p54: label queues with their corresponding names
[linux-2.6.git] / drivers / net / wireless / p54 / p54common.c
1 /*
2  * Common code for mac80211 Prism54 drivers
3  *
4  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  *
8  * Based on:
9  * - the islsm (softmac prism54) driver, which is:
10  *   Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11  * - stlc45xx driver
12  *   Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18
19 #include <linux/init.h>
20 #include <linux/firmware.h>
21 #include <linux/etherdevice.h>
22
23 #include <net/mac80211.h>
24
25 #include "p54.h"
26 #include "p54common.h"
27
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
31 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
32 MODULE_DESCRIPTION("Softmac Prism54 common code");
33 MODULE_LICENSE("GPL");
34 MODULE_ALIAS("prism54common");
35
36 static struct ieee80211_rate p54_bgrates[] = {
37         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
38         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
39         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
40         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
41         { .bitrate = 60, .hw_value = 4, },
42         { .bitrate = 90, .hw_value = 5, },
43         { .bitrate = 120, .hw_value = 6, },
44         { .bitrate = 180, .hw_value = 7, },
45         { .bitrate = 240, .hw_value = 8, },
46         { .bitrate = 360, .hw_value = 9, },
47         { .bitrate = 480, .hw_value = 10, },
48         { .bitrate = 540, .hw_value = 11, },
49 };
50
51 static struct ieee80211_channel p54_bgchannels[] = {
52         { .center_freq = 2412, .hw_value = 1, },
53         { .center_freq = 2417, .hw_value = 2, },
54         { .center_freq = 2422, .hw_value = 3, },
55         { .center_freq = 2427, .hw_value = 4, },
56         { .center_freq = 2432, .hw_value = 5, },
57         { .center_freq = 2437, .hw_value = 6, },
58         { .center_freq = 2442, .hw_value = 7, },
59         { .center_freq = 2447, .hw_value = 8, },
60         { .center_freq = 2452, .hw_value = 9, },
61         { .center_freq = 2457, .hw_value = 10, },
62         { .center_freq = 2462, .hw_value = 11, },
63         { .center_freq = 2467, .hw_value = 12, },
64         { .center_freq = 2472, .hw_value = 13, },
65         { .center_freq = 2484, .hw_value = 14, },
66 };
67
68 static struct ieee80211_supported_band band_2GHz = {
69         .channels = p54_bgchannels,
70         .n_channels = ARRAY_SIZE(p54_bgchannels),
71         .bitrates = p54_bgrates,
72         .n_bitrates = ARRAY_SIZE(p54_bgrates),
73 };
74
75 static struct ieee80211_rate p54_arates[] = {
76         { .bitrate = 60, .hw_value = 4, },
77         { .bitrate = 90, .hw_value = 5, },
78         { .bitrate = 120, .hw_value = 6, },
79         { .bitrate = 180, .hw_value = 7, },
80         { .bitrate = 240, .hw_value = 8, },
81         { .bitrate = 360, .hw_value = 9, },
82         { .bitrate = 480, .hw_value = 10, },
83         { .bitrate = 540, .hw_value = 11, },
84 };
85
86 static struct ieee80211_channel p54_achannels[] = {
87         { .center_freq = 4920 },
88         { .center_freq = 4940 },
89         { .center_freq = 4960 },
90         { .center_freq = 4980 },
91         { .center_freq = 5040 },
92         { .center_freq = 5060 },
93         { .center_freq = 5080 },
94         { .center_freq = 5170 },
95         { .center_freq = 5180 },
96         { .center_freq = 5190 },
97         { .center_freq = 5200 },
98         { .center_freq = 5210 },
99         { .center_freq = 5220 },
100         { .center_freq = 5230 },
101         { .center_freq = 5240 },
102         { .center_freq = 5260 },
103         { .center_freq = 5280 },
104         { .center_freq = 5300 },
105         { .center_freq = 5320 },
106         { .center_freq = 5500 },
107         { .center_freq = 5520 },
108         { .center_freq = 5540 },
109         { .center_freq = 5560 },
110         { .center_freq = 5580 },
111         { .center_freq = 5600 },
112         { .center_freq = 5620 },
113         { .center_freq = 5640 },
114         { .center_freq = 5660 },
115         { .center_freq = 5680 },
116         { .center_freq = 5700 },
117         { .center_freq = 5745 },
118         { .center_freq = 5765 },
119         { .center_freq = 5785 },
120         { .center_freq = 5805 },
121         { .center_freq = 5825 },
122 };
123
124 static struct ieee80211_supported_band band_5GHz = {
125         .channels = p54_achannels,
126         .n_channels = ARRAY_SIZE(p54_achannels),
127         .bitrates = p54_arates,
128         .n_bitrates = ARRAY_SIZE(p54_arates),
129 };
130
131 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
132 {
133         struct p54_common *priv = dev->priv;
134         struct bootrec_exp_if *exp_if;
135         struct bootrec *bootrec;
136         u32 *data = (u32 *)fw->data;
137         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
138         u8 *fw_version = NULL;
139         size_t len;
140         int i;
141         int maxlen;
142
143         if (priv->rx_start)
144                 return 0;
145
146         while (data < end_data && *data)
147                 data++;
148
149         while (data < end_data && !*data)
150                 data++;
151
152         bootrec = (struct bootrec *) data;
153
154         while (bootrec->data <= end_data &&
155                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
156                 u32 code = le32_to_cpu(bootrec->code);
157                 switch (code) {
158                 case BR_CODE_COMPONENT_ID:
159                         priv->fw_interface = be32_to_cpup((__be32 *)
160                                              bootrec->data);
161                         switch (priv->fw_interface) {
162                         case FW_LM86:
163                         case FW_LM20:
164                         case FW_LM87: {
165                                 char *iftype = (char *)bootrec->data;
166                                 printk(KERN_INFO "%s: p54 detected a LM%c%c "
167                                                  "firmware\n",
168                                         wiphy_name(dev->wiphy),
169                                         iftype[2], iftype[3]);
170                                 break;
171                                 }
172                         case FW_FMAC:
173                         default:
174                                 printk(KERN_ERR "%s: unsupported firmware\n",
175                                         wiphy_name(dev->wiphy));
176                                 return -ENODEV;
177                         }
178                         break;
179                 case BR_CODE_COMPONENT_VERSION:
180                         /* 24 bytes should be enough for all firmwares */
181                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
182                                 fw_version = (unsigned char*)bootrec->data;
183                         break;
184                 case BR_CODE_DESCR: {
185                         struct bootrec_desc *desc =
186                                 (struct bootrec_desc *)bootrec->data;
187                         priv->rx_start = le32_to_cpu(desc->rx_start);
188                         /* FIXME add sanity checking */
189                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
190                         priv->headroom = desc->headroom;
191                         priv->tailroom = desc->tailroom;
192                         priv->privacy_caps = desc->privacy_caps;
193                         priv->rx_keycache_size = desc->rx_keycache_size;
194                         if (le32_to_cpu(bootrec->len) == 11)
195                                 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
196                         else
197                                 priv->rx_mtu = (size_t)
198                                         0x620 - priv->tx_hdr_len;
199                         maxlen = priv->tx_hdr_len + /* USB devices */
200                                  sizeof(struct p54_rx_data) +
201                                  4 + /* rx alignment */
202                                  IEEE80211_MAX_FRAG_THRESHOLD;
203                         if (priv->rx_mtu > maxlen && PAGE_SIZE == 4096) {
204                                 printk(KERN_INFO "p54: rx_mtu reduced from %d "
205                                                  "to %d\n", priv->rx_mtu,
206                                                  maxlen);
207                                 priv->rx_mtu = maxlen;
208                         }
209                         break;
210                         }
211                 case BR_CODE_EXPOSED_IF:
212                         exp_if = (struct bootrec_exp_if *) bootrec->data;
213                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
214                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
215                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
216                         break;
217                 case BR_CODE_DEPENDENT_IF:
218                         break;
219                 case BR_CODE_END_OF_BRA:
220                 case LEGACY_BR_CODE_END_OF_BRA:
221                         end_data = NULL;
222                         break;
223                 default:
224                         break;
225                 }
226                 bootrec = (struct bootrec *)&bootrec->data[len];
227         }
228
229         if (fw_version)
230                 printk(KERN_INFO "%s: FW rev %s - Softmac protocol %x.%x\n",
231                         wiphy_name(dev->wiphy), fw_version,
232                         priv->fw_var >> 8, priv->fw_var & 0xff);
233
234         if (priv->fw_var < 0x500)
235                 printk(KERN_INFO "%s: you are using an obsolete firmware. "
236                        "visit http://wireless.kernel.org/en/users/Drivers/p54 "
237                        "and grab one for \"kernel >= 2.6.28\"!\n",
238                         wiphy_name(dev->wiphy));
239
240         if (priv->fw_var >= 0x300) {
241                 /* Firmware supports QoS, use it! */
242                 priv->tx_stats[P54_QUEUE_AC_VO].limit = 3;
243                 priv->tx_stats[P54_QUEUE_AC_VI].limit = 4;
244                 priv->tx_stats[P54_QUEUE_AC_BE].limit = 3;
245                 priv->tx_stats[P54_QUEUE_AC_BK].limit = 2;
246                 dev->queues = P54_QUEUE_AC_NUM;
247         }
248
249         if (!modparam_nohwcrypt)
250                 printk(KERN_INFO "%s: cryptographic accelerator "
251                                  "WEP:%s, TKIP:%s, CCMP:%s\n",
252                         wiphy_name(dev->wiphy),
253                         (priv->privacy_caps & BR_DESC_PRIV_CAP_WEP) ? "YES" :
254                         "no", (priv->privacy_caps & (BR_DESC_PRIV_CAP_TKIP |
255                          BR_DESC_PRIV_CAP_MICHAEL)) ? "YES" : "no",
256                         (priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP) ?
