ath9k_hw: move ath_extend_tsf() to hw code to share as ath9k_hw_extend_tsf()
[linux-2.6.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "rc.h"
22 #include "initvals.h"
23
24 #define ATH9K_CLOCK_RATE_CCK            22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
27
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31                               struct ar5416_eeprom_def *pEepData,
32                               u32 reg, u32 value);
33
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38
39 static int __init ath9k_init(void)
40 {
41         return 0;
42 }
43 module_init(ath9k_init);
44
45 static void __exit ath9k_exit(void)
46 {
47         return;
48 }
49 module_exit(ath9k_exit);
50
51 /********************/
52 /* Helper Functions */
53 /********************/
54
55 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
56 {
57         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
58
59         if (!ah->curchan) /* should really check for CCK instead */
60                 return clks / ATH9K_CLOCK_RATE_CCK;
61         if (conf->channel->band == IEEE80211_BAND_2GHZ)
62                 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
63
64         return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
65 }
66
67 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
68 {
69         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
70
71         if (conf_is_ht40(conf))
72                 return ath9k_hw_mac_usec(ah, clks) / 2;
73         else
74                 return ath9k_hw_mac_usec(ah, clks);
75 }
76
77 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
78 {
79         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
80
81         if (!ah->curchan) /* should really check for CCK instead */
82                 return usecs *ATH9K_CLOCK_RATE_CCK;
83         if (conf->channel->band == IEEE80211_BAND_2GHZ)
84                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
85         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
86 }
87
88 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
89 {
90         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
91
92         if (conf_is_ht40(conf))
93                 return ath9k_hw_mac_clks(ah, usecs) * 2;
94         else
95                 return ath9k_hw_mac_clks(ah, usecs);
96 }
97
98 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
99 {
100         int i;
101
102         BUG_ON(timeout < AH_TIME_QUANTUM);
103
104         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
105                 if ((REG_READ(ah, reg) & mask) == val)
106                         return true;
107
108                 udelay(AH_TIME_QUANTUM);
109         }
110
111         ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
112                   "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
113                   timeout, reg, REG_READ(ah, reg), mask, val);
114
115         return false;
116 }
117 EXPORT_SYMBOL(ath9k_hw_wait);
118
119 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
120 {
121         u32 retval;
122         int i;
123
124         for (i = 0, retval = 0; i < n; i++) {
125                 retval = (retval << 1) | (val & 1);
126                 val >>= 1;
127         }
128         return retval;
129 }
130
131 bool ath9k_get_channel_edges(struct ath_hw *ah,
132                              u16 flags, u16 *low,
133                              u16 *high)
134 {
135         struct ath9k_hw_capabilities *pCap = &ah->caps;
136
137         if (flags & CHANNEL_5GHZ) {
138                 *low = pCap->low_5ghz_chan;
139                 *high = pCap->high_5ghz_chan;
140                 return true;
141         }
142         if ((flags & CHANNEL_2GHZ)) {
143                 *low = pCap->low_2ghz_chan;
144                 *high = pCap->high_2ghz_chan;
145                 return true;
146         }
147         return false;
148 }
149
150 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
151                            const struct ath_rate_table *rates,
152                            u32 frameLen, u16 rateix,
153                            bool shortPreamble)
154 {
155         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
156         u32 kbps;
157
158         kbps = rates->info[rateix].ratekbps;
159
160         if (kbps == 0)
161                 return 0;
162
163         switch (rates->info[rateix].phy) {
164         case WLAN_RC_PHY_CCK:
165                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
166                 if (shortPreamble && rates->info[rateix].short_preamble)
167                         phyTime >>= 1;
168                 numBits = frameLen << 3;
169                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
170                 break;
171         case WLAN_RC_PHY_OFDM:
172                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
173                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
174                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
175                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
176                         txTime = OFDM_SIFS_TIME_QUARTER
177                                 + OFDM_PREAMBLE_TIME_QUARTER
178                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
179                 } else if (ah->curchan &&
180                            IS_CHAN_HALF_RATE(ah->curchan)) {
181                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
182                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
183                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
184                         txTime = OFDM_SIFS_TIME_HALF +
185                                 OFDM_PREAMBLE_TIME_HALF
186                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
187                 } else {
188                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
189                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
190                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
192                                 + (numSymbols * OFDM_SYMBOL_TIME);
193                 }
194                 break;
195         default:
196                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
197                           "Unknown phy %u (rate ix %u)\n",
198                           rates->info[rateix].phy, rateix);
199                 txTime = 0;
200                 break;
201         }
202
203         return txTime;
204 }
205 EXPORT_SYMBOL(ath9k_hw_computetxtime);
206
207 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
208                                   struct ath9k_channel *chan,
209                                   struct chan_centers *centers)
210 {
211         int8_t extoff;
212
213         if (!IS_CHAN_HT40(chan)) {
214                 centers->ctl_center = centers->ext_center =
215                         centers->synth_center = chan->channel;
216                 return;
217         }
218
219         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
220             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
221                 centers->synth_center =
222                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
223                 extoff = 1;
224         } else {
225                 centers->synth_center =
226                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
227                 extoff = -1;
228         }
229
230         centers->ctl_center =
231                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
232         /* 25 MHz spacing is supported by hw but not on upper layers */
233         centers->ext_center =
234                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
235 }
236
237 /******************/
238 /* Chip Revisions */
239 /******************/
240
241 static void ath9k_hw_read_revisions(struct ath_hw *ah)
242 {
243         u32 val;
244
245         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
246
247         if (val == 0xFF) {
248                 val = REG_READ(ah, AR_SREV);
249                 ah->hw_version.macVersion =
250                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
251                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
252                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
253         } else {
254                 if (!AR_SREV_9100(ah))
255                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
256
257                 ah->hw_version.macRev = val & AR_SREV_REVISION;
258
259                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
260                         ah->is_pciexpress = true;
261         }
262 }
263
264 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
265 {
266         u32 val;
267         int i;
268
269         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
270
271         for (i = 0; i < 8; i++)
272                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
273         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
274         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
275
276         return ath9k_hw_reverse_bits(val, 8);
277 }
278
279 /************************************/
280 /* HW Attach, Detach, Init Routines */
281 /************************************/
282
283 static void ath9k_hw_disablepcie(struct ath_hw *ah)
284 {
285         if (AR_SREV_9100(ah))
286                 return;
287
288         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
289         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
290         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
291         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
292         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
293         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
294         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
295         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
296         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
297
298         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
299 }
300
301 static bool ath9k_hw_chip_test(struct ath_hw *ah)
302 {
303         struct ath_common *common = ath9k_hw_common(ah);
304         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
305         u32 regHold[2];
306         u32 patternData[4] = { 0x55555555,
307                                0xaaaaaaaa,
308                                0x66666666,
309                                0x99999999 };
310         int i, j;
311
312         for (i = 0; i < 2; i++) {
313                 u32 addr = regAddr[i];
314                 u32 wrData, rdData;
315
316                 regHold[i] = REG_READ(ah, addr);
317                 for (j = 0; j < 0x100; j++) {
318                         wrData = (j << 16) | j;
319                         REG_WRITE(ah, addr, wrData);
320                         rdData = REG_READ(ah, addr);
321                         if (rdData != wrData) {
