p54: refactor p54_alloc_skb
[linux-2.6.git] / drivers / net / wireless / p54 / p54common.c
1 /*
2  * Common code for mac80211 Prism54 drivers
3  *
4  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  *
8  * Based on:
9  * - the islsm (softmac prism54) driver, which is:
10  *   Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11  * - stlc45xx driver
12  *   Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18
19 #include <linux/init.h>
20 #include <linux/firmware.h>
21 #include <linux/etherdevice.h>
22
23 #include <net/mac80211.h>
24
25 #include "p54.h"
26 #include "p54common.h"
27
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
31 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
32 MODULE_DESCRIPTION("Softmac Prism54 common code");
33 MODULE_LICENSE("GPL");
34 MODULE_ALIAS("prism54common");
35
36 static struct ieee80211_rate p54_bgrates[] = {
37         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
38         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
39         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
40         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
41         { .bitrate = 60, .hw_value = 4, },
42         { .bitrate = 90, .hw_value = 5, },
43         { .bitrate = 120, .hw_value = 6, },
44         { .bitrate = 180, .hw_value = 7, },
45         { .bitrate = 240, .hw_value = 8, },
46         { .bitrate = 360, .hw_value = 9, },
47         { .bitrate = 480, .hw_value = 10, },
48         { .bitrate = 540, .hw_value = 11, },
49 };
50
51 static struct ieee80211_channel p54_bgchannels[] = {
52         { .center_freq = 2412, .hw_value = 1, },
53         { .center_freq = 2417, .hw_value = 2, },
54         { .center_freq = 2422, .hw_value = 3, },
55         { .center_freq = 2427, .hw_value = 4, },
56         { .center_freq = 2432, .hw_value = 5, },
57         { .center_freq = 2437, .hw_value = 6, },
58         { .center_freq = 2442, .hw_value = 7, },
59         { .center_freq = 2447, .hw_value = 8, },
60         { .center_freq = 2452, .hw_value = 9, },
61         { .center_freq = 2457, .hw_value = 10, },
62         { .center_freq = 2462, .hw_value = 11, },
63         { .center_freq = 2467, .hw_value = 12, },
64         { .center_freq = 2472, .hw_value = 13, },
65         { .center_freq = 2484, .hw_value = 14, },
66 };
67
68 static struct ieee80211_supported_band band_2GHz = {
69         .channels = p54_bgchannels,
70         .n_channels = ARRAY_SIZE(p54_bgchannels),
71         .bitrates = p54_bgrates,
72         .n_bitrates = ARRAY_SIZE(p54_bgrates),
73 };
74
75 static struct ieee80211_rate p54_arates[] = {
76         { .bitrate = 60, .hw_value = 4, },
77         { .bitrate = 90, .hw_value = 5, },
78         { .bitrate = 120, .hw_value = 6, },
79         { .bitrate = 180, .hw_value = 7, },
80         { .bitrate = 240, .hw_value = 8, },
81         { .bitrate = 360, .hw_value = 9, },
82         { .bitrate = 480, .hw_value = 10, },
83         { .bitrate = 540, .hw_value = 11, },
84 };
85
86 static struct ieee80211_channel p54_achannels[] = {
87         { .center_freq = 4920 },
88         { .center_freq = 4940 },
89         { .center_freq = 4960 },
90         { .center_freq = 4980 },
91         { .center_freq = 5040 },
92         { .center_freq = 5060 },
93         { .center_freq = 5080 },
94         { .center_freq = 5170 },
95         { .center_freq = 5180 },
96         { .center_freq = 5190 },
97         { .center_freq = 5200 },
98         { .center_freq = 5210 },
99         { .center_freq = 5220 },
100         { .center_freq = 5230 },
101         { .center_freq = 5240 },
102         { .center_freq = 5260 },
103         { .center_freq = 5280 },
104         { .center_freq = 5300 },
105         { .center_freq = 5320 },
106         { .center_freq = 5500 },
107         { .center_freq = 5520 },
108         { .center_freq = 5540 },
109         { .center_freq = 5560 },
110         { .center_freq = 5580 },
111         { .center_freq = 5600 },
112         { .center_freq = 5620 },
113         { .center_freq = 5640 },
114         { .center_freq = 5660 },
115         { .center_freq = 5680 },
116         { .center_freq = 5700 },
117         { .center_freq = 5745 },
118         { .center_freq = 5765 },
119         { .center_freq = 5785 },
120         { .center_freq = 5805 },
121         { .center_freq = 5825 },
122 };
123
124 static struct ieee80211_supported_band band_5GHz = {
125         .channels = p54_achannels,
126         .n_channels = ARRAY_SIZE(p54_achannels),
127         .bitrates = p54_arates,
128         .n_bitrates = ARRAY_SIZE(p54_arates),
129 };
130
131 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
132 {
133         struct p54_common *priv = dev->priv;
134         struct bootrec_exp_if *exp_if;
135         struct bootrec *bootrec;
136         u32 *data = (u32 *)fw->data;
137         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
138         u8 *fw_version = NULL;
139         size_t len;
140         int i;
141         int maxlen;
142
143         if (priv->rx_start)
144                 return 0;
145
146         while (data < end_data && *data)
147                 data++;
148
149         while (data < end_data && !*data)
150                 data++;
151
152         bootrec = (struct bootrec *) data;
153
154         while (bootrec->data <= end_data &&
155                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
156                 u32 code = le32_to_cpu(bootrec->code);
157                 switch (code) {
158                 case BR_CODE_COMPONENT_ID:
159                         priv->fw_interface = be32_to_cpup((__be32 *)
160                                              bootrec->data);
161                         switch (priv->fw_interface) {
162                         case FW_LM86:
163                         case FW_LM20:
164                         case FW_LM87: {
165                                 char *iftype = (char *)bootrec->data;
166                                 printk(KERN_INFO "%s: p54 detected a LM%c%c "
167                                                  "firmware\n",
168                                         wiphy_name(dev->wiphy),
169                                         iftype[2], iftype[3]);
170                                 break;
171                                 }
172                         case FW_FMAC:
173                         default:
174                                 printk(KERN_ERR "%s: unsupported firmware\n",
175                                         wiphy_name(dev->wiphy));
176                                 return -ENODEV;
177                         }
178                         break;
179                 case BR_CODE_COMPONENT_VERSION:
180                         /* 24 bytes should be enough for all firmwares */
181                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
182                                 fw_version = (unsigned char*)bootrec->data;
183                         break;
184                 case BR_CODE_DESCR: {
185                         struct bootrec_desc *desc =
186                                 (struct bootrec_desc *)bootrec->data;
187                         priv->rx_start = le32_to_cpu(desc->rx_start);
188                         /* FIXME add sanity checking */
189                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
190                         priv->headroom = desc->headroom;
191                         priv->tailroom = desc->tailroom;
192                         priv->privacy_caps = desc->privacy_caps;
193                         priv->rx_keycache_size = desc->rx_keycache_size;
194                         if (le32_to_cpu(bootrec->len) == 11)
195                                 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
196                         else
197                                 priv->rx_mtu = (size_t)
198                                         0x620 - priv->tx_hdr_len;
199                         maxlen = priv->tx_hdr_len + /* USB devices */
200                                  sizeof(struct p54_rx_data) +
201                                  4 + /* rx alignment */
202                                  IEEE80211_MAX_FRAG_THRESHOLD;
203                         if (priv->rx_mtu > maxlen && PAGE_SIZE == 4096) {
204                                 printk(KERN_INFO "p54: rx_mtu reduced from %d "
205                                                  "to %d\n", priv->rx_mtu,
206                                                  maxlen);
207                                 priv->rx_mtu = maxlen;
208                         }
209                         break;
210                         }
211                 case BR_CODE_EXPOSED_IF:
212                         exp_if = (struct bootrec_exp_if *) bootrec->data;
213                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
214                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
215                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
216                         break;
217                 case BR_CODE_DEPENDENT_IF:
218                         break;
219                 case BR_CODE_END_OF_BRA:
220                 case LEGACY_BR_CODE_END_OF_BRA:
221                         end_data = NULL;
222                         break;
223                 default:
224                         break;
225                 }
226                 bootrec = (struct bootrec *)&bootrec->data[len];
227         }
228
229         if (fw_version)
230                 printk(KERN_INFO "%s: FW rev %s - Softmac protocol %x.%x\n",
231                         wiphy_name(dev->wiphy), fw_version,
232                         priv->fw_var >> 8, priv->fw_var & 0xff);
233
234         if (priv->fw_var < 0x500)
235                 printk(KERN_INFO "%s: you are using an obsolete firmware. "
236                        "visit http://wireless.kernel.org/en/users/Drivers/p54 "
237                        "and grab one for \"kernel >= 2.6.28\"!\n",
238                         wiphy_name(dev->wiphy));
239
240         if (priv->fw_var >= 0x300) {
241                 /* Firmware supports QoS, use it! */
242                 priv->tx_stats[P54_QUEUE_AC_VO].limit = 3;
243                 priv->tx_stats[P54_QUEUE_AC_VI].limit = 4;
244                 priv->tx_stats[P54_QUEUE_AC_BE].limit = 3;
245                 priv->tx_stats[P54_QUEUE_AC_BK].limit = 2;
246                 dev->queues = P54_QUEUE_AC_NUM;
247         }
248
249         if (!modparam_nohwcrypt)
250                 printk(KERN_INFO "%s: cryptographic accelerator "
251                                  "WEP:%s, TKIP:%s, CCMP:%s\n",
252                         wiphy_name(dev->wiphy),
253                         (priv->privacy_caps & BR_DESC_PRIV_CAP_WEP) ? "YES" :
254                         "no", (priv->privacy_caps & (BR_DESC_PRIV_CAP_TKIP |
255                          BR_DESC_PRIV_CAP_MICHAEL)) ? "YES" : "no",
256                         (priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP) ?
