p54: enhance firmware parser to reduce memory waste
[linux-2.6.git] / drivers / net / wireless / p54 / p54common.c
1
2 /*
3  * Common code for mac80211 Prism54 drivers
4  *
5  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
6  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
7  *
8  * Based on the islsm (softmac prism54) driver, which is:
9  * Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15
16 #include <linux/init.h>
17 #include <linux/firmware.h>
18 #include <linux/etherdevice.h>
19
20 #include <net/mac80211.h>
21
22 #include "p54.h"
23 #include "p54common.h"
24
25 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
26 MODULE_DESCRIPTION("Softmac Prism54 common code");
27 MODULE_LICENSE("GPL");
28 MODULE_ALIAS("prism54common");
29
30 static struct ieee80211_rate p54_rates[] = {
31         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
32         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
33         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
34         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
35         { .bitrate = 60, .hw_value = 4, },
36         { .bitrate = 90, .hw_value = 5, },
37         { .bitrate = 120, .hw_value = 6, },
38         { .bitrate = 180, .hw_value = 7, },
39         { .bitrate = 240, .hw_value = 8, },
40         { .bitrate = 360, .hw_value = 9, },
41         { .bitrate = 480, .hw_value = 10, },
42         { .bitrate = 540, .hw_value = 11, },
43 };
44
45 static struct ieee80211_channel p54_channels[] = {
46         { .center_freq = 2412, .hw_value = 1, },
47         { .center_freq = 2417, .hw_value = 2, },
48         { .center_freq = 2422, .hw_value = 3, },
49         { .center_freq = 2427, .hw_value = 4, },
50         { .center_freq = 2432, .hw_value = 5, },
51         { .center_freq = 2437, .hw_value = 6, },
52         { .center_freq = 2442, .hw_value = 7, },
53         { .center_freq = 2447, .hw_value = 8, },
54         { .center_freq = 2452, .hw_value = 9, },
55         { .center_freq = 2457, .hw_value = 10, },
56         { .center_freq = 2462, .hw_value = 11, },
57         { .center_freq = 2467, .hw_value = 12, },
58         { .center_freq = 2472, .hw_value = 13, },
59         { .center_freq = 2484, .hw_value = 14, },
60 };
61
62 static struct ieee80211_supported_band band_2GHz = {
63         .channels = p54_channels,
64         .n_channels = ARRAY_SIZE(p54_channels),
65         .bitrates = p54_rates,
66         .n_bitrates = ARRAY_SIZE(p54_rates),
67 };
68
69 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
70 {
71         struct p54_common *priv = dev->priv;
72         struct bootrec_exp_if *exp_if;
73         struct bootrec *bootrec;
74         u32 *data = (u32 *)fw->data;
75         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
76         u8 *fw_version = NULL;
77         size_t len;
78         int i;
79
80         if (priv->rx_start)
81                 return 0;
82
83         while (data < end_data && *data)
84                 data++;
85
86         while (data < end_data && !*data)
87                 data++;
88
89         bootrec = (struct bootrec *) data;
90
91         while (bootrec->data <= end_data &&
92                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
93                 u32 code = le32_to_cpu(bootrec->code);
94                 switch (code) {
95                 case BR_CODE_COMPONENT_ID:
96                         switch (be32_to_cpu(*(__be32 *)bootrec->data)) {
97                         case FW_FMAC:
98                                 printk(KERN_INFO "p54: FreeMAC firmware\n");
99                                 break;
100                         case FW_LM20:
101                                 printk(KERN_INFO "p54: LM20 firmware\n");
102                                 break;
103                         case FW_LM86:
104                                 printk(KERN_INFO "p54: LM86 firmware\n");
105                                 break;
106                         case FW_LM87:
107                                 printk(KERN_INFO "p54: LM87 firmware - not supported yet!\n");
108                                 break;
109                         default:
110                                 printk(KERN_INFO "p54: unknown firmware\n");
111                                 break;
112                         }
113                         break;
114                 case BR_CODE_COMPONENT_VERSION:
115                         /* 24 bytes should be enough for all firmwares */
116                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
117                                 fw_version = (unsigned char*)bootrec->data;
118                         break;
119                 case BR_CODE_DESCR: {
120                         struct bootrec_desc *desc =
121                                 (struct bootrec_desc *)bootrec->data;
122                         priv->rx_start = le32_to_cpu(desc->rx_start);
123                         /* FIXME add sanity checking */
124                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
125                         priv->headroom = desc->headroom;
126                         priv->tailroom = desc->tailroom;
127                         if (bootrec->len == 11)
128                                 priv->rx_mtu = (size_t) le16_to_cpu(
129                                         (__le16)bootrec->data[10]);
130                         else
131                                 priv->rx_mtu = (size_t)
132                                         0x620 - priv->tx_hdr_len;
133                         break;
134                         }
135                 case BR_CODE_EXPOSED_IF:
136                         exp_if = (struct bootrec_exp_if *) bootrec->data;
137                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
138                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
139                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
