         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
606         rt2500usb_bbp_write(rt2x00dev, 17, value);
607
608         rt2x00dev->link.vgc_level = value;
609 }
610
611 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
612 {
613         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
614         u16 bbp_thresh;
615         u16 vgc_bound;
616         u16 sens;
617         u16 r24;
618         u16 r25;
619         u16 r61;
620         u16 r17_sens;
621         u8 r17;
622         u8 up_bound;
623         u8 low_bound;
624
625         /*
626          * Read current r17 value, as well as the sensitivity values
627          * for the r17 register.
628          */
629         rt2500usb_bbp_read(rt2x00dev, 17, &r17);
630         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
631
632         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
633         up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
634         low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
635
636         /*
637          * If we are not associated, we should go straight to the
638          * dynamic CCA tuning.
639          */
640         if (!rt2x00dev->intf_associated)
641                 goto dynamic_cca_tune;
642
643         /*
644          * Determine the BBP tuning threshold and correctly
645          * set BBP 24, 25 and 61.
646          */
647         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
648         bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
649
650         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
651         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
652         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
653
654         if ((rssi + bbp_thresh) > 0) {
655                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
656                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
657                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
658         } else {
659                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
660                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
661                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
662         }
663
664         rt2500usb_bbp_write(rt2x00dev, 24, r24);
665         rt2500usb_bbp_write(rt2x00dev, 25, r25);
666         rt2500usb_bbp_write(rt2x00dev, 61, r61);
667
668         /*
669          * A too low RSSI will cause too much false CCA which will
670          * then corrupt the R17 tuning. To remidy this the tuning should
671          * be stopped (While making sure the R17 value will not exceed limits)
672          */
673         if (rssi >= -40) {
674                 if (r17 != 0x60)
675                         rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
676                 return;
677         }
678
679         /*
680          * Special big-R17 for short distance
681          */
682         if (rssi >= -58) {
683                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
684                 if (r17 != sens)
685                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
686                 return;
687         }
688
689         /*
690          * Special mid-R17 for middle distance
691          */
692         if (rssi >= -74) {
693                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
694                 if (r17 != sens)
695                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
696                 return;
697         }
698
699         /*
700          * Leave short or middle distance condition, restore r17
701          * to the dynamic tuning range.
702          */
703         low_bound = 0x32;
704         if (rssi < -77)
705                 up_bound -= (-77 - rssi);
706
707         if (up_bound < low_bound)
708                 up_bound = low_bound;
709
710         if (r17 > up_bound) {
711                 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
712                 rt2x00dev->link.vgc_level = up_bound;
713                 return;
714         }
715
716 dynamic_cca_tune:
717
718         /*
719          * R17 is inside the dynamic tuning range,
720          * start tuning the link based on the false cca counter.
721          */
722         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
723                 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
724                 rt2x00dev->link.vgc_level = r17;
725         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
726                 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
727                 rt2x00dev->link.vgc_level = r17;
728         }
729 }
730
731 /*
732  * Initialization functions.
