]> nv-tegra.nvidia Code Review - linux-2.6.git/blob - drivers/net/wireless/ath9k/main.c
ath9k: use signed format to print HAL status
[linux-2.6.git] / drivers / net / wireless / ath9k / main.c
1 /*
2  * Copyright (c) 2008 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "core.h"
19 #include "reg.h"
20 #include "hw.h"
21
22 #define ATH_PCI_VERSION "0.1"
23
24 static char *dev_info = "ath9k";
25
26 MODULE_AUTHOR("Atheros Communications");
27 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
28 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
29 MODULE_LICENSE("Dual BSD/GPL");
30
31 static struct pci_device_id ath_pci_id_table[] __devinitdata = {
32         { PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI   */
33         { PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */
34         { PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI   */
35         { PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI   */
36         { PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */
37         { PCI_VDEVICE(ATHEROS, 0x002B) }, /* PCI-E */
38         { 0 }
39 };
40
41 static void ath_detach(struct ath_softc *sc);
42
43 /* return bus cachesize in 4B word units */
44
45 static void bus_read_cachesize(struct ath_softc *sc, int *csz)
46 {
47         u8 u8tmp;
48
49         pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
50         *csz = (int)u8tmp;
51
52         /*
53          * This check was put in to avoid "unplesant" consequences if
54          * the bootrom has not fully initialized all PCI devices.
55          * Sometimes the cache line size register is not set
56          */
57
58         if (*csz == 0)
59                 *csz = DEFAULT_CACHELINE >> 2;   /* Use the default size */
60 }
61
62 static void ath_cache_conf_rate(struct ath_softc *sc,
63                                 struct ieee80211_conf *conf)
64 {
65         switch (conf->channel->band) {
66         case IEEE80211_BAND_2GHZ:
67                 if (conf_is_ht20(conf))
68                         sc->cur_rate_table =
69                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
70                 else if (conf_is_ht40_minus(conf))
71                         sc->cur_rate_table =
72                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
73                 else if (conf_is_ht40_plus(conf))
74                         sc->cur_rate_table =
75                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
76                 else
77                         sc->cur_rate_table =
78                           sc->hw_rate_table[ATH9K_MODE_11G];
79                 break;
80         case IEEE80211_BAND_5GHZ:
81                 if (conf_is_ht20(conf))
82                         sc->cur_rate_table =
83                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
84                 else if (conf_is_ht40_minus(conf))
85                         sc->cur_rate_table =
86                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
87                 else if (conf_is_ht40_plus(conf))
88                         sc->cur_rate_table =
89                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
90                 else
91                         sc->cur_rate_table =
92                           sc->hw_rate_table[ATH9K_MODE_11A];
93                 break;
94         default:
95                 BUG_ON(1);
96                 break;
97         }
98 }
99
100 static void ath_update_txpow(struct ath_softc *sc)
101 {
102         struct ath_hal *ah = sc->sc_ah;
103         u32 txpow;
104
105         if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
106                 ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
107                 /* read back in case value is clamped */
108                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
109                 sc->sc_curtxpow = txpow;
110         }
111 }
112
113 static u8 parse_mpdudensity(u8 mpdudensity)
114 {
115         /*
116          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
117          *   0 for no restriction
118          *   1 for 1/4 us
119          *   2 for 1/2 us
120          *   3 for 1 us
121          *   4 for 2 us
122          *   5 for 4 us
123          *   6 for 8 us
124          *   7 for 16 us
125          */
126         switch (mpdudensity) {
127         case 0:
128                 return 0;
129         case 1:
130         case 2:
131         case 3:
132                 /* Our lower layer calculations limit our precision to
133                    1 microsecond */
134                 return 1;
135         case 4:
136                 return 2;
137         case 5:
138                 return 4;
139         case 6:
140                 return 8;
141         case 7:
142                 return 16;
143         default:
144                 return 0;
145         }
146 }
147
148 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
149 {
150         struct ath_rate_table *rate_table = NULL;
151         struct ieee80211_supported_band *sband;
152         struct ieee80211_rate *rate;
153         int i, maxrates;
154
155         switch (band) {
156         case IEEE80211_BAND_2GHZ:
157                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
158                 break;
159         case IEEE80211_BAND_5GHZ:
160                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
161                 break;
162         default:
163                 break;
164         }
165
166         if (rate_table == NULL)
167                 return;
168
169         sband = &sc->sbands[band];
170         rate = sc->rates[band];
171
172         if (rate_table->rate_cnt > ATH_RATE_MAX)
173                 maxrates = ATH_RATE_MAX;
174         else
175                 maxrates = rate_table->rate_cnt;
176
177         for (i = 0; i < maxrates; i++) {
178                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
179                 rate[i].hw_value = rate_table->info[i].ratecode;
180                 sband->n_bitrates++;
181                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
182                         rate[i].bitrate / 10, rate[i].hw_value);
183         }
184 }
185
186 static int ath_setup_channels(struct ath_softc *sc)
187 {
188         struct ath_hal *ah = sc->sc_ah;
189         int nchan, i, a = 0, b = 0;
190         u8 regclassids[ATH_REGCLASSIDS_MAX];
191         u32 nregclass = 0;
192         struct ieee80211_supported_band *band_2ghz;
193         struct ieee80211_supported_band *band_5ghz;
194         struct ieee80211_channel *chan_2ghz;
195         struct ieee80211_channel *chan_5ghz;
196         struct ath9k_channel *c;
197
198         /* Fill in ah->ah_channels */
199         if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan,
200                                       regclassids, ATH_REGCLASSIDS_MAX,
201                                       &nregclass, CTRY_DEFAULT, false, 1)) {
202                 u32 rd = ah->ah_currentRD;
203                 DPRINTF(sc, ATH_DBG_FATAL,
204                         "Unable to collect channel list; "
205                         "regdomain likely %u country code %u\n",
206                         rd, CTRY_DEFAULT);
207                 return -EINVAL;
208         }
209
210         band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
211         band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
212         chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
213         chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
214
215         for (i = 0; i < nchan; i++) {
216                 c = &ah->ah_channels[i];
217                 if (IS_CHAN_2GHZ(c)) {
218                         chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
219                         chan_2ghz[a].center_freq = c->channel;
220                         chan_2ghz[a].max_power = c->maxTxPower;
221                         c->chan = &chan_2ghz[a];
222
223                         if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
224                                 chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS;
225                         if (c->channelFlags & CHANNEL_PASSIVE)
226                                 chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
227
228                         band_2ghz->n_channels = ++a;
229
230                         DPRINTF(sc, ATH_DBG_CONFIG, "2MHz channel: %d, "
231                                 "channelFlags: 0x%x\n",
232                                 c->channel, c->channelFlags);
233                 } else if (IS_CHAN_5GHZ(c)) {
234                         chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
235                         chan_5ghz[b].center_freq = c->channel;
236                         chan_5ghz[b].max_power = c->maxTxPower;
237                         c->chan = &chan_5ghz[a];
238
239                         if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
240                                 chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS;
241                         if (c->channelFlags & CHANNEL_PASSIVE)
242                                 chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
243
244                         band_5ghz->n_channels = ++b;
245
246                         DPRINTF(sc, ATH_DBG_CONFIG, "5MHz channel: %d, "
247                                 "channelFlags: 0x%x\n",
248                                 c->channel, c->channelFlags);
249                 }
250         }
251
252         return 0;
253 }
254
255 /*
256  * Set/change channels.  If the channel is really being changed, it's done
257  * by reseting the chip.  To accomplish this we must first cleanup any pending
258  * DMA, then restart stuff.
259 */
260 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
261 {
262         struct ath_hal *ah = sc->sc_ah;
263         bool fastcc = true, stopped;
264         struct ieee80211_hw *hw = sc->hw;
265         struct ieee80211_channel *channel = hw->conf.channel;
266         int r;
267
268         if (sc->sc_flags & SC_OP_INVALID)
269                 return -EIO;
270
271         /*
272          * This is only performed if the channel settings have
273          * actually changed.
274          *
275          * To switch channels clear any pending DMA operations;
276          * wait long enough for the RX fifo to drain, reset the
277          * hardware at the new frequency, and then re-enable
278          * the relevant bits of the h/w.
279          */
280         ath9k_hw_set_interrupts(ah, 0);
281         ath_draintxq(sc, false);
282         stopped = ath_stoprecv(sc);
283
284         /* XXX: do not flush receive queue here. We don't want
285          * to flush data frames already in queue because of
286          * changing channel. */
287
288         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
289                 fastcc = false;
290
291         DPRINTF(sc, ATH_DBG_CONFIG,
292                 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
293                 sc->sc_ah->ah_curchan->channel,
294                 channel->center_freq, sc->tx_chan_width);
295
296         spin_lock_bh(&sc->sc_resetlock);
297
298         r = ath9k_hw_reset(ah, hchan, fastcc);
299         if (r) {
300                 DPRINTF(sc, ATH_DBG_FATAL,
301                         "Unable to reset channel (%u Mhz) "
302                         "reset status %u\n",
303                         channel->center_freq, r);
304                 spin_unlock_bh(&sc->sc_resetlock);
305                 return r;
306         }
307         spin_unlock_bh(&sc->sc_resetlock);
308
309         sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
310         sc->sc_flags &= ~SC_OP_FULL_RESET;
311
312         if (ath_startrecv(sc) != 0) {
313                 DPRINTF(sc, ATH_DBG_FATAL,
314                         "Unable to restart recv logic\n");
315                 return -EIO;
316         }
317
318         ath_cache_conf_rate(sc, &hw->conf);
319         ath_update_txpow(sc);
320         ath9k_hw_set_interrupts(ah, sc->sc_imask);
321         return 0;
322 }
323
324 /*
325  *  This routine performs the periodic noise floor calibration function
326  *  that is used to adjust and optimize the chip performance.  This
327  *  takes environmental changes (location, temperature) into account.
328  *  When the task is complete, it reschedules itself depending on the
329  *  appropriate interval that was calculated.
330  */
331 static void ath_ani_calibrate(unsigned long data)
332 {
333         struct ath_softc *sc;
334         struct ath_hal *ah;
335         bool longcal = false;
336         bool shortcal = false;
337         bool aniflag = false;
338         unsigned int timestamp = jiffies_to_msecs(jiffies);
339         u32 cal_interval;
340
341         sc = (struct ath_softc *)data;
342         ah = sc->sc_ah;
343
344         /*
345         * don't calibrate when we're scanning.
346         * we are most likely not on our home channel.