257                         "YES" : "no");
258
259         return 0;
260 }
261 EXPORT_SYMBOL_GPL(p54_parse_firmware);
262
263 static int p54_convert_rev0(struct ieee80211_hw *dev,
264                             struct pda_pa_curve_data *curve_data)
265 {
266         struct p54_common *priv = dev->priv;
267         struct p54_pa_curve_data_sample *dst;
268         struct pda_pa_curve_data_sample_rev0 *src;
269         size_t cd_len = sizeof(*curve_data) +
270                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
271                  curve_data->channels;
272         unsigned int i, j;
273         void *source, *target;
274
275         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
276         if (!priv->curve_data)
277                 return -ENOMEM;
278
279         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
280         source = curve_data->data;
281         target = priv->curve_data->data;
282         for (i = 0; i < curve_data->channels; i++) {
283                 __le16 *freq = source;
284                 source += sizeof(__le16);
285                 *((__le16 *)target) = *freq;
286                 target += sizeof(__le16);
287                 for (j = 0; j < curve_data->points_per_channel; j++) {
288                         dst = target;
289                         src = source;
290
291                         dst->rf_power = src->rf_power;
292                         dst->pa_detector = src->pa_detector;
293                         dst->data_64qam = src->pcv;
294                         /* "invent" the points for the other modulations */
295 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
296                         dst->data_16qam = SUB(src->pcv, 12);
297                         dst->data_qpsk = SUB(dst->data_16qam, 12);
298                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
299                         dst->data_barker = SUB(dst->data_bpsk, 14);
300 #undef SUB
301                         target += sizeof(*dst);
302                         source += sizeof(*src);
303                 }
304         }
305
306         return 0;
307 }
308
309 static int p54_convert_rev1(struct ieee80211_hw *dev,
310                             struct pda_pa_curve_data *curve_data)
311 {
312         struct p54_common *priv = dev->priv;
313         struct p54_pa_curve_data_sample *dst;
314         struct pda_pa_curve_data_sample_rev1 *src;
315         size_t cd_len = sizeof(*curve_data) +
316                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
317                  curve_data->channels;
318         unsigned int i, j;
319         void *source, *target;
320
321         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
322         if (!priv->curve_data)
323                 return -ENOMEM;
324
325         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
326         source = curve_data->data;
327         target = priv->curve_data->data;
328         for (i = 0; i < curve_data->channels; i++) {
329                 __le16 *freq = source;
330                 source += sizeof(__le16);
331                 *((__le16 *)target) = *freq;
332                 target += sizeof(__le16);
333                 for (j = 0; j < curve_data->points_per_channel; j++) {
334                         memcpy(target, source, sizeof(*src));
335
336                         target += sizeof(*dst);
337                         source += sizeof(*src);
338                 }
339                 source++;
340         }
341
342         return 0;
343 }
344
345 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
346                               "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
347 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
348
349 static void p54_parse_rssical(struct ieee80211_hw *dev, void *data, int len,
350                              u16 type)
351 {
352         struct p54_common *priv = dev->priv;
353         int offset = (type == PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED) ? 2 : 0;
354         int entry_size = sizeof(struct pda_rssi_cal_entry) + offset;
355         int num_entries = (type == PDR_RSSI_LINEAR_APPROXIMATION) ? 1 : 2;
356         int i;
357
358         if (len != (entry_size * num_entries)) {
359                 printk(KERN_ERR "%s: unknown rssi calibration data packing "
360                                  " type:(%x) len:%d.\n",
361                        wiphy_name(dev->wiphy), type, len);
362
363                 print_hex_dump_bytes("rssical:", DUMP_PREFIX_NONE,
364                                      data, len);
365
366                 printk(KERN_ERR "%s: please report this issue.\n",
367                         wiphy_name(dev->wiphy));
368                 return;
369         }
370
371         for (i = 0; i < num_entries; i++) {
372                 struct pda_rssi_cal_entry *cal = data +
373                                                  (offset + i * entry_size);
374                 priv->rssical_db[i].mul = (s16) le16_to_cpu(cal->mul);
375                 priv->rssical_db[i].add = (s16) le16_to_cpu(cal->add);
376         }
377 }
378
379 static void p54_parse_default_country(struct ieee80211_hw *dev,
380                                       void *data, int len)
381 {
382         struct pda_country *country;
383
384         if (len != sizeof(*country)) {
385                 printk(KERN_ERR "%s: found possible invalid default country "
386                                 "eeprom entry. (entry size: %d)\n",
387                        wiphy_name(dev->wiphy), len);
388
389                 print_hex_dump_bytes("country:", DUMP_PREFIX_NONE,
390                                      data, len);
391
392                 printk(KERN_ERR "%s: please report this issue.\n",
393                         wiphy_name(dev->wiphy));
394                 return;
395         }
396
397         country = (struct pda_country *) data;
398         if (country->flags == PDR_COUNTRY_CERT_CODE_PSEUDO)
399                 regulatory_hint(dev->wiphy, country->alpha2);
400         else {
401                 /* TODO:
402                  * write a shared/common function that converts
403                  * "Regulatory domain codes" (802.11-2007 14.8.2.2)
404                  * into ISO/IEC 3166-1 alpha2 for regulatory_hint.
405                  */
406         }
407 }
408
409 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
410 {
411         struct p54_common *priv = dev->priv;
412         struct eeprom_pda_wrap *wrap = NULL;
413         struct pda_entry *entry;
414         unsigned int data_len, entry_len;
415         void *tmp;
416         int err;
417         u8 *end = (u8 *)eeprom + len;
418         u16 synth = 0;
419
420         wrap = (struct eeprom_pda_wrap *) eeprom;
421         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
422
423         /* verify that at least the entry length/code fits */
424         while ((u8 *)entry <= end - sizeof(*entry)) {
425                 entry_len = le16_to_cpu(entry->len);
426                 data_len = ((entry_len - 1) << 1);
427
428                 /* abort if entry exceeds whole structure */
429                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
430                         break;
431
432                 switch (le16_to_cpu(entry->code)) {
433                 case PDR_MAC_ADDRESS:
434                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
435                         break;
436                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
437                         if (data_len < 2) {
438                                 err = -EINVAL;
439                                 goto err;
440                         }
441
442                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
443                                 err = -EINVAL;
444                                 goto err;
445                         }
446
447                         priv->output_limit = kmalloc(entry->data[1] *
448                                 sizeof(*priv->output_limit), GFP_KERNEL);
449
450                         if (!priv->output_limit) {
451                                 err = -ENOMEM;
452                                 goto err;
453                         }
454
455                         memcpy(priv->output_limit, &entry->data[2],
456                                entry->data[1]*sizeof(*priv->output_limit));
457                         priv->output_limit_len = entry->data[1];
458                         break;
459                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
460                         struct pda_pa_curve_data *curve_data =
461                                 (struct pda_pa_curve_data *)entry->data;
462                         if (data_len < sizeof(*curve_data)) {
463                                 err = -EINVAL;
464                                 goto err;
465                         }
466
467                         switch (curve_data->cal_method_rev) {
468                         case 0:
469                                 err = p54_convert_rev0(dev, curve_data);
470                                 break;
471                         case 1:
472                                 err = p54_convert_rev1(dev, curve_data);
473                                 break;
474                         default:
475                                 printk(KERN_ERR "%s: unknown curve data "
476                                                 "revision %d\n",
477                                                 wiphy_name(dev->wiphy),
478                                                 curve_data->cal_method_rev);
479                                 err = -ENODEV;
480                                 break;
481                         }
482                         if (err)
483                                 goto err;
484                         }
485                         break;
486                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
487                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
488                         if (!priv->iq_autocal) {
489                                 err = -ENOMEM;
490                                 goto err;
491                         }
492
493                         memcpy(priv->iq_autocal, entry->data, data_len);
494                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
495                         break;
496                 case PDR_DEFAULT_COUNTRY:
497                         p54_parse_default_country(dev, entry->data, data_len);
498                         break;
499                 case PDR_INTERFACE_LIST:
500                         tmp = entry->data;
501                         while ((u8 *)tmp < entry->data + data_len) {
502                                 struct bootrec_exp_if *exp_if = tmp;
503                                 if (le16_to_cpu(exp_if->if_id) == 0xf)
504                                         synth = le16_to_cpu(exp_if->variant);
505                                 tmp += sizeof(struct bootrec_exp_if);
506                         }
507                         break;
508                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
509                         priv->version = *(u8 *)(entry->data + 1);
510                         break;
511                 case PDR_RSSI_LINEAR_APPROXIMATION:
512                 case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
513                 case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
514                         p54_parse_rssical(dev, entry->data, data_len,
515                                           le16_to_cpu(entry->code));
516                         break;
517                 case PDR_END:
518                         /* make it overrun */
519                         entry_len = len;
520                         break;
521                 case PDR_MANUFACTURING_PART_NUMBER:
522                 case PDR_PDA_VERSION:
523                 case PDR_NIC_SERIAL_NUMBER:
524                 case PDR_REGULATORY_DOMAIN_LIST:
525                 case PDR_TEMPERATURE_TYPE:
526                 case PDR_PRISM_PCI_IDENTIFIER:
527                 case PDR_COUNTRY_INFORMATION:
528                 case PDR_OEM_NAME:
529                 case PDR_PRODUCT_NAME:
530                 case PDR_UTF8_OEM_NAME:
531                 case PDR_UTF8_PRODUCT_NAME:
532                 case PDR_COUNTRY_LIST:
533                 case PDR_ANTENNA_GAIN:
534                 case PDR_PRISM_INDIGO_PA_CALIBRATION_DATA:
535                 case PDR_REGULATORY_POWER_LIMITS:
536                 case PDR_RADIATED_TRANSMISSION_CORRECTION:
537                 case PDR_PRISM_TX_IQ_CALIBRATION:
538                 case PDR_BASEBAND_REGISTERS:
539                 case PDR_PER_CHANNEL_BASEBAND_REGISTERS:
540                         break;
541                 default:
542                         printk(KERN_INFO "%s: unknown eeprom code : 0x%x\n",
543                                 wiphy_name(dev->wiphy),
544                                 le16_to_cpu(entry->code));
545                         break;
546                 }
547
548                 entry = (void *)entry + (entry_len + 1)*2;
549         }
550
551         if (!synth || !priv->iq_autocal || !priv->output_limit ||
552             !priv->curve_data) {
553                 printk(KERN_ERR "%s: not all required entries found in eeprom!\n",
554                         wiphy_name(dev->wiphy));
555                 err = -EINVAL;
556                 goto err;
557         }
558
559         priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
560         if (priv->rxhw == 4)
561                 p54_init_xbow_synth(dev);
562         if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
563                 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
564         if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
565                 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
566         if ((synth & PDR_SYNTH_RX_DIV_MASK) == PDR_SYNTH_RX_DIV_SUPPORTED)
567                 priv->rx_diversity_mask = 3;
568         if ((synth & PDR_SYNTH_TX_DIV_MASK) == PDR_SYNTH_TX_DIV_SUPPORTED)
569                 priv->tx_diversity_mask = 3;
570
571         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
572                 u8 perm_addr[ETH_ALEN];
573
574                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
575                         wiphy_name(dev->wiphy));
576                 random_ether_addr(perm_addr);
577                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
578         }
579
580         printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
581                 wiphy_name(dev->wiphy),
582                 dev->wiphy->perm_addr,
583                 priv->version, p54_rf_chips[priv->rxhw]);
584
585         return 0;
586
587   err:
588         if (priv->iq_autocal) {
589                 kfree(priv->iq_autocal);
590                 priv->iq_autocal = NULL;
591         }
592
593         if (priv->output_limit) {
594                 kfree(priv->output_limit);
595                 priv->output_limit = NULL;
596         }
597
598         if (priv->curve_data) {
599                 kfree(priv->curve_data);
600                 priv->curve_data = NULL;
601         }
602
603         printk(KERN_ERR "%s: eeprom parse failed!\n",
604                 wiphy_name(dev->wiphy));
605         return err;
606 }
607
608 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
609 {
610         struct p54_common *priv = dev->priv;
611         int band = dev->conf.channel->band;
612
613         return ((rssi * priv->rssical_db[band].mul) / 64 +
614                          priv->rssical_db[band].add) / 4;
615 }
616
617 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
618 {
619         struct p54_common *priv = dev->priv;
620         struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
621         struct ieee80211_rx_status rx_status = {0};
622         u16 freq = le16_to_cpu(hdr->freq);
623         size_t header_len = sizeof(*hdr);
624         u32 tsf32;
625         u8 rate = hdr->rate & 0xf;
626
627         /*
628          * If the device is in a unspecified state we have to
629          * ignore all data frames. Else we could end up with a
630          * nasty crash.