257                         "YES" : "no");
258
259         return 0;
260 }
261 EXPORT_SYMBOL_GPL(p54_parse_firmware);
262
263 static int p54_convert_rev0(struct ieee80211_hw *dev,
264                             struct pda_pa_curve_data *curve_data)
265 {
266         struct p54_common *priv = dev->priv;
267         struct p54_pa_curve_data_sample *dst;
268         struct pda_pa_curve_data_sample_rev0 *src;
269         size_t cd_len = sizeof(*curve_data) +
270                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
271                  curve_data->channels;
272         unsigned int i, j;
273         void *source, *target;
274
275         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
276         if (!priv->curve_data)
277                 return -ENOMEM;
278
279         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
280         source = curve_data->data;
281         target = priv->curve_data->data;
282         for (i = 0; i < curve_data->channels; i++) {
283                 __le16 *freq = source;
284                 source += sizeof(__le16);
285                 *((__le16 *)target) = *freq;
286                 target += sizeof(__le16);
287                 for (j = 0; j < curve_data->points_per_channel; j++) {
288                         dst = target;
289                         src = source;
290
291                         dst->rf_power = src->rf_power;
292                         dst->pa_detector = src->pa_detector;
293                         dst->data_64qam = src->pcv;
294                         /* "invent" the points for the other modulations */
295 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
296                         dst->data_16qam = SUB(src->pcv, 12);
297                         dst->data_qpsk = SUB(dst->data_16qam, 12);
298                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
299                         dst->data_barker = SUB(dst->data_bpsk, 14);
300 #undef SUB
301                         target += sizeof(*dst);
302                         source += sizeof(*src);
303                 }
304         }
305
306         return 0;
307 }
308
309 static int p54_convert_rev1(struct ieee80211_hw *dev,
310                             struct pda_pa_curve_data *curve_data)
311 {
312         struct p54_common *priv = dev->priv;
313         struct p54_pa_curve_data_sample *dst;
314         struct pda_pa_curve_data_sample_rev1 *src;
315         size_t cd_len = sizeof(*curve_data) +
316                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
317                  curve_data->channels;
318         unsigned int i, j;
319         void *source, *target;
320
321         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
322         if (!priv->curve_data)
323                 return -ENOMEM;
324
325         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
326         source = curve_data->data;
327         target = priv->curve_data->data;
328         for (i = 0; i < curve_data->channels; i++) {
329                 __le16 *freq = source;
330                 source += sizeof(__le16);
331                 *((__le16 *)target) = *freq;
332                 target += sizeof(__le16);
333                 for (j = 0; j < curve_data->points_per_channel; j++) {
334                         memcpy(target, source, sizeof(*src));
335
336                         target += sizeof(*dst);
337                         source += sizeof(*src);
338                 }
339                 source++;
340         }
341
342         return 0;
343 }
344
345 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
346                               "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
347 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
348
349 static void p54_parse_rssical(struct ieee80211_hw *dev, void *data, int len,
350                              u16 type)
351 {
352         struct p54_common *priv = dev->priv;
353         int offset = (type == PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED) ? 2 : 0;
354         int entry_size = sizeof(struct pda_rssi_cal_entry) + offset;
355         int num_entries = (type == PDR_RSSI_LINEAR_APPROXIMATION) ? 1 : 2;
356         int i;
357
358         if (len != (entry_size * num_entries)) {
359                 printk(KERN_ERR "%s: unknown rssi calibration data packing "
360                                  " type:(%x) len:%d.\n",
361                        wiphy_name(dev->wiphy), type, len);
362
363                 print_hex_dump_bytes("rssical:", DUMP_PREFIX_NONE,
364                                      data, len);
365
366                 printk(KERN_ERR "%s: please report this issue.\n",
367                         wiphy_name(dev->wiphy));
368                 return;
369         }
370
371         for (i = 0; i < num_entries; i++) {
372                 struct pda_rssi_cal_entry *cal = data +
373                                                  (offset + i * entry_size);
374                 priv->rssical_db[i].mul = (s16) le16_to_cpu(cal->mul);
375                 priv->rssical_db[i].add = (s16) le16_to_cpu(cal->add);
376         }
377 }
378
379 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
380 {
381         struct p54_common *priv = dev->priv;
382         struct eeprom_pda_wrap *wrap = NULL;
383         struct pda_entry *entry;
384         unsigned int data_len, entry_len;
385         void *tmp;
386         int err;
387         u8 *end = (u8 *)eeprom + len;
388         u16 synth = 0;
389
390         wrap = (struct eeprom_pda_wrap *) eeprom;
391         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
392
393         /* verify that at least the entry length/code fits */
394         while ((u8 *)entry <= end - sizeof(*entry)) {
395                 entry_len = le16_to_cpu(entry->len);
396                 data_len = ((entry_len - 1) << 1);
397
398                 /* abort if entry exceeds whole structure */
399                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
400                         break;
401
402                 switch (le16_to_cpu(entry->code)) {
403                 case PDR_MAC_ADDRESS:
404                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
405                         break;
406                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
407                         if (data_len < 2) {
408                                 err = -EINVAL;
409                                 goto err;
410                         }
411
412                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
413                                 err = -EINVAL;
414                                 goto err;
415                         }
416
417                         priv->output_limit = kmalloc(entry->data[1] *
418                                 sizeof(*priv->output_limit), GFP_KERNEL);
419
420                         if (!priv->output_limit) {
421                                 err = -ENOMEM;
422                                 goto err;
423                         }
424
425                         memcpy(priv->output_limit, &entry->data[2],
426                                entry->data[1]*sizeof(*priv->output_limit));
427                         priv->output_limit_len = entry->data[1];
428                         break;
429                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
430                         struct pda_pa_curve_data *curve_data =
431                                 (struct pda_pa_curve_data *)entry->data;
432                         if (data_len < sizeof(*curve_data)) {
433                                 err = -EINVAL;
434                                 goto err;
435                         }
436
437                         switch (curve_data->cal_method_rev) {
438                         case 0:
439                                 err = p54_convert_rev0(dev, curve_data);
440                                 break;
441                         case 1:
442                                 err = p54_convert_rev1(dev, curve_data);
443                                 break;
444                         default:
445                                 printk(KERN_ERR "%s: unknown curve data "
446                                                 "revision %d\n",
447                                                 wiphy_name(dev->wiphy),
448                                                 curve_data->cal_method_rev);
449                                 err = -ENODEV;
450                                 break;
451                         }
452                         if (err)
453                                 goto err;
454                         }
455                         break;
456                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
457                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
458                         if (!priv->iq_autocal) {
459                                 err = -ENOMEM;
460                                 goto err;
461                         }
462
463                         memcpy(priv->iq_autocal, entry->data, data_len);
464                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
465                         break;
466                 case PDR_INTERFACE_LIST:
467                         tmp = entry->data;
468                         while ((u8 *)tmp < entry->data + data_len) {
469                                 struct bootrec_exp_if *exp_if = tmp;
470                                 if (le16_to_cpu(exp_if->if_id) == 0xf)
471                                         synth = le16_to_cpu(exp_if->variant);
472                                 tmp += sizeof(struct bootrec_exp_if);
473                         }
474                         break;
475                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
476                         priv->version = *(u8 *)(entry->data + 1);
477                         break;
478                 case PDR_RSSI_LINEAR_APPROXIMATION:
479                 case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
480                 case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
481                         p54_parse_rssical(dev, entry->data, data_len,
482                                           le16_to_cpu(entry->code));
483                         break;
484                 case PDR_END:
485                         /* make it overrun */
486                         entry_len = len;
487                         break;
488                 case PDR_MANUFACTURING_PART_NUMBER:
489                 case PDR_PDA_VERSION:
490                 case PDR_NIC_SERIAL_NUMBER:
491                 case PDR_REGULATORY_DOMAIN_LIST:
492                 case PDR_TEMPERATURE_TYPE:
493                 case PDR_PRISM_PCI_IDENTIFIER:
494                 case PDR_COUNTRY_INFORMATION:
495                 case PDR_OEM_NAME:
496                 case PDR_PRODUCT_NAME:
497                 case PDR_UTF8_OEM_NAME:
498                 case PDR_UTF8_PRODUCT_NAME:
499                 case PDR_COUNTRY_LIST:
500                 case PDR_DEFAULT_COUNTRY:
501                 case PDR_ANTENNA_GAIN:
502                 case PDR_PRISM_INDIGO_PA_CALIBRATION_DATA:
503                 case PDR_REGULATORY_POWER_LIMITS:
504                 case PDR_RADIATED_TRANSMISSION_CORRECTION:
505                 case PDR_PRISM_TX_IQ_CALIBRATION:
506                 case PDR_BASEBAND_REGISTERS:
507                 case PDR_PER_CHANNEL_BASEBAND_REGISTERS:
508                         break;
509                 default:
510                         printk(KERN_INFO "%s: unknown eeprom code : 0x%x\n",
511                                 wiphy_name(dev->wiphy),
512                                 le16_to_cpu(entry->code));
513                         break;
514                 }
515
516                 entry = (void *)entry + (entry_len + 1)*2;
517         }
518
519         if (!synth || !priv->iq_autocal || !priv->output_limit ||
520             !priv->curve_data) {
521                 printk(KERN_ERR "%s: not all required entries found in eeprom!\n",
522                         wiphy_name(dev->wiphy));
523                 err = -EINVAL;
524                 goto err;
525         }
526
527         priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
528         if (priv->rxhw == 4)
529                 p54_init_xbow_synth(dev);
530         if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
531                 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
532         if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
533                 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
534
535         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
536                 u8 perm_addr[ETH_ALEN];
537
538                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
539                         wiphy_name(dev->wiphy));
540                 random_ether_addr(perm_addr);
541                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
542         }
543
544         printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
545                 wiphy_name(dev->wiphy),
546                 dev->wiphy->perm_addr,
547                 priv->version, p54_rf_chips[priv->rxhw]);
548
549         return 0;
550
551   err:
552         if (priv->iq_autocal) {
553                 kfree(priv->iq_autocal);
554                 priv->iq_autocal = NULL;
555         }
556
557         if (priv->output_limit) {
558                 kfree(priv->output_limit);
559                 priv->output_limit = NULL;
560         }
561
562         if (priv->curve_data) {
563                 kfree(priv->curve_data);
564                 priv->curve_data = NULL;
565         }
566
567         printk(KERN_ERR "%s: eeprom parse failed!\n",
568                 wiphy_name(dev->wiphy));
569         return err;
570 }
571
572 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
573 {
574         struct p54_common *priv = dev->priv;
575         int band = dev->conf.channel->band;
576
577         return ((rssi * priv->rssical_db[band].mul) / 64 +
578                          priv->rssical_db[band].add) / 4;
579 }
580
581 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
582 {
583         struct p54_common *priv = dev->priv;
584         struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
585         struct ieee80211_rx_status rx_status = {0};
586         u16 freq = le16_to_cpu(hdr->freq);
587         size_t header_len = sizeof(*hdr);
588         u32 tsf32;
589         u8 rate = hdr->rate & 0xf;
590
591         /*
592          * If the device is in a unspecified state we have to
593          * ignore all data frames. Else we could end up with a
594          * nasty crash.