347         */
348         if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
349                 return;
350
351         /* Long calibration runs independently of short calibration. */
352         if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
353                 longcal = true;
354                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
355                 sc->sc_ani.sc_longcal_timer = timestamp;
356         }
357
358         /* Short calibration applies only while sc_caldone is false */
359         if (!sc->sc_ani.sc_caldone) {
360                 if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
361                     ATH_SHORT_CALINTERVAL) {
362                         shortcal = true;
363                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
364                         sc->sc_ani.sc_shortcal_timer = timestamp;
365                         sc->sc_ani.sc_resetcal_timer = timestamp;
366                 }
367         } else {
368                 if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
369                     ATH_RESTART_CALINTERVAL) {
370                         sc->sc_ani.sc_caldone = ath9k_hw_reset_calvalid(ah);
371                         if (sc->sc_ani.sc_caldone)
372                                 sc->sc_ani.sc_resetcal_timer = timestamp;
373                 }
374         }
375
376         /* Verify whether we must check ANI */
377         if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
378            ATH_ANI_POLLINTERVAL) {
379                 aniflag = true;
380                 sc->sc_ani.sc_checkani_timer = timestamp;
381         }
382
383         /* Skip all processing if there's nothing to do. */
384         if (longcal || shortcal || aniflag) {
385                 /* Call ANI routine if necessary */
386                 if (aniflag)
387                         ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
388                                              ah->ah_curchan);
389
390                 /* Perform calibration if necessary */
391                 if (longcal || shortcal) {
392                         bool iscaldone = false;
393
394                         if (ath9k_hw_calibrate(ah, ah->ah_curchan,
395                                                sc->sc_rx_chainmask, longcal,
396                                                &iscaldone)) {
397                                 if (longcal)
398                                         sc->sc_ani.sc_noise_floor =
399                                                 ath9k_hw_getchan_noise(ah,
400                                                                ah->ah_curchan);
401
402                                 DPRINTF(sc, ATH_DBG_ANI,
403                                         "calibrate chan %u/%x nf: %d\n",
404                                         ah->ah_curchan->channel,
405                                         ah->ah_curchan->channelFlags,
406                                         sc->sc_ani.sc_noise_floor);
407                         } else {
408                                 DPRINTF(sc, ATH_DBG_ANY,
409                                         "calibrate chan %u/%x failed\n",
410                                         ah->ah_curchan->channel,
411                                         ah->ah_curchan->channelFlags);
412                         }
413                         sc->sc_ani.sc_caldone = iscaldone;
414                 }
415         }
416
417         /*
418         * Set timer interval based on previous results.
419         * The interval must be the shortest necessary to satisfy ANI,
420         * short calibration and long calibration.
421         */
422         cal_interval = ATH_LONG_CALINTERVAL;
423         if (sc->sc_ah->ah_config.enable_ani)
424                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
425         if (!sc->sc_ani.sc_caldone)
426                 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
427
428         mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
429 }
430
431 /*
432  * Update tx/rx chainmask. For legacy association,
433  * hard code chainmask to 1x1, for 11n association, use
434  * the chainmask configuration.
435  */
436 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
437 {
438         sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
439         if (is_ht) {
440                 sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
441                 sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
442         } else {
443                 sc->sc_tx_chainmask = 1;
444                 sc->sc_rx_chainmask = 1;
445         }
446
447         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
448                 sc->sc_tx_chainmask, sc->sc_rx_chainmask);
449 }
450
451 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
452 {
453         struct ath_node *an;
454
455         an = (struct ath_node *)sta->drv_priv;
456
457         if (sc->sc_flags & SC_OP_TXAGGR)
458                 ath_tx_node_init(sc, an);
459
460         an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
461                              sta->ht_cap.ampdu_factor);
462         an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
463 }
464
465 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
466 {
467         struct ath_node *an = (struct ath_node *)sta->drv_priv;
468
469         if (sc->sc_flags & SC_OP_TXAGGR)
470                 ath_tx_node_cleanup(sc, an);
471 }
472
473 static void ath9k_tasklet(unsigned long data)
474 {
475         struct ath_softc *sc = (struct ath_softc *)data;
476         u32 status = sc->sc_intrstatus;
477
478         if (status & ATH9K_INT_FATAL) {
479                 /* need a chip reset */
480                 ath_reset(sc, false);
481                 return;
482         } else {
483
484                 if (status &
485                     (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
486                         spin_lock_bh(&sc->rx.rxflushlock);
487                         ath_rx_tasklet(sc, 0);
488                         spin_unlock_bh(&sc->rx.rxflushlock);
489                 }
490                 /* XXX: optimize this */
491                 if (status & ATH9K_INT_TX)
492                         ath_tx_tasklet(sc);
493         }
494
495         /* re-enable hardware interrupt */
496         ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
497 }
498
499 static irqreturn_t ath_isr(int irq, void *dev)
500 {
501         struct ath_softc *sc = dev;
502         struct ath_hal *ah = sc->sc_ah;
503         enum ath9k_int status;
504         bool sched = false;
505
506         do {
507                 if (sc->sc_flags & SC_OP_INVALID) {
508                         /*
509                          * The hardware is not ready/present, don't
510                          * touch anything. Note this can happen early
511                          * on if the IRQ is shared.
512                          */
513                         return IRQ_NONE;
514                 }
515                 if (!ath9k_hw_intrpend(ah)) {   /* shared irq, not for us */
516                         return IRQ_NONE;
517                 }
518
519                 /*
520                  * Figure out the reason(s) for the interrupt.  Note
521                  * that the hal returns a pseudo-ISR that may include
522                  * bits we haven't explicitly enabled so we mask the
523                  * value to insure we only process bits we requested.
524                  */
525                 ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
526
527                 status &= sc->sc_imask; /* discard unasked-for bits */
528
529                 /*
530                  * If there are no status bits set, then this interrupt was not
531                  * for me (should have been caught above).
532                  */
533                 if (!status)
534                         return IRQ_NONE;
535
536                 sc->sc_intrstatus = status;
537
538                 if (status & ATH9K_INT_FATAL) {
539                         /* need a chip reset */
540                         sched = true;
541                 } else if (status & ATH9K_INT_RXORN) {
542                         /* need a chip reset */
543                         sched = true;
544                 } else {
545                         if (status & ATH9K_INT_SWBA) {
546                                 /* schedule a tasklet for beacon handling */
547                                 tasklet_schedule(&sc->bcon_tasklet);
548                         }
549                         if (status & ATH9K_INT_RXEOL) {
550                                 /*
551                                  * NB: the hardware should re-read the link when
552                                  *     RXE bit is written, but it doesn't work
553                                  *     at least on older hardware revs.
554                                  */
555                                 sched = true;
556                         }
557
558                         if (status & ATH9K_INT_TXURN)
559                                 /* bump tx trigger level */
560                                 ath9k_hw_updatetxtriglevel(ah, true);
561                         /* XXX: optimize this */
562                         if (status & ATH9K_INT_RX)
563                                 sched = true;
564                         if (status & ATH9K_INT_TX)
565                                 sched = true;
566                         if (status & ATH9K_INT_BMISS)
567                                 sched = true;
568                         /* carrier sense timeout */
569                         if (status & ATH9K_INT_CST)
570                                 sched = true;
571                         if (status & ATH9K_INT_MIB) {
572                                 /*
573                                  * Disable interrupts until we service the MIB
574                                  * interrupt; otherwise it will continue to
575                                  * fire.
576                                  */
577                                 ath9k_hw_set_interrupts(ah, 0);
578                                 /*
579                                  * Let the hal handle the event. We assume
580                                  * it will clear whatever condition caused
581                                  * the interrupt.
582                                  */
583                                 ath9k_hw_procmibevent(ah, &sc->sc_halstats);
584                                 ath9k_hw_set_interrupts(ah, sc->sc_imask);
585                         }
586                         if (status & ATH9K_INT_TIM_TIMER) {
587                                 if (!(ah->ah_caps.hw_caps &
588                                       ATH9K_HW_CAP_AUTOSLEEP)) {
589                                         /* Clear RxAbort bit so that we can
590                                          * receive frames */
591                                         ath9k_hw_setrxabort(ah, 0);
592                                         sched = true;
593                                 }
594                         }
595                 }
596         } while (0);
597
598         ath_debug_stat_interrupt(sc, status);
599
600         if (sched) {
601                 /* turn off every interrupt except SWBA */
602                 ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
603                 tasklet_schedule(&sc->intr_tq);
604         }
605
606         return IRQ_HANDLED;
607 }
608
609 static int ath_get_channel(struct ath_softc *sc,
610                            struct ieee80211_channel *chan)
611 {
612         int i;
613
614         for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
615                 if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
616                         return i;
617         }
618
619         return -1;
620 }
621
622 static u32 ath_get_extchanmode(struct ath_softc *sc,
623                                struct ieee80211_channel *chan,
624                                enum nl80211_channel_type channel_type)
625 {
626         u32 chanmode = 0;
627
628         switch (chan->band) {
629         case IEEE80211_BAND_2GHZ:
630                 switch(channel_type) {
631                 case NL80211_CHAN_NO_HT:
632                 case NL80211_CHAN_HT20:
633                         chanmode = CHANNEL_G_HT20;
634                         break;
635                 case NL80211_CHAN_HT40PLUS:
636                         chanmode = CHANNEL_G_HT40PLUS;
637                         break;
638                 case NL80211_CHAN_HT40MINUS:
639                         chanmode = CHANNEL_G_HT40MINUS;
640                         break;
641                 }
642                 break;
643         case IEEE80211_BAND_5GHZ:
644                 switch(channel_type) {
645                 case NL80211_CHAN_NO_HT:
646                 case NL80211_CHAN_HT20:
647                         chanmode = CHANNEL_A_HT20;
648                         break;
649                 case NL80211_CHAN_HT40PLUS:
650                         chanmode = CHANNEL_A_HT40PLUS;
651                         break;
652                 case NL80211_CHAN_HT40MINUS:
653                         chanmode = CHANNEL_A_HT40MINUS;
654                         break;
655                 }
656                 break;
657         default:
658                 break;
659         }
660
661         return chanmode;
662 }
663
664 static int ath_keyset(struct ath_softc *sc, u16 keyix,
665                struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
666 {
667         bool status;
668
669         status = ath9k_hw_set_keycache_entry(sc->sc_ah,
670                 keyix, hk, mac, false);
671
672         return status != false;
673 }
674
675 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
676                            struct ath9k_keyval *hk,
677                            const u8 *addr)
678 {
679         const u8 *key_rxmic;
680         const u8 *key_txmic;
681
682         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
683         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
684
685         if (addr == NULL) {
686                 /* Group key installation */
687                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
688                 return ath_keyset(sc, keyix, hk, addr);
689         }
690         if (!sc->sc_splitmic) {
691                 /*
692                  * data key goes at first index,
693                  * the hal handles the MIC keys at index+64.