322                                 ath_print(common, ATH_DBG_FATAL,
323                                           "address test failed "
324                                           "addr: 0x%08x - wr:0x%08x != "
325                                           "rd:0x%08x\n",
326                                           addr, wrData, rdData);
327                                 return false;
328                         }
329                 }
330                 for (j = 0; j < 4; j++) {
331                         wrData = patternData[j];
332                         REG_WRITE(ah, addr, wrData);
333                         rdData = REG_READ(ah, addr);
334                         if (wrData != rdData) {
335                                 ath_print(common, ATH_DBG_FATAL,
336                                           "address test failed "
337                                           "addr: 0x%08x - wr:0x%08x != "
338                                           "rd:0x%08x\n",
339                                           addr, wrData, rdData);
340                                 return false;
341                         }
342                 }
343                 REG_WRITE(ah, regAddr[i], regHold[i]);
344         }
345         udelay(100);
346
347         return true;
348 }
349
350 static const char *ath9k_hw_devname(u16 devid)
351 {
352         switch (devid) {
353         case AR5416_DEVID_PCI:
354                 return "Atheros 5416";
355         case AR5416_DEVID_PCIE:
356                 return "Atheros 5418";
357         case AR9160_DEVID_PCI:
358                 return "Atheros 9160";
359         case AR5416_AR9100_DEVID:
360                 return "Atheros 9100";
361         case AR9280_DEVID_PCI:
362         case AR9280_DEVID_PCIE:
363                 return "Atheros 9280";
364         case AR9285_DEVID_PCIE:
365                 return "Atheros 9285";
366         case AR5416_DEVID_AR9287_PCI:
367         case AR5416_DEVID_AR9287_PCIE:
368                 return "Atheros 9287";
369         }
370
371         return NULL;
372 }
373
374 static void ath9k_hw_init_config(struct ath_hw *ah)
375 {
376         int i;
377
378         ah->config.dma_beacon_response_time = 2;
379         ah->config.sw_beacon_response_time = 10;
380         ah->config.additional_swba_backoff = 0;
381         ah->config.ack_6mb = 0x0;
382         ah->config.cwm_ignore_extcca = 0;
383         ah->config.pcie_powersave_enable = 0;
384         ah->config.pcie_clock_req = 0;
385         ah->config.pcie_waen = 0;
386         ah->config.analog_shiftreg = 1;
387         ah->config.ht_enable = 1;
388         ah->config.ofdm_trig_low = 200;
389         ah->config.ofdm_trig_high = 500;
390         ah->config.cck_trig_high = 200;
391         ah->config.cck_trig_low = 100;
392         ah->config.enable_ani = 1;
393         ah->config.diversity_control = ATH9K_ANT_VARIABLE;
394         ah->config.antenna_switch_swap = 0;
395
396         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
397                 ah->config.spurchans[i][0] = AR_NO_SPUR;
398                 ah->config.spurchans[i][1] = AR_NO_SPUR;
399         }
400
401         ah->config.intr_mitigation = true;
402
403         /*
404          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
405          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
406          * This means we use it for all AR5416 devices, and the few
407          * minor PCI AR9280 devices out there.
408          *
409          * Serialization is required because these devices do not handle
410          * well the case of two concurrent reads/writes due to the latency
411          * involved. During one read/write another read/write can be issued
412          * on another CPU while the previous read/write may still be working
413          * on our hardware, if we hit this case the hardware poops in a loop.
414          * We prevent this by serializing reads and writes.
415          *
416          * This issue is not present on PCI-Express devices or pre-AR5416
417          * devices (legacy, 802.11abg).
418          */
419         if (num_possible_cpus() > 1)
420                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
421 }
422 EXPORT_SYMBOL(ath9k_hw_init);
423
424 static void ath9k_hw_init_defaults(struct ath_hw *ah)
425 {
426         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
427
428         regulatory->country_code = CTRY_DEFAULT;
429         regulatory->power_limit = MAX_RATE_POWER;
430         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
431
432         ah->hw_version.magic = AR5416_MAGIC;
433         ah->hw_version.subvendorid = 0;
434
435         ah->ah_flags = 0;
436         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
437                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
438         if (!AR_SREV_9100(ah))
439                 ah->ah_flags = AH_USE_EEPROM;
440
441         ah->atim_window = 0;
442         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
443         ah->beacon_interval = 100;
444         ah->enable_32kHz_clock = DONT_USE_32KHZ;
445         ah->slottime = (u32) -1;
446         ah->acktimeout = (u32) -1;
447         ah->ctstimeout = (u32) -1;
448         ah->globaltxtimeout = (u32) -1;
449
450         ah->gbeacon_rate = 0;
451
452         ah->power_mode = ATH9K_PM_UNDEFINED;
453 }
454
455 static int ath9k_hw_rf_claim(struct ath_hw *ah)
456 {
457         u32 val;
458
459         REG_WRITE(ah, AR_PHY(0), 0x00000007);
460
461         val = ath9k_hw_get_radiorev(ah);
462         switch (val & AR_RADIO_SREV_MAJOR) {
463         case 0:
464                 val = AR_RAD5133_SREV_MAJOR;
465                 break;
466         case AR_RAD5133_SREV_MAJOR:
467         case AR_RAD5122_SREV_MAJOR:
468         case AR_RAD2133_SREV_MAJOR:
469         case AR_RAD2122_SREV_MAJOR:
470                 break;
471         default:
472                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
473                           "Radio Chip Rev 0x%02X not supported\n",
474                           val & AR_RADIO_SREV_MAJOR);
475                 return -EOPNOTSUPP;
476         }
477
478         ah->hw_version.analog5GhzRev = val;
479
480         return 0;
481 }
482
483 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
484 {
485         struct ath_common *common = ath9k_hw_common(ah);
486         u32 sum;
487         int i;
488         u16 eeval;
489
490         sum = 0;
491         for (i = 0; i < 3; i++) {
492                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
493                 sum += eeval;
494                 common->macaddr[2 * i] = eeval >> 8;
495                 common->macaddr[2 * i + 1] = eeval & 0xff;
496         }
497         if (sum == 0 || sum == 0xffff * 3)
498                 return -EADDRNOTAVAIL;
499
500         return 0;
501 }
502
503 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
504 {
505         u32 rxgain_type;
506
507         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
508                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
509
510                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
511                         INIT_INI_ARRAY(&ah->iniModesRxGain,
512                         ar9280Modes_backoff_13db_rxgain_9280_2,
513                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
514                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
515                         INIT_INI_ARRAY(&ah->iniModesRxGain,
516                         ar9280Modes_backoff_23db_rxgain_9280_2,
517                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
518                 else
519                         INIT_INI_ARRAY(&ah->iniModesRxGain,
520                         ar9280Modes_original_rxgain_9280_2,
521                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
522         } else {
523                 INIT_INI_ARRAY(&ah->iniModesRxGain,
524                         ar9280Modes_original_rxgain_9280_2,
525                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
526         }
527 }
528
529 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
530 {
531         u32 txgain_type;
532
533         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
534                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
535
536                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
537                         INIT_INI_ARRAY(&ah->iniModesTxGain,
538                         ar9280Modes_high_power_tx_gain_9280_2,
539                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
540                 else
541                         INIT_INI_ARRAY(&ah->iniModesTxGain,
542                         ar9280Modes_original_tx_gain_9280_2,
543                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
544         } else {
545                 INIT_INI_ARRAY(&ah->iniModesTxGain,
546                 ar9280Modes_original_tx_gain_9280_2,
547                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
548         }
549 }
550
551 static int ath9k_hw_post_init(struct ath_hw *ah)
552 {
553         int ecode;
554
555         if (!ath9k_hw_chip_test(ah))
556                 return -ENODEV;
557
558         ecode = ath9k_hw_rf_claim(ah);
559         if (ecode != 0)
560                 return ecode;
561
562         ecode = ath9k_hw_eeprom_init(ah);
563         if (ecode != 0)
564                 return ecode;
565
566         ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
567                   "Eeprom VER: %d, REV: %d\n",
568                   ah->eep_ops->get_eeprom_ver(ah),
569                   ah->eep_ops->get_eeprom_rev(ah));
570
571         if (!AR_SREV_9280_10_OR_LATER(ah)) {
572                 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
573                 if (ecode) {
574                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
575                                   "Failed allocating banks for "
576                                   "external radio\n");
577                         return ecode;
578                 }
579         }
580
581         if (!AR_SREV_9100(ah)) {
582                 ath9k_hw_ani_setup(ah);
583                 ath9k_hw_ani_init(ah);
584         }
585
586         return 0;
587 }
588
589 static bool ath9k_hw_devid_supported(u16 devid)
590 {
591         switch (devid) {
592         case AR5416_DEVID_PCI:
593         case AR5416_DEVID_PCIE:
594         case AR5416_AR9100_DEVID:
595         case AR9160_DEVID_PCI:
596         case AR9280_DEVID_PCI:
597         case AR9280_DEVID_PCIE:
598         case AR9285_DEVID_PCIE:
599         case AR5416_DEVID_AR9287_PCI:
600         case AR5416_DEVID_AR9287_PCIE:
601         case AR9271_USB:
602                 return true;
603         default:
604                 break;
605         }
606         return false;
607 }
608
609 static bool ath9k_hw_macversion_supported(u32 macversion)
610 {
611         switch (macversion) {
