rt2x00: Remove STATE_RADIO_IRQ_OFF_ISR and STATE_RADIO_IRQ_ON_ISR
[linux-2.6.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/usb.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt2500usb.h"
38
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static int modparam_nohwcrypt;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46 /*
47  * Register access.
48  * All access to the CSR registers will go through the methods
49  * rt2500usb_register_read and rt2500usb_register_write.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers BBPCSR and RFCSR to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attampt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  * If the csr_mutex is already held then the _lock variants must
59  * be used instead.
60  */
61 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
62                                            const unsigned int offset,
63                                            u16 *value)
64 {
65         __le16 reg;
66         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
67                                       USB_VENDOR_REQUEST_IN, offset,
68                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
69         *value = le16_to_cpu(reg);
70 }
71
72 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
73                                                 const unsigned int offset,
74                                                 u16 *value)
75 {
76         __le16 reg;
77         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
78                                        USB_VENDOR_REQUEST_IN, offset,
79                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
80         *value = le16_to_cpu(reg);
81 }
82
83 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
84                                                 const unsigned int offset,
85                                                 void *value, const u16 length)
86 {
87         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
88                                       USB_VENDOR_REQUEST_IN, offset,
89                                       value, length,
90                                       REGISTER_TIMEOUT16(length));
91 }
92
93 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
94                                             const unsigned int offset,
95                                             u16 value)
96 {
97         __le16 reg = cpu_to_le16(value);
98         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
99                                       USB_VENDOR_REQUEST_OUT, offset,
100                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
101 }
102
103 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
104                                                  const unsigned int offset,
105                                                  u16 value)
106 {
107         __le16 reg = cpu_to_le16(value);
108         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
109                                        USB_VENDOR_REQUEST_OUT, offset,
110                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
111 }
112
113 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
114                                                  const unsigned int offset,
115                                                  void *value, const u16 length)
116 {
117         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
118                                       USB_VENDOR_REQUEST_OUT, offset,
119                                       value, length,
120                                       REGISTER_TIMEOUT16(length));
121 }
122
123 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
124                                   const unsigned int offset,
125                                   struct rt2x00_field16 field,
126                                   u16 *reg)
127 {
128         unsigned int i;
129
130         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
131                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
132                 if (!rt2x00_get_field16(*reg, field))
133                         return 1;
134                 udelay(REGISTER_BUSY_DELAY);
135         }
136
137         ERROR(rt2x00dev, "Indirect register access failed: "
138               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
139         *reg = ~0;
140
141         return 0;
142 }
143
144 #define WAIT_FOR_BBP(__dev, __reg) \
145         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
146 #define WAIT_FOR_RF(__dev, __reg) \
147         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
148
149 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
150                                 const unsigned int word, const u8 value)
151 {
152         u16 reg;
153
154         mutex_lock(&rt2x00dev->csr_mutex);
155
156         /*
157          * Wait until the BBP becomes available, afterwards we
158          * can safely write the new data into the register.
159          */
160         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
161                 reg = 0;
162                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
163                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
164                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
165
166                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
167         }
168
169         mutex_unlock(&rt2x00dev->csr_mutex);
170 }
171
172 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
173                                const unsigned int word, u8 *value)
174 {
175         u16 reg;
176
177         mutex_lock(&rt2x00dev->csr_mutex);
178
179         /*
180          * Wait until the BBP becomes available, afterwards we
181          * can safely write the read request into the register.
182          * After the data has been written, we wait until hardware
183          * returns the correct value, if at any time the register
184          * doesn't become available in time, reg will be 0xffffffff
185          * which means we return 0xff to the caller.
186          */
187         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
188                 reg = 0;
189                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
190                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
191
192                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
193
194                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
195                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
196         }
197
198         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
199
200         mutex_unlock(&rt2x00dev->csr_mutex);
201 }
202
203 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
204                                const unsigned int word, const u32 value)
205 {
206         u16 reg;
207
208         mutex_lock(&rt2x00dev->csr_mutex);
209
210         /*
211          * Wait until the RF becomes available, afterwards we
212          * can safely write the new data into the register.