631          */
632         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
633                 return 0;
634
635         if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
636                 if (priv->filter_flags & FIF_FCSFAIL)
637                         rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
638                 else
639                         return 0;
640         }
641
642         if (hdr->decrypt_status == P54_DECRYPT_OK)
643                 rx_status.flag |= RX_FLAG_DECRYPTED;
644         if ((hdr->decrypt_status == P54_DECRYPT_FAIL_MICHAEL) ||
645             (hdr->decrypt_status == P54_DECRYPT_FAIL_TKIP))
646                 rx_status.flag |= RX_FLAG_MMIC_ERROR;
647
648         rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
649         rx_status.noise = priv->noise;
650         /* XX correct? */
651         rx_status.qual = (100 * hdr->rssi) / 127;
652         if (hdr->rate & 0x10)
653                 rx_status.flag |= RX_FLAG_SHORTPRE;
654         if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
655                 rx_status.rate_idx = (rate < 4) ? 0 : rate - 4;
656         else
657                 rx_status.rate_idx = rate;
658
659         rx_status.freq = freq;
660         rx_status.band =  dev->conf.channel->band;
661         rx_status.antenna = hdr->antenna;
662
663         tsf32 = le32_to_cpu(hdr->tsf32);
664         if (tsf32 < priv->tsf_low32)
665                 priv->tsf_high32++;
666         rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
667         priv->tsf_low32 = tsf32;
668
669         rx_status.flag |= RX_FLAG_TSFT;
670
671         if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
672                 header_len += hdr->align[0];
673
674         skb_pull(skb, header_len);
675         skb_trim(skb, le16_to_cpu(hdr->len));
676
677         ieee80211_rx_irqsafe(dev, skb, &rx_status);
678
679         queue_delayed_work(dev->workqueue, &priv->work,
680                            msecs_to_jiffies(P54_STATISTICS_UPDATE));
681
682         return -1;
683 }
684
685 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
686 {
687         struct p54_common *priv = dev->priv;
688         int i;
689
690         if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
691                 return ;
692
693         for (i = 0; i < dev->queues; i++)
694                 if (priv->tx_stats[i + P54_QUEUE_DATA].len <
695                     priv->tx_stats[i + P54_QUEUE_DATA].limit)
696                         ieee80211_wake_queue(dev, i);
697 }
698
699 void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
700 {
701         struct p54_common *priv = dev->priv;
702         struct ieee80211_tx_info *info;
703         struct memrecord *range;
704         unsigned long flags;
705         u32 freed = 0, last_addr = priv->rx_start;
706
707         if (unlikely(!skb || !dev || !skb_queue_len(&priv->tx_queue)))
708                 return;
709
710         /*
711          * don't try to free an already unlinked skb
712          */
713         if (unlikely((!skb->next) || (!skb->prev)))
714                 return;
715
716         spin_lock_irqsave(&priv->tx_queue.lock, flags);
717         info = IEEE80211_SKB_CB(skb);
718         range = (void *)info->rate_driver_data;
719         if (skb->prev != (struct sk_buff *)&priv->tx_queue) {
720                 struct ieee80211_tx_info *ni;
721                 struct memrecord *mr;
722
723                 ni = IEEE80211_SKB_CB(skb->prev);
724                 mr = (struct memrecord *)ni->rate_driver_data;
725                 last_addr = mr->end_addr;
726         }
727         if (skb->next != (struct sk_buff *)&priv->tx_queue) {
728                 struct ieee80211_tx_info *ni;
729                 struct memrecord *mr;
730
731                 ni = IEEE80211_SKB_CB(skb->next);
732                 mr = (struct memrecord *)ni->rate_driver_data;
733                 freed = mr->start_addr - last_addr;
734         } else
735                 freed = priv->rx_end - last_addr;
736         __skb_unlink(skb, &priv->tx_queue);
737         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
738         dev_kfree_skb_any(skb);
739
740         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
741                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
742                 p54_wake_free_queues(dev);
743 }
744 EXPORT_SYMBOL_GPL(p54_free_skb);
745
746 static struct sk_buff *p54_find_tx_entry(struct ieee80211_hw *dev,
747                                            __le32 req_id)
748 {
749         struct p54_common *priv = dev->priv;
750         struct sk_buff *entry = priv->tx_queue.next;
751         unsigned long flags;
752
753         spin_lock_irqsave(&priv->tx_queue.lock, flags);
754         while (entry != (struct sk_buff *)&priv->tx_queue) {
755                 struct p54_hdr *hdr = (struct p54_hdr *) entry->data;
756
757                 if (hdr->req_id == req_id) {
758                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
759                         return entry;
760                 }
761                 entry = entry->next;
762         }
763         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
764         return NULL;
765 }
766
767 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
768 {
769         struct p54_common *priv = dev->priv;
770         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
771         struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
772         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
773         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
774         struct memrecord *range = NULL;
775         u32 freed = 0;
776         u32 last_addr = priv->rx_start;
777         unsigned long flags;
778         int count, idx;
779
780         spin_lock_irqsave(&priv->tx_queue.lock, flags);
781         while (entry != (struct sk_buff *)&priv->tx_queue) {
782                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
783                 struct p54_hdr *entry_hdr;
784                 struct p54_tx_data *entry_data;
785                 unsigned int pad = 0, frame_len;
786
787                 range = (void *)info->rate_driver_data;
788                 if (range->start_addr != addr) {
789                         last_addr = range->end_addr;
790                         entry = entry->next;
791                         continue;
792                 }
793
794                 if (entry->next != (struct sk_buff *)&priv->tx_queue) {
795                         struct ieee80211_tx_info *ni;
796                         struct memrecord *mr;
797
798                         ni = IEEE80211_SKB_CB(entry->next);
799                         mr = (struct memrecord *)ni->rate_driver_data;
800                         freed = mr->start_addr - last_addr;
801                 } else
802                         freed = priv->rx_end - last_addr;
803
804                 last_addr = range->end_addr;
805                 __skb_unlink(entry, &priv->tx_queue);
806                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
807
808                 frame_len = entry->len;
809                 entry_hdr = (struct p54_hdr *) entry->data;
810                 entry_data = (struct p54_tx_data *) entry_hdr->data;
811                 priv->tx_stats[entry_data->hw_queue].len--;
812                 priv->stats.dot11ACKFailureCount += payload->tries - 1;
813
814                 /*
815                  * Frames in P54_QUEUE_FWSCAN and P54_QUEUE_BEACON are
816                  * generated by the driver. Therefore tx_status is bogus
817                  * and we don't want to confuse the mac80211 stack.
818                  */
819                 if (unlikely(entry_data->hw_queue < P54_QUEUE_FWSCAN)) {
820                         if (entry_data->hw_queue == P54_QUEUE_BEACON)
821                                 priv->cached_beacon = NULL;
822
823                         kfree_skb(entry);
824                         goto out;
825                 }
826
827                 /*
828                  * Clear manually, ieee80211_tx_info_clear_status would
829                  * clear the counts too and we need them.
