p54: report appropriate rate and band values for 802.11a
[linux-2.6.git] / drivers / net / wireless / p54 / p54common.c
1
2 /*
3  * Common code for mac80211 Prism54 drivers
4  *
5  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
6  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
7  *
8  * Based on the islsm (softmac prism54) driver, which is:
9  * Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15
16 #include <linux/init.h>
17 #include <linux/firmware.h>
18 #include <linux/etherdevice.h>
19
20 #include <net/mac80211.h>
21
22 #include "p54.h"
23 #include "p54common.h"
24
25 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
26 MODULE_DESCRIPTION("Softmac Prism54 common code");
27 MODULE_LICENSE("GPL");
28 MODULE_ALIAS("prism54common");
29
30 static struct ieee80211_rate p54_bgrates[] = {
31         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
32         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
33         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
34         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
35         { .bitrate = 60, .hw_value = 4, },
36         { .bitrate = 90, .hw_value = 5, },
37         { .bitrate = 120, .hw_value = 6, },
38         { .bitrate = 180, .hw_value = 7, },
39         { .bitrate = 240, .hw_value = 8, },
40         { .bitrate = 360, .hw_value = 9, },
41         { .bitrate = 480, .hw_value = 10, },
42         { .bitrate = 540, .hw_value = 11, },
43 };
44
45 static struct ieee80211_channel p54_bgchannels[] = {
46         { .center_freq = 2412, .hw_value = 1, },
47         { .center_freq = 2417, .hw_value = 2, },
48         { .center_freq = 2422, .hw_value = 3, },
49         { .center_freq = 2427, .hw_value = 4, },
50         { .center_freq = 2432, .hw_value = 5, },
51         { .center_freq = 2437, .hw_value = 6, },
52         { .center_freq = 2442, .hw_value = 7, },
53         { .center_freq = 2447, .hw_value = 8, },
54         { .center_freq = 2452, .hw_value = 9, },
55         { .center_freq = 2457, .hw_value = 10, },
56         { .center_freq = 2462, .hw_value = 11, },
57         { .center_freq = 2467, .hw_value = 12, },
58         { .center_freq = 2472, .hw_value = 13, },
59         { .center_freq = 2484, .hw_value = 14, },
60 };
61
62 static struct ieee80211_supported_band band_2GHz = {
63         .channels = p54_bgchannels,
64         .n_channels = ARRAY_SIZE(p54_bgchannels),
65         .bitrates = p54_bgrates,
66         .n_bitrates = ARRAY_SIZE(p54_bgrates),
67 };
68
69 static struct ieee80211_rate p54_arates[] = {
70         { .bitrate = 60, .hw_value = 4, },
71         { .bitrate = 90, .hw_value = 5, },
72         { .bitrate = 120, .hw_value = 6, },
73         { .bitrate = 180, .hw_value = 7, },
74         { .bitrate = 240, .hw_value = 8, },
75         { .bitrate = 360, .hw_value = 9, },
76         { .bitrate = 480, .hw_value = 10, },
77         { .bitrate = 540, .hw_value = 11, },
78 };
79
80 static struct ieee80211_channel p54_achannels[] = {
81         { .center_freq = 4920 },
82         { .center_freq = 4940 },
83         { .center_freq = 4960 },
84         { .center_freq = 4980 },
85         { .center_freq = 5040 },
86         { .center_freq = 5060 },
87         { .center_freq = 5080 },
88         { .center_freq = 5170 },
89         { .center_freq = 5180 },
90         { .center_freq = 5190 },
91         { .center_freq = 5200 },
92         { .center_freq = 5210 },
93         { .center_freq = 5220 },
94         { .center_freq = 5230 },
95         { .center_freq = 5240 },
96         { .center_freq = 5260 },
97         { .center_freq = 5280 },
98         { .center_freq = 5300 },
99         { .center_freq = 5320 },
100         { .center_freq = 5500 },
101         { .center_freq = 5520 },
102         { .center_freq = 5540 },
103         { .center_freq = 5560 },
104         { .center_freq = 5580 },
105         { .center_freq = 5600 },
106         { .center_freq = 5620 },
107         { .center_freq = 5640 },
108         { .center_freq = 5660 },
109         { .center_freq = 5680 },
110         { .center_freq = 5700 },
111         { .center_freq = 5745 },
112         { .center_freq = 5765 },
113         { .center_freq = 5785 },
114         { .center_freq = 5805 },
115         { .center_freq = 5825 },
116 };
117
118 static struct ieee80211_supported_band band_5GHz = {
119         .channels = p54_achannels,
120         .n_channels = ARRAY_SIZE(p54_achannels),
121         .bitrates = p54_arates,
122         .n_bitrates = ARRAY_SIZE(p54_arates),
123 };
124
125 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
126 {
127         struct p54_common *priv = dev->priv;
128         struct bootrec_exp_if *exp_if;
129         struct bootrec *bootrec;
130         u32 *data = (u32 *)fw->data;
131         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
132         u8 *fw_version = NULL;
133         size_t len;
134         int i;
135
136         if (priv->rx_start)
137                 return 0;
138
139         while (data < end_data && *data)
140                 data++;
141
142         while (data < end_data && !*data)
143                 data++;
144
145         bootrec = (struct bootrec *) data;
146
147         while (bootrec->data <= end_data &&
148                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
149                 u32 code = le32_to_cpu(bootrec->code);
150                 switch (code) {
151                 case BR_CODE_COMPONENT_ID:
152                         priv->fw_interface = be32_to_cpup((__be32 *)
153                                              bootrec->data);
154                         switch (priv->fw_interface) {
155                         case FW_FMAC:
156                                 printk(KERN_INFO "p54: FreeMAC firmware\n");
157                                 break;
158                         case FW_LM20:
159                                 printk(KERN_INFO "p54: LM20 firmware\n");
160                                 break;
161                         case FW_LM86:
162                                 printk(KERN_INFO "p54: LM86 firmware\n");
163                                 break;
164                         case FW_LM87:
165                                 printk(KERN_INFO "p54: LM87 firmware\n");
166                                 break;
167                         default:
168                                 printk(KERN_INFO "p54: unknown firmware\n");
169                                 break;
170                         }
171                         break;
172                 case BR_CODE_COMPONENT_VERSION:
173                         /* 24 bytes should be enough for all firmwares */
174                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
175                                 fw_version = (unsigned char*)bootrec->data;
176                         break;
177                 case BR_CODE_DESCR: {
178                         struct bootrec_desc *desc =
179                                 (struct bootrec_desc *)bootrec->data;
180                         priv->rx_start = le32_to_cpu(desc->rx_start);
181                         /* FIXME add sanity checking */