612         case AR_SREV_VERSION_5416_PCI:
613         case AR_SREV_VERSION_5416_PCIE:
614         case AR_SREV_VERSION_9160:
615         case AR_SREV_VERSION_9100:
616         case AR_SREV_VERSION_9280:
617         case AR_SREV_VERSION_9285:
618         case AR_SREV_VERSION_9287:
619         case AR_SREV_VERSION_9271:
620                 return true;
621         default:
622                 break;
623         }
624         return false;
625 }
626
627 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
628 {
629         if (AR_SREV_9160_10_OR_LATER(ah)) {
630                 if (AR_SREV_9280_10_OR_LATER(ah)) {
631                         ah->iq_caldata.calData = &iq_cal_single_sample;
632                         ah->adcgain_caldata.calData =
633                                 &adc_gain_cal_single_sample;
634                         ah->adcdc_caldata.calData =
635                                 &adc_dc_cal_single_sample;
636                         ah->adcdc_calinitdata.calData =
637                                 &adc_init_dc_cal;
638                 } else {
639                         ah->iq_caldata.calData = &iq_cal_multi_sample;
640                         ah->adcgain_caldata.calData =
641                                 &adc_gain_cal_multi_sample;
642                         ah->adcdc_caldata.calData =
643                                 &adc_dc_cal_multi_sample;
644                         ah->adcdc_calinitdata.calData =
645                                 &adc_init_dc_cal;
646                 }
647                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
648         }
649 }
650
651 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
652 {
653         if (AR_SREV_9271(ah)) {
654                 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
655                                ARRAY_SIZE(ar9271Modes_9271), 6);
656                 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
657                                ARRAY_SIZE(ar9271Common_9271), 2);
658                 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
659                                ar9271Modes_9271_1_0_only,
660                                ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
661                 return;
662         }
663
664         if (AR_SREV_9287_11_OR_LATER(ah)) {
665                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
666                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
667                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
668                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
669                 if (ah->config.pcie_clock_req)
670                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
671                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
672                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
673                 else
674                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
675                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
676                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
677                                         2);
678         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
679                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
680                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
681                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
682                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
683
684                 if (ah->config.pcie_clock_req)
685                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
686                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
687                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
688                 else
689                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
690                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
691                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
692                                   2);
693         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
694
695
696                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
697                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
698                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
699                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
700
701                 if (ah->config.pcie_clock_req) {
702                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
703                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
704                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
705                 } else {
706                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
707                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
708                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
709                                   2);
710                 }
711         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
712                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
713                                ARRAY_SIZE(ar9285Modes_9285), 6);
714                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
715                                ARRAY_SIZE(ar9285Common_9285), 2);
716
717                 if (ah->config.pcie_clock_req) {
718                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
719                         ar9285PciePhy_clkreq_off_L1_9285,
720                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
721                 } else {
722                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
723                         ar9285PciePhy_clkreq_always_on_L1_9285,
724                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
725                 }
726         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
727                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
728                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
729                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
730                                ARRAY_SIZE(ar9280Common_9280_2), 2);
731
732                 if (ah->config.pcie_clock_req) {
733                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
734                                ar9280PciePhy_clkreq_off_L1_9280,
735                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
736                 } else {
737                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
738                                ar9280PciePhy_clkreq_always_on_L1_9280,
739                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
740                 }
741                 INIT_INI_ARRAY(&ah->iniModesAdditional,
742                                ar9280Modes_fast_clock_9280_2,
743                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
744         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
745                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
746                                ARRAY_SIZE(ar9280Modes_9280), 6);
747                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
748                                ARRAY_SIZE(ar9280Common_9280), 2);
749         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
750                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
751                                ARRAY_SIZE(ar5416Modes_9160), 6);
752                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
753                                ARRAY_SIZE(ar5416Common_9160), 2);
754                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
755                                ARRAY_SIZE(ar5416Bank0_9160), 2);
756                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
757                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
758                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
759                                ARRAY_SIZE(ar5416Bank1_9160), 2);
760                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
761                                ARRAY_SIZE(ar5416Bank2_9160), 2);
762                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
763                                ARRAY_SIZE(ar5416Bank3_9160), 3);
764                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
765                                ARRAY_SIZE(ar5416Bank6_9160), 3);
766                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
767                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
768                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
769                                ARRAY_SIZE(ar5416Bank7_9160), 2);
770                 if (AR_SREV_9160_11(ah)) {
771                         INIT_INI_ARRAY(&ah->iniAddac,
772                                        ar5416Addac_91601_1,
773                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
774                 } else {
775                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
776                                        ARRAY_SIZE(ar5416Addac_9160), 2);
777                 }
778         } else if (AR_SREV_9100_OR_LATER(ah)) {
779                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
780                                ARRAY_SIZE(ar5416Modes_9100), 6);
781                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
782                                ARRAY_SIZE(ar5416Common_9100), 2);
783                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
784                                ARRAY_SIZE(ar5416Bank0_9100), 2);
785                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
786                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
787                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
788                                ARRAY_SIZE(ar5416Bank1_9100), 2);
789                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
790                                ARRAY_SIZE(ar5416Bank2_9100), 2);
791                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
792                                ARRAY_SIZE(ar5416Bank3_9100), 3);
793                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
794                                ARRAY_SIZE(ar5416Bank6_9100), 3);
795                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
796                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
797                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
798                                ARRAY_SIZE(ar5416Bank7_9100), 2);
799                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
800                                ARRAY_SIZE(ar5416Addac_9100), 2);
801         } else {
802                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