830                  */
831                 memset(&info->status.ampdu_ack_len, 0,
832                        sizeof(struct ieee80211_tx_info) -
833                        offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
834                 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
835                                       status.ampdu_ack_len) != 23);
836
837                 if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
838                         pad = entry_data->align[0];
839
840                 /* walk through the rates array and adjust the counts */
841                 count = payload->tries;
842                 for (idx = 0; idx < 4; idx++) {
843                         if (count >= info->status.rates[idx].count) {
844                                 count -= info->status.rates[idx].count;
845                         } else if (count > 0) {
846                                 info->status.rates[idx].count = count;
847                                 count = 0;
848                         } else {
849                                 info->status.rates[idx].idx = -1;
850                                 info->status.rates[idx].count = 0;
851                         }
852                 }
853
854                 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
855                      (!payload->status))
856                         info->flags |= IEEE80211_TX_STAT_ACK;
857                 if (payload->status & P54_TX_PSM_CANCELLED)
858                         info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
859                 info->status.ack_signal = p54_rssi_to_dbm(dev,
860                                 (int)payload->ack_rssi);
861
862                 /* Undo all changes to the frame. */
863                 switch (entry_data->key_type) {
864                 case P54_CRYPTO_TKIPMICHAEL: {
865                         u8 *iv = (u8 *)(entry_data->align + pad +
866                                         entry_data->crypt_offset);
867
868                         /* Restore the original TKIP IV. */
869                         iv[2] = iv[0];
870                         iv[0] = iv[1];
871                         iv[1] = (iv[0] | 0x20) & 0x7f;  /* WEPSeed - 8.3.2.2 */
872
873                         frame_len -= 12; /* remove TKIP_MMIC + TKIP_ICV */
874                         break;
875                         }
876                 case P54_CRYPTO_AESCCMP:
877                         frame_len -= 8; /* remove CCMP_MIC */
878                         break;
879                 case P54_CRYPTO_WEP:
880                         frame_len -= 4; /* remove WEP_ICV */
881                         break;
882                 }
883                 skb_trim(entry, frame_len);
884                 skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
885                 ieee80211_tx_status_irqsafe(dev, entry);
886                 goto out;
887         }
888         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
889
890 out:
891         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
892                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
893                 p54_wake_free_queues(dev);
894 }
895
896 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
897                                    struct sk_buff *skb)
898 {
899         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
900         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
901         struct p54_common *priv = dev->priv;
902
903         if (!priv->eeprom)
904                 return ;
905
906         if (priv->fw_var >= 0x509) {
907                 memcpy(priv->eeprom, eeprom->v2.data,
908                        le16_to_cpu(eeprom->v2.len));
909         } else {
910                 memcpy(priv->eeprom, eeprom->v1.data,
911                        le16_to_cpu(eeprom->v1.len));
912         }
913
914         complete(&priv->eeprom_comp);
915 }
916
917 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
918 {
919         struct p54_common *priv = dev->priv;
920         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
921         struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
922         u32 tsf32;
923
924         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
925                 return ;
926
927         tsf32 = le32_to_cpu(stats->tsf32);
928         if (tsf32 < priv->tsf_low32)
929                 priv->tsf_high32++;
930         priv->tsf_low32 = tsf32;
931
932         priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
933         priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
934         priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
935
936         priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
937
938         p54_free_skb(dev, p54_find_tx_entry(dev, hdr->req_id));
939 }
940
941 static void p54_rx_trap(struct ieee80211_hw *dev, struct sk_buff *skb)
942 {
943         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
944         struct p54_trap *trap = (struct p54_trap *) hdr->data;
945         u16 event = le16_to_cpu(trap->event);
946         u16 freq = le16_to_cpu(trap->frequency);
947
948         switch (event) {
949         case P54_TRAP_BEACON_TX:
950                 break;
951         case P54_TRAP_RADAR:
952                 printk(KERN_INFO "%s: radar (freq:%d MHz)\n",
953                         wiphy_name(dev->wiphy), freq);
954                 break;
955         case P54_TRAP_NO_BEACON:
956                 break;
957         case P54_TRAP_SCAN:
958                 break;
959         case P54_TRAP_TBTT:
960                 break;
961         case P54_TRAP_TIMER:
962                 break;
963         default:
964                 printk(KERN_INFO "%s: received event:%x freq:%d\n",
965                        wiphy_name(dev->wiphy), event, freq);
966                 break;
967         }
968 }
969
970 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
971 {
972         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
973
974         switch (le16_to_cpu(hdr->type)) {
975         case P54_CONTROL_TYPE_TXDONE:
976                 p54_rx_frame_sent(dev, skb);
977                 break;
978         case P54_CONTROL_TYPE_TRAP:
979                 p54_rx_trap(dev, skb);
980                 break;
981         case P54_CONTROL_TYPE_BBP:
982                 break;
983         case P54_CONTROL_TYPE_STAT_READBACK:
984                 p54_rx_stats(dev, skb);
985                 break;
986         case P54_CONTROL_TYPE_EEPROM_READBACK:
987                 p54_rx_eeprom_readback(dev, skb);
988                 break;
989         default:
990                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
991                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
992                 break;
993         }
994
995         return 0;
996 }
997
998 /* returns zero if skb can be reused */
999 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
1000 {
1001         u16 type = le16_to_cpu(*((__le16 *)skb->data));
1002
1003         if (type & P54_HDR_FLAG_CONTROL)
1004                 return p54_rx_control(dev, skb);
1005         else
1006                 return p54_rx_data(dev, skb);
1007 }
1008 EXPORT_SYMBOL_GPL(p54_rx);
1009
1010 /*
1011  * So, the firmware is somewhat stupid and doesn't know what places in its
1012  * memory incoming data should go to. By poking around in the firmware, we
1013  * can find some unused memory to upload our packets to. However, data that we
1014  * want the card to TX needs to stay intact until the card has told us that
1015  * it is done with it. This function finds empty places we can upload to and
1016  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
1017  * allocated areas.
1018  */
1019 static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
1020                                struct p54_hdr *data, u32 len)
1021 {
1022         struct p54_common *priv = dev->priv;
1023         struct sk_buff *entry = priv->tx_queue.next;
1024         struct sk_buff *target_skb = NULL;
1025         struct ieee80211_tx_info *info;
1026         struct memrecord *range;
1027         u32 last_addr = priv->rx_start;
1028         u32 largest_hole = 0;
1029         u32 target_addr = priv->rx_start;
1030         unsigned long flags;
1031         unsigned int left;
1032         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
1033
1034         if (!skb)
1035                 return -EINVAL;
1036
1037         spin_lock_irqsave(&priv->tx_queue.lock, flags);
1038
1039         left = skb_queue_len(&priv->tx_queue);
1040         if (unlikely(left >= 28)) {
1041                 /*
1042                  * The tx_queue is nearly full!
1043                  * We have throttle normal data traffic, because we must
1044                  * have a few spare slots for control frames left.
1045                  */
1046                 ieee80211_stop_queues(dev);
1047                 queue_delayed_work(dev->workqueue, &priv->work,
1048                                    msecs_to_jiffies(P54_TX_TIMEOUT));
1049
1050                 if (unlikely(left == 32)) {
1051                         /*
1052                          * The tx_queue is now really full.
1053                          *
1054                          * TODO: check if the device has crashed and reset it.
1055                          */
1056                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1057                         return -ENOSPC;
1058                 }
1059         }
1060
1061         while (left--) {
1062                 u32 hole_size;
1063                 info = IEEE80211_SKB_CB(entry);
1064                 range = (void *)info->rate_driver_data;
1065                 hole_size = range->start_addr - last_addr;
1066                 if (!target_skb && hole_size >= len) {
1067                         target_skb = entry->prev;
1068                         hole_size -= len;
1069                         target_addr = last_addr;
1070                 }
1071                 largest_hole = max(largest_hole, hole_size);
1072                 last_addr = range->end_addr;
1073                 entry = entry->next;
1074         }
1075         if (!target_skb && priv->rx_end - last_addr >= len) {
1076                 target_skb = priv->tx_queue.prev;
1077                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
1078                 if (!skb_queue_empty(&priv->tx_queue)) {
1079                         info = IEEE80211_SKB_CB(target_skb);
1080                         range = (void *)info->rate_driver_data;
1081                         target_addr = range->end_addr;
1082                 }
1083         } else
1084                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
1085
1086         if (!target_skb) {
1087                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1088                 ieee80211_stop_queues(dev);
1089                 return -ENOSPC;
1090         }
1091
1092         info = IEEE80211_SKB_CB(skb);
1093         range = (void *)info->rate_driver_data;
1094         range->start_addr = target_addr;
1095         range->end_addr = target_addr + len;
1096         __skb_queue_after(&priv->tx_queue, target_skb, skb);
1097         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1098
1099         if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
1100                            48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
1101                 ieee80211_stop_queues(dev);
1102
1103         data->req_id = cpu_to_le32(target_addr + priv->headroom);
1104         return 0;
1105 }
1106
1107 static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev, u16 hdr_flags,
1108                                      u16 payload_len, u16 type, gfp_t memflags)
1109 {
1110         struct p54_common *priv = dev->priv;
1111         struct p54_hdr *hdr;
1112         struct sk_buff *skb;
1113         size_t frame_len = sizeof(*hdr) + payload_len;
1114
1115         if (frame_len > P54_MAX_CTRL_FRAME_LEN)
1116                 return NULL;
1117
1118         skb = __dev_alloc_skb(priv->tx_hdr_len + frame_len, memflags);
1119         if (!skb)
1120                 return NULL;
1121         skb_reserve(skb, priv->tx_hdr_len);
1122
1123         hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
1124         hdr->flags = cpu_to_le16(hdr_flags);
1125         hdr->len = cpu_to_le16(payload_len);
1126         hdr->type = cpu_to_le16(type);
1127         hdr->tries = hdr->rts_tries = 0;
1128
1129         if (p54_assign_address(dev, skb, hdr, frame_len)) {
1130                 kfree_skb(skb);
1131                 return NULL;
1132         }
1133         return skb;
1134 }
1135
1136 int p54_read_eeprom(struct ieee80211_hw *dev)
1137 {
1138         struct p54_common *priv = dev->priv;
1139         struct p54_eeprom_lm86 *eeprom_hdr;
1140         struct sk_buff *skb;
1141         size_t eeprom_size = 0x2020, offset = 0, blocksize, maxblocksize;
1142         int ret = -ENOMEM;
1143         void *eeprom = NULL;
1144
1145         maxblocksize = EEPROM_READBACK_LEN;
1146         if (priv->fw_var >= 0x509)
1147                 maxblocksize -= 0xc;
1148         else
1149                 maxblocksize -= 0x4;
1150
1151         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(*eeprom_hdr) +
1152                             maxblocksize, P54_CONTROL_TYPE_EEPROM_READBACK,
1153                             GFP_KERNEL);
1154         if (!skb)
1155                 goto free;
1156         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
1157         if (!priv->eeprom)
1158                 goto free;
1159         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
1160         if (!eeprom)
1161                 goto free;
1162
1163         eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
1164                      sizeof(*eeprom_hdr) + maxblocksize);
1165
1166         while (eeprom_size) {
1167                 blocksize = min(eeprom_size, maxblocksize);
1168                 if (priv->fw_var < 0x509) {
1169                         eeprom_hdr->v1.offset = cpu_to_le16(offset);
1170                         eeprom_hdr->v1.len = cpu_to_le16(blocksize);
1171                 } else {
1172                         eeprom_hdr->v2.offset = cpu_to_le32(offset);
1173                         eeprom_hdr->v2.len = cpu_to_le16(blocksize);
1174                         eeprom_hdr->v2.magic2 = 0xf;
1175                         memcpy(eeprom_hdr->v2.magic, (const char *)"LOCK", 4);
1176                 }
1177                 priv->tx(dev, skb);
1178
1179                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
1180                         printk(KERN_ERR "%s: device does not respond!\n",
1181                                 wiphy_name(dev->wiphy));
1182                         ret = -EBUSY;
1183                         goto free;
1184                 }
1185
1186                 memcpy(eeprom + offset, priv->eeprom, blocksize);
1187                 offset += blocksize;
1188                 eeprom_size -= blocksize;
1189         }
1190
1191         ret = p54_parse_eeprom(dev, eeprom, offset);
1192 free:
1193         kfree(priv->eeprom);
1194         priv->eeprom = NULL;
1195         p54_free_skb(dev, skb);
1196         kfree(eeprom);
1197
1198         return ret;
1199 }
1200 EXPORT_SYMBOL_GPL(p54_read_eeprom);
1201
1202 static int p54_set_tim(struct ieee80211_hw *dev, struct ieee80211_sta *sta,
1203                 bool set)
1204 {
1205         struct p54_common *priv = dev->priv;
1206         struct sk_buff *skb;
1207         struct p54_tim *tim;
1208
1209         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*tim),
1210                             P54_CONTROL_TYPE_TIM, GFP_ATOMIC);
1211         if (!skb)
1212                 return -ENOMEM;
1213
1214         tim = (struct p54_tim *) skb_put(skb, sizeof(*tim));
1215         tim->count = 1;
1216         tim->entry[0] = cpu_to_le16(set ? (sta->aid | 0x8000) : sta->aid);
1217         priv->tx(dev, skb);
1218         return 0;
1219 }
1220
1221 static int p54_sta_unlock(struct ieee80211_hw *dev, u8 *addr)
1222 {
1223         struct p54_common *priv = dev->priv;
1224         struct sk_buff *skb;
1225         struct p54_sta_unlock *sta;
1226
1227         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*sta),
1228                             P54_CONTROL_TYPE_PSM_STA_UNLOCK, GFP_ATOMIC);
1229         if (!skb)
1230                 return -ENOMEM;
1231
1232         sta = (struct p54_sta_unlock *)skb_put(skb, sizeof(*sta));
1233         memcpy(sta->addr, addr, ETH_ALEN);
1234         priv->tx(dev, skb);
1235         return 0;
1236 }
1237
1238 static void p54_sta_notify(struct ieee80211_hw *dev, struct ieee80211_vif *vif,
1239                               enum sta_notify_cmd notify_cmd,
1240                               struct ieee80211_sta *sta)
1241 {
1242         switch (notify_cmd) {
1243         case STA_NOTIFY_ADD:
1244         case STA_NOTIFY_REMOVE:
1245                 /*
1246                  * Notify the firmware that we don't want or we don't
1247                  * need to buffer frames for this station anymore.