595          */
596         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
597                 return 0;
598
599         if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
600                 if (priv->filter_flags & FIF_FCSFAIL)
601                         rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
602                 else
603                         return 0;
604         }
605
606         if (hdr->decrypt_status == P54_DECRYPT_OK)
607                 rx_status.flag |= RX_FLAG_DECRYPTED;
608         if ((hdr->decrypt_status == P54_DECRYPT_FAIL_MICHAEL) ||
609             (hdr->decrypt_status == P54_DECRYPT_FAIL_TKIP))
610                 rx_status.flag |= RX_FLAG_MMIC_ERROR;
611
612         rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
613         rx_status.noise = priv->noise;
614         /* XX correct? */
615         rx_status.qual = (100 * hdr->rssi) / 127;
616         if (hdr->rate & 0x10)
617                 rx_status.flag |= RX_FLAG_SHORTPRE;
618         if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
619                 rx_status.rate_idx = (rate < 4) ? 0 : rate - 4;
620         else
621                 rx_status.rate_idx = rate;
622
623         rx_status.freq = freq;
624         rx_status.band =  dev->conf.channel->band;
625         rx_status.antenna = hdr->antenna;
626
627         tsf32 = le32_to_cpu(hdr->tsf32);
628         if (tsf32 < priv->tsf_low32)
629                 priv->tsf_high32++;
630         rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
631         priv->tsf_low32 = tsf32;
632
633         rx_status.flag |= RX_FLAG_TSFT;
634
635         if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
636                 header_len += hdr->align[0];
637
638         skb_pull(skb, header_len);
639         skb_trim(skb, le16_to_cpu(hdr->len));
640
641         ieee80211_rx_irqsafe(dev, skb, &rx_status);
642
643         queue_delayed_work(dev->workqueue, &priv->work,
644                            msecs_to_jiffies(P54_STATISTICS_UPDATE));
645
646         return -1;
647 }
648
649 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
650 {
651         struct p54_common *priv = dev->priv;
652         int i;
653
654         if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
655                 return ;
656
657         for (i = 0; i < dev->queues; i++)
658                 if (priv->tx_stats[i + P54_QUEUE_DATA].len <
659                     priv->tx_stats[i + P54_QUEUE_DATA].limit)
660                         ieee80211_wake_queue(dev, i);
661 }
662
663 void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
664 {
665         struct p54_common *priv = dev->priv;
666         struct ieee80211_tx_info *info;
667         struct memrecord *range;
668         unsigned long flags;
669         u32 freed = 0, last_addr = priv->rx_start;
670
671         if (unlikely(!skb || !dev || !skb_queue_len(&priv->tx_queue)))
672                 return;
673
674         /*
675          * don't try to free an already unlinked skb
676          */
677         if (unlikely((!skb->next) || (!skb->prev)))
678                 return;
679
680         spin_lock_irqsave(&priv->tx_queue.lock, flags);
681         info = IEEE80211_SKB_CB(skb);
682         range = (void *)info->rate_driver_data;
683         if (skb->prev != (struct sk_buff *)&priv->tx_queue) {
684                 struct ieee80211_tx_info *ni;
685                 struct memrecord *mr;
686
687                 ni = IEEE80211_SKB_CB(skb->prev);
688                 mr = (struct memrecord *)ni->rate_driver_data;
689                 last_addr = mr->end_addr;
690         }
691         if (skb->next != (struct sk_buff *)&priv->tx_queue) {
692                 struct ieee80211_tx_info *ni;
693                 struct memrecord *mr;
694
695                 ni = IEEE80211_SKB_CB(skb->next);
696                 mr = (struct memrecord *)ni->rate_driver_data;
697                 freed = mr->start_addr - last_addr;
698         } else
699                 freed = priv->rx_end - last_addr;
700         __skb_unlink(skb, &priv->tx_queue);
701         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
702         dev_kfree_skb_any(skb);
703
704         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
705                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
706                 p54_wake_free_queues(dev);
707 }
708 EXPORT_SYMBOL_GPL(p54_free_skb);
709
710 static struct sk_buff *p54_find_tx_entry(struct ieee80211_hw *dev,
711                                            __le32 req_id)
712 {
713         struct p54_common *priv = dev->priv;
714         struct sk_buff *entry = priv->tx_queue.next;
715         unsigned long flags;
716
717         spin_lock_irqsave(&priv->tx_queue.lock, flags);
718         while (entry != (struct sk_buff *)&priv->tx_queue) {
719                 struct p54_hdr *hdr = (struct p54_hdr *) entry->data;
720
721                 if (hdr->req_id == req_id) {
722                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
723                         return entry;
724                 }
725                 entry = entry->next;
726         }
727         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
728         return NULL;
729 }
730
731 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
732 {
733         struct p54_common *priv = dev->priv;
734         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
735         struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
736         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
737         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
738         struct memrecord *range = NULL;
739         u32 freed = 0;
740         u32 last_addr = priv->rx_start;
741         unsigned long flags;
742         int count, idx;
743
744         spin_lock_irqsave(&priv->tx_queue.lock, flags);
745         while (entry != (struct sk_buff *)&priv->tx_queue) {
746                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
747                 struct p54_hdr *entry_hdr;
748                 struct p54_tx_data *entry_data;
749                 unsigned int pad = 0, frame_len;
750
751                 range = (void *)info->rate_driver_data;
752                 if (range->start_addr != addr) {
753                         last_addr = range->end_addr;
754                         entry = entry->next;
755                         continue;
756                 }
757
758                 if (entry->next != (struct sk_buff *)&priv->tx_queue) {
759                         struct ieee80211_tx_info *ni;
760                         struct memrecord *mr;
761
762                         ni = IEEE80211_SKB_CB(entry->next);
763                         mr = (struct memrecord *)ni->rate_driver_data;
764                         freed = mr->start_addr - last_addr;
765                 } else
766                         freed = priv->rx_end - last_addr;
767
768                 last_addr = range->end_addr;
769                 __skb_unlink(entry, &priv->tx_queue);
770                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
771
772                 frame_len = entry->len;
773                 entry_hdr = (struct p54_hdr *) entry->data;
774                 entry_data = (struct p54_tx_data *) entry_hdr->data;
775                 priv->tx_stats[entry_data->hw_queue].len--;
776                 priv->stats.dot11ACKFailureCount += payload->tries - 1;
777
778                 if (unlikely(entry == priv->cached_beacon)) {
779                         kfree_skb(entry);
780                         priv->cached_beacon = NULL;
781                         goto out;
782                 }
783
784                 /*
785                  * Clear manually, ieee80211_tx_info_clear_status would
786                  * clear the counts too and we need them.