182                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
183                         priv->headroom = desc->headroom;
184                         priv->tailroom = desc->tailroom;
185                         if (le32_to_cpu(bootrec->len) == 11)
186                                 priv->rx_mtu = le16_to_cpu(bootrec->rx_mtu);
187                         else
188                                 priv->rx_mtu = (size_t)
189                                         0x620 - priv->tx_hdr_len;
190                         break;
191                         }
192                 case BR_CODE_EXPOSED_IF:
193                         exp_if = (struct bootrec_exp_if *) bootrec->data;
194                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
195                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
196                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
197                         break;
198                 case BR_CODE_DEPENDENT_IF:
199                         break;
200                 case BR_CODE_END_OF_BRA:
201                 case LEGACY_BR_CODE_END_OF_BRA:
202                         end_data = NULL;
203                         break;
204                 default:
205                         break;
206                 }
207                 bootrec = (struct bootrec *)&bootrec->data[len];
208         }
209
210         if (fw_version)
211                 printk(KERN_INFO "p54: FW rev %s - Softmac protocol %x.%x\n",
212                         fw_version, priv->fw_var >> 8, priv->fw_var & 0xff);
213
214         if (priv->fw_var >= 0x300) {
215                 /* Firmware supports QoS, use it! */
216                 priv->tx_stats[4].limit = 3;
217                 priv->tx_stats[5].limit = 4;
218                 priv->tx_stats[6].limit = 3;
219                 priv->tx_stats[7].limit = 1;
220                 dev->queues = 4;
221         }
222
223         return 0;
224 }
225 EXPORT_SYMBOL_GPL(p54_parse_firmware);
226
227 static int p54_convert_rev0(struct ieee80211_hw *dev,
228                             struct pda_pa_curve_data *curve_data)
229 {
230         struct p54_common *priv = dev->priv;
231         struct p54_pa_curve_data_sample *dst;
232         struct pda_pa_curve_data_sample_rev0 *src;
233         size_t cd_len = sizeof(*curve_data) +
234                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
235                  curve_data->channels;
236         unsigned int i, j;
237         void *source, *target;
238
239         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
240         if (!priv->curve_data)
241                 return -ENOMEM;
242
243         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
244         source = curve_data->data;
245         target = priv->curve_data->data;
246         for (i = 0; i < curve_data->channels; i++) {
247                 __le16 *freq = source;
248                 source += sizeof(__le16);
249                 *((__le16 *)target) = *freq;
250                 target += sizeof(__le16);
251                 for (j = 0; j < curve_data->points_per_channel; j++) {
252                         dst = target;
253                         src = source;
254
255                         dst->rf_power = src->rf_power;
256                         dst->pa_detector = src->pa_detector;
257                         dst->data_64qam = src->pcv;
258                         /* "invent" the points for the other modulations */
259 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
260                         dst->data_16qam = SUB(src->pcv, 12);
261                         dst->data_qpsk = SUB(dst->data_16qam, 12);
262                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
263                         dst->data_barker = SUB(dst->data_bpsk, 14);
264 #undef SUB
265                         target += sizeof(*dst);
266                         source += sizeof(*src);
267                 }
268         }
269
270         return 0;
271 }
272
273 static int p54_convert_rev1(struct ieee80211_hw *dev,
274                             struct pda_pa_curve_data *curve_data)
275 {
276         struct p54_common *priv = dev->priv;
277         struct p54_pa_curve_data_sample *dst;
278         struct pda_pa_curve_data_sample_rev1 *src;
279         size_t cd_len = sizeof(*curve_data) +
280                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
281                  curve_data->channels;
282         unsigned int i, j;
283         void *source, *target;
284
285         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
286         if (!priv->curve_data)
287                 return -ENOMEM;
288
289         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
290         source = curve_data->data;
291         target = priv->curve_data->data;
292         for (i = 0; i < curve_data->channels; i++) {
293                 __le16 *freq = source;
294                 source += sizeof(__le16);
295                 *((__le16 *)target) = *freq;
296                 target += sizeof(__le16);
297                 for (j = 0; j < curve_data->points_per_channel; j++) {
298                         memcpy(target, source, sizeof(*src));
299
300                         target += sizeof(*dst);
301                         source += sizeof(*src);
302                 }
303                 source++;
304         }
305
306         return 0;
307 }
308
309 static const char *p54_rf_chips[] = { "NULL", "Indigo?", "Duette",
310                               "Frisbee", "Xbow", "Longbow" };
311 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
312
313 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
314 {
315         struct p54_common *priv = dev->priv;
316         struct eeprom_pda_wrap *wrap = NULL;
317         struct pda_entry *entry;
318         unsigned int data_len, entry_len;
319         void *tmp;
320         int err;
321         u8 *end = (u8 *)eeprom + len;
322         DECLARE_MAC_BUF(mac);
323
324         wrap = (struct eeprom_pda_wrap *) eeprom;
325         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
326
327         /* verify that at least the entry length/code fits */
328         while ((u8 *)entry <= end - sizeof(*entry)) {
329                 entry_len = le16_to_cpu(entry->len);
330                 data_len = ((entry_len - 1) << 1);
331
332                 /* abort if entry exceeds whole structure */
333                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
334                         break;
335
336                 switch (le16_to_cpu(entry->code)) {
337                 case PDR_MAC_ADDRESS:
338                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
339                         break;
340                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
341                         if (data_len < 2) {
342                                 err = -EINVAL;
343                                 goto err;
344                         }
345
346                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
347                                 err = -EINVAL;
348                                 goto err;
349                         }
350