140                         break;
141                 case BR_CODE_DEPENDENT_IF:
142                         break;
143                 case BR_CODE_END_OF_BRA:
144                 case LEGACY_BR_CODE_END_OF_BRA:
145                         end_data = NULL;
146                         break;
147                 default:
148                         break;
149                 }
150                 bootrec = (struct bootrec *)&bootrec->data[len];
151         }
152
153         if (fw_version)
154                 printk(KERN_INFO "p54: FW rev %s - Softmac protocol %x.%x\n",
155                         fw_version, priv->fw_var >> 8, priv->fw_var & 0xff);
156
157         if (priv->fw_var >= 0x300) {
158                 /* Firmware supports QoS, use it! */
159                 priv->tx_stats[4].limit = 3;
160                 priv->tx_stats[5].limit = 4;
161                 priv->tx_stats[6].limit = 3;
162                 priv->tx_stats[7].limit = 1;
163                 dev->queues = 4;
164         }
165
166         return 0;
167 }
168 EXPORT_SYMBOL_GPL(p54_parse_firmware);
169
170 static int p54_convert_rev0(struct ieee80211_hw *dev,
171                             struct pda_pa_curve_data *curve_data)
172 {
173         struct p54_common *priv = dev->priv;
174         struct p54_pa_curve_data_sample *dst;
175         struct pda_pa_curve_data_sample_rev0 *src;
176         size_t cd_len = sizeof(*curve_data) +
177                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
178                  curve_data->channels;
179         unsigned int i, j;
180         void *source, *target;
181
182         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
183         if (!priv->curve_data)
184                 return -ENOMEM;
185
186         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
187         source = curve_data->data;
188         target = priv->curve_data->data;
189         for (i = 0; i < curve_data->channels; i++) {
190                 __le16 *freq = source;
191                 source += sizeof(__le16);
192                 *((__le16 *)target) = *freq;
193                 target += sizeof(__le16);
194                 for (j = 0; j < curve_data->points_per_channel; j++) {
195                         dst = target;
196                         src = source;
197
198                         dst->rf_power = src->rf_power;
199                         dst->pa_detector = src->pa_detector;
200                         dst->data_64qam = src->pcv;
201                         /* "invent" the points for the other modulations */
202 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
203                         dst->data_16qam = SUB(src->pcv, 12);
204                         dst->data_qpsk = SUB(dst->data_16qam, 12);
205                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
206                         dst->data_barker = SUB(dst->data_bpsk, 14);
207 #undef SUB
208                         target += sizeof(*dst);
209                         source += sizeof(*src);
210                 }
211         }
212
213         return 0;
214 }
215
216 static int p54_convert_rev1(struct ieee80211_hw *dev,
217                             struct pda_pa_curve_data *curve_data)
218 {
219         struct p54_common *priv = dev->priv;
220         struct p54_pa_curve_data_sample *dst;
221         struct pda_pa_curve_data_sample_rev1 *src;
222         size_t cd_len = sizeof(*curve_data) +
223                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
224                  curve_data->channels;
225         unsigned int i, j;
226         void *source, *target;
227
228         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
229         if (!priv->curve_data)
230                 return -ENOMEM;
231
232         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
233         source = curve_data->data;
234         target = priv->curve_data->data;
235         for (i = 0; i < curve_data->channels; i++) {
236                 __le16 *freq = source;
237                 source += sizeof(__le16);
238                 *((__le16 *)target) = *freq;
239                 target += sizeof(__le16);
240                 for (j = 0; j < curve_data->points_per_channel; j++) {
241                         memcpy(target, source, sizeof(*src));
242
243                         target += sizeof(*dst);
244                         source += sizeof(*src);
245                 }
246                 source++;
247         }
248
249         return 0;
250 }
251
252 int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
253 {
254         struct p54_common *priv = dev->priv;
255         struct eeprom_pda_wrap *wrap = NULL;
256         struct pda_entry *entry;
257         unsigned int data_len, entry_len;
258         void *tmp;
259         int err;
260         u8 *end = (u8 *)eeprom + len;
261
262         wrap = (struct eeprom_pda_wrap *) eeprom;
263         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
264
265         /* verify that at least the entry length/code fits */
266         while ((u8 *)entry <= end - sizeof(*entry)) {
267                 entry_len = le16_to_cpu(entry->len);
268                 data_len = ((entry_len - 1) << 1);
269
270                 /* abort if entry exceeds whole structure */
271                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
272                         break;
273
274                 switch (le16_to_cpu(entry->code)) {
275                 case PDR_MAC_ADDRESS:
276                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
277                         break;
278                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
279                         if (data_len < 2) {
280                                 err = -EINVAL;
281                                 goto err;
282                         }
283