1248                  */
1249
1250                 p54_sta_unlock(dev, sta->addr);
1251                 break;
1252         case STA_NOTIFY_AWAKE:
1253                 /* update the firmware's filter table */
1254                 p54_sta_unlock(dev, sta->addr);
1255                 break;
1256         default:
1257                 break;
1258         }
1259 }
1260
1261 static int p54_tx_cancel(struct ieee80211_hw *dev, struct sk_buff *entry)
1262 {
1263         struct p54_common *priv = dev->priv;
1264         struct sk_buff *skb;
1265         struct p54_hdr *hdr;
1266         struct p54_txcancel *cancel;
1267
1268         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*cancel),
1269                             P54_CONTROL_TYPE_TXCANCEL, GFP_ATOMIC);
1270         if (!skb)
1271                 return -ENOMEM;
1272
1273         hdr = (void *)entry->data;
1274         cancel = (struct p54_txcancel *)skb_put(skb, sizeof(*cancel));
1275         cancel->req_id = hdr->req_id;
1276         priv->tx(dev, skb);
1277         return 0;
1278 }
1279
1280 static int p54_tx_fill(struct ieee80211_hw *dev, struct sk_buff *skb,
1281                 struct ieee80211_tx_info *info, u8 *queue, size_t *extra_len,
1282                 u16 *flags, u16 *aid)
1283 {
1284         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1285         struct p54_common *priv = dev->priv;
1286         int ret = 1;
1287
1288         switch (priv->mode) {
1289         case NL80211_IFTYPE_MONITOR:
1290                 /*
1291                  * We have to set P54_HDR_FLAG_DATA_OUT_PROMISC for
1292                  * every frame in promiscuous/monitor mode.
1293                  * see STSW45x0C LMAC API - page 12.
1294                  */
1295                 *aid = 0;
1296                 *flags = P54_HDR_FLAG_DATA_OUT_PROMISC;
1297                 *queue += P54_QUEUE_DATA;
1298                 break;
1299         case NL80211_IFTYPE_STATION:
1300                 *aid = 1;
1301                 if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1302                         *queue = P54_QUEUE_MGMT;
1303                         ret = 0;
1304                 } else
1305                         *queue += P54_QUEUE_DATA;
1306                 break;
1307         case NL80211_IFTYPE_AP:
1308         case NL80211_IFTYPE_ADHOC:
1309         case NL80211_IFTYPE_MESH_POINT:
1310                 if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
1311                         *aid = 0;
1312                         *queue = P54_QUEUE_CAB;
1313                         return 0;
1314                 }
1315
1316                 if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1317                         if (ieee80211_is_probe_resp(hdr->frame_control)) {
1318                                 *aid = 0;
1319                                 *queue = P54_QUEUE_MGMT;
1320                                 *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP |
1321                                          P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1322                                 return 0;
1323                         } else if (ieee80211_is_beacon(hdr->frame_control)) {
1324                                 *aid = 0;
1325
1326                                 if (info->flags & IEEE80211_TX_CTL_INJECTED) {
1327                                         /*
1328                                          * Injecting beacons on top of a AP is
1329                                          * not a good idea... nevertheless,
1330                                          * it should be doable.
1331                                          */
1332
1333                                         *queue += P54_QUEUE_DATA;
1334                                         return 1;
1335                                 }
1336
1337                                 *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP;
1338                                 *queue = P54_QUEUE_BEACON;
1339                                 *extra_len = IEEE80211_MAX_TIM_LEN;
1340                                 return 0;
1341                         } else {
1342                                 *queue = P54_QUEUE_MGMT;
1343                                 ret = 0;
1344                         }
1345                 } else
1346                         *queue += P54_QUEUE_DATA;
1347
1348                 if (info->control.sta)
1349                         *aid = info->control.sta->aid;
1350                 else
1351                         *flags |= P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1352                 break;
1353         }
1354         return ret;
1355 }
1356
1357 static u8 p54_convert_algo(enum ieee80211_key_alg alg)
1358 {
1359         switch (alg) {
1360         case ALG_WEP:
1361                 return P54_CRYPTO_WEP;
1362         case ALG_TKIP:
1363                 return P54_CRYPTO_TKIPMICHAEL;
1364         case ALG_CCMP:
1365                 return P54_CRYPTO_AESCCMP;
1366         default:
1367                 return 0;
1368         }
1369 }
1370
1371 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
1372 {
1373         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1374         struct ieee80211_tx_queue_stats *current_queue;
1375         struct p54_common *priv = dev->priv;
1376         struct p54_hdr *hdr;
1377         struct p54_tx_data *txhdr;
1378         size_t padding, len, tim_len = 0;
1379         int i, j, ridx, ret;
1380         u16 hdr_flags = 0, aid = 0;
1381         u8 rate, queue, crypt_offset = 0;
1382         u8 cts_rate = 0x20;
1383         u8 rc_flags;
1384         u8 calculated_tries[4];
1385         u8 nrates = 0, nremaining = 8;
1386
1387         queue = skb_get_queue_mapping(skb);
1388
1389         ret = p54_tx_fill(dev, skb, info, &queue, &tim_len, &hdr_flags, &aid);
1390         current_queue = &priv->tx_stats[queue];
1391         if (unlikely((current_queue->len > current_queue->limit) && ret))
1392                 return NETDEV_TX_BUSY;
1393         current_queue->len++;
1394         current_queue->count++;
1395         if ((current_queue->len == current_queue->limit) && ret)
1396                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
1397
1398         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
1399         len = skb->len;
1400
1401         if (info->control.hw_key) {
1402                 crypt_offset = ieee80211_get_hdrlen_from_skb(skb);
1403                 if (info->control.hw_key->alg == ALG_TKIP) {
1404                         u8 *iv = (u8 *)(skb->data + crypt_offset);
1405                         /*
1406                          * The firmware excepts that the IV has to have
1407                          * this special format
1408                          */
1409                         iv[1] = iv[0];
1410                         iv[0] = iv[2];
1411                         iv[2] = 0;
1412                 }
1413         }
1414
1415         txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
1416         hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
1417
1418         if (padding)
1419                 hdr_flags |= P54_HDR_FLAG_DATA_ALIGN;
1420         hdr->type = cpu_to_le16(aid);
1421         hdr->rts_tries = info->control.rates[0].count;
1422
1423         /*
1424          * we register the rates in perfect order, and
1425          * RTS/CTS won't happen on 5 GHz
1426          */
1427         cts_rate = info->control.rts_cts_rate_idx;
1428
1429         memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
1430
1431         /* see how many rates got used */
1432         for (i = 0; i < 4; i++) {
1433                 if (info->control.rates[i].idx < 0)
1434                         break;
1435                 nrates++;
1436         }
1437
1438         /* limit tries to 8/nrates per rate */
1439         for (i = 0; i < nrates; i++) {
1440                 /*
1441                  * The magic expression here is equivalent to 8/nrates for
1442                  * all values that matter, but avoids division and jumps.
1443                  * Note that nrates can only take the values 1 through 4.
1444                  */
1445                 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
1446                                                  info->control.rates[i].count);
1447                 nremaining -= calculated_tries[i];
1448         }
1449
1450         /* if there are tries left, distribute from back to front */
1451         for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
1452                 int tmp = info->control.rates[i].count - calculated_tries[i];
1453
1454                 if (tmp <= 0)
1455                         continue;
1456                 /* RC requested more tries at this rate */
1457
1458                 tmp = min_t(int, tmp, nremaining);
1459                 calculated_tries[i] += tmp;
1460                 nremaining -= tmp;
1461         }
1462
1463         ridx = 0;
1464         for (i = 0; i < nrates && ridx < 8; i++) {
1465                 /* we register the rates in perfect order */
1466                 rate = info->control.rates[i].idx;
1467                 if (info->band == IEEE80211_BAND_5GHZ)
1468                         rate += 4;
1469
1470                 /* store the count we actually calculated for TX status */
1471                 info->control.rates[i].count = calculated_tries[i];
1472
1473                 rc_flags = info->control.rates[i].flags;
1474                 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
1475                         rate |= 0x10;
1476                         cts_rate |= 0x10;
1477                 }
1478                 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
1479                         rate |= 0x40;
1480                 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1481                         rate |= 0x20;
1482                 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
1483                         txhdr->rateset[ridx] = rate;
1484                         ridx++;
1485                 }
1486         }
1487
1488         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
1489                 hdr_flags |= P54_HDR_FLAG_DATA_OUT_SEQNR;
1490
1491         /* TODO: enable bursting */
1492         hdr->flags = cpu_to_le16(hdr_flags);
1493         hdr->tries = ridx;
1494         txhdr->rts_rate_idx = 0;
1495         if (info->control.hw_key) {
1496                 txhdr->key_type = p54_convert_algo(info->control.hw_key->alg);
1497                 txhdr->key_len = min((u8)16, info->control.hw_key->keylen);
1498                 memcpy(txhdr->key, info->control.hw_key->key, txhdr->key_len);
1499                 if (info->control.hw_key->alg == ALG_TKIP) {
1500                         if (unlikely(skb_tailroom(skb) < 12))
1501                                 goto err;
1502                         /* reserve space for the MIC key */
1503                         len += 8;
1504                         memcpy(skb_put(skb, 8), &(info->control.hw_key->key
1505                                 [NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]), 8);
1506                 }
1507                 /* reserve some space for ICV */
1508                 len += info->control.hw_key->icv_len;
1509                 memset(skb_put(skb, info->control.hw_key->icv_len), 0,
1510                        info->control.hw_key->icv_len);
1511         } else {
1512                 txhdr->key_type = 0;
1513                 txhdr->key_len = 0;
1514         }
1515         txhdr->crypt_offset = crypt_offset;
1516         txhdr->hw_queue = queue;
1517         txhdr->backlog = current_queue->len;
1518         memset(txhdr->durations, 0, sizeof(txhdr->durations));
1519         txhdr->tx_antenna = ((info->antenna_sel_tx == 0) ?