803                                ARRAY_SIZE(ar5416Modes), 6);
804                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
805                                ARRAY_SIZE(ar5416Common), 2);
806                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
807                                ARRAY_SIZE(ar5416Bank0), 2);
808                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
809                                ARRAY_SIZE(ar5416BB_RfGain), 3);
810                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
811                                ARRAY_SIZE(ar5416Bank1), 2);
812                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
813                                ARRAY_SIZE(ar5416Bank2), 2);
814                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
815                                ARRAY_SIZE(ar5416Bank3), 3);
816                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
817                                ARRAY_SIZE(ar5416Bank6), 3);
818                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
819                                ARRAY_SIZE(ar5416Bank6TPC), 3);
820                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
821                                ARRAY_SIZE(ar5416Bank7), 2);
822                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
823                                ARRAY_SIZE(ar5416Addac), 2);
824         }
825 }
826
827 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
828 {
829         if (AR_SREV_9287_11_OR_LATER(ah))
830                 INIT_INI_ARRAY(&ah->iniModesRxGain,
831                 ar9287Modes_rx_gain_9287_1_1,
832                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
833         else if (AR_SREV_9287_10(ah))
834                 INIT_INI_ARRAY(&ah->iniModesRxGain,
835                 ar9287Modes_rx_gain_9287_1_0,
836                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
837         else if (AR_SREV_9280_20(ah))
838                 ath9k_hw_init_rxgain_ini(ah);
839
840         if (AR_SREV_9287_11_OR_LATER(ah)) {
841                 INIT_INI_ARRAY(&ah->iniModesTxGain,
842                 ar9287Modes_tx_gain_9287_1_1,
843                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
844         } else if (AR_SREV_9287_10(ah)) {
845                 INIT_INI_ARRAY(&ah->iniModesTxGain,
846                 ar9287Modes_tx_gain_9287_1_0,
847                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
848         } else if (AR_SREV_9280_20(ah)) {
849                 ath9k_hw_init_txgain_ini(ah);
850         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
851                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
852
853                 /* txgain table */
854                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
855                         INIT_INI_ARRAY(&ah->iniModesTxGain,
856                         ar9285Modes_high_power_tx_gain_9285_1_2,
857                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
858                 } else {
859                         INIT_INI_ARRAY(&ah->iniModesTxGain,
860                         ar9285Modes_original_tx_gain_9285_1_2,
861                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
862                 }
863
864         }
865 }
866
867 static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah)
868 {
869         u32 i, j;
870
871         if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
872             test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
873
874                 /* EEPROM Fixup */
875                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
876                         u32 reg = INI_RA(&ah->iniModes, i, 0);
877
878                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
879                                 u32 val = INI_RA(&ah->iniModes, i, j);
880
881                                 INI_RA(&ah->iniModes, i, j) =
882                                         ath9k_hw_ini_fixup(ah,
883                                                            &ah->eeprom.def,
884                                                            reg, val);
885                         }
886                 }
887         }
888 }
889
890 int ath9k_hw_init(struct ath_hw *ah)
891 {
892         struct ath_common *common = ath9k_hw_common(ah);
893         int r = 0;
894
895         if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
896                 ath_print(common, ATH_DBG_FATAL,
897                           "Unsupported device ID: 0x%0x\n",
898                           ah->hw_version.devid);
899                 return -EOPNOTSUPP;
900         }
901
902         ath9k_hw_init_defaults(ah);
903         ath9k_hw_init_config(ah);
904
905         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
906                 ath_print(common, ATH_DBG_FATAL,
907                           "Couldn't reset chip\n");
908                 return -EIO;
909         }
910
911         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
912                 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
913                 return -EIO;
914         }
915
916         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
917                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
918                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
919                         ah->config.serialize_regmode =
920                                 SER_REG_MODE_ON;
921                 } else {
922                         ah->config.serialize_regmode =
923                                 SER_REG_MODE_OFF;
924                 }
925         }
926
927         ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
928                 ah->config.serialize_regmode);
929
930         if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
931                 ath_print(common, ATH_DBG_FATAL,
932                           "Mac Chip Rev 0x%02x.%x is not supported by "
933                           "this driver\n", ah->hw_version.macVersion,
934                           ah->hw_version.macRev);
935                 return -EOPNOTSUPP;
936         }
937
938         if (AR_SREV_9100(ah)) {
939                 ah->iq_caldata.calData = &iq_cal_multi_sample;
940                 ah->supp_cals = IQ_MISMATCH_CAL;
941                 ah->is_pciexpress = false;
942         }
943
944         if (AR_SREV_9271(ah))
945                 ah->is_pciexpress = false;
946
947         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
948
949         ath9k_hw_init_cal_settings(ah);
950
951         ah->ani_function = ATH9K_ANI_ALL;
952         if (AR_SREV_9280_10_OR_LATER(ah)) {
953                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
954                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
955                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
956         } else {
957                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
958                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
959         }
960
961         ath9k_hw_init_mode_regs(ah);
962
963         if (ah->is_pciexpress)
964                 ath9k_hw_configpcipowersave(ah, 0, 0);
965         else
966                 ath9k_hw_disablepcie(ah);
967
968         /* Support for Japan ch.14 (2484) spread */
969         if (AR_SREV_9287_11_OR_LATER(ah)) {
970                 INIT_INI_ARRAY(&ah->iniCckfirNormal,
971                        ar9287Common_normal_cck_fir_coeff_92871_1,
972                        ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
973                 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
974                        ar9287Common_japan_2484_cck_fir_coeff_92871_1,
975                        ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
976         }
977
978         r = ath9k_hw_post_init(ah);
979         if (r)
980                 return r;
981
982         ath9k_hw_init_mode_gain_regs(ah);
983         ath9k_hw_fill_cap_info(ah);
984         ath9k_hw_init_11a_eeprom_fix(ah);
985
986         r = ath9k_hw_init_macaddr(ah);
987         if (r) {
988                 ath_print(common, ATH_DBG_FATAL,
989                           "Failed to initialize MAC address\n");
990                 return r;
991         }
992
993         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
994                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
995         else
996                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
997
998         ath9k_init_nfcal_hist_buffer(ah);
999
1000         common->state = ATH_HW_INITIALIZED;
1001
1002         return 0;
1003 }
1004
1005 static void ath9k_hw_init_bb(struct ath_hw *ah,
1006                              struct ath9k_channel *chan)
1007 {
1008         u32 synthDelay;
1009
1010         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1011         if (IS_CHAN_B(chan))
1012                 synthDelay = (4 * synthDelay) / 22;
1013         else
1014                 synthDelay /= 10;
1015
1016         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1017
1018         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1019 }
1020
1021 static void ath9k_hw_init_qos(struct ath_hw *ah)
1022 {
1023         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1024         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1025
1026         REG_WRITE(ah, AR_QOS_NO_ACK,
1027                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1028                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1029                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1030
1031         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1032         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1033         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1034         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1035         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1036 }
1037
1038 static void ath9k_hw_change_target_baud(struct ath_hw *ah, u32 freq, u32 baud)
1039 {
1040         u32 lcr;
1041         u32 baud_divider = freq * 1000 * 1000 / 16 / baud;
1042
1043         lcr = REG_READ(ah , 0x5100c);
1044         lcr |= 0x80;
1045
1046         REG_WRITE(ah, 0x5100c, lcr);
1047         REG_WRITE(ah, 0x51004, (baud_divider >> 8));
1048         REG_WRITE(ah, 0x51000, (baud_divider & 0xff));
1049
1050         lcr &= ~0x80;
1051         REG_WRITE(ah, 0x5100c, lcr);
1052 }
1053
1054 static void ath9k_hw_init_pll(struct ath_hw *ah,
1055                               struct ath9k_channel *chan)
1056 {
1057         u32 pll;
1058
1059         if (AR_SREV_9100(ah)) {
1060                 if (chan && IS_CHAN_5GHZ(chan))
1061                         pll = 0x1450;
1062                 else
1063                         pll = 0x1458;
1064         } else {
