44307753587da5dd5e00507ada40669ffa6b73be
[linux-2.6.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos_params.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "git-1.2.2"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
176
177 static struct pm_qos_request_list ipw2100_pm_qos_req;
178
179 /* Debugging stuff */
180 #ifdef CONFIG_IPW2100_DEBUG
181 #define IPW2100_RX_DEBUG        /* Reception debugging */
182 #endif
183
184 MODULE_DESCRIPTION(DRV_DESCRIPTION);
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_AUTHOR(DRV_COPYRIGHT);
187 MODULE_LICENSE("GPL");
188
189 static int debug = 0;
190 static int network_mode = 0;
191 static int channel = 0;
192 static int associate = 0;
193 static int disable = 0;
194 #ifdef CONFIG_PM
195 static struct ipw2100_fw ipw2100_firmware;
196 #endif
197
198 #include <linux/moduleparam.h>
199 module_param(debug, int, 0444);
200 module_param_named(mode, network_mode, int, 0444);
201 module_param(channel, int, 0444);
202 module_param(associate, int, 0444);
203 module_param(disable, int, 0444);
204
205 MODULE_PARM_DESC(debug, "debug level");
206 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
207 MODULE_PARM_DESC(channel, "channel");
208 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
209 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
210
211 static u32 ipw2100_debug_level = IPW_DL_NONE;
212
213 #ifdef CONFIG_IPW2100_DEBUG
214 #define IPW_DEBUG(level, message...) \
215 do { \
216         if (ipw2100_debug_level & (level)) { \
217                 printk(KERN_DEBUG "ipw2100: %c %s ", \
218                        in_interrupt() ? 'I' : 'U',  __func__); \
219                 printk(message); \
220         } \
221 } while (0)
222 #else
223 #define IPW_DEBUG(level, message...) do {} while (0)
224 #endif                          /* CONFIG_IPW2100_DEBUG */
225
226 #ifdef CONFIG_IPW2100_DEBUG
227 static const char *command_types[] = {
228         "undefined",
229         "unused",               /* HOST_ATTENTION */
230         "HOST_COMPLETE",
231         "unused",               /* SLEEP */
232         "unused",               /* HOST_POWER_DOWN */
233         "unused",
234         "SYSTEM_CONFIG",
235         "unused",               /* SET_IMR */
236         "SSID",
237         "MANDATORY_BSSID",
238         "AUTHENTICATION_TYPE",
239         "ADAPTER_ADDRESS",
240         "PORT_TYPE",
241         "INTERNATIONAL_MODE",
242         "CHANNEL",
243         "RTS_THRESHOLD",
244         "FRAG_THRESHOLD",
245         "POWER_MODE",
246         "TX_RATES",
247         "BASIC_TX_RATES",
248         "WEP_KEY_INFO",
249         "unused",
250         "unused",
251         "unused",
252         "unused",
253         "WEP_KEY_INDEX",
254         "WEP_FLAGS",
255         "ADD_MULTICAST",
256         "CLEAR_ALL_MULTICAST",
257         "BEACON_INTERVAL",
258         "ATIM_WINDOW",
259         "CLEAR_STATISTICS",
260         "undefined",
261         "undefined",
262         "undefined",
263         "undefined",
264         "TX_POWER_INDEX",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "BROADCAST_SCAN",
272         "CARD_DISABLE",
273         "PREFERRED_BSSID",
274         "SET_SCAN_OPTIONS",
275         "SCAN_DWELL_TIME",
276         "SWEEP_TABLE",
277         "AP_OR_STATION_TABLE",
278         "GROUP_ORDINALS",
279         "SHORT_RETRY_LIMIT",
280         "LONG_RETRY_LIMIT",
281         "unused",               /* SAVE_CALIBRATION */
282         "unused",               /* RESTORE_CALIBRATION */
283         "undefined",
284         "undefined",
285         "undefined",
286         "HOST_PRE_POWER_DOWN",
287         "unused",               /* HOST_INTERRUPT_COALESCING */
288         "undefined",
289         "CARD_DISABLE_PHY_OFF",
290         "MSDU_TX_RATES" "undefined",
291         "undefined",
292         "SET_STATION_STAT_BITS",
293         "CLEAR_STATIONS_STAT_BITS",
294         "LEAP_ROGUE_MODE",
295         "SET_SECURITY_INFORMATION",
296         "DISASSOCIATION_BSSID",
297         "SET_WPA_ASS_IE"
298 };
299 #endif
300
301 #define WEXT_USECHANNELS 1
302
303 static const long ipw2100_frequencies[] = {
304         2412, 2417, 2422, 2427,
305         2432, 2437, 2442, 2447,
306         2452, 2457, 2462, 2467,
307         2472, 2484
308 };
309
310 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
311
312 static const long ipw2100_rates_11b[] = {
313         1000000,
314         2000000,
315         5500000,
316         11000000
317 };
318
319 static struct ieee80211_rate ipw2100_bg_rates[] = {
320         { .bitrate = 10 },
321         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
322         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
323         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
324 };
325
326 #define RATE_COUNT ARRAY_SIZE(ipw2100_rates_11b)
327
328 /* Pre-decl until we get the code solid and then we can clean it up */
329 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
330 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
331 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
332
333 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
334 static void ipw2100_queues_free(struct ipw2100_priv *priv);
335 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
336
337 static int ipw2100_fw_download(struct ipw2100_priv *priv,
338                                struct ipw2100_fw *fw);
339 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
340                                 struct ipw2100_fw *fw);
341 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
342                                  size_t max);
343 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
344                                     size_t max);
345 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
346                                      struct ipw2100_fw *fw);
347 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
348                                   struct ipw2100_fw *fw);
349 static void ipw2100_wx_event_work(struct work_struct *work);
350 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
351 static struct iw_handler_def ipw2100_wx_handler_def;
352
353 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
354 {
355         *val = readl((void __iomem *)(dev->base_addr + reg));
356         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
357 }
358
359 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
360 {
361         writel(val, (void __iomem *)(dev->base_addr + reg));
362         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
363 }
364
365 static inline void read_register_word(struct net_device *dev, u32 reg,
366                                       u16 * val)
367 {
368         *val = readw((void __iomem *)(dev->base_addr + reg));
369         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
370 }
371
372 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
373 {
374         *val = readb((void __iomem *)(dev->base_addr + reg));
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         writew(val, (void __iomem *)(dev->base_addr + reg));
381         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
382 }
383
384 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
385 {
386         writeb(val, (void __iomem *)(dev->base_addr + reg));
387         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
388 }
389
390 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
391 {
392         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
393                        addr & IPW_REG_INDIRECT_ADDR_MASK);
394         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 }
396
397 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
398 {
399         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
400                        addr & IPW_REG_INDIRECT_ADDR_MASK);
401         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 }
403
404 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
405 {
406         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
407                        addr & IPW_REG_INDIRECT_ADDR_MASK);
408         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
409 }
410
411 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
412 {
413         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
414                        addr & IPW_REG_INDIRECT_ADDR_MASK);
415         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
416 }
417
418 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
419 {
420         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
421                        addr & IPW_REG_INDIRECT_ADDR_MASK);
422         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
423 }
424
425 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
426 {
427         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                        addr & IPW_REG_INDIRECT_ADDR_MASK);
429         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
430 }
431
432 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
433 {
434         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
435                        addr & IPW_REG_INDIRECT_ADDR_MASK);
436 }
437
438 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
439 {
440         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
441 }
442
443 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
444                                     const u8 * buf)
445 {
446         u32 aligned_addr;
447         u32 aligned_len;
448         u32 dif_len;
449         u32 i;
450
451         /* read first nibble byte by byte */
452         aligned_addr = addr & (~0x3);
453         dif_len = addr - aligned_addr;
454         if (dif_len) {
455                 /* Start reading at aligned_addr + dif_len */
456                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
457                                aligned_addr);
458                 for (i = dif_len; i < 4; i++, buf++)
459                         write_register_byte(dev,
460                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
461                                             *buf);
462
463                 len -= dif_len;
464                 aligned_addr += 4;
465         }
466
467         /* read DWs through autoincrement registers */
468         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
469         aligned_len = len & (~0x3);
470         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
471                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
472
473         /* copy the last nibble */
474         dif_len = len - aligned_len;
475         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
476         for (i = 0; i < dif_len; i++, buf++)
477                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
478                                     *buf);
479 }
480
481 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
482                                    u8 * buf)
483 {
484         u32 aligned_addr;
485         u32 aligned_len;
486         u32 dif_len;
487         u32 i;
488
489         /* read first nibble byte by byte */
490         aligned_addr = addr & (~0x3);
491         dif_len = addr - aligned_addr;
492         if (dif_len) {
493                 /* Start reading at aligned_addr + dif_len */
494                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
495                                aligned_addr);
496                 for (i = dif_len; i < 4; i++, buf++)
497                         read_register_byte(dev,
498                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
499                                            buf);
500
501                 len -= dif_len;
502                 aligned_addr += 4;
503         }
504
505         /* read DWs through autoincrement registers */
506         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
507         aligned_len = len & (~0x3);
508         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
509                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
510
511         /* copy the last nibble */
512         dif_len = len - aligned_len;
513         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
514         for (i = 0; i < dif_len; i++, buf++)
515                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
516 }
517
518 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
519 {
520         return (dev->base_addr &&
521                 (readl
522                  ((void __iomem *)(dev->base_addr +
523                                    IPW_REG_DOA_DEBUG_AREA_START))
524                  == IPW_DATA_DOA_DEBUG_VALUE));
525 }
526
527 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
528                                void *val, u32 * len)
529 {
530         struct ipw2100_ordinals *ordinals = &priv->ordinals;
531         u32 addr;
532         u32 field_info;
533         u16 field_len;
534         u16 field_count;
535         u32 total_length;
536
537         if (ordinals->table1_addr == 0) {
538                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
539                        "before they have been loaded.\n");
540                 return -EINVAL;
541         }
542
543         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
544                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
545                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
546
547                         printk(KERN_WARNING DRV_NAME
548                                ": ordinal buffer length too small, need %zd\n",
549                                IPW_ORD_TAB_1_ENTRY_SIZE);
550
551                         return -EINVAL;
552                 }
553
554                 read_nic_dword(priv->net_dev,
555                                ordinals->table1_addr + (ord << 2), &addr);
556                 read_nic_dword(priv->net_dev, addr, val);
557
558                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
559
560                 return 0;
561         }
562
563         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
564
565                 ord -= IPW_START_ORD_TAB_2;
566
567                 /* get the address of statistic */
568                 read_nic_dword(priv->net_dev,
569                                ordinals->table2_addr + (ord << 3), &addr);
570
571                 /* get the second DW of statistics ;
572                  * two 16-bit words - first is length, second is count */
573                 read_nic_dword(priv->net_dev,
574                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
575                                &field_info);
576
577                 /* get each entry length */
578                 field_len = *((u16 *) & field_info);
579
580                 /* get number of entries */
581                 field_count = *(((u16 *) & field_info) + 1);
582
583                 /* abort if no enough memory */
584                 total_length = field_len * field_count;
585                 if (total_length > *len) {
586                         *len = total_length;
587                         return -EINVAL;
588                 }
589
590                 *len = total_length;
591                 if (!total_length)
592                         return 0;
593
594                 /* read the ordinal data from the SRAM */
595                 read_nic_memory(priv->net_dev, addr, total_length, val);
596
597                 return 0;
598         }
599
600         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
601                "in table 2\n", ord);
602
603         return -EINVAL;
604 }
605
606 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
607                                u32 * len)
608 {
609         struct ipw2100_ordinals *ordinals = &priv->ordinals;
610         u32 addr;
611
612         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
613                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
614                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
615                         IPW_DEBUG_INFO("wrong size\n");
616                         return -EINVAL;
617                 }
618
619                 read_nic_dword(priv->net_dev,
620                                ordinals->table1_addr + (ord << 2), &addr);
621
622                 write_nic_dword(priv->net_dev, addr, *val);
623
624                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
625
626                 return 0;
627         }
628
629         IPW_DEBUG_INFO("wrong table\n");
630         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
631                 return -EINVAL;
632
633         return -EINVAL;
634 }
635
636 static char *snprint_line(char *buf, size_t count,
637                           const u8 * data, u32 len, u32 ofs)
638 {
639         int out, i, j, l;
640         char c;
641
642         out = snprintf(buf, count, "%08X", ofs);
643
644         for (l = 0, i = 0; i < 2; i++) {
645                 out += snprintf(buf + out, count - out, " ");
646                 for (j = 0; j < 8 && l < len; j++, l++)
647                         out += snprintf(buf + out, count - out, "%02X ",
648                                         data[(i * 8 + j)]);
649                 for (; j < 8; j++)
650                         out += snprintf(buf + out, count - out, "   ");
651         }
652
653         out += snprintf(buf + out, count - out, " ");
654         for (l = 0, i = 0; i < 2; i++) {
655                 out += snprintf(buf + out, count - out, " ");
656                 for (j = 0; j < 8 && l < len; j++, l++) {
657                         c = data[(i * 8 + j)];
658                         if (!isascii(c) || !isprint(c))
659                                 c = '.';
660
661                         out += snprintf(buf + out, count - out, "%c", c);
662                 }
663
664                 for (; j < 8; j++)
665                         out += snprintf(buf + out, count - out, " ");
666         }
667
668         return buf;
669 }
670
671 static void printk_buf(int level, const u8 * data, u32 len)
672 {
673         char line[81];
674         u32 ofs = 0;
675         if (!(ipw2100_debug_level & level))
676                 return;
677
678         while (len) {
679                 printk(KERN_DEBUG "%s\n",
680                        snprint_line(line, sizeof(line), &data[ofs],
681                                     min(len, 16U), ofs));
682                 ofs += 16;
683                 len -= min(len, 16U);
684         }
685 }
686
687 #define MAX_RESET_BACKOFF 10
688
689 static void schedule_reset(struct ipw2100_priv *priv)
690 {
691         unsigned long now = get_seconds();
692
693         /* If we haven't received a reset request within the backoff period,
694          * then we can reset the backoff interval so this reset occurs
695          * immediately */
696         if (priv->reset_backoff &&
697             (now - priv->last_reset > priv->reset_backoff))
698                 priv->reset_backoff = 0;
699
700         priv->last_reset = get_seconds();
701
702         if (!(priv->status & STATUS_RESET_PENDING)) {
703                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
704                                priv->net_dev->name, priv->reset_backoff);
705                 netif_carrier_off(priv->net_dev);
706                 netif_stop_queue(priv->net_dev);
707                 priv->status |= STATUS_RESET_PENDING;
708                 if (priv->reset_backoff)
709                         schedule_delayed_work(&priv->reset_work,
710                                               priv->reset_backoff * HZ);
711                 else
712                         schedule_delayed_work(&priv->reset_work, 0);
713
714                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
715                         priv->reset_backoff++;
716
717                 wake_up_interruptible(&priv->wait_command_queue);
718         } else
719                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
720                                priv->net_dev->name);
721
722 }
723
724 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
725 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
726                                    struct host_command *cmd)
727 {
728         struct list_head *element;
729         struct ipw2100_tx_packet *packet;
730         unsigned long flags;
731         int err = 0;
732
733         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
734                      command_types[cmd->host_command], cmd->host_command,
735                      cmd->host_command_length);
736         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
737                    cmd->host_command_length);
738
739         spin_lock_irqsave(&priv->low_lock, flags);
740
741         if (priv->fatal_error) {
742                 IPW_DEBUG_INFO
743                     ("Attempt to send command while hardware in fatal error condition.\n");
744                 err = -EIO;
745                 goto fail_unlock;
746         }
747
748         if (!(priv->status & STATUS_RUNNING)) {
749                 IPW_DEBUG_INFO
750                     ("Attempt to send command while hardware is not running.\n");
751                 err = -EIO;
752                 goto fail_unlock;
753         }
754
755         if (priv->status & STATUS_CMD_ACTIVE) {
756                 IPW_DEBUG_INFO
757                     ("Attempt to send command while another command is pending.\n");
758                 err = -EBUSY;
759                 goto fail_unlock;
760         }
761
762         if (list_empty(&priv->msg_free_list)) {
763                 IPW_DEBUG_INFO("no available msg buffers\n");
764                 goto fail_unlock;
765         }
766
767         priv->status |= STATUS_CMD_ACTIVE;
768         priv->messages_sent++;
769
770         element = priv->msg_free_list.next;
771
772         packet = list_entry(element, struct ipw2100_tx_packet, list);
773         packet->jiffy_start = jiffies;
774
775         /* initialize the firmware command packet */
776         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
777         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
778         packet->info.c_struct.cmd->host_command_len_reg =
779             cmd->host_command_length;
780         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
781
782         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
783                cmd->host_command_parameters,
784                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
785
786         list_del(element);
787         DEC_STAT(&priv->msg_free_stat);
788
789         list_add_tail(element, &priv->msg_pend_list);
790         INC_STAT(&priv->msg_pend_stat);
791
792         ipw2100_tx_send_commands(priv);
793         ipw2100_tx_send_data(priv);
794
795         spin_unlock_irqrestore(&priv->low_lock, flags);
796
797         /*
798          * We must wait for this command to complete before another
799          * command can be sent...  but if we wait more than 3 seconds
800          * then there is a problem.
801          */
802
803         err =
804             wait_event_interruptible_timeout(priv->wait_command_queue,
805                                              !(priv->
806                                                status & STATUS_CMD_ACTIVE),
807                                              HOST_COMPLETE_TIMEOUT);
808
809         if (err == 0) {
810                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
811                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
812                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
813                 priv->status &= ~STATUS_CMD_ACTIVE;
814                 schedule_reset(priv);
815                 return -EIO;
816         }
817
818         if (priv->fatal_error) {
819                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
820                        priv->net_dev->name);
821                 return -EIO;
822         }
823
824         /* !!!!! HACK TEST !!!!!
825          * When lots of debug trace statements are enabled, the driver
826          * doesn't seem to have as many firmware restart cycles...
827          *
828          * As a test, we're sticking in a 1/100s delay here */
829         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
830
831         return 0;
832
833       fail_unlock:
834         spin_unlock_irqrestore(&priv->low_lock, flags);
835
836         return err;
837 }
838
839 /*
840  * Verify the values and data access of the hardware
841  * No locks needed or used.  No functions called.
842  */
843 static int ipw2100_verify(struct ipw2100_priv *priv)
844 {
845         u32 data1, data2;
846         u32 address;
847
848         u32 val1 = 0x76543210;
849         u32 val2 = 0xFEDCBA98;
850
851         /* Domain 0 check - all values should be DOA_DEBUG */
852         for (address = IPW_REG_DOA_DEBUG_AREA_START;
853              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
854                 read_register(priv->net_dev, address, &data1);
855                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
856                         return -EIO;
857         }
858
859         /* Domain 1 check - use arbitrary read/write compare  */
860         for (address = 0; address < 5; address++) {
861                 /* The memory area is not used now */
862                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
863                                val1);
864                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
865                                val2);
866                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                               &data1);
868                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                               &data2);
870                 if (val1 == data1 && val2 == data2)
871                         return 0;
872         }
873
874         return -EIO;
875 }
876
877 /*
878  *
879  * Loop until the CARD_DISABLED bit is the same value as the
880  * supplied parameter
881  *
882  * TODO: See if it would be more efficient to do a wait/wake
883  *       cycle and have the completion event trigger the wakeup
884  *
885  */
886 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
887 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
888 {
889         int i;
890         u32 card_state;
891         u32 len = sizeof(card_state);
892         int err;
893
894         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
895                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
896                                           &card_state, &len);
897                 if (err) {
898                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
899                                        "failed.\n");
900                         return 0;
901                 }
902
903                 /* We'll break out if either the HW state says it is
904                  * in the state we want, or if HOST_COMPLETE command
905                  * finishes */
906                 if ((card_state == state) ||
907                     ((priv->status & STATUS_ENABLED) ?
908                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
909                         if (state == IPW_HW_STATE_ENABLED)
910                                 priv->status |= STATUS_ENABLED;
911                         else
912                                 priv->status &= ~STATUS_ENABLED;
913
914                         return 0;
915                 }
916
917                 udelay(50);
918         }
919
920         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
921                        state ? "DISABLED" : "ENABLED");
922         return -EIO;
923 }
924
925 /*********************************************************************
926     Procedure   :   sw_reset_and_clock
927     Purpose     :   Asserts s/w reset, asserts clock initialization
928                     and waits for clock stabilization
929  ********************************************************************/
930 static int sw_reset_and_clock(struct ipw2100_priv *priv)
931 {
932         int i;
933         u32 r;
934
935         // assert s/w reset
936         write_register(priv->net_dev, IPW_REG_RESET_REG,
937                        IPW_AUX_HOST_RESET_REG_SW_RESET);
938
939         // wait for clock stabilization
940         for (i = 0; i < 1000; i++) {
941                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
942
943                 // check clock ready bit
944                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
945                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
946                         break;
947         }
948
949         if (i == 1000)
950                 return -EIO;    // TODO: better error value
951
952         /* set "initialization complete" bit to move adapter to
953          * D0 state */
954         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
955                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
956
957         /* wait for clock stabilization */
958         for (i = 0; i < 10000; i++) {
959                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
960
961                 /* check clock ready bit */
962                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
963                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
964                         break;
965         }
966
967         if (i == 10000)
968                 return -EIO;    /* TODO: better error value */
969
970         /* set D0 standby bit */
971         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
972         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
973                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
974
975         return 0;
976 }
977
978 /*********************************************************************
979     Procedure   :   ipw2100_download_firmware
980     Purpose     :   Initiaze adapter after power on.
981                     The sequence is:
982                     1. assert s/w reset first!