1520                 2 : info->antenna_sel_tx - 1) & priv->tx_diversity_mask;
1521         txhdr->output_power = priv->output_power;
1522         txhdr->cts_rate = cts_rate;
1523         if (padding)
1524                 txhdr->align[0] = padding;
1525
1526         hdr->len = cpu_to_le16(len);
1527         /* modifies skb->cb and with it info, so must be last! */
1528         if (unlikely(p54_assign_address(dev, skb, hdr, skb->len + tim_len)))
1529                 goto err;
1530         priv->tx(dev, skb);
1531
1532         queue_delayed_work(dev->workqueue, &priv->work,
1533                            msecs_to_jiffies(P54_TX_FRAME_LIFETIME));
1534
1535         return NETDEV_TX_OK;
1536
1537  err:
1538         skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
1539         current_queue->len--;
1540         current_queue->count--;
1541         return NETDEV_TX_BUSY;
1542 }
1543
1544 static int p54_setup_mac(struct ieee80211_hw *dev)
1545 {
1546         struct p54_common *priv = dev->priv;
1547         struct sk_buff *skb;
1548         struct p54_setup_mac *setup;
1549         u16 mode;
1550
1551         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup),
1552                             P54_CONTROL_TYPE_SETUP, GFP_ATOMIC);
1553         if (!skb)
1554                 return -ENOMEM;
1555
1556         setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
1557         if (dev->conf.radio_enabled) {
1558                 switch (priv->mode) {
1559                 case NL80211_IFTYPE_STATION:
1560                         mode = P54_FILTER_TYPE_STATION;
1561                         break;
1562                 case NL80211_IFTYPE_AP:
1563                         mode = P54_FILTER_TYPE_AP;
1564                         break;
1565                 case NL80211_IFTYPE_ADHOC:
1566                 case NL80211_IFTYPE_MESH_POINT:
1567                         mode = P54_FILTER_TYPE_IBSS;
1568                         break;
1569                 case NL80211_IFTYPE_MONITOR:
1570                         mode = P54_FILTER_TYPE_PROMISCUOUS;
1571                         break;
1572                 default:
1573                         mode = P54_FILTER_TYPE_NONE;
1574                         break;
1575                 }
1576
1577                 /*
1578                  * "TRANSPARENT and PROMISCUOUS are mutually exclusive"
1579                  * STSW45X0C LMAC API - page 12
1580                  */
1581                 if (((priv->filter_flags & FIF_PROMISC_IN_BSS) ||
1582                      (priv->filter_flags & FIF_OTHER_BSS)) &&
1583                     (mode != P54_FILTER_TYPE_PROMISCUOUS))
1584                         mode |= P54_FILTER_TYPE_TRANSPARENT;
1585         } else
1586                 mode = P54_FILTER_TYPE_RX_DISABLED;
1587
1588         setup->mac_mode = cpu_to_le16(mode);
1589         memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
1590         memcpy(setup->bssid, priv->bssid, ETH_ALEN);
1591         setup->rx_antenna = 2 & priv->rx_diversity_mask; /* automatic */
1592         setup->rx_align = 0;
1593         if (priv->fw_var < 0x500) {
1594                 setup->v1.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1595                 memset(setup->v1.rts_rates, 0, 8);
1596                 setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
1597                 setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
1598                 setup->v1.rxhw = cpu_to_le16(priv->rxhw);
1599                 setup->v1.wakeup_timer = cpu_to_le16(priv->wakeup_timer);
1600                 setup->v1.unalloc0 = cpu_to_le16(0);
1601         } else {
1602                 setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
1603                 setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
1604                 setup->v2.rxhw = cpu_to_le16(priv->rxhw);
1605                 setup->v2.timer = cpu_to_le16(priv->wakeup_timer);
1606                 setup->v2.truncate = cpu_to_le16(48896);
1607                 setup->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1608                 setup->v2.sbss_offset = 0;
1609                 setup->v2.mcast_window = 0;
1610                 setup->v2.rx_rssi_threshold = 0;
1611                 setup->v2.rx_ed_threshold = 0;
1612                 setup->v2.ref_clock = cpu_to_le32(644245094);
1613                 setup->v2.lpf_bandwidth = cpu_to_le16(65535);
1614                 setup->v2.osc_start_delay = cpu_to_le16(65535);
1615         }
1616         priv->tx(dev, skb);
1617         return 0;
1618 }
1619
1620 static int p54_scan(struct ieee80211_hw *dev, u16 mode, u16 dwell)
1621 {
1622         struct p54_common *priv = dev->priv;
1623         struct sk_buff *skb;
1624         struct p54_scan *chan;
1625         unsigned int i;
1626         void *entry;
1627         __le16 freq = cpu_to_le16(dev->conf.channel->center_freq);
1628         int band = dev->conf.channel->band;
1629
1630         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*chan),
1631                             P54_CONTROL_TYPE_SCAN, GFP_ATOMIC);
1632         if (!skb)
1633                 return -ENOMEM;
1634
1635         chan = (struct p54_scan *) skb_put(skb, sizeof(*chan));
1636         memset(chan->padding1, 0, sizeof(chan->padding1));
1637         chan->mode = cpu_to_le16(mode);
1638         chan->dwell = cpu_to_le16(dwell);
1639
1640         for (i = 0; i < priv->iq_autocal_len; i++) {
1641                 if (priv->iq_autocal[i].freq != freq)
1642                         continue;
1643
1644                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
1645                        sizeof(*priv->iq_autocal));
1646                 break;
1647         }
1648         if (i == priv->iq_autocal_len)
1649                 goto err;
1650
1651         for (i = 0; i < priv->output_limit_len; i++) {
1652                 if (priv->output_limit[i].freq != freq)
1653                         continue;
1654
1655                 chan->val_barker = 0x38;
1656                 chan->val_bpsk = chan->dup_bpsk =
1657                         priv->output_limit[i].val_bpsk;
1658                 chan->val_qpsk = chan->dup_qpsk =
1659                         priv->output_limit[i].val_qpsk;
1660                 chan->val_16qam = chan->dup_16qam =
1661                         priv->output_limit[i].val_16qam;
1662                 chan->val_64qam = chan->dup_64qam =
1663                         priv->output_limit[i].val_64qam;
1664                 break;
1665         }
1666         if (i == priv->output_limit_len)
1667                 goto err;
1668
1669         entry = priv->curve_data->data;
1670         for (i = 0; i < priv->curve_data->channels; i++) {
1671                 if (*((__le16 *)entry) != freq) {
1672                         entry += sizeof(__le16);
1673                         entry += sizeof(struct p54_pa_curve_data_sample) *
1674                                  priv->curve_data->points_per_channel;
1675                         continue;
1676                 }
1677
1678                 entry += sizeof(__le16);
1679                 chan->pa_points_per_curve = 8;
1680                 memset(chan->curve_data, 0, sizeof(*chan->curve_data));
1681                 memcpy(chan->curve_data, entry,
1682                        sizeof(struct p54_pa_curve_data_sample) *
1683                        min((u8)8, priv->curve_data->points_per_channel));
1684                 break;
1685         }
1686
1687         if (priv->fw_var < 0x500) {
1688                 chan->v1_rssi.mul = cpu_to_le16(priv->rssical_db[band].mul);
1689                 chan->v1_rssi.add = cpu_to_le16(priv->rssical_db[band].add);
1690         } else {
1691                 chan->v2.rssi.mul = cpu_to_le16(priv->rssical_db[band].mul);
1692                 chan->v2.rssi.add = cpu_to_le16(priv->rssical_db[band].add);
1693                 chan->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1694                 memset(chan->v2.rts_rates, 0, 8);
1695         }
1696         priv->tx(dev, skb);
1697         return 0;
1698
1699  err:
1700         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1701         p54_free_skb(dev, skb);
1702         return -EINVAL;
1703 }
1704
1705 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1706 {
1707         struct p54_common *priv = dev->priv;
1708         struct sk_buff *skb;
1709         struct p54_led *led;
1710
1711         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led),
1712                             P54_CONTROL_TYPE_LED, GFP_ATOMIC);
1713         if (!skb)
1714                 return -ENOMEM;
1715
1716         led = (struct p54_led *)skb_put(skb, sizeof(*led));
1717         led->mode = cpu_to_le16(mode);
1718         led->led_permanent = cpu_to_le16(link);
1719         led->led_temporary = cpu_to_le16(act);
1720         led->duration = cpu_to_le16(1000);
1721         priv->tx(dev, skb);
1722         return 0;
1723 }
1724
1725 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
1726 do {                                                            \
1727         queue.aifs = cpu_to_le16(ai_fs);                        \
1728         queue.cwmin = cpu_to_le16(cw_min);                      \
1729         queue.cwmax = cpu_to_le16(cw_max);                      \
1730         queue.txop = cpu_to_le16(_txop);                        \
1731 } while(0)
1732
1733 static int p54_set_edcf(struct ieee80211_hw *dev)
1734 {
1735         struct p54_common *priv = dev->priv;
1736         struct sk_buff *skb;
1737         struct p54_edcf *edcf;
1738
1739         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf),
1740                             P54_CONTROL_TYPE_DCFINIT, GFP_ATOMIC);
1741         if (!skb)
1742                 return -ENOMEM;
1743
1744         edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
1745         if (priv->use_short_slot) {
1746                 edcf->slottime = 9;
1747                 edcf->sifs = 0x10;
1748                 edcf->eofpad = 0x00;
1749         } else {
1750                 edcf->slottime = 20;
1751                 edcf->sifs = 0x0a;
1752                 edcf->eofpad = 0x06;
1753         }
1754         /* (see prism54/isl_oid.h for further details) */
1755         edcf->frameburst = cpu_to_le16(0);
1756         edcf->round_trip_delay = cpu_to_le16(0);
1757         edcf->flags = 0;
1758         memset(edcf->mapping, 0, sizeof(edcf->mapping));
1759         memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
1760         priv->tx(dev, skb);
1761         return 0;
1762 }
1763
1764 static int p54_set_ps(struct ieee80211_hw *dev)
1765 {
1766         struct p54_common *priv = dev->priv;
1767         struct sk_buff *skb;
1768         struct p54_psm *psm;
1769         u16 mode;
1770         int i;
1771
1772         if (dev->conf.flags & IEEE80211_CONF_PS)
1773                 mode = P54_PSM | P54_PSM_DTIM | P54_PSM_MCBC;
1774         else
1775                 mode = P54_PSM_CAM;
1776
1777         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*psm),
1778                             P54_CONTROL_TYPE_PSM, GFP_ATOMIC);
1779         if (!skb)
1780                 return -ENOMEM;
1781
1782         psm = (struct p54_psm *)skb_put(skb, sizeof(*psm));
1783         psm->mode = cpu_to_le16(mode);
1784         psm->aid = cpu_to_le16(priv->aid);
1785         for (i = 0; i < ARRAY_SIZE(psm->intervals); i++) {
1786                 psm->intervals[i].interval =
1787                         cpu_to_le16(dev->conf.listen_interval);
1788                 psm->intervals[i].periods = cpu_to_le16(1);
1789         }
1790
1791         psm->beacon_rssi_skip_max = 60;
1792         psm->rssi_delta_threshold = 0;
1793         psm->nr = 0;
1794
1795         priv->tx(dev, skb);
1796
1797         return 0;
1798 }
1799
1800 static int p54_beacon_tim(struct sk_buff *skb)
1801 {
1802         /*
1803          * the good excuse for this mess is ... the firmware.