733  */
734 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
735 {
736         u16 reg;
737
738         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
739                                     USB_MODE_TEST, REGISTER_TIMEOUT);
740         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
741                                     0x00f0, REGISTER_TIMEOUT);
742
743         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
744         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
745         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
746
747         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
748         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
749
750         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
751         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
752         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
753         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
754         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
755
756         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
757         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
758         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
759         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
760         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
761
762         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
763         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
764         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
765         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
766         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
767         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
768
769         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
770         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
771         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
772         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
773         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
774         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
775
776         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
777         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
778         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
779         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
780         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
781         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
782
783         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
784         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
785         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
786         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
787         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
788         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
789
790         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
791         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
792
793         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
794                 return -EBUSY;
795
796         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
797         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
798         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
799         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
800         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
801
802         if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
803                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
804                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
805         } else {
806                 reg = 0;
807                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
808                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
809         }
810         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
811
812         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
813         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
814         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
815         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
816
817         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
818         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
819                            rt2x00dev->rx->data_size);
820         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
821
822         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
823         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
824         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
825         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
826
827         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
828         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
829         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
830
831         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
832         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
833         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
834
835         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
836         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
837         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
838
839         return 0;
840 }
841
842 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
843 {
844         unsigned int i;
845         u16 eeprom;
846         u8 value;
847         u8 reg_id;
848
849         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
850                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
851                 if ((value != 0xff) && (value != 0x00))
852                         goto continue_csr_init;
853                 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
854                 udelay(REGISTER_BUSY_DELAY);
855         }
856
857         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
858         return -EACCES;
859
860 continue_csr_init:
861         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
862         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
863         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
864         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
865         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
866         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
867         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
868         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
869         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
870         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
871         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
872         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
873         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
874         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
875         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
876         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
877         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
878         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
879         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
880         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
881         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
882         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
883         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
884         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
885         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
886         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
887         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
888         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
889         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
890         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
891         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
892
893         DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
894         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
895                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
896
897                 if (eeprom != 0xffff && eeprom != 0x0000) {
898                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
899                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
900                         DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
901                               reg_id, value);
902                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
903                 }
904         }
905         DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
906
907         return 0;
908 }
909
910 /*
911  * Device state switch handlers.
912  */
913 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
914                                 enum dev_state state)
915 {
916         u16 reg;
917
918         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
919         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
920                            state == STATE_RADIO_RX_OFF);
921         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
922 }
923
924 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
925 {
926         /*
927          * Initialize all registers.
928          */
929         if (rt2500usb_init_registers(rt2x00dev) ||
930             rt2500usb_init_bbp(rt2x00dev)) {
931                 ERROR(rt2x00dev, "Register initialization failed.\n");
932                 return -EIO;
933         }
934
935         /*
936          * Enable LED
937          */
938         rt2500usb_enable_led(rt2x00dev);
939
940         return 0;
941 }
942
943 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
944 {
945         /*
946          * Disable LED
947          */
948         rt2500usb_disable_led(rt2x00dev);
949
950         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
951         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
952
953         /*
954          * Disable synchronisation.
955          */
956         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
957
958         rt2x00usb_disable_radio(rt2x00dev);
959 }
960
961 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
962                                enum dev_state state)
963 {
964         u16 reg;
965         u16 reg2;
966         unsigned int i;
967         char put_to_sleep;
968         char bbp_state;
969         char rf_state;
970
971         put_to_sleep = (state != STATE_AWAKE);
972
973         reg = 0;
974         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
975         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
976         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
977         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
978         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
979         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
980
981         /*
982          * Device is not guaranteed to be in the requested state yet.
983          * We must wait until the register indicates that the
984          * device has entered the correct state.
985          */
986         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
987                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
988                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
989                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
990                 if (bbp_state == state && rf_state == state)
991                         return 0;
992                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
993                 msleep(30);
994         }
995
996         NOTICE(rt2x00dev, "Device failed to enter state %d, "
997                "current device state: bbp %d and rf %d.\n",
998                state, bbp_state, rf_state);
999
1000         return -EBUSY;
1001 }
1002
1003 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1004                                       enum dev_state state)
1005 {
1006         int retval = 0;
1007
1008         switch (state) {
1009         case STATE_RADIO_ON:
1010                 retval = rt2500usb_enable_radio(rt2x00dev);
1011                 break;
1012         case STATE_RADIO_OFF:
1013                 rt2500usb_disable_radio(rt2x00dev);
1014                 break;
1015         case STATE_RADIO_RX_ON:
1016         case STATE_RADIO_RX_ON_LINK:
1017                 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1018                 break;
1019         case STATE_RADIO_RX_OFF:
1020         case STATE_RADIO_RX_OFF_LINK:
1021                 rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1022                 break;
1023         case STATE_DEEP_SLEEP:
1024         case STATE_SLEEP:
1025         case STATE_STANDBY:
1026         case STATE_AWAKE:
1027                 retval = rt2500usb_set_state(rt2x00dev, state);
1028                 break;
1029         default:
1030                 retval = -ENOTSUPP;
1031                 break;
1032         }
1033
1034         return retval;
1035 }
1036
1037 /*
1038  * TX descriptor initialization
1039  */
1040 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1041                                     struct sk_buff *skb,
1042                                     struct txentry_desc *txdesc,
1043                                     struct ieee80211_tx_control *control)
1044 {
1045         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1046         __le32 *txd = skbdesc->desc;
1047         u32 word;
1048
1049         /*
1050          * Start writing the descriptor words.