694                  */
695                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
696                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
697                 return ath_keyset(sc, keyix, hk, addr);
698         }
699         /*
700          * TX key goes at first index, RX key at +32.
701          * The hal handles the MIC keys at index+64.
702          */
703         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
704         if (!ath_keyset(sc, keyix, hk, NULL)) {
705                 /* Txmic entry failed. No need to proceed further */
706                 DPRINTF(sc, ATH_DBG_KEYCACHE,
707                         "Setting TX MIC Key Failed\n");
708                 return 0;
709         }
710
711         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
712         /* XXX delete tx key on failure? */
713         return ath_keyset(sc, keyix + 32, hk, addr);
714 }
715
716 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
717 {
718         int i;
719
720         for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
721                 if (test_bit(i, sc->sc_keymap) ||
722                     test_bit(i + 64, sc->sc_keymap))
723                         continue; /* At least one part of TKIP key allocated */
724                 if (sc->sc_splitmic &&
725                     (test_bit(i + 32, sc->sc_keymap) ||
726                      test_bit(i + 64 + 32, sc->sc_keymap)))
727                         continue; /* At least one part of TKIP key allocated */
728
729                 /* Found a free slot for a TKIP key */
730                 return i;
731         }
732         return -1;
733 }
734
735 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
736 {
737         int i;
738
739         /* First, try to find slots that would not be available for TKIP. */
740         if (sc->sc_splitmic) {
741                 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 4; i++) {
742                         if (!test_bit(i, sc->sc_keymap) &&
743                             (test_bit(i + 32, sc->sc_keymap) ||
744                              test_bit(i + 64, sc->sc_keymap) ||
745                              test_bit(i + 64 + 32, sc->sc_keymap)))
746                                 return i;
747                         if (!test_bit(i + 32, sc->sc_keymap) &&
748                             (test_bit(i, sc->sc_keymap) ||
749                              test_bit(i + 64, sc->sc_keymap) ||
750                              test_bit(i + 64 + 32, sc->sc_keymap)))
751                                 return i + 32;
752                         if (!test_bit(i + 64, sc->sc_keymap) &&
753                             (test_bit(i , sc->sc_keymap) ||
754                              test_bit(i + 32, sc->sc_keymap) ||
755                              test_bit(i + 64 + 32, sc->sc_keymap)))
756                                 return i + 64;
757                         if (!test_bit(i + 64 + 32, sc->sc_keymap) &&
758                             (test_bit(i, sc->sc_keymap) ||
759                              test_bit(i + 32, sc->sc_keymap) ||
760                              test_bit(i + 64, sc->sc_keymap)))
761                                 return i + 64 + 32;
762                 }
763         } else {
764                 for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
765                         if (!test_bit(i, sc->sc_keymap) &&
766                             test_bit(i + 64, sc->sc_keymap))
767                                 return i;
768                         if (test_bit(i, sc->sc_keymap) &&
769                             !test_bit(i + 64, sc->sc_keymap))
770                                 return i + 64;
771                 }
772         }
773
774         /* No partially used TKIP slots, pick any available slot */
775         for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax; i++) {
776                 /* Do not allow slots that could be needed for TKIP group keys
777                  * to be used. This limitation could be removed if we know that
778                  * TKIP will not be used. */
779                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
780                         continue;
781                 if (sc->sc_splitmic) {
782                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
783                                 continue;
784                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
785                                 continue;
786                 }
787
788                 if (!test_bit(i, sc->sc_keymap))
789                         return i; /* Found a free slot for a key */
790         }
791
792         /* No free slot found */
793         return -1;
794 }
795
796 static int ath_key_config(struct ath_softc *sc,
797                           struct ieee80211_sta *sta,
798                           struct ieee80211_key_conf *key)
799 {
800         struct ath9k_keyval hk;
801         const u8 *mac = NULL;
802         int ret = 0;
803         int idx;
804
805         memset(&hk, 0, sizeof(hk));
806
807         switch (key->alg) {
808         case ALG_WEP:
809                 hk.kv_type = ATH9K_CIPHER_WEP;
810                 break;
811         case ALG_TKIP:
812                 hk.kv_type = ATH9K_CIPHER_TKIP;
813                 break;
814         case ALG_CCMP:
815                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
816                 break;
817         default:
818                 return -EINVAL;
819         }
820
821         hk.kv_len = key->keylen;
822         memcpy(hk.kv_val, key->key, key->keylen);
823
824         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
825                 /* For now, use the default keys for broadcast keys. This may
826                  * need to change with virtual interfaces. */
827                 idx = key->keyidx;
828         } else if (key->keyidx) {
829                 struct ieee80211_vif *vif;
830
831                 if (WARN_ON(!sta))
832                         return -EOPNOTSUPP;
833                 mac = sta->addr;
834
835                 vif = sc->sc_vaps[0];
836                 if (vif->type != NL80211_IFTYPE_AP) {
837                         /* Only keyidx 0 should be used with unicast key, but
838                          * allow this for client mode for now. */
839                         idx = key->keyidx;
840                 } else
841                         return -EIO;
842         } else {
843                 if (WARN_ON(!sta))
844                         return -EOPNOTSUPP;
845                 mac = sta->addr;
846
847                 if (key->alg == ALG_TKIP)
848                         idx = ath_reserve_key_cache_slot_tkip(sc);
849                 else
850                         idx = ath_reserve_key_cache_slot(sc);
851                 if (idx < 0)
852                         return -EIO; /* no free key cache entries */
853         }
854
855         if (key->alg == ALG_TKIP)
856                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac);
857         else
858                 ret = ath_keyset(sc, idx, &hk, mac);
859
860         if (!ret)
861                 return -EIO;
862
863         set_bit(idx, sc->sc_keymap);
864         if (key->alg == ALG_TKIP) {
865                 set_bit(idx + 64, sc->sc_keymap);
866                 if (sc->sc_splitmic) {
867                         set_bit(idx + 32, sc->sc_keymap);
868                         set_bit(idx + 64 + 32, sc->sc_keymap);
869                 }
870         }
871
872         return idx;
873 }
874
875 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
876 {
877         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
878         if (key->hw_key_idx < IEEE80211_WEP_NKID)
879                 return;
880
881         clear_bit(key->hw_key_idx, sc->sc_keymap);
882         if (key->alg != ALG_TKIP)
883                 return;
884
885         clear_bit(key->hw_key_idx + 64, sc->sc_keymap);
886         if (sc->sc_splitmic) {
887                 clear_bit(key->hw_key_idx + 32, sc->sc_keymap);
888                 clear_bit(key->hw_key_idx + 64 + 32, sc->sc_keymap);
889         }
890 }
891
892 static void setup_ht_cap(struct ieee80211_sta_ht_cap *ht_info)
893 {
894 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3       /* 2 ^ 16 */
895 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6          /* 8 usec */
896
897         ht_info->ht_supported = true;
898         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
899                        IEEE80211_HT_CAP_SM_PS |
900                        IEEE80211_HT_CAP_SGI_40 |
901                        IEEE80211_HT_CAP_DSSSCCK40;
902
903         ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
904         ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
905         /* set up supported mcs set */
906         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
907         ht_info->mcs.rx_mask[0] = 0xff;
908         ht_info->mcs.rx_mask[1] = 0xff;
909         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
910 }
911
912 static void ath9k_bss_assoc_info(struct ath_softc *sc,
913                                  struct ieee80211_vif *vif,
914                                  struct ieee80211_bss_conf *bss_conf)
915 {
916         struct ath_vap *avp = (void *)vif->drv_priv;
917
918         if (bss_conf->assoc) {
919                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
920                         bss_conf->aid, sc->sc_curbssid);
921
922                 /* New association, store aid */
923                 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
924                         sc->sc_curaid = bss_conf->aid;
925                         ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
926                                                sc->sc_curaid);
927                 }
928
929                 /* Configure the beacon */
930                 ath_beacon_config(sc, 0);
931                 sc->sc_flags |= SC_OP_BEACONS;
932
933                 /* Reset rssi stats */
934                 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
935                 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
936                 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
937                 sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
938
939                 /* Start ANI */
940                 mod_timer(&sc->sc_ani.timer,
941                         jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
942
943         } else {
944                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
945                 sc->sc_curaid = 0;
946         }
947 }
948
949 /********************************/
950 /*       LED functions          */
951 /********************************/
952
953 static void ath_led_brightness(struct led_classdev *led_cdev,
954                                enum led_brightness brightness)
955 {
956         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
957         struct ath_softc *sc = led->sc;
958
959         switch (brightness) {
960         case LED_OFF:
961                 if (led->led_type == ATH_LED_ASSOC ||
962                     led->led_type == ATH_LED_RADIO)
963                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
964                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
965                                 (led->led_type == ATH_LED_RADIO) ? 1 :
966                                 !!(sc->sc_flags & SC_OP_LED_ASSOCIATED));
967                 break;
968         case LED_FULL:
969                 if (led->led_type == ATH_LED_ASSOC)
970                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
971                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
972                 break;
973         default:
974                 break;
975         }
976 }
977
978 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
979                             char *trigger)
980 {
981         int ret;
982
983         led->sc = sc;
984         led->led_cdev.name = led->name;
985         led->led_cdev.default_trigger = trigger;
986         led->led_cdev.brightness_set = ath_led_brightness;
987
988         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
989         if (ret)
990                 DPRINTF(sc, ATH_DBG_FATAL,
991                         "Failed to register led:%s", led->name);
992         else
993                 led->registered = 1;
994         return ret;
995 }
996
997 static void ath_unregister_led(struct ath_led *led)
998 {
999         if (led->registered) {
1000                 led_classdev_unregister(&led->led_cdev);
1001                 led->registered = 0;
1002         }
1003 }
1004
1005 static void ath_deinit_leds(struct ath_softc *sc)
1006 {
1007         ath_unregister_led(&sc->assoc_led);
1008         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1009         ath_unregister_led(&sc->tx_led);
1010         ath_unregister_led(&sc->rx_led);
1011         ath_unregister_led(&sc->radio_led);
1012         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1013 }
1014
1015 static void ath_init_leds(struct ath_softc *sc)
1016 {
1017         char *trigger;
1018         int ret;
1019
1020         /* Configure gpio 1 for output */
1021         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1022                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1023         /* LED off, active low */