787                  */
788                 memset(&info->status.ampdu_ack_len, 0,
789                        sizeof(struct ieee80211_tx_info) -
790                        offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
791                 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
792                                       status.ampdu_ack_len) != 23);
793
794                 if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
795                         pad = entry_data->align[0];
796
797                 /* walk through the rates array and adjust the counts */
798                 count = payload->tries;
799                 for (idx = 0; idx < 4; idx++) {
800                         if (count >= info->status.rates[idx].count) {
801                                 count -= info->status.rates[idx].count;
802                         } else if (count > 0) {
803                                 info->status.rates[idx].count = count;
804                                 count = 0;
805                         } else {
806                                 info->status.rates[idx].idx = -1;
807                                 info->status.rates[idx].count = 0;
808                         }
809                 }
810
811                 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
812                      (!payload->status))
813                         info->flags |= IEEE80211_TX_STAT_ACK;
814                 if (payload->status & P54_TX_PSM_CANCELLED)
815                         info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
816                 info->status.ack_signal = p54_rssi_to_dbm(dev,
817                                 (int)payload->ack_rssi);
818
819                 /* Undo all changes to the frame. */
820                 switch (entry_data->key_type) {
821                 case P54_CRYPTO_TKIPMICHAEL: {
822                         u8 *iv = (u8 *)(entry_data->align + pad +
823                                         entry_data->crypt_offset);
824
825                         /* Restore the original TKIP IV. */
826                         iv[2] = iv[0];
827                         iv[0] = iv[1];
828                         iv[1] = (iv[0] | 0x20) & 0x7f;  /* WEPSeed - 8.3.2.2 */
829
830                         frame_len -= 12; /* remove TKIP_MMIC + TKIP_ICV */
831                         break;
832                         }
833                 case P54_CRYPTO_AESCCMP:
834                         frame_len -= 8; /* remove CCMP_MIC */
835                         break;
836                 case P54_CRYPTO_WEP:
837                         frame_len -= 4; /* remove WEP_ICV */
838                         break;
839                 }
840                 skb_trim(entry, frame_len);
841                 skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
842                 ieee80211_tx_status_irqsafe(dev, entry);
843                 goto out;
844         }
845         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
846
847 out:
848         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
849                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
850                 p54_wake_free_queues(dev);
851 }
852
853 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
854                                    struct sk_buff *skb)
855 {
856         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
857         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
858         struct p54_common *priv = dev->priv;
859
860         if (!priv->eeprom)
861                 return ;
862
863         if (priv->fw_var >= 0x509) {
864                 memcpy(priv->eeprom, eeprom->v2.data,
865                        le16_to_cpu(eeprom->v2.len));
866         } else {
867                 memcpy(priv->eeprom, eeprom->v1.data,
868                        le16_to_cpu(eeprom->v1.len));
869         }
870
871         complete(&priv->eeprom_comp);
872 }
873
874 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
875 {
876         struct p54_common *priv = dev->priv;
877         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
878         struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
879         u32 tsf32;
880
881         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
882                 return ;
883
884         tsf32 = le32_to_cpu(stats->tsf32);
885         if (tsf32 < priv->tsf_low32)
886                 priv->tsf_high32++;
887         priv->tsf_low32 = tsf32;
888
889         priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
890         priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
891         priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
892
893         priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
894
895         p54_free_skb(dev, p54_find_tx_entry(dev, hdr->req_id));
896 }
897
898 static void p54_rx_trap(struct ieee80211_hw *dev, struct sk_buff *skb)
899 {
900         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
901         struct p54_trap *trap = (struct p54_trap *) hdr->data;
902         u16 event = le16_to_cpu(trap->event);
903         u16 freq = le16_to_cpu(trap->frequency);
904
905         switch (event) {
906         case P54_TRAP_BEACON_TX:
907                 break;
908         case P54_TRAP_RADAR:
909                 printk(KERN_INFO "%s: radar (freq:%d MHz)\n",
910                         wiphy_name(dev->wiphy), freq);
911                 break;
912         case P54_TRAP_NO_BEACON:
913                 break;
914         case P54_TRAP_SCAN:
915                 break;
916         case P54_TRAP_TBTT:
917                 break;
918         case P54_TRAP_TIMER:
919                 break;
920         default:
921                 printk(KERN_INFO "%s: received event:%x freq:%d\n",
922                        wiphy_name(dev->wiphy), event, freq);
923                 break;
924         }
925 }
926
927 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
928 {
929         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
930
931         switch (le16_to_cpu(hdr->type)) {
932         case P54_CONTROL_TYPE_TXDONE:
933                 p54_rx_frame_sent(dev, skb);
934                 break;
935         case P54_CONTROL_TYPE_TRAP:
936                 p54_rx_trap(dev, skb);
937                 break;
938         case P54_CONTROL_TYPE_BBP:
939                 break;
940         case P54_CONTROL_TYPE_STAT_READBACK:
941                 p54_rx_stats(dev, skb);
942                 break;
943         case P54_CONTROL_TYPE_EEPROM_READBACK:
944                 p54_rx_eeprom_readback(dev, skb);
945                 break;
946         default:
947                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
948                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
949                 break;
950         }
951
952         return 0;
953 }
954
955 /* returns zero if skb can be reused */
956 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
957 {
958         u16 type = le16_to_cpu(*((__le16 *)skb->data));
959
960         if (type & P54_HDR_FLAG_CONTROL)
961                 return p54_rx_control(dev, skb);
962         else
963                 return p54_rx_data(dev, skb);
964 }
965 EXPORT_SYMBOL_GPL(p54_rx);
966
967 /*
968  * So, the firmware is somewhat stupid and doesn't know what places in its
969  * memory incoming data should go to. By poking around in the firmware, we
970  * can find some unused memory to upload our packets to. However, data that we
971  * want the card to TX needs to stay intact until the card has told us that
972  * it is done with it. This function finds empty places we can upload to and
973  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
974  * allocated areas.
975  */
976 static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
977                                struct p54_hdr *data, u32 len)
978 {
979         struct p54_common *priv = dev->priv;
980         struct sk_buff *entry = priv->tx_queue.next;
981         struct sk_buff *target_skb = NULL;
982         struct ieee80211_tx_info *info;
983         struct memrecord *range;
984         u32 last_addr = priv->rx_start;
985         u32 largest_hole = 0;
986         u32 target_addr = priv->rx_start;
987         unsigned long flags;
988         unsigned int left;
989         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
990
991         if (!skb)
992                 return -EINVAL;
993
994         spin_lock_irqsave(&priv->tx_queue.lock, flags);
995
996         left = skb_queue_len(&priv->tx_queue);
997         if (unlikely(left >= 28)) {
998                 /*
999                  * The tx_queue is nearly full!
1000                  * We have throttle normal data traffic, because we must
1001                  * have a few spare slots for control frames left.
1002                  */
1003                 ieee80211_stop_queues(dev);
1004                 queue_delayed_work(dev->workqueue, &priv->work,
1005                                    msecs_to_jiffies(P54_TX_TIMEOUT));
1006
1007                 if (unlikely(left == 32)) {
1008                         /*
1009                          * The tx_queue is now really full.
1010                          *
1011                          * TODO: check if the device has crashed and reset it.
1012                          */
1013                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1014                         return -ENOSPC;
1015                 }
1016         }
1017
1018         while (left--) {
1019                 u32 hole_size;
1020                 info = IEEE80211_SKB_CB(entry);
1021                 range = (void *)info->rate_driver_data;
1022                 hole_size = range->start_addr - last_addr;
1023                 if (!target_skb && hole_size >= len) {
1024                         target_skb = entry->prev;
1025                         hole_size -= len;
1026                         target_addr = last_addr;
1027                 }
1028                 largest_hole = max(largest_hole, hole_size);
1029                 last_addr = range->end_addr;
1030                 entry = entry->next;
1031         }
1032         if (!target_skb && priv->rx_end - last_addr >= len) {
1033                 target_skb = priv->tx_queue.prev;
1034                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
1035                 if (!skb_queue_empty(&priv->tx_queue)) {
1036                         info = IEEE80211_SKB_CB(target_skb);
1037                         range = (void *)info->rate_driver_data;
1038                         target_addr = range->end_addr;
1039                 }
1040         } else
1041                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
1042
1043         if (!target_skb) {
1044                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1045                 ieee80211_stop_queues(dev);
1046                 return -ENOSPC;
1047         }
1048
1049         info = IEEE80211_SKB_CB(skb);
1050         range = (void *)info->rate_driver_data;
1051         range->start_addr = target_addr;
1052         range->end_addr = target_addr + len;
1053         __skb_queue_after(&priv->tx_queue, target_skb, skb);
1054         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1055
1056         if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
1057                            48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
1058                 ieee80211_stop_queues(dev);
1059
1060         data->req_id = cpu_to_le32(target_addr + priv->headroom);
1061         return 0;
1062 }
1063
1064 static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev,
1065                 u16 hdr_flags, u16 len, u16 type, gfp_t memflags)
1066 {
1067         struct p54_common *priv = dev->priv;
1068         struct p54_hdr *hdr;
1069         struct sk_buff *skb;
1070
1071         skb = __dev_alloc_skb(len + priv->tx_hdr_len, memflags);
1072         if (!skb)
1073                 return NULL;
1074         skb_reserve(skb, priv->tx_hdr_len);
1075
1076         hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
1077         hdr->flags = cpu_to_le16(hdr_flags);
1078         hdr->len = cpu_to_le16(len - sizeof(*hdr));
1079         hdr->type = cpu_to_le16(type);
1080         hdr->tries = hdr->rts_tries = 0;
1081
1082         if (unlikely(p54_assign_address(dev, skb, hdr, len))) {
1083                 kfree_skb(skb);
1084                 return NULL;
1085         }
1086         return skb;
1087 }
1088
1089 int p54_read_eeprom(struct ieee80211_hw *dev)
1090 {
1091         struct p54_common *priv = dev->priv;
1092         struct p54_hdr *hdr = NULL;
1093         struct p54_eeprom_lm86 *eeprom_hdr;
1094         struct sk_buff *skb;
1095         size_t eeprom_size = 0x2020, offset = 0, blocksize, maxblocksize;
1096         int ret = -ENOMEM;
1097         void *eeprom = NULL;
1098
1099         maxblocksize = EEPROM_READBACK_LEN;
1100         if (priv->fw_var >= 0x509)
1101                 maxblocksize -= 0xc;
1102         else
1103                 maxblocksize -= 0x4;
1104
1105         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(*hdr) +
1106                             sizeof(*eeprom_hdr) + maxblocksize,
1107                             P54_CONTROL_TYPE_EEPROM_READBACK, GFP_KERNEL);
1108         if (!skb)
1109                 goto free;
1110         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
1111         if (!priv->eeprom)
1112                 goto free;
1113         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
1114         if (!eeprom)
1115                 goto free;
1116
1117         eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
1118                      sizeof(*eeprom_hdr) + maxblocksize);
1119
1120         while (eeprom_size) {
1121                 blocksize = min(eeprom_size, maxblocksize);
1122                 if (priv->fw_var < 0x509) {
1123                         eeprom_hdr->v1.offset = cpu_to_le16(offset);
1124                         eeprom_hdr->v1.len = cpu_to_le16(blocksize);
1125                 } else {
1126                         eeprom_hdr->v2.offset = cpu_to_le32(offset);
1127                         eeprom_hdr->v2.len = cpu_to_le16(blocksize);
1128                         eeprom_hdr->v2.magic2 = 0xf;
1129                         memcpy(eeprom_hdr->v2.magic, (const char *)"LOCK", 4);
1130                 }
1131                 priv->tx(dev, skb);
1132
1133                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
1134                         printk(KERN_ERR "%s: device does not respond!\n",
1135                                 wiphy_name(dev->wiphy));
1136                         ret = -EBUSY;
1137                         goto free;
1138                 }
1139
1140                 memcpy(eeprom + offset, priv->eeprom, blocksize);
1141                 offset += blocksize;
1142                 eeprom_size -= blocksize;
1143         }
1144
1145         ret = p54_parse_eeprom(dev, eeprom, offset);
1146 free:
1147         kfree(priv->eeprom);
1148         priv->eeprom = NULL;
1149         p54_free_skb(dev, skb);
1150         kfree(eeprom);
1151
1152         return ret;
1153 }
1154 EXPORT_SYMBOL_GPL(p54_read_eeprom);
1155
1156 static int p54_set_tim(struct ieee80211_hw *dev, struct ieee80211_sta *sta,
1157                 bool set)
1158 {
1159         struct p54_common *priv = dev->priv;
1160         struct sk_buff *skb;
1161         struct p54_tim *tim;
1162
1163         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1164                       sizeof(struct p54_hdr) + sizeof(*tim),
1165                       P54_CONTROL_TYPE_TIM, GFP_ATOMIC);
1166         if (!skb)
1167                 return -ENOMEM;
1168
1169         tim = (struct p54_tim *) skb_put(skb, sizeof(*tim));
1170         tim->count = 1;
1171         tim->entry[0] = cpu_to_le16(set ? (sta->aid | 0x8000) : sta->aid);
1172         priv->tx(dev, skb);
1173         return 0;
1174 }
1175
1176 static int p54_sta_unlock(struct ieee80211_hw *dev, u8 *addr)
1177 {
1178         struct p54_common *priv = dev->priv;
1179         struct sk_buff *skb;
1180         struct p54_sta_unlock *sta;
1181
1182         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1183                 sizeof(struct p54_hdr) + sizeof(*sta),
1184                 P54_CONTROL_TYPE_PSM_STA_UNLOCK, GFP_ATOMIC);
1185         if (!skb)
1186                 return -ENOMEM;
1187
1188         sta = (struct p54_sta_unlock *)skb_put(skb, sizeof(*sta));
1189         memcpy(sta->addr, addr, ETH_ALEN);
1190         priv->tx(dev, skb);
1191         return 0;
1192 }
1193
1194 static void p54_sta_notify(struct ieee80211_hw *dev, struct ieee80211_vif *vif,
1195                               enum sta_notify_cmd notify_cmd,
1196                               struct ieee80211_sta *sta)
1197 {
1198         switch (notify_cmd) {
1199         case STA_NOTIFY_ADD:
1200         case STA_NOTIFY_REMOVE:
1201                 /*
1202                  * Notify the firmware that we don't want or we don't
1203                  * need to buffer frames for this station anymore.