983                     2. awake clocks & wait for clock stabilization
984                     3. hold ARC (don't ask me why...)
985                     4. load Dino ucode and reset/clock init again
986                     5. zero-out shared mem
987                     6. download f/w
988  *******************************************************************/
989 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
990 {
991         u32 address;
992         int err;
993
994 #ifndef CONFIG_PM
995         /* Fetch the firmware and microcode */
996         struct ipw2100_fw ipw2100_firmware;
997 #endif
998
999         if (priv->fatal_error) {
1000                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1001                                 "fatal error %d.  Interface must be brought down.\n",
1002                                 priv->net_dev->name, priv->fatal_error);
1003                 return -EINVAL;
1004         }
1005 #ifdef CONFIG_PM
1006         if (!ipw2100_firmware.version) {
1007                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1008                 if (err) {
1009                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1010                                         priv->net_dev->name, err);
1011                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1012                         goto fail;
1013                 }
1014         }
1015 #else
1016         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1017         if (err) {
1018                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1019                                 priv->net_dev->name, err);
1020                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1021                 goto fail;
1022         }
1023 #endif
1024         priv->firmware_version = ipw2100_firmware.version;
1025
1026         /* s/w reset and clock stabilization */
1027         err = sw_reset_and_clock(priv);
1028         if (err) {
1029                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1030                                 priv->net_dev->name, err);
1031                 goto fail;
1032         }
1033
1034         err = ipw2100_verify(priv);
1035         if (err) {
1036                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1037                                 priv->net_dev->name, err);
1038                 goto fail;
1039         }
1040
1041         /* Hold ARC */
1042         write_nic_dword(priv->net_dev,
1043                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1044
1045         /* allow ARC to run */
1046         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1047
1048         /* load microcode */
1049         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1050         if (err) {
1051                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1052                        priv->net_dev->name, err);
1053                 goto fail;
1054         }
1055
1056         /* release ARC */
1057         write_nic_dword(priv->net_dev,
1058                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1059
1060         /* s/w reset and clock stabilization (again!!!) */
1061         err = sw_reset_and_clock(priv);
1062         if (err) {
1063                 printk(KERN_ERR DRV_NAME
1064                        ": %s: sw_reset_and_clock failed: %d\n",
1065                        priv->net_dev->name, err);
1066                 goto fail;
1067         }
1068
1069         /* load f/w */
1070         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1071         if (err) {
1072                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1073                                 priv->net_dev->name, err);
1074                 goto fail;
1075         }
1076 #ifndef CONFIG_PM
1077         /*
1078          * When the .resume method of the driver is called, the other
1079          * part of the system, i.e. the ide driver could still stay in
1080          * the suspend stage. This prevents us from loading the firmware
1081          * from the disk.  --YZ
1082          */
1083
1084         /* free any storage allocated for firmware image */
1085         ipw2100_release_firmware(priv, &ipw2100_firmware);
1086 #endif
1087
1088         /* zero out Domain 1 area indirectly (Si requirement) */
1089         for (address = IPW_HOST_FW_SHARED_AREA0;
1090              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1091                 write_nic_dword(priv->net_dev, address, 0);
1092         for (address = IPW_HOST_FW_SHARED_AREA1;
1093              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1094                 write_nic_dword(priv->net_dev, address, 0);
1095         for (address = IPW_HOST_FW_SHARED_AREA2;
1096              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1097                 write_nic_dword(priv->net_dev, address, 0);
1098         for (address = IPW_HOST_FW_SHARED_AREA3;
1099              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1100                 write_nic_dword(priv->net_dev, address, 0);
1101         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1102              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1103                 write_nic_dword(priv->net_dev, address, 0);
1104
1105         return 0;
1106
1107       fail:
1108         ipw2100_release_firmware(priv, &ipw2100_firmware);
1109         return err;
1110 }
1111
1112 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1113 {
1114         if (priv->status & STATUS_INT_ENABLED)
1115                 return;
1116         priv->status |= STATUS_INT_ENABLED;
1117         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1118 }
1119
1120 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1121 {
1122         if (!(priv->status & STATUS_INT_ENABLED))
1123                 return;
1124         priv->status &= ~STATUS_INT_ENABLED;
1125         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1126 }
1127
1128 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1129 {
1130         struct ipw2100_ordinals *ord = &priv->ordinals;
1131
1132         IPW_DEBUG_INFO("enter\n");
1133
1134         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1135                       &ord->table1_addr);
1136
1137         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1138                       &ord->table2_addr);
1139
1140         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1141         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1142
1143         ord->table2_size &= 0x0000FFFF;
1144
1145         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1146         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1147         IPW_DEBUG_INFO("exit\n");
1148 }
1149
1150 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1151 {
1152         u32 reg = 0;
1153         /*
1154          * Set GPIO 3 writable by FW; GPIO 1 writable
1155          * by driver and enable clock
1156          */
1157         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1158                IPW_BIT_GPIO_LED_OFF);
1159         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1160 }
1161
1162 static int rf_kill_active(struct ipw2100_priv *priv)
1163 {
1164 #define MAX_RF_KILL_CHECKS 5
1165 #define RF_KILL_CHECK_DELAY 40
1166
1167         unsigned short value = 0;
1168         u32 reg = 0;
1169         int i;
1170
1171         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1172                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1173                 priv->status &= ~STATUS_RF_KILL_HW;
1174                 return 0;
1175         }
1176
1177         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1178                 udelay(RF_KILL_CHECK_DELAY);
1179                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1180                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1181         }
1182
1183         if (value == 0) {
1184                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1185                 priv->status |= STATUS_RF_KILL_HW;
1186         } else {
1187                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1188                 priv->status &= ~STATUS_RF_KILL_HW;
1189         }
1190
1191         return (value == 0);
1192 }
1193
1194 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1195 {
1196         u32 addr, len;
1197         u32 val;
1198
1199         /*
1200          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1201          */
1202         len = sizeof(addr);
1203         if (ipw2100_get_ordinal
1204             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1205                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1206                                __LINE__);
1207                 return -EIO;
1208         }
1209
1210         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1211
1212         /*
1213          * EEPROM version is the byte at offset 0xfd in firmware
1214          * We read 4 bytes, then shift out the byte we actually want */
1215         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1216         priv->eeprom_version = (val >> 24) & 0xFF;
1217         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1218
1219         /*
1220          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1221          *
1222          *  notice that the EEPROM bit is reverse polarity, i.e.
1223          *     bit = 0  signifies HW RF kill switch is supported
1224          *     bit = 1  signifies HW RF kill switch is NOT supported
1225          */
1226         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1227         if (!((val >> 24) & 0x01))
1228                 priv->hw_features |= HW_FEATURE_RFKILL;
1229
1230         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1231                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1232
1233         return 0;
1234 }
1235
1236 /*
1237  * Start firmware execution after power on and intialization
1238  * The sequence is:
1239  *  1. Release ARC
1240  *  2. Wait for f/w initialization completes;
1241  */
1242 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1243 {
1244         int i;
1245         u32 inta, inta_mask, gpio;
1246
1247         IPW_DEBUG_INFO("enter\n");
1248
1249         if (priv->status & STATUS_RUNNING)
1250                 return 0;
1251
1252         /*
1253          * Initialize the hw - drive adapter to DO state by setting
1254          * init_done bit. Wait for clk_ready bit and Download
1255          * fw & dino ucode
1256          */
1257         if (ipw2100_download_firmware(priv)) {
1258                 printk(KERN_ERR DRV_NAME
1259                        ": %s: Failed to power on the adapter.\n",
1260                        priv->net_dev->name);
1261                 return -EIO;
1262         }
1263
1264         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1265          * in the firmware RBD and TBD ring queue */
1266         ipw2100_queues_initialize(priv);
1267
1268         ipw2100_hw_set_gpio(priv);
1269
1270         /* TODO -- Look at disabling interrupts here to make sure none
1271          * get fired during FW initialization */
1272
1273         /* Release ARC - clear reset bit */
1274         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1275
1276         /* wait for f/w intialization complete */
1277         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1278         i = 5000;
1279         do {
1280                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1281                 /* Todo... wait for sync command ... */
1282
1283                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1284
1285                 /* check "init done" bit */
1286                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1287                         /* reset "init done" bit */
1288                         write_register(priv->net_dev, IPW_REG_INTA,
1289                                        IPW2100_INTA_FW_INIT_DONE);
1290                         break;
1291                 }
1292
1293                 /* check error conditions : we check these after the firmware
1294                  * check so that if there is an error, the interrupt handler
1295                  * will see it and the adapter will be reset */
1296                 if (inta &
1297                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1298                         /* clear error conditions */
1299                         write_register(priv->net_dev, IPW_REG_INTA,
1300                                        IPW2100_INTA_FATAL_ERROR |
1301                                        IPW2100_INTA_PARITY_ERROR);
1302                 }
1303         } while (--i);
1304
1305         /* Clear out any pending INTAs since we aren't supposed to have
1306          * interrupts enabled at this point... */
1307         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1308         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1309         inta &= IPW_INTERRUPT_MASK;
1310         /* Clear out any pending interrupts */
1311         if (inta & inta_mask)
1312                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1313
1314         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1315                      i ? "SUCCESS" : "FAILED");
1316
1317         if (!i) {
1318                 printk(KERN_WARNING DRV_NAME
1319                        ": %s: Firmware did not initialize.\n",
1320                        priv->net_dev->name);
1321                 return -EIO;
1322         }
1323
1324         /* allow firmware to write to GPIO1 & GPIO3 */
1325         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1326
1327         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1328
1329         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1330
1331         /* Ready to receive commands */
1332         priv->status |= STATUS_RUNNING;
1333
1334         /* The adapter has been reset; we are not associated */
1335         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1336
1337         IPW_DEBUG_INFO("exit\n");
1338
1339         return 0;
1340 }
1341
1342 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1343 {
1344         if (!priv->fatal_error)
1345                 return;
1346
1347         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1348         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1349         priv->fatal_error = 0;
1350 }
1351
1352 /* NOTE: Our interrupt is disabled when this method is called */
1353 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1354 {
1355         u32 reg;
1356         int i;
1357
1358         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1359
1360         ipw2100_hw_set_gpio(priv);
1361
1362         /* Step 1. Stop Master Assert */
1363         write_register(priv->net_dev, IPW_REG_RESET_REG,
1364                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1365
1366         /* Step 2. Wait for stop Master Assert
1367          *         (not more than 50us, otherwise ret error */
1368         i = 5;
1369         do {
1370                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1371                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1372
1373                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1374                         break;
1375         } while (--i);
1376
1377         priv->status &= ~STATUS_RESET_PENDING;
1378
1379         if (!i) {
1380                 IPW_DEBUG_INFO
1381                     ("exit - waited too long for master assert stop\n");
1382                 return -EIO;
1383         }
1384
1385         write_register(priv->net_dev, IPW_REG_RESET_REG,
1386                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1387
1388         /* Reset any fatal_error conditions */
1389         ipw2100_reset_fatalerror(priv);
1390
1391         /* At this point, the adapter is now stopped and disabled */
1392         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1393                           STATUS_ASSOCIATED | STATUS_ENABLED);
1394
1395         return 0;
1396 }
1397
1398 /*
1399  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1400  *
1401  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1402  *
1403  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1404  * if STATUS_ASSN_LOST is sent.
1405  */
1406 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1407 {
1408
1409 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1410
1411         struct host_command cmd = {
1412                 .host_command = CARD_DISABLE_PHY_OFF,
1413                 .host_command_sequence = 0,
1414                 .host_command_length = 0,
1415         };
1416         int err, i;
1417         u32 val1, val2;
1418
1419         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1420
1421         /* Turn off the radio */
1422         err = ipw2100_hw_send_command(priv, &cmd);
1423         if (err)
1424                 return err;
1425
1426         for (i = 0; i < 2500; i++) {
1427                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1428                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1429
1430                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1431                     (val2 & IPW2100_COMMAND_PHY_OFF))
1432                         return 0;
1433
1434                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1435         }
1436
1437         return -EIO;
1438 }
1439
1440 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1441 {
1442         struct host_command cmd = {
1443                 .host_command = HOST_COMPLETE,
1444                 .host_command_sequence = 0,
1445                 .host_command_length = 0
1446         };
1447         int err = 0;
1448
1449         IPW_DEBUG_HC("HOST_COMPLETE\n");
1450
1451         if (priv->status & STATUS_ENABLED)
1452                 return 0;
1453
1454         mutex_lock(&priv->adapter_mutex);
1455
1456         if (rf_kill_active(priv)) {
1457                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1458                 goto fail_up;
1459         }
1460
1461         err = ipw2100_hw_send_command(priv, &cmd);
1462         if (err) {
1463                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1464                 goto fail_up;
1465         }
1466
1467         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1468         if (err) {
1469                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1470                                priv->net_dev->name);
1471                 goto fail_up;
1472         }
1473
1474         if (priv->stop_hang_check) {
1475                 priv->stop_hang_check = 0;
1476                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1477         }
1478
1479       fail_up:
1480         mutex_unlock(&priv->adapter_mutex);
1481         return err;
1482 }
1483
1484 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1485 {
1486 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1487
1488         struct host_command cmd = {
1489                 .host_command = HOST_PRE_POWER_DOWN,
1490                 .host_command_sequence = 0,
1491                 .host_command_length = 0,
1492         };
1493         int err, i;
1494         u32 reg;
1495
1496         if (!(priv->status & STATUS_RUNNING))
1497                 return 0;
1498
1499         priv->status |= STATUS_STOPPING;
1500
1501         /* We can only shut down the card if the firmware is operational.  So,
1502          * if we haven't reset since a fatal_error, then we can not send the
1503          * shutdown commands. */
1504         if (!priv->fatal_error) {
1505                 /* First, make sure the adapter is enabled so that the PHY_OFF
1506                  * command can shut it down */
1507                 ipw2100_enable_adapter(priv);
1508
1509                 err = ipw2100_hw_phy_off(priv);
1510                 if (err)
1511                         printk(KERN_WARNING DRV_NAME
1512                                ": Error disabling radio %d\n", err);
1513
1514                 /*
1515                  * If in D0-standby mode going directly to D3 may cause a
1516                  * PCI bus violation.  Therefore we must change out of the D0
1517                  * state.
1518                  *
1519                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1520                  * hardware from going into standby mode and will transition
1521                  * out of D0-standby if it is already in that state.
1522                  *
1523                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1524                  * driver upon completion.  Once received, the driver can
1525                  * proceed to the D3 state.
1526                  *
1527                  * Prepare for power down command to fw.  This command would
1528                  * take HW out of D0-standby and prepare it for D3 state.
1529                  *
1530                  * Currently FW does not support event notification for this
1531                  * event. Therefore, skip waiting for it.  Just wait a fixed
1532                  * 100ms
1533                  */
1534                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1535
1536                 err = ipw2100_hw_send_command(priv, &cmd);
1537                 if (err)
1538                         printk(KERN_WARNING DRV_NAME ": "
1539                                "%s: Power down command failed: Error %d\n",
1540                                priv->net_dev->name, err);
1541                 else
1542                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1543         }
1544
1545         priv->status &= ~STATUS_ENABLED;
1546
1547         /*
1548          * Set GPIO 3 writable by FW; GPIO 1 writable
1549          * by driver and enable clock
1550          */
1551         ipw2100_hw_set_gpio(priv);
1552
1553         /*
1554          * Power down adapter.  Sequence:
1555          * 1. Stop master assert (RESET_REG[9]=1)
1556          * 2. Wait for stop master (RESET_REG[8]==1)
1557          * 3. S/w reset assert (RESET_REG[7] = 1)
1558          */
1559
1560         /* Stop master assert */
1561         write_register(priv->net_dev, IPW_REG_RESET_REG,
1562                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1563
1564         /* wait stop master not more than 50 usec.
1565          * Otherwise return error. */
1566         for (i = 5; i > 0; i--) {
1567                 udelay(10);
1568
1569                 /* Check master stop bit */
1570                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1571
1572                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1573                         break;
1574         }
1575
1576         if (i == 0)
1577                 printk(KERN_WARNING DRV_NAME
1578                        ": %s: Could now power down adapter.\n",
1579                        priv->net_dev->name);
1580
1581         /* assert s/w reset */
1582         write_register(priv->net_dev, IPW_REG_RESET_REG,
1583                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1584
1585         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1586
1587         return 0;
1588 }
1589
1590 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1591 {
1592         struct host_command cmd = {
1593                 .host_command = CARD_DISABLE,
1594                 .host_command_sequence = 0,
1595                 .host_command_length = 0
1596         };
1597         int err = 0;
1598
1599         IPW_DEBUG_HC("CARD_DISABLE\n");
1600
1601         if (!(priv->status & STATUS_ENABLED))
1602                 return 0;
1603
1604         /* Make sure we clear the associated state */
1605         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1606
1607         if (!priv->stop_hang_check) {
1608                 priv->stop_hang_check = 1;
1609                 cancel_delayed_work(&priv->hang_check);
1610         }
1611
1612         mutex_lock(&priv->adapter_mutex);
1613
1614         err = ipw2100_hw_send_command(priv, &cmd);
1615         if (err) {
1616                 printk(KERN_WARNING DRV_NAME
1617                        ": exit - failed to send CARD_DISABLE command\n");
1618                 goto fail_up;
1619         }
1620
1621         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1622         if (err) {
1623                 printk(KERN_WARNING DRV_NAME
1624                        ": exit - card failed to change to DISABLED\n");
1625                 goto fail_up;
1626         }
1627
1628         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1629
1630       fail_up:
1631         mutex_unlock(&priv->adapter_mutex);
1632         return err;
1633 }
1634
1635 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1636 {
1637         struct host_command cmd = {
1638                 .host_command = SET_SCAN_OPTIONS,
1639                 .host_command_sequence = 0,
1640                 .host_command_length = 8
1641         };
1642         int err;
1643
1644         IPW_DEBUG_INFO("enter\n");
1645
1646         IPW_DEBUG_SCAN("setting scan options\n");
1647
1648         cmd.host_command_parameters[0] = 0;
1649
1650         if (!(priv->config & CFG_ASSOCIATE))
1651                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1652         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1653                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1654         if (priv->config & CFG_PASSIVE_SCAN)
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1656
1657         cmd.host_command_parameters[1] = priv->channel_mask;
1658
1659         err = ipw2100_hw_send_command(priv, &cmd);
1660
1661         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1662                      cmd.host_command_parameters[0]);
1663
1664         return err;
1665 }
1666
1667 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1668 {
1669         struct host_command cmd = {
1670                 .host_command = BROADCAST_SCAN,
1671                 .host_command_sequence = 0,
1672                 .host_command_length = 4
1673         };
1674         int err;
1675
1676         IPW_DEBUG_HC("START_SCAN\n");
1677
1678         cmd.host_command_parameters[0] = 0;
1679
1680         /* No scanning if in monitor mode */
1681         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1682                 return 1;
1683
1684         if (priv->status & STATUS_SCANNING) {
1685                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1686                 return 0;
1687         }
1688
1689         IPW_DEBUG_INFO("enter\n");
1690
1691         /* Not clearing here; doing so makes iwlist always return nothing...
1692          *
1693          * We should modify the table logic to use aging tables vs. clearing
1694          * the table on each scan start.