1051          */
1052         rt2x00_desc_read(txd, 1, &word);
1053         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1054         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1055         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1056         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1057         rt2x00_desc_write(txd, 1, word);
1058
1059         rt2x00_desc_read(txd, 2, &word);
1060         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1061         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1062         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1063         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1064         rt2x00_desc_write(txd, 2, word);
1065
1066         rt2x00_desc_read(txd, 0, &word);
1067         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, control->retry_limit);
1068         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1069                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1070         rt2x00_set_field32(&word, TXD_W0_ACK,
1071                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1072         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1073                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1074         rt2x00_set_field32(&word, TXD_W0_OFDM,
1075                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1076         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1077                            !!(control->flags & IEEE80211_TXCTL_FIRST_FRAGMENT));
1078         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1079         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1080         rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
1081         rt2x00_desc_write(txd, 0, word);
1082 }
1083
1084 static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
1085                                      struct sk_buff *skb)
1086 {
1087         int length;
1088
1089         /*
1090          * The length _must_ be a multiple of 2,
1091          * but it must _not_ be a multiple of the USB packet size.
1092          */
1093         length = roundup(skb->len, 2);
1094         length += (2 * !(length % rt2x00dev->usb_maxpacket));
1095
1096         return length;
1097 }
1098
1099 /*
1100  * TX data initialization
1101  */
1102 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1103                                     unsigned int queue)
1104 {
1105         u16 reg;
1106
1107         if (queue != IEEE80211_TX_QUEUE_BEACON)
1108                 return;
1109
1110         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1111         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1112                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1113                 /*
1114                  * Beacon generation will fail initially.
1115                  * To prevent this we need to register the TXRX_CSR19
1116                  * register several times.
1117                  */
1118                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1119                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1120                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1121                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1122                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1123         }
1124 }
1125
1126 /*
1127  * RX control handlers
1128  */
1129 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1130                                   struct rxdone_entry_desc *rxdesc)
1131 {
1132         struct queue_entry_priv_usb_rx *priv_rx = entry->priv_data;
1133         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1134         __le32 *rxd =
1135             (__le32 *)(entry->skb->data +
1136                        (priv_rx->urb->actual_length - entry->queue->desc_size));
1137         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
1138         int header_size = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
1139         u32 word0;
1140         u32 word1;
1141
1142         rt2x00_desc_read(rxd, 0, &word0);
1143         rt2x00_desc_read(rxd, 1, &word1);
1144
1145         rxdesc->flags = 0;
1146         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1147                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1148         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1149                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1150
1151         /*
1152          * Obtain the status about this packet.
1153          */
1154         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1155         rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
1156             entry->queue->rt2x00dev->rssi_offset;
1157         rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1158         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1159         rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1160
1161         /*
1162          * The data behind the ieee80211 header must be
1163          * aligned on a 4 byte boundary.
1164          */
1165         if (header_size % 4 == 0) {
1166                 skb_push(entry->skb, 2);
1167                 memmove(entry->skb->data, entry->skb->data + 2,
1168                         entry->skb->len - 2);
1169         }
1170
1171         /*
1172          * Set descriptor pointer.
1173          */
1174         skbdesc->data = entry->skb->data;
1175         skbdesc->data_len = entry->queue->data_size;
1176         skbdesc->desc = entry->skb->data + rxdesc->size;
1177         skbdesc->desc_len = entry->queue->desc_size;
1178
1179         /*
1180          * Remove descriptor from skb buffer and trim the whole thing
1181          * down to only contain data.
1182          */
1183         skb_trim(entry->skb, rxdesc->size);
1184 }
1185
1186 /*
1187  * Interrupt functions.