351                         priv->output_limit = kmalloc(entry->data[1] *
352                                 sizeof(*priv->output_limit), GFP_KERNEL);
353
354                         if (!priv->output_limit) {
355                                 err = -ENOMEM;
356                                 goto err;
357                         }
358
359                         memcpy(priv->output_limit, &entry->data[2],
360                                entry->data[1]*sizeof(*priv->output_limit));
361                         priv->output_limit_len = entry->data[1];
362                         break;
363                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
364                         struct pda_pa_curve_data *curve_data =
365                                 (struct pda_pa_curve_data *)entry->data;
366                         if (data_len < sizeof(*curve_data)) {
367                                 err = -EINVAL;
368                                 goto err;
369                         }
370
371                         switch (curve_data->cal_method_rev) {
372                         case 0:
373                                 err = p54_convert_rev0(dev, curve_data);
374                                 break;
375                         case 1:
376                                 err = p54_convert_rev1(dev, curve_data);
377                                 break;
378                         default:
379                                 printk(KERN_ERR "p54: unknown curve data "
380                                                 "revision %d\n",
381                                                 curve_data->cal_method_rev);
382                                 err = -ENODEV;
383                                 break;
384                         }
385                         if (err)
386                                 goto err;
387
388                 }
389                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
390                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
391                         if (!priv->iq_autocal) {
392                                 err = -ENOMEM;
393                                 goto err;
394                         }
395
396                         memcpy(priv->iq_autocal, entry->data, data_len);
397                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
398                         break;
399                 case PDR_INTERFACE_LIST:
400                         tmp = entry->data;
401                         while ((u8 *)tmp < entry->data + data_len) {
402                                 struct bootrec_exp_if *exp_if = tmp;
403                                 if (le16_to_cpu(exp_if->if_id) == 0xF)
404                                         priv->rxhw = le16_to_cpu(exp_if->variant) & 0x07;
405                                 tmp += sizeof(struct bootrec_exp_if);
406                         }
407                         break;
408                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
409                         priv->version = *(u8 *)(entry->data + 1);
410                         break;
411                 case PDR_END:
412                         /* make it overrun */
413                         entry_len = len;
414                         break;
415                 default:
416                         printk(KERN_INFO "p54: unknown eeprom code : 0x%x\n",
417                                 le16_to_cpu(entry->code));
418                         break;
419                 }
420
421                 entry = (void *)entry + (entry_len + 1)*2;
422         }
423
424         if (!priv->iq_autocal || !priv->output_limit || !priv->curve_data) {
425                 printk(KERN_ERR "p54: not all required entries found in eeprom!\n");
426                 err = -EINVAL;
427                 goto err;
428         }
429
430         switch (priv->rxhw) {
431         case 4: /* XBow */
432                 p54_init_xbow_synth(dev);
433         case 1: /* Indigo? */
434         case 2: /* Duette */
435                 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
436         case 3: /* Frisbee */
437         case 5: /* Longbow */
438                 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
439                 break;
440         default:
441                 printk(KERN_ERR "%s: unsupported RF-Chip\n",
442                         wiphy_name(dev->wiphy));
443                 err = -EINVAL;
444                 goto err;
445         }
446
447         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
448                 u8 perm_addr[ETH_ALEN];
449
450                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
451                         wiphy_name(dev->wiphy));
452                 random_ether_addr(perm_addr);
453                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
454         }
455
456         printk(KERN_INFO "%s: hwaddr %s, MAC:isl38%02x RF:%s\n",
457                 wiphy_name(dev->wiphy),
458                 print_mac(mac, dev->wiphy->perm_addr),
459                 priv->version, p54_rf_chips[priv->rxhw]);
460
461         return 0;
462
463   err:
464         if (priv->iq_autocal) {
465                 kfree(priv->iq_autocal);
466                 priv->iq_autocal = NULL;
467         }
468
469         if (priv->output_limit) {
470                 kfree(priv->output_limit);
471                 priv->output_limit = NULL;
472         }
473
474         if (priv->curve_data) {
475                 kfree(priv->curve_data);
476                 priv->curve_data = NULL;
477         }
478
479         printk(KERN_ERR "p54: eeprom parse failed!\n");
480         return err;
481 }
482 EXPORT_SYMBOL_GPL(p54_parse_eeprom);
483
484 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
485 {
486         /* TODO: get the rssi_add & rssi_mul data from the eeprom */
487         return ((rssi * 0x83) / 64 - 400) / 4;
488 }
489
490 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
491 {
492         struct p54_common *priv = dev->priv;
493         struct p54_rx_hdr *hdr = (struct p54_rx_hdr *) skb->data;
494         struct ieee80211_rx_status rx_status = {0};
495         u16 freq = le16_to_cpu(hdr->freq);
496         size_t header_len = sizeof(*hdr);
497         u32 tsf32;
498
499         if (!(hdr->magic & cpu_to_le16(0x0001))) {
500                 if (priv->filter_flags & FIF_FCSFAIL)
501                         rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
502                 else
503                         return 0;
504         }
505
506         rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
507         rx_status.noise = priv->noise;
508         /* XX correct? */
509         rx_status.qual = (100 * hdr->rssi) / 127;
510         rx_status.rate_idx = (dev->conf.channel->band == IEEE80211_BAND_2GHZ ?
511                         hdr->rate : (hdr->rate - 4)) & 0xf;
512         rx_status.freq = freq;
513         rx_status.band =  dev->conf.channel->band;
514         rx_status.antenna = hdr->antenna;
515
516         tsf32 = le32_to_cpu(hdr->tsf32);
517         if (tsf32 < priv->tsf_low32)
518                 priv->tsf_high32++;