1024         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1025
1026         trigger = ieee80211_get_radio_led_name(sc->hw);
1027         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1028                 "ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
1029         ret = ath_register_led(sc, &sc->radio_led, trigger);
1030         sc->radio_led.led_type = ATH_LED_RADIO;
1031         if (ret)
1032                 goto fail;
1033
1034         trigger = ieee80211_get_assoc_led_name(sc->hw);
1035         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1036                 "ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
1037         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1038         sc->assoc_led.led_type = ATH_LED_ASSOC;
1039         if (ret)
1040                 goto fail;
1041
1042         trigger = ieee80211_get_tx_led_name(sc->hw);
1043         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1044                 "ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
1045         ret = ath_register_led(sc, &sc->tx_led, trigger);
1046         sc->tx_led.led_type = ATH_LED_TX;
1047         if (ret)
1048                 goto fail;
1049
1050         trigger = ieee80211_get_rx_led_name(sc->hw);
1051         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1052                 "ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
1053         ret = ath_register_led(sc, &sc->rx_led, trigger);
1054         sc->rx_led.led_type = ATH_LED_RX;
1055         if (ret)
1056                 goto fail;
1057
1058         return;
1059
1060 fail:
1061         ath_deinit_leds(sc);
1062 }
1063
1064 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1065
1066 /*******************/
1067 /*      Rfkill     */
1068 /*******************/
1069
1070 static void ath_radio_enable(struct ath_softc *sc)
1071 {
1072         struct ath_hal *ah = sc->sc_ah;
1073         struct ieee80211_channel *channel = sc->hw->conf.channel;
1074         int r;
1075
1076         spin_lock_bh(&sc->sc_resetlock);
1077
1078         r = ath9k_hw_reset(ah, ah->ah_curchan, false);
1079
1080         if (r) {
1081                 DPRINTF(sc, ATH_DBG_FATAL,
1082                         "Unable to reset channel %u (%uMhz) ",
1083                         "reset status %u\n",
1084                         channel->center_freq, r);
1085         }
1086         spin_unlock_bh(&sc->sc_resetlock);
1087
1088         ath_update_txpow(sc);
1089         if (ath_startrecv(sc) != 0) {
1090                 DPRINTF(sc, ATH_DBG_FATAL,
1091                         "Unable to restart recv logic\n");
1092                 return;
1093         }
1094
1095         if (sc->sc_flags & SC_OP_BEACONS)
1096                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1097
1098         /* Re-Enable  interrupts */
1099         ath9k_hw_set_interrupts(ah, sc->sc_imask);
1100
1101         /* Enable LED */
1102         ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1103                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1104         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1105
1106         ieee80211_wake_queues(sc->hw);
1107 }
1108
1109 static void ath_radio_disable(struct ath_softc *sc)
1110 {
1111         struct ath_hal *ah = sc->sc_ah;
1112         struct ieee80211_channel *channel = sc->hw->conf.channel;
1113         int r;
1114
1115         ieee80211_stop_queues(sc->hw);
1116
1117         /* Disable LED */
1118         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1119         ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1120
1121         /* Disable interrupts */
1122         ath9k_hw_set_interrupts(ah, 0);
1123
1124         ath_draintxq(sc, false);        /* clear pending tx frames */
1125         ath_stoprecv(sc);               /* turn off frame recv */
1126         ath_flushrecv(sc);              /* flush recv queue */
1127
1128         spin_lock_bh(&sc->sc_resetlock);
1129         r = ath9k_hw_reset(ah, ah->ah_curchan, false);
1130         if (r) {
1131                 DPRINTF(sc, ATH_DBG_FATAL,
1132                         "Unable to reset channel %u (%uMhz) "
1133                         "reset status %u\n",
1134                         channel->center_freq, r);
1135         }
1136         spin_unlock_bh(&sc->sc_resetlock);
1137
1138         ath9k_hw_phy_disable(ah);
1139         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1140 }
1141
1142 static bool ath_is_rfkill_set(struct ath_softc *sc)
1143 {
1144         struct ath_hal *ah = sc->sc_ah;
1145
1146         return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
1147                                   ah->ah_rfkill_polarity;
1148 }
1149
1150 /* h/w rfkill poll function */
1151 static void ath_rfkill_poll(struct work_struct *work)
1152 {
1153         struct ath_softc *sc = container_of(work, struct ath_softc,
1154                                             rf_kill.rfkill_poll.work);
1155         bool radio_on;
1156
1157         if (sc->sc_flags & SC_OP_INVALID)
1158                 return;
1159
1160         radio_on = !ath_is_rfkill_set(sc);
1161
1162         /*
1163          * enable/disable radio only when there is a
1164          * state change in RF switch
1165          */
1166         if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1167                 enum rfkill_state state;
1168
1169                 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1170                         state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1171                                 : RFKILL_STATE_HARD_BLOCKED;
1172                 } else if (radio_on) {
1173                         ath_radio_enable(sc);
1174                         state = RFKILL_STATE_UNBLOCKED;
1175                 } else {
1176                         ath_radio_disable(sc);
1177                         state = RFKILL_STATE_HARD_BLOCKED;
1178                 }
1179
1180                 if (state == RFKILL_STATE_HARD_BLOCKED)
1181                         sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1182                 else
1183                         sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1184
1185                 rfkill_force_state(sc->rf_kill.rfkill, state);
1186         }
1187
1188         queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1189                            msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1190 }
1191
1192 /* s/w rfkill handler */
1193 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1194 {
1195         struct ath_softc *sc = data;
1196
1197         switch (state) {
1198         case RFKILL_STATE_SOFT_BLOCKED:
1199                 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1200                     SC_OP_RFKILL_SW_BLOCKED)))
1201                         ath_radio_disable(sc);
1202                 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1203                 return 0;
1204         case RFKILL_STATE_UNBLOCKED:
1205                 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1206                         sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1207                         if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1208                                 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1209                                         "radio as it is disabled by h/w\n");
1210                                 return -EPERM;
1211                         }
1212                         ath_radio_enable(sc);
1213                 }
1214                 return 0;
1215         default:
1216                 return -EINVAL;
1217         }
1218 }
1219
1220 /* Init s/w rfkill */
1221 static int ath_init_sw_rfkill(struct ath_softc *sc)
1222 {
1223         sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1224                                              RFKILL_TYPE_WLAN);
1225         if (!sc->rf_kill.rfkill) {
1226                 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1227                 return -ENOMEM;
1228         }
1229
1230         snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1231                 "ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
1232         sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1233         sc->rf_kill.rfkill->data = sc;
1234         sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1235         sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1236         sc->rf_kill.rfkill->user_claim_unsupported = 1;
1237
1238         return 0;
1239 }
1240
1241 /* Deinitialize rfkill */
1242 static void ath_deinit_rfkill(struct ath_softc *sc)
1243 {
1244         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1245                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1246
1247         if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1248                 rfkill_unregister(sc->rf_kill.rfkill);
1249                 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1250                 sc->rf_kill.rfkill = NULL;
1251         }
1252 }
1253
1254 static int ath_start_rfkill_poll(struct ath_softc *sc)
1255 {
1256         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1257                 queue_delayed_work(sc->hw->workqueue,
1258                                    &sc->rf_kill.rfkill_poll, 0);
1259
1260         if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1261                 if (rfkill_register(sc->rf_kill.rfkill)) {
1262                         DPRINTF(sc, ATH_DBG_FATAL,
1263                                 "Unable to register rfkill\n");
1264                         rfkill_free(sc->rf_kill.rfkill);
1265
1266                         /* Deinitialize the device */
1267                         ath_detach(sc);
1268                         if (sc->pdev->irq)
1269                                 free_irq(sc->pdev->irq, sc);
1270                         pci_iounmap(sc->pdev, sc->mem);
1271                         pci_release_region(sc->pdev, 0);
1272                         pci_disable_device(sc->pdev);
1273                         ieee80211_free_hw(sc->hw);
1274                         return -EIO;
1275                 } else {
1276                         sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1277                 }
1278         }
1279
1280         return 0;
1281 }
1282 #endif /* CONFIG_RFKILL */
1283
1284 static void ath_detach(struct ath_softc *sc)
1285 {
1286         struct ieee80211_hw *hw = sc->hw;
1287         int i = 0;
1288
1289         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1290
1291 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1292         ath_deinit_rfkill(sc);
1293 #endif
1294         ath_deinit_leds(sc);
1295
1296         ieee80211_unregister_hw(hw);
1297         ath_rx_cleanup(sc);
1298         ath_tx_cleanup(sc);
1299
1300         tasklet_kill(&sc->intr_tq);
1301         tasklet_kill(&sc->bcon_tasklet);
1302
1303         if (!(sc->sc_flags & SC_OP_INVALID))
1304                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1305
1306         /* cleanup tx queues */
1307         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1308                 if (ATH_TXQ_SETUP(sc, i))
1309                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1310
1311         ath9k_hw_detach(sc->sc_ah);
1312         ath9k_exit_debug(sc);
1313 }
1314
1315 static int ath_init(u16 devid, struct ath_softc *sc)
1316 {
1317         struct ath_hal *ah = NULL;
1318         int status;
1319         int error = 0, i;
1320         int csz = 0;
1321
1322         /* XXX: hardware will not be ready until ath_open() being called */
1323         sc->sc_flags |= SC_OP_INVALID;
1324
1325         if (ath9k_init_debug(sc) < 0)
1326                 printk(KERN_ERR "Unable to create debugfs files\n");
1327
1328         spin_lock_init(&sc->sc_resetlock);
1329         mutex_init(&sc->mutex);
1330         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1331         tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1332                      (unsigned long)sc);
1333
1334         /*
1335          * Cache line size is used to size and align various
1336          * structures used to communicate with the hardware.
1337          */
1338         bus_read_cachesize(sc, &csz);
1339         /* XXX assert csz is non-zero */
1340         sc->sc_cachelsz = csz << 2;     /* convert to bytes */
1341
1342         ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1343         if (ah == NULL) {
1344                 DPRINTF(sc, ATH_DBG_FATAL,
1345                         "Unable to attach hardware; HAL status %d\n", status);
1346                 error = -ENXIO;
1347                 goto bad;
1348         }
1349         sc->sc_ah = ah;
1350
1351         /* Get the hardware key cache size. */
1352         sc->sc_keymax = ah->ah_caps.keycache_size;
1353         if (sc->sc_keymax > ATH_KEYMAX) {
1354                 DPRINTF(sc, ATH_DBG_KEYCACHE,
1355                         "Warning, using only %u entries in %u key cache\n",
1356                         ATH_KEYMAX, sc->sc_keymax);
1357                 sc->sc_keymax = ATH_KEYMAX;
1358         }
1359
1360         /*
1361          * Reset the key cache since some parts do not
1362          * reset the contents on initial power up.