1188  */
1189 static void rt2500usb_beacondone(struct urb *urb)
1190 {
1191         struct queue_entry *entry = (struct queue_entry *)urb->context;
1192         struct queue_entry_priv_usb_bcn *priv_bcn = entry->priv_data;
1193
1194         if (!test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1195                 return;
1196
1197         /*
1198          * Check if this was the guardian beacon,
1199          * if that was the case we need to send the real beacon now.
1200          * Otherwise we should free the sk_buffer, the device
1201          * should be doing the rest of the work now.
1202          */
1203         if (priv_bcn->guardian_urb == urb) {
1204                 usb_submit_urb(priv_bcn->urb, GFP_ATOMIC);
1205         } else if (priv_bcn->urb == urb) {
1206                 dev_kfree_skb(entry->skb);
1207                 entry->skb = NULL;
1208         }
1209 }
1210
1211 /*
1212  * Device probe functions.
1213  */
1214 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1215 {
1216         u16 word;
1217         u8 *mac;
1218         u8 bbp;
1219
1220         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1221
1222         /*
1223          * Start validation of the data that has been read.
1224          */
1225         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1226         if (!is_valid_ether_addr(mac)) {
1227                 DECLARE_MAC_BUF(macbuf);
1228
1229                 random_ether_addr(mac);
1230                 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1231         }
1232
1233         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1234         if (word == 0xffff) {
1235                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1236                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1237                                    ANTENNA_SW_DIVERSITY);
1238                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1239                                    ANTENNA_SW_DIVERSITY);
1240                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1241                                    LED_MODE_DEFAULT);
1242                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1243                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1244                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1245                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1246                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1247         }
1248
1249         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1250         if (word == 0xffff) {
1251                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1252                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1253                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1254                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1255                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1256         }
1257
1258         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1259         if (word == 0xffff) {
1260                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1261                                    DEFAULT_RSSI_OFFSET);
1262                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1263                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1264         }
1265
1266         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1267         if (word == 0xffff) {
1268                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1269                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1270                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1271         }
1272
1273         /*
1274          * Switch lower vgc bound to current BBP R17 value,
1275          * lower the value a bit for better quality.
1276          */
1277         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1278         bbp -= 6;
1279
1280         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1281         if (word == 0xffff) {
1282                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1283                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1284                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1285                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1286         }
1287
1288         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1289         if (word == 0xffff) {
1290                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1291                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1292                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1293                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1294         } else {
1295                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1296                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1297         }
1298
1299         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1300         if (word == 0xffff) {
1301                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1302                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1303                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1304                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1305         }
1306
1307         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1308         if (word == 0xffff) {
1309                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1310                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1311                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1312                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1313         }
1314
1315         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1316         if (word == 0xffff) {
1317                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1318                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1319                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1320                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1321         }
1322
1323         return 0;
1324 }
1325
1326 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1327 {
1328         u16 reg;
1329         u16 value;
1330         u16 eeprom;
1331
1332         /*
1333          * Read EEPROM word for configuration.
1334          */
1335         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1336
1337         /*
1338          * Identify RF chipset.
1339          */
1340         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1341         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1342         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1343
1344         if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
1345                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1346                 return -ENODEV;
1347         }
1348
1349         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1350             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1351             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1352             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1353             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1354             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1355                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1356                 return -ENODEV;
1357         }
1358
1359         /*
1360          * Identify default antenna configuration.
1361          */
1362         rt2x00dev->default_ant.tx =
1363             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1364         rt2x00dev->default_ant.rx =
1365             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1366
1367         /*
1368          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1369          * I am not 100% sure about this, but the legacy drivers do not
1370          * indicate antenna swapping in software is required when
1371          * diversity is enabled.
1372          */
1373         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1374                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1375         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1376                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1377
1378         /*
1379          * Store led mode, for correct led behaviour.
1380          */
1381         rt2x00dev->led_mode =
1382             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1383
1384         /*
1385          * Check if the BBP tuning should be disabled.
1386          */
1387         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1388         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1389                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1390
1391         /*
1392          * Read the RSSI <-> dBm offset information.