213          */
214         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
215                 reg = 0;
216                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
217                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
218
219                 reg = 0;
220                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
221                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
222                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
223                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
224
225                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
226                 rt2x00_rf_write(rt2x00dev, word, value);
227         }
228
229         mutex_unlock(&rt2x00dev->csr_mutex);
230 }
231
232 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
233 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
234                                      const unsigned int offset,
235                                      u32 *value)
236 {
237         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
238 }
239
240 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
241                                       const unsigned int offset,
242                                       u32 value)
243 {
244         rt2500usb_register_write(rt2x00dev, offset, value);
245 }
246
247 static const struct rt2x00debug rt2500usb_rt2x00debug = {
248         .owner  = THIS_MODULE,
249         .csr    = {
250                 .read           = _rt2500usb_register_read,
251                 .write          = _rt2500usb_register_write,
252                 .flags          = RT2X00DEBUGFS_OFFSET,
253                 .word_base      = CSR_REG_BASE,
254                 .word_size      = sizeof(u16),
255                 .word_count     = CSR_REG_SIZE / sizeof(u16),
256         },
257         .eeprom = {
258                 .read           = rt2x00_eeprom_read,
259                 .write          = rt2x00_eeprom_write,
260                 .word_base      = EEPROM_BASE,
261                 .word_size      = sizeof(u16),
262                 .word_count     = EEPROM_SIZE / sizeof(u16),
263         },
264         .bbp    = {
265                 .read           = rt2500usb_bbp_read,
266                 .write          = rt2500usb_bbp_write,
267                 .word_base      = BBP_BASE,
268                 .word_size      = sizeof(u8),
269                 .word_count     = BBP_SIZE / sizeof(u8),
270         },
271         .rf     = {
272                 .read           = rt2x00_rf_read,
273                 .write          = rt2500usb_rf_write,
274                 .word_base      = RF_BASE,
275                 .word_size      = sizeof(u32),
276                 .word_count     = RF_SIZE / sizeof(u32),
277         },
278 };
279 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
280
281 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
282 {
283         u16 reg;
284
285         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
286         return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
287 }
288
289 #ifdef CONFIG_RT2X00_LIB_LEDS
290 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
291                                      enum led_brightness brightness)
292 {
293         struct rt2x00_led *led =
294             container_of(led_cdev, struct rt2x00_led, led_dev);
295         unsigned int enabled = brightness != LED_OFF;
296         u16 reg;
297
298         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
299
300         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
301                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
302         else if (led->type == LED_TYPE_ACTIVITY)
303                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
304
305         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
306 }
307
308 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
309                                unsigned long *delay_on,
310                                unsigned long *delay_off)
311 {
312         struct rt2x00_led *led =
313             container_of(led_cdev, struct rt2x00_led, led_dev);
314         u16 reg;
315
316         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
317         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
318         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
319         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
320
321         return 0;
322 }
323
324 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
325                                struct rt2x00_led *led,
326                                enum led_type type)
327 {
328         led->rt2x00dev = rt2x00dev;
329         led->type = type;
330         led->led_dev.brightness_set = rt2500usb_brightness_set;
331         led->led_dev.blink_set = rt2500usb_blink_set;
332         led->flags = LED_INITIALIZED;
333 }
334 #endif /* CONFIG_RT2X00_LIB_LEDS */
335
336 /*
337  * Configuration handlers.
338  */
339
340 /*
341  * rt2500usb does not differentiate between shared and pairwise
342  * keys, so we should use the same function for both key types.
343  */
344 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
345                                 struct rt2x00lib_crypto *crypto,
346                                 struct ieee80211_key_conf *key)
347 {
348         u32 mask;
349         u16 reg;
350         enum cipher curr_cipher;
351
352         if (crypto->cmd == SET_KEY) {
353                 /*
354                  * Disallow to set WEP key other than with index 0,
355                  * it is known that not work at least on some hardware.
356                  * SW crypto will be used in that case.
357                  */
358                 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
359                      key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
360                     key->keyidx != 0)
361                         return -EOPNOTSUPP;
362
363                 /*
364                  * Pairwise key will always be entry 0, but this
365                  * could collide with a shared key on the same
366                  * position...
367                  */
368                 mask = TXRX_CSR0_KEY_ID.bit_mask;
369
370                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
371                 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
372                 reg &= mask;
373
374                 if (reg && reg == mask)
375                         return -ENOSPC;
376
377                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
378
379                 key->hw_key_idx += reg ? ffz(reg) : 0;
380                 /*
381                  * Hardware requires that all keys use the same cipher
382                  * (e.g. TKIP-only, AES-only, but not TKIP+AES).
383                  * If this is not the first key, compare the cipher with the
384                  * first one and fall back to SW crypto if not the same.
385                  */
386                 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
387                         return -EOPNOTSUPP;
388
389                 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
390                                               crypto->key, sizeof(crypto->key));
391
392                 /*
393                  * The driver does not support the IV/EIV generation
394                  * in hardware. However it demands the data to be provided
395                  * both separately as well as inside the frame.
396                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
397                  * to ensure rt2x00lib will not strip the data from the
398                  * frame after the copy, now we must tell mac80211
399                  * to generate the IV/EIV data.
400                  */
401                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
402                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
403         }
404
405         /*
406          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
407          * a particular key is valid.
408          */
409         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
410         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
411         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
412
413         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
414         if (crypto->cmd == SET_KEY)
415                 mask |= 1 << key->hw_key_idx;
416         else if (crypto->cmd == DISABLE_KEY)
417                 mask &= ~(1 << key->hw_key_idx);
418         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
419         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
420
421         return 0;
422 }
423
424 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
425                                     const unsigned int filter_flags)
426 {
427         u16 reg;
428
429         /*
430          * Start configuration steps.
431          * Note that the version error will always be dropped
432          * and broadcast frames will always be accepted since
433          * there is no filter for it at this time.
434          */
435         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
436         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
437                            !(filter_flags & FIF_FCSFAIL));
438         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
439                            !(filter_flags & FIF_PLCPFAIL));
440         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
441                            !(filter_flags & FIF_CONTROL));
442         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
443                            !(filter_flags & FIF_PROMISC_IN_BSS));
444         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
445                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
446                            !rt2x00dev->intf_ap_count);
447         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
448         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
449                            !(filter_flags & FIF_ALLMULTI));
450         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
451         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
452 }
453
454 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
455                                   struct rt2x00_intf *intf,
456                                   struct rt2x00intf_conf *conf,
457                                   const unsigned int flags)
458 {
459         unsigned int bcn_preload;
460         u16 reg;
461
462         if (flags & CONFIG_UPDATE_TYPE) {
463                 /*
464                  * Enable beacon config
465                  */
466                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
467                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
468                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
469                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
470                                    2 * (conf->type != NL80211_IFTYPE_STATION));
471                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
472
473                 /*
474                  * Enable synchronisation.