1695          */
1696         IPW_DEBUG_SCAN("starting scan\n");
1697
1698         priv->status |= STATUS_SCANNING;
1699         err = ipw2100_hw_send_command(priv, &cmd);
1700         if (err)
1701                 priv->status &= ~STATUS_SCANNING;
1702
1703         IPW_DEBUG_INFO("exit\n");
1704
1705         return err;
1706 }
1707
1708 static const struct libipw_geo ipw_geos[] = {
1709         {                       /* Restricted */
1710          "---",
1711          .bg_channels = 14,
1712          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1713                 {2427, 4}, {2432, 5}, {2437, 6},
1714                 {2442, 7}, {2447, 8}, {2452, 9},
1715                 {2457, 10}, {2462, 11}, {2467, 12},
1716                 {2472, 13}, {2484, 14}},
1717          },
1718 };
1719
1720 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1721 {
1722         unsigned long flags;
1723         int rc = 0;
1724         u32 lock;
1725         u32 ord_len = sizeof(lock);
1726
1727         /* Age scan list entries found before suspend */
1728         if (priv->suspend_time) {
1729                 libipw_networks_age(priv->ieee, priv->suspend_time);
1730                 priv->suspend_time = 0;
1731         }
1732
1733         /* Quiet if manually disabled. */
1734         if (priv->status & STATUS_RF_KILL_SW) {
1735                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1736                                "switch\n", priv->net_dev->name);
1737                 return 0;
1738         }
1739
1740         /* the ipw2100 hardware really doesn't want power management delays
1741          * longer than 175usec
1742          */
1743         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1744
1745         /* If the interrupt is enabled, turn it off... */
1746         spin_lock_irqsave(&priv->low_lock, flags);
1747         ipw2100_disable_interrupts(priv);
1748
1749         /* Reset any fatal_error conditions */
1750         ipw2100_reset_fatalerror(priv);
1751         spin_unlock_irqrestore(&priv->low_lock, flags);
1752
1753         if (priv->status & STATUS_POWERED ||
1754             (priv->status & STATUS_RESET_PENDING)) {
1755                 /* Power cycle the card ... */
1756                 if (ipw2100_power_cycle_adapter(priv)) {
1757                         printk(KERN_WARNING DRV_NAME
1758                                ": %s: Could not cycle adapter.\n",
1759                                priv->net_dev->name);
1760                         rc = 1;
1761                         goto exit;
1762                 }
1763         } else
1764                 priv->status |= STATUS_POWERED;
1765
1766         /* Load the firmware, start the clocks, etc. */
1767         if (ipw2100_start_adapter(priv)) {
1768                 printk(KERN_ERR DRV_NAME
1769                        ": %s: Failed to start the firmware.\n",
1770                        priv->net_dev->name);
1771                 rc = 1;
1772                 goto exit;
1773         }
1774
1775         ipw2100_initialize_ordinals(priv);
1776
1777         /* Determine capabilities of this particular HW configuration */
1778         if (ipw2100_get_hw_features(priv)) {
1779                 printk(KERN_ERR DRV_NAME
1780                        ": %s: Failed to determine HW features.\n",
1781                        priv->net_dev->name);
1782                 rc = 1;
1783                 goto exit;
1784         }
1785
1786         /* Initialize the geo */
1787         if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1788                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1789                 return 0;
1790         }
1791         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1792
1793         lock = LOCK_NONE;
1794         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1795                 printk(KERN_ERR DRV_NAME
1796                        ": %s: Failed to clear ordinal lock.\n",
1797                        priv->net_dev->name);
1798                 rc = 1;
1799                 goto exit;
1800         }
1801
1802         priv->status &= ~STATUS_SCANNING;
1803
1804         if (rf_kill_active(priv)) {
1805                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1806                        priv->net_dev->name);
1807
1808                 if (priv->stop_rf_kill) {
1809                         priv->stop_rf_kill = 0;
1810                         schedule_delayed_work(&priv->rf_kill,
1811                                               round_jiffies_relative(HZ));
1812                 }
1813
1814                 deferred = 1;
1815         }
1816
1817         /* Turn on the interrupt so that commands can be processed */
1818         ipw2100_enable_interrupts(priv);
1819
1820         /* Send all of the commands that must be sent prior to
1821          * HOST_COMPLETE */
1822         if (ipw2100_adapter_setup(priv)) {
1823                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1824                        priv->net_dev->name);
1825                 rc = 1;
1826                 goto exit;
1827         }
1828
1829         if (!deferred) {
1830                 /* Enable the adapter - sends HOST_COMPLETE */
1831                 if (ipw2100_enable_adapter(priv)) {
1832                         printk(KERN_ERR DRV_NAME ": "
1833                                "%s: failed in call to enable adapter.\n",
1834                                priv->net_dev->name);
1835                         ipw2100_hw_stop_adapter(priv);
1836                         rc = 1;
1837                         goto exit;
1838                 }
1839
1840                 /* Start a scan . . . */
1841                 ipw2100_set_scan_options(priv);
1842                 ipw2100_start_scan(priv);
1843         }
1844
1845       exit:
1846         return rc;
1847 }
1848
1849 static void ipw2100_down(struct ipw2100_priv *priv)
1850 {
1851         unsigned long flags;
1852         union iwreq_data wrqu = {
1853                 .ap_addr = {
1854                             .sa_family = ARPHRD_ETHER}
1855         };
1856         int associated = priv->status & STATUS_ASSOCIATED;
1857
1858         /* Kill the RF switch timer */
1859         if (!priv->stop_rf_kill) {
1860                 priv->stop_rf_kill = 1;
1861                 cancel_delayed_work(&priv->rf_kill);
1862         }
1863
1864         /* Kill the firmware hang check timer */
1865         if (!priv->stop_hang_check) {
1866                 priv->stop_hang_check = 1;
1867                 cancel_delayed_work(&priv->hang_check);
1868         }
1869
1870         /* Kill any pending resets */
1871         if (priv->status & STATUS_RESET_PENDING)
1872                 cancel_delayed_work(&priv->reset_work);
1873
1874         /* Make sure the interrupt is on so that FW commands will be
1875          * processed correctly */
1876         spin_lock_irqsave(&priv->low_lock, flags);
1877         ipw2100_enable_interrupts(priv);
1878         spin_unlock_irqrestore(&priv->low_lock, flags);
1879
1880         if (ipw2100_hw_stop_adapter(priv))
1881                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1882                        priv->net_dev->name);
1883
1884         /* Do not disable the interrupt until _after_ we disable
1885          * the adaptor.  Otherwise the CARD_DISABLE command will never
1886          * be ack'd by the firmware */
1887         spin_lock_irqsave(&priv->low_lock, flags);
1888         ipw2100_disable_interrupts(priv);
1889         spin_unlock_irqrestore(&priv->low_lock, flags);
1890
1891         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1892
1893         /* We have to signal any supplicant if we are disassociating */
1894         if (associated)
1895                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1896
1897         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1898         netif_carrier_off(priv->net_dev);
1899         netif_stop_queue(priv->net_dev);
1900 }
1901
1902 /* Called by register_netdev() */
1903 static int ipw2100_net_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int ret;
1909         int i;
1910
1911         ret = ipw2100_up(priv, 1);
1912         if (ret)
1913                 return ret;
1914
1915         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1916
1917         /* fill-out priv->ieee->bg_band */
1918         if (geo->bg_channels) {
1919                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1920
1921                 bg_band->band = IEEE80211_BAND_2GHZ;
1922                 bg_band->n_channels = geo->bg_channels;
1923                 bg_band->channels = kcalloc(geo->bg_channels,
1924                                             sizeof(struct ieee80211_channel),
1925                                             GFP_KERNEL);
1926                 if (!bg_band->channels) {
1927                         ipw2100_down(priv);
1928                         return -ENOMEM;
1929                 }
1930                 /* translate geo->bg to bg_band.channels */
1931                 for (i = 0; i < geo->bg_channels; i++) {
1932                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1933                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1934                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1935                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1936                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1937                                 bg_band->channels[i].flags |=
1938                                         IEEE80211_CHAN_PASSIVE_SCAN;
1939                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1940                                 bg_band->channels[i].flags |=
1941                                         IEEE80211_CHAN_NO_IBSS;
1942                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1943                                 bg_band->channels[i].flags |=
1944                                         IEEE80211_CHAN_RADAR;
1945                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1946                            LIBIPW_CH_UNIFORM_SPREADING, or
1947                            LIBIPW_CH_B_ONLY... */
1948                 }
1949                 /* point at bitrate info */
1950                 bg_band->bitrates = ipw2100_bg_rates;
1951                 bg_band->n_bitrates = RATE_COUNT;
1952
1953                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1954         }
1955
1956         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1957         if (wiphy_register(wdev->wiphy)) {
1958                 ipw2100_down(priv);
1959                 return -EIO;
1960         }
1961         return 0;
1962 }
1963
1964 static void ipw2100_reset_adapter(struct work_struct *work)
1965 {
1966         struct ipw2100_priv *priv =
1967                 container_of(work, struct ipw2100_priv, reset_work.work);
1968         unsigned long flags;
1969         union iwreq_data wrqu = {
1970                 .ap_addr = {
1971                             .sa_family = ARPHRD_ETHER}
1972         };
1973         int associated = priv->status & STATUS_ASSOCIATED;
1974
1975         spin_lock_irqsave(&priv->low_lock, flags);
1976         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1977         priv->resets++;
1978         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1979         priv->status |= STATUS_SECURITY_UPDATED;
1980
1981         /* Force a power cycle even if interface hasn't been opened
1982          * yet */
1983         cancel_delayed_work(&priv->reset_work);
1984         priv->status |= STATUS_RESET_PENDING;
1985         spin_unlock_irqrestore(&priv->low_lock, flags);
1986
1987         mutex_lock(&priv->action_mutex);
1988         /* stop timed checks so that they don't interfere with reset */
1989         priv->stop_hang_check = 1;
1990         cancel_delayed_work(&priv->hang_check);
1991
1992         /* We have to signal any supplicant if we are disassociating */
1993         if (associated)
1994                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1995
1996         ipw2100_up(priv, 0);
1997         mutex_unlock(&priv->action_mutex);
1998
1999 }
2000
2001 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2002 {
2003
2004 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2005         int ret;
2006         unsigned int len, essid_len;
2007         char essid[IW_ESSID_MAX_SIZE];
2008         u32 txrate;
2009         u32 chan;
2010         char *txratename;
2011         u8 bssid[ETH_ALEN];
2012         DECLARE_SSID_BUF(ssid);
2013
2014         /*
2015          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2016          *      an actual MAC of the AP. Seems like FW sets this
2017          *      address too late. Read it later and expose through
2018          *      /proc or schedule a later task to query and update
2019          */
2020
2021         essid_len = IW_ESSID_MAX_SIZE;
2022         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2023                                   essid, &essid_len);
2024         if (ret) {
2025                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2026                                __LINE__);
2027                 return;
2028         }
2029
2030         len = sizeof(u32);
2031         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2032         if (ret) {
2033                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2034                                __LINE__);
2035                 return;
2036         }
2037
2038         len = sizeof(u32);
2039         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2040         if (ret) {
2041                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2042                                __LINE__);
2043                 return;
2044         }
2045         len = ETH_ALEN;
2046         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2047         if (ret) {
2048                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2049                                __LINE__);
2050                 return;
2051         }
2052         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2053
2054         switch (txrate) {
2055         case TX_RATE_1_MBIT:
2056                 txratename = "1Mbps";
2057                 break;
2058         case TX_RATE_2_MBIT:
2059                 txratename = "2Mbsp";
2060                 break;
2061         case TX_RATE_5_5_MBIT:
2062                 txratename = "5.5Mbps";
2063                 break;
2064         case TX_RATE_11_MBIT:
2065                 txratename = "11Mbps";
2066                 break;
2067         default:
2068                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2069                 txratename = "unknown rate";
2070                 break;
2071         }
2072
2073         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2074                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2075                        txratename, chan, bssid);
2076
2077         /* now we copy read ssid into dev */
2078         if (!(priv->config & CFG_STATIC_ESSID)) {
2079                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2080                 memcpy(priv->essid, essid, priv->essid_len);
2081         }
2082         priv->channel = chan;
2083         memcpy(priv->bssid, bssid, ETH_ALEN);
2084
2085         priv->status |= STATUS_ASSOCIATING;
2086         priv->connect_start = get_seconds();
2087
2088         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2089 }
2090
2091 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2092                              int length, int batch_mode)
2093 {
2094         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2095         struct host_command cmd = {
2096                 .host_command = SSID,
2097                 .host_command_sequence = 0,
2098                 .host_command_length = ssid_len
2099         };
2100         int err;
2101         DECLARE_SSID_BUF(ssid);
2102
2103         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2104
2105         if (ssid_len)
2106                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2107
2108         if (!batch_mode) {
2109                 err = ipw2100_disable_adapter(priv);
2110                 if (err)
2111                         return err;
2112         }
2113
2114         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2115          * disable auto association -- so we cheat by setting a bogus SSID */
2116         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2117                 int i;
2118                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2119                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2120                         bogus[i] = 0x18 + i;
2121                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2122         }
2123
2124         /* NOTE:  We always send the SSID command even if the provided ESSID is
2125          * the same as what we currently think is set. */
2126
2127         err = ipw2100_hw_send_command(priv, &cmd);
2128         if (!err) {
2129                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2130                 memcpy(priv->essid, essid, ssid_len);
2131                 priv->essid_len = ssid_len;
2132         }
2133
2134         if (!batch_mode) {
2135                 if (ipw2100_enable_adapter(priv))
2136                         err = -EIO;
2137         }
2138
2139         return err;
2140 }
2141
2142 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2143 {
2144         DECLARE_SSID_BUF(ssid);
2145
2146         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2147                   "disassociated: '%s' %pM\n",
2148                   print_ssid(ssid, priv->essid, priv->essid_len),
2149                   priv->bssid);
2150
2151         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2152
2153         if (priv->status & STATUS_STOPPING) {
2154                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2155                 return;
2156         }
2157
2158         memset(priv->bssid, 0, ETH_ALEN);
2159         memset(priv->ieee->bssid, 0, ETH_ALEN);
2160
2161         netif_carrier_off(priv->net_dev);
2162         netif_stop_queue(priv->net_dev);
2163
2164         if (!(priv->status & STATUS_RUNNING))
2165                 return;
2166
2167         if (priv->status & STATUS_SECURITY_UPDATED)
2168                 schedule_delayed_work(&priv->security_work, 0);
2169
2170         schedule_delayed_work(&priv->wx_event_work, 0);
2171 }
2172
2173 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2174 {
2175         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2176                        priv->net_dev->name);
2177
2178         /* RF_KILL is now enabled (else we wouldn't be here) */
2179         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2180         priv->status |= STATUS_RF_KILL_HW;
2181
2182         /* Make sure the RF Kill check timer is running */
2183         priv->stop_rf_kill = 0;
2184         cancel_delayed_work(&priv->rf_kill);
2185         schedule_delayed_work(&priv->rf_kill, round_jiffies_relative(HZ));
2186 }
2187
2188 static void send_scan_event(void *data)
2189 {
2190         struct ipw2100_priv *priv = data;
2191         union iwreq_data wrqu;
2192
2193         wrqu.data.length = 0;
2194         wrqu.data.flags = 0;
2195         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2196 }
2197
2198 static void ipw2100_scan_event_later(struct work_struct *work)
2199 {
2200         send_scan_event(container_of(work, struct ipw2100_priv,
2201                                         scan_event_later.work));
2202 }
2203
2204 static void ipw2100_scan_event_now(struct work_struct *work)
2205 {
2206         send_scan_event(container_of(work, struct ipw2100_priv,
2207                                         scan_event_now));
2208 }
2209
2210 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2211 {
2212         IPW_DEBUG_SCAN("scan complete\n");
2213         /* Age the scan results... */
2214         priv->ieee->scans++;
2215         priv->status &= ~STATUS_SCANNING;
2216
2217         /* Only userspace-requested scan completion events go out immediately */
2218         if (!priv->user_requested_scan) {
2219                 if (!delayed_work_pending(&priv->scan_event_later))
2220                         schedule_delayed_work(&priv->scan_event_later,
2221                                               round_jiffies_relative(msecs_to_jiffies(4000)));
2222         } else {
2223                 priv->user_requested_scan = 0;
2224                 cancel_delayed_work(&priv->scan_event_later);
2225                 schedule_work(&priv->scan_event_now);
2226         }
2227 }
2228
2229 #ifdef CONFIG_IPW2100_DEBUG
2230 #define IPW2100_HANDLER(v, f) { v, f, # v }
2231 struct ipw2100_status_indicator {
2232         int status;
2233         void (*cb) (struct ipw2100_priv * priv, u32 status);
2234         char *name;
2235 };
2236 #else
2237 #define IPW2100_HANDLER(v, f) { v, f }
2238 struct ipw2100_status_indicator {
2239         int status;
2240         void (*cb) (struct ipw2100_priv * priv, u32 status);
2241 };
2242 #endif                          /* CONFIG_IPW2100_DEBUG */
2243
2244 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2245 {
2246         IPW_DEBUG_SCAN("Scanning...\n");
2247         priv->status |= STATUS_SCANNING;
2248 }
2249
2250 static const struct ipw2100_status_indicator status_handlers[] = {
2251         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2252         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2253         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2254         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2255         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2256         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2257         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2258         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2259         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2260         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2261         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2262         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2263         IPW2100_HANDLER(-1, NULL)
2264 };
2265
2266 static void isr_status_change(struct ipw2100_priv *priv, int status)
2267 {
2268         int i;
2269
2270         if (status == IPW_STATE_SCANNING &&
2271             priv->status & STATUS_ASSOCIATED &&
2272             !(priv->status & STATUS_SCANNING)) {
2273                 IPW_DEBUG_INFO("Scan detected while associated, with "
2274                                "no scan request.  Restarting firmware.\n");
2275
2276                 /* Wake up any sleeping jobs */
2277                 schedule_reset(priv);
2278         }
2279
2280         for (i = 0; status_handlers[i].status != -1; i++) {
2281                 if (status == status_handlers[i].status) {
2282                         IPW_DEBUG_NOTIF("Status change: %s\n",
2283                                         status_handlers[i].name);
2284                         if (status_handlers[i].cb)
2285                                 status_handlers[i].cb(priv, status);
2286                         priv->wstats.status = status;
2287                         return;
2288                 }
2289         }
2290
2291         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2292 }
2293
2294 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2295                                     struct ipw2100_cmd_header *cmd)
2296 {
2297 #ifdef CONFIG_IPW2100_DEBUG
2298         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2299                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2300                              command_types[cmd->host_command_reg],
2301                              cmd->host_command_reg);
2302         }
2303 #endif
2304         if (cmd->host_command_reg == HOST_COMPLETE)
2305                 priv->status |= STATUS_ENABLED;
2306
2307         if (cmd->host_command_reg == CARD_DISABLE)
2308                 priv->status &= ~STATUS_ENABLED;
2309
2310         priv->status &= ~STATUS_CMD_ACTIVE;
2311
2312         wake_up_interruptible(&priv->wait_command_queue);
2313 }
2314
2315 #ifdef CONFIG_IPW2100_DEBUG
2316 static const char *frame_types[] = {
2317         "COMMAND_STATUS_VAL",
2318         "STATUS_CHANGE_VAL",
2319         "P80211_DATA_VAL",
2320         "P8023_DATA_VAL",
2321         "HOST_NOTIFICATION_VAL"
2322 };
2323 #endif
2324
2325 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2326                                     struct ipw2100_rx_packet *packet)
2327 {
2328         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2329         if (!packet->skb)
2330                 return -ENOMEM;
2331
2332         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2333         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2334                                           sizeof(struct ipw2100_rx),
2335                                           PCI_DMA_FROMDEVICE);
2336         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2337          *       dma_addr */
2338
2339         return 0;
2340 }
2341
2342 #define SEARCH_ERROR   0xffffffff
2343 #define SEARCH_FAIL    0xfffffffe
2344 #define SEARCH_SUCCESS 0xfffffff0
2345 #define SEARCH_DISCARD 0
2346 #define SEARCH_SNAPSHOT 1
2347
2348 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2349 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2350 {
2351         int i;
2352         if (!priv->snapshot[0])
2353                 return;
2354         for (i = 0; i < 0x30; i++)
2355                 kfree(priv->snapshot[i]);
2356         priv->snapshot[0] = NULL;
2357 }
2358
2359 #ifdef IPW2100_DEBUG_C3
2360 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2361 {
2362         int i;
2363         if (priv->snapshot[0])
2364                 return 1;
2365         for (i = 0; i < 0x30; i++) {
2366                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2367                 if (!priv->snapshot[i]) {
2368                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2369                                        "buffer %d\n", priv->net_dev->name, i);
2370                         while (i > 0)
2371                                 kfree(priv->snapshot[--i]);
2372                         priv->snapshot[0] = NULL;
2373                         return 0;
2374                 }
2375         }
2376
2377         return 1;
2378 }
2379
2380 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2381                                     size_t len, int mode)
2382 {
2383         u32 i, j;
2384         u32 tmp;
2385         u8 *s, *d;
2386         u32 ret;
2387
2388         s = in_buf;
2389         if (mode == SEARCH_SNAPSHOT) {
2390                 if (!ipw2100_snapshot_alloc(priv))
2391                         mode = SEARCH_DISCARD;
2392         }
2393
2394         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2395                 read_nic_dword(priv->net_dev, i, &tmp);
2396                 if (mode == SEARCH_SNAPSHOT)
2397                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2398                 if (ret == SEARCH_FAIL) {
2399                         d = (u8 *) & tmp;
2400                         for (j = 0; j < 4; j++) {
2401                                 if (*s != *d) {
2402                                         s = in_buf;
2403                                         continue;
2404                                 }
2405
2406                                 s++;
2407                                 d++;
2408
2409                                 if ((s - in_buf) == len)
2410                                         ret = (i + j) - len + 1;
2411                         }
2412                 } else if (mode == SEARCH_DISCARD)
2413                         return ret;
2414         }
2415
2416         return ret;
2417 }
2418 #endif
2419
2420 /*
2421  *
2422  * 0) Disconnect the SKB from the firmware (just unmap)
2423  * 1) Pack the ETH header into the SKB
2424  * 2) Pass the SKB to the network stack
2425  *
2426  * When packet is provided by the firmware, it contains the following:
2427  *
2428  * .  libipw_hdr
2429  * .  libipw_snap_hdr
2430  *