1393          */
1394         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1395         rt2x00dev->rssi_offset =
1396             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1397
1398         return 0;
1399 }
1400
1401 /*
1402  * RF value list for RF2522
1403  * Supports: 2.4 GHz
1404  */
1405 static const struct rf_channel rf_vals_bg_2522[] = {
1406         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1407         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1408         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1409         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1410         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1411         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1412         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1413         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1414         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1415         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1416         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1417         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1418         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1419         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1420 };
1421
1422 /*
1423  * RF value list for RF2523
1424  * Supports: 2.4 GHz
1425  */
1426 static const struct rf_channel rf_vals_bg_2523[] = {
1427         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1428         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1429         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1430         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1431         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1432         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1433         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1434         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1435         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1436         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1437         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1438         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1439         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1440         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1441 };
1442
1443 /*
1444  * RF value list for RF2524
1445  * Supports: 2.4 GHz
1446  */
1447 static const struct rf_channel rf_vals_bg_2524[] = {
1448         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1449         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1450         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1451         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1452         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1453         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1454         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1455         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1456         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1457         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1458         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1459         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1460         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1461         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1462 };
1463
1464 /*
1465  * RF value list for RF2525
1466  * Supports: 2.4 GHz
1467  */
1468 static const struct rf_channel rf_vals_bg_2525[] = {
1469         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1470         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1471         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1472         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1473         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1474         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1475         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1476         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1477         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1478         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1479         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1480         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1481         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1482         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1483 };
1484
1485 /*
1486  * RF value list for RF2525e
1487  * Supports: 2.4 GHz
1488  */
1489 static const struct rf_channel rf_vals_bg_2525e[] = {
1490         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1491         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1492         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1493         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1494         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1495         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1496         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1497         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1498         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1499         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1500         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1501         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1502         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1503         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1504 };
1505
1506 /*
1507  * RF value list for RF5222
1508  * Supports: 2.4 GHz & 5.2 GHz
1509  */
1510 static const struct rf_channel rf_vals_5222[] = {
1511         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1512         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1513         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1514         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1515         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1516         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1517         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1518         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1519         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1520         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1521         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1522         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1523         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1524         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1525
1526         /* 802.11 UNI / HyperLan 2 */
1527         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1528         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1529         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1530         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1531         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1532         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1533         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1534         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1535
1536         /* 802.11 HyperLan 2 */
1537         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1538         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1539         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1540         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1541         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1542         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1543         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1544         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1545         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1546         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1547
1548         /* 802.11 UNII */
1549         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1550         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1551         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1552         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1553         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1554 };
1555
1556 static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1557 {
1558         struct hw_mode_spec *spec = &rt2x00dev->spec;
1559         u8 *txpower;
1560         unsigned int i;
1561
1562         /*
1563          * Initialize all hw fields.
1564          */
1565         rt2x00dev->hw->flags =
1566             IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
1567             IEEE80211_HW_RX_INCLUDES_FCS |
1568             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1569         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1570         rt2x00dev->hw->max_signal = MAX_SIGNAL;
1571         rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1572         rt2x00dev->hw->queues = 2;
1573
1574         SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev);
1575         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1576                                 rt2x00_eeprom_addr(rt2x00dev,
1577                                                    EEPROM_MAC_ADDR_0));
1578
1579         /*
1580          * Convert tx_power array in eeprom.
1581          */
1582         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1583         for (i = 0; i < 14; i++)
1584                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1585
1586         /*
1587          * Initialize hw_mode information.
1588          */
1589         spec->num_modes = 2;
1590         spec->num_rates = 12;
1591         spec->tx_power_a = NULL;
1592         spec->tx_power_bg = txpower;
1593         spec->tx_power_default = DEFAULT_TXPOWER;
1594
1595         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1596                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1597                 spec->channels = rf_vals_bg_2522;
1598         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1599                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1600                 spec->channels = rf_vals_bg_2523;
1601         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1602                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1603                 spec->channels = rf_vals_bg_2524;
1604         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1605                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1606                 spec->channels = rf_vals_bg_2525;
1607         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1608                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1609                 spec->channels = rf_vals_bg_2525e;
1610         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1611                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1612                 spec->channels = rf_vals_5222;
1613                 spec->num_modes = 3;
1614         }
1615 }
1616
1617 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1618 {
1619         int retval;
1620
1621         /*
1622          * Allocate eeprom data.