475                  */
476                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
477                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
478                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
479
480                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
481                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
482                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
483         }
484
485         if (flags & CONFIG_UPDATE_MAC)
486                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
487                                               (3 * sizeof(__le16)));
488
489         if (flags & CONFIG_UPDATE_BSSID)
490                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
491                                               (3 * sizeof(__le16)));
492 }
493
494 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
495                                  struct rt2x00lib_erp *erp,
496                                  u32 changed)
497 {
498         u16 reg;
499
500         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
501                 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
502                 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
503                                    !!erp->short_preamble);
504                 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
505         }
506
507         if (changed & BSS_CHANGED_BASIC_RATES)
508                 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
509                                          erp->basic_rates);
510
511         if (changed & BSS_CHANGED_BEACON_INT) {
512                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
513                 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
514                                    erp->beacon_int * 4);
515                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
516         }
517
518         if (changed & BSS_CHANGED_ERP_SLOT) {
519                 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
520                 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
521                 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
522         }
523 }
524
525 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
526                                  struct antenna_setup *ant)
527 {
528         u8 r2;
529         u8 r14;
530         u16 csr5;
531         u16 csr6;
532
533         /*
534          * We should never come here because rt2x00lib is supposed
535          * to catch this and send us the correct antenna explicitely.
536          */
537         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
538                ant->tx == ANTENNA_SW_DIVERSITY);
539
540         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
541         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
542         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
543         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
544
545         /*
546          * Configure the TX antenna.
547          */
548         switch (ant->tx) {
549         case ANTENNA_HW_DIVERSITY:
550                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
551                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
552                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
553                 break;
554         case ANTENNA_A:
555                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
556                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
557                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
558                 break;
559         case ANTENNA_B:
560         default:
561                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
562                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
563                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
564                 break;
565         }
566
567         /*
568          * Configure the RX antenna.
569          */
570         switch (ant->rx) {
571         case ANTENNA_HW_DIVERSITY:
572                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
573                 break;
574         case ANTENNA_A:
575                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
576                 break;
577         case ANTENNA_B:
578         default:
579                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
580                 break;
581         }
582
583         /*
584          * RT2525E and RT5222 need to flip TX I/Q
585          */
586         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
587                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
588                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
589                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
590
591                 /*
592                  * RT2525E does not need RX I/Q Flip.
593                  */
594                 if (rt2x00_rf(rt2x00dev, RF2525E))
595                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
596         } else {
597                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
598                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
599         }
600
601         rt2500usb_bbp_write(rt2x00dev, 2, r2);
602         rt2500usb_bbp_write(rt2x00dev, 14, r14);
603         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
604         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
605 }
606
607 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
608                                      struct rf_channel *rf, const int txpower)
609 {
610         /*
611          * Set TXpower.
612          */
613         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
614
615         /*
616          * For RT2525E we should first set the channel to half band higher.
617          */
618         if (rt2x00_rf(rt2x00dev, RF2525E)) {
619                 static const u32 vals[] = {
620                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
621                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
622                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
623                         0x00000902, 0x00000906
624                 };
625
626                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
627                 if (rf->rf4)
628                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
629         }
630
631         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
632         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
633         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
634         if (rf->rf4)
635                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
636 }
637
638 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
639                                      const int txpower)
640 {
641         u32 rf3;
642
643         rt2x00_rf_read(rt2x00dev, 3, &rf3);
644         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
645         rt2500usb_rf_write(rt2x00dev, 3, rf3);
646 }
647
648 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
649                                 struct rt2x00lib_conf *libconf)
650 {
651         enum dev_state state =
652             (libconf->conf->flags & IEEE80211_CONF_PS) ?
653                 STATE_SLEEP : STATE_AWAKE;
654         u16 reg;
655
656         if (state == STATE_SLEEP) {
657                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
658                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
659                                    rt2x00dev->beacon_int - 20);
660                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
661                                    libconf->conf->listen_interval - 1);
662
663                 /* We must first disable autowake before it can be enabled */
664                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
665                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
666
667                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
668                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
669         } else {
670                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
671                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
672                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
673         }
674
675         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
676 }
677
678 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
679                              struct rt2x00lib_conf *libconf,
680                              const unsigned int flags)
681 {
682         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
683                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
684                                          libconf->conf->power_level);
685         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
686             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
687                 rt2500usb_config_txpower(rt2x00dev,
688                                          libconf->conf->power_level);
689         if (flags & IEEE80211_CONF_CHANGE_PS)
690                 rt2500usb_config_ps(rt2x00dev, libconf);
691 }
692
693 /*
694  * Link tuning
695  */
696 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
697                                  struct link_qual *qual)
698 {
699         u16 reg;
700
701         /*
702          * Update FCS error count from register.
703          */
704         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
705         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
706
707         /*
708          * Update False CCA count from register.
709          */
710         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
711         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
712 }
713
714 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
715                                   struct link_qual *qual)
716 {
717         u16 eeprom;
718         u16 value;
719
720         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
721         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
722         rt2500usb_bbp_write(rt2x00dev, 24, value);
723
724         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
725         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
726         rt2500usb_bbp_write(rt2x00dev, 25, value);
727
728         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
729         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
730         rt2500usb_bbp_write(rt2x00dev, 61, value);
731
732         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
733         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
734         rt2500usb_bbp_write(rt2x00dev, 17, value);
735
736         qual->vgc_level = value;
737 }
738
739 /*
740  * Queue handlers.