1065                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1066                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1067
1068                         if (chan && IS_CHAN_HALF_RATE(chan))
1069                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1070                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1071                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1072
1073                         if (chan && IS_CHAN_5GHZ(chan)) {
1074                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1075
1076
1077                                 if (AR_SREV_9280_20(ah)) {
1078                                         if (((chan->channel % 20) == 0)
1079                                             || ((chan->channel % 10) == 0))
1080                                                 pll = 0x2850;
1081                                         else
1082                                                 pll = 0x142c;
1083                                 }
1084                         } else {
1085                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1086                         }
1087
1088                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1089
1090                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1091
1092                         if (chan && IS_CHAN_HALF_RATE(chan))
1093                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1094                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1095                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1096
1097                         if (chan && IS_CHAN_5GHZ(chan))
1098                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1099                         else
1100                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1101                 } else {
1102                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1103
1104                         if (chan && IS_CHAN_HALF_RATE(chan))
1105                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1106                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1107                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1108
1109                         if (chan && IS_CHAN_5GHZ(chan))
1110                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1111                         else
1112                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1113                 }
1114         }
1115         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1116
1117         /* Switch the core clock for ar9271 to 117Mhz */
1118         if (AR_SREV_9271(ah)) {
1119                 if ((pll == 0x142c) || (pll == 0x2850) ) {
1120                         udelay(500);
1121                         /* set CLKOBS to output AHB clock */
1122                         REG_WRITE(ah, 0x7020, 0xe);
1123                         /*
1124                          * 0x304: 117Mhz, ahb_ratio: 1x1
1125                          * 0x306: 40Mhz, ahb_ratio: 1x1
1126                          */
1127                         REG_WRITE(ah, 0x50040, 0x304);
1128                         /*
1129                          * makes adjustments for the baud dividor to keep the
1130                          * targetted baud rate based on the used core clock.
1131                          */
1132                         ath9k_hw_change_target_baud(ah, AR9271_CORE_CLOCK,
1133                                                     AR9271_TARGET_BAUD_RATE);
1134                 }
1135         }
1136
1137         udelay(RTC_PLL_SETTLE_DELAY);
1138
1139         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1140 }
1141
1142 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1143 {
1144         int rx_chainmask, tx_chainmask;
1145
1146         rx_chainmask = ah->rxchainmask;
1147         tx_chainmask = ah->txchainmask;
1148
1149         switch (rx_chainmask) {
1150         case 0x5:
1151                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1152                             AR_PHY_SWAP_ALT_CHAIN);
1153         case 0x3:
1154                 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1155                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1156                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1157                         break;
1158                 }
1159         case 0x1:
1160         case 0x2:
1161         case 0x7:
1162                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1163                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1164                 break;
1165         default:
1166                 break;
1167         }
1168
1169         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1170         if (tx_chainmask == 0x5) {
1171                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1172                             AR_PHY_SWAP_ALT_CHAIN);
1173         }
1174         if (AR_SREV_9100(ah))
1175                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1176                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1177 }
1178
1179 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1180                                           enum nl80211_iftype opmode)
1181 {
1182         ah->mask_reg = AR_IMR_TXERR |
1183                 AR_IMR_TXURN |
1184                 AR_IMR_RXERR |
1185                 AR_IMR_RXORN |
1186                 AR_IMR_BCNMISC;
1187
1188         if (ah->config.intr_mitigation)
1189                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1190         else
1191                 ah->mask_reg |= AR_IMR_RXOK;
1192
1193         ah->mask_reg |= AR_IMR_TXOK;
1194
1195         if (opmode == NL80211_IFTYPE_AP)
1196                 ah->mask_reg |= AR_IMR_MIB;
1197
1198         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1199         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1200
1201         if (!AR_SREV_9100(ah)) {
1202                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1203                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1204                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1205         }
1206 }
1207
1208 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1209 {
1210         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1211                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1212                           "bad ack timeout %u\n", us);
1213                 ah->acktimeout = (u32) -1;
1214                 return false;
1215         } else {
1216                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1217                               AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1218                 ah->acktimeout = us;
1219                 return true;
1220         }
1221 }
1222
1223 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1224 {
1225         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1226                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1227                           "bad cts timeout %u\n", us);
1228                 ah->ctstimeout = (u32) -1;
1229                 return false;
1230         } else {
1231                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1232                               AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1233                 ah->ctstimeout = us;
1234                 return true;
1235         }
1236 }
1237
1238 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1239 {
1240         if (tu > 0xFFFF) {
1241                 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1242                           "bad global tx timeout %u\n", tu);
1243                 ah->globaltxtimeout = (u32) -1;
1244                 return false;
1245         } else {
1246                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1247                 ah->globaltxtimeout = tu;
1248                 return true;
1249         }
1250 }
1251
1252 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1253 {
1254         ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1255                   ah->misc_mode);
1256
1257         if (ah->misc_mode != 0)
1258                 REG_WRITE(ah, AR_PCU_MISC,
1259                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1260         if (ah->slottime != (u32) -1)
1261                 ath9k_hw_setslottime(ah, ah->slottime);
1262         if (ah->acktimeout != (u32) -1)
1263                 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1264         if (ah->ctstimeout != (u32) -1)
1265                 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1266         if (ah->globaltxtimeout != (u32) -1)
1267                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1268 }
1269
1270 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1271 {
1272         return vendorid == ATHEROS_VENDOR_ID ?
1273                 ath9k_hw_devname(devid) : NULL;
1274 }
1275
1276 void ath9k_hw_detach(struct ath_hw *ah)
1277 {
1278         struct ath_common *common = ath9k_hw_common(ah);
1279
1280         if (common->state <= ATH_HW_INITIALIZED)
1281                 goto free_hw;
1282
1283         if (!AR_SREV_9100(ah))
1284                 ath9k_hw_ani_disable(ah);
1285
1286         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1287
1288 free_hw:
1289         if (!AR_SREV_9280_10_OR_LATER(ah))
1290                 ath9k_hw_rf_free_ext_banks(ah);
1291         kfree(ah);
1292         ah = NULL;
1293 }
1294 EXPORT_SYMBOL(ath9k_hw_detach);
1295
1296 /*******/
1297 /* INI */
1298 /*******/
1299
1300 static void ath9k_hw_override_ini(struct ath_hw *ah,
1301                                   struct ath9k_channel *chan)
1302 {
1303         u32 val;
1304
1305         if (AR_SREV_9271(ah)) {
1306                 /*
1307                  * Enable spectral scan to solution for issues with stuck
1308                  * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1309                  * AR9271 1.1
1310                  */
1311                 if (AR_SREV_9271_10(ah)) {
1312                         val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) |
1313                               AR_PHY_SPECTRAL_SCAN_ENABLE;
1314                         REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1315                 }
1316                 else if (AR_SREV_9271_11(ah))
1317                         /*
1318                          * change AR_PHY_RF_CTL3 setting to fix MAC issue
1319                          * present on AR9271 1.1
1320                          */
1321                         REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1322                 return;
1323         }
1324
1325         /*
1326          * Set the RX_ABORT and RX_DIS and clear if off only after
1327          * RXE is set for MAC. This prevents frames with corrupted
1328          * descriptor status.