1623          */
1624         retval = rt2500usb_validate_eeprom(rt2x00dev);
1625         if (retval)
1626                 return retval;
1627
1628         retval = rt2500usb_init_eeprom(rt2x00dev);
1629         if (retval)
1630                 return retval;
1631
1632         /*
1633          * Initialize hw specifications.
1634          */
1635         rt2500usb_probe_hw_mode(rt2x00dev);
1636
1637         /*
1638          * This device requires the atim queue
1639          */
1640         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1641         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1642
1643         /*
1644          * Set the rssi offset.
1645          */
1646         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1647
1648         return 0;
1649 }
1650
1651 /*
1652  * IEEE80211 stack callback functions.
1653  */
1654 static void rt2500usb_configure_filter(struct ieee80211_hw *hw,
1655                                        unsigned int changed_flags,
1656                                        unsigned int *total_flags,
1657                                        int mc_count,
1658                                        struct dev_addr_list *mc_list)
1659 {
1660         struct rt2x00_dev *rt2x00dev = hw->priv;
1661         u16 reg;
1662
1663         /*
1664          * Mask off any flags we are going to ignore from
1665          * the total_flags field.
1666          */
1667         *total_flags &=
1668             FIF_ALLMULTI |
1669             FIF_FCSFAIL |
1670             FIF_PLCPFAIL |
1671             FIF_CONTROL |
1672             FIF_OTHER_BSS |
1673             FIF_PROMISC_IN_BSS;
1674
1675         /*
1676          * Apply some rules to the filters:
1677          * - Some filters imply different filters to be set.
1678          * - Some things we can't filter out at all.
1679          */
1680         if (mc_count)
1681                 *total_flags |= FIF_ALLMULTI;
1682         if (*total_flags & FIF_OTHER_BSS ||
1683             *total_flags & FIF_PROMISC_IN_BSS)
1684                 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1685
1686         /*
1687          * Check if there is any work left for us.
1688          */
1689         if (rt2x00dev->packet_filter == *total_flags)
1690                 return;
1691         rt2x00dev->packet_filter = *total_flags;
1692
1693         /*
1694          * When in atomic context, reschedule and let rt2x00lib
1695          * call this function again.
1696          */
1697         if (in_atomic()) {
1698                 queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->filter_work);
1699                 return;
1700         }
1701
1702         /*
1703          * Start configuration steps.
1704          * Note that the version error will always be dropped
1705          * and broadcast frames will always be accepted since
1706          * there is no filter for it at this time.
1707          */
1708         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1709         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
1710                            !(*total_flags & FIF_FCSFAIL));
1711         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
1712                            !(*total_flags & FIF_PLCPFAIL));
1713         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
1714                            !(*total_flags & FIF_CONTROL));
1715         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
1716                            !(*total_flags & FIF_PROMISC_IN_BSS));
1717         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
1718                            !(*total_flags & FIF_PROMISC_IN_BSS));
1719         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
1720         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
1721                            !(*total_flags & FIF_ALLMULTI));
1722         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
1723         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1724 }
1725
1726 static int rt2500usb_beacon_update(struct ieee80211_hw *hw,
1727                                    struct sk_buff *skb,
1728                                    struct ieee80211_tx_control *control)
1729 {
1730         struct rt2x00_dev *rt2x00dev = hw->priv;
1731         struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev);
1732         struct rt2x00_intf *intf = vif_to_intf(control->vif);
1733         struct queue_entry_priv_usb_bcn *priv_bcn;
1734         struct skb_frame_desc *skbdesc;
1735         int pipe = usb_sndbulkpipe(usb_dev, 1);
1736         int length;
1737
1738         if (unlikely(!intf->beacon))
1739                 return -ENOBUFS;
1740
1741         priv_bcn = intf->beacon->priv_data;
1742
1743         /*
1744          * Add the descriptor in front of the skb.