741  */
742 static void rt2500usb_start_queue(struct data_queue *queue)
743 {
744         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
745         u16 reg;
746
747         switch (queue->qid) {
748         case QID_RX:
749                 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
750                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
751                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
752                 break;
753         case QID_BEACON:
754                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
755                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
756                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
757                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
758                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
759                 break;
760         default:
761                 break;
762         }
763 }
764
765 static void rt2500usb_stop_queue(struct data_queue *queue)
766 {
767         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
768         u16 reg;
769
770         switch (queue->qid) {
771         case QID_RX:
772                 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
773                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
774                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
775                 break;
776         case QID_BEACON:
777                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
778                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
779                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
780                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
781                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
782                 break;
783         default:
784                 break;
785         }
786 }
787
788 /*
789  * Initialization functions.
790  */
791 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
792 {
793         u16 reg;
794
795         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
796                                     USB_MODE_TEST, REGISTER_TIMEOUT);
797         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
798                                     0x00f0, REGISTER_TIMEOUT);
799
800         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
801         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
802         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
803
804         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
805         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
806
807         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
808         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
809         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
810         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
811         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
812
813         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
814         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
815         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
816         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
817         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
818
819         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
820         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
821         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
822         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
823         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
824         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
825
826         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
827         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
828         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
829         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
830         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
831         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
832
833         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
834         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
835         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
836         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
837         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
838         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
839
840         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
841         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
842         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
843         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
844         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
845         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
846
847         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
848         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
849         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
850         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
851         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
852         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
853
854         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
855         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
856
857         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
858                 return -EBUSY;
859
860         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
861         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
862         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
863         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
864         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
865
866         if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
867                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
868                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
869         } else {
870                 reg = 0;
871                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
872                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
873         }
874         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
875
876         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
877         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
878         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
879         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
880
881         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
882         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
883                            rt2x00dev->rx->data_size);
884         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
885
886         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
887         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
888         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
889         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
890         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
891
892         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
893         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
894         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
895
896         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
897         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
898         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
899
900         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
901         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
902         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
903
904         return 0;
905 }
906
907 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
908 {
909         unsigned int i;
910         u8 value;
911
912         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
913                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
914                 if ((value != 0xff) && (value != 0x00))
915                         return 0;
916                 udelay(REGISTER_BUSY_DELAY);
917         }
918
919         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
920         return -EACCES;
921 }
922
923 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
924 {
925         unsigned int i;
926         u16 eeprom;
927         u8 value;
928         u8 reg_id;
929
930         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
931                 return -EACCES;
932
933         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
934         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
935         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
936         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
937         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
938         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
939         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
940         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
941         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
942         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
943         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
944         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
945         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
946         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
947         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
948         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
949         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
950         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
951         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
952         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
953         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
954         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
955         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
956         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
957         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
958         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
959         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
960         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
961         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
962         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
963         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
964
965         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
966                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
967
968                 if (eeprom != 0xffff && eeprom != 0x0000) {
969                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
970                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
971                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
972                 }
973         }
974
975         return 0;
976 }
977
978 /*
979  * Device state switch handlers.
980  */
981 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
982 {
983         /*
984          * Initialize all registers.
985          */
986         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
987                      rt2500usb_init_bbp(rt2x00dev)))
988                 return -EIO;
989
990         return 0;
991 }
992
993 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
994 {
995         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
996         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
997
998         /*
999          * Disable synchronisation.
1000          */
1001         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1002
1003         rt2x00usb_disable_radio(rt2x00dev);
1004 }
1005
1006 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1007                                enum dev_state state)
1008 {
1009         u16 reg;
1010         u16 reg2;
1011         unsigned int i;
1012         char put_to_sleep;
1013         char bbp_state;
1014         char rf_state;
1015
1016         put_to_sleep = (state != STATE_AWAKE);
1017
1018         reg = 0;
1019         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1020         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1021         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1022         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1023         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1024         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1025
1026         /*
1027          * Device is not guaranteed to be in the requested state yet.
1028          * We must wait until the register indicates that the
1029          * device has entered the correct state.
1030          */
1031         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1032                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1033                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1034                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1035                 if (bbp_state == state && rf_state == state)
1036                         return 0;
1037                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1038                 msleep(30);
1039         }
1040
1041         return -EBUSY;
1042 }
1043
1044 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1045                                       enum dev_state state)
1046 {
1047         int retval = 0;
1048
1049         switch (state) {
1050         case STATE_RADIO_ON:
1051                 retval = rt2500usb_enable_radio(rt2x00dev);
1052                 break;
1053         case STATE_RADIO_OFF:
1054                 rt2500usb_disable_radio(rt2x00dev);
1055                 break;
1056         case STATE_RADIO_IRQ_ON:
1057         case STATE_RADIO_IRQ_OFF:
1058                 /* No support, but no error either */
1059                 break;
1060         case STATE_DEEP_SLEEP:
1061         case STATE_SLEEP:
1062         case STATE_STANDBY:
1063         case STATE_AWAKE:
1064                 retval = rt2500usb_set_state(rt2x00dev, state);
1065                 break;
1066         default:
1067                 retval = -ENOTSUPP;
1068                 break;
1069         }
1070
1071         if (unlikely(retval))
1072                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1073                       state, retval);
1074
1075         return retval;
1076 }
1077
1078 /*
1079  * TX descriptor initialization
1080  */
1081 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1082                                     struct txentry_desc *txdesc)
1083 {
1084         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1085         __le32 *txd = (__le32 *) entry->skb->data;
1086         u32 word;
1087
1088         /*
1089          * Start writing the descriptor words.