284                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
285                                 err = -EINVAL;
286                                 goto err;
287                         }
288
289                         priv->output_limit = kmalloc(entry->data[1] *
290                                 sizeof(*priv->output_limit), GFP_KERNEL);
291
292                         if (!priv->output_limit) {
293                                 err = -ENOMEM;
294                                 goto err;
295                         }
296
297                         memcpy(priv->output_limit, &entry->data[2],
298                                entry->data[1]*sizeof(*priv->output_limit));
299                         priv->output_limit_len = entry->data[1];
300                         break;
301                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
302                         struct pda_pa_curve_data *curve_data =
303                                 (struct pda_pa_curve_data *)entry->data;
304                         if (data_len < sizeof(*curve_data)) {
305                                 err = -EINVAL;
306                                 goto err;
307                         }
308
309                         switch (curve_data->cal_method_rev) {
310                         case 0:
311                                 err = p54_convert_rev0(dev, curve_data);
312                                 break;
313                         case 1:
314                                 err = p54_convert_rev1(dev, curve_data);
315                                 break;
316                         default:
317                                 printk(KERN_ERR "p54: unknown curve data "
318                                                 "revision %d\n",
319                                                 curve_data->cal_method_rev);
320                                 err = -ENODEV;
321                                 break;
322                         }
323                         if (err)
324                                 goto err;
325
326                 }
327                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
328                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
329                         if (!priv->iq_autocal) {
330                                 err = -ENOMEM;
331                                 goto err;
332                         }
333
334                         memcpy(priv->iq_autocal, entry->data, data_len);
335                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
336                         break;
337                 case PDR_INTERFACE_LIST:
338                         tmp = entry->data;
339                         while ((u8 *)tmp < entry->data + data_len) {
340                                 struct bootrec_exp_if *exp_if = tmp;
341                                 if (le16_to_cpu(exp_if->if_id) == 0xF)
342                                         priv->rxhw = exp_if->variant & cpu_to_le16(0x07);
343                                 tmp += sizeof(struct bootrec_exp_if);
344                         }
345                         break;
346                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
347                         priv->version = *(u8 *)(entry->data + 1);
348                         break;
349                 case PDR_END:
350                         /* make it overrun */
351                         entry_len = len;
352                         break;
353                 default:
354                         printk(KERN_INFO "p54: unknown eeprom code : 0x%x\n",
355                                 le16_to_cpu(entry->code));
356                         break;
357                 }
358
359                 entry = (void *)entry + (entry_len + 1)*2;
360         }
361
362         if (!priv->iq_autocal || !priv->output_limit || !priv->curve_data) {
363                 printk(KERN_ERR "p54: not all required entries found in eeprom!\n");
364                 err = -EINVAL;
365                 goto err;
366         }
367
368         return 0;
369
370   err:
371         if (priv->iq_autocal) {
372                 kfree(priv->iq_autocal);
373                 priv->iq_autocal = NULL;
374         }
375
376         if (priv->output_limit) {
377                 kfree(priv->output_limit);
378                 priv->output_limit = NULL;
379         }
380
381         if (priv->curve_data) {
382                 kfree(priv->curve_data);
383                 priv->curve_data = NULL;
384         }
385
386         printk(KERN_ERR "p54: eeprom parse failed!\n");
387         return err;
388 }
389 EXPORT_SYMBOL_GPL(p54_parse_eeprom);
390
391 void p54_fill_eeprom_readback(struct p54_control_hdr *hdr)
392 {
393         struct p54_eeprom_lm86 *eeprom_hdr;
394
395         hdr->magic1 = cpu_to_le16(0x8000);
396         hdr->len = cpu_to_le16(sizeof(*eeprom_hdr) + 0x2000);
397         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_EEPROM_READBACK);
398         hdr->retry1 = hdr->retry2 = 0;
399         eeprom_hdr = (struct p54_eeprom_lm86 *) hdr->data;
400         eeprom_hdr->offset = 0x0;
401         eeprom_hdr->len = cpu_to_le16(0x2000);
402 }
403 EXPORT_SYMBOL_GPL(p54_fill_eeprom_readback);
404
405 static void p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
406 {
407         struct p54_rx_hdr *hdr = (struct p54_rx_hdr *) skb->data;
408         struct ieee80211_rx_status rx_status = {0};
409         u16 freq = le16_to_cpu(hdr->freq);
410
411         rx_status.signal = hdr->rssi;
412         /* XX correct? */
413         rx_status.qual = (100 * hdr->rssi) / 127;
414         rx_status.rate_idx = hdr->rate & 0xf;
415         rx_status.freq = freq;
416         rx_status.band = IEEE80211_BAND_2GHZ;
417         rx_status.antenna = hdr->antenna;
418         rx_status.mactime = le64_to_cpu(hdr->timestamp);
419         rx_status.flag |= RX_FLAG_TSFT;
420