1804          * The dummy TIM MUST be at the end of the beacon frame,
1805          * because it'll be overwritten!
1806          */
1807
1808         struct ieee80211_mgmt *mgmt = (void *)skb->data;
1809         u8 *pos, *end;
1810
1811         if (skb->len <= sizeof(mgmt))
1812                 return -EINVAL;
1813
1814         pos = (u8 *)mgmt->u.beacon.variable;
1815         end = skb->data + skb->len;
1816         while (pos < end) {
1817                 if (pos + 2 + pos[1] > end)
1818                         return -EINVAL;
1819
1820                 if (pos[0] == WLAN_EID_TIM) {
1821                         u8 dtim_len = pos[1];
1822                         u8 dtim_period = pos[3];
1823                         u8 *next = pos + 2 + dtim_len;
1824
1825                         if (dtim_len < 3)
1826                                 return -EINVAL;
1827
1828                         memmove(pos, next, end - next);
1829
1830                         if (dtim_len > 3)
1831                                 skb_trim(skb, skb->len - (dtim_len - 3));
1832
1833                         pos = end - (dtim_len + 2);
1834
1835                         /* add the dummy at the end */
1836                         pos[0] = WLAN_EID_TIM;
1837                         pos[1] = 3;
1838                         pos[2] = 0;
1839                         pos[3] = dtim_period;
1840                         pos[4] = 0;
1841                         return 0;
1842                 }
1843                 pos += 2 + pos[1];
1844         }
1845         return 0;
1846 }
1847
1848 static int p54_beacon_update(struct ieee80211_hw *dev,
1849                         struct ieee80211_vif *vif)
1850 {
1851         struct p54_common *priv = dev->priv;
1852         struct sk_buff *beacon;
1853         int ret;
1854
1855         if (priv->cached_beacon) {
1856                 p54_tx_cancel(dev, priv->cached_beacon);
1857                 /* wait for the last beacon the be freed */
1858                 msleep(10);
1859         }
1860
1861         beacon = ieee80211_beacon_get(dev, vif);
1862         if (!beacon)
1863                 return -ENOMEM;
1864         ret = p54_beacon_tim(beacon);
1865         if (ret)
1866                 return ret;
1867         ret = p54_tx(dev, beacon);
1868         if (ret)
1869                 return ret;
1870         priv->cached_beacon = beacon;
1871         priv->tsf_high32 = 0;
1872         priv->tsf_low32 = 0;
1873
1874         return 0;
1875 }
1876
1877 static int p54_start(struct ieee80211_hw *dev)
1878 {
1879         struct p54_common *priv = dev->priv;
1880         int err;
1881
1882         mutex_lock(&priv->conf_mutex);
1883         err = priv->open(dev);
1884         if (err)
1885                 goto out;
1886         P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
1887         P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
1888         P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
1889         P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
1890         err = p54_set_edcf(dev);
1891         if (err)
1892                 goto out;
1893
1894         memset(priv->bssid, ~0, ETH_ALEN);
1895         priv->mode = NL80211_IFTYPE_MONITOR;
1896         err = p54_setup_mac(dev);
1897         if (err) {
1898                 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1899                 goto out;
1900         }
1901
1902         queue_delayed_work(dev->workqueue, &priv->work, 0);
1903
1904 out:
1905         mutex_unlock(&priv->conf_mutex);
1906         return err;
1907 }
1908
1909 static void p54_stop(struct ieee80211_hw *dev)
1910 {
1911         struct p54_common *priv = dev->priv;
1912         struct sk_buff *skb;
1913
1914         mutex_lock(&priv->conf_mutex);
1915         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1916         cancel_delayed_work_sync(&priv->work);
1917         if (priv->cached_beacon)
1918                 p54_tx_cancel(dev, priv->cached_beacon);
1919
1920         priv->stop(dev);
1921         while ((skb = skb_dequeue(&priv->tx_queue)))
1922                 kfree_skb(skb);
1923         priv->cached_beacon = NULL;
1924         priv->tsf_high32 = priv->tsf_low32 = 0;
1925         mutex_unlock(&priv->conf_mutex);
1926 }
1927
1928 static int p54_add_interface(struct ieee80211_hw *dev,
1929                              struct ieee80211_if_init_conf *conf)
1930 {
1931         struct p54_common *priv = dev->priv;
1932
1933         mutex_lock(&priv->conf_mutex);
1934         if (priv->mode != NL80211_IFTYPE_MONITOR) {
1935                 mutex_unlock(&priv->conf_mutex);
1936                 return -EOPNOTSUPP;
1937         }
1938
1939         switch (conf->type) {
1940         case NL80211_IFTYPE_STATION:
1941         case NL80211_IFTYPE_ADHOC:
1942         case NL80211_IFTYPE_AP:
1943         case NL80211_IFTYPE_MESH_POINT:
1944                 priv->mode = conf->type;
1945                 break;
1946         default:
1947                 mutex_unlock(&priv->conf_mutex);
1948                 return -EOPNOTSUPP;
1949         }
1950
1951         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1952         p54_setup_mac(dev);
1953         p54_set_leds(dev, 1, 0, 0);
1954         mutex_unlock(&priv->conf_mutex);
1955         return 0;
1956 }
1957
1958 static void p54_remove_interface(struct ieee80211_hw *dev,
1959                                  struct ieee80211_if_init_conf *conf)
1960 {
1961         struct p54_common *priv = dev->priv;
1962
1963         mutex_lock(&priv->conf_mutex);
1964         if (priv->cached_beacon)
1965                 p54_tx_cancel(dev, priv->cached_beacon);
1966         priv->mode = NL80211_IFTYPE_MONITOR;
1967         memset(priv->mac_addr, 0, ETH_ALEN);
1968         memset(priv->bssid, 0, ETH_ALEN);
1969         p54_setup_mac(dev);
1970         mutex_unlock(&priv->conf_mutex);
1971 }
1972
1973 static int p54_config(struct ieee80211_hw *dev, u32 changed)
1974 {
1975         int ret = 0;
1976         struct p54_common *priv = dev->priv;
1977         struct ieee80211_conf *conf = &dev->conf;
1978
1979         mutex_lock(&priv->conf_mutex);
1980         if (changed & IEEE80211_CONF_CHANGE_POWER)
1981                 priv->output_power = conf->power_level << 2;
1982         if (changed & IEEE80211_CONF_CHANGE_RADIO_ENABLED) {
1983                 ret = p54_setup_mac(dev);
1984                 if (ret)
1985                         goto out;
1986         }
1987         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
1988                 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
1989                 if (ret)
1990                         goto out;
1991         }
1992         if (changed & IEEE80211_CONF_CHANGE_PS) {
1993                 ret = p54_set_ps(dev);
1994                 if (ret)
1995                         goto out;
1996         }
1997
1998 out:
1999         mutex_unlock(&priv->conf_mutex);
2000         return ret;
2001 }
2002
2003 static int p54_config_interface(struct ieee80211_hw *dev,
2004                                 struct ieee80211_vif *vif,
2005                                 struct ieee80211_if_conf *conf)
2006 {
2007         struct p54_common *priv = dev->priv;
2008         int ret = 0;
2009
2010         mutex_lock(&priv->conf_mutex);
2011         if (conf->changed & IEEE80211_IFCC_BSSID) {
2012                 memcpy(priv->bssid, conf->bssid, ETH_ALEN);
2013                 ret = p54_setup_mac(dev);
2014                 if (ret)
2015                         goto out;
2016         }
2017
2018         if (conf->changed & IEEE80211_IFCC_BEACON) {
2019                 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
2020                 if (ret)
2021                         goto out;
2022                 ret = p54_setup_mac(dev);
2023                 if (ret)
2024                         goto out;
2025                 ret = p54_beacon_update(dev, vif);
2026                 if (ret)
2027                         goto out;
2028                 ret = p54_set_edcf(dev);
2029                 if (ret)
2030                         goto out;
2031         }
2032
2033         ret = p54_set_leds(dev, 1, !is_multicast_ether_addr(priv->bssid), 0);
2034
2035 out:
2036         mutex_unlock(&priv->conf_mutex);
2037         return ret;
2038 }
2039
2040 static void p54_configure_filter(struct ieee80211_hw *dev,
2041                                  unsigned int changed_flags,
2042                                  unsigned int *total_flags,
2043                                  int mc_count, struct dev_mc_list *mclist)
2044 {
2045         struct p54_common *priv = dev->priv;
2046
2047         *total_flags &= FIF_PROMISC_IN_BSS |
2048                         FIF_OTHER_BSS |
2049                         (*total_flags & FIF_PROMISC_IN_BSS) ?