1363          */
1364         for (i = 0; i < sc->sc_keymax; i++)
1365                 ath9k_hw_keyreset(ah, (u16) i);
1366
1367         /* Collect the channel list using the default country code */
1368
1369         error = ath_setup_channels(sc);
1370         if (error)
1371                 goto bad;
1372
1373         /* default to MONITOR mode */
1374         sc->sc_ah->ah_opmode = NL80211_IFTYPE_MONITOR;
1375
1376
1377         /* Setup rate tables */
1378
1379         ath_rate_attach(sc);
1380         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1381         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1382
1383         /*
1384          * Allocate hardware transmit queues: one queue for
1385          * beacon frames and one data queue for each QoS
1386          * priority.  Note that the hal handles reseting
1387          * these queues at the needed time.
1388          */
1389         sc->beacon.beaconq = ath_beaconq_setup(ah);
1390         if (sc->beacon.beaconq == -1) {
1391                 DPRINTF(sc, ATH_DBG_FATAL,
1392                         "Unable to setup a beacon xmit queue\n");
1393                 error = -EIO;
1394                 goto bad2;
1395         }
1396         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1397         if (sc->beacon.cabq == NULL) {
1398                 DPRINTF(sc, ATH_DBG_FATAL,
1399                         "Unable to setup CAB xmit queue\n");
1400                 error = -EIO;
1401                 goto bad2;
1402         }
1403
1404         sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1405         ath_cabq_update(sc);
1406
1407         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1408                 sc->tx.hwq_map[i] = -1;
1409
1410         /* Setup data queues */
1411         /* NB: ensure BK queue is the lowest priority h/w queue */
1412         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1413                 DPRINTF(sc, ATH_DBG_FATAL,
1414                         "Unable to setup xmit queue for BK traffic\n");
1415                 error = -EIO;
1416                 goto bad2;
1417         }
1418
1419         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1420                 DPRINTF(sc, ATH_DBG_FATAL,
1421                         "Unable to setup xmit queue for BE traffic\n");
1422                 error = -EIO;
1423                 goto bad2;
1424         }
1425         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1426                 DPRINTF(sc, ATH_DBG_FATAL,
1427                         "Unable to setup xmit queue for VI traffic\n");
1428                 error = -EIO;
1429                 goto bad2;
1430         }
1431         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1432                 DPRINTF(sc, ATH_DBG_FATAL,
1433                         "Unable to setup xmit queue for VO traffic\n");
1434                 error = -EIO;
1435                 goto bad2;
1436         }
1437
1438         /* Initializes the noise floor to a reasonable default value.
1439          * Later on this will be updated during ANI processing. */
1440
1441         sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1442         setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
1443
1444         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1445                                    ATH9K_CIPHER_TKIP, NULL)) {
1446                 /*
1447                  * Whether we should enable h/w TKIP MIC.
1448                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1449                  * report WMM capable, so it's always safe to turn on
1450                  * TKIP MIC in this case.
1451                  */
1452                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1453                                        0, 1, NULL);
1454         }
1455
1456         /*
1457          * Check whether the separate key cache entries
1458          * are required to handle both tx+rx MIC keys.
1459          * With split mic keys the number of stations is limited
1460          * to 27 otherwise 59.
1461          */
1462         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1463                                    ATH9K_CIPHER_TKIP, NULL)
1464             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1465                                       ATH9K_CIPHER_MIC, NULL)
1466             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1467                                       0, NULL))
1468                 sc->sc_splitmic = 1;
1469
1470         /* turn on mcast key search if possible */
1471         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1472                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1473                                              1, NULL);
1474
1475         sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1476         sc->sc_config.txpowlimit_override = 0;
1477
1478         /* 11n Capabilities */
1479         if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1480                 sc->sc_flags |= SC_OP_TXAGGR;
1481                 sc->sc_flags |= SC_OP_RXAGGR;
1482         }
1483
1484         sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1485         sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1486
1487         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1488         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1489
1490         ath9k_hw_getmac(ah, sc->sc_myaddr);
1491         if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1492                 ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1493                 ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1494                 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1495         }
1496
1497         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1498
1499         /* initialize beacon slots */
1500         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1501                 sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1502
1503         /* save MISC configurations */
1504         sc->sc_config.swBeaconProcess = 1;
1505
1506         /* setup channels and rates */
1507
1508         sc->sbands[IEEE80211_BAND_2GHZ].channels =
1509                 sc->channels[IEEE80211_BAND_2GHZ];
1510         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1511                 sc->rates[IEEE80211_BAND_2GHZ];
1512         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1513
1514         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
1515                 sc->sbands[IEEE80211_BAND_5GHZ].channels =
1516                         sc->channels[IEEE80211_BAND_5GHZ];
1517                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1518                         sc->rates[IEEE80211_BAND_5GHZ];
1519                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1520         }
1521
1522         return 0;
1523 bad2:
1524         /* cleanup tx queues */
1525         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1526                 if (ATH_TXQ_SETUP(sc, i))
1527                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1528 bad:
1529         if (ah)
1530                 ath9k_hw_detach(ah);
1531
1532         return error;
1533 }
1534
1535 static int ath_attach(u16 devid, struct ath_softc *sc)
1536 {
1537         struct ieee80211_hw *hw = sc->hw;
1538         int error = 0;
1539
1540         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1541
1542         error = ath_init(devid, sc);
1543         if (error != 0)
1544                 return error;
1545
1546         /* get mac address from hardware and set in mac80211 */
1547
1548         SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
1549
1550         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1551                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1552                 IEEE80211_HW_SIGNAL_DBM |
1553                 IEEE80211_HW_AMPDU_AGGREGATION;
1554
1555         hw->wiphy->interface_modes =
1556                 BIT(NL80211_IFTYPE_AP) |
1557                 BIT(NL80211_IFTYPE_STATION) |
1558                 BIT(NL80211_IFTYPE_ADHOC);
1559
1560         hw->queues = 4;
1561         hw->max_rates = 4;
1562         hw->max_rate_tries = ATH_11N_TXMAXTRY;
1563         hw->sta_data_size = sizeof(struct ath_node);
1564         hw->vif_data_size = sizeof(struct ath_vap);
1565
1566         hw->rate_control_algorithm = "ath9k_rate_control";
1567
1568         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1569                 setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1570                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1571                         setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1572         }
1573
1574         hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ];
1575         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1576                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1577                         &sc->sbands[IEEE80211_BAND_5GHZ];
1578
1579         /* initialize tx/rx engine */
1580         error = ath_tx_init(sc, ATH_TXBUF);
1581         if (error != 0)
1582                 goto detach;
1583
1584         error = ath_rx_init(sc, ATH_RXBUF);
1585         if (error != 0)
1586                 goto detach;
1587
1588 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1589         /* Initialze h/w Rfkill */
1590         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1591                 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1592
1593         /* Initialize s/w rfkill */
1594         if (ath_init_sw_rfkill(sc))
1595                 goto detach;
1596 #endif
1597
1598         error = ieee80211_register_hw(hw);
1599
1600         /* Initialize LED control */
1601         ath_init_leds(sc);
1602
1603         return 0;
1604 detach:
1605         ath_detach(sc);
1606         return error;
1607 }
1608
1609 int ath_reset(struct ath_softc *sc, bool retry_tx)
1610 {
1611         struct ath_hal *ah = sc->sc_ah;
1612         struct ieee80211_hw *hw = sc->hw;
1613         int r;
1614
1615         ath9k_hw_set_interrupts(ah, 0);
1616         ath_draintxq(sc, retry_tx);
1617         ath_stoprecv(sc);
1618         ath_flushrecv(sc);
1619
1620         spin_lock_bh(&sc->sc_resetlock);
1621         r = ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, false);
1622         if (r)
1623                 DPRINTF(sc, ATH_DBG_FATAL,
1624                         "Unable to reset hardware; reset status %u\n", r);
1625         spin_unlock_bh(&sc->sc_resetlock);
1626
1627         if (ath_startrecv(sc) != 0)
1628                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1629
1630         /*
1631          * We may be doing a reset in response to a request
1632          * that changes the channel so update any state that
1633          * might change as a result.
1634          */
1635         ath_cache_conf_rate(sc, &hw->conf);
1636
1637         ath_update_txpow(sc);
1638
1639         if (sc->sc_flags & SC_OP_BEACONS)
1640                 ath_beacon_config(sc, ATH_IF_ID_ANY);   /* restart beacons */
1641
1642         ath9k_hw_set_interrupts(ah, sc->sc_imask);
1643
1644         if (retry_tx) {
1645                 int i;
1646                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1647                         if (ATH_TXQ_SETUP(sc, i)) {
1648                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1649                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1650                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1651                         }
1652                 }
1653         }
1654
1655         return r;
1656 }
1657
1658 /*
1659  *  This function will allocate both the DMA descriptor structure, and the
1660  *  buffers it contains.  These are used to contain the descriptors used
1661  *  by the system.
1662 */
1663 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1664                       struct list_head *head, const char *name,
1665                       int nbuf, int ndesc)
1666 {
1667 #define DS2PHYS(_dd, _ds)                                               \
1668         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1669 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1670 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1671
1672         struct ath_desc *ds;
1673         struct ath_buf *bf;
1674         int i, bsize, error;
1675
1676         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1677                 name, nbuf, ndesc);
1678
1679         /* ath_desc must be a multiple of DWORDs */
1680         if ((sizeof(struct ath_desc) % 4) != 0) {
1681                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1682                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1683                 error = -ENOMEM;
1684                 goto fail;
1685         }
1686
1687         dd->dd_name = name;
1688         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1689
1690         /*
1691          * Need additional DMA memory because we can't use
1692          * descriptors that cross the 4K page boundary. Assume
1693          * one skipped descriptor per 4K page.
1694          */
1695         if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1696                 u32 ndesc_skipped =
1697                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1698                 u32 dma_len;
1699
1700                 while (ndesc_skipped) {
1701                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1702                         dd->dd_desc_len += dma_len;
1703
1704                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1705                 };
1706         }
1707
1708         /* allocate descriptors */
1709         dd->dd_desc = pci_alloc_consistent(sc->pdev,
1710                               dd->dd_desc_len,
1711                               &dd->dd_desc_paddr);
1712         if (dd->dd_desc == NULL) {
1713                 error = -ENOMEM;
1714                 goto fail;
1715         }
1716         ds = dd->dd_desc;
1717         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1718                 dd->dd_name, ds, (u32) dd->dd_desc_len,
1719                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1720
1721         /* allocate buffers */
1722         bsize = sizeof(struct ath_buf) * nbuf;
1723         bf = kmalloc(bsize, GFP_KERNEL);
1724         if (bf == NULL) {
1725                 error = -ENOMEM;
1726                 goto fail2;
1727         }
1728         memset(bf, 0, bsize);
1729         dd->dd_bufptr = bf;
1730
1731         INIT_LIST_HEAD(head);
1732         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1733                 bf->bf_desc = ds;
1734                 bf->bf_daddr = DS2PHYS(dd, ds);
1735
1736                 if (!(sc->sc_ah->ah_caps.hw_caps &
1737                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1738                         /*
1739                          * Skip descriptor addresses which can cause 4KB
1740                          * boundary crossing (addr + length) with a 32 dword
1741                          * descriptor fetch.