1204                  */
1205
1206                 p54_sta_unlock(dev, sta->addr);
1207                 break;
1208         case STA_NOTIFY_AWAKE:
1209                 /* update the firmware's filter table */
1210                 p54_sta_unlock(dev, sta->addr);
1211                 break;
1212         default:
1213                 break;
1214         }
1215 }
1216
1217 static int p54_tx_cancel(struct ieee80211_hw *dev, struct sk_buff *entry)
1218 {
1219         struct p54_common *priv = dev->priv;
1220         struct sk_buff *skb;
1221         struct p54_hdr *hdr;
1222         struct p54_txcancel *cancel;
1223
1224         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1225                 sizeof(struct p54_hdr) + sizeof(*cancel),
1226                 P54_CONTROL_TYPE_TXCANCEL, GFP_ATOMIC);
1227         if (!skb)
1228                 return -ENOMEM;
1229
1230         hdr = (void *)entry->data;
1231         cancel = (struct p54_txcancel *)skb_put(skb, sizeof(*cancel));
1232         cancel->req_id = hdr->req_id;
1233         priv->tx(dev, skb);
1234         return 0;
1235 }
1236
1237 static int p54_tx_fill(struct ieee80211_hw *dev, struct sk_buff *skb,
1238                 struct ieee80211_tx_info *info, u8 *queue, size_t *extra_len,
1239                 u16 *flags, u16 *aid)
1240 {
1241         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1242         struct p54_common *priv = dev->priv;
1243         int ret = 0;
1244
1245         if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1246                 if (ieee80211_is_beacon(hdr->frame_control)) {
1247                         *aid = 0;
1248                         *queue = P54_QUEUE_BEACON;
1249                         *extra_len = IEEE80211_MAX_TIM_LEN;
1250                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP;
1251                         return 0;
1252                 } else if (ieee80211_is_probe_resp(hdr->frame_control)) {
1253                         *aid = 0;
1254                         *queue = P54_QUEUE_MGMT;
1255                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP |
1256                                  P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1257                         return 0;
1258                 } else {
1259                         *queue = P54_QUEUE_MGMT;
1260                         ret = 0;
1261                 }
1262         } else {
1263                 *queue += P54_QUEUE_DATA;
1264                 ret = 1;
1265         }
1266
1267         switch (priv->mode) {
1268         case NL80211_IFTYPE_STATION:
1269                 *aid = 1;
1270                 break;
1271         case NL80211_IFTYPE_AP:
1272         case NL80211_IFTYPE_ADHOC:
1273         case NL80211_IFTYPE_MESH_POINT:
1274                 if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
1275                         *aid = 0;
1276                         *queue = P54_QUEUE_CAB;
1277                         return 0;
1278                 }
1279                 if (info->control.sta)
1280                         *aid = info->control.sta->aid;
1281                 else
1282                         *flags |= P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1283         }
1284         return ret;
1285 }
1286
1287 static u8 p54_convert_algo(enum ieee80211_key_alg alg)
1288 {
1289         switch (alg) {
1290         case ALG_WEP:
1291                 return P54_CRYPTO_WEP;
1292         case ALG_TKIP:
1293                 return P54_CRYPTO_TKIPMICHAEL;
1294         case ALG_CCMP:
1295                 return P54_CRYPTO_AESCCMP;
1296         default:
1297                 return 0;
1298         }
1299 }
1300
1301 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
1302 {
1303         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1304         struct ieee80211_tx_queue_stats *current_queue;
1305         struct p54_common *priv = dev->priv;
1306         struct p54_hdr *hdr;
1307         struct p54_tx_data *txhdr;
1308         size_t padding, len, tim_len = 0;
1309         int i, j, ridx, ret;
1310         u16 hdr_flags = 0, aid = 0;
1311         u8 rate, queue, crypt_offset = 0;
1312         u8 cts_rate = 0x20;
1313         u8 rc_flags;
1314         u8 calculated_tries[4];
1315         u8 nrates = 0, nremaining = 8;
1316
1317         queue = skb_get_queue_mapping(skb);
1318
1319         ret = p54_tx_fill(dev, skb, info, &queue, &tim_len, &hdr_flags, &aid);
1320         current_queue = &priv->tx_stats[queue];
1321         if (unlikely((current_queue->len > current_queue->limit) && ret))
1322                 return NETDEV_TX_BUSY;
1323         current_queue->len++;
1324         current_queue->count++;
1325         if ((current_queue->len == current_queue->limit) && ret)
1326                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
1327
1328         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
1329         len = skb->len;
1330
1331         if (info->control.hw_key) {
1332                 crypt_offset = ieee80211_get_hdrlen_from_skb(skb);
1333                 if (info->control.hw_key->alg == ALG_TKIP) {
1334                         u8 *iv = (u8 *)(skb->data + crypt_offset);
1335                         /*
1336                          * The firmware excepts that the IV has to have
1337                          * this special format
1338                          */
1339                         iv[1] = iv[0];
1340                         iv[0] = iv[2];
1341                         iv[2] = 0;
1342                 }
1343         }
1344
1345         txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
1346         hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
1347
1348         if (padding)
1349                 hdr_flags |= P54_HDR_FLAG_DATA_ALIGN;
1350         hdr->type = cpu_to_le16(aid);
1351         hdr->rts_tries = info->control.rates[0].count;
1352
1353         /*
1354          * we register the rates in perfect order, and
1355          * RTS/CTS won't happen on 5 GHz
1356          */
1357         cts_rate = info->control.rts_cts_rate_idx;
1358
1359         memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
1360
1361         /* see how many rates got used */
1362         for (i = 0; i < 4; i++) {
1363                 if (info->control.rates[i].idx < 0)
1364                         break;
1365                 nrates++;
1366         }
1367
1368         /* limit tries to 8/nrates per rate */
1369         for (i = 0; i < nrates; i++) {
1370                 /*
1371                  * The magic expression here is equivalent to 8/nrates for
1372                  * all values that matter, but avoids division and jumps.
1373                  * Note that nrates can only take the values 1 through 4.