1090          */
1091         rt2x00_desc_read(txd, 0, &word);
1092         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1093         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1094                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1095         rt2x00_set_field32(&word, TXD_W0_ACK,
1096                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1097         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1098                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1099         rt2x00_set_field32(&word, TXD_W0_OFDM,
1100                            (txdesc->rate_mode == RATE_MODE_OFDM));
1101         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1102                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1103         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1104         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1105         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1106         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1107         rt2x00_desc_write(txd, 0, word);
1108
1109         rt2x00_desc_read(txd, 1, &word);
1110         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1111         rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1112         rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1113         rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1114         rt2x00_desc_write(txd, 1, word);
1115
1116         rt2x00_desc_read(txd, 2, &word);
1117         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1118         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1119         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1120         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1121         rt2x00_desc_write(txd, 2, word);
1122
1123         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1124                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1125                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1126         }
1127
1128         /*
1129          * Register descriptor details in skb frame descriptor.
1130          */
1131         skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1132         skbdesc->desc = txd;
1133         skbdesc->desc_len = TXD_DESC_SIZE;
1134 }
1135
1136 /*
1137  * TX data initialization
1138  */
1139 static void rt2500usb_beacondone(struct urb *urb);
1140
1141 static void rt2500usb_write_beacon(struct queue_entry *entry,
1142                                    struct txentry_desc *txdesc)
1143 {
1144         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1145         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1146         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1147         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1148         int length;
1149         u16 reg, reg0;
1150
1151         /*
1152          * Disable beaconing while we are reloading the beacon data,
1153          * otherwise we might be sending out invalid data.
1154          */
1155         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1156         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1157         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1158
1159         /*
1160          * Add space for the descriptor in front of the skb.
1161          */
1162         skb_push(entry->skb, TXD_DESC_SIZE);
1163         memset(entry->skb->data, 0, TXD_DESC_SIZE);
1164
1165         /*
1166          * Write the TX descriptor for the beacon.
1167          */
1168         rt2500usb_write_tx_desc(entry, txdesc);
1169
1170         /*
1171          * Dump beacon to userspace through debugfs.
1172          */
1173         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1174
1175         /*
1176          * USB devices cannot blindly pass the skb->len as the
1177          * length of the data to usb_fill_bulk_urb. Pass the skb
1178          * to the driver to determine what the length should be.
1179          */
1180         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1181
1182         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1183                           entry->skb->data, length, rt2500usb_beacondone,
1184                           entry);
1185
1186         /*
1187          * Second we need to create the guardian byte.
1188          * We only need a single byte, so lets recycle
1189          * the 'flags' field we are not using for beacons.
1190          */
1191         bcn_priv->guardian_data = 0;
1192         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1193                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1194                           entry);
1195
1196         /*
1197          * Send out the guardian byte.
1198          */
1199         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1200
1201         /*
1202          * Enable beaconing again.
1203          */
1204         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1205         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1206         reg0 = reg;
1207         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1208         /*
1209          * Beacon generation will fail initially.
1210          * To prevent this we need to change the TXRX_CSR19
1211          * register several times (reg0 is the same as reg
1212          * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1213          * and 1 in reg).
1214          */
1215         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1216         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1217         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1218         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1219         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1220 }
1221
1222 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1223 {
1224         int length;
1225
1226         /*
1227          * The length _must_ be a multiple of 2,
1228          * but it must _not_ be a multiple of the USB packet size.
1229          */
1230         length = roundup(entry->skb->len, 2);
1231         length += (2 * !(length % entry->queue->usb_maxpacket));
1232
1233         return length;
1234 }
1235
1236 /*
1237  * RX control handlers
1238  */
1239 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1240                                   struct rxdone_entry_desc *rxdesc)
1241 {
1242         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1243         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1244         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1245         __le32 *rxd =
1246             (__le32 *)(entry->skb->data +
1247                        (entry_priv->urb->actual_length -
1248                         entry->queue->desc_size));
1249         u32 word0;
1250         u32 word1;
1251
1252         /*
1253          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1254          * frame data in rt2x00usb.
1255          */
1256         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1257         rxd = (__le32 *)skbdesc->desc;
1258
1259         /*
1260          * It is now safe to read the descriptor on all architectures.
1261          */
1262         rt2x00_desc_read(rxd, 0, &word0);
1263         rt2x00_desc_read(rxd, 1, &word1);
1264
1265         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1266                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1267         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1268                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1269
1270         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1271         if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1272                 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1273
1274         if (rxdesc->cipher != CIPHER_NONE) {
1275                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1276                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1277                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1278
1279                 /* ICV is located at the end of frame */
1280
1281                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1282                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1283                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1284                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1285                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1286         }
1287
1288         /*
1289          * Obtain the status about this packet.
1290          * When frame was received with an OFDM bitrate,
1291          * the signal is the PLCP value. If it was received with
1292          * a CCK bitrate the signal is the rate in 100kbit/s.
1293          */
1294         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1295         rxdesc->rssi =
1296             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1297         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1298
1299         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1300                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1301         else
1302                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1303         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1304                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1305
1306         /*
1307          * Adjust the skb memory window to the frame boundaries.
1308          */
1309         skb_trim(entry->skb, rxdesc->size);
1310 }
1311
1312 /*
1313  * Interrupt functions.
1314  */
1315 static void rt2500usb_beacondone(struct urb *urb)
1316 {
1317         struct queue_entry *entry = (struct queue_entry *)urb->context;
1318         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1319
1320         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1321                 return;
1322
1323         /*
1324          * Check if this was the guardian beacon,
1325          * if that was the case we need to send the real beacon now.