2431  * The size of the constructed ethernet
2432  *
2433  */
2434 #ifdef IPW2100_RX_DEBUG
2435 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2436 #endif
2437
2438 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2439 {
2440 #ifdef IPW2100_DEBUG_C3
2441         struct ipw2100_status *status = &priv->status_queue.drv[i];
2442         u32 match, reg;
2443         int j;
2444 #endif
2445
2446         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2447                        i * sizeof(struct ipw2100_status));
2448
2449 #ifdef IPW2100_DEBUG_C3
2450         /* Halt the firmware so we can get a good image */
2451         write_register(priv->net_dev, IPW_REG_RESET_REG,
2452                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2453         j = 5;
2454         do {
2455                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2456                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2457
2458                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2459                         break;
2460         } while (j--);
2461
2462         match = ipw2100_match_buf(priv, (u8 *) status,
2463                                   sizeof(struct ipw2100_status),
2464                                   SEARCH_SNAPSHOT);
2465         if (match < SEARCH_SUCCESS)
2466                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2467                                "offset 0x%06X, length %d:\n",
2468                                priv->net_dev->name, match,
2469                                sizeof(struct ipw2100_status));
2470         else
2471                 IPW_DEBUG_INFO("%s: No DMA status match in "
2472                                "Firmware.\n", priv->net_dev->name);
2473
2474         printk_buf((u8 *) priv->status_queue.drv,
2475                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2476 #endif
2477
2478         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2479         priv->net_dev->stats.rx_errors++;
2480         schedule_reset(priv);
2481 }
2482
2483 static void isr_rx(struct ipw2100_priv *priv, int i,
2484                           struct libipw_rx_stats *stats)
2485 {
2486         struct net_device *dev = priv->net_dev;
2487         struct ipw2100_status *status = &priv->status_queue.drv[i];
2488         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2489
2490         IPW_DEBUG_RX("Handler...\n");
2491
2492         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2493                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2494                                "  Dropping.\n",
2495                                dev->name,
2496                                status->frame_size, skb_tailroom(packet->skb));
2497                 dev->stats.rx_errors++;
2498                 return;
2499         }
2500
2501         if (unlikely(!netif_running(dev))) {
2502                 dev->stats.rx_errors++;
2503                 priv->wstats.discard.misc++;
2504                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2505                 return;
2506         }
2507
2508         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2509                      !(priv->status & STATUS_ASSOCIATED))) {
2510                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2511                 priv->wstats.discard.misc++;
2512                 return;
2513         }
2514
2515         pci_unmap_single(priv->pci_dev,
2516                          packet->dma_addr,
2517                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2518
2519         skb_put(packet->skb, status->frame_size);
2520
2521 #ifdef IPW2100_RX_DEBUG
2522         /* Make a copy of the frame so we can dump it to the logs if
2523          * libipw_rx fails */
2524         skb_copy_from_linear_data(packet->skb, packet_data,
2525                                   min_t(u32, status->frame_size,
2526                                              IPW_RX_NIC_BUFFER_LENGTH));
2527 #endif
2528
2529         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2530 #ifdef IPW2100_RX_DEBUG
2531                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2532                                dev->name);
2533                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2534 #endif
2535                 dev->stats.rx_errors++;
2536
2537                 /* libipw_rx failed, so it didn't free the SKB */
2538                 dev_kfree_skb_any(packet->skb);
2539                 packet->skb = NULL;
2540         }
2541
2542         /* We need to allocate a new SKB and attach it to the RDB. */
2543         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2544                 printk(KERN_WARNING DRV_NAME ": "
2545                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2546                        "adapter.\n", dev->name);
2547                 /* TODO: schedule adapter shutdown */
2548                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2549         }
2550
2551         /* Update the RDB entry */
2552         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2553 }
2554
2555 #ifdef CONFIG_IPW2100_MONITOR
2556
2557 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2558                    struct libipw_rx_stats *stats)
2559 {
2560         struct net_device *dev = priv->net_dev;
2561         struct ipw2100_status *status = &priv->status_queue.drv[i];
2562         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2563
2564         /* Magic struct that slots into the radiotap header -- no reason
2565          * to build this manually element by element, we can write it much
2566          * more efficiently than we can parse it. ORDER MATTERS HERE */
2567         struct ipw_rt_hdr {
2568                 struct ieee80211_radiotap_header rt_hdr;
2569                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2570         } *ipw_rt;
2571
2572         IPW_DEBUG_RX("Handler...\n");
2573
2574         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2575                                 sizeof(struct ipw_rt_hdr))) {
2576                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2577                                "  Dropping.\n",
2578                                dev->name,
2579                                status->frame_size,
2580                                skb_tailroom(packet->skb));
2581                 dev->stats.rx_errors++;
2582                 return;
2583         }
2584
2585         if (unlikely(!netif_running(dev))) {
2586                 dev->stats.rx_errors++;
2587                 priv->wstats.discard.misc++;
2588                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2589                 return;
2590         }
2591
2592         if (unlikely(priv->config & CFG_CRC_CHECK &&
2593                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2594                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2595                 dev->stats.rx_errors++;
2596                 return;
2597         }
2598
2599         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2600                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2601         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2602                 packet->skb->data, status->frame_size);
2603
2604         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2605
2606         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2607         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2608         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2609
2610         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2611
2612         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2613
2614         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2615
2616         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2617                 dev->stats.rx_errors++;
2618
2619                 /* libipw_rx failed, so it didn't free the SKB */
2620                 dev_kfree_skb_any(packet->skb);
2621                 packet->skb = NULL;
2622         }
2623
2624         /* We need to allocate a new SKB and attach it to the RDB. */
2625         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2626                 IPW_DEBUG_WARNING(
2627                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2628                         "adapter.\n", dev->name);
2629                 /* TODO: schedule adapter shutdown */
2630                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2631         }
2632
2633         /* Update the RDB entry */
2634         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2635 }
2636
2637 #endif
2638
2639 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2640 {
2641         struct ipw2100_status *status = &priv->status_queue.drv[i];
2642         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2643         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2644
2645         switch (frame_type) {
2646         case COMMAND_STATUS_VAL:
2647                 return (status->frame_size != sizeof(u->rx_data.command));
2648         case STATUS_CHANGE_VAL:
2649                 return (status->frame_size != sizeof(u->rx_data.status));
2650         case HOST_NOTIFICATION_VAL:
2651                 return (status->frame_size < sizeof(u->rx_data.notification));
2652         case P80211_DATA_VAL:
2653         case P8023_DATA_VAL:
2654 #ifdef CONFIG_IPW2100_MONITOR
2655                 return 0;
2656 #else
2657                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2658                 case IEEE80211_FTYPE_MGMT:
2659                 case IEEE80211_FTYPE_CTL:
2660                         return 0;
2661                 case IEEE80211_FTYPE_DATA:
2662                         return (status->frame_size >
2663                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2664                 }
2665 #endif
2666         }
2667
2668         return 1;
2669 }
2670
2671 /*
2672  * ipw2100 interrupts are disabled at this point, and the ISR
2673  * is the only code that calls this method.  So, we do not need
2674  * to play with any locks.
2675  *
2676  * RX Queue works as follows:
2677  *
2678  * Read index - firmware places packet in entry identified by the
2679  *              Read index and advances Read index.  In this manner,
2680  *              Read index will always point to the next packet to
2681  *              be filled--but not yet valid.
2682  *
2683  * Write index - driver fills this entry with an unused RBD entry.
2684  *               This entry has not filled by the firmware yet.
2685  *
2686  * In between the W and R indexes are the RBDs that have been received
2687  * but not yet processed.
2688  *
2689  * The process of handling packets will start at WRITE + 1 and advance
2690  * until it reaches the READ index.
2691  *
2692  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2693  *
2694  */
2695 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2696 {
2697         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2698         struct ipw2100_status_queue *sq = &priv->status_queue;
2699         struct ipw2100_rx_packet *packet;
2700         u16 frame_type;
2701         u32 r, w, i, s;
2702         struct ipw2100_rx *u;
2703         struct libipw_rx_stats stats = {
2704                 .mac_time = jiffies,
2705         };
2706
2707         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2708         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2709
2710         if (r >= rxq->entries) {
2711                 IPW_DEBUG_RX("exit - bad read index\n");
2712                 return;
2713         }
2714
2715         i = (rxq->next + 1) % rxq->entries;
2716         s = i;
2717         while (i != r) {
2718                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2719                    r, rxq->next, i); */
2720
2721                 packet = &priv->rx_buffers[i];
2722
2723                 /* Sync the DMA for the RX buffer so CPU is sure to get
2724                  * the correct values */
2725                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2726                                             sizeof(struct ipw2100_rx),
2727                                             PCI_DMA_FROMDEVICE);
2728
2729                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2730                         ipw2100_corruption_detected(priv, i);
2731                         goto increment;
2732                 }
2733
2734                 u = packet->rxp;
2735                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2736                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2737                 stats.len = sq->drv[i].frame_size;
2738
2739                 stats.mask = 0;
2740                 if (stats.rssi != 0)
2741                         stats.mask |= LIBIPW_STATMASK_RSSI;
2742                 stats.freq = LIBIPW_24GHZ_BAND;
2743
2744                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2745                              priv->net_dev->name, frame_types[frame_type],
2746                              stats.len);
2747
2748                 switch (frame_type) {
2749                 case COMMAND_STATUS_VAL:
2750                         /* Reset Rx watchdog */
2751                         isr_rx_complete_command(priv, &u->rx_data.command);
2752                         break;
2753
2754                 case STATUS_CHANGE_VAL:
2755                         isr_status_change(priv, u->rx_data.status);
2756                         break;
2757
2758                 case P80211_DATA_VAL:
2759                 case P8023_DATA_VAL:
2760 #ifdef CONFIG_IPW2100_MONITOR
2761                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2762                                 isr_rx_monitor(priv, i, &stats);
2763                                 break;
2764                         }
2765 #endif
2766                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2767                                 break;
2768                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2769                         case IEEE80211_FTYPE_MGMT:
2770                                 libipw_rx_mgt(priv->ieee,
2771                                                  &u->rx_data.header, &stats);
2772                                 break;
2773
2774                         case IEEE80211_FTYPE_CTL:
2775                                 break;
2776
2777                         case IEEE80211_FTYPE_DATA:
2778                                 isr_rx(priv, i, &stats);
2779                                 break;
2780
2781                         }
2782                         break;
2783                 }
2784
2785               increment:
2786                 /* clear status field associated with this RBD */
2787                 rxq->drv[i].status.info.field = 0;
2788
2789                 i = (i + 1) % rxq->entries;
2790         }
2791
2792         if (i != s) {
2793                 /* backtrack one entry, wrapping to end if at 0 */
2794                 rxq->next = (i ? i : rxq->entries) - 1;
2795
2796                 write_register(priv->net_dev,
2797                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2798         }
2799 }
2800
2801 /*
2802  * __ipw2100_tx_process
2803  *
2804  * This routine will determine whether the next packet on
2805  * the fw_pend_list has been processed by the firmware yet.
2806  *
2807  * If not, then it does nothing and returns.
2808  *
2809  * If so, then it removes the item from the fw_pend_list, frees
2810  * any associated storage, and places the item back on the
2811  * free list of its source (either msg_free_list or tx_free_list)
2812  *
2813  * TX Queue works as follows:
2814  *
2815  * Read index - points to the next TBD that the firmware will
2816  *              process.  The firmware will read the data, and once
2817  *              done processing, it will advance the Read index.
2818  *
2819  * Write index - driver fills this entry with an constructed TBD
2820  *               entry.  The Write index is not advanced until the
2821  *               packet has been configured.
2822  *
2823  * In between the W and R indexes are the TBDs that have NOT been
2824  * processed.  Lagging behind the R index are packets that have
2825  * been processed but have not been freed by the driver.
2826  *
2827  * In order to free old storage, an internal index will be maintained
2828  * that points to the next packet to be freed.  When all used
2829  * packets have been freed, the oldest index will be the same as the
2830  * firmware's read index.
2831  *
2832  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2833  *
2834  * Because the TBD structure can not contain arbitrary data, the
2835  * driver must keep an internal queue of cached allocations such that
2836  * it can put that data back into the tx_free_list and msg_free_list
2837  * for use by future command and data packets.
2838  *
2839  */
2840 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2841 {
2842         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2843         struct ipw2100_bd *tbd;
2844         struct list_head *element;
2845         struct ipw2100_tx_packet *packet;
2846         int descriptors_used;
2847         int e, i;
2848         u32 r, w, frag_num = 0;
2849
2850         if (list_empty(&priv->fw_pend_list))
2851                 return 0;
2852
2853         element = priv->fw_pend_list.next;
2854
2855         packet = list_entry(element, struct ipw2100_tx_packet, list);
2856         tbd = &txq->drv[packet->index];
2857
2858         /* Determine how many TBD entries must be finished... */
2859         switch (packet->type) {
2860         case COMMAND:
2861                 /* COMMAND uses only one slot; don't advance */
2862                 descriptors_used = 1;
2863                 e = txq->oldest;
2864                 break;
2865
2866         case DATA:
2867                 /* DATA uses two slots; advance and loop position. */
2868                 descriptors_used = tbd->num_fragments;
2869                 frag_num = tbd->num_fragments - 1;
2870                 e = txq->oldest + frag_num;
2871                 e %= txq->entries;
2872                 break;
2873
2874         default:
2875                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2876                        priv->net_dev->name);
2877                 return 0;
2878         }
2879
2880         /* if the last TBD is not done by NIC yet, then packet is
2881          * not ready to be released.
2882          *
2883          */
2884         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2885                       &r);
2886         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2887                       &w);
2888         if (w != txq->next)
2889                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2890                        priv->net_dev->name);
2891
2892         /*
2893          * txq->next is the index of the last packet written txq->oldest is
2894          * the index of the r is the index of the next packet to be read by
2895          * firmware
2896          */
2897
2898         /*
2899          * Quick graphic to help you visualize the following
2900          * if / else statement
2901          *
2902          * ===>|                     s---->|===============
2903          *                               e>|
2904          * | a | b | c | d | e | f | g | h | i | j | k | l
2905          *       r---->|
2906          *               w
2907          *
2908          * w - updated by driver
2909          * r - updated by firmware
2910          * s - start of oldest BD entry (txq->oldest)
2911          * e - end of oldest BD entry
2912          *
2913          */
2914         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2915                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2916                 return 0;
2917         }
2918
2919         list_del(element);
2920         DEC_STAT(&priv->fw_pend_stat);
2921
2922 #ifdef CONFIG_IPW2100_DEBUG
2923         {
2924                 i = txq->oldest;
2925                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2926                              &txq->drv[i],
2927                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2928                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2929
2930                 if (packet->type == DATA) {
2931                         i = (i + 1) % txq->entries;
2932
2933                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2934                                      &txq->drv[i],
2935                                      (u32) (txq->nic + i *
2936                                             sizeof(struct ipw2100_bd)),
2937                                      (u32) txq->drv[i].host_addr,
2938                                      txq->drv[i].buf_length);
2939                 }
2940         }
2941 #endif
2942
2943         switch (packet->type) {
2944         case DATA:
2945                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2946                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2947                                "Expecting DATA TBD but pulled "
2948                                "something else: ids %d=%d.\n",
2949                                priv->net_dev->name, txq->oldest, packet->index);
2950
2951                 /* DATA packet; we have to unmap and free the SKB */
2952                 for (i = 0; i < frag_num; i++) {
2953                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2954
2955                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2956                                      (packet->index + 1 + i) % txq->entries,
2957                                      tbd->host_addr, tbd->buf_length);
2958
2959                         pci_unmap_single(priv->pci_dev,
2960                                          tbd->host_addr,
2961                                          tbd->buf_length, PCI_DMA_TODEVICE);
2962                 }
2963
2964                 libipw_txb_free(packet->info.d_struct.txb);
2965                 packet->info.d_struct.txb = NULL;
2966
2967                 list_add_tail(element, &priv->tx_free_list);
2968                 INC_STAT(&priv->tx_free_stat);
2969
2970                 /* We have a free slot in the Tx queue, so wake up the
2971                  * transmit layer if it is stopped. */
2972                 if (priv->status & STATUS_ASSOCIATED)
2973                         netif_wake_queue(priv->net_dev);
2974
2975                 /* A packet was processed by the hardware, so update the
2976                  * watchdog */
2977                 priv->net_dev->trans_start = jiffies;
2978
2979                 break;
2980
2981         case COMMAND:
2982                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2983                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2984                                "Expecting COMMAND TBD but pulled "
2985                                "something else: ids %d=%d.\n",
2986                                priv->net_dev->name, txq->oldest, packet->index);
2987
2988 #ifdef CONFIG_IPW2100_DEBUG
2989                 if (packet->info.c_struct.cmd->host_command_reg <
2990                     ARRAY_SIZE(command_types))
2991                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2992                                      command_types[packet->info.c_struct.cmd->
2993                                                    host_command_reg],
2994                                      packet->info.c_struct.cmd->
2995                                      host_command_reg,
2996                                      packet->info.c_struct.cmd->cmd_status_reg);
2997 #endif
2998
2999                 list_add_tail(element, &priv->msg_free_list);
3000                 INC_STAT(&priv->msg_free_stat);
3001                 break;
3002         }
3003
3004         /* advance oldest used TBD pointer to start of next entry */
3005         txq->oldest = (e + 1) % txq->entries;
3006         /* increase available TBDs number */
3007         txq->available += descriptors_used;
3008         SET_STAT(&priv->txq_stat, txq->available);
3009
3010         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
3011                      jiffies - packet->jiffy_start);
3012
3013         return (!list_empty(&priv->fw_pend_list));
3014 }
3015
3016 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3017 {
3018         int i = 0;
3019
3020         while (__ipw2100_tx_process(priv) && i < 200)
3021                 i++;
3022
3023         if (i == 200) {
3024                 printk(KERN_WARNING DRV_NAME ": "
3025                        "%s: Driver is running slow (%d iters).\n",
3026                        priv->net_dev->name, i);
3027         }
3028 }
3029
3030 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3031 {
3032         struct list_head *element;
3033         struct ipw2100_tx_packet *packet;
3034         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3035         struct ipw2100_bd *tbd;
3036         int next = txq->next;
3037
3038         while (!list_empty(&priv->msg_pend_list)) {
3039                 /* if there isn't enough space in TBD queue, then
3040                  * don't stuff a new one in.
3041                  * NOTE: 3 are needed as a command will take one,
3042                  *       and there is a minimum of 2 that must be
3043                  *       maintained between the r and w indexes
3044                  */
3045                 if (txq->available <= 3) {
3046                         IPW_DEBUG_TX("no room in tx_queue\n");
3047                         break;
3048                 }
3049
3050                 element = priv->msg_pend_list.next;
3051                 list_del(element);
3052                 DEC_STAT(&priv->msg_pend_stat);
3053
3054                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3055
3056                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3057                              &txq->drv[txq->next],
3058                              (u32) (txq->nic + txq->next *
3059                                       sizeof(struct ipw2100_bd)));
3060
3061                 packet->index = txq->next;
3062
3063                 tbd = &txq->drv[txq->next];
3064
3065                 /* initialize TBD */
3066                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3067                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3068                 /* not marking number of fragments causes problems
3069                  * with f/w debug version */
3070                 tbd->num_fragments = 1;
3071                 tbd->status.info.field =
3072                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3073                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3074
3075                 /* update TBD queue counters */
3076                 txq->next++;
3077                 txq->next %= txq->entries;
3078                 txq->available--;
3079                 DEC_STAT(&priv->txq_stat);
3080
3081                 list_add_tail(element, &priv->fw_pend_list);
3082                 INC_STAT(&priv->fw_pend_stat);
3083         }
3084
3085         if (txq->next != next) {
3086                 /* kick off the DMA by notifying firmware the
3087                  * write index has moved; make sure TBD stores are sync'd */
3088                 wmb();
3089                 write_register(priv->net_dev,
3090                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3091                                txq->next);
3092         }
3093 }
3094
3095 /*
3096  * ipw2100_tx_send_data
3097  *
3098  */
3099 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3100 {
3101         struct list_head *element;
3102         struct ipw2100_tx_packet *packet;
3103         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3104         struct ipw2100_bd *tbd;
3105         int next = txq->next;
3106         int i = 0;
3107         struct ipw2100_data_header *ipw_hdr;
3108         struct libipw_hdr_3addr *hdr;
3109
3110         while (!list_empty(&priv->tx_pend_list)) {
3111                 /* if there isn't enough space in TBD queue, then
3112                  * don't stuff a new one in.