1374                  */
1375                 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
1376                                                  info->control.rates[i].count);
1377                 nremaining -= calculated_tries[i];
1378         }
1379
1380         /* if there are tries left, distribute from back to front */
1381         for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
1382                 int tmp = info->control.rates[i].count - calculated_tries[i];
1383
1384                 if (tmp <= 0)
1385                         continue;
1386                 /* RC requested more tries at this rate */
1387
1388                 tmp = min_t(int, tmp, nremaining);
1389                 calculated_tries[i] += tmp;
1390                 nremaining -= tmp;
1391         }
1392
1393         ridx = 0;
1394         for (i = 0; i < nrates && ridx < 8; i++) {
1395                 /* we register the rates in perfect order */
1396                 rate = info->control.rates[i].idx;
1397                 if (info->band == IEEE80211_BAND_5GHZ)
1398                         rate += 4;
1399
1400                 /* store the count we actually calculated for TX status */
1401                 info->control.rates[i].count = calculated_tries[i];
1402
1403                 rc_flags = info->control.rates[i].flags;
1404                 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
1405                         rate |= 0x10;
1406                         cts_rate |= 0x10;
1407                 }
1408                 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
1409                         rate |= 0x40;
1410                 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1411                         rate |= 0x20;
1412                 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
1413                         txhdr->rateset[ridx] = rate;
1414                         ridx++;
1415                 }
1416         }
1417
1418         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
1419                 hdr_flags |= P54_HDR_FLAG_DATA_OUT_SEQNR;
1420
1421         /* TODO: enable bursting */
1422         hdr->flags = cpu_to_le16(hdr_flags);
1423         hdr->tries = ridx;
1424         txhdr->rts_rate_idx = 0;
1425         if (info->control.hw_key) {
1426                 txhdr->key_type = p54_convert_algo(info->control.hw_key->alg);
1427                 txhdr->key_len = min((u8)16, info->control.hw_key->keylen);
1428                 memcpy(txhdr->key, info->control.hw_key->key, txhdr->key_len);
1429                 if (info->control.hw_key->alg == ALG_TKIP) {
1430                         if (unlikely(skb_tailroom(skb) < 12))
1431                                 goto err;
1432                         /* reserve space for the MIC key */
1433                         len += 8;
1434                         memcpy(skb_put(skb, 8), &(info->control.hw_key->key
1435                                 [NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]), 8);
1436                 }
1437                 /* reserve some space for ICV */
1438                 len += info->control.hw_key->icv_len;
1439                 memset(skb_put(skb, info->control.hw_key->icv_len), 0,
1440                        info->control.hw_key->icv_len);
1441         } else {
1442                 txhdr->key_type = 0;
1443                 txhdr->key_len = 0;
1444         }
1445         txhdr->crypt_offset = crypt_offset;
1446         txhdr->hw_queue = queue;
1447         txhdr->backlog = current_queue->len;
1448         memset(txhdr->durations, 0, sizeof(txhdr->durations));
1449         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
1450                 2 : info->antenna_sel_tx - 1;
1451         txhdr->output_power = priv->output_power;
1452         txhdr->cts_rate = cts_rate;
1453         if (padding)
1454                 txhdr->align[0] = padding;
1455
1456         hdr->len = cpu_to_le16(len);
1457         /* modifies skb->cb and with it info, so must be last! */
1458         if (unlikely(p54_assign_address(dev, skb, hdr, skb->len + tim_len)))
1459                 goto err;
1460         priv->tx(dev, skb);
1461
1462         queue_delayed_work(dev->workqueue, &priv->work,
1463                            msecs_to_jiffies(P54_TX_FRAME_LIFETIME));
1464
1465         return 0;
1466
1467  err:
1468         skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
1469         current_queue->len--;
1470         current_queue->count--;
1471         return NETDEV_TX_BUSY;
1472 }
1473
1474 static int p54_setup_mac(struct ieee80211_hw *dev)
1475 {
1476         struct p54_common *priv = dev->priv;
1477         struct sk_buff *skb;
1478         struct p54_setup_mac *setup;
1479         u16 mode;
1480
1481         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup) +
1482                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SETUP,
1483                             GFP_ATOMIC);
1484         if (!skb)
1485                 return -ENOMEM;
1486
1487         setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
1488         if (dev->conf.radio_enabled) {
1489                 switch (priv->mode) {
1490                 case NL80211_IFTYPE_STATION:
1491                         mode = P54_FILTER_TYPE_STATION;
1492                         break;
1493                 case NL80211_IFTYPE_AP:
1494                         mode = P54_FILTER_TYPE_AP;
1495                         break;
1496                 case NL80211_IFTYPE_ADHOC:
1497                 case NL80211_IFTYPE_MESH_POINT:
1498                         mode = P54_FILTER_TYPE_IBSS;
1499                         break;
1500                 default:
1501                         mode = P54_FILTER_TYPE_NONE;
1502                         break;
1503                 }
1504                 if (priv->filter_flags & FIF_PROMISC_IN_BSS)
1505                         mode |= P54_FILTER_TYPE_TRANSPARENT;
1506         } else
1507                 mode = P54_FILTER_TYPE_RX_DISABLED;
1508
1509         setup->mac_mode = cpu_to_le16(mode);
1510         memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
1511         memcpy(setup->bssid, priv->bssid, ETH_ALEN);
1512         setup->rx_antenna = 2; /* automatic */
1513         setup->rx_align = 0;
1514         if (priv->fw_var < 0x500) {
1515                 setup->v1.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1516                 memset(setup->v1.rts_rates, 0, 8);
1517                 setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
1518                 setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
1519                 setup->v1.rxhw = cpu_to_le16(priv->rxhw);
1520                 setup->v1.wakeup_timer = cpu_to_le16(priv->wakeup_timer);
1521                 setup->v1.unalloc0 = cpu_to_le16(0);
1522         } else {
1523                 setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
1524                 setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
1525                 setup->v2.rxhw = cpu_to_le16(priv->rxhw);
1526                 setup->v2.timer = cpu_to_le16(priv->wakeup_timer);
1527                 setup->v2.truncate = cpu_to_le16(48896);
1528                 setup->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1529                 setup->v2.sbss_offset = 0;
1530                 setup->v2.mcast_window = 0;
1531                 setup->v2.rx_rssi_threshold = 0;
1532                 setup->v2.rx_ed_threshold = 0;
1533                 setup->v2.ref_clock = cpu_to_le32(644245094);
1534                 setup->v2.lpf_bandwidth = cpu_to_le16(65535);
1535                 setup->v2.osc_start_delay = cpu_to_le16(65535);
1536         }
1537         priv->tx(dev, skb);
1538         return 0;
1539 }
1540
1541 static int p54_scan(struct ieee80211_hw *dev, u16 mode, u16 dwell)
1542 {
1543         struct p54_common *priv = dev->priv;
1544         struct sk_buff *skb;
1545         struct p54_scan *chan;
1546         unsigned int i;
1547         void *entry;
1548         __le16 freq = cpu_to_le16(dev->conf.channel->center_freq);
1549         int band = dev->conf.channel->band;
1550
1551         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*chan) +
1552                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SCAN,
1553                             GFP_ATOMIC);
1554         if (!skb)
1555                 return -ENOMEM;
1556
1557         chan = (struct p54_scan *) skb_put(skb, sizeof(*chan));
1558         memset(chan->padding1, 0, sizeof(chan->padding1));
1559         chan->mode = cpu_to_le16(mode);
1560         chan->dwell = cpu_to_le16(dwell);
1561
1562         for (i = 0; i < priv->iq_autocal_len; i++) {
1563                 if (priv->iq_autocal[i].freq != freq)
1564                         continue;
1565
1566                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
1567                        sizeof(*priv->iq_autocal));
1568                 break;
1569         }
1570         if (i == priv->iq_autocal_len)
1571                 goto err;
1572
1573         for (i = 0; i < priv->output_limit_len; i++) {
1574                 if (priv->output_limit[i].freq != freq)
1575                         continue;
1576
1577                 chan->val_barker = 0x38;
1578                 chan->val_bpsk = chan->dup_bpsk =
1579                         priv->output_limit[i].val_bpsk;
1580                 chan->val_qpsk = chan->dup_qpsk =
1581                         priv->output_limit[i].val_qpsk;
1582                 chan->val_16qam = chan->dup_16qam =
1583                         priv->output_limit[i].val_16qam;
1584                 chan->val_64qam = chan->dup_64qam =
1585                         priv->output_limit[i].val_64qam;
1586                 break;
1587         }
1588         if (i == priv->output_limit_len)
1589                 goto err;
1590
1591         entry = priv->curve_data->data;
1592         for (i = 0; i < priv->curve_data->channels; i++) {
1593                 if (*((__le16 *)entry) != freq) {
1594                         entry += sizeof(__le16);
1595                         entry += sizeof(struct p54_pa_curve_data_sample) *
1596                                  priv->curve_data->points_per_channel;
1597                         continue;
1598                 }
1599
1600                 entry += sizeof(__le16);
1601                 chan->pa_points_per_curve = 8;
1602                 memset(chan->curve_data, 0, sizeof(*chan->curve_data));
1603                 memcpy(chan->curve_data, entry,
1604                        sizeof(struct p54_pa_curve_data_sample) *
1605                        min((u8)8, priv->curve_data->points_per_channel));
1606                 break;
1607         }
1608
1609         if (priv->fw_var < 0x500) {
1610                 chan->v1_rssi.mul = cpu_to_le16(priv->rssical_db[band].mul);
1611                 chan->v1_rssi.add = cpu_to_le16(priv->rssical_db[band].add);
1612         } else {
1613                 chan->v2.rssi.mul = cpu_to_le16(priv->rssical_db[band].mul);
1614                 chan->v2.rssi.add = cpu_to_le16(priv->rssical_db[band].add);
1615                 chan->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1616                 memset(chan->v2.rts_rates, 0, 8);
1617         }
1618         priv->tx(dev, skb);
1619         return 0;
1620
1621  err:
1622         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1623         p54_free_skb(dev, skb);
1624         return -EINVAL;
1625 }
1626
1627 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1628 {
1629         struct p54_common *priv = dev->priv;
1630         struct sk_buff *skb;
1631         struct p54_led *led;
1632
1633         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led) +
1634                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_LED,
1635                         GFP_ATOMIC);
1636         if (!skb)
1637                 return -ENOMEM;
1638
1639         led = (struct p54_led *)skb_put(skb, sizeof(*led));
1640         led->mode = cpu_to_le16(mode);
1641         led->led_permanent = cpu_to_le16(link);
1642         led->led_temporary = cpu_to_le16(act);
1643         led->duration = cpu_to_le16(1000);
1644         priv->tx(dev, skb);
1645         return 0;
1646 }
1647
1648 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
1649 do {                                                            \
1650         queue.aifs = cpu_to_le16(ai_fs);                        \
1651         queue.cwmin = cpu_to_le16(cw_min);                      \
1652         queue.cwmax = cpu_to_le16(cw_max);                      \
1653         queue.txop = cpu_to_le16(_txop);                        \
1654 } while(0)
1655
1656 static int p54_set_edcf(struct ieee80211_hw *dev)
1657 {
1658         struct p54_common *priv = dev->priv;
1659         struct sk_buff *skb;
1660         struct p54_edcf *edcf;
1661
1662         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf) +
1663                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_DCFINIT,
1664                         GFP_ATOMIC);
1665         if (!skb)
1666                 return -ENOMEM;
1667
1668         edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
1669         if (priv->use_short_slot) {
1670                 edcf->slottime = 9;
1671                 edcf->sifs = 0x10;
1672                 edcf->eofpad = 0x00;
1673         } else {
1674                 edcf->slottime = 20;
1675                 edcf->sifs = 0x0a;
1676                 edcf->eofpad = 0x06;
1677         }
1678         /* (see prism54/isl_oid.h for further details) */
1679         edcf->frameburst = cpu_to_le16(0);
1680         edcf->round_trip_delay = cpu_to_le16(0);
1681         edcf->flags = 0;
1682         memset(edcf->mapping, 0, sizeof(edcf->mapping));
1683         memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
1684         priv->tx(dev, skb);
1685         return 0;
1686 }
1687
1688 static int p54_beacon_tim(struct sk_buff *skb)
1689 {
1690         /*
1691          * the good excuse for this mess is ... the firmware.