1329          */
1330         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1331
1332         if (AR_SREV_9280_10_OR_LATER(ah)) {
1333                 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1334                                (~AR_PCU_MISC_MODE2_HWWAR1);
1335
1336                 if (AR_SREV_9287_10_OR_LATER(ah))
1337                         val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1338
1339                 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1340         }
1341
1342         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1343             AR_SREV_9280_10_OR_LATER(ah))
1344                 return;
1345         /*
1346          * Disable BB clock gating
1347          * Necessary to avoid issues on AR5416 2.0
1348          */
1349         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1350 }
1351
1352 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1353                               struct ar5416_eeprom_def *pEepData,
1354                               u32 reg, u32 value)
1355 {
1356         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1357         struct ath_common *common = ath9k_hw_common(ah);
1358
1359         switch (ah->hw_version.devid) {
1360         case AR9280_DEVID_PCI:
1361                 if (reg == 0x7894) {
1362                         ath_print(common, ATH_DBG_EEPROM,
1363                                 "ini VAL: %x  EEPROM: %x\n", value,
1364                                 (pBase->version & 0xff));
1365
1366                         if ((pBase->version & 0xff) > 0x0a) {
1367                                 ath_print(common, ATH_DBG_EEPROM,
1368                                           "PWDCLKIND: %d\n",
1369                                           pBase->pwdclkind);
1370                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1371                                 value |= AR_AN_TOP2_PWDCLKIND &
1372                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1373                         } else {
1374                                 ath_print(common, ATH_DBG_EEPROM,
1375                                           "PWDCLKIND Earlier Rev\n");
1376                         }
1377
1378                         ath_print(common, ATH_DBG_EEPROM,
1379                                   "final ini VAL: %x\n", value);
1380                 }
1381                 break;
1382         }
1383
1384         return value;
1385 }
1386
1387 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1388                               struct ar5416_eeprom_def *pEepData,
1389                               u32 reg, u32 value)
1390 {
1391         if (ah->eep_map == EEP_MAP_4KBITS)
1392                 return value;
1393         else
1394                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1395 }
1396
1397 static void ath9k_olc_init(struct ath_hw *ah)
1398 {
1399         u32 i;
1400
1401         if (OLC_FOR_AR9287_10_LATER) {
1402                 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1403                                 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1404                 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1405                                 AR9287_AN_TXPC0_TXPCMODE,
1406                                 AR9287_AN_TXPC0_TXPCMODE_S,
1407                                 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1408                 udelay(100);
1409         } else {
1410                 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1411                         ah->originalGain[i] =
1412                                 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1413                                                 AR_PHY_TX_GAIN);
1414                 ah->PDADCdelta = 0;
1415         }
1416 }
1417
1418 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1419                               struct ath9k_channel *chan)
1420 {
1421         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1422
1423         if (IS_CHAN_B(chan))
1424                 ctl |= CTL_11B;
1425         else if (IS_CHAN_G(chan))
1426                 ctl |= CTL_11G;
1427         else
1428                 ctl |= CTL_11A;
1429
1430         return ctl;
1431 }
1432
1433 static int ath9k_hw_process_ini(struct ath_hw *ah,
1434                                 struct ath9k_channel *chan)
1435 {
1436         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1437         int i, regWrites = 0;
1438         struct ieee80211_channel *channel = chan->chan;
1439         u32 modesIndex, freqIndex;
1440
1441         switch (chan->chanmode) {
1442         case CHANNEL_A:
1443         case CHANNEL_A_HT20:
1444                 modesIndex = 1;
1445                 freqIndex = 1;
1446                 break;
1447         case CHANNEL_A_HT40PLUS:
1448         case CHANNEL_A_HT40MINUS:
1449                 modesIndex = 2;
1450                 freqIndex = 1;
1451                 break;
1452         case CHANNEL_G:
1453         case CHANNEL_G_HT20:
1454         case CHANNEL_B:
1455                 modesIndex = 4;
1456                 freqIndex = 2;
1457                 break;
1458         case CHANNEL_G_HT40PLUS:
1459         case CHANNEL_G_HT40MINUS:
1460                 modesIndex = 3;
1461                 freqIndex = 2;
1462                 break;
1463
1464         default:
1465                 return -EINVAL;
1466         }
1467
1468         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1469         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1470         ah->eep_ops->set_addac(ah, chan);
1471
1472         if (AR_SREV_5416_22_OR_LATER(ah)) {
1473                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1474         } else {
1475                 struct ar5416IniArray temp;
1476                 u32 addacSize =
1477                         sizeof(u32) * ah->iniAddac.ia_rows *
1478                         ah->iniAddac.ia_columns;
1479
1480                 memcpy(ah->addac5416_21,
1481                        ah->iniAddac.ia_array, addacSize);
1482
1483                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1484
1485                 temp.ia_array = ah->addac5416_21;
1486                 temp.ia_columns = ah->iniAddac.ia_columns;
1487                 temp.ia_rows = ah->iniAddac.ia_rows;
1488                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1489         }
1490
1491         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1492
1493         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1494                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1495                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1496
1497                 REG_WRITE(ah, reg, val);
1498
1499                 if (reg >= 0x7800 && reg < 0x78a0
1500                     && ah->config.analog_shiftreg) {
1501                         udelay(100);
1502                 }
1503
1504                 DO_DELAY(regWrites);
1505         }
1506
1507         if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1508                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1509
1510         if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1511             AR_SREV_9287_10_OR_LATER(ah))
1512                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1513
1514         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1515                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1516                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1517
1518                 REG_WRITE(ah, reg, val);
1519
1520                 if (reg >= 0x7800 && reg < 0x78a0
1521                     && ah->config.analog_shiftreg) {
1522                         udelay(100);
1523                 }
1524
1525                 DO_DELAY(regWrites);
1526         }
1527
1528         ath9k_hw_write_regs(ah, freqIndex, regWrites);
1529
1530         if (AR_SREV_9271_10(ah))
1531                 REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1532                                 modesIndex, regWrites);
1533
1534         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1535                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1536                                 regWrites);
1537         }
1538
1539         ath9k_hw_override_ini(ah, chan);
1540         ath9k_hw_set_regs(ah, chan);
1541         ath9k_hw_init_chain_masks(ah);
1542
1543         if (OLC_FOR_AR9280_20_LATER)
1544                 ath9k_olc_init(ah);
1545
1546         ah->eep_ops->set_txpower(ah, chan,
1547                                  ath9k_regd_get_ctl(regulatory, chan),
1548                                  channel->max_antenna_gain * 2,
1549                                  channel->max_power * 2,
1550                                  min((u32) MAX_RATE_POWER,
1551                                  (u32) regulatory->power_limit));
1552
1553         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1554                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1555                           "ar5416SetRfRegs failed\n");
1556                 return -EIO;
1557         }
1558
1559         return 0;
1560 }
1561
1562 /****************************************/
1563 /* Reset and Channel Switching Routines */
1564 /****************************************/
1565
1566 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1567 {
1568         u32 rfMode = 0;
1569
1570         if (chan == NULL)
1571                 return;
1572
1573         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1574                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1575
1576         if (!AR_SREV_9280_10_OR_LATER(ah))
1577                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1578                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1579
1580         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1581                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1582
1583         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1584 }
1585
1586 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1587 {
1588         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1589 }
1590
1591 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1592 {
1593         u32 regval;
1594
1595         /*
1596          * set AHB_MODE not to do cacheline prefetches
1597         */
1598         regval = REG_READ(ah, AR_AHB_MODE);
1599         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1600
1601         /*
1602          * let mac dma reads be in 128 byte chunks
1603          */
1604         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1605         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1606
1607         /*
1608          * Restore TX Trigger Level to its pre-reset value.