421         skb_pull(skb, sizeof(*hdr));
422         skb_trim(skb, le16_to_cpu(hdr->len));
423
424         ieee80211_rx_irqsafe(dev, skb, &rx_status);
425 }
426
427 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
428 {
429         struct p54_common *priv = dev->priv;
430         int i;
431
432         for (i = 0; i < dev->queues; i++)
433                 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
434                         ieee80211_wake_queue(dev, i);
435 }
436
437 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
438 {
439         struct p54_common *priv = dev->priv;
440         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
441         struct p54_frame_sent_hdr *payload = (struct p54_frame_sent_hdr *) hdr->data;
442         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
443         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
444         struct memrecord *range = NULL;
445         u32 freed = 0;
446         u32 last_addr = priv->rx_start;
447         unsigned long flags;
448
449         spin_lock_irqsave(&priv->tx_queue.lock, flags);
450         while (entry != (struct sk_buff *)&priv->tx_queue) {
451                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
452                 range = (void *)info->driver_data;
453                 if (range->start_addr == addr) {
454                         struct p54_control_hdr *entry_hdr;
455                         struct p54_tx_control_allocdata *entry_data;
456                         int pad = 0;
457
458                         if (entry->next != (struct sk_buff *)&priv->tx_queue) {
459                                 struct ieee80211_tx_info *ni;
460                                 struct memrecord *mr;
461
462                                 ni = IEEE80211_SKB_CB(entry->next);
463                                 mr = (struct memrecord *)ni->driver_data;
464                                 freed = mr->start_addr - last_addr;
465                         } else
466                                 freed = priv->rx_end - last_addr;
467
468                         last_addr = range->end_addr;
469                         __skb_unlink(entry, &priv->tx_queue);
470                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
471
472                         memset(&info->status, 0, sizeof(info->status));
473                         entry_hdr = (struct p54_control_hdr *) entry->data;
474                         entry_data = (struct p54_tx_control_allocdata *) entry_hdr->data;
475                         if ((entry_hdr->magic1 & cpu_to_le16(0x4000)) != 0)
476                                 pad = entry_data->align[0];
477
478                         priv->tx_stats[entry_data->hw_queue].len--;
479                         if (!(info->flags & IEEE80211_TX_CTL_NO_ACK)) {
480                                 if (!(payload->status & 0x01))
481                                         info->flags |= IEEE80211_TX_STAT_ACK;
482                                 else
483                                         info->status.excessive_retries = 1;
484                         }
485                         info->status.retry_count = payload->retries - 1;
486                         info->status.ack_signal = le16_to_cpu(payload->ack_rssi);
487                         skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
488                         ieee80211_tx_status_irqsafe(dev, entry);
489                         goto out;
490                 } else
491                         last_addr = range->end_addr;
492                 entry = entry->next;
493         }
494         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
495
496 out:
497         if (freed >= IEEE80211_MAX_RTS_THRESHOLD + 0x170 +
498             sizeof(struct p54_control_hdr))
499                 p54_wake_free_queues(dev);
500 }
501
502 static void p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
503 {
504         struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
505
506         switch (le16_to_cpu(hdr->type)) {
507         case P54_CONTROL_TYPE_TXDONE:
508                 p54_rx_frame_sent(dev, skb);
509                 break;
510         case P54_CONTROL_TYPE_BBP:
511                 break;
512         default:
513                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
514                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
515                 break;
516         }
517 }
518
519 /* returns zero if skb can be reused */
520 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
521 {
522         u8 type = le16_to_cpu(*((__le16 *)skb->data)) >> 8;
523         switch (type) {
524         case 0x00:
525         case 0x01:
526                 p54_rx_data(dev, skb);
527                 return -1;
528         case 0x4d:
529                 /* TODO: do something better... but then again, I've never seen this happen */
530                 printk(KERN_ERR "%s: Received fault. Probably need to restart hardware now..\n",
531                        wiphy_name(dev->wiphy));
532                 break;
533         case 0x80:
534                 p54_rx_control(dev, skb);
535                 break;
536         default:
537                 printk(KERN_ERR "%s: unknown frame RXed (0x%02x)\n",
538                        wiphy_name(dev->wiphy), type);
539                 break;
540         }
541         return 0;
542 }
543 EXPORT_SYMBOL_GPL(p54_rx);
544
545 /*
546  * So, the firmware is somewhat stupid and doesn't know what places in its
547  * memory incoming data should go to. By poking around in the firmware, we
548  * can find some unused memory to upload our packets to. However, data that we
549  * want the card to TX needs to stay intact until the card has told us that
550  * it is done with it. This function finds empty places we can upload to and
551  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
552  * allocated areas.