1692          * The dummy TIM MUST be at the end of the beacon frame,
1693          * because it'll be overwritten!
1694          */
1695
1696         struct ieee80211_mgmt *mgmt = (void *)skb->data;
1697         u8 *pos, *end;
1698
1699         if (skb->len <= sizeof(mgmt))
1700                 return -EINVAL;
1701
1702         pos = (u8 *)mgmt->u.beacon.variable;
1703         end = skb->data + skb->len;
1704         while (pos < end) {
1705                 if (pos + 2 + pos[1] > end)
1706                         return -EINVAL;
1707
1708                 if (pos[0] == WLAN_EID_TIM) {
1709                         u8 dtim_len = pos[1];
1710                         u8 dtim_period = pos[3];
1711                         u8 *next = pos + 2 + dtim_len;
1712
1713                         if (dtim_len < 3)
1714                                 return -EINVAL;
1715
1716                         memmove(pos, next, end - next);
1717
1718                         if (dtim_len > 3)
1719                                 skb_trim(skb, skb->len - (dtim_len - 3));
1720
1721                         pos = end - (dtim_len + 2);
1722
1723                         /* add the dummy at the end */
1724                         pos[0] = WLAN_EID_TIM;
1725                         pos[1] = 3;
1726                         pos[2] = 0;
1727                         pos[3] = dtim_period;
1728                         pos[4] = 0;
1729                         return 0;
1730                 }
1731                 pos += 2 + pos[1];
1732         }
1733         return 0;
1734 }
1735
1736 static int p54_beacon_update(struct ieee80211_hw *dev,
1737                         struct ieee80211_vif *vif)
1738 {
1739         struct p54_common *priv = dev->priv;
1740         struct sk_buff *beacon;
1741         int ret;
1742
1743         if (priv->cached_beacon) {
1744                 p54_tx_cancel(dev, priv->cached_beacon);
1745                 /* wait for the last beacon the be freed */
1746                 msleep(10);
1747         }
1748
1749         beacon = ieee80211_beacon_get(dev, vif);
1750         if (!beacon)
1751                 return -ENOMEM;
1752         ret = p54_beacon_tim(beacon);
1753         if (ret)
1754                 return ret;
1755         ret = p54_tx(dev, beacon);
1756         if (ret)
1757                 return ret;
1758         priv->cached_beacon = beacon;
1759         priv->tsf_high32 = 0;
1760         priv->tsf_low32 = 0;
1761
1762         return 0;
1763 }
1764
1765 static int p54_start(struct ieee80211_hw *dev)
1766 {
1767         struct p54_common *priv = dev->priv;
1768         int err;
1769
1770         mutex_lock(&priv->conf_mutex);
1771         err = priv->open(dev);
1772         if (err)
1773                 goto out;
1774         P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
1775         P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
1776         P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
1777         P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
1778         err = p54_set_edcf(dev);
1779         if (err)
1780                 goto out;
1781
1782         memset(priv->bssid, ~0, ETH_ALEN);
1783         priv->mode = NL80211_IFTYPE_MONITOR;
1784         err = p54_setup_mac(dev);
1785         if (err) {
1786                 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1787                 goto out;
1788         }
1789
1790         queue_delayed_work(dev->workqueue, &priv->work, 0);
1791
1792 out:
1793         mutex_unlock(&priv->conf_mutex);
1794         return err;
1795 }
1796
1797 static void p54_stop(struct ieee80211_hw *dev)
1798 {
1799         struct p54_common *priv = dev->priv;
1800         struct sk_buff *skb;
1801
1802         mutex_lock(&priv->conf_mutex);
1803         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1804         cancel_delayed_work_sync(&priv->work);
1805         if (priv->cached_beacon)
1806                 p54_tx_cancel(dev, priv->cached_beacon);
1807
1808         priv->stop(dev);
1809         while ((skb = skb_dequeue(&priv->tx_queue)))
1810                 kfree_skb(skb);
1811         priv->cached_beacon = NULL;
1812         priv->tsf_high32 = priv->tsf_low32 = 0;
1813         mutex_unlock(&priv->conf_mutex);
1814 }
1815
1816 static int p54_add_interface(struct ieee80211_hw *dev,
1817                              struct ieee80211_if_init_conf *conf)
1818 {
1819         struct p54_common *priv = dev->priv;
1820
1821         mutex_lock(&priv->conf_mutex);
1822         if (priv->mode != NL80211_IFTYPE_MONITOR) {
1823                 mutex_unlock(&priv->conf_mutex);
1824                 return -EOPNOTSUPP;
1825         }
1826
1827         switch (conf->type) {
1828         case NL80211_IFTYPE_STATION:
1829         case NL80211_IFTYPE_ADHOC:
1830         case NL80211_IFTYPE_AP:
1831         case NL80211_IFTYPE_MESH_POINT:
1832                 priv->mode = conf->type;
1833                 break;
1834         default:
1835                 mutex_unlock(&priv->conf_mutex);
1836                 return -EOPNOTSUPP;
1837         }
1838
1839         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1840         p54_setup_mac(dev);
1841         p54_set_leds(dev, 1, 0, 0);
1842         mutex_unlock(&priv->conf_mutex);
1843         return 0;
1844 }
1845
1846 static void p54_remove_interface(struct ieee80211_hw *dev,
1847                                  struct ieee80211_if_init_conf *conf)
1848 {
1849         struct p54_common *priv = dev->priv;
1850
1851         mutex_lock(&priv->conf_mutex);
1852         if (priv->cached_beacon)
1853                 p54_tx_cancel(dev, priv->cached_beacon);
1854         priv->mode = NL80211_IFTYPE_MONITOR;
1855         memset(priv->mac_addr, 0, ETH_ALEN);
1856         memset(priv->bssid, 0, ETH_ALEN);
1857         p54_setup_mac(dev);
1858         mutex_unlock(&priv->conf_mutex);
1859 }
1860
1861 static int p54_config(struct ieee80211_hw *dev, u32 changed)
1862 {
1863         int ret = 0;
1864         struct p54_common *priv = dev->priv;
1865         struct ieee80211_conf *conf = &dev->conf;
1866
1867         mutex_lock(&priv->conf_mutex);
1868         if (changed & IEEE80211_CONF_CHANGE_POWER)
1869                 priv->output_power = conf->power_level << 2;
1870         if (changed & IEEE80211_CONF_CHANGE_RADIO_ENABLED) {
1871                 ret = p54_setup_mac(dev);
1872                 if (ret)
1873                         goto out;
1874         }
1875         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
1876                 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
1877                 if (ret)
1878                         goto out;
1879         }
1880
1881 out:
1882         mutex_unlock(&priv->conf_mutex);
1883         return ret;
1884 }
1885
1886 static int p54_config_interface(struct ieee80211_hw *dev,
1887                                 struct ieee80211_vif *vif,
1888                                 struct ieee80211_if_conf *conf)
1889 {
1890         struct p54_common *priv = dev->priv;
1891         int ret = 0;
1892
1893         mutex_lock(&priv->conf_mutex);
1894         if (conf->changed & IEEE80211_IFCC_BSSID) {
1895                 memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1896                 ret = p54_setup_mac(dev);
1897                 if (ret)
1898                         goto out;
1899         }
1900
1901         if (conf->changed & IEEE80211_IFCC_BEACON) {
1902                 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
1903                 if (ret)
1904                         goto out;
1905                 ret = p54_setup_mac(dev);
1906                 if (ret)
1907                         goto out;
1908                 ret = p54_beacon_update(dev, vif);
1909                 if (ret)
1910                         goto out;
1911                 ret = p54_set_edcf(dev);
1912                 if (ret)
1913                         goto out;
1914         }
1915
1916         ret = p54_set_leds(dev, 1, !is_multicast_ether_addr(priv->bssid), 0);
1917
1918 out:
1919         mutex_unlock(&priv->conf_mutex);
1920         return ret;
1921 }
1922
1923 static void p54_configure_filter(struct ieee80211_hw *dev,
1924                                  unsigned int changed_flags,
1925                                  unsigned int *total_flags,
1926                                  int mc_count, struct dev_mc_list *mclist)
1927 {
1928         struct p54_common *priv = dev->priv;
1929
1930         *total_flags &= FIF_PROMISC_IN_BSS |
1931                         (*total_flags & FIF_PROMISC_IN_BSS) ?