2050                                 FIF_FCSFAIL : 0;
2051
2052         priv->filter_flags = *total_flags;
2053
2054         if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS))
2055                 p54_setup_mac(dev);
2056 }
2057
2058 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
2059                        const struct ieee80211_tx_queue_params *params)
2060 {
2061         struct p54_common *priv = dev->priv;
2062         int ret;
2063
2064         mutex_lock(&priv->conf_mutex);
2065         if ((params) && !(queue > 4)) {
2066                 P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
2067                         params->cw_min, params->cw_max, params->txop);
2068                 ret = p54_set_edcf(dev);
2069         } else
2070                 ret = -EINVAL;
2071         mutex_unlock(&priv->conf_mutex);
2072         return ret;
2073 }
2074
2075 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
2076 {
2077         struct p54_common *priv = dev->priv;
2078         struct sk_buff *skb;
2079         struct p54_xbow_synth *xbow;
2080
2081         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow),
2082                             P54_CONTROL_TYPE_XBOW_SYNTH_CFG, GFP_KERNEL);
2083         if (!skb)
2084                 return -ENOMEM;
2085
2086         xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
2087         xbow->magic1 = cpu_to_le16(0x1);
2088         xbow->magic2 = cpu_to_le16(0x2);
2089         xbow->freq = cpu_to_le16(5390);
2090         memset(xbow->padding, 0, sizeof(xbow->padding));
2091         priv->tx(dev, skb);
2092         return 0;
2093 }
2094
2095 static void p54_work(struct work_struct *work)
2096 {
2097         struct p54_common *priv = container_of(work, struct p54_common,
2098                                                work.work);
2099         struct ieee80211_hw *dev = priv->hw;
2100         struct sk_buff *skb;
2101
2102         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
2103                 return ;
2104
2105         /*
2106          * TODO: walk through tx_queue and do the following tasks
2107          *      1. initiate bursts.
2108          *      2. cancel stuck frames / reset the device if necessary.
2109          */
2110
2111         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL,
2112                             sizeof(struct p54_statistics),
2113                             P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
2114         if (!skb)
2115                 return ;
2116
2117         priv->tx(dev, skb);
2118 }
2119
2120 static int p54_get_stats(struct ieee80211_hw *dev,
2121                          struct ieee80211_low_level_stats *stats)
2122 {
2123         struct p54_common *priv = dev->priv;
2124
2125         memcpy(stats, &priv->stats, sizeof(*stats));
2126         return 0;
2127 }
2128
2129 static int p54_get_tx_stats(struct ieee80211_hw *dev,
2130                             struct ieee80211_tx_queue_stats *stats)
2131 {
2132         struct p54_common *priv = dev->priv;
2133
2134         memcpy(stats, &priv->tx_stats[P54_QUEUE_DATA],
2135                sizeof(stats[0]) * dev->queues);
2136         return 0;
2137 }
2138
2139 static void p54_bss_info_changed(struct ieee80211_hw *dev,
2140                                  struct ieee80211_vif *vif,
2141                                  struct ieee80211_bss_conf *info,
2142                                  u32 changed)
2143 {
2144         struct p54_common *priv = dev->priv;
2145
2146         if (changed & BSS_CHANGED_ERP_SLOT) {
2147                 priv->use_short_slot = info->use_short_slot;
2148                 p54_set_edcf(dev);
2149         }
2150         if (changed & BSS_CHANGED_BASIC_RATES) {
2151                 if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
2152                         priv->basic_rate_mask = (info->basic_rates << 4);
2153                 else
2154                         priv->basic_rate_mask = info->basic_rates;
2155                 p54_setup_mac(dev);
2156                 if (priv->fw_var >= 0x500)
2157                         p54_scan(dev, P54_SCAN_EXIT, 0);
2158         }
2159         if (changed & BSS_CHANGED_ASSOC) {
2160                 if (info->assoc) {
2161                         priv->aid = info->aid;
2162                         priv->wakeup_timer = info->beacon_int *
2163                                              info->dtim_period * 5;
2164                         p54_setup_mac(dev);
2165                 }
2166         }
2167
2168 }
2169
2170 static int p54_set_key(struct ieee80211_hw *dev, enum set_key_cmd cmd,
2171                        struct ieee80211_vif *vif, struct ieee80211_sta *sta,
2172                        struct ieee80211_key_conf *key)
2173 {
2174         struct p54_common *priv = dev->priv;
2175         struct sk_buff *skb;
2176         struct p54_keycache *rxkey;
2177         u8 algo = 0;
2178
2179         if (modparam_nohwcrypt)
2180                 return -EOPNOTSUPP;
2181
2182         if (cmd == DISABLE_KEY)
2183                 algo = 0;
2184         else {
2185                 switch (key->alg) {
2186                 case ALG_TKIP:
2187                         if (!(priv->privacy_caps & (BR_DESC_PRIV_CAP_MICHAEL |
2188                               BR_DESC_PRIV_CAP_TKIP)))
2189                                 return -EOPNOTSUPP;
2190                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2191                         algo = P54_CRYPTO_TKIPMICHAEL;
2192                         break;
2193                 case ALG_WEP:
2194                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_WEP))
2195                                 return -EOPNOTSUPP;
2196                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2197                         algo = P54_CRYPTO_WEP;
2198                         break;
2199                 case ALG_CCMP:
2200                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP))
2201                                 return -EOPNOTSUPP;
2202                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2203                         algo = P54_CRYPTO_AESCCMP;
2204                         break;
2205                 default:
2206                         return -EOPNOTSUPP;
2207                 }
2208         }
2209
2210         if (key->keyidx > priv->rx_keycache_size) {
2211                 /*
2212                  * The device supports the choosen algorithm, but the firmware
2213                  * does not provide enough key slots to store all of them.
2214                  * So, incoming frames have to be decoded by the mac80211 stack,
2215                  * but we can still offload encryption for outgoing frames.
2216                  */
2217
2218                 return 0;
2219         }
2220
2221         mutex_lock(&priv->conf_mutex);
2222         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*rxkey),
2223                             P54_CONTROL_TYPE_RX_KEYCACHE, GFP_ATOMIC);
2224         if (!skb) {
2225                 mutex_unlock(&priv->conf_mutex);
2226                 return -ENOMEM;
2227         }
2228
2229         /* TODO: some devices have 4 more free slots for rx keys */
2230         rxkey = (struct p54_keycache *)skb_put(skb, sizeof(*rxkey));
2231         rxkey->entry = key->keyidx;
2232         rxkey->key_id = key->keyidx;
2233         rxkey->key_type = algo;
2234         if (sta)
2235                 memcpy(rxkey->mac, sta->addr, ETH_ALEN);
2236         else
2237                 memset(rxkey->mac, ~0, ETH_ALEN);
2238         if (key->alg != ALG_TKIP) {
2239                 rxkey->key_len = min((u8)16, key->keylen);
2240                 memcpy(rxkey->key, key->key, rxkey->key_len);
2241         } else {
2242                 rxkey->key_len = 24;
2243                 memcpy(rxkey->key, key->key, 16);
2244                 memcpy(&(rxkey->key[16]), &(key->key
2245                         [NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]), 8);
2246         }
2247
2248         priv->tx(dev, skb);
2249         mutex_unlock(&priv->conf_mutex);
2250         return 0;
2251 }
2252
2253 static const struct ieee80211_ops p54_ops = {
2254         .tx                     = p54_tx,
2255         .start                  = p54_start,
2256         .stop                   = p54_stop,
2257         .add_interface          = p54_add_interface,
2258         .remove_interface       = p54_remove_interface,
2259         .set_tim                = p54_set_tim,
2260         .sta_notify             = p54_sta_notify,
2261         .set_key                = p54_set_key,
2262         .config                 = p54_config,
2263         .config_interface       = p54_config_interface,
2264         .bss_info_changed       = p54_bss_info_changed,
2265         .configure_filter       = p54_configure_filter,
2266         .conf_tx                = p54_conf_tx,
2267         .get_stats              = p54_get_stats,
2268         .get_tx_stats           = p54_get_tx_stats
2269 };
2270
2271 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
2272 {
2273         struct ieee80211_hw *dev;
2274         struct p54_common *priv;
2275
2276         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
2277         if (!dev)
2278                 return NULL;
2279
2280         priv = dev->priv;
2281         priv->hw = dev;
2282         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2283         priv->basic_rate_mask = 0x15f;
2284         skb_queue_head_init(&priv->tx_queue);
2285         dev->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2286                      IEEE80211_HW_SIGNAL_DBM |
2287                      IEEE80211_HW_NOISE_DBM;
2288
2289         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2290                                       BIT(NL80211_IFTYPE_ADHOC) |
2291                                       BIT(NL80211_IFTYPE_AP) |
2292                                       BIT(NL80211_IFTYPE_MESH_POINT);
2293
2294         dev->channel_change_time = 1000;        /* TODO: find actual value */
2295         priv->tx_stats[P54_QUEUE_BEACON].limit = 1;
2296         priv->tx_stats[P54_QUEUE_FWSCAN].limit = 1;
2297         priv->tx_stats[P54_QUEUE_MGMT].limit = 3;
2298         priv->tx_stats[P54_QUEUE_CAB].limit = 3;
2299         priv->tx_stats[P54_QUEUE_DATA].limit = 5;
2300         dev->queues = 1;
2301         priv->noise = -94;
2302         /*
2303          * We support at most 8 tries no matter which rate they're at,
2304          * we cannot support max_rates * max_rate_tries as we set it
2305          * here, but setting it correctly to 4/2 or so would limit us
2306          * artificially if the RC algorithm wants just two rates, so
2307          * let's say 4/7, we'll redistribute it at TX time, see the
2308          * comments there.
2309          */
2310         dev->max_rates = 4;
2311         dev->max_rate_tries = 7;
2312         dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
2313                                  sizeof(struct p54_tx_data);
2314
2315         mutex_init(&priv->conf_mutex);
2316         init_completion(&priv->eeprom_comp);
2317         INIT_DELAYED_WORK(&priv->work, p54_work);
2318
2319         return dev;
2320 }
2321 EXPORT_SYMBOL_GPL(p54_init_common);
2322
2323 void p54_free_common(struct ieee80211_hw *dev)
2324 {
2325         struct p54_common *priv = dev->priv;
2326         kfree(priv->iq_autocal);
2327         kfree(priv->output_limit);
2328         kfree(priv->curve_data);
2329 }
2330 EXPORT_SYMBOL_GPL(p54_free_common);
2331
2332 static int __init p54_init(void)
2333 {
2334         return 0;
2335 }
2336
2337 static void __exit p54_exit(void)
2338 {
2339 }
2340
2341 module_init(p54_init);
2342 module_exit(p54_exit);