1326          * Otherwise we should free the sk_buffer, the device
1327          * should be doing the rest of the work now.
1328          */
1329         if (bcn_priv->guardian_urb == urb) {
1330                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1331         } else if (bcn_priv->urb == urb) {
1332                 dev_kfree_skb(entry->skb);
1333                 entry->skb = NULL;
1334         }
1335 }
1336
1337 /*
1338  * Device probe functions.
1339  */
1340 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1341 {
1342         u16 word;
1343         u8 *mac;
1344         u8 bbp;
1345
1346         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1347
1348         /*
1349          * Start validation of the data that has been read.
1350          */
1351         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1352         if (!is_valid_ether_addr(mac)) {
1353                 random_ether_addr(mac);
1354                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1355         }
1356
1357         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1358         if (word == 0xffff) {
1359                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1360                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1361                                    ANTENNA_SW_DIVERSITY);
1362                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1363                                    ANTENNA_SW_DIVERSITY);
1364                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1365                                    LED_MODE_DEFAULT);
1366                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1367                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1368                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1369                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1370                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1371         }
1372
1373         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1374         if (word == 0xffff) {
1375                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1376                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1377                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1378                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1379                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1380         }
1381
1382         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1383         if (word == 0xffff) {
1384                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1385                                    DEFAULT_RSSI_OFFSET);
1386                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1387                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1388         }
1389
1390         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1391         if (word == 0xffff) {
1392                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1393                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1394                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1395         }
1396
1397         /*
1398          * Switch lower vgc bound to current BBP R17 value,
1399          * lower the value a bit for better quality.
1400          */
1401         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1402         bbp -= 6;
1403
1404         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1405         if (word == 0xffff) {
1406                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1407                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1408                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1409                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1410         } else {
1411                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1412                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1413         }
1414
1415         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1416         if (word == 0xffff) {
1417                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1418                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1419                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1420                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1421         }
1422
1423         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1424         if (word == 0xffff) {
1425                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1426                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1427                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1428                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1429         }
1430
1431         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1432         if (word == 0xffff) {
1433                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1434                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1435                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1436                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1437         }
1438
1439         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1440         if (word == 0xffff) {
1441                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1442                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1443                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1444                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1445         }
1446
1447         return 0;
1448 }
1449
1450 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1451 {
1452         u16 reg;
1453         u16 value;
1454         u16 eeprom;
1455
1456         /*
1457          * Read EEPROM word for configuration.
1458          */
1459         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1460
1461         /*
1462          * Identify RF chipset.
1463          */
1464         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1465         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1466         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1467
1468         if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1469                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1470                 return -ENODEV;
1471         }
1472
1473         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1474             !rt2x00_rf(rt2x00dev, RF2523) &&
1475             !rt2x00_rf(rt2x00dev, RF2524) &&
1476             !rt2x00_rf(rt2x00dev, RF2525) &&
1477             !rt2x00_rf(rt2x00dev, RF2525E) &&
1478             !rt2x00_rf(rt2x00dev, RF5222)) {
1479                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1480                 return -ENODEV;
1481         }
1482
1483         /*
1484          * Identify default antenna configuration.
1485          */
1486         rt2x00dev->default_ant.tx =
1487             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1488         rt2x00dev->default_ant.rx =
1489             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1490
1491         /*
1492          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1493          * I am not 100% sure about this, but the legacy drivers do not
1494          * indicate antenna swapping in software is required when
1495          * diversity is enabled.
1496          */
1497         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1498                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1499         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1500                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1501
1502         /*
1503          * Store led mode, for correct led behaviour.
1504          */
1505 #ifdef CONFIG_RT2X00_LIB_LEDS
1506         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1507
1508         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1509         if (value == LED_MODE_TXRX_ACTIVITY ||
1510             value == LED_MODE_DEFAULT ||
1511             value == LED_MODE_ASUS)
1512                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1513                                    LED_TYPE_ACTIVITY);
1514 #endif /* CONFIG_RT2X00_LIB_LEDS */
1515
1516         /*
1517          * Detect if this device has an hardware controlled radio.
1518          */
1519         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1520                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1521
1522         /*
1523          * Read the RSSI <-> dBm offset information.