553  */
554 static void p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
555                                struct p54_control_hdr *data, u32 len)
556 {
557         struct p54_common *priv = dev->priv;
558         struct sk_buff *entry = priv->tx_queue.next;
559         struct sk_buff *target_skb = NULL;
560         u32 last_addr = priv->rx_start;
561         u32 largest_hole = 0;
562         u32 target_addr = priv->rx_start;
563         unsigned long flags;
564         unsigned int left;
565         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
566
567         spin_lock_irqsave(&priv->tx_queue.lock, flags);
568         left = skb_queue_len(&priv->tx_queue);
569         while (left--) {
570                 u32 hole_size;
571                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
572                 struct memrecord *range = (void *)info->driver_data;
573                 hole_size = range->start_addr - last_addr;
574                 if (!target_skb && hole_size >= len) {
575                         target_skb = entry->prev;
576                         hole_size -= len;
577                         target_addr = last_addr;
578                 }
579                 largest_hole = max(largest_hole, hole_size);
580                 last_addr = range->end_addr;
581                 entry = entry->next;
582         }
583         if (!target_skb && priv->rx_end - last_addr >= len) {
584                 target_skb = priv->tx_queue.prev;
585                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
586                 if (!skb_queue_empty(&priv->tx_queue)) {
587                         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(target_skb);
588                         struct memrecord *range = (void *)info->driver_data;
589                         target_addr = range->end_addr;
590                 }
591         } else
592                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
593
594         if (skb) {
595                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
596                 struct memrecord *range = (void *)info->driver_data;
597                 range->start_addr = target_addr;
598                 range->end_addr = target_addr + len;
599                 __skb_queue_after(&priv->tx_queue, target_skb, skb);
600                 if (largest_hole < priv->rx_mtu + priv->headroom +
601                                    priv->tailroom +
602                                    sizeof(struct p54_control_hdr))
603                         ieee80211_stop_queues(dev);
604         }
605         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
606
607         data->req_id = cpu_to_le32(target_addr + priv->headroom);
608 }
609
610 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
611 {
612         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
613         struct ieee80211_tx_queue_stats *current_queue;
614         struct p54_common *priv = dev->priv;
615         struct p54_control_hdr *hdr;
616         struct ieee80211_hdr *ieee80211hdr = (struct ieee80211_hdr *)skb->data;
617         struct p54_tx_control_allocdata *txhdr;
618         size_t padding, len;
619         u8 rate;
620         u8 cts_rate = 0x20;
621
622         current_queue = &priv->tx_stats[skb_get_queue_mapping(skb) + 4];
623         if (unlikely(current_queue->len > current_queue->limit))
624                 return NETDEV_TX_BUSY;
625         current_queue->len++;
626         current_queue->count++;
627         if (current_queue->len == current_queue->limit)
628                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
629
630         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
631         len = skb->len;
632
633         txhdr = (struct p54_tx_control_allocdata *)
634                         skb_push(skb, sizeof(*txhdr) + padding);
635         hdr = (struct p54_control_hdr *) skb_push(skb, sizeof(*hdr));
636
637         if (padding)
638                 hdr->magic1 = cpu_to_le16(0x4010);
639         else
640                 hdr->magic1 = cpu_to_le16(0x0010);
641         hdr->len = cpu_to_le16(len);
642         hdr->type = (info->flags & IEEE80211_TX_CTL_NO_ACK) ? 0 : cpu_to_le16(1);
643         hdr->retry1 = hdr->retry2 = info->control.retry_limit;
644
645         /* TODO: add support for alternate retry TX rates */
646         rate = ieee80211_get_tx_rate(dev, info)->hw_value;
647         if (info->flags & IEEE80211_TX_CTL_SHORT_PREAMBLE) {
648                 rate |= 0x10;
649                 cts_rate |= 0x10;
650         }
651         if (info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) {
652                 rate |= 0x40;
653                 cts_rate |= ieee80211_get_rts_cts_rate(dev, info)->hw_value;
654         } else if (info->flags & IEEE80211_TX_CTL_USE_CTS_PROTECT) {
655                 rate |= 0x20;
656                 cts_rate |= ieee80211_get_rts_cts_rate(dev, info)->hw_value;
657         }
658         memset(txhdr->rateset, rate, 8);
659         txhdr->key_type = 0;
660         txhdr->key_len = 0;
661         txhdr->hw_queue = skb_get_queue_mapping(skb) + 4;
662         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
663                 2 : info->antenna_sel_tx - 1;
664         txhdr->output_power = 0x7f; // HW Maximum
665         txhdr->cts_rate = (info->flags & IEEE80211_TX_CTL_NO_ACK) ?
666                           0 : cts_rate;
667         if (padding)
668                 txhdr->align[0] = padding;
669
670         /* FIXME: The sequence that follows is needed for this driver to
671          * work with mac80211 since "mac80211: fix TX sequence numbers".
672          * As with the temporary code in rt2x00, changes will be needed
673          * to get proper sequence numbers on beacons. In addition, this
674          * patch places the sequence number in the hardware state, which
675          * limits us to a single virtual state.