1609          * The initial value depends on whether aggregation is enabled, and is
1610          * adjusted whenever underruns are detected.
1611          */
1612         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1613
1614         /*
1615          * let mac dma writes be in 128 byte chunks
1616          */
1617         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1618         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1619
1620         /*
1621          * Setup receive FIFO threshold to hold off TX activities
1622          */
1623         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1624
1625         /*
1626          * reduce the number of usable entries in PCU TXBUF to avoid
1627          * wrap around issues.
1628          */
1629         if (AR_SREV_9285(ah)) {
1630                 /* For AR9285 the number of Fifos are reduced to half.
1631                  * So set the usable tx buf size also to half to
1632                  * avoid data/delimiter underruns
1633                  */
1634                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1635                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1636         } else if (!AR_SREV_9271(ah)) {
1637                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1638                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1639         }
1640 }
1641
1642 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1643 {
1644         u32 val;
1645
1646         val = REG_READ(ah, AR_STA_ID1);
1647         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1648         switch (opmode) {
1649         case NL80211_IFTYPE_AP:
1650                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1651                           | AR_STA_ID1_KSRCH_MODE);
1652                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1653                 break;
1654         case NL80211_IFTYPE_ADHOC:
1655         case NL80211_IFTYPE_MESH_POINT:
1656                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1657                           | AR_STA_ID1_KSRCH_MODE);
1658                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1659                 break;
1660         case NL80211_IFTYPE_STATION:
1661         case NL80211_IFTYPE_MONITOR:
1662                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1663                 break;
1664         }
1665 }
1666
1667 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1668                                                  u32 coef_scaled,
1669                                                  u32 *coef_mantissa,
1670                                                  u32 *coef_exponent)
1671 {
1672         u32 coef_exp, coef_man;
1673
1674         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1675                 if ((coef_scaled >> coef_exp) & 0x1)
1676                         break;
1677
1678         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1679
1680         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1681
1682         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1683         *coef_exponent = coef_exp - 16;
1684 }
1685
1686 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1687                                      struct ath9k_channel *chan)
1688 {
1689         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1690         u32 clockMhzScaled = 0x64000000;
1691         struct chan_centers centers;
1692
1693         if (IS_CHAN_HALF_RATE(chan))
1694                 clockMhzScaled = clockMhzScaled >> 1;
1695         else if (IS_CHAN_QUARTER_RATE(chan))
1696                 clockMhzScaled = clockMhzScaled >> 2;
1697
1698         ath9k_hw_get_channel_centers(ah, chan, &centers);
1699         coef_scaled = clockMhzScaled / centers.synth_center;
1700
1701         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1702                                       &ds_coef_exp);
1703
1704         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1705                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1706         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1707                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1708
1709         coef_scaled = (9 * coef_scaled) / 10;
1710
1711         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1712                                       &ds_coef_exp);
1713
1714         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1715                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1716         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1717                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1718 }
1719
1720 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1721 {
1722         u32 rst_flags;
1723         u32 tmpReg;
1724
1725         if (AR_SREV_9100(ah)) {
1726                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1727                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1728                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1729                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1730                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1731         }
1732
1733         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1734                   AR_RTC_FORCE_WAKE_ON_INT);
1735
1736         if (AR_SREV_9100(ah)) {
1737                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1738                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1739         } else {
1740                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1741                 if (tmpReg &
1742                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1743                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1744                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1745                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1746                 } else {
1747                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1748                 }
1749
1750                 rst_flags = AR_RTC_RC_MAC_WARM;
1751                 if (type == ATH9K_RESET_COLD)
1752                         rst_flags |= AR_RTC_RC_MAC_COLD;
1753         }
1754
1755         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1756         udelay(50);
1757
1758         REG_WRITE(ah, AR_RTC_RC, 0);
1759         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1760                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1761                           "RTC stuck in MAC reset\n");
1762                 return false;
1763         }
1764
1765         if (!AR_SREV_9100(ah))
1766                 REG_WRITE(ah, AR_RC, 0);
1767
1768         if (AR_SREV_9100(ah))
1769                 udelay(50);
1770
1771         return true;
1772 }
1773
1774 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1775 {
1776         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1777                   AR_RTC_FORCE_WAKE_ON_INT);
1778
1779         if (!AR_SREV_9100(ah))
1780                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1781
1782         REG_WRITE(ah, AR_RTC_RESET, 0);
1783         udelay(2);
1784
1785         if (!AR_SREV_9100(ah))
1786                 REG_WRITE(ah, AR_RC, 0);
1787
1788         REG_WRITE(ah, AR_RTC_RESET, 1);
1789
1790         if (!ath9k_hw_wait(ah,
1791                            AR_RTC_STATUS,
1792                            AR_RTC_STATUS_M,
1793                            AR_RTC_STATUS_ON,
1794                            AH_WAIT_TIMEOUT)) {
1795                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1796                           "RTC not waking up\n");
1797                 return false;
1798         }
1799
1800         ath9k_hw_read_revisions(ah);
1801
1802         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1803 }
1804
1805 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1806 {
1807         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1808                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1809
1810         switch (type) {
1811         case ATH9K_RESET_POWER_ON:
1812                 return ath9k_hw_set_reset_power_on(ah);
1813         case ATH9K_RESET_WARM:
1814         case ATH9K_RESET_COLD:
1815                 return ath9k_hw_set_reset(ah, type);
1816         default:
1817                 return false;
1818         }
1819 }
1820
1821 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1822 {
1823         u32 phymode;
1824         u32 enableDacFifo = 0;
1825
1826         if (AR_SREV_9285_10_OR_LATER(ah))
1827                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1828                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1829
1830         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1831                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1832
1833         if (IS_CHAN_HT40(chan)) {
1834                 phymode |= AR_PHY_FC_DYN2040_EN;
1835
1836                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1837                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1838                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1839
1840         }
1841         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1842
1843         ath9k_hw_set11nmac2040(ah);
1844
1845         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1846         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1847 }
1848
1849 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1850                                 struct ath9k_channel *chan)
1851 {
1852         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1853                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1854                         return false;
1855         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1856                 return false;
1857
1858         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1859                 return false;
1860
1861         ah->chip_fullsleep = false;
1862         ath9k_hw_init_pll(ah, chan);
1863         ath9k_hw_set_rfmode(ah, chan);
1864
1865         return true;
1866 }
1867
1868 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1869                                     struct ath9k_channel *chan)
1870 {
1871         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1872         struct ath_common *common = ath9k_hw_common(ah);
1873         struct ieee80211_channel *channel = chan->chan;
1874         u32 synthDelay, qnum;
1875         int r;
1876
1877         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1878                 if (ath9k_hw_numtxpending(ah, qnum)) {
1879                         ath_print(common, ATH_DBG_QUEUE,
1880                                   "Transmit frames pending on "