1742                          */
1743                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1744                                 ASSERT((caddr_t) bf->bf_desc <
1745                                        ((caddr_t) dd->dd_desc +
1746                                         dd->dd_desc_len));
1747
1748                                 ds += ndesc;
1749                                 bf->bf_desc = ds;
1750                                 bf->bf_daddr = DS2PHYS(dd, ds);
1751                         }
1752                 }
1753                 list_add_tail(&bf->list, head);
1754         }
1755         return 0;
1756 fail2:
1757         pci_free_consistent(sc->pdev,
1758                 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1759 fail:
1760         memset(dd, 0, sizeof(*dd));
1761         return error;
1762 #undef ATH_DESC_4KB_BOUND_CHECK
1763 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1764 #undef DS2PHYS
1765 }
1766
1767 void ath_descdma_cleanup(struct ath_softc *sc,
1768                          struct ath_descdma *dd,
1769                          struct list_head *head)
1770 {
1771         pci_free_consistent(sc->pdev,
1772                 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1773
1774         INIT_LIST_HEAD(head);
1775         kfree(dd->dd_bufptr);
1776         memset(dd, 0, sizeof(*dd));
1777 }
1778
1779 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1780 {
1781         int qnum;
1782
1783         switch (queue) {
1784         case 0:
1785                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1786                 break;
1787         case 1:
1788                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1789                 break;
1790         case 2:
1791                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1792                 break;
1793         case 3:
1794                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1795                 break;
1796         default:
1797                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1798                 break;
1799         }
1800
1801         return qnum;
1802 }
1803
1804 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1805 {
1806         int qnum;
1807
1808         switch (queue) {
1809         case ATH9K_WME_AC_VO:
1810                 qnum = 0;
1811                 break;
1812         case ATH9K_WME_AC_VI:
1813                 qnum = 1;
1814                 break;
1815         case ATH9K_WME_AC_BE:
1816                 qnum = 2;
1817                 break;
1818         case ATH9K_WME_AC_BK:
1819                 qnum = 3;
1820                 break;
1821         default:
1822                 qnum = -1;
1823                 break;
1824         }
1825
1826         return qnum;
1827 }
1828
1829 /**********************/
1830 /* mac80211 callbacks */
1831 /**********************/
1832
1833 static int ath9k_start(struct ieee80211_hw *hw)
1834 {
1835         struct ath_softc *sc = hw->priv;
1836         struct ieee80211_channel *curchan = hw->conf.channel;
1837         struct ath9k_channel *init_channel;
1838         int r, pos;
1839
1840         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1841                 "initial channel: %d MHz\n", curchan->center_freq);
1842
1843         /* setup initial channel */
1844
1845         pos = ath_get_channel(sc, curchan);
1846         if (pos == -1) {
1847                 DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n", curchan->center_freq);
1848                 return -EINVAL;
1849         }
1850
1851         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1852         sc->sc_ah->ah_channels[pos].chanmode =
1853                 (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
1854         init_channel = &sc->sc_ah->ah_channels[pos];
1855
1856         /* Reset SERDES registers */
1857         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1858
1859         /*
1860          * The basic interface to setting the hardware in a good
1861          * state is ``reset''.  On return the hardware is known to
1862          * be powered up and with interrupts disabled.  This must
1863          * be followed by initialization of the appropriate bits
1864          * and then setup of the interrupt mask.
1865          */
1866         spin_lock_bh(&sc->sc_resetlock);
1867         r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1868         if (r) {
1869                 DPRINTF(sc, ATH_DBG_FATAL,
1870                         "Unable to reset hardware; reset status %u "
1871                         "(freq %u MHz)\n", r,
1872                         curchan->center_freq);
1873                 spin_unlock_bh(&sc->sc_resetlock);
1874                 return r;
1875         }
1876         spin_unlock_bh(&sc->sc_resetlock);
1877
1878         /*
1879          * This is needed only to setup initial state
1880          * but it's best done after a reset.
1881          */
1882         ath_update_txpow(sc);
1883
1884         /*
1885          * Setup the hardware after reset:
1886          * The receive engine is set going.
1887          * Frame transmit is handled entirely
1888          * in the frame output path; there's nothing to do
1889          * here except setup the interrupt mask.
1890          */
1891         if (ath_startrecv(sc) != 0) {
1892                 DPRINTF(sc, ATH_DBG_FATAL,
1893                         "Unable to start recv logic\n");
1894                 return -EIO;
1895         }
1896
1897         /* Setup our intr mask. */
1898         sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
1899                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1900                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1901
1902         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
1903                 sc->sc_imask |= ATH9K_INT_GTT;
1904
1905         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
1906                 sc->sc_imask |= ATH9K_INT_CST;
1907
1908         /*
1909          * Enable MIB interrupts when there are hardware phy counters.
1910          * Note we only do this (at the moment) for station mode.
1911          */
1912         if (ath9k_hw_phycounters(sc->sc_ah) &&
1913             ((sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) ||
1914              (sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)))
1915                 sc->sc_imask |= ATH9K_INT_MIB;
1916         /*
1917          * Some hardware processes the TIM IE and fires an
1918          * interrupt when the TIM bit is set.  For hardware
1919          * that does, if not overridden by configuration,
1920          * enable the TIM interrupt when operating as station.
1921          */
1922         if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
1923             (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) &&
1924             !sc->sc_config.swBeaconProcess)
1925                 sc->sc_imask |= ATH9K_INT_TIM;
1926
1927         ath_cache_conf_rate(sc, &hw->conf);
1928
1929         sc->sc_flags &= ~SC_OP_INVALID;
1930
1931         /* Disable BMISS interrupt when we're not associated */
1932         sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1933         ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
1934
1935         ieee80211_wake_queues(sc->hw);
1936
1937 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1938         r = ath_start_rfkill_poll(sc);
1939 #endif
1940         return r;
1941 }
1942
1943 static int ath9k_tx(struct ieee80211_hw *hw,
1944                     struct sk_buff *skb)
1945 {
1946         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1947         struct ath_softc *sc = hw->priv;
1948         struct ath_tx_control txctl;
1949         int hdrlen, padsize;
1950
1951         memset(&txctl, 0, sizeof(struct ath_tx_control));
1952
1953         /*
1954          * As a temporary workaround, assign seq# here; this will likely need
1955          * to be cleaned up to work better with Beacon transmission and virtual
1956          * BSSes.
1957          */
1958         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1959                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1960                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1961                         sc->tx.seq_no += 0x10;
1962                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1963                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1964         }
1965
1966         /* Add the padding after the header if this is not already done */
1967         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1968         if (hdrlen & 3) {
1969                 padsize = hdrlen % 4;
1970                 if (skb_headroom(skb) < padsize)
1971                         return -1;
1972                 skb_push(skb, padsize);
1973                 memmove(skb->data, skb->data + padsize, hdrlen);
1974         }
1975
1976         /* Check if a tx queue is available */
1977
1978         txctl.txq = ath_test_get_txq(sc, skb);
1979         if (!txctl.txq)
1980                 goto exit;
1981
1982         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
1983
1984         if (ath_tx_start(sc, skb, &txctl) != 0) {
1985                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
1986                 goto exit;
1987         }
1988
1989         return 0;
1990 exit:
1991         dev_kfree_skb_any(skb);
1992         return 0;
1993 }
1994
1995 static void ath9k_stop(struct ieee80211_hw *hw)
1996 {
1997         struct ath_softc *sc = hw->priv;
1998
1999         if (sc->sc_flags & SC_OP_INVALID) {
2000                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2001                 return;
2002         }
2003
2004         DPRINTF(sc, ATH_DBG_CONFIG, "Cleaning up\n");
2005
2006         ieee80211_stop_queues(sc->hw);
2007
2008         /* make sure h/w will not generate any interrupt
2009          * before setting the invalid flag. */
2010         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2011
2012         if (!(sc->sc_flags & SC_OP_INVALID)) {
2013                 ath_draintxq(sc, false);
2014                 ath_stoprecv(sc);
2015                 ath9k_hw_phy_disable(sc->sc_ah);
2016         } else
2017                 sc->rx.rxlink = NULL;
2018
2019 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2020         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2021                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2022 #endif
2023         /* disable HAL and put h/w to sleep */
2024         ath9k_hw_disable(sc->sc_ah);
2025         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2026
2027         sc->sc_flags |= SC_OP_INVALID;
2028
2029         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2030 }
2031
2032 static int ath9k_add_interface(struct ieee80211_hw *hw,
2033                                struct ieee80211_if_init_conf *conf)
2034 {
2035         struct ath_softc *sc = hw->priv;
2036         struct ath_vap *avp = (void *)conf->vif->drv_priv;
2037         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2038
2039         /* Support only vap for now */
2040
2041         if (sc->sc_nvaps)
2042                 return -ENOBUFS;
2043
2044         switch (conf->type) {
2045         case NL80211_IFTYPE_STATION:
2046                 ic_opmode = NL80211_IFTYPE_STATION;
2047                 break;
2048         case NL80211_IFTYPE_ADHOC:
2049                 ic_opmode = NL80211_IFTYPE_ADHOC;
2050                 break;
2051         case NL80211_IFTYPE_AP:
2052                 ic_opmode = NL80211_IFTYPE_AP;
2053                 break;
2054         default:
2055                 DPRINTF(sc, ATH_DBG_FATAL,
2056                         "Interface type %d not yet supported\n", conf->type);
2057                 return -EOPNOTSUPP;
2058         }
2059
2060         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VAP of type: %d\n", ic_opmode);
2061
2062         /* Set the VAP opmode */
2063         avp->av_opmode = ic_opmode;
2064         avp->av_bslot = -1;
2065
2066         if (ic_opmode == NL80211_IFTYPE_AP)
2067                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2068
2069         sc->sc_vaps[0] = conf->vif;
2070         sc->sc_nvaps++;
2071
2072         /* Set the device opmode */
2073         sc->sc_ah->ah_opmode = ic_opmode;
2074
2075         if (conf->type == NL80211_IFTYPE_AP) {
2076                 /* TODO: is this a suitable place to start ANI for AP mode? */
2077                 /* Start ANI */
2078                 mod_timer(&sc->sc_ani.timer,
2079                           jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2080         }
2081
2082         return 0;
2083 }
2084
2085 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2086                                    struct ieee80211_if_init_conf *conf)
2087 {
2088         struct ath_softc *sc = hw->priv;
2089         struct ath_vap *avp = (void *)conf->vif->drv_priv;
2090
2091         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2092
2093         /* Stop ANI */
2094         del_timer_sync(&sc->sc_ani.timer);
2095
2096         /* Reclaim beacon resources */
2097         if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP ||
2098             sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC) {
2099                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2100                 ath_beacon_return(sc, avp);
2101         }
2102
2103         sc->sc_flags &= ~SC_OP_BEACONS;
2104
2105         sc->sc_vaps[0] = NULL;
2106         sc->sc_nvaps--;
2107 }
2108
2109 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2110 {
2111         struct ath_softc *sc = hw->priv;
2112         struct ieee80211_conf *conf = &hw->conf;
2113
2114         mutex_lock(&sc->mutex);
2115         if (changed & (IEEE80211_CONF_CHANGE_CHANNEL |
2116                        IEEE80211_CONF_CHANGE_HT)) {
2117                 struct ieee80211_channel *curchan = hw->conf.channel;
2118                 int pos;
2119
2120                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2121                         curchan->center_freq);
2122
2123                 pos = ath_get_channel(sc, curchan);
2124                 if (pos == -1) {
2125                         DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n",
2126                                 curchan->center_freq);
2127                         mutex_unlock(&sc->mutex);
2128                         return -EINVAL;
2129                 }
2130
2131                 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
2132                 sc->sc_ah->ah_channels[pos].chanmode =
2133                         (curchan->band == IEEE80211_BAND_2GHZ) ?