3113                  * NOTE: 4 are needed as a data will take two,
3114                  *       and there is a minimum of 2 that must be
3115                  *       maintained between the r and w indexes
3116                  */
3117                 element = priv->tx_pend_list.next;
3118                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3119
3120                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3121                              IPW_MAX_BDS)) {
3122                         /* TODO: Support merging buffers if more than
3123                          * IPW_MAX_BDS are used */
3124                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3125                                        "Increase fragmentation level.\n",
3126                                        priv->net_dev->name);
3127                 }
3128
3129                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3130                         IPW_DEBUG_TX("no room in tx_queue\n");
3131                         break;
3132                 }
3133
3134                 list_del(element);
3135                 DEC_STAT(&priv->tx_pend_stat);
3136
3137                 tbd = &txq->drv[txq->next];
3138
3139                 packet->index = txq->next;
3140
3141                 ipw_hdr = packet->info.d_struct.data;
3142                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3143                     fragments[0]->data;
3144
3145                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3146                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3147                            Addr3 = DA */
3148                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3149                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3150                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3151                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3152                            Addr3 = BSSID */
3153                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3154                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3155                 }
3156
3157                 ipw_hdr->host_command_reg = SEND;
3158                 ipw_hdr->host_command_reg1 = 0;
3159
3160                 /* For now we only support host based encryption */
3161                 ipw_hdr->needs_encryption = 0;
3162                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3163                 if (packet->info.d_struct.txb->nr_frags > 1)
3164                         ipw_hdr->fragment_size =
3165                             packet->info.d_struct.txb->frag_size -
3166                             LIBIPW_3ADDR_LEN;
3167                 else
3168                         ipw_hdr->fragment_size = 0;
3169
3170                 tbd->host_addr = packet->info.d_struct.data_phys;
3171                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3172                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3173                 tbd->status.info.field =
3174                     IPW_BD_STATUS_TX_FRAME_802_3 |
3175                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3176                 txq->next++;
3177                 txq->next %= txq->entries;
3178
3179                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3180                              packet->index, tbd->host_addr, tbd->buf_length);
3181 #ifdef CONFIG_IPW2100_DEBUG
3182                 if (packet->info.d_struct.txb->nr_frags > 1)
3183                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3184                                        packet->info.d_struct.txb->nr_frags);
3185 #endif
3186
3187                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3188                         tbd = &txq->drv[txq->next];
3189                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3190                                 tbd->status.info.field =
3191                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3192                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3193                         else
3194                                 tbd->status.info.field =
3195                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3196                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3197
3198                         tbd->buf_length = packet->info.d_struct.txb->
3199                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3200
3201                         tbd->host_addr = pci_map_single(priv->pci_dev,
3202                                                         packet->info.d_struct.
3203                                                         txb->fragments[i]->
3204                                                         data +
3205                                                         LIBIPW_3ADDR_LEN,
3206                                                         tbd->buf_length,
3207                                                         PCI_DMA_TODEVICE);
3208
3209                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3210                                      txq->next, tbd->host_addr,
3211                                      tbd->buf_length);
3212
3213                         pci_dma_sync_single_for_device(priv->pci_dev,
3214                                                        tbd->host_addr,
3215                                                        tbd->buf_length,
3216                                                        PCI_DMA_TODEVICE);
3217
3218                         txq->next++;
3219                         txq->next %= txq->entries;
3220                 }
3221
3222                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3223                 SET_STAT(&priv->txq_stat, txq->available);
3224
3225                 list_add_tail(element, &priv->fw_pend_list);
3226                 INC_STAT(&priv->fw_pend_stat);
3227         }
3228
3229         if (txq->next != next) {
3230                 /* kick off the DMA by notifying firmware the
3231                  * write index has moved; make sure TBD stores are sync'd */
3232                 write_register(priv->net_dev,
3233                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3234                                txq->next);
3235         }
3236 }
3237
3238 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3239 {
3240         struct net_device *dev = priv->net_dev;
3241         unsigned long flags;
3242         u32 inta, tmp;
3243
3244         spin_lock_irqsave(&priv->low_lock, flags);
3245         ipw2100_disable_interrupts(priv);
3246
3247         read_register(dev, IPW_REG_INTA, &inta);
3248
3249         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3250                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3251
3252         priv->in_isr++;
3253         priv->interrupts++;
3254
3255         /* We do not loop and keep polling for more interrupts as this
3256          * is frowned upon and doesn't play nicely with other potentially
3257          * chained IRQs */
3258         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3259                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3260
3261         if (inta & IPW2100_INTA_FATAL_ERROR) {
3262                 printk(KERN_WARNING DRV_NAME
3263                        ": Fatal interrupt. Scheduling firmware restart.\n");
3264                 priv->inta_other++;
3265                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3266
3267                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3268                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3269                                priv->net_dev->name, priv->fatal_error);
3270
3271                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3272                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3273                                priv->net_dev->name, tmp);
3274
3275                 /* Wake up any sleeping jobs */
3276                 schedule_reset(priv);
3277         }
3278
3279         if (inta & IPW2100_INTA_PARITY_ERROR) {
3280                 printk(KERN_ERR DRV_NAME
3281                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3282                 priv->inta_other++;
3283                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3284         }
3285
3286         if (inta & IPW2100_INTA_RX_TRANSFER) {
3287                 IPW_DEBUG_ISR("RX interrupt\n");
3288
3289                 priv->rx_interrupts++;
3290
3291                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3292
3293                 __ipw2100_rx_process(priv);
3294                 __ipw2100_tx_complete(priv);
3295         }
3296
3297         if (inta & IPW2100_INTA_TX_TRANSFER) {
3298                 IPW_DEBUG_ISR("TX interrupt\n");
3299
3300                 priv->tx_interrupts++;
3301
3302                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3303
3304                 __ipw2100_tx_complete(priv);
3305                 ipw2100_tx_send_commands(priv);
3306                 ipw2100_tx_send_data(priv);
3307         }
3308
3309         if (inta & IPW2100_INTA_TX_COMPLETE) {
3310                 IPW_DEBUG_ISR("TX complete\n");
3311                 priv->inta_other++;
3312                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3313
3314                 __ipw2100_tx_complete(priv);
3315         }
3316
3317         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3318                 /* ipw2100_handle_event(dev); */
3319                 priv->inta_other++;
3320                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3321         }
3322
3323         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3324                 IPW_DEBUG_ISR("FW init done interrupt\n");
3325                 priv->inta_other++;
3326
3327                 read_register(dev, IPW_REG_INTA, &tmp);
3328                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3329                            IPW2100_INTA_PARITY_ERROR)) {
3330                         write_register(dev, IPW_REG_INTA,
3331                                        IPW2100_INTA_FATAL_ERROR |
3332                                        IPW2100_INTA_PARITY_ERROR);
3333                 }
3334
3335                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3336         }
3337
3338         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3339                 IPW_DEBUG_ISR("Status change interrupt\n");
3340                 priv->inta_other++;
3341                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3342         }
3343
3344         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3345                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3346                 priv->inta_other++;
3347                 write_register(dev, IPW_REG_INTA,
3348                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3349         }
3350
3351         priv->in_isr--;
3352         ipw2100_enable_interrupts(priv);
3353
3354         spin_unlock_irqrestore(&priv->low_lock, flags);
3355
3356         IPW_DEBUG_ISR("exit\n");
3357 }
3358
3359 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3360 {
3361         struct ipw2100_priv *priv = data;
3362         u32 inta, inta_mask;
3363
3364         if (!data)
3365                 return IRQ_NONE;
3366
3367         spin_lock(&priv->low_lock);
3368
3369         /* We check to see if we should be ignoring interrupts before
3370          * we touch the hardware.  During ucode load if we try and handle
3371          * an interrupt we can cause keyboard problems as well as cause
3372          * the ucode to fail to initialize */
3373         if (!(priv->status & STATUS_INT_ENABLED)) {
3374                 /* Shared IRQ */
3375                 goto none;
3376         }
3377
3378         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3379         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3380
3381         if (inta == 0xFFFFFFFF) {
3382                 /* Hardware disappeared */
3383                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3384                 goto none;
3385         }
3386
3387         inta &= IPW_INTERRUPT_MASK;
3388
3389         if (!(inta & inta_mask)) {
3390                 /* Shared interrupt */
3391                 goto none;
3392         }
3393
3394         /* We disable the hardware interrupt here just to prevent unneeded
3395          * calls to be made.  We disable this again within the actual
3396          * work tasklet, so if another part of the code re-enables the
3397          * interrupt, that is fine */
3398         ipw2100_disable_interrupts(priv);
3399
3400         tasklet_schedule(&priv->irq_tasklet);
3401         spin_unlock(&priv->low_lock);
3402
3403         return IRQ_HANDLED;
3404       none:
3405         spin_unlock(&priv->low_lock);
3406         return IRQ_NONE;
3407 }
3408
3409 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3410                               struct net_device *dev, int pri)
3411 {
3412         struct ipw2100_priv *priv = libipw_priv(dev);
3413         struct list_head *element;
3414         struct ipw2100_tx_packet *packet;
3415         unsigned long flags;
3416
3417         spin_lock_irqsave(&priv->low_lock, flags);
3418
3419         if (!(priv->status & STATUS_ASSOCIATED)) {
3420                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3421                 priv->net_dev->stats.tx_carrier_errors++;
3422                 netif_stop_queue(dev);
3423                 goto fail_unlock;
3424         }
3425
3426         if (list_empty(&priv->tx_free_list))
3427                 goto fail_unlock;
3428
3429         element = priv->tx_free_list.next;
3430         packet = list_entry(element, struct ipw2100_tx_packet, list);
3431
3432         packet->info.d_struct.txb = txb;
3433
3434         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3435         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3436
3437         packet->jiffy_start = jiffies;
3438
3439         list_del(element);
3440         DEC_STAT(&priv->tx_free_stat);
3441
3442         list_add_tail(element, &priv->tx_pend_list);
3443         INC_STAT(&priv->tx_pend_stat);
3444
3445         ipw2100_tx_send_data(priv);
3446
3447         spin_unlock_irqrestore(&priv->low_lock, flags);
3448         return NETDEV_TX_OK;
3449
3450 fail_unlock:
3451         netif_stop_queue(dev);
3452         spin_unlock_irqrestore(&priv->low_lock, flags);
3453         return NETDEV_TX_BUSY;
3454 }
3455
3456 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3457 {
3458         int i, j, err = -EINVAL;
3459         void *v;
3460         dma_addr_t p;
3461
3462         priv->msg_buffers =
3463             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3464                     GFP_KERNEL);
3465         if (!priv->msg_buffers) {
3466                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3467                        "buffers.\n", priv->net_dev->name);
3468                 return -ENOMEM;
3469         }
3470
3471         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3472                 v = pci_alloc_consistent(priv->pci_dev,
3473                                          sizeof(struct ipw2100_cmd_header), &p);
3474                 if (!v) {
3475                         printk(KERN_ERR DRV_NAME ": "
3476                                "%s: PCI alloc failed for msg "
3477                                "buffers.\n", priv->net_dev->name);
3478                         err = -ENOMEM;
3479                         break;
3480                 }
3481
3482                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3483
3484                 priv->msg_buffers[i].type = COMMAND;
3485                 priv->msg_buffers[i].info.c_struct.cmd =
3486                     (struct ipw2100_cmd_header *)v;
3487                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3488         }
3489
3490         if (i == IPW_COMMAND_POOL_SIZE)
3491                 return 0;
3492
3493         for (j = 0; j < i; j++) {
3494                 pci_free_consistent(priv->pci_dev,
3495                                     sizeof(struct ipw2100_cmd_header),
3496                                     priv->msg_buffers[j].info.c_struct.cmd,
3497                                     priv->msg_buffers[j].info.c_struct.
3498                                     cmd_phys);
3499         }
3500
3501         kfree(priv->msg_buffers);
3502         priv->msg_buffers = NULL;
3503
3504         return err;
3505 }
3506
3507 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3508 {
3509         int i;
3510
3511         INIT_LIST_HEAD(&priv->msg_free_list);
3512         INIT_LIST_HEAD(&priv->msg_pend_list);
3513
3514         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3515                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3516         SET_STAT(&priv->msg_free_stat, i);
3517
3518         return 0;
3519 }
3520
3521 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3522 {
3523         int i;
3524
3525         if (!priv->msg_buffers)
3526                 return;
3527
3528         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3529                 pci_free_consistent(priv->pci_dev,
3530                                     sizeof(struct ipw2100_cmd_header),
3531                                     priv->msg_buffers[i].info.c_struct.cmd,
3532                                     priv->msg_buffers[i].info.c_struct.
3533                                     cmd_phys);
3534         }
3535
3536         kfree(priv->msg_buffers);
3537         priv->msg_buffers = NULL;
3538 }
3539
3540 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3541                         char *buf)
3542 {
3543         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3544         char *out = buf;
3545         int i, j;
3546         u32 val;
3547
3548         for (i = 0; i < 16; i++) {
3549                 out += sprintf(out, "[%08X] ", i * 16);
3550                 for (j = 0; j < 16; j += 4) {
3551                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3552                         out += sprintf(out, "%08X ", val);
3553                 }
3554                 out += sprintf(out, "\n");
3555         }
3556
3557         return out - buf;
3558 }
3559
3560 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3561
3562 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3563                         char *buf)
3564 {
3565         struct ipw2100_priv *p = dev_get_drvdata(d);
3566         return sprintf(buf, "0x%08x\n", (int)p->config);
3567 }
3568
3569 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3570
3571 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3572                            char *buf)
3573 {
3574         struct ipw2100_priv *p = dev_get_drvdata(d);
3575         return sprintf(buf, "0x%08x\n", (int)p->status);
3576 }
3577
3578 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3579
3580 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3581                                char *buf)
3582 {
3583         struct ipw2100_priv *p = dev_get_drvdata(d);
3584         return sprintf(buf, "0x%08x\n", (int)p->capability);
3585 }
3586
3587 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3588
3589 #define IPW2100_REG(x) { IPW_ ##x, #x }
3590 static const struct {
3591         u32 addr;
3592         const char *name;
3593 } hw_data[] = {
3594 IPW2100_REG(REG_GP_CNTRL),
3595             IPW2100_REG(REG_GPIO),
3596             IPW2100_REG(REG_INTA),
3597             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3598 #define IPW2100_NIC(x, s) { x, #x, s }
3599 static const struct {
3600         u32 addr;
3601         const char *name;
3602         size_t size;
3603 } nic_data[] = {
3604 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3605             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3606 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3607 static const struct {
3608         u8 index;
3609         const char *name;
3610         const char *desc;
3611 } ord_data[] = {
3612 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3613             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3614                                 "successful Host Tx's (MSDU)"),
3615             IPW2100_ORD(STAT_TX_DIR_DATA,
3616                                 "successful Directed Tx's (MSDU)"),
3617             IPW2100_ORD(STAT_TX_DIR_DATA1,
3618                                 "successful Directed Tx's (MSDU) @ 1MB"),
3619             IPW2100_ORD(STAT_TX_DIR_DATA2,
3620                                 "successful Directed Tx's (MSDU) @ 2MB"),
3621             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3622                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3623             IPW2100_ORD(STAT_TX_DIR_DATA11,
3624                                 "successful Directed Tx's (MSDU) @ 11MB"),
3625             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3626                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3627             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3628                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3629             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3630                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3631             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3632                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3633             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3634             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3635             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3636             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3637             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3638             IPW2100_ORD(STAT_TX_ASSN_RESP,
3639                                 "successful Association response Tx's"),
3640             IPW2100_ORD(STAT_TX_REASSN,
3641                                 "successful Reassociation Tx's"),
3642             IPW2100_ORD(STAT_TX_REASSN_RESP,
3643                                 "successful Reassociation response Tx's"),
3644             IPW2100_ORD(STAT_TX_PROBE,
3645                                 "probes successfully transmitted"),
3646             IPW2100_ORD(STAT_TX_PROBE_RESP,
3647                                 "probe responses successfully transmitted"),
3648             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3649             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3650             IPW2100_ORD(STAT_TX_DISASSN,
3651                                 "successful Disassociation TX"),
3652             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3653             IPW2100_ORD(STAT_TX_DEAUTH,
3654                                 "successful Deauthentication TX"),
3655             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3656                                 "Total successful Tx data bytes"),
3657             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3658             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3659             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3660             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3661             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3662             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3663             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3664                                 "times max tries in a hop failed"),
3665             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3666                                 "times disassociation failed"),
3667             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3668             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3669             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3670             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3671             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3672             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3673             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3674                                 "directed packets at 5.5MB"),
3675             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3676             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3677             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3678                                 "nondirected packets at 1MB"),
3679             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3680                                 "nondirected packets at 2MB"),
3681             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3682                                 "nondirected packets at 5.5MB"),
3683             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3684                                 "nondirected packets at 11MB"),
3685             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3686             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3687                                                                     "Rx CTS"),
3688             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3689             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3690             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3691             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3692             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3693             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3694             IPW2100_ORD(STAT_RX_REASSN_RESP,
3695                                 "Reassociation response Rx's"),
3696             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3697             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3698             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3699             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3700             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3701             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3702             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3703             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3704                                 "Total rx data bytes received"),
3705             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3706             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3707             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3708             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3709             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3710             IPW2100_ORD(STAT_RX_DUPLICATE1,
3711                                 "duplicate rx packets at 1MB"),
3712             IPW2100_ORD(STAT_RX_DUPLICATE2,
3713                                 "duplicate rx packets at 2MB"),
3714             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3715                                 "duplicate rx packets at 5.5MB"),
3716             IPW2100_ORD(STAT_RX_DUPLICATE11,
3717                                 "duplicate rx packets at 11MB"),
3718             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3719             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3720             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3721             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3722             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3723                                 "rx frames with invalid protocol"),
3724             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3725             IPW2100_ORD(STAT_RX_NO_BUFFER,
3726                                 "rx frames rejected due to no buffer"),
3727             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3728                                 "rx frames dropped due to missing fragment"),
3729             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3730                                 "rx frames dropped due to non-sequential fragment"),
3731             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3732                                 "rx frames dropped due to unmatched 1st frame"),
3733             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3734                                 "rx frames dropped due to uncompleted frame"),
3735             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3736                                 "ICV errors during decryption"),
3737             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3738             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3739             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3740                                 "poll response timeouts"),
3741             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3742                                 "timeouts waiting for last {broad,multi}cast pkt"),
3743             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3744             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3745             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3746             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3747             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3748                                 "current calculation of % missed beacons"),
3749             IPW2100_ORD(STAT_PERCENT_RETRIES,
3750                                 "current calculation of % missed tx retries"),
3751             IPW2100_ORD(ASSOCIATED_AP_PTR,
3752                                 "0 if not associated, else pointer to AP table entry"),
3753             IPW2100_ORD(AVAILABLE_AP_CNT,
3754                                 "AP's decsribed in the AP table"),
3755             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3756             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3757             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3758             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3759                                 "failures due to response fail"),
3760             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3761             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3762             IPW2100_ORD(STAT_ROAM_INHIBIT,