519         rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
520         priv->tsf_low32 = tsf32;
521
522         rx_status.flag |= RX_FLAG_TSFT;
523
524         if (hdr->magic & cpu_to_le16(0x4000))
525                 header_len += hdr->align[0];
526
527         skb_pull(skb, header_len);
528         skb_trim(skb, le16_to_cpu(hdr->len));
529
530         ieee80211_rx_irqsafe(dev, skb, &rx_status);
531
532         return -1;
533 }
534
535 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
536 {
537         struct p54_common *priv = dev->priv;
538         int i;
539
540         for (i = 0; i < dev->queues; i++)
541                 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
542                         ieee80211_wake_queue(dev, i);
543 }
544
545 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
546 {
547         struct p54_common *priv = dev->priv;
548         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
549         struct p54_frame_sent_hdr *payload = (struct p54_frame_sent_hdr *) hdr->data;
550         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
551         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
552         struct memrecord *range = NULL;
553         u32 freed = 0;
554         u32 last_addr = priv->rx_start;
555         unsigned long flags;
556
557         spin_lock_irqsave(&priv->tx_queue.lock, flags);
558         while (entry != (struct sk_buff *)&priv->tx_queue) {
559                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
560                 range = (void *)info->driver_data;
561                 if (range->start_addr == addr) {
562                         struct p54_control_hdr *entry_hdr;
563                         struct p54_tx_control_allocdata *entry_data;
564                         int pad = 0;
565
566                         if (entry->next != (struct sk_buff *)&priv->tx_queue) {
567                                 struct ieee80211_tx_info *ni;
568                                 struct memrecord *mr;
569
570                                 ni = IEEE80211_SKB_CB(entry->next);
571                                 mr = (struct memrecord *)ni->driver_data;
572                                 freed = mr->start_addr - last_addr;
573                         } else
574                                 freed = priv->rx_end - last_addr;
575
576                         last_addr = range->end_addr;
577                         __skb_unlink(entry, &priv->tx_queue);
578                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
579
580                         memset(&info->status, 0, sizeof(info->status));
581                         entry_hdr = (struct p54_control_hdr *) entry->data;
582                         entry_data = (struct p54_tx_control_allocdata *) entry_hdr->data;
583                         if ((entry_hdr->magic1 & cpu_to_le16(0x4000)) != 0)
584                                 pad = entry_data->align[0];
585
586                         priv->tx_stats[entry_data->hw_queue].len--;
587                         if (!(info->flags & IEEE80211_TX_CTL_NO_ACK)) {
588                                 if (!(payload->status & 0x01))
589                                         info->flags |= IEEE80211_TX_STAT_ACK;
590                                 else
591                                         info->status.excessive_retries = 1;
592                         }
593                         info->status.retry_count = payload->retries - 1;
594                         info->status.ack_signal = p54_rssi_to_dbm(dev,
595                                         le16_to_cpu(payload->ack_rssi));
596                         skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
597                         ieee80211_tx_status_irqsafe(dev, entry);
598                         goto out;
599                 } else
600                         last_addr = range->end_addr;
601                 entry = entry->next;
602         }
603         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
604
605 out:
606         if (freed >= IEEE80211_MAX_RTS_THRESHOLD + 0x170 +
607             sizeof(struct p54_control_hdr))
608                 p54_wake_free_queues(dev);
609 }
610
611 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
612                                    struct sk_buff *skb)
613 {
614         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
615         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
616         struct p54_common *priv = dev->priv;
617
618         if (!priv->eeprom)
619                 return ;
620
621         memcpy(priv->eeprom, eeprom->data, le16_to_cpu(eeprom->len));
622
623         complete(&priv->eeprom_comp);
624 }
625
626 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
627 {
628         struct p54_common *priv = dev->priv;
629         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
630         struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
631         u32 tsf32 = le32_to_cpu(stats->tsf32);
632
633         if (tsf32 < priv->tsf_low32)
634                 priv->tsf_high32++;
635         priv->tsf_low32 = tsf32;
636
637         priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
638         priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
639         priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
640
641         priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
642         complete(&priv->stats_comp);
643
644         mod_timer(&priv->stats_timer, jiffies + 5 * HZ);
645 }
646
647 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
648 {
649         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
650
651         switch (le16_to_cpu(hdr->type)) {
652         case P54_CONTROL_TYPE_TXDONE:
653                 p54_rx_frame_sent(dev, skb);
654                 break;
655         case P54_CONTROL_TYPE_BBP:
656                 break;
657         case P54_CONTROL_TYPE_STAT_READBACK:
658                 p54_rx_stats(dev, skb);
659                 break;
660         case P54_CONTROL_TYPE_EEPROM_READBACK:
661                 p54_rx_eeprom_readback(dev, skb);
662                 break;
663         default:
664                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
665                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
666                 break;
667         }
668
669         return 0;
670 }
671
672 /* returns zero if skb can be reused */
673 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
674 {
675         u8 type = le16_to_cpu(*((__le16 *)skb->data)) >> 8;
676
677         if (type == 0x80)
678                 return p54_rx_control(dev, skb);
679         else
680                 return p54_rx_data(dev, skb);
681 }
682 EXPORT_SYMBOL_GPL(p54_rx);
683
684 /*
685  * So, the firmware is somewhat stupid and doesn't know what places in its
686  * memory incoming data should go to. By poking around in the firmware, we
687  * can find some unused memory to upload our packets to. However, data that we
688  * want the card to TX needs to stay intact until the card has told us that
689  * it is done with it. This function finds empty places we can upload to and