2134                         CHANNEL_G : CHANNEL_A;
2135
2136                 if (conf_is_ht(conf)) {
2137                         if (conf_is_ht40(conf))
2138                                 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
2139
2140                         sc->sc_ah->ah_channels[pos].chanmode =
2141                                 ath_get_extchanmode(sc, curchan,
2142                                                     conf->ht.channel_type);
2143                 }
2144
2145                 ath_update_chainmask(sc, conf_is_ht(conf));
2146
2147                 if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) {
2148                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2149                         mutex_unlock(&sc->mutex);
2150                         return -EINVAL;
2151                 }
2152         }
2153
2154         if (changed & IEEE80211_CONF_CHANGE_POWER)
2155                 sc->sc_config.txpowlimit = 2 * conf->power_level;
2156
2157         mutex_unlock(&sc->mutex);
2158         return 0;
2159 }
2160
2161 static int ath9k_config_interface(struct ieee80211_hw *hw,
2162                                   struct ieee80211_vif *vif,
2163                                   struct ieee80211_if_conf *conf)
2164 {
2165         struct ath_softc *sc = hw->priv;
2166         struct ath_hal *ah = sc->sc_ah;
2167         struct ath_vap *avp = (void *)vif->drv_priv;
2168         u32 rfilt = 0;
2169         int error, i;
2170
2171         /* TODO: Need to decide which hw opmode to use for multi-interface
2172          * cases */
2173         if (vif->type == NL80211_IFTYPE_AP &&
2174             ah->ah_opmode != NL80211_IFTYPE_AP) {
2175                 ah->ah_opmode = NL80211_IFTYPE_STATION;
2176                 ath9k_hw_setopmode(ah);
2177                 ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
2178                 /* Request full reset to get hw opmode changed properly */
2179                 sc->sc_flags |= SC_OP_FULL_RESET;
2180         }
2181
2182         if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2183             !is_zero_ether_addr(conf->bssid)) {
2184                 switch (vif->type) {
2185                 case NL80211_IFTYPE_STATION:
2186                 case NL80211_IFTYPE_ADHOC:
2187                         /* Set BSSID */
2188                         memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
2189                         sc->sc_curaid = 0;
2190                         ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
2191                                                sc->sc_curaid);
2192
2193                         /* Set aggregation protection mode parameters */
2194                         sc->sc_config.ath_aggr_prot = 0;
2195
2196                         DPRINTF(sc, ATH_DBG_CONFIG,
2197                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2198                                 rfilt, sc->sc_curbssid, sc->sc_curaid);
2199
2200                         /* need to reconfigure the beacon */
2201                         sc->sc_flags &= ~SC_OP_BEACONS ;
2202
2203                         break;
2204                 default:
2205                         break;
2206                 }
2207         }
2208
2209         if ((conf->changed & IEEE80211_IFCC_BEACON) &&
2210             ((vif->type == NL80211_IFTYPE_ADHOC) ||
2211              (vif->type == NL80211_IFTYPE_AP))) {
2212                 /*
2213                  * Allocate and setup the beacon frame.
2214                  *
2215                  * Stop any previous beacon DMA.  This may be
2216                  * necessary, for example, when an ibss merge
2217                  * causes reconfiguration; we may be called
2218                  * with beacon transmission active.
2219                  */
2220                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2221
2222                 error = ath_beacon_alloc(sc, 0);
2223                 if (error != 0)
2224                         return error;
2225
2226                 ath_beacon_sync(sc, 0);
2227         }
2228
2229         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2230         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2231                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2232                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2233                                 ath9k_hw_keysetmac(sc->sc_ah,
2234                                                    (u16)i,
2235                                                    sc->sc_curbssid);
2236         }
2237
2238         /* Only legacy IBSS for now */
2239         if (vif->type == NL80211_IFTYPE_ADHOC)
2240                 ath_update_chainmask(sc, 0);
2241
2242         return 0;
2243 }
2244
2245 #define SUPPORTED_FILTERS                       \
2246         (FIF_PROMISC_IN_BSS |                   \
2247         FIF_ALLMULTI |                          \
2248         FIF_CONTROL |                           \
2249         FIF_OTHER_BSS |                         \
2250         FIF_BCN_PRBRESP_PROMISC |               \
2251         FIF_FCSFAIL)
2252
2253 /* FIXME: sc->sc_full_reset ? */
2254 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2255                                    unsigned int changed_flags,
2256                                    unsigned int *total_flags,
2257                                    int mc_count,
2258                                    struct dev_mc_list *mclist)
2259 {
2260         struct ath_softc *sc = hw->priv;
2261         u32 rfilt;
2262
2263         changed_flags &= SUPPORTED_FILTERS;
2264         *total_flags &= SUPPORTED_FILTERS;
2265
2266         sc->rx.rxfilter = *total_flags;
2267         rfilt = ath_calcrxfilter(sc);
2268         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2269
2270         if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2271                 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
2272                         ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
2273         }
2274
2275         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2276 }
2277
2278 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2279                              struct ieee80211_vif *vif,
2280                              enum sta_notify_cmd cmd,
2281                              struct ieee80211_sta *sta)
2282 {
2283         struct ath_softc *sc = hw->priv;
2284
2285         switch (cmd) {
2286         case STA_NOTIFY_ADD:
2287                 ath_node_attach(sc, sta);
2288                 break;
2289         case STA_NOTIFY_REMOVE:
2290                 ath_node_detach(sc, sta);
2291                 break;
2292         default:
2293                 break;
2294         }
2295 }
2296
2297 static int ath9k_conf_tx(struct ieee80211_hw *hw,
2298                          u16 queue,
2299                          const struct ieee80211_tx_queue_params *params)
2300 {
2301         struct ath_softc *sc = hw->priv;
2302         struct ath9k_tx_queue_info qi;
2303         int ret = 0, qnum;
2304
2305         if (queue >= WME_NUM_AC)
2306                 return 0;
2307
2308         qi.tqi_aifs = params->aifs;
2309         qi.tqi_cwmin = params->cw_min;
2310         qi.tqi_cwmax = params->cw_max;
2311         qi.tqi_burstTime = params->txop;
2312         qnum = ath_get_hal_qnum(queue, sc);
2313
2314         DPRINTF(sc, ATH_DBG_CONFIG,
2315                 "Configure tx [queue/halq] [%d/%d],  "
2316                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2317                 queue, qnum, params->aifs, params->cw_min,
2318                 params->cw_max, params->txop);
2319
2320         ret = ath_txq_update(sc, qnum, &qi);
2321         if (ret)
2322                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2323
2324         return ret;
2325 }
2326
2327 static int ath9k_set_key(struct ieee80211_hw *hw,
2328                          enum set_key_cmd cmd,
2329                          struct ieee80211_vif *vif,
2330                          struct ieee80211_sta *sta,
2331                          struct ieee80211_key_conf *key)
2332 {
2333         struct ath_softc *sc = hw->priv;
2334         int ret = 0;
2335
2336         DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2337
2338         switch (cmd) {
2339         case SET_KEY:
2340                 ret = ath_key_config(sc, sta, key);
2341                 if (ret >= 0) {
2342                         key->hw_key_idx = ret;
2343                         /* push IV and Michael MIC generation to stack */
2344                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2345                         if (key->alg == ALG_TKIP)
2346                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2347                         ret = 0;
2348                 }
2349                 break;
2350         case DISABLE_KEY:
2351                 ath_key_delete(sc, key);
2352                 break;
2353         default:
2354                 ret = -EINVAL;
2355         }
2356
2357         return ret;
2358 }
2359
2360 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2361                                    struct ieee80211_vif *vif,
2362                                    struct ieee80211_bss_conf *bss_conf,
2363                                    u32 changed)
2364 {
2365         struct ath_softc *sc = hw->priv;
2366
2367         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2368                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2369                         bss_conf->use_short_preamble);
2370                 if (bss_conf->use_short_preamble)
2371                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2372                 else
2373                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2374         }
2375
2376         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2377                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2378                         bss_conf->use_cts_prot);
2379                 if (bss_conf->use_cts_prot &&
2380                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2381                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2382                 else
2383                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2384         }
2385
2386         if (changed & BSS_CHANGED_ASSOC) {
2387                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2388                         bss_conf->assoc);
2389                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2390         }
2391 }
2392
2393 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2394 {
2395         u64 tsf;
2396         struct ath_softc *sc = hw->priv;
2397         struct ath_hal *ah = sc->sc_ah;
2398
2399         tsf = ath9k_hw_gettsf64(ah);
2400
2401         return tsf;
2402 }
2403
2404 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2405 {
2406         struct ath_softc *sc = hw->priv;
2407         struct ath_hal *ah = sc->sc_ah;
2408
2409         ath9k_hw_reset_tsf(ah);
2410 }
2411
2412 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2413                        enum ieee80211_ampdu_mlme_action action,
2414                        struct ieee80211_sta *sta,
2415                        u16 tid, u16 *ssn)
2416 {
2417         struct ath_softc *sc = hw->priv;
2418         int ret = 0;
2419
2420         switch (action) {
2421         case IEEE80211_AMPDU_RX_START:
2422                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2423                         ret = -ENOTSUPP;
2424                 break;
2425         case IEEE80211_AMPDU_RX_STOP:
2426                 break;
2427         case IEEE80211_AMPDU_TX_START:
2428                 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2429                 if (ret < 0)
2430                         DPRINTF(sc, ATH_DBG_FATAL,
2431                                 "Unable to start TX aggregation\n");
2432                 else
2433                         ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2434                 break;
2435         case IEEE80211_AMPDU_TX_STOP:
2436                 ret = ath_tx_aggr_stop(sc, sta, tid);
2437                 if (ret < 0)
2438                         DPRINTF(sc, ATH_DBG_FATAL,
2439                                 "Unable to stop TX aggregation\n");
2440
2441                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2442                 break;
2443         case IEEE80211_AMPDU_TX_RESUME:
2444                 ath_tx_aggr_resume(sc, sta, tid);
2445                 break;
2446         default:
2447                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2448         }
2449
2450         return ret;
2451 }
2452
2453 static struct ieee80211_ops ath9k_ops = {
2454         .tx                 = ath9k_tx,
2455         .start              = ath9k_start,
2456         .stop               = ath9k_stop,
2457         .add_interface      = ath9k_add_interface,
2458         .remove_interface   = ath9k_remove_interface,
2459         .config             = ath9k_config,
2460         .config_interface   = ath9k_config_interface,
2461         .configure_filter   = ath9k_configure_filter,
2462         .sta_notify         = ath9k_sta_notify,
2463         .conf_tx            = ath9k_conf_tx,
2464         .bss_info_changed   = ath9k_bss_info_changed,
2465         .set_key            = ath9k_set_key,
2466         .get_tsf            = ath9k_get_tsf,
2467         .reset_tsf          = ath9k_reset_tsf,
2468         .ampdu_action       = ath9k_ampdu_action,
2469 };
2470
2471 static struct {
2472         u32 version;
2473         const char * name;
2474 } ath_mac_bb_names[] = {
2475         { AR_SREV_VERSION_5416_PCI,     "5416" },
2476         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2477         { AR_SREV_VERSION_9100,         "9100" },
2478         { AR_SREV_VERSION_9160,         "9160" },
2479         { AR_SREV_VERSION_9280,         "9280" },
2480         { AR_SREV_VERSION_9285,         "9285" }
2481 };
2482
2483 static struct {
2484         u16 version;
2485         const char * name;
2486 } ath_rf_names[] = {
2487         { 0,                            "5133" },
2488         { AR_RAD5133_SREV_MAJOR,        "5133" },
2489         { AR_RAD5122_SREV_MAJOR,        "5122" },
2490         { AR_RAD2133_SREV_MAJOR,        "2133" },
2491         { AR_RAD2122_SREV_MAJOR,        "2122" }
2492 };
2493
2494 /*
2495  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2496  */
2497 static const char *
2498 ath_mac_bb_name(u32 mac_bb_version)
2499 {
2500         int i;
2501
2502         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2503                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2504                         return ath_mac_bb_names[i].name;
2505                 }
2506         }
2507
2508         return "????";
2509 }
2510
2511 /*
2512  * Return the RF name. "????" is returned if the RF is unknown.