676          */
677         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
678                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
679                         priv->seqno += 0x10;
680                 ieee80211hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
681                 ieee80211hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
682         }
683         /* modifies skb->cb and with it info, so must be last! */
684         p54_assign_address(dev, skb, hdr, skb->len);
685
686         priv->tx(dev, hdr, skb->len, 0);
687         return 0;
688 }
689
690 static int p54_set_filter(struct ieee80211_hw *dev, u16 filter_type,
691                           const u8 *dst, const u8 *src, u8 antenna,
692                           u32 magic3, u32 magic8, u32 magic9)
693 {
694         struct p54_common *priv = dev->priv;
695         struct p54_control_hdr *hdr;
696         struct p54_tx_control_filter *filter;
697
698         hdr = kzalloc(sizeof(*hdr) + sizeof(*filter) +
699                       priv->tx_hdr_len, GFP_ATOMIC);
700         if (!hdr)
701                 return -ENOMEM;
702
703         hdr = (void *)hdr + priv->tx_hdr_len;
704
705         filter = (struct p54_tx_control_filter *) hdr->data;
706         hdr->magic1 = cpu_to_le16(0x8001);
707         hdr->len = cpu_to_le16(sizeof(*filter));
708         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*filter));
709         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_FILTER_SET);
710
711         filter->filter_type = cpu_to_le16(filter_type);
712         memcpy(filter->dst, dst, ETH_ALEN);
713         if (!src)
714                 memset(filter->src, ~0, ETH_ALEN);
715         else
716                 memcpy(filter->src, src, ETH_ALEN);
717         filter->antenna = antenna;
718         filter->magic3 = cpu_to_le32(magic3);
719         filter->rx_addr = cpu_to_le32(priv->rx_end);
720         filter->max_rx = cpu_to_le16(priv->rx_mtu);
721         filter->rxhw = priv->rxhw;
722         filter->magic8 = cpu_to_le16(magic8);
723         filter->magic9 = cpu_to_le16(magic9);
724
725         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*filter), 1);
726         return 0;
727 }
728
729 static int p54_set_freq(struct ieee80211_hw *dev, __le16 freq)
730 {
731         struct p54_common *priv = dev->priv;
732         struct p54_control_hdr *hdr;
733         struct p54_tx_control_channel *chan;
734         unsigned int i;
735         void *entry;
736
737         hdr = kzalloc(sizeof(*hdr) + sizeof(*chan) +
738                       priv->tx_hdr_len, GFP_KERNEL);
739         if (!hdr)
740                 return -ENOMEM;
741
742         hdr = (void *)hdr + priv->tx_hdr_len;
743
744         chan = (struct p54_tx_control_channel *) hdr->data;
745
746         hdr->magic1 = cpu_to_le16(0x8001);
747         hdr->len = cpu_to_le16(sizeof(*chan));
748         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_CHANNEL_CHANGE);
749         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*chan));
750
751         chan->flags = cpu_to_le16(0x1);
752         chan->dwell = cpu_to_le16(0x0);
753
754         for (i = 0; i < priv->iq_autocal_len; i++) {
755                 if (priv->iq_autocal[i].freq != freq)
756                         continue;
757
758                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
759                        sizeof(*priv->iq_autocal));
760                 break;
761         }
762         if (i == priv->iq_autocal_len)
763                 goto err;
764
765         for (i = 0; i < priv->output_limit_len; i++) {
766                 if (priv->output_limit[i].freq != freq)
767                         continue;
768
769                 chan->val_barker = 0x38;
770                 chan->val_bpsk = chan->dup_bpsk =
771                         priv->output_limit[i].val_bpsk;
772                 chan->val_qpsk = chan->dup_qpsk =
773                         priv->output_limit[i].val_qpsk;
774                 chan->val_16qam = chan->dup_16qam =
775                         priv->output_limit[i].val_16qam;
776                 chan->val_64qam = chan->dup_64qam =
777                         priv->output_limit[i].val_64qam;
778                 break;
779         }
780         if (i == priv->output_limit_len)
781                 goto err;
782
783         entry = priv->curve_data->data;
784         for (i = 0; i < priv->curve_data->channels; i++) {
785                 if (*((__le16 *)entry) != freq) {
786                         entry += sizeof(__le16);
787                         entry += sizeof(struct p54_pa_curve_data_sample) *
788                                  priv->curve_data->points_per_channel;
789                         continue;
790                 }
791
792                 entry += sizeof(__le16);
793                 chan->pa_points_per_curve =
794                         min(priv->curve_data->points_per_channel, (u8) 8);
795
796                 memcpy(chan->curve_data, entry, sizeof(*chan->curve_data) *
797                        chan->pa_points_per_curve);
798                 break;
799         }
800
801         chan->rssical_mul = cpu_to_le16(130);
802         chan->rssical_add = cpu_to_le16(0xfe70);        /* -400 */
803
804         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*chan), 1);
805         return 0;
806
807  err:
808         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
809         kfree(hdr);
810         return -EINVAL;
811 }
812
813 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
814 {
815         struct p54_common *priv = dev->priv;
816         struct p54_control_hdr *hdr;
817         struct p54_tx_control_led *led;