1745          */
1746         skb_push(skb, intf->beacon->queue->desc_size);
1747         memset(skb->data, 0, intf->beacon->queue->desc_size);
1748
1749         /*
1750          * Fill in skb descriptor
1751          */
1752         skbdesc = get_skb_frame_desc(skb);
1753         memset(skbdesc, 0, sizeof(*skbdesc));
1754         skbdesc->data = skb->data + intf->beacon->queue->desc_size;
1755         skbdesc->data_len = skb->len - intf->beacon->queue->desc_size;
1756         skbdesc->desc = skb->data;
1757         skbdesc->desc_len = intf->beacon->queue->desc_size;
1758         skbdesc->entry = intf->beacon;
1759
1760         /*
1761          * Just in case mac80211 doesn't set this correctly,
1762          * but we need this queue set for the descriptor
1763          * initialization.
1764          */
1765         control->queue = IEEE80211_TX_QUEUE_BEACON;
1766         rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1767
1768         /*
1769          * USB devices cannot blindly pass the skb->len as the
1770          * length of the data to usb_fill_bulk_urb. Pass the skb
1771          * to the driver to determine what the length should be.
1772          */
1773         length = rt2500usb_get_tx_data_len(rt2x00dev, skb);
1774
1775         usb_fill_bulk_urb(priv_bcn->urb, usb_dev, pipe,
1776                           skb->data, length, rt2500usb_beacondone,
1777                           intf->beacon);
1778
1779         /*
1780          * Second we need to create the guardian byte.
1781          * We only need a single byte, so lets recycle
1782          * the 'flags' field we are not using for beacons.
1783          */
1784         priv_bcn->guardian_data = 0;
1785         usb_fill_bulk_urb(priv_bcn->guardian_urb, usb_dev, pipe,
1786                           &priv_bcn->guardian_data, 1, rt2500usb_beacondone,
1787                           intf->beacon);
1788
1789         /*
1790          * Send out the guardian byte.
1791          */
1792         usb_submit_urb(priv_bcn->guardian_urb, GFP_ATOMIC);
1793
1794         /*
1795          * Enable beacon generation.
1796          */
1797         rt2500usb_kick_tx_queue(rt2x00dev, control->queue);
1798
1799         return 0;
1800 }
1801
1802 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1803         .tx                     = rt2x00mac_tx,
1804         .start                  = rt2x00mac_start,
1805         .stop                   = rt2x00mac_stop,
1806         .add_interface          = rt2x00mac_add_interface,
1807         .remove_interface       = rt2x00mac_remove_interface,
1808         .config                 = rt2x00mac_config,
1809         .config_interface       = rt2x00mac_config_interface,
1810         .configure_filter       = rt2500usb_configure_filter,
1811         .get_stats              = rt2x00mac_get_stats,
1812         .bss_info_changed       = rt2x00mac_bss_info_changed,
1813         .conf_tx                = rt2x00mac_conf_tx,
1814         .get_tx_stats           = rt2x00mac_get_tx_stats,
1815         .beacon_update          = rt2500usb_beacon_update,
1816 };
1817
1818 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1819         .probe_hw               = rt2500usb_probe_hw,
1820         .initialize             = rt2x00usb_initialize,
1821         .uninitialize           = rt2x00usb_uninitialize,
1822         .init_rxentry           = rt2x00usb_init_rxentry,
1823         .init_txentry           = rt2x00usb_init_txentry,
1824         .set_device_state       = rt2500usb_set_device_state,
1825         .link_stats             = rt2500usb_link_stats,
1826         .reset_tuner            = rt2500usb_reset_tuner,
1827         .link_tuner             = rt2500usb_link_tuner,
1828         .write_tx_desc          = rt2500usb_write_tx_desc,
1829         .write_tx_data          = rt2x00usb_write_tx_data,
1830         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1831         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1832         .fill_rxdone            = rt2500usb_fill_rxdone,
1833         .config_intf            = rt2500usb_config_intf,
1834         .config_preamble        = rt2500usb_config_preamble,
1835         .config                 = rt2500usb_config,
1836 };
1837
1838 static const struct data_queue_desc rt2500usb_queue_rx = {
1839         .entry_num              = RX_ENTRIES,
1840         .data_size              = DATA_FRAME_SIZE,
1841         .desc_size              = RXD_DESC_SIZE,
1842         .priv_size              = sizeof(struct queue_entry_priv_usb_rx),
1843 };
1844
1845 static const struct data_queue_desc rt2500usb_queue_tx = {
1846         .entry_num              = TX_ENTRIES,
1847         .data_size              = DATA_FRAME_SIZE,
1848         .desc_size              = TXD_DESC_SIZE,
1849         .priv_size              = sizeof(struct queue_entry_priv_usb_tx),
1850 };