1932                                 FIF_FCSFAIL : 0;
1933
1934         priv->filter_flags = *total_flags;
1935
1936         if (changed_flags & FIF_PROMISC_IN_BSS)
1937                 p54_setup_mac(dev);
1938 }
1939
1940 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1941                        const struct ieee80211_tx_queue_params *params)
1942 {
1943         struct p54_common *priv = dev->priv;
1944         int ret;
1945
1946         mutex_lock(&priv->conf_mutex);
1947         if ((params) && !(queue > 4)) {
1948                 P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
1949                         params->cw_min, params->cw_max, params->txop);
1950                 ret = p54_set_edcf(dev);
1951         } else
1952                 ret = -EINVAL;
1953         mutex_unlock(&priv->conf_mutex);
1954         return ret;
1955 }
1956
1957 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1958 {
1959         struct p54_common *priv = dev->priv;
1960         struct sk_buff *skb;
1961         struct p54_xbow_synth *xbow;
1962
1963         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow) +
1964                             sizeof(struct p54_hdr),
1965                             P54_CONTROL_TYPE_XBOW_SYNTH_CFG,
1966                             GFP_KERNEL);
1967         if (!skb)
1968                 return -ENOMEM;
1969
1970         xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
1971         xbow->magic1 = cpu_to_le16(0x1);
1972         xbow->magic2 = cpu_to_le16(0x2);
1973         xbow->freq = cpu_to_le16(5390);
1974         memset(xbow->padding, 0, sizeof(xbow->padding));
1975         priv->tx(dev, skb);
1976         return 0;
1977 }
1978
1979 static void p54_work(struct work_struct *work)
1980 {
1981         struct p54_common *priv = container_of(work, struct p54_common,
1982                                                work.work);
1983         struct ieee80211_hw *dev = priv->hw;
1984         struct sk_buff *skb;
1985
1986         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
1987                 return ;
1988
1989         /*
1990          * TODO: walk through tx_queue and do the following tasks
1991          *      1. initiate bursts.
1992          *      2. cancel stuck frames / reset the device if necessary.
1993          */
1994
1995         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(struct p54_hdr) +
1996                             sizeof(struct p54_statistics),
1997                             P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
1998         if (!skb)
1999                 return ;
2000
2001         priv->tx(dev, skb);
2002 }
2003
2004 static int p54_get_stats(struct ieee80211_hw *dev,
2005                          struct ieee80211_low_level_stats *stats)
2006 {
2007         struct p54_common *priv = dev->priv;
2008
2009         memcpy(stats, &priv->stats, sizeof(*stats));
2010         return 0;
2011 }
2012
2013 static int p54_get_tx_stats(struct ieee80211_hw *dev,
2014                             struct ieee80211_tx_queue_stats *stats)
2015 {
2016         struct p54_common *priv = dev->priv;
2017
2018         memcpy(stats, &priv->tx_stats[P54_QUEUE_DATA],
2019                sizeof(stats[0]) * dev->queues);
2020         return 0;
2021 }
2022
2023 static void p54_bss_info_changed(struct ieee80211_hw *dev,
2024                                  struct ieee80211_vif *vif,
2025                                  struct ieee80211_bss_conf *info,
2026                                  u32 changed)
2027 {
2028         struct p54_common *priv = dev->priv;
2029
2030         if (changed & BSS_CHANGED_ERP_SLOT) {
2031                 priv->use_short_slot = info->use_short_slot;
2032                 p54_set_edcf(dev);
2033         }
2034         if (changed & BSS_CHANGED_BASIC_RATES) {
2035                 if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
2036                         priv->basic_rate_mask = (info->basic_rates << 4);
2037                 else
2038                         priv->basic_rate_mask = info->basic_rates;
2039                 p54_setup_mac(dev);
2040                 if (priv->fw_var >= 0x500)
2041                         p54_scan(dev, P54_SCAN_EXIT, 0);
2042         }
2043         if (changed & BSS_CHANGED_ASSOC) {
2044                 if (info->assoc) {
2045                         priv->aid = info->aid;
2046                         priv->wakeup_timer = info->beacon_int *
2047                                              info->dtim_period * 5;
2048                         p54_setup_mac(dev);
2049                 }
2050         }
2051
2052 }
2053
2054 static int p54_set_key(struct ieee80211_hw *dev, enum set_key_cmd cmd,
2055                        const u8 *local_address, const u8 *address,
2056                        struct ieee80211_key_conf *key)
2057 {
2058         struct p54_common *priv = dev->priv;
2059         struct sk_buff *skb;
2060         struct p54_keycache *rxkey;
2061         u8 algo = 0;
2062
2063         if (modparam_nohwcrypt)
2064                 return -EOPNOTSUPP;
2065
2066         if (cmd == DISABLE_KEY)
2067                 algo = 0;
2068         else {
2069                 switch (key->alg) {
2070                 case ALG_TKIP:
2071                         if (!(priv->privacy_caps & (BR_DESC_PRIV_CAP_MICHAEL |
2072                               BR_DESC_PRIV_CAP_TKIP)))
2073                                 return -EOPNOTSUPP;
2074                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2075                         algo = P54_CRYPTO_TKIPMICHAEL;
2076                         break;
2077                 case ALG_WEP:
2078                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_WEP))
2079                                 return -EOPNOTSUPP;
2080                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2081                         algo = P54_CRYPTO_WEP;
2082                         break;
2083                 case ALG_CCMP:
2084                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP))
2085                                 return -EOPNOTSUPP;
2086                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2087                         algo = P54_CRYPTO_AESCCMP;
2088                         break;
2089                 default:
2090                         return -EOPNOTSUPP;
2091                 }
2092         }
2093
2094         if (key->keyidx > priv->rx_keycache_size) {
2095                 /*
2096                  * The device supports the choosen algorithm, but the firmware
2097                  * does not provide enough key slots to store all of them.
2098                  * So, incoming frames have to be decoded by the mac80211 stack,
2099                  * but we can still offload encryption for outgoing frames.
2100                  */
2101
2102                 return 0;
2103         }
2104
2105         mutex_lock(&priv->conf_mutex);
2106         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*rxkey) +
2107                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_RX_KEYCACHE,
2108                         GFP_ATOMIC);
2109         if (!skb) {
2110                 mutex_unlock(&priv->conf_mutex);
2111                 return -ENOMEM;
2112         }
2113
2114         /* TODO: some devices have 4 more free slots for rx keys */
2115         rxkey = (struct p54_keycache *)skb_put(skb, sizeof(*rxkey));
2116         rxkey->entry = key->keyidx;
2117         rxkey->key_id = key->keyidx;
2118         rxkey->key_type = algo;
2119         if (address)
2120                 memcpy(rxkey->mac, address, ETH_ALEN);
2121         else
2122                 memset(rxkey->mac, ~0, ETH_ALEN);
2123         if (key->alg != ALG_TKIP) {
2124                 rxkey->key_len = min((u8)16, key->keylen);
2125                 memcpy(rxkey->key, key->key, rxkey->key_len);
2126         } else {
2127                 rxkey->key_len = 24;
2128                 memcpy(rxkey->key, key->key, 16);
2129                 memcpy(&(rxkey->key[16]), &(key->key
2130                         [NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]), 8);
2131         }
2132
2133         priv->tx(dev, skb);
2134         mutex_unlock(&priv->conf_mutex);
2135         return 0;
2136 }
2137
2138 static const struct ieee80211_ops p54_ops = {
2139         .tx                     = p54_tx,
2140         .start                  = p54_start,
2141         .stop                   = p54_stop,
2142         .add_interface          = p54_add_interface,
2143         .remove_interface       = p54_remove_interface,
2144         .set_tim                = p54_set_tim,
2145         .sta_notify             = p54_sta_notify,
2146         .set_key                = p54_set_key,
2147         .config                 = p54_config,
2148         .config_interface       = p54_config_interface,
2149         .bss_info_changed       = p54_bss_info_changed,
2150         .configure_filter       = p54_configure_filter,
2151         .conf_tx                = p54_conf_tx,
2152         .get_stats              = p54_get_stats,
2153         .get_tx_stats           = p54_get_tx_stats
2154 };
2155
2156 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
2157 {
2158         struct ieee80211_hw *dev;
2159         struct p54_common *priv;
2160
2161         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
2162         if (!dev)
2163                 return NULL;
2164
2165         priv = dev->priv;
2166         priv->hw = dev;
2167         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2168         priv->basic_rate_mask = 0x15f;
2169         skb_queue_head_init(&priv->tx_queue);
2170         dev->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2171                      IEEE80211_HW_SIGNAL_DBM |
2172                      IEEE80211_HW_NOISE_DBM;
2173
2174         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2175                                       BIT(NL80211_IFTYPE_ADHOC) |
2176                                       BIT(NL80211_IFTYPE_AP) |
2177                                       BIT(NL80211_IFTYPE_MESH_POINT);
2178
2179         dev->channel_change_time = 1000;        /* TODO: find actual value */
2180         priv->tx_stats[P54_QUEUE_BEACON].limit = 1;
2181         priv->tx_stats[P54_QUEUE_FWSCAN].limit = 1;
2182         priv->tx_stats[P54_QUEUE_MGMT].limit = 3;
2183         priv->tx_stats[P54_QUEUE_CAB].limit = 3;
2184         priv->tx_stats[P54_QUEUE_DATA].limit = 5;
2185         dev->queues = 1;
2186         priv->noise = -94;
2187         /*
2188          * We support at most 8 tries no matter which rate they're at,
2189          * we cannot support max_rates * max_rate_tries as we set it
2190          * here, but setting it correctly to 4/2 or so would limit us
2191          * artificially if the RC algorithm wants just two rates, so
2192          * let's say 4/7, we'll redistribute it at TX time, see the
2193          * comments there.
2194          */
2195         dev->max_rates = 4;
2196         dev->max_rate_tries = 7;
2197         dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
2198                                  sizeof(struct p54_tx_data);
2199
2200         mutex_init(&priv->conf_mutex);
2201         init_completion(&priv->eeprom_comp);
2202         INIT_DELAYED_WORK(&priv->work, p54_work);
2203
2204         return dev;
2205 }
2206 EXPORT_SYMBOL_GPL(p54_init_common);
2207
2208 void p54_free_common(struct ieee80211_hw *dev)
2209 {
2210         struct p54_common *priv = dev->priv;
2211         kfree(priv->iq_autocal);
2212         kfree(priv->output_limit);
2213         kfree(priv->curve_data);
2214 }
2215 EXPORT_SYMBOL_GPL(p54_free_common);
2216
2217 static int __init p54_init(void)
2218 {
2219         return 0;
2220 }
2221
2222 static void __exit p54_exit(void)
2223 {
2224 }
2225
2226 module_init(p54_init);
2227 module_exit(p54_exit);