818
819         hdr = kzalloc(sizeof(*hdr) + sizeof(*led) +
820                       priv->tx_hdr_len, GFP_KERNEL);
821         if (!hdr)
822                 return -ENOMEM;
823
824         hdr = (void *)hdr + priv->tx_hdr_len;
825         hdr->magic1 = cpu_to_le16(0x8001);
826         hdr->len = cpu_to_le16(sizeof(*led));
827         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_LED);
828         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*led));
829
830         led = (struct p54_tx_control_led *) hdr->data;
831         led->mode = cpu_to_le16(mode);
832         led->led_permanent = cpu_to_le16(link);
833         led->led_temporary = cpu_to_le16(act);
834         led->duration = cpu_to_le16(1000);
835
836         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*led), 1);
837
838         return 0;
839 }
840
841 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
842 do {                                                            \
843         queue.aifs = cpu_to_le16(ai_fs);                        \
844         queue.cwmin = cpu_to_le16(cw_min);                      \
845         queue.cwmax = cpu_to_le16(cw_max);                      \
846         queue.txop = cpu_to_le16(_txop);                        \
847 } while(0)
848
849 static void p54_init_vdcf(struct ieee80211_hw *dev)
850 {
851         struct p54_common *priv = dev->priv;
852         struct p54_control_hdr *hdr;
853         struct p54_tx_control_vdcf *vdcf;
854
855         /* all USB V1 adapters need a extra headroom */
856         hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
857         hdr->magic1 = cpu_to_le16(0x8001);
858         hdr->len = cpu_to_le16(sizeof(*vdcf));
859         hdr->type = cpu_to_le16(P54_CONTROL_TYPE_DCFINIT);
860         hdr->req_id = cpu_to_le32(priv->rx_start);
861
862         vdcf = (struct p54_tx_control_vdcf *) hdr->data;
863
864         P54_SET_QUEUE(vdcf->queue[0], 0x0002, 0x0003, 0x0007, 47);
865         P54_SET_QUEUE(vdcf->queue[1], 0x0002, 0x0007, 0x000f, 94);
866         P54_SET_QUEUE(vdcf->queue[2], 0x0003, 0x000f, 0x03ff, 0);
867         P54_SET_QUEUE(vdcf->queue[3], 0x0007, 0x000f, 0x03ff, 0);
868 }
869
870 static void p54_set_vdcf(struct ieee80211_hw *dev)
871 {
872         struct p54_common *priv = dev->priv;
873         struct p54_control_hdr *hdr;
874         struct p54_tx_control_vdcf *vdcf;
875
876         hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
877
878         p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*vdcf));
879
880         vdcf = (struct p54_tx_control_vdcf *) hdr->data;
881
882         if (dev->conf.flags & IEEE80211_CONF_SHORT_SLOT_TIME) {
883                 vdcf->slottime = 9;
884                 vdcf->magic1 = 0x10;
885                 vdcf->magic2 = 0x00;
886         } else {
887                 vdcf->slottime = 20;
888                 vdcf->magic1 = 0x0a;
889                 vdcf->magic2 = 0x06;
890         }
891
892         /* (see prism54/isl_oid.h for further details) */
893         vdcf->frameburst = cpu_to_le16(0);
894
895         priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*vdcf), 0);
896 }
897
898 static int p54_start(struct ieee80211_hw *dev)
899 {
900         struct p54_common *priv = dev->priv;
901         int err;
902
903         if (!priv->cached_vdcf) {
904                 priv->cached_vdcf = kzalloc(sizeof(struct p54_tx_control_vdcf)+
905                         priv->tx_hdr_len + sizeof(struct p54_control_hdr),
906                         GFP_KERNEL);
907
908                 if (!priv->cached_vdcf)
909                         return -ENOMEM;
910         }
911
912         err = priv->open(dev);
913         if (!err)
914                 priv->mode = IEEE80211_IF_TYPE_MNTR;
915
916         p54_init_vdcf(dev);
917
918         return err;
919 }
920
921 static void p54_stop(struct ieee80211_hw *dev)
922 {
923         struct p54_common *priv = dev->priv;
924         struct sk_buff *skb;
925         while ((skb = skb_dequeue(&priv->tx_queue)))
926                 kfree_skb(skb);
927         priv->stop(dev);
928         priv->mode = IEEE80211_IF_TYPE_INVALID;
929 }
930
931 static int p54_add_interface(struct ieee80211_hw *dev,
932                              struct ieee80211_if_init_conf *conf)
933 {
934         struct p54_common *priv = dev->priv;
935
936         if (priv->mode != IEEE80211_IF_TYPE_MNTR)
937                 return -EOPNOTSUPP;
938
939         switch (conf->type) {
940         case IEEE80211_IF_TYPE_STA:
941                 priv->mode = conf->type;
942                 break;
943         default:
944                 return -EOPNOTSUPP;
945         }
946
947         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
948
949         p54_set_filter(dev, 0, priv->mac_addr, NULL, 0, 1, 0, 0xF642);
950         p54_set_filter(dev, 0, priv->mac_addr, NULL, 1, 0, 0, 0xF642);
951
952         switch (conf->type) {
953         case IEEE80211_IF_TYPE_STA:
954                 p54_set_filter(dev, 1, priv->mac_addr, NULL, 0, 0x15F, 0x1F4, 0);
955                 break;
956         default:
957                 BUG();  /* impossible */
958                 break;
959         }
960
961         p54_set_leds(dev, 1, 0, 0);
962
963         return 0;
964 }
965
966 static void p54_remove_interface(struct ieee80211_hw *dev,
967                                  struct ieee80211_if_init_conf *conf)
968 {
969         struct p54_common *priv = dev->priv;
970         priv->mode = IEEE80211_IF_TYPE_MNTR;
971         memset(priv->mac_addr, 0, ETH_ALEN);
972         p54_set_filter(dev, 0, priv->mac_addr, NULL, 2, 0, 0, 0);
973 }
974
975 static int p54_config(struct ieee80211_hw *dev, struct ieee80211_conf *conf)