3763                                 "times roaming was inhibited due to activity"),
3764             IPW2100_ORD(RSSI_AT_ASSN,
3765                                 "RSSI of associated AP at time of association"),
3766             IPW2100_ORD(STAT_ASSN_CAUSE1,
3767                                 "reassociation: no probe response or TX on hop"),
3768             IPW2100_ORD(STAT_ASSN_CAUSE2,
3769                                 "reassociation: poor tx/rx quality"),
3770             IPW2100_ORD(STAT_ASSN_CAUSE3,
3771                                 "reassociation: tx/rx quality (excessive AP load"),
3772             IPW2100_ORD(STAT_ASSN_CAUSE4,
3773                                 "reassociation: AP RSSI level"),
3774             IPW2100_ORD(STAT_ASSN_CAUSE5,
3775                                 "reassociations due to load leveling"),
3776             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3777             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3778                                 "times authentication response failed"),
3779             IPW2100_ORD(STATION_TABLE_CNT,
3780                                 "entries in association table"),
3781             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3782             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3783             IPW2100_ORD(COUNTRY_CODE,
3784                                 "IEEE country code as recv'd from beacon"),
3785             IPW2100_ORD(COUNTRY_CHANNELS,
3786                                 "channels suported by country"),
3787             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3788             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3789             IPW2100_ORD(ANTENNA_DIVERSITY,
3790                                 "TRUE if antenna diversity is disabled"),
3791             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3792             IPW2100_ORD(OUR_FREQ,
3793                                 "current radio freq lower digits - channel ID"),
3794             IPW2100_ORD(RTC_TIME, "current RTC time"),
3795             IPW2100_ORD(PORT_TYPE, "operating mode"),
3796             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3797             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3798             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3799             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3800             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3801             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3802             IPW2100_ORD(CAPABILITIES,
3803                                 "Management frame capability field"),
3804             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3805             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3806             IPW2100_ORD(RTS_THRESHOLD,
3807                                 "Min packet length for RTS handshaking"),
3808             IPW2100_ORD(INT_MODE, "International mode"),
3809             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3810                                 "protocol frag threshold"),
3811             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3812                                 "EEPROM offset in SRAM"),
3813             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3814                                 "EEPROM size in SRAM"),
3815             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3816             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3817                                 "EEPROM IBSS 11b channel set"),
3818             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3819             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3820             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3821             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3822             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3823
3824 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3825                               char *buf)
3826 {
3827         int i;
3828         struct ipw2100_priv *priv = dev_get_drvdata(d);
3829         struct net_device *dev = priv->net_dev;
3830         char *out = buf;
3831         u32 val = 0;
3832
3833         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3834
3835         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3836                 read_register(dev, hw_data[i].addr, &val);
3837                 out += sprintf(out, "%30s [%08X] : %08X\n",
3838                                hw_data[i].name, hw_data[i].addr, val);
3839         }
3840
3841         return out - buf;
3842 }
3843
3844 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3845
3846 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3847                              char *buf)
3848 {
3849         struct ipw2100_priv *priv = dev_get_drvdata(d);
3850         struct net_device *dev = priv->net_dev;
3851         char *out = buf;
3852         int i;
3853
3854         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3855
3856         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3857                 u8 tmp8;
3858                 u16 tmp16;
3859                 u32 tmp32;
3860
3861                 switch (nic_data[i].size) {
3862                 case 1:
3863                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3864                         out += sprintf(out, "%30s [%08X] : %02X\n",
3865                                        nic_data[i].name, nic_data[i].addr,
3866                                        tmp8);
3867                         break;
3868                 case 2:
3869                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3870                         out += sprintf(out, "%30s [%08X] : %04X\n",
3871                                        nic_data[i].name, nic_data[i].addr,
3872                                        tmp16);
3873                         break;
3874                 case 4:
3875                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3876                         out += sprintf(out, "%30s [%08X] : %08X\n",
3877                                        nic_data[i].name, nic_data[i].addr,
3878                                        tmp32);
3879                         break;
3880                 }
3881         }
3882         return out - buf;
3883 }
3884
3885 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3886
3887 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3888                            char *buf)
3889 {
3890         struct ipw2100_priv *priv = dev_get_drvdata(d);
3891         struct net_device *dev = priv->net_dev;
3892         static unsigned long loop = 0;
3893         int len = 0;
3894         u32 buffer[4];
3895         int i;
3896         char line[81];
3897
3898         if (loop >= 0x30000)
3899                 loop = 0;
3900
3901         /* sysfs provides us PAGE_SIZE buffer */
3902         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3903
3904                 if (priv->snapshot[0])
3905                         for (i = 0; i < 4; i++)
3906                                 buffer[i] =
3907                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3908                 else
3909                         for (i = 0; i < 4; i++)
3910                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3911
3912                 if (priv->dump_raw)
3913                         len += sprintf(buf + len,
3914                                        "%c%c%c%c"
3915                                        "%c%c%c%c"
3916                                        "%c%c%c%c"
3917                                        "%c%c%c%c",
3918                                        ((u8 *) buffer)[0x0],
3919                                        ((u8 *) buffer)[0x1],
3920                                        ((u8 *) buffer)[0x2],
3921                                        ((u8 *) buffer)[0x3],
3922                                        ((u8 *) buffer)[0x4],
3923                                        ((u8 *) buffer)[0x5],
3924                                        ((u8 *) buffer)[0x6],
3925                                        ((u8 *) buffer)[0x7],
3926                                        ((u8 *) buffer)[0x8],
3927                                        ((u8 *) buffer)[0x9],
3928                                        ((u8 *) buffer)[0xa],
3929                                        ((u8 *) buffer)[0xb],
3930                                        ((u8 *) buffer)[0xc],
3931                                        ((u8 *) buffer)[0xd],
3932                                        ((u8 *) buffer)[0xe],
3933                                        ((u8 *) buffer)[0xf]);
3934                 else
3935                         len += sprintf(buf + len, "%s\n",
3936                                        snprint_line(line, sizeof(line),
3937                                                     (u8 *) buffer, 16, loop));
3938                 loop += 16;
3939         }
3940
3941         return len;
3942 }
3943
3944 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3945                             const char *buf, size_t count)
3946 {
3947         struct ipw2100_priv *priv = dev_get_drvdata(d);
3948         struct net_device *dev = priv->net_dev;
3949         const char *p = buf;
3950
3951         (void)dev;              /* kill unused-var warning for debug-only code */
3952
3953         if (count < 1)
3954                 return count;
3955
3956         if (p[0] == '1' ||
3957             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3958                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3959                                dev->name);
3960                 priv->dump_raw = 1;
3961
3962         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3963                                    tolower(p[1]) == 'f')) {
3964                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3965                                dev->name);
3966                 priv->dump_raw = 0;
3967
3968         } else if (tolower(p[0]) == 'r') {
3969                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3970                 ipw2100_snapshot_free(priv);
3971
3972         } else
3973                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3974                                "reset = clear memory snapshot\n", dev->name);
3975
3976         return count;
3977 }
3978
3979 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3980
3981 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3982                              char *buf)
3983 {
3984         struct ipw2100_priv *priv = dev_get_drvdata(d);
3985         u32 val = 0;
3986         int len = 0;
3987         u32 val_len;
3988         static int loop = 0;
3989
3990         if (priv->status & STATUS_RF_KILL_MASK)
3991                 return 0;
3992
3993         if (loop >= ARRAY_SIZE(ord_data))
3994                 loop = 0;
3995
3996         /* sysfs provides us PAGE_SIZE buffer */
3997         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3998                 val_len = sizeof(u32);
3999
4000                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
4001                                         &val_len))
4002                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
4003                                        ord_data[loop].index,
4004                                        ord_data[loop].desc);
4005                 else
4006                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4007                                        ord_data[loop].index, val,
4008                                        ord_data[loop].desc);
4009                 loop++;
4010         }
4011
4012         return len;
4013 }
4014
4015 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4016
4017 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4018                           char *buf)
4019 {
4020         struct ipw2100_priv *priv = dev_get_drvdata(d);
4021         char *out = buf;
4022
4023         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4024                        priv->interrupts, priv->tx_interrupts,
4025                        priv->rx_interrupts, priv->inta_other);
4026         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4027         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4028 #ifdef CONFIG_IPW2100_DEBUG
4029         out += sprintf(out, "packet mismatch image: %s\n",
4030                        priv->snapshot[0] ? "YES" : "NO");
4031 #endif
4032
4033         return out - buf;
4034 }
4035
4036 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4037
4038 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4039 {
4040         int err;
4041
4042         if (mode == priv->ieee->iw_mode)
4043                 return 0;
4044
4045         err = ipw2100_disable_adapter(priv);
4046         if (err) {
4047                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4048                        priv->net_dev->name, err);
4049                 return err;
4050         }
4051
4052         switch (mode) {
4053         case IW_MODE_INFRA:
4054                 priv->net_dev->type = ARPHRD_ETHER;
4055                 break;
4056         case IW_MODE_ADHOC:
4057                 priv->net_dev->type = ARPHRD_ETHER;
4058                 break;
4059 #ifdef CONFIG_IPW2100_MONITOR
4060         case IW_MODE_MONITOR:
4061                 priv->last_mode = priv->ieee->iw_mode;
4062                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4063                 break;
4064 #endif                          /* CONFIG_IPW2100_MONITOR */
4065         }
4066
4067         priv->ieee->iw_mode = mode;
4068
4069 #ifdef CONFIG_PM
4070         /* Indicate ipw2100_download_firmware download firmware
4071          * from disk instead of memory. */
4072         ipw2100_firmware.version = 0;
4073 #endif
4074
4075         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
4076         priv->reset_backoff = 0;
4077         schedule_reset(priv);
4078
4079         return 0;
4080 }
4081
4082 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4083                               char *buf)
4084 {
4085         struct ipw2100_priv *priv = dev_get_drvdata(d);
4086         int len = 0;
4087
4088 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4089
4090         if (priv->status & STATUS_ASSOCIATED)
4091                 len += sprintf(buf + len, "connected: %lu\n",
4092                                get_seconds() - priv->connect_start);
4093         else
4094                 len += sprintf(buf + len, "not connected\n");
4095
4096         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4097         DUMP_VAR(status, "08lx");
4098         DUMP_VAR(config, "08lx");
4099         DUMP_VAR(capability, "08lx");
4100
4101         len +=
4102             sprintf(buf + len, "last_rtc: %lu\n",
4103                     (unsigned long)priv->last_rtc);
4104
4105         DUMP_VAR(fatal_error, "d");
4106         DUMP_VAR(stop_hang_check, "d");
4107         DUMP_VAR(stop_rf_kill, "d");
4108         DUMP_VAR(messages_sent, "d");
4109
4110         DUMP_VAR(tx_pend_stat.value, "d");
4111         DUMP_VAR(tx_pend_stat.hi, "d");
4112
4113         DUMP_VAR(tx_free_stat.value, "d");
4114         DUMP_VAR(tx_free_stat.lo, "d");
4115
4116         DUMP_VAR(msg_free_stat.value, "d");
4117         DUMP_VAR(msg_free_stat.lo, "d");
4118
4119         DUMP_VAR(msg_pend_stat.value, "d");
4120         DUMP_VAR(msg_pend_stat.hi, "d");
4121
4122         DUMP_VAR(fw_pend_stat.value, "d");
4123         DUMP_VAR(fw_pend_stat.hi, "d");
4124
4125         DUMP_VAR(txq_stat.value, "d");
4126         DUMP_VAR(txq_stat.lo, "d");
4127
4128         DUMP_VAR(ieee->scans, "d");
4129         DUMP_VAR(reset_backoff, "d");
4130
4131         return len;
4132 }
4133
4134 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4135
4136 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4137                             char *buf)
4138 {
4139         struct ipw2100_priv *priv = dev_get_drvdata(d);
4140         char essid[IW_ESSID_MAX_SIZE + 1];
4141         u8 bssid[ETH_ALEN];
4142         u32 chan = 0;
4143         char *out = buf;
4144         unsigned int length;
4145         int ret;
4146
4147         if (priv->status & STATUS_RF_KILL_MASK)
4148                 return 0;
4149
4150         memset(essid, 0, sizeof(essid));
4151         memset(bssid, 0, sizeof(bssid));
4152
4153         length = IW_ESSID_MAX_SIZE;
4154         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4155         if (ret)
4156                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4157                                __LINE__);
4158
4159         length = sizeof(bssid);
4160         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4161                                   bssid, &length);
4162         if (ret)
4163                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4164                                __LINE__);
4165
4166         length = sizeof(u32);
4167         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4168         if (ret)
4169                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4170                                __LINE__);
4171
4172         out += sprintf(out, "ESSID: %s\n", essid);
4173         out += sprintf(out, "BSSID:   %pM\n", bssid);
4174         out += sprintf(out, "Channel: %d\n", chan);
4175
4176         return out - buf;
4177 }
4178
4179 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4180
4181 #ifdef CONFIG_IPW2100_DEBUG
4182 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4183 {
4184         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4185 }
4186
4187 static ssize_t store_debug_level(struct device_driver *d,
4188                                  const char *buf, size_t count)
4189 {
4190         char *p = (char *)buf;
4191         u32 val;
4192
4193         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4194                 p++;
4195                 if (p[0] == 'x' || p[0] == 'X')
4196                         p++;
4197                 val = simple_strtoul(p, &p, 16);
4198         } else
4199                 val = simple_strtoul(p, &p, 10);
4200         if (p == buf)
4201                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4202         else
4203                 ipw2100_debug_level = val;
4204
4205         return strnlen(buf, count);
4206 }
4207
4208 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4209                    store_debug_level);
4210 #endif                          /* CONFIG_IPW2100_DEBUG */
4211
4212 static ssize_t show_fatal_error(struct device *d,
4213                                 struct device_attribute *attr, char *buf)
4214 {
4215         struct ipw2100_priv *priv = dev_get_drvdata(d);
4216         char *out = buf;
4217         int i;
4218
4219         if (priv->fatal_error)
4220                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4221         else
4222                 out += sprintf(out, "0\n");
4223
4224         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4225                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4226                                         IPW2100_ERROR_QUEUE])
4227                         continue;
4228
4229                 out += sprintf(out, "%d. 0x%08X\n", i,
4230                                priv->fatal_errors[(priv->fatal_index - i) %
4231                                                   IPW2100_ERROR_QUEUE]);
4232         }
4233
4234         return out - buf;
4235 }
4236
4237 static ssize_t store_fatal_error(struct device *d,
4238                                  struct device_attribute *attr, const char *buf,
4239                                  size_t count)
4240 {
4241         struct ipw2100_priv *priv = dev_get_drvdata(d);
4242         schedule_reset(priv);
4243         return count;
4244 }
4245
4246 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4247                    store_fatal_error);
4248
4249 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4250                              char *buf)
4251 {
4252         struct ipw2100_priv *priv = dev_get_drvdata(d);
4253         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4254 }
4255
4256 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4257                               const char *buf, size_t count)
4258 {
4259         struct ipw2100_priv *priv = dev_get_drvdata(d);
4260         struct net_device *dev = priv->net_dev;
4261         char buffer[] = "00000000";
4262         unsigned long len =
4263             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4264         unsigned long val;
4265         char *p = buffer;
4266
4267         (void)dev;              /* kill unused-var warning for debug-only code */
4268
4269         IPW_DEBUG_INFO("enter\n");
4270
4271         strncpy(buffer, buf, len);
4272         buffer[len] = 0;
4273
4274         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4275                 p++;
4276                 if (p[0] == 'x' || p[0] == 'X')
4277                         p++;
4278                 val = simple_strtoul(p, &p, 16);
4279         } else
4280                 val = simple_strtoul(p, &p, 10);
4281         if (p == buffer) {
4282                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4283         } else {
4284                 priv->ieee->scan_age = val;
4285                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4286         }
4287
4288         IPW_DEBUG_INFO("exit\n");
4289         return len;
4290 }
4291
4292 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4293
4294 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4295                             char *buf)
4296 {
4297         /* 0 - RF kill not enabled
4298            1 - SW based RF kill active (sysfs)
4299            2 - HW based RF kill active
4300            3 - Both HW and SW baed RF kill active */
4301         struct ipw2100_priv *priv = dev_get_drvdata(d);
4302         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4303             (rf_kill_active(priv) ? 0x2 : 0x0);
4304         return sprintf(buf, "%i\n", val);
4305 }
4306
4307 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4308 {
4309         if ((disable_radio ? 1 : 0) ==
4310             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4311                 return 0;
4312
4313         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4314                           disable_radio ? "OFF" : "ON");
4315
4316         mutex_lock(&priv->action_mutex);
4317
4318         if (disable_radio) {
4319                 priv->status |= STATUS_RF_KILL_SW;
4320                 ipw2100_down(priv);
4321         } else {
4322                 priv->status &= ~STATUS_RF_KILL_SW;
4323                 if (rf_kill_active(priv)) {
4324                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4325                                           "disabled by HW switch\n");
4326                         /* Make sure the RF_KILL check timer is running */
4327                         priv->stop_rf_kill = 0;
4328                         cancel_delayed_work(&priv->rf_kill);
4329                         schedule_delayed_work(&priv->rf_kill,
4330                                               round_jiffies_relative(HZ));
4331                 } else
4332                         schedule_reset(priv);
4333         }
4334
4335         mutex_unlock(&priv->action_mutex);
4336         return 1;
4337 }
4338
4339 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4340                              const char *buf, size_t count)
4341 {
4342         struct ipw2100_priv *priv = dev_get_drvdata(d);
4343         ipw_radio_kill_sw(priv, buf[0] == '1');
4344         return count;
4345 }
4346
4347 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4348
4349 static struct attribute *ipw2100_sysfs_entries[] = {
4350         &dev_attr_hardware.attr,
4351         &dev_attr_registers.attr,
4352         &dev_attr_ordinals.attr,
4353         &dev_attr_pci.attr,
4354         &dev_attr_stats.attr,
4355         &dev_attr_internals.attr,
4356         &dev_attr_bssinfo.attr,
4357         &dev_attr_memory.attr,
4358         &dev_attr_scan_age.attr,
4359         &dev_attr_fatal_error.attr,
4360         &dev_attr_rf_kill.attr,
4361         &dev_attr_cfg.attr,
4362         &dev_attr_status.attr,
4363         &dev_attr_capability.attr,
4364         NULL,
4365 };
4366
4367 static struct attribute_group ipw2100_attribute_group = {
4368         .attrs = ipw2100_sysfs_entries,
4369 };
4370
4371 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4372 {
4373         struct ipw2100_status_queue *q = &priv->status_queue;
4374
4375         IPW_DEBUG_INFO("enter\n");
4376
4377         q->size = entries * sizeof(struct ipw2100_status);
4378         q->drv =
4379             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4380                                                           q->size, &q->nic);
4381         if (!q->drv) {
4382                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4383                 return -ENOMEM;
4384         }
4385
4386         memset(q->drv, 0, q->size);
4387
4388         IPW_DEBUG_INFO("exit\n");
4389
4390         return 0;
4391 }
4392
4393 static void status_queue_free(struct ipw2100_priv *priv)
4394 {
4395         IPW_DEBUG_INFO("enter\n");
4396
4397         if (priv->status_queue.drv) {
4398                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4399                                     priv->status_queue.drv,
4400                                     priv->status_queue.nic);
4401                 priv->status_queue.drv = NULL;
4402         }
4403
4404         IPW_DEBUG_INFO("exit\n");
4405 }
4406
4407 static int bd_queue_allocate(struct ipw2100_priv *priv,
4408                              struct ipw2100_bd_queue *q, int entries)
4409 {
4410         IPW_DEBUG_INFO("enter\n");
4411
4412         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4413
4414         q->entries = entries;
4415         q->size = entries * sizeof(struct ipw2100_bd);
4416         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4417         if (!q->drv) {
4418                 IPW_DEBUG_INFO
4419                     ("can't allocate shared memory for buffer descriptors\n");
4420                 return -ENOMEM;
4421         }
4422         memset(q->drv, 0, q->size);
4423
4424         IPW_DEBUG_INFO("exit\n");
4425
4426         return 0;
4427 }
4428
4429 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4430 {
4431         IPW_DEBUG_INFO("enter\n");
4432
4433         if (!q)
4434                 return;
4435
4436         if (q->drv) {
4437                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4438                 q->drv = NULL;
4439         }
4440
4441         IPW_DEBUG_INFO("exit\n");
4442 }
4443
4444 static void bd_queue_initialize(struct ipw2100_priv *priv,
4445                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4446                                 u32 r, u32 w)
4447 {
4448         IPW_DEBUG_INFO("enter\n");
4449
4450         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4451                        (u32) q->nic);
4452
4453         write_register(priv->net_dev, base, q->nic);
4454         write_register(priv->net_dev, size, q->entries);
4455         write_register(priv->net_dev, r, q->oldest);
4456         write_register(priv->net_dev, w, q->next);
4457
4458         IPW_DEBUG_INFO("exit\n");
4459 }
4460
4461 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4462 {
4463         priv->stop_rf_kill = 1;
4464         priv->stop_hang_check = 1;
4465         cancel_delayed_work_sync(&priv->reset_work);
4466         cancel_delayed_work_sync(&priv->security_work);
4467         cancel_delayed_work_sync(&priv->wx_event_work);
4468         cancel_delayed_work_sync(&priv->hang_check);
4469         cancel_delayed_work_sync(&priv->rf_kill);
4470         cancel_work_sync(&priv->scan_event_now);
4471         cancel_delayed_work_sync(&priv->scan_event_later);
4472 }
4473
4474 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4475 {
4476         int i, j, err = -EINVAL;
4477         void *v;
4478         dma_addr_t p;
4479
4480         IPW_DEBUG_INFO("enter\n");
4481
4482         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4483         if (err) {
4484                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4485                                 priv->net_dev->name);
4486                 return err;
4487         }
4488
4489         priv->tx_buffers =
4490             kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4491                     GFP_ATOMIC);
4492         if (!priv->tx_buffers) {
4493                 printk(KERN_ERR DRV_NAME
4494                        ": %s: alloc failed form tx buffers.\n",
4495                        priv->net_dev->name);
4496                 bd_queue_free(priv, &priv->tx_queue);
4497                 return -ENOMEM;
4498         }
4499
4500         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4501                 v = pci_alloc_consistent(priv->pci_dev,
4502                                          sizeof(struct ipw2100_data_header),
4503                                          &p);
4504                 if (!v) {
4505                         printk(KERN_ERR DRV_NAME
4506                                ": %s: PCI alloc failed for tx " "buffers.\n",
4507                                priv->net_dev->name);
4508                         err = -ENOMEM;
4509                         break;
4510                 }
4511
4512                 priv->tx_buffers[i].type = DATA;
4513                 priv->tx_buffers[i].info.d_struct.data =
4514                     (struct ipw2100_data_header *)v;
4515                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4516                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4517         }
4518
4519         if (i == TX_PENDED_QUEUE_LENGTH)
4520                 return 0;
4521
4522         for (j = 0; j < i; j++) {
4523                 pci_free_consistent(priv->pci_dev,
4524                                     sizeof(struct ipw2100_data_header),
4525                                     priv->tx_buffers[j].info.d_struct.data,
4526                                     priv->tx_buffers[j].info.d_struct.