690  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
691  * allocated areas.
692  */
693 static void p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
694                                struct p54_control_hdr *data, u32 len)
695 {
696         struct p54_common *priv = dev->priv;
697         struct sk_buff *entry = priv->tx_queue.next;
698         struct sk_buff *target_skb = NULL;
699         u32 last_addr = priv->rx_start;
700         u32 largest_hole = 0;
701         u32 target_addr = priv->rx_start;
702         unsigned long flags;
703         unsigned int left;
704         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
705
706         spin_lock_irqsave(&priv->tx_queue.lock, flags);
707         left = skb_queue_len(&priv->tx_queue);
708         while (left--) {
709                 u32 hole_size;
710                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
711                 struct memrecord *range = (void *)info->driver_data;
712                 hole_size = range->start_addr - last_addr;
713                 if (!target_skb && hole_size >= len) {
714                         target_skb = entry->prev;
715                         hole_size -= len;
716                         target_addr = last_addr;
717                 }
718                 largest_hole = max(largest_hole, hole_size);
719                 last_addr = range->end_addr;
720                 entry = entry->next;
721         }
722         if (!target_skb && priv->rx_end - last_addr >= len) {
723                 target_skb = priv->tx_queue.prev;
724                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
725                 if (!skb_queue_empty(&priv->tx_queue)) {
726                         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(target_skb);
727                         struct memrecord *range = (void *)info->driver_data;
728                         target_addr = range->end_addr;
729                 }
730         } else
731                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
732
733         if (skb) {
734                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
735                 struct memrecord *range = (void *)info->driver_data;
736                 range->start_addr = target_addr;
737                 range->end_addr = target_addr + len;
738                 __skb_queue_after(&priv->tx_queue, target_skb, skb);
739                 if (largest_hole < priv->rx_mtu + priv->headroom +
740                                    priv->tailroom +
741                                    sizeof(struct p54_control_hdr))
742                         ieee80211_stop_queues(dev);
743         }
744         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
745
746         data->req_id = cpu_to_le32(target_addr + priv->headroom);
747 }
748
749 int p54_read_eeprom(struct ieee80211_hw *dev)
750 {
751         struct p54_common *priv = dev->priv;
752         struct p54_control_hdr *hdr = NULL;
753         struct p54_eeprom_lm86 *eeprom_hdr;
754         size_t eeprom_size = 0x2020, offset = 0, blocksize;
755         int ret = -ENOMEM;
756         void *eeprom = NULL;
757
758         hdr = (struct p54_control_hdr *)kzalloc(sizeof(*hdr) +
759                 sizeof(*eeprom_hdr) + EEPROM_READBACK_LEN, GFP_KERNEL);
760         if (!hdr)
761                 goto free;
762
763         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
764         if (!priv->eeprom)
765                 goto free;
766
767         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
768         if (!eeprom)
769                 goto free;
770
771         hdr->magic1 = cpu_to_le16(0x8000);
772         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_EEPROM_READBACK);
773         hdr->retry1 = hdr->retry2 = 0;
774         eeprom_hdr = (struct p54_eeprom_lm86 *) hdr->data;
775
776         while (eeprom_size) {
777                 blocksize = min(eeprom_size, (size_t)EEPROM_READBACK_LEN);
778                 hdr->len = cpu_to_le16(blocksize + sizeof(*eeprom_hdr));
779                 eeprom_hdr->offset = cpu_to_le16(offset);
780                 eeprom_hdr->len = cpu_to_le16(blocksize);
781                 p54_assign_address(dev, NULL, hdr, le16_to_cpu(hdr->len) +
782                                    sizeof(*hdr));
783                 priv->tx(dev, hdr, le16_to_cpu(hdr->len) + sizeof(*hdr), 0);
784
785                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
786                         printk(KERN_ERR "%s: device does not respond!\n",
787                                 wiphy_name(dev->wiphy));
788                         ret = -EBUSY;
789                         goto free;
790                 }
791
792                 memcpy(eeprom + offset, priv->eeprom, blocksize);
793                 offset += blocksize;
794                 eeprom_size -= blocksize;
795         }
796
797         ret = p54_parse_eeprom(dev, eeprom, offset);
798 free:
799         kfree(priv->eeprom);
800         priv->eeprom = NULL;
801         kfree(hdr);
802         kfree(eeprom);
803
804         return ret;
805 }
806 EXPORT_SYMBOL_GPL(p54_read_eeprom);
807
808 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
809 {
810         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
811         struct ieee80211_tx_queue_stats *current_queue;
812         struct p54_common *priv = dev->priv;
813         struct p54_control_hdr *hdr;
814         struct ieee80211_hdr *ieee80211hdr = (struct ieee80211_hdr *)skb->data;
815         struct p54_tx_control_allocdata *txhdr;
816         size_t padding, len;
817         u8 rate;
818         u8 cts_rate = 0x20;
819
820         current_queue = &priv->tx_stats[skb_get_queue_mapping(skb) + 4];
821         if (unlikely(current_queue->len > current_queue->limit))
822                 return NETDEV_TX_BUSY;
823         current_queue->len++;
824         current_queue->count++;
825         if (current_queue->len == current_queue->limit)
826                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
827
828         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
829         len = skb->len;
830
831         txhdr = (struct p54_tx_control_allocdata *)
832                         skb_push(skb, sizeof(*txhdr) + padding);
833         hdr = (struct p54_control_hdr *) skb_push(skb, sizeof(*hdr));
834
835         if (padding)
836                 hdr->magic1 = cpu_to_le16(0x4010);
837         else
838                 hdr->magic1 = cpu_to_le16(0x0010);
839         hdr->len = cpu_to_le16(len);
840         hdr->type = (info->flags & IEEE80211_TX_CTL_NO_ACK) ? 0 : cpu_to_le16(1);
841         hdr->retry1 = hdr->retry2 = info->control.retry_limit;
842
843         /* TODO: add support for alternate retry TX rates */
844         rate = ieee80211_get_tx_rate(dev, info)->hw_value;
845         if (info->flags & IEEE80211_TX_CTL_SHORT_PREAMBLE) {
846                 rate |= 0x10;
847                 cts_rate |= 0x10;
848         }
849         if (info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
850                 rate |= 0x40;
851                 cts_rate |= ieee80211_get_rts_cts_rate(dev, info)->hw_value;