1524          */
1525         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1526         rt2x00dev->rssi_offset =
1527             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1528
1529         return 0;
1530 }
1531
1532 /*
1533  * RF value list for RF2522
1534  * Supports: 2.4 GHz
1535  */
1536 static const struct rf_channel rf_vals_bg_2522[] = {
1537         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1538         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1539         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1540         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1541         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1542         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1543         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1544         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1545         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1546         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1547         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1548         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1549         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1550         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1551 };
1552
1553 /*
1554  * RF value list for RF2523
1555  * Supports: 2.4 GHz
1556  */
1557 static const struct rf_channel rf_vals_bg_2523[] = {
1558         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1559         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1560         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1561         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1562         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1563         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1564         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1565         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1566         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1567         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1568         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1569         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1570         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1571         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1572 };
1573
1574 /*
1575  * RF value list for RF2524
1576  * Supports: 2.4 GHz
1577  */
1578 static const struct rf_channel rf_vals_bg_2524[] = {
1579         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1580         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1581         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1582         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1583         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1584         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1585         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1586         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1587         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1588         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1589         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1590         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1591         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1592         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1593 };
1594
1595 /*
1596  * RF value list for RF2525
1597  * Supports: 2.4 GHz
1598  */
1599 static const struct rf_channel rf_vals_bg_2525[] = {
1600         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1601         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1602         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1603         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1604         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1605         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1606         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1607         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1608         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1609         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1610         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1611         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1612         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1613         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1614 };
1615
1616 /*
1617  * RF value list for RF2525e
1618  * Supports: 2.4 GHz
1619  */
1620 static const struct rf_channel rf_vals_bg_2525e[] = {
1621         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1622         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1623         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1624         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1625         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1626         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1627         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1628         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1629         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1630         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1631         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1632         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1633         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1634         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1635 };
1636
1637 /*
1638  * RF value list for RF5222
1639  * Supports: 2.4 GHz & 5.2 GHz
1640  */
1641 static const struct rf_channel rf_vals_5222[] = {
1642         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1643         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1644         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1645         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1646         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1647         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1648         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1649         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1650         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1651         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1652         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1653         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1654         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1655         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1656
1657         /* 802.11 UNI / HyperLan 2 */
1658         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1659         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1660         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1661         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1662         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1663         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1664         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1665         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1666
1667         /* 802.11 HyperLan 2 */
1668         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1669         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1670         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1671         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1672         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1673         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1674         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1675         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1676         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1677         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1678
1679         /* 802.11 UNII */
1680         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1681         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1682         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1683         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1684         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1685 };
1686
1687 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1688 {
1689         struct hw_mode_spec *spec = &rt2x00dev->spec;
1690         struct channel_info *info;
1691         char *tx_power;
1692         unsigned int i;
1693
1694         /*
1695          * Initialize all hw fields.
1696          *
1697          * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1698          * capable of sending the buffered frames out after the DTIM
1699          * transmission using rt2x00lib_beacondone. This will send out
1700          * multicast and broadcast traffic immediately instead of buffering it
1701          * infinitly and thus dropping it after some time.
1702          */
1703         rt2x00dev->hw->flags =
1704             IEEE80211_HW_RX_INCLUDES_FCS |
1705             IEEE80211_HW_SIGNAL_DBM |
1706             IEEE80211_HW_SUPPORTS_PS |
1707             IEEE80211_HW_PS_NULLFUNC_STACK;
1708
1709         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1710         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1711                                 rt2x00_eeprom_addr(rt2x00dev,
1712                                                    EEPROM_MAC_ADDR_0));
1713
1714         /*
1715          * Initialize hw_mode information.
1716          */
1717         spec->supported_bands = SUPPORT_BAND_2GHZ;
1718         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1719
1720         if (rt2x00_rf(rt2x00dev, RF2522)) {
1721                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1722                 spec->channels = rf_vals_bg_2522;
1723         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1724                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1725                 spec->channels = rf_vals_bg_2523;
1726         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1727                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1728                 spec->channels = rf_vals_bg_2524;
1729         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1730                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1731                 spec->channels = rf_vals_bg_2525;
1732         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1733                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1734                 spec->channels = rf_vals_bg_2525e;
1735         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1736                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1737                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1738                 spec->channels = rf_vals_5222;
1739         }
1740
1741         /*
1742          * Create channel information array
1743          */
1744         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1745         if (!info)
1746                 return -ENOMEM;
1747
1748         spec->channels_info = info;
1749
1750         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1751         for (i = 0; i < 14; i++) {
1752                 info[i].max_power = MAX_TXPOWER;
1753                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1754         }
1755
1756         if (spec->num_channels > 14) {
1757                 for (i = 14; i < spec->num_channels; i++) {
1758                         info[i].max_power = MAX_TXPOWER;
1759                         info[i].default_power1 = DEFAULT_TXPOWER;
1760                 }
1761         }
1762
1763         return 0;
1764 }
1765
1766 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1767 {
1768         int retval;
1769
1770         /*
1771          * Allocate eeprom data.
1772          */
1773         retval = rt2500usb_validate_eeprom(rt2x00dev);
1774         if (retval)
1775                 return retval;
1776
1777         retval = rt2500usb_init_eeprom(rt2x00dev);
1778         if (retval)
1779                 return retval;
1780
1781         /*
1782          * Initialize hw specifications.
1783          */
1784         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1785         if (retval)
1786                 return retval;
1787
1788         /*
1789          * This device requires the atim queue
1790          */
1791         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1792         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1793         if (!modparam_nohwcrypt) {
1794                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1795                 __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1796         }
1797         __set_bit(DRIVER_SUPPORT_WATCHDOG, &rt2x00dev->flags);
1798
1799         /*
1800          * Set the rssi offset.