976 {
977         int ret;
978         struct p54_common *priv = dev->priv;
979
980         mutex_lock(&priv->conf_mutex);
981         ret = p54_set_freq(dev, cpu_to_le16(conf->channel->center_freq));
982         p54_set_vdcf(dev);
983         mutex_unlock(&priv->conf_mutex);
984         return ret;
985 }
986
987 static int p54_config_interface(struct ieee80211_hw *dev,
988                                 struct ieee80211_vif *vif,
989                                 struct ieee80211_if_conf *conf)
990 {
991         struct p54_common *priv = dev->priv;
992
993         mutex_lock(&priv->conf_mutex);
994         p54_set_filter(dev, 0, priv->mac_addr, conf->bssid, 0, 1, 0, 0xF642);
995         p54_set_filter(dev, 0, priv->mac_addr, conf->bssid, 2, 0, 0, 0);
996         p54_set_leds(dev, 1, !is_multicast_ether_addr(conf->bssid), 0);
997         memcpy(priv->bssid, conf->bssid, ETH_ALEN);
998         mutex_unlock(&priv->conf_mutex);
999         return 0;
1000 }
1001
1002 static void p54_configure_filter(struct ieee80211_hw *dev,
1003                                  unsigned int changed_flags,
1004                                  unsigned int *total_flags,
1005                                  int mc_count, struct dev_mc_list *mclist)
1006 {
1007         struct p54_common *priv = dev->priv;
1008
1009         *total_flags &= FIF_BCN_PRBRESP_PROMISC;
1010
1011         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
1012                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
1013                         p54_set_filter(dev, 0, priv->mac_addr,
1014                                        NULL, 2, 0, 0, 0);
1015                 else
1016                         p54_set_filter(dev, 0, priv->mac_addr,
1017                                        priv->bssid, 2, 0, 0, 0);
1018         }
1019 }
1020
1021 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1022                        const struct ieee80211_tx_queue_params *params)
1023 {
1024         struct p54_common *priv = dev->priv;
1025         struct p54_tx_control_vdcf *vdcf;
1026
1027         vdcf = (struct p54_tx_control_vdcf *)(((struct p54_control_hdr *)
1028                 ((void *)priv->cached_vdcf + priv->tx_hdr_len))->data);
1029
1030         if ((params) && !(queue > 4)) {
1031                 P54_SET_QUEUE(vdcf->queue[queue], params->aifs,
1032                         params->cw_min, params->cw_max, params->txop);
1033         } else
1034                 return -EINVAL;
1035
1036         p54_set_vdcf(dev);
1037
1038         return 0;
1039 }
1040
1041 static int p54_get_stats(struct ieee80211_hw *dev,
1042                          struct ieee80211_low_level_stats *stats)
1043 {
1044         /* TODO */
1045         return 0;
1046 }
1047
1048 static int p54_get_tx_stats(struct ieee80211_hw *dev,
1049                             struct ieee80211_tx_queue_stats *stats)
1050 {
1051         struct p54_common *priv = dev->priv;
1052
1053         memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
1054
1055         return 0;
1056 }
1057
1058 static const struct ieee80211_ops p54_ops = {
1059         .tx                     = p54_tx,
1060         .start                  = p54_start,
1061         .stop                   = p54_stop,
1062         .add_interface          = p54_add_interface,
1063         .remove_interface       = p54_remove_interface,
1064         .config                 = p54_config,
1065         .config_interface       = p54_config_interface,
1066         .configure_filter       = p54_configure_filter,
1067         .conf_tx                = p54_conf_tx,
1068         .get_stats              = p54_get_stats,
1069         .get_tx_stats           = p54_get_tx_stats
1070 };
1071
1072 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
1073 {
1074         struct ieee80211_hw *dev;
1075         struct p54_common *priv;
1076
1077         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
1078         if (!dev)
1079                 return NULL;
1080
1081         priv = dev->priv;
1082         priv->mode = IEEE80211_IF_TYPE_INVALID;
1083         skb_queue_head_init(&priv->tx_queue);
1084         dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
1085         dev->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | /* not sure */
1086                      IEEE80211_HW_RX_INCLUDES_FCS |
1087                      IEEE80211_HW_SIGNAL_UNSPEC;
1088
1089         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1090
1091         dev->channel_change_time = 1000;        /* TODO: find actual value */
1092         dev->max_signal = 127;
1093
1094         priv->tx_stats[0].limit = 1;
1095         priv->tx_stats[1].limit = 1;
1096         priv->tx_stats[2].limit = 1;
1097         priv->tx_stats[3].limit = 1;
1098         priv->tx_stats[4].limit = 5;
1099         dev->queues = 1;
1100         dev->extra_tx_headroom = sizeof(struct p54_control_hdr) + 4 +
1101                                  sizeof(struct p54_tx_control_allocdata);
1102
1103         mutex_init(&priv->conf_mutex);
1104
1105         return dev;
1106 }
1107 EXPORT_SYMBOL_GPL(p54_init_common);
1108
1109 void p54_free_common(struct ieee80211_hw *dev)
1110 {
1111         struct p54_common *priv = dev->priv;
1112         kfree(priv->iq_autocal);
1113         kfree(priv->output_limit);
1114         kfree(priv->curve_data);
1115         kfree(priv->cached_vdcf);
1116 }
1117 EXPORT_SYMBOL_GPL(p54_free_common);
1118
1119 static int __init p54_init(void)
1120 {
1121         return 0;
1122 }
1123
1124 static void __exit p54_exit(void)
1125 {
1126 }
1127
1128 module_init(p54_init);
1129 module_exit(p54_exit);