852         } else if (info->flags & IEEE80211_TX_CTL_USE_CTS_PROTECT) {
853                 rate |= 0x20;
854                 cts_rate |= ieee80211_get_rts_cts_rate(dev, info)->hw_value;
855         }
856         memset(txhdr->rateset, rate, 8);
857         txhdr->key_type = 0;
858         txhdr->key_len = 0;
859         txhdr->hw_queue = skb_get_queue_mapping(skb) + 4;
860         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
861                 2 : info->antenna_sel_tx - 1;
862         txhdr->output_power = priv->output_power;
863         txhdr->cts_rate = (info->flags & IEEE80211_TX_CTL_NO_ACK) ?
864                           0 : cts_rate;
865         if (padding)
866                 txhdr->align[0] = padding;
867
868         /* FIXME: The sequence that follows is needed for this driver to
869          * work with mac80211 since "mac80211: fix TX sequence numbers".
870          * As with the temporary code in rt2x00, changes will be needed
871          * to get proper sequence numbers on beacons. In addition, this
872          * patch places the sequence number in the hardware state, which
873          * limits us to a single virtual state.
874          */
875         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
876                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
877                         priv->seqno += 0x10;
878                 ieee80211hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
879                 ieee80211hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
880         }
881         /* modifies skb->cb and with it info, so must be last! */
882         p54_assign_address(dev, skb, hdr, skb->len);
883
884         priv->tx(dev, hdr, skb->len, 0);
885         return 0;
886 }
887
888 static int p54_set_filter(struct ieee80211_hw *dev, u16 filter_type,
889                           const u8 *bssid)
890 {
891         struct p54_common *priv = dev->priv;
892         struct p54_control_hdr *hdr;
893         struct p54_tx_control_filter *filter;
894         size_t data_len;
895
896         hdr = kzalloc(sizeof(*hdr) + sizeof(*filter) +
897                       priv->tx_hdr_len, GFP_ATOMIC);
898         if (!hdr)
899                 return -ENOMEM;
900
901         hdr = (void *)hdr + priv->tx_hdr_len;
902
903         filter = (struct p54_tx_control_filter *) hdr->data;
904         hdr->magic1 = cpu_to_le16(0x8001);
905         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_FILTER_SET);
906
907         priv->filter_type = filter->filter_type = cpu_to_le16(filter_type);
908         memcpy(filter->mac_addr, priv->mac_addr, ETH_ALEN);
909         if (!bssid)
910                 memset(filter->bssid, ~0, ETH_ALEN);
911         else
912                 memcpy(filter->bssid, bssid, ETH_ALEN);
913
914         filter->rx_antenna = priv->rx_antenna;
915
916         if (priv->fw_var < 0x500) {
917                 data_len = P54_TX_CONTROL_FILTER_V1_LEN;
918                 filter->v1.basic_rate_mask = cpu_to_le32(0x15F);
919                 filter->v1.rx_addr = cpu_to_le32(priv->rx_end);
920                 filter->v1.max_rx = cpu_to_le16(priv->rx_mtu);
921                 filter->v1.rxhw = cpu_to_le16(priv->rxhw);
922                 filter->v1.wakeup_timer = cpu_to_le16(500);
923         } else {
924                 data_len = P54_TX_CONTROL_FILTER_V2_LEN;
925                 filter->v2.rx_addr = cpu_to_le32(priv->rx_end);
926                 filter->v2.max_rx = cpu_to_le16(priv->rx_mtu);
927                 filter->v2.rxhw = cpu_to_le16(priv->rxhw);
928                 filter->v2.timer = cpu_to_le16(1000);
929         }
930
931         hdr->len = cpu_to_le16(data_len);
932         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + data_len);
933         priv->tx(dev, hdr, sizeof(*hdr) + data_len, 1);
934         return 0;
935 }
936
937 static int p54_set_freq(struct ieee80211_hw *dev, __le16 freq)
938 {
939         struct p54_common *priv = dev->priv;
940         struct p54_control_hdr *hdr;
941         struct p54_tx_control_channel *chan;
942         unsigned int i;
943         size_t data_len;
944         void *entry;
945
946         hdr = kzalloc(sizeof(*hdr) + sizeof(*chan) +
947                       priv->tx_hdr_len, GFP_KERNEL);
948         if (!hdr)
949                 return -ENOMEM;
950
951         hdr = (void *)hdr + priv->tx_hdr_len;
952
953         chan = (struct p54_tx_control_channel *) hdr->data;
954
955         hdr->magic1 = cpu_to_le16(0x8001);
956
957         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_CHANNEL_CHANGE);
958
959         chan->flags = cpu_to_le16(0x1);
960         chan->dwell = cpu_to_le16(0x0);
961
962         for (i = 0; i < priv->iq_autocal_len; i++) {
963                 if (priv->iq_autocal[i].freq != freq)
964                         continue;
965
966                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
967                        sizeof(*priv->iq_autocal));
968                 break;
969         }
970         if (i == priv->iq_autocal_len)
971                 goto err;
972
973         for (i = 0; i < priv->output_limit_len; i++) {
974                 if (priv->output_limit[i].freq != freq)
975                         continue;
976
977                 chan->val_barker = 0x38;
978                 chan->val_bpsk = chan->dup_bpsk =
979                         priv->output_limit[i].val_bpsk;
980                 chan->val_qpsk = chan->dup_qpsk =
981                         priv->output_limit[i].val_qpsk;
982                 chan->val_16qam = chan->dup_16qam =
983                         priv->output_limit[i].val_16qam;
984                 chan->val_64qam = chan->dup_64qam =
985                         priv->output_limit[i].val_64qam;
986                 break;
987         }
988         if (i == priv->output_limit_len)
989                 goto err;
990
991         entry = priv->curve_data->data;
992         for (i = 0; i < priv->curve_data->channels; i++) {
993                 if (*((__le16 *)entry) != freq) {
994                         entry += sizeof(__le16);
995                         entry += sizeof(struct p54_pa_curve_data_sample) *
996                                  priv->curve_data->points_per_channel;
997                         continue;
998                 }
999
1000                 entry += sizeof(__le16);
1001                 chan->pa_points_per_curve =
1002                         min(priv->curve_data->points_per_channel, (u8) 8);
1003
1004                 memcpy(chan->curve_data, entry, sizeof(*chan->curve_data) *
1005                        chan->pa_points_per_curve);
1006                 break;
1007         }
1008
1009         if (priv->fw_var < 0x500) {
1010                 data_len = P54_TX_CONTROL_CHANNEL_V1_LEN;
1011                 chan->v1.rssical_mul = cpu_to_le16(130);
1012                 chan->v1.rssical_add = cpu_to_le16(0xfe70);
1013         } else {
1014                 data_len = P54_TX_CONTROL_CHANNEL_V2_LEN;
1015                 chan->v2.rssical_mul = cpu_to_le16(130);
1016                 chan->v2.rssical_add = cpu_to_le16(0xfe70);
1017                 chan->v2.basic_rate_mask = cpu_to_le32(0x15f);