1801          */
1802         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1803
1804         return 0;
1805 }
1806
1807 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1808         .tx                     = rt2x00mac_tx,
1809         .start                  = rt2x00mac_start,
1810         .stop                   = rt2x00mac_stop,
1811         .add_interface          = rt2x00mac_add_interface,
1812         .remove_interface       = rt2x00mac_remove_interface,
1813         .config                 = rt2x00mac_config,
1814         .configure_filter       = rt2x00mac_configure_filter,
1815         .set_tim                = rt2x00mac_set_tim,
1816         .set_key                = rt2x00mac_set_key,
1817         .sw_scan_start          = rt2x00mac_sw_scan_start,
1818         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1819         .get_stats              = rt2x00mac_get_stats,
1820         .bss_info_changed       = rt2x00mac_bss_info_changed,
1821         .conf_tx                = rt2x00mac_conf_tx,
1822         .rfkill_poll            = rt2x00mac_rfkill_poll,
1823         .flush                  = rt2x00mac_flush,
1824 };
1825
1826 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1827         .probe_hw               = rt2500usb_probe_hw,
1828         .initialize             = rt2x00usb_initialize,
1829         .uninitialize           = rt2x00usb_uninitialize,
1830         .clear_entry            = rt2x00usb_clear_entry,
1831         .set_device_state       = rt2500usb_set_device_state,
1832         .rfkill_poll            = rt2500usb_rfkill_poll,
1833         .link_stats             = rt2500usb_link_stats,
1834         .reset_tuner            = rt2500usb_reset_tuner,
1835         .watchdog               = rt2x00usb_watchdog,
1836         .start_queue            = rt2500usb_start_queue,
1837         .kick_queue             = rt2x00usb_kick_queue,
1838         .stop_queue             = rt2500usb_stop_queue,
1839         .flush_queue            = rt2x00usb_flush_queue,
1840         .write_tx_desc          = rt2500usb_write_tx_desc,
1841         .write_beacon           = rt2500usb_write_beacon,
1842         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1843         .fill_rxdone            = rt2500usb_fill_rxdone,
1844         .config_shared_key      = rt2500usb_config_key,
1845         .config_pairwise_key    = rt2500usb_config_key,
1846         .config_filter          = rt2500usb_config_filter,
1847         .config_intf            = rt2500usb_config_intf,
1848         .config_erp             = rt2500usb_config_erp,
1849         .config_ant             = rt2500usb_config_ant,
1850         .config                 = rt2500usb_config,
1851 };
1852
1853 static const struct data_queue_desc rt2500usb_queue_rx = {
1854         .entry_num              = 32,
1855         .data_size              = DATA_FRAME_SIZE,
1856         .desc_size              = RXD_DESC_SIZE,
1857         .priv_size              = sizeof(struct queue_entry_priv_usb),
1858 };
1859
1860 static const struct data_queue_desc rt2500usb_queue_tx = {
1861         .entry_num              = 32,
1862         .data_size              = DATA_FRAME_SIZE,
1863         .desc_size              = TXD_DESC_SIZE,
1864         .priv_size              = sizeof(struct queue_entry_priv_usb),
1865 };
1866
1867 static const struct data_queue_desc rt2500usb_queue_bcn = {
1868         .entry_num              = 1,
1869         .data_size              = MGMT_FRAME_SIZE,
1870         .desc_size              = TXD_DESC_SIZE,
1871         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1872 };
1873
1874 static const struct data_queue_desc rt2500usb_queue_atim = {
1875         .entry_num              = 8,
1876         .data_size              = DATA_FRAME_SIZE,
1877         .desc_size              = TXD_DESC_SIZE,
1878         .priv_size              = sizeof(struct queue_entry_priv_usb),
1879 };
1880
1881 static const struct rt2x00_ops rt2500usb_ops = {
1882         .name                   = KBUILD_MODNAME,
1883         .max_sta_intf           = 1,
1884         .max_ap_intf            = 1,
1885         .eeprom_size            = EEPROM_SIZE,
1886         .rf_size                = RF_SIZE,
1887         .tx_queues              = NUM_TX_QUEUES,
1888         .extra_tx_headroom      = TXD_DESC_SIZE,
1889         .rx                     = &rt2500usb_queue_rx,
1890         .tx                     = &rt2500usb_queue_tx,
1891         .bcn                    = &rt2500usb_queue_bcn,
1892         .atim                   = &rt2500usb_queue_atim,
1893         .lib                    = &rt2500usb_rt2x00_ops,
1894         .hw                     = &rt2500usb_mac80211_ops,
1895 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1896         .debugfs                = &rt2500usb_rt2x00debug,
1897 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1898 };
1899
1900 /*
1901  * rt2500usb module information.
1902  */
1903 static struct usb_device_id rt2500usb_device_table[] = {
1904         /* ASUS */
1905         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1906         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1907         /* Belkin */
1908         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1909         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1910         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1911         /* Cisco Systems */
1912         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1913         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1914         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1915         /* CNet */
1916         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
1917         /* Conceptronic */
1918         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1919         /* D-LINK */
1920         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1921         /* Gigabyte */
1922         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1923         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1924         /* Hercules */
1925         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1926         /* Melco */
1927         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1928         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1929         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1930         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1931         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1932         /* MSI */
1933         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1934         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1935         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1936         /* Ralink */
1937         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1938         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1939         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1940         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1941         /* Sagem */
1942         { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
1943         /* Siemens */
1944         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1945         /* SMC */
1946         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1947         /* Spairon */
1948         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1949         /* SURECOM */
1950         { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
1951         /* Trust */
1952         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1953         /* VTech */
1954         { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
1955         /* Zinwell */
1956         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1957         { 0, }
1958 };
1959
1960 MODULE_AUTHOR(DRV_PROJECT);
1961 MODULE_VERSION(DRV_VERSION);
1962 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1963 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1964 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1965 MODULE_LICENSE("GPL");
1966
1967 static struct usb_driver rt2500usb_driver = {
1968         .name           = KBUILD_MODNAME,
1969         .id_table       = rt2500usb_device_table,
1970         .probe          = rt2x00usb_probe,
1971         .disconnect     = rt2x00usb_disconnect,
1972         .suspend        = rt2x00usb_suspend,
1973         .resume         = rt2x00usb_resume,
1974 };
1975
1976 static int __init rt2500usb_init(void)
1977 {
1978         return usb_register(&rt2500usb_driver);
1979 }
1980
1981 static void __exit rt2500usb_exit(void)
1982 {
1983         usb_deregister(&rt2500usb_driver);
1984 }
1985
1986 module_init(rt2500usb_init);
1987 module_exit(rt2500usb_exit);