4527                                     data_phys);
4528         }
4529
4530         kfree(priv->tx_buffers);
4531         priv->tx_buffers = NULL;
4532
4533         return err;
4534 }
4535
4536 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4537 {
4538         int i;
4539
4540         IPW_DEBUG_INFO("enter\n");
4541
4542         /*
4543          * reinitialize packet info lists
4544          */
4545         INIT_LIST_HEAD(&priv->fw_pend_list);
4546         INIT_STAT(&priv->fw_pend_stat);
4547
4548         /*
4549          * reinitialize lists
4550          */
4551         INIT_LIST_HEAD(&priv->tx_pend_list);
4552         INIT_LIST_HEAD(&priv->tx_free_list);
4553         INIT_STAT(&priv->tx_pend_stat);
4554         INIT_STAT(&priv->tx_free_stat);
4555
4556         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4557                 /* We simply drop any SKBs that have been queued for
4558                  * transmit */
4559                 if (priv->tx_buffers[i].info.d_struct.txb) {
4560                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4561                                            txb);
4562                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4563                 }
4564
4565                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4566         }
4567
4568         SET_STAT(&priv->tx_free_stat, i);
4569
4570         priv->tx_queue.oldest = 0;
4571         priv->tx_queue.available = priv->tx_queue.entries;
4572         priv->tx_queue.next = 0;
4573         INIT_STAT(&priv->txq_stat);
4574         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4575
4576         bd_queue_initialize(priv, &priv->tx_queue,
4577                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4578                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4579                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4580                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4581
4582         IPW_DEBUG_INFO("exit\n");
4583
4584 }
4585
4586 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4587 {
4588         int i;
4589
4590         IPW_DEBUG_INFO("enter\n");
4591
4592         bd_queue_free(priv, &priv->tx_queue);
4593
4594         if (!priv->tx_buffers)
4595                 return;
4596
4597         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4598                 if (priv->tx_buffers[i].info.d_struct.txb) {
4599                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4600                                            txb);
4601                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4602                 }
4603                 if (priv->tx_buffers[i].info.d_struct.data)
4604                         pci_free_consistent(priv->pci_dev,
4605                                             sizeof(struct ipw2100_data_header),
4606                                             priv->tx_buffers[i].info.d_struct.
4607                                             data,
4608                                             priv->tx_buffers[i].info.d_struct.
4609                                             data_phys);
4610         }
4611
4612         kfree(priv->tx_buffers);
4613         priv->tx_buffers = NULL;
4614
4615         IPW_DEBUG_INFO("exit\n");
4616 }
4617
4618 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4619 {
4620         int i, j, err = -EINVAL;
4621
4622         IPW_DEBUG_INFO("enter\n");
4623
4624         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4625         if (err) {
4626                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4627                 return err;
4628         }
4629
4630         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4631         if (err) {
4632                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4633                 bd_queue_free(priv, &priv->rx_queue);
4634                 return err;
4635         }
4636
4637         /*
4638          * allocate packets
4639          */
4640         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4641                                    sizeof(struct ipw2100_rx_packet),
4642                                    GFP_KERNEL);
4643         if (!priv->rx_buffers) {
4644                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4645
4646                 bd_queue_free(priv, &priv->rx_queue);
4647
4648                 status_queue_free(priv);
4649
4650                 return -ENOMEM;
4651         }
4652
4653         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4654                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4655
4656                 err = ipw2100_alloc_skb(priv, packet);
4657                 if (unlikely(err)) {
4658                         err = -ENOMEM;
4659                         break;
4660                 }
4661
4662                 /* The BD holds the cache aligned address */
4663                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4664                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4665                 priv->status_queue.drv[i].status_fields = 0;
4666         }
4667
4668         if (i == RX_QUEUE_LENGTH)
4669                 return 0;
4670
4671         for (j = 0; j < i; j++) {
4672                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4673                                  sizeof(struct ipw2100_rx_packet),
4674                                  PCI_DMA_FROMDEVICE);
4675                 dev_kfree_skb(priv->rx_buffers[j].skb);
4676         }
4677
4678         kfree(priv->rx_buffers);
4679         priv->rx_buffers = NULL;
4680
4681         bd_queue_free(priv, &priv->rx_queue);
4682
4683         status_queue_free(priv);
4684
4685         return err;
4686 }
4687
4688 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4689 {
4690         IPW_DEBUG_INFO("enter\n");
4691
4692         priv->rx_queue.oldest = 0;
4693         priv->rx_queue.available = priv->rx_queue.entries - 1;
4694         priv->rx_queue.next = priv->rx_queue.entries - 1;
4695
4696         INIT_STAT(&priv->rxq_stat);
4697         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4698
4699         bd_queue_initialize(priv, &priv->rx_queue,
4700                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4701                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4702                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4703                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4704
4705         /* set up the status queue */
4706         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4707                        priv->status_queue.nic);
4708
4709         IPW_DEBUG_INFO("exit\n");
4710 }
4711
4712 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4713 {
4714         int i;
4715
4716         IPW_DEBUG_INFO("enter\n");
4717
4718         bd_queue_free(priv, &priv->rx_queue);
4719         status_queue_free(priv);
4720
4721         if (!priv->rx_buffers)
4722                 return;
4723
4724         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4725                 if (priv->rx_buffers[i].rxp) {
4726                         pci_unmap_single(priv->pci_dev,
4727                                          priv->rx_buffers[i].dma_addr,
4728                                          sizeof(struct ipw2100_rx),
4729                                          PCI_DMA_FROMDEVICE);
4730                         dev_kfree_skb(priv->rx_buffers[i].skb);
4731                 }
4732         }
4733
4734         kfree(priv->rx_buffers);
4735         priv->rx_buffers = NULL;
4736
4737         IPW_DEBUG_INFO("exit\n");
4738 }
4739
4740 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4741 {
4742         u32 length = ETH_ALEN;
4743         u8 addr[ETH_ALEN];
4744
4745         int err;
4746
4747         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4748         if (err) {
4749                 IPW_DEBUG_INFO("MAC address read failed\n");
4750                 return -EIO;
4751         }
4752
4753         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4754         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4755
4756         return 0;
4757 }
4758
4759 /********************************************************************
4760  *
4761  * Firmware Commands
4762  *
4763  ********************************************************************/
4764
4765 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4766 {
4767         struct host_command cmd = {
4768                 .host_command = ADAPTER_ADDRESS,
4769                 .host_command_sequence = 0,
4770                 .host_command_length = ETH_ALEN
4771         };
4772         int err;
4773
4774         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4775
4776         IPW_DEBUG_INFO("enter\n");
4777
4778         if (priv->config & CFG_CUSTOM_MAC) {
4779                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4780                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4781         } else
4782                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4783                        ETH_ALEN);
4784
4785         err = ipw2100_hw_send_command(priv, &cmd);
4786
4787         IPW_DEBUG_INFO("exit\n");
4788         return err;
4789 }
4790
4791 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4792                                  int batch_mode)
4793 {
4794         struct host_command cmd = {
4795                 .host_command = PORT_TYPE,
4796                 .host_command_sequence = 0,
4797                 .host_command_length = sizeof(u32)
4798         };
4799         int err;
4800
4801         switch (port_type) {
4802         case IW_MODE_INFRA:
4803                 cmd.host_command_parameters[0] = IPW_BSS;
4804                 break;
4805         case IW_MODE_ADHOC:
4806                 cmd.host_command_parameters[0] = IPW_IBSS;
4807                 break;
4808         }
4809
4810         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4811                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4812
4813         if (!batch_mode) {
4814                 err = ipw2100_disable_adapter(priv);
4815                 if (err) {
4816                         printk(KERN_ERR DRV_NAME
4817                                ": %s: Could not disable adapter %d\n",
4818                                priv->net_dev->name, err);
4819                         return err;
4820                 }
4821         }
4822
4823         /* send cmd to firmware */
4824         err = ipw2100_hw_send_command(priv, &cmd);
4825
4826         if (!batch_mode)
4827                 ipw2100_enable_adapter(priv);
4828
4829         return err;
4830 }
4831
4832 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4833                                int batch_mode)
4834 {
4835         struct host_command cmd = {
4836                 .host_command = CHANNEL,
4837                 .host_command_sequence = 0,
4838                 .host_command_length = sizeof(u32)
4839         };
4840         int err;
4841
4842         cmd.host_command_parameters[0] = channel;
4843
4844         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4845
4846         /* If BSS then we don't support channel selection */
4847         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4848                 return 0;
4849
4850         if ((channel != 0) &&
4851             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4852                 return -EINVAL;
4853
4854         if (!batch_mode) {
4855                 err = ipw2100_disable_adapter(priv);
4856                 if (err)
4857                         return err;
4858         }
4859
4860         err = ipw2100_hw_send_command(priv, &cmd);
4861         if (err) {
4862                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4863                 return err;
4864         }
4865
4866         if (channel)
4867                 priv->config |= CFG_STATIC_CHANNEL;
4868         else
4869                 priv->config &= ~CFG_STATIC_CHANNEL;
4870
4871         priv->channel = channel;
4872
4873         if (!batch_mode) {
4874                 err = ipw2100_enable_adapter(priv);
4875                 if (err)
4876                         return err;
4877         }
4878
4879         return 0;
4880 }
4881
4882 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4883 {
4884         struct host_command cmd = {
4885                 .host_command = SYSTEM_CONFIG,
4886                 .host_command_sequence = 0,
4887                 .host_command_length = 12,
4888         };
4889         u32 ibss_mask, len = sizeof(u32);
4890         int err;
4891
4892         /* Set system configuration */
4893
4894         if (!batch_mode) {
4895                 err = ipw2100_disable_adapter(priv);
4896                 if (err)
4897                         return err;
4898         }
4899
4900         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4901                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4902
4903         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4904             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4905
4906         if (!(priv->config & CFG_LONG_PREAMBLE))
4907                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4908
4909         err = ipw2100_get_ordinal(priv,
4910                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4911                                   &ibss_mask, &len);
4912         if (err)
4913                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4914
4915         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4916         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4917
4918         /* 11b only */
4919         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4920
4921         err = ipw2100_hw_send_command(priv, &cmd);
4922         if (err)
4923                 return err;
4924
4925 /* If IPv6 is configured in the kernel then we don't want to filter out all
4926  * of the multicast packets as IPv6 needs some. */
4927 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4928         cmd.host_command = ADD_MULTICAST;
4929         cmd.host_command_sequence = 0;
4930         cmd.host_command_length = 0;
4931
4932         ipw2100_hw_send_command(priv, &cmd);
4933 #endif
4934         if (!batch_mode) {
4935                 err = ipw2100_enable_adapter(priv);
4936                 if (err)
4937                         return err;
4938         }
4939
4940         return 0;
4941 }
4942
4943 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4944                                 int batch_mode)
4945 {
4946         struct host_command cmd = {
4947                 .host_command = BASIC_TX_RATES,
4948                 .host_command_sequence = 0,
4949                 .host_command_length = 4
4950         };
4951         int err;
4952
4953         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4954
4955         if (!batch_mode) {
4956                 err = ipw2100_disable_adapter(priv);
4957                 if (err)
4958                         return err;
4959         }
4960
4961         /* Set BASIC TX Rate first */
4962         ipw2100_hw_send_command(priv, &cmd);
4963
4964         /* Set TX Rate */
4965         cmd.host_command = TX_RATES;
4966         ipw2100_hw_send_command(priv, &cmd);
4967
4968         /* Set MSDU TX Rate */
4969         cmd.host_command = MSDU_TX_RATES;
4970         ipw2100_hw_send_command(priv, &cmd);
4971
4972         if (!batch_mode) {
4973                 err = ipw2100_enable_adapter(priv);
4974                 if (err)
4975                         return err;
4976         }
4977
4978         priv->tx_rates = rate;
4979
4980         return 0;
4981 }
4982
4983 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4984 {
4985         struct host_command cmd = {
4986                 .host_command = POWER_MODE,
4987                 .host_command_sequence = 0,
4988                 .host_command_length = 4
4989         };
4990         int err;
4991
4992         cmd.host_command_parameters[0] = power_level;
4993
4994         err = ipw2100_hw_send_command(priv, &cmd);
4995         if (err)
4996                 return err;
4997
4998         if (power_level == IPW_POWER_MODE_CAM)
4999                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
5000         else
5001                 priv->power_mode = IPW_POWER_ENABLED | power_level;
5002
5003 #ifdef IPW2100_TX_POWER
5004         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5005                 /* Set beacon interval */
5006                 cmd.host_command = TX_POWER_INDEX;
5007                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5008
5009                 err = ipw2100_hw_send_command(priv, &cmd);
5010                 if (err)
5011                         return err;
5012         }
5013 #endif
5014
5015         return 0;
5016 }
5017
5018 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5019 {
5020         struct host_command cmd = {
5021                 .host_command = RTS_THRESHOLD,
5022                 .host_command_sequence = 0,
5023                 .host_command_length = 4
5024         };
5025         int err;
5026
5027         if (threshold & RTS_DISABLED)
5028                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5029         else
5030                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5031
5032         err = ipw2100_hw_send_command(priv, &cmd);
5033         if (err)
5034                 return err;
5035
5036         priv->rts_threshold = threshold;
5037
5038         return 0;
5039 }
5040
5041 #if 0
5042 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5043                                         u32 threshold, int batch_mode)
5044 {
5045         struct host_command cmd = {
5046                 .host_command = FRAG_THRESHOLD,
5047                 .host_command_sequence = 0,
5048                 .host_command_length = 4,
5049                 .host_command_parameters[0] = 0,
5050         };
5051         int err;
5052
5053         if (!batch_mode) {
5054                 err = ipw2100_disable_adapter(priv);
5055                 if (err)
5056                         return err;
5057         }
5058
5059         if (threshold == 0)
5060                 threshold = DEFAULT_FRAG_THRESHOLD;
5061         else {
5062                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5063                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5064         }
5065
5066         cmd.host_command_parameters[0] = threshold;
5067
5068         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5069
5070         err = ipw2100_hw_send_command(priv, &cmd);
5071
5072         if (!batch_mode)
5073                 ipw2100_enable_adapter(priv);
5074
5075         if (!err)
5076                 priv->frag_threshold = threshold;
5077
5078         return err;
5079 }
5080 #endif
5081
5082 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5083 {
5084         struct host_command cmd = {
5085                 .host_command = SHORT_RETRY_LIMIT,
5086                 .host_command_sequence = 0,
5087                 .host_command_length = 4
5088         };
5089         int err;
5090
5091         cmd.host_command_parameters[0] = retry;
5092
5093         err = ipw2100_hw_send_command(priv, &cmd);
5094         if (err)
5095                 return err;
5096
5097         priv->short_retry_limit = retry;
5098
5099         return 0;
5100 }
5101
5102 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5103 {
5104         struct host_command cmd = {
5105                 .host_command = LONG_RETRY_LIMIT,
5106                 .host_command_sequence = 0,
5107                 .host_command_length = 4
5108         };
5109         int err;
5110
5111         cmd.host_command_parameters[0] = retry;
5112
5113         err = ipw2100_hw_send_command(priv, &cmd);
5114         if (err)
5115                 return err;
5116
5117         priv->long_retry_limit = retry;
5118
5119         return 0;
5120 }
5121
5122 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5123                                        int batch_mode)
5124 {
5125         struct host_command cmd = {
5126                 .host_command = MANDATORY_BSSID,
5127                 .host_command_sequence = 0,
5128                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5129         };
5130         int err;
5131
5132 #ifdef CONFIG_IPW2100_DEBUG
5133         if (bssid != NULL)
5134                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5135         else
5136                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5137 #endif
5138         /* if BSSID is empty then we disable mandatory bssid mode */
5139         if (bssid != NULL)
5140                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5141
5142         if (!batch_mode) {
5143                 err = ipw2100_disable_adapter(priv);
5144                 if (err)
5145                         return err;
5146         }
5147
5148         err = ipw2100_hw_send_command(priv, &cmd);
5149
5150         if (!batch_mode)
5151                 ipw2100_enable_adapter(priv);
5152
5153         return err;
5154 }
5155
5156 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5157 {
5158         struct host_command cmd = {
5159                 .host_command = DISASSOCIATION_BSSID,
5160                 .host_command_sequence = 0,
5161                 .host_command_length = ETH_ALEN
5162         };
5163         int err;
5164         int len;
5165
5166         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5167
5168         len = ETH_ALEN;
5169         /* The Firmware currently ignores the BSSID and just disassociates from
5170          * the currently associated AP -- but in the off chance that a future
5171          * firmware does use the BSSID provided here, we go ahead and try and
5172          * set it to the currently associated AP's BSSID */
5173         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5174
5175         err = ipw2100_hw_send_command(priv, &cmd);
5176
5177         return err;
5178 }
5179
5180 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5181                               struct ipw2100_wpa_assoc_frame *, int)
5182     __attribute__ ((unused));
5183
5184 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5185                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5186                               int batch_mode)
5187 {
5188         struct host_command cmd = {
5189                 .host_command = SET_WPA_IE,
5190                 .host_command_sequence = 0,
5191                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5192         };
5193         int err;
5194
5195         IPW_DEBUG_HC("SET_WPA_IE\n");
5196
5197         if (!batch_mode) {
5198                 err = ipw2100_disable_adapter(priv);
5199                 if (err)
5200                         return err;
5201         }
5202
5203         memcpy(cmd.host_command_parameters, wpa_frame,
5204                sizeof(struct ipw2100_wpa_assoc_frame));
5205
5206         err = ipw2100_hw_send_command(priv, &cmd);
5207
5208         if (!batch_mode) {
5209                 if (ipw2100_enable_adapter(priv))
5210                         err = -EIO;
5211         }
5212
5213         return err;
5214 }
5215
5216 struct security_info_params {
5217         u32 allowed_ciphers;
5218         u16 version;
5219         u8 auth_mode;
5220         u8 replay_counters_number;
5221         u8 unicast_using_group;
5222 } __packed;
5223
5224 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5225                                             int auth_mode,
5226                                             int security_level,
5227                                             int unicast_using_group,
5228                                             int batch_mode)
5229 {
5230         struct host_command cmd = {
5231                 .host_command = SET_SECURITY_INFORMATION,
5232                 .host_command_sequence = 0,
5233                 .host_command_length = sizeof(struct security_info_params)
5234         };
5235         struct security_info_params *security =
5236             (struct security_info_params *)&cmd.host_command_parameters;
5237         int err;
5238         memset(security, 0, sizeof(*security));
5239
5240         /* If shared key AP authentication is turned on, then we need to
5241          * configure the firmware to try and use it.
5242          *
5243          * Actual data encryption/decryption is handled by the host. */
5244         security->auth_mode = auth_mode;
5245         security->unicast_using_group = unicast_using_group;
5246
5247         switch (security_level) {
5248         default:
5249         case SEC_LEVEL_0:
5250                 security->allowed_ciphers = IPW_NONE_CIPHER;
5251                 break;
5252         case SEC_LEVEL_1:
5253                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5254                     IPW_WEP104_CIPHER;
5255                 break;
5256         case SEC_LEVEL_2:
5257                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5258                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5259                 break;
5260         case SEC_LEVEL_2_CKIP:
5261                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5262                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5263                 break;
5264         case SEC_LEVEL_3:
5265                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5266                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5267                 break;
5268         }
5269
5270         IPW_DEBUG_HC
5271             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5272              security->auth_mode, security->allowed_ciphers, security_level);
5273
5274         security->replay_counters_number = 0;
5275
5276         if (!batch_mode) {
5277                 err = ipw2100_disable_adapter(priv);
5278                 if (err)
5279                         return err;
5280         }
5281
5282         err = ipw2100_hw_send_command(priv, &cmd);
5283
5284         if (!batch_mode)
5285                 ipw2100_enable_adapter(priv);
5286
5287         return err;
5288 }
5289
5290 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5291 {
5292         struct host_command cmd = {
5293                 .host_command = TX_POWER_INDEX,
5294                 .host_command_sequence = 0,
5295                 .host_command_length = 4
5296         };
5297         int err = 0;
5298         u32 tmp = tx_power;
5299
5300         if (tx_power != IPW_TX_POWER_DEFAULT)
5301                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5302                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5303
5304         cmd.host_command_parameters[0] = tmp;
5305
5306         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5307                 err = ipw2100_hw_send_command(priv, &cmd);
5308         if (!err)
5309                 priv->tx_power = tx_power;
5310
5311         return 0;
5312 }
5313
5314 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5315                                             u32 interval, int batch_mode)
5316 {
5317         struct host_command cmd = {
5318                 .host_command = BEACON_INTERVAL,
5319                 .host_command_sequence = 0,
5320                 .host_command_length = 4
5321         };
5322         int err;
5323
5324         cmd.host_command_parameters[0] = interval;
5325
5326         IPW_DEBUG_INFO("enter\n");
5327
5328         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5329                 if (!batch_mode) {
5330                         err = ipw2100_disable_adapter(priv);
5331                         if (err)
5332                                 return err;
5333                 }
5334
5335                 ipw2100_hw_send_command(priv, &cmd);
5336
5337                 if (!batch_mode) {
5338                         err = ipw2100_enable_adapter(priv);
5339                         if (err)
5340                                 return err;
5341                 }
5342         }
5343
5344         IPW_DEBUG_INFO("exit\n");
5345
5346         return 0;
5347 }
5348
5349 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5350 {
5351         ipw2100_tx_initialize(priv);
5352         ipw2100_rx_initialize(priv);
5353         ipw2100_msg_initialize(priv);
5354 }
5355
5356 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5357 {
5358         ipw2100_tx_free(priv);
5359         ipw2100_rx_free(priv);
5360         ipw2100_msg_free(priv);
5361 }
5362
5363 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5364 {
5365         if (ipw2100_tx_allocate(priv) ||
5366             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5367                 goto fail;
5368
5369         return 0;
5370
5371       fail:
5372         ipw2100_tx_free(priv);
5373         ipw2100_rx_free(priv);
5374         ipw2100_msg_free(priv);
5375         return -ENOMEM;
5376 }
5377
5378 #define IPW_PRIVACY_CAPABLE 0x0008
5379
5380 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5381                                  int batch_mode)
5382 {
5383         struct host_command cmd = {
5384                 .host_command = WEP_FLAGS,
5385                 .host_command_sequence = 0,
5386                 .host_command_length = 4
5387         };
5388         int err;
5389
5390         cmd.host_command_parameters[0] = flags;
5391
5392         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5393
5394         if (!batch_mode) {
5395                 err = ipw2100_disable_adapter(priv);
5396                 if (err) {
5397                         printk(KERN_ERR DRV_NAME
5398                                ": %s: Could not disable adapter %d\n",
5399                                priv->net_dev->name, err);
5400                         return err;
5401                 }
5402         }
5403
5404         /* send cmd to firmware */
5405         err = ipw2100_hw_send_command(priv, &cmd);
5406
5407         if (!batch_mode)
5408                 ipw2100_enable_adapter(priv);
5409
5410         return err;
5411 }
5412
5413 struct ipw2100_wep_key {
5414         u8 idx;
5415         u8 len;
5416         u8 key[13];
5417 };
5418
5419 /* Macros to ease up priting WEP keys */
5420 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5421 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5422 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5423 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5424
5425 /**
5426  * Set a the wep key
5427  *
5428  * @priv: struct to work on
5429  * @idx: index of the key we want to set
5430  * @key: ptr to the key data to set
5431  * @len: length of the buffer at @key
5432  * @batch_mode: FIXME perform the operation in batch mode, not
5433  *              disabling the device.