1018         }
1019
1020         hdr->len = cpu_to_le16(data_len);
1021         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + data_len);
1022         priv->tx(dev, hdr, sizeof(*hdr) + data_len, 1);
1023         return 0;
1024
1025  err:
1026         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1027         kfree(hdr);
1028         return -EINVAL;
1029 }
1030
1031 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1032 {
1033         struct p54_common *priv = dev->priv;
1034         struct p54_control_hdr *hdr;
1035         struct p54_tx_control_led *led;
1036
1037         hdr = kzalloc(sizeof(*hdr) + sizeof(*led) +
1038                       priv->tx_hdr_len, GFP_KERNEL);
1039         if (!hdr)
1040                 return -ENOMEM;
1041
1042         hdr = (void *)hdr + priv->tx_hdr_len;
1043         hdr->magic1 = cpu_to_le16(0x8001);
1044         hdr->len = cpu_to_le16(sizeof(*led));
1045         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_LED);
1046         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*led));
1047
1048         led = (struct p54_tx_control_led *) hdr->data;
1049         led->mode = cpu_to_le16(mode);
1050         led->led_permanent = cpu_to_le16(link);
1051         led->led_temporary = cpu_to_le16(act);
1052         led->duration = cpu_to_le16(1000);
1053
1054         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*led), 1);
1055
1056         return 0;
1057 }
1058
1059 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
1060 do {                                                            \
1061         queue.aifs = cpu_to_le16(ai_fs);                        \
1062         queue.cwmin = cpu_to_le16(cw_min);                      \
1063         queue.cwmax = cpu_to_le16(cw_max);                      \
1064         queue.txop = cpu_to_le16(_txop);                        \
1065 } while(0)
1066
1067 static void p54_init_vdcf(struct ieee80211_hw *dev)
1068 {
1069         struct p54_common *priv = dev->priv;
1070         struct p54_control_hdr *hdr;
1071         struct p54_tx_control_vdcf *vdcf;
1072
1073         /* all USB V1 adapters need a extra headroom */
1074         hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
1075         hdr->magic1 = cpu_to_le16(0x8001);
1076         hdr->len = cpu_to_le16(sizeof(*vdcf));
1077         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_DCFINIT);
1078         hdr->req_id = cpu_to_le32(priv->rx_start);
1079
1080         vdcf = (struct p54_tx_control_vdcf *) hdr->data;
1081
1082         P54_SET_QUEUE(vdcf->queue[0], 0x0002, 0x0003, 0x0007, 47);
1083         P54_SET_QUEUE(vdcf->queue[1], 0x0002, 0x0007, 0x000f, 94);
1084         P54_SET_QUEUE(vdcf->queue[2], 0x0003, 0x000f, 0x03ff, 0);
1085         P54_SET_QUEUE(vdcf->queue[3], 0x0007, 0x000f, 0x03ff, 0);
1086 }
1087
1088 static void p54_set_vdcf(struct ieee80211_hw *dev)
1089 {
1090         struct p54_common *priv = dev->priv;
1091         struct p54_control_hdr *hdr;
1092         struct p54_tx_control_vdcf *vdcf;
1093
1094         hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
1095
1096         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*vdcf));
1097
1098         vdcf = (struct p54_tx_control_vdcf *) hdr->data;
1099
1100         if (dev->conf.flags & IEEE80211_CONF_SHORT_SLOT_TIME) {
1101                 vdcf->slottime = 9;
1102                 vdcf->magic1 = 0x10;
1103                 vdcf->magic2 = 0x00;
1104         } else {
1105                 vdcf->slottime = 20;
1106                 vdcf->magic1 = 0x0a;
1107                 vdcf->magic2 = 0x06;
1108         }
1109
1110         /* (see prism54/isl_oid.h for further details) */
1111         vdcf->frameburst = cpu_to_le16(0);
1112
1113         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*vdcf), 0);
1114 }
1115
1116 static int p54_start(struct ieee80211_hw *dev)
1117 {
1118         struct p54_common *priv = dev->priv;
1119         int err;
1120
1121         if (!priv->cached_vdcf) {
1122                 priv->cached_vdcf = kzalloc(sizeof(struct p54_tx_control_vdcf)+
1123                         priv->tx_hdr_len + sizeof(struct p54_control_hdr),
1124                         GFP_KERNEL);
1125
1126                 if (!priv->cached_vdcf)
1127                         return -ENOMEM;
1128         }
1129
1130         if (!priv->cached_stats) {
1131                 priv->cached_stats = kzalloc(sizeof(struct p54_statistics) +
1132                         priv->tx_hdr_len + sizeof(struct p54_control_hdr),
1133                         GFP_KERNEL);
1134
1135                 if (!priv->cached_stats) {
1136                         kfree(priv->cached_vdcf);
1137                         priv->cached_vdcf = NULL;
1138                         return -ENOMEM;
1139                 }
1140         }
1141
1142         err = priv->open(dev);
1143         if (!err)
1144                 priv->mode = NL80211_IFTYPE_MONITOR;
1145
1146         p54_init_vdcf(dev);
1147
1148         mod_timer(&priv->stats_timer, jiffies + HZ);
1149         return err;
1150 }
1151
1152 static void p54_stop(struct ieee80211_hw *dev)
1153 {
1154         struct p54_common *priv = dev->priv;
1155         struct sk_buff *skb;
1156
1157         del_timer(&priv->stats_timer);
1158         while ((skb = skb_dequeue(&priv->tx_queue)))
1159                 kfree_skb(skb);
1160         priv->stop(dev);
1161         priv->tsf_high32 = priv->tsf_low32 = 0;
1162         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1163 }
1164
1165 static int p54_add_interface(struct ieee80211_hw *dev,
1166                              struct ieee80211_if_init_conf *conf)
1167 {
1168         struct p54_common *priv = dev->priv;
1169
1170         if (priv->mode != NL80211_IFTYPE_MONITOR)
1171                 return -EOPNOTSUPP;
1172
1173         switch (conf->type) {
1174         case NL80211_IFTYPE_STATION:
1175                 priv->mode = conf->type;
1176                 break;
1177         default:
1178                 return -EOPNOTSUPP;
1179         }
1180
1181         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1182
1183         p54_set_filter(dev, 0, NULL);
1184
1185         switch (conf->type) {
1186         case NL80211_IFTYPE_STATION:
1187                 p54_set_filter(dev, 1, NULL);
1188                 break;
1189         default:
1190                 BUG();  /* impossible */
1191                 break;
1192         }
1193
1194         p54_set_leds(dev, 1, 0, 0);
1195
1196         return 0;
1197 }
1198
1199 static void p54_remove_interface(struct ieee80211_hw *dev,
1200                                  struct ieee80211_if_init_conf *conf)
1201 {
1202         struct p54_common *priv = dev->priv;
1203         priv->mode = NL80211_IFTYPE_MONITOR;
1204         memset(priv->mac_addr, 0, ETH_ALEN);
1205         p54_set_filter(dev, 0, NULL);
1206 }
1207
1208 static int p54_config(struct ieee80211_hw *dev, struct ieee80211_conf *conf)
1209 {
1210         int ret;
1211         struct p54_common *priv = dev->priv;
1212
1213         mutex_lock(&priv->conf_mutex);
1214         priv->rx_antenna = (conf->antenna_sel_rx == 0) ?