2513  */
2514 static const char *
2515 ath_rf_name(u16 rf_version)
2516 {
2517         int i;
2518
2519         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2520                 if (ath_rf_names[i].version == rf_version) {
2521                         return ath_rf_names[i].name;
2522                 }
2523         }
2524
2525         return "????";
2526 }
2527
2528 static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2529 {
2530         void __iomem *mem;
2531         struct ath_softc *sc;
2532         struct ieee80211_hw *hw;
2533         u8 csz;
2534         u32 val;
2535         int ret = 0;
2536         struct ath_hal *ah;
2537
2538         if (pci_enable_device(pdev))
2539                 return -EIO;
2540
2541         ret =  pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2542
2543         if (ret) {
2544                 printk(KERN_ERR "ath9k: 32-bit DMA not available\n");
2545                 goto bad;
2546         }
2547
2548         ret = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2549
2550         if (ret) {
2551                 printk(KERN_ERR "ath9k: 32-bit DMA consistent "
2552                         "DMA enable failed\n");
2553                 goto bad;
2554         }
2555
2556         /*
2557          * Cache line size is used to size and align various
2558          * structures used to communicate with the hardware.
2559          */
2560         pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
2561         if (csz == 0) {
2562                 /*
2563                  * Linux 2.4.18 (at least) writes the cache line size
2564                  * register as a 16-bit wide register which is wrong.
2565                  * We must have this setup properly for rx buffer
2566                  * DMA to work so force a reasonable value here if it
2567                  * comes up zero.
2568                  */
2569                 csz = L1_CACHE_BYTES / sizeof(u32);
2570                 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
2571         }
2572         /*
2573          * The default setting of latency timer yields poor results,
2574          * set it to the value used by other systems. It may be worth
2575          * tweaking this setting more.
2576          */
2577         pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
2578
2579         pci_set_master(pdev);
2580
2581         /*
2582          * Disable the RETRY_TIMEOUT register (0x41) to keep
2583          * PCI Tx retries from interfering with C3 CPU state.
2584          */
2585         pci_read_config_dword(pdev, 0x40, &val);
2586         if ((val & 0x0000ff00) != 0)
2587                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2588
2589         ret = pci_request_region(pdev, 0, "ath9k");
2590         if (ret) {
2591                 dev_err(&pdev->dev, "PCI memory region reserve error\n");
2592                 ret = -ENODEV;
2593                 goto bad;
2594         }
2595
2596         mem = pci_iomap(pdev, 0, 0);
2597         if (!mem) {
2598                 printk(KERN_ERR "PCI memory map error\n") ;
2599                 ret = -EIO;
2600                 goto bad1;
2601         }
2602
2603         hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
2604         if (hw == NULL) {
2605                 printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n");
2606                 goto bad2;
2607         }
2608
2609         SET_IEEE80211_DEV(hw, &pdev->dev);
2610         pci_set_drvdata(pdev, hw);
2611
2612         sc = hw->priv;
2613         sc->hw = hw;
2614         sc->pdev = pdev;
2615         sc->mem = mem;
2616
2617         if (ath_attach(id->device, sc) != 0) {
2618                 ret = -ENODEV;
2619                 goto bad3;
2620         }
2621
2622         /* setup interrupt service routine */
2623
2624         if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) {
2625                 printk(KERN_ERR "%s: request_irq failed\n",
2626                         wiphy_name(hw->wiphy));
2627                 ret = -EIO;
2628                 goto bad4;
2629         }
2630
2631         ah = sc->sc_ah;
2632         printk(KERN_INFO
2633                "%s: Atheros AR%s MAC/BB Rev:%x "
2634                "AR%s RF Rev:%x: mem=0x%lx, irq=%d\n",
2635                wiphy_name(hw->wiphy),
2636                ath_mac_bb_name(ah->ah_macVersion),
2637                ah->ah_macRev,
2638                ath_rf_name((ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR)),
2639                ah->ah_phyRev,
2640                (unsigned long)mem, pdev->irq);
2641
2642         return 0;
2643 bad4:
2644         ath_detach(sc);
2645 bad3:
2646         ieee80211_free_hw(hw);
2647 bad2:
2648         pci_iounmap(pdev, mem);
2649 bad1:
2650         pci_release_region(pdev, 0);
2651 bad:
2652         pci_disable_device(pdev);
2653         return ret;
2654 }
2655
2656 static void ath_pci_remove(struct pci_dev *pdev)
2657 {
2658         struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2659         struct ath_softc *sc = hw->priv;
2660
2661         ath_detach(sc);
2662         if (pdev->irq)
2663                 free_irq(pdev->irq, sc);
2664         pci_iounmap(pdev, sc->mem);
2665         pci_release_region(pdev, 0);
2666         pci_disable_device(pdev);
2667         ieee80211_free_hw(hw);
2668 }
2669
2670 #ifdef CONFIG_PM
2671
2672 static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2673 {
2674         struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2675         struct ath_softc *sc = hw->priv;
2676
2677         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2678
2679 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2680         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2681                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2682 #endif
2683
2684         pci_save_state(pdev);
2685         pci_disable_device(pdev);
2686         pci_set_power_state(pdev, 3);
2687
2688         return 0;
2689 }
2690
2691 static int ath_pci_resume(struct pci_dev *pdev)
2692 {
2693         struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2694         struct ath_softc *sc = hw->priv;
2695         u32 val;
2696         int err;
2697
2698         err = pci_enable_device(pdev);
2699         if (err)
2700                 return err;
2701         pci_restore_state(pdev);
2702         /*
2703          * Suspend/Resume resets the PCI configuration space, so we have to
2704          * re-disable the RETRY_TIMEOUT register (0x41) to keep
2705          * PCI Tx retries from interfering with C3 CPU state
2706          */
2707         pci_read_config_dword(pdev, 0x40, &val);
2708         if ((val & 0x0000ff00) != 0)
2709                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2710
2711         /* Enable LED */
2712         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
2713                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
2714         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2715
2716 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2717         /*
2718          * check the h/w rfkill state on resume
2719          * and start the rfkill poll timer
2720          */
2721         if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2722                 queue_delayed_work(sc->hw->workqueue,
2723                                    &sc->rf_kill.rfkill_poll, 0);
2724 #endif
2725
2726         return 0;
2727 }
2728
2729 #endif /* CONFIG_PM */
2730
2731 MODULE_DEVICE_TABLE(pci, ath_pci_id_table);
2732
2733 static struct pci_driver ath_pci_driver = {
2734         .name       = "ath9k",
2735         .id_table   = ath_pci_id_table,
2736         .probe      = ath_pci_probe,
2737         .remove     = ath_pci_remove,
2738 #ifdef CONFIG_PM
2739         .suspend    = ath_pci_suspend,
2740         .resume     = ath_pci_resume,
2741 #endif /* CONFIG_PM */
2742 };
2743
2744 static int __init init_ath_pci(void)
2745 {
2746         int error;
2747
2748         printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION);
2749
2750         /* Register rate control algorithm */
2751         error = ath_rate_control_register();
2752         if (error != 0) {
2753                 printk(KERN_ERR
2754                         "Unable to register rate control algorithm: %d\n",
2755                         error);
2756                 ath_rate_control_unregister();
2757                 return error;
2758         }
2759
2760         if (pci_register_driver(&ath_pci_driver) < 0) {
2761                 printk(KERN_ERR
2762                         "ath_pci: No devices found, driver not installed.\n");
2763                 ath_rate_control_unregister();
2764                 pci_unregister_driver(&ath_pci_driver);
2765                 return -ENODEV;
2766         }
2767
2768         return 0;
2769 }
2770 module_init(init_ath_pci);
2771
2772 static void __exit exit_ath_pci(void)
2773 {
2774         ath_rate_control_unregister();
2775         pci_unregister_driver(&ath_pci_driver);
2776         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2777 }
2778 module_exit(exit_ath_pci);