1851
1852 static const struct data_queue_desc rt2500usb_queue_bcn = {
1853         .entry_num              = BEACON_ENTRIES,
1854         .data_size              = MGMT_FRAME_SIZE,
1855         .desc_size              = TXD_DESC_SIZE,
1856         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1857 };
1858
1859 static const struct data_queue_desc rt2500usb_queue_atim = {
1860         .entry_num              = ATIM_ENTRIES,
1861         .data_size              = DATA_FRAME_SIZE,
1862         .desc_size              = TXD_DESC_SIZE,
1863         .priv_size              = sizeof(struct queue_entry_priv_usb_tx),
1864 };
1865
1866 static const struct rt2x00_ops rt2500usb_ops = {
1867         .name           = KBUILD_MODNAME,
1868         .max_sta_intf   = 1,
1869         .max_ap_intf    = 1,
1870         .eeprom_size    = EEPROM_SIZE,
1871         .rf_size        = RF_SIZE,
1872         .rx             = &rt2500usb_queue_rx,
1873         .tx             = &rt2500usb_queue_tx,
1874         .bcn            = &rt2500usb_queue_bcn,
1875         .atim           = &rt2500usb_queue_atim,
1876         .lib            = &rt2500usb_rt2x00_ops,
1877         .hw             = &rt2500usb_mac80211_ops,
1878 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1879         .debugfs        = &rt2500usb_rt2x00debug,
1880 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1881 };
1882
1883 /*
1884  * rt2500usb module information.
1885  */
1886 static struct usb_device_id rt2500usb_device_table[] = {
1887         /* ASUS */
1888         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1889         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1890         /* Belkin */
1891         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1892         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1893         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1894         /* Cisco Systems */
1895         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1896         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1897         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1898         /* Conceptronic */
1899         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1900         /* D-LINK */
1901         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1902         /* Gigabyte */
1903         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1904         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1905         /* Hercules */
1906         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1907         /* Melco */
1908         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1909         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1910         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1911         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1912         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1913         /* MSI */
1914         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1915         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1916         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1917         /* Ralink */
1918         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1919         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1920         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1921         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1922         /* Siemens */
1923         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1924         /* SMC */
1925         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1926         /* Spairon */
1927         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1928         /* Trust */
1929         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1930         /* Zinwell */
1931         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1932         { 0, }
1933 };
1934
1935 MODULE_AUTHOR(DRV_PROJECT);
1936 MODULE_VERSION(DRV_VERSION);
1937 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1938 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1939 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1940 MODULE_LICENSE("GPL");
1941
1942 static struct usb_driver rt2500usb_driver = {
1943         .name           = KBUILD_MODNAME,
1944         .id_table       = rt2500usb_device_table,
1945         .probe          = rt2x00usb_probe,
1946         .disconnect     = rt2x00usb_disconnect,
1947         .suspend        = rt2x00usb_suspend,
1948         .resume         = rt2x00usb_resume,
1949 };
1950
1951 static int __init rt2500usb_init(void)
1952 {
1953         return usb_register(&rt2500usb_driver);
1954 }
1955
1956 static void __exit rt2500usb_exit(void)
1957 {
1958         usb_deregister(&rt2500usb_driver);
1959 }
1960
1961 module_init(rt2500usb_init);
1962 module_exit(rt2500usb_exit);