1215                 2 : conf->antenna_sel_tx - 1;
1216         priv->output_power = conf->power_level << 2;
1217         ret = p54_set_freq(dev, cpu_to_le16(conf->channel->center_freq));
1218         p54_set_vdcf(dev);
1219         mutex_unlock(&priv->conf_mutex);
1220         return ret;
1221 }
1222
1223 static int p54_config_interface(struct ieee80211_hw *dev,
1224                                 struct ieee80211_vif *vif,
1225                                 struct ieee80211_if_conf *conf)
1226 {
1227         struct p54_common *priv = dev->priv;
1228
1229         mutex_lock(&priv->conf_mutex);
1230         p54_set_filter(dev, 0, conf->bssid);
1231         p54_set_leds(dev, 1, !is_multicast_ether_addr(conf->bssid), 0);
1232         memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1233         mutex_unlock(&priv->conf_mutex);
1234         return 0;
1235 }
1236
1237 static void p54_configure_filter(struct ieee80211_hw *dev,
1238                                  unsigned int changed_flags,
1239                                  unsigned int *total_flags,
1240                                  int mc_count, struct dev_mc_list *mclist)
1241 {
1242         struct p54_common *priv = dev->priv;
1243
1244         *total_flags &= FIF_BCN_PRBRESP_PROMISC |
1245                         FIF_PROMISC_IN_BSS |
1246                         FIF_FCSFAIL;
1247
1248         priv->filter_flags = *total_flags;
1249
1250         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
1251                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
1252                         p54_set_filter(dev, le16_to_cpu(priv->filter_type),
1253                                  NULL);
1254                 else
1255                         p54_set_filter(dev, le16_to_cpu(priv->filter_type),
1256                                  priv->bssid);
1257         }
1258
1259         if (changed_flags & FIF_PROMISC_IN_BSS) {
1260                 if (*total_flags & FIF_PROMISC_IN_BSS)
1261                         p54_set_filter(dev, le16_to_cpu(priv->filter_type) |
1262                                 0x8, NULL);
1263                 else
1264                         p54_set_filter(dev, le16_to_cpu(priv->filter_type) &
1265                                 ~0x8, priv->bssid);
1266         }
1267 }
1268
1269 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1270                        const struct ieee80211_tx_queue_params *params)
1271 {
1272         struct p54_common *priv = dev->priv;
1273         struct p54_tx_control_vdcf *vdcf;
1274
1275         vdcf = (struct p54_tx_control_vdcf *)(((struct p54_control_hdr *)
1276                 ((void *)priv->cached_vdcf + priv->tx_hdr_len))->data);
1277
1278         if ((params) && !(queue > 4)) {
1279                 P54_SET_QUEUE(vdcf->queue[queue], params->aifs,
1280                         params->cw_min, params->cw_max, params->txop);
1281         } else
1282                 return -EINVAL;
1283
1284         p54_set_vdcf(dev);
1285
1286         return 0;
1287 }
1288
1289 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1290 {
1291         struct p54_common *priv = dev->priv;
1292         struct p54_control_hdr *hdr;
1293         struct p54_tx_control_xbow_synth *xbow;
1294
1295         hdr = kzalloc(sizeof(*hdr) + sizeof(*xbow) +
1296                       priv->tx_hdr_len, GFP_KERNEL);
1297         if (!hdr)
1298                 return -ENOMEM;
1299
1300         hdr = (void *)hdr + priv->tx_hdr_len;
1301         hdr->magic1 = cpu_to_le16(0x8001);
1302         hdr->len = cpu_to_le16(sizeof(*xbow));
1303         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_XBOW_SYNTH_CFG);
1304         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*xbow));
1305
1306         xbow = (struct p54_tx_control_xbow_synth *) hdr->data;
1307         xbow->magic1 = cpu_to_le16(0x1);
1308         xbow->magic2 = cpu_to_le16(0x2);
1309         xbow->freq = cpu_to_le16(5390);
1310
1311         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*xbow), 1);
1312
1313         return 0;
1314 }
1315
1316 static void p54_statistics_timer(unsigned long data)
1317 {
1318         struct ieee80211_hw *dev = (struct ieee80211_hw *) data;
1319         struct p54_common *priv = dev->priv;
1320         struct p54_control_hdr *hdr;
1321         struct p54_statistics *stats;
1322
1323         BUG_ON(!priv->cached_stats);
1324
1325         hdr = (void *)priv->cached_stats + priv->tx_hdr_len;
1326         hdr->magic1 = cpu_to_le16(0x8000);
1327         hdr->len = cpu_to_le16(sizeof(*stats));
1328         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_STAT_READBACK);
1329         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*stats));
1330
1331         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*stats), 0);
1332 }
1333
1334 static int p54_get_stats(struct ieee80211_hw *dev,
1335                          struct ieee80211_low_level_stats *stats)
1336 {
1337         struct p54_common *priv = dev->priv;
1338
1339         del_timer(&priv->stats_timer);
1340         p54_statistics_timer((unsigned long)dev);
1341
1342         if (!wait_for_completion_interruptible_timeout(&priv->stats_comp, HZ)) {
1343                 printk(KERN_ERR "%s: device does not respond!\n",
1344                         wiphy_name(dev->wiphy));
1345                 return -EBUSY;
1346         }
1347
1348         memcpy(stats, &priv->stats, sizeof(*stats));
1349
1350         return 0;
1351 }
1352
1353 static int p54_get_tx_stats(struct ieee80211_hw *dev,
1354                             struct ieee80211_tx_queue_stats *stats)
1355 {
1356         struct p54_common *priv = dev->priv;
1357
1358         memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
1359
1360         return 0;
1361 }
1362
1363 static const struct ieee80211_ops p54_ops = {
1364         .tx                     = p54_tx,
1365         .start                  = p54_start,
1366         .stop                   = p54_stop,
1367         .add_interface          = p54_add_interface,
1368         .remove_interface       = p54_remove_interface,
1369         .config                 = p54_config,
1370         .config_interface       = p54_config_interface,
1371         .configure_filter       = p54_configure_filter,
1372         .conf_tx                = p54_conf_tx,
1373         .get_stats              = p54_get_stats,
1374         .get_tx_stats           = p54_get_tx_stats
1375 };
1376
1377 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
1378 {
1379         struct ieee80211_hw *dev;
1380         struct p54_common *priv;
1381
1382         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
1383         if (!dev)
1384                 return NULL;
1385
1386         priv = dev->priv;
1387         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1388         skb_queue_head_init(&priv->tx_queue);
1389         dev->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | /* not sure */
1390                      IEEE80211_HW_RX_INCLUDES_FCS |
1391                      IEEE80211_HW_SIGNAL_DBM |
1392                      IEEE80211_HW_NOISE_DBM;
1393
1394         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1395
1396         dev->channel_change_time = 1000;        /* TODO: find actual value */
1397
1398         priv->tx_stats[0].limit = 1;
1399         priv->tx_stats[1].limit = 1;
1400         priv->tx_stats[2].limit = 1;
1401         priv->tx_stats[3].limit = 1;
1402         priv->tx_stats[4].limit = 5;
1403         dev->queues = 1;
1404         priv->noise = -94;
1405         dev->extra_tx_headroom = sizeof(struct p54_control_hdr) + 4 +
1406                                  sizeof(struct p54_tx_control_allocdata);
1407
1408         mutex_init(&priv->conf_mutex);
1409         init_completion(&priv->eeprom_comp);
1410         init_completion(&priv->stats_comp);
1411         setup_timer(&priv->stats_timer, p54_statistics_timer,
1412                 (unsigned long)dev);
1413
1414         return dev;
1415 }
1416 EXPORT_SYMBOL_GPL(p54_init_common);
1417
1418 void p54_free_common(struct ieee80211_hw *dev)
1419 {
1420         struct p54_common *priv = dev->priv;
1421         kfree(priv->cached_stats);
1422         kfree(priv->iq_autocal);
1423         kfree(priv->output_limit);
1424         kfree(priv->curve_data);
1425         kfree(priv->cached_vdcf);
1426 }
1427 EXPORT_SYMBOL_GPL(p54_free_common);
1428
1429 static int __init p54_init(void)
1430 {
1431         return 0;
1432 }
1433
1434 static void __exit p54_exit(void)
1435 {
1436 }
1437
1438 module_init(p54_init);
1439 module_exit(p54_exit);