5434  *
5435  * @returns 0 if OK, < 0 errno code on error.
5436  *
5437  * Fill out a command structure with the new wep key, length an
5438  * index and send it down the wire.
5439  */
5440 static int ipw2100_set_key(struct ipw2100_priv *priv,
5441                            int idx, char *key, int len, int batch_mode)
5442 {
5443         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5444         struct host_command cmd = {
5445                 .host_command = WEP_KEY_INFO,
5446                 .host_command_sequence = 0,
5447                 .host_command_length = sizeof(struct ipw2100_wep_key),
5448         };
5449         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5450         int err;
5451
5452         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5453                      idx, keylen, len);
5454
5455         /* NOTE: We don't check cached values in case the firmware was reset
5456          * or some other problem is occurring.  If the user is setting the key,
5457          * then we push the change */
5458
5459         wep_key->idx = idx;
5460         wep_key->len = keylen;
5461
5462         if (keylen) {
5463                 memcpy(wep_key->key, key, len);
5464                 memset(wep_key->key + len, 0, keylen - len);
5465         }
5466
5467         /* Will be optimized out on debug not being configured in */
5468         if (keylen == 0)
5469                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5470                               priv->net_dev->name, wep_key->idx);
5471         else if (keylen == 5)
5472                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5473                               priv->net_dev->name, wep_key->idx, wep_key->len,
5474                               WEP_STR_64(wep_key->key));
5475         else
5476                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5477                               "\n",
5478                               priv->net_dev->name, wep_key->idx, wep_key->len,
5479                               WEP_STR_128(wep_key->key));
5480
5481         if (!batch_mode) {
5482                 err = ipw2100_disable_adapter(priv);
5483                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5484                 if (err) {
5485                         printk(KERN_ERR DRV_NAME
5486                                ": %s: Could not disable adapter %d\n",
5487                                priv->net_dev->name, err);
5488                         return err;
5489                 }
5490         }
5491
5492         /* send cmd to firmware */
5493         err = ipw2100_hw_send_command(priv, &cmd);
5494
5495         if (!batch_mode) {
5496                 int err2 = ipw2100_enable_adapter(priv);
5497                 if (err == 0)
5498                         err = err2;
5499         }
5500         return err;
5501 }
5502
5503 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5504                                  int idx, int batch_mode)
5505 {
5506         struct host_command cmd = {
5507                 .host_command = WEP_KEY_INDEX,
5508                 .host_command_sequence = 0,
5509                 .host_command_length = 4,
5510                 .host_command_parameters = {idx},
5511         };
5512         int err;
5513
5514         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5515
5516         if (idx < 0 || idx > 3)
5517                 return -EINVAL;
5518
5519         if (!batch_mode) {
5520                 err = ipw2100_disable_adapter(priv);
5521                 if (err) {
5522                         printk(KERN_ERR DRV_NAME
5523                                ": %s: Could not disable adapter %d\n",
5524                                priv->net_dev->name, err);
5525                         return err;
5526                 }
5527         }
5528
5529         /* send cmd to firmware */
5530         err = ipw2100_hw_send_command(priv, &cmd);
5531
5532         if (!batch_mode)
5533                 ipw2100_enable_adapter(priv);
5534
5535         return err;
5536 }
5537
5538 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5539 {
5540         int i, err, auth_mode, sec_level, use_group;
5541
5542         if (!(priv->status & STATUS_RUNNING))
5543                 return 0;
5544
5545         if (!batch_mode) {
5546                 err = ipw2100_disable_adapter(priv);
5547                 if (err)
5548                         return err;
5549         }
5550
5551         if (!priv->ieee->sec.enabled) {
5552                 err =
5553                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5554                                                      SEC_LEVEL_0, 0, 1);
5555         } else {
5556                 auth_mode = IPW_AUTH_OPEN;
5557                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5558                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5559                                 auth_mode = IPW_AUTH_SHARED;
5560                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5561                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5562                 }
5563
5564                 sec_level = SEC_LEVEL_0;
5565                 if (priv->ieee->sec.flags & SEC_LEVEL)
5566                         sec_level = priv->ieee->sec.level;
5567
5568                 use_group = 0;
5569                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5570                         use_group = priv->ieee->sec.unicast_uses_group;
5571
5572                 err =
5573                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5574                                                      use_group, 1);
5575         }
5576
5577         if (err)
5578                 goto exit;
5579
5580         if (priv->ieee->sec.enabled) {
5581                 for (i = 0; i < 4; i++) {
5582                         if (!(priv->ieee->sec.flags & (1 << i))) {
5583                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5584                                 priv->ieee->sec.key_sizes[i] = 0;
5585                         } else {
5586                                 err = ipw2100_set_key(priv, i,
5587                                                       priv->ieee->sec.keys[i],
5588                                                       priv->ieee->sec.
5589                                                       key_sizes[i], 1);
5590                                 if (err)
5591                                         goto exit;
5592                         }
5593                 }
5594
5595                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5596         }
5597
5598         /* Always enable privacy so the Host can filter WEP packets if
5599          * encrypted data is sent up */
5600         err =
5601             ipw2100_set_wep_flags(priv,
5602                                   priv->ieee->sec.
5603                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5604         if (err)
5605                 goto exit;
5606
5607         priv->status &= ~STATUS_SECURITY_UPDATED;
5608
5609       exit:
5610         if (!batch_mode)
5611                 ipw2100_enable_adapter(priv);
5612
5613         return err;
5614 }
5615
5616 static void ipw2100_security_work(struct work_struct *work)
5617 {
5618         struct ipw2100_priv *priv =
5619                 container_of(work, struct ipw2100_priv, security_work.work);
5620
5621         /* If we happen to have reconnected before we get a chance to
5622          * process this, then update the security settings--which causes
5623          * a disassociation to occur */
5624         if (!(priv->status & STATUS_ASSOCIATED) &&
5625             priv->status & STATUS_SECURITY_UPDATED)
5626                 ipw2100_configure_security(priv, 0);
5627 }
5628
5629 static void shim__set_security(struct net_device *dev,
5630                                struct libipw_security *sec)
5631 {
5632         struct ipw2100_priv *priv = libipw_priv(dev);
5633         int i, force_update = 0;
5634
5635         mutex_lock(&priv->action_mutex);
5636         if (!(priv->status & STATUS_INITIALIZED))
5637                 goto done;
5638
5639         for (i = 0; i < 4; i++) {
5640                 if (sec->flags & (1 << i)) {
5641                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5642                         if (sec->key_sizes[i] == 0)
5643                                 priv->ieee->sec.flags &= ~(1 << i);
5644                         else
5645                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5646                                        sec->key_sizes[i]);
5647                         if (sec->level == SEC_LEVEL_1) {
5648                                 priv->ieee->sec.flags |= (1 << i);
5649                                 priv->status |= STATUS_SECURITY_UPDATED;
5650                         } else
5651                                 priv->ieee->sec.flags &= ~(1 << i);
5652                 }
5653         }
5654
5655         if ((sec->flags & SEC_ACTIVE_KEY) &&
5656             priv->ieee->sec.active_key != sec->active_key) {
5657                 if (sec->active_key <= 3) {
5658                         priv->ieee->sec.active_key = sec->active_key;
5659                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5660                 } else
5661                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5662
5663                 priv->status |= STATUS_SECURITY_UPDATED;
5664         }
5665
5666         if ((sec->flags & SEC_AUTH_MODE) &&
5667             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5668                 priv->ieee->sec.auth_mode = sec->auth_mode;
5669                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5670                 priv->status |= STATUS_SECURITY_UPDATED;
5671         }
5672
5673         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5674                 priv->ieee->sec.flags |= SEC_ENABLED;
5675                 priv->ieee->sec.enabled = sec->enabled;
5676                 priv->status |= STATUS_SECURITY_UPDATED;
5677                 force_update = 1;
5678         }
5679
5680         if (sec->flags & SEC_ENCRYPT)
5681                 priv->ieee->sec.encrypt = sec->encrypt;
5682
5683         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5684                 priv->ieee->sec.level = sec->level;
5685                 priv->ieee->sec.flags |= SEC_LEVEL;
5686                 priv->status |= STATUS_SECURITY_UPDATED;
5687         }
5688
5689         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5690                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5691                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5692                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5693                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5694                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5695                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5696                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5697                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5698                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5699
5700 /* As a temporary work around to enable WPA until we figure out why
5701  * wpa_supplicant toggles the security capability of the driver, which
5702  * forces a disassocation with force_update...
5703  *
5704  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5705         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5706                 ipw2100_configure_security(priv, 0);
5707       done:
5708         mutex_unlock(&priv->action_mutex);
5709 }
5710
5711 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5712 {
5713         int err;
5714         int batch_mode = 1;
5715         u8 *bssid;
5716
5717         IPW_DEBUG_INFO("enter\n");
5718
5719         err = ipw2100_disable_adapter(priv);
5720         if (err)
5721                 return err;
5722 #ifdef CONFIG_IPW2100_MONITOR
5723         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5724                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5725                 if (err)
5726                         return err;
5727
5728                 IPW_DEBUG_INFO("exit\n");
5729
5730                 return 0;
5731         }
5732 #endif                          /* CONFIG_IPW2100_MONITOR */
5733
5734         err = ipw2100_read_mac_address(priv);
5735         if (err)
5736                 return -EIO;
5737
5738         err = ipw2100_set_mac_address(priv, batch_mode);
5739         if (err)
5740                 return err;
5741
5742         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5743         if (err)
5744                 return err;
5745
5746         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5747                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5748                 if (err)
5749                         return err;
5750         }
5751
5752         err = ipw2100_system_config(priv, batch_mode);
5753         if (err)
5754                 return err;
5755
5756         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5757         if (err)
5758                 return err;
5759
5760         /* Default to power mode OFF */
5761         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5762         if (err)
5763                 return err;
5764
5765         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5766         if (err)
5767                 return err;
5768
5769         if (priv->config & CFG_STATIC_BSSID)
5770                 bssid = priv->bssid;
5771         else
5772                 bssid = NULL;
5773         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5774         if (err)
5775                 return err;
5776
5777         if (priv->config & CFG_STATIC_ESSID)
5778                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5779                                         batch_mode);
5780         else
5781                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5782         if (err)
5783                 return err;
5784
5785         err = ipw2100_configure_security(priv, batch_mode);
5786         if (err)
5787                 return err;
5788
5789         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5790                 err =
5791                     ipw2100_set_ibss_beacon_interval(priv,
5792                                                      priv->beacon_interval,
5793                                                      batch_mode);
5794                 if (err)
5795                         return err;
5796
5797                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5798                 if (err)
5799                         return err;
5800         }
5801
5802         /*
5803            err = ipw2100_set_fragmentation_threshold(
5804            priv, priv->frag_threshold, batch_mode);
5805            if (err)
5806            return err;
5807          */
5808
5809         IPW_DEBUG_INFO("exit\n");
5810
5811         return 0;
5812 }
5813
5814 /*************************************************************************
5815  *
5816  * EXTERNALLY CALLED METHODS
5817  *
5818  *************************************************************************/
5819
5820 /* This method is called by the network layer -- not to be confused with
5821  * ipw2100_set_mac_address() declared above called by this driver (and this
5822  * method as well) to talk to the firmware */
5823 static int ipw2100_set_address(struct net_device *dev, void *p)
5824 {
5825         struct ipw2100_priv *priv = libipw_priv(dev);
5826         struct sockaddr *addr = p;
5827         int err = 0;
5828
5829         if (!is_valid_ether_addr(addr->sa_data))
5830                 return -EADDRNOTAVAIL;
5831
5832         mutex_lock(&priv->action_mutex);
5833
5834         priv->config |= CFG_CUSTOM_MAC;
5835         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5836
5837         err = ipw2100_set_mac_address(priv, 0);
5838         if (err)
5839                 goto done;
5840
5841         priv->reset_backoff = 0;
5842         mutex_unlock(&priv->action_mutex);
5843         ipw2100_reset_adapter(&priv->reset_work.work);
5844         return 0;
5845
5846       done:
5847         mutex_unlock(&priv->action_mutex);
5848         return err;
5849 }
5850
5851 static int ipw2100_open(struct net_device *dev)
5852 {
5853         struct ipw2100_priv *priv = libipw_priv(dev);
5854         unsigned long flags;
5855         IPW_DEBUG_INFO("dev->open\n");
5856
5857         spin_lock_irqsave(&priv->low_lock, flags);
5858         if (priv->status & STATUS_ASSOCIATED) {
5859                 netif_carrier_on(dev);
5860                 netif_start_queue(dev);
5861         }
5862         spin_unlock_irqrestore(&priv->low_lock, flags);
5863
5864         return 0;
5865 }
5866
5867 static int ipw2100_close(struct net_device *dev)
5868 {
5869         struct ipw2100_priv *priv = libipw_priv(dev);
5870         unsigned long flags;
5871         struct list_head *element;
5872         struct ipw2100_tx_packet *packet;
5873
5874         IPW_DEBUG_INFO("enter\n");
5875
5876         spin_lock_irqsave(&priv->low_lock, flags);
5877
5878         if (priv->status & STATUS_ASSOCIATED)
5879                 netif_carrier_off(dev);
5880         netif_stop_queue(dev);
5881
5882         /* Flush the TX queue ... */
5883         while (!list_empty(&priv->tx_pend_list)) {
5884                 element = priv->tx_pend_list.next;
5885                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5886
5887                 list_del(element);
5888                 DEC_STAT(&priv->tx_pend_stat);
5889
5890                 libipw_txb_free(packet->info.d_struct.txb);
5891                 packet->info.d_struct.txb = NULL;
5892
5893                 list_add_tail(element, &priv->tx_free_list);
5894                 INC_STAT(&priv->tx_free_stat);
5895         }
5896         spin_unlock_irqrestore(&priv->low_lock, flags);
5897
5898         IPW_DEBUG_INFO("exit\n");
5899
5900         return 0;
5901 }
5902
5903 /*
5904  * TODO:  Fix this function... its just wrong
5905  */
5906 static void ipw2100_tx_timeout(struct net_device *dev)
5907 {
5908         struct ipw2100_priv *priv = libipw_priv(dev);
5909
5910         dev->stats.tx_errors++;
5911
5912 #ifdef CONFIG_IPW2100_MONITOR
5913         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5914                 return;
5915 #endif
5916
5917         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5918                        dev->name);
5919         schedule_reset(priv);
5920 }
5921
5922 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5923 {
5924         /* This is called when wpa_supplicant loads and closes the driver
5925          * interface. */
5926         priv->ieee->wpa_enabled = value;
5927         return 0;
5928 }
5929
5930 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5931 {
5932
5933         struct libipw_device *ieee = priv->ieee;
5934         struct libipw_security sec = {
5935                 .flags = SEC_AUTH_MODE,
5936         };
5937         int ret = 0;
5938
5939         if (value & IW_AUTH_ALG_SHARED_KEY) {
5940                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5941                 ieee->open_wep = 0;
5942         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5943                 sec.auth_mode = WLAN_AUTH_OPEN;
5944                 ieee->open_wep = 1;
5945         } else if (value & IW_AUTH_ALG_LEAP) {
5946                 sec.auth_mode = WLAN_AUTH_LEAP;
5947                 ieee->open_wep = 1;
5948         } else
5949                 return -EINVAL;
5950
5951         if (ieee->set_security)
5952                 ieee->set_security(ieee->dev, &sec);
5953         else
5954                 ret = -EOPNOTSUPP;
5955
5956         return ret;
5957 }
5958
5959 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5960                                     char *wpa_ie, int wpa_ie_len)
5961 {
5962
5963         struct ipw2100_wpa_assoc_frame frame;
5964
5965         frame.fixed_ie_mask = 0;
5966
5967         /* copy WPA IE */
5968         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5969         frame.var_ie_len = wpa_ie_len;
5970
5971         /* make sure WPA is enabled */
5972         ipw2100_wpa_enable(priv, 1);
5973         ipw2100_set_wpa_ie(priv, &frame, 0);
5974 }
5975
5976 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5977                                     struct ethtool_drvinfo *info)
5978 {
5979         struct ipw2100_priv *priv = libipw_priv(dev);
5980         char fw_ver[64], ucode_ver[64];
5981
5982         strcpy(info->driver, DRV_NAME);
5983         strcpy(info->version, DRV_VERSION);
5984
5985         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5986         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5987
5988         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5989                  fw_ver, priv->eeprom_version, ucode_ver);
5990
5991         strcpy(info->bus_info, pci_name(priv->pci_dev));
5992 }
5993
5994 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5995 {
5996         struct ipw2100_priv *priv = libipw_priv(dev);
5997         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5998 }
5999
6000 static const struct ethtool_ops ipw2100_ethtool_ops = {
6001         .get_link = ipw2100_ethtool_get_link,
6002         .get_drvinfo = ipw_ethtool_get_drvinfo,
6003 };
6004
6005 static void ipw2100_hang_check(struct work_struct *work)
6006 {
6007         struct ipw2100_priv *priv =
6008                 container_of(work, struct ipw2100_priv, hang_check.work);
6009         unsigned long flags;
6010         u32 rtc = 0xa5a5a5a5;
6011         u32 len = sizeof(rtc);
6012         int restart = 0;
6013
6014         spin_lock_irqsave(&priv->low_lock, flags);
6015
6016         if (priv->fatal_error != 0) {
6017                 /* If fatal_error is set then we need to restart */
6018                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6019                                priv->net_dev->name);
6020
6021                 restart = 1;
6022         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6023                    (rtc == priv->last_rtc)) {
6024                 /* Check if firmware is hung */
6025                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6026                                priv->net_dev->name);
6027
6028                 restart = 1;
6029         }
6030
6031         if (restart) {
6032                 /* Kill timer */
6033                 priv->stop_hang_check = 1;
6034                 priv->hangs++;
6035
6036                 /* Restart the NIC */
6037                 schedule_reset(priv);
6038         }
6039
6040         priv->last_rtc = rtc;
6041
6042         if (!priv->stop_hang_check)
6043                 schedule_delayed_work(&priv->hang_check, HZ / 2);
6044
6045         spin_unlock_irqrestore(&priv->low_lock, flags);
6046 }
6047
6048 static void ipw2100_rf_kill(struct work_struct *work)
6049 {
6050         struct ipw2100_priv *priv =
6051                 container_of(work, struct ipw2100_priv, rf_kill.work);
6052         unsigned long flags;
6053
6054         spin_lock_irqsave(&priv->low_lock, flags);
6055
6056         if (rf_kill_active(priv)) {
6057                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6058                 if (!priv->stop_rf_kill)
6059                         schedule_delayed_work(&priv->rf_kill,
6060                                               round_jiffies_relative(HZ));
6061                 goto exit_unlock;
6062         }
6063
6064         /* RF Kill is now disabled, so bring the device back up */
6065
6066         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6067                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6068                                   "device\n");
6069                 schedule_reset(priv);
6070         } else
6071                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6072                                   "enabled\n");
6073