1881                                   "queue %d\n", qnum);
1882                         return false;
1883                 }
1884         }
1885
1886         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1887         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1888                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1889                 ath_print(common, ATH_DBG_FATAL,
1890                           "Could not kill baseband RX\n");
1891                 return false;
1892         }
1893
1894         ath9k_hw_set_regs(ah, chan);
1895
1896         r = ah->ath9k_hw_rf_set_freq(ah, chan);
1897         if (r) {
1898                 ath_print(common, ATH_DBG_FATAL,
1899                           "Failed to set channel\n");
1900                 return false;
1901         }
1902
1903         ah->eep_ops->set_txpower(ah, chan,
1904                              ath9k_regd_get_ctl(regulatory, chan),
1905                              channel->max_antenna_gain * 2,
1906                              channel->max_power * 2,
1907                              min((u32) MAX_RATE_POWER,
1908                              (u32) regulatory->power_limit));
1909
1910         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1911         if (IS_CHAN_B(chan))
1912                 synthDelay = (4 * synthDelay) / 22;
1913         else
1914                 synthDelay /= 10;
1915
1916         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1917
1918         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1919
1920         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1921                 ath9k_hw_set_delta_slope(ah, chan);
1922
1923         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1924
1925         if (!chan->oneTimeCalsDone)
1926                 chan->oneTimeCalsDone = true;
1927
1928         return true;
1929 }
1930
1931 static void ath9k_enable_rfkill(struct ath_hw *ah)
1932 {
1933         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1934                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1935
1936         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1937                     AR_GPIO_INPUT_MUX2_RFSILENT);
1938
1939         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1940         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1941 }
1942
1943 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1944                     bool bChannelChange)
1945 {
1946         struct ath_common *common = ath9k_hw_common(ah);
1947         u32 saveLedState;
1948         struct ath9k_channel *curchan = ah->curchan;
1949         u32 saveDefAntenna;
1950         u32 macStaId1;
1951         u64 tsf = 0;
1952         int i, rx_chainmask, r;
1953
1954         ah->txchainmask = common->tx_chainmask;
1955         ah->rxchainmask = common->rx_chainmask;
1956
1957         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1958                 return -EIO;
1959
1960         if (curchan && !ah->chip_fullsleep)
1961                 ath9k_hw_getnf(ah, curchan);
1962
1963         if (bChannelChange &&
1964             (ah->chip_fullsleep != true) &&
1965             (ah->curchan != NULL) &&
1966             (chan->channel != ah->curchan->channel) &&
1967             ((chan->channelFlags & CHANNEL_ALL) ==
1968              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1969              !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1970              IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1971
1972                 if (ath9k_hw_channel_change(ah, chan)) {
1973                         ath9k_hw_loadnf(ah, ah->curchan);
1974                         ath9k_hw_start_nfcal(ah);
1975                         return 0;
1976                 }
1977         }
1978
1979         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1980         if (saveDefAntenna == 0)
1981                 saveDefAntenna = 1;
1982
1983         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1984
1985         /* For chips on which RTC reset is done, save TSF before it gets cleared */
1986         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1987                 tsf = ath9k_hw_gettsf64(ah);
1988
1989         saveLedState = REG_READ(ah, AR_CFG_LED) &
1990                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1991                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1992
1993         ath9k_hw_mark_phy_inactive(ah);
1994
1995         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1996                 REG_WRITE(ah,
1997                           AR9271_RESET_POWER_DOWN_CONTROL,
1998                           AR9271_RADIO_RF_RST);
1999                 udelay(50);
2000         }
2001
2002         if (!ath9k_hw_chip_reset(ah, chan)) {
2003                 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
2004                 return -EINVAL;
2005         }
2006
2007         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2008                 ah->htc_reset_init = false;
2009                 REG_WRITE(ah,
2010                           AR9271_RESET_POWER_DOWN_CONTROL,
2011                           AR9271_GATE_MAC_CTL);
2012                 udelay(50);
2013         }
2014
2015         /* Restore TSF */
2016         if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2017                 ath9k_hw_settsf64(ah, tsf);
2018
2019         if (AR_SREV_9280_10_OR_LATER(ah))
2020                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2021
2022         if (AR_SREV_9287_12_OR_LATER(ah)) {
2023                 /* Enable ASYNC FIFO */
2024                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2025                                 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2026                 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2027                 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2028                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2029                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2030                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2031         }
2032         r = ath9k_hw_process_ini(ah, chan);
2033         if (r)
2034                 return r;
2035
2036         /* Setup MFP options for CCMP */
2037         if (AR_SREV_9280_20_OR_LATER(ah)) {
2038                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2039                  * frames when constructing CCMP AAD. */
2040                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2041                               0xc7ff);
2042                 ah->sw_mgmt_crypto = false;
2043         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2044                 /* Disable hardware crypto for management frames */
2045                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2046                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2047                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2048                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2049                 ah->sw_mgmt_crypto = true;
2050         } else
2051                 ah->sw_mgmt_crypto = true;
2052
2053         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2054                 ath9k_hw_set_delta_slope(ah, chan);
2055
2056         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2057         ah->eep_ops->set_board_values(ah, chan);
2058
2059         if (AR_SREV_5416(ah))
2060                 ath9k_hw_decrease_chain_power(ah, chan);
2061
2062         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2063         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2064                   | macStaId1
2065                   | AR_STA_ID1_RTS_USE_DEF
2066                   | (ah->config.
2067                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2068                   | ah->sta_id1_defaults);
2069         ath9k_hw_set_operating_mode(ah, ah->opmode);
2070
2071         ath_hw_setbssidmask(common);
2072
2073         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2074
2075         ath9k_hw_write_associd(ah);
2076
2077         REG_WRITE(ah, AR_ISR, ~0);
2078
2079         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2080
2081         r = ah->ath9k_hw_rf_set_freq(ah, chan);
2082         if (r)
2083                 return r;
2084
2085         for (i = 0; i < AR_NUM_DCU; i++)
2086                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2087
2088         ah->intr_txqs = 0;
2089         for (i = 0; i < ah->caps.total_queues; i++)
2090                 ath9k_hw_resettxqueue(ah, i);
2091
2092         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2093         ath9k_hw_init_qos(ah);
2094
2095         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2096                 ath9k_enable_rfkill(ah);
2097
2098         ath9k_hw_init_user_settings(ah);
2099
2100         if (AR_SREV_9287_12_OR_LATER(ah)) {
2101                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2102                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2103                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2104                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2105                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2106                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2107
2108                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2109                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2110
2111                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2112                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2113                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2114                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2115         }
2116         if (AR_SREV_9287_12_OR_LATER(ah)) {
2117                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2118                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2119         }
2120
2121         REG_WRITE(ah, AR_STA_ID1,
2122                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2123
2124         ath9k_hw_set_dma(ah);
2125
2126         REG_WRITE(ah, AR_OBS, 8);
2127
2128         if (ah->config.intr_mitigation) {
2129                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2130                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2131         }
2132
2133         ath9k_hw_init_bb(ah, chan);
2134
2135         if (!ath9k_hw_init_cal(ah, chan))
2136                 return -EIO;
2137
2138         rx_chainmask = ah->rxchainmask;
2139         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2140                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2141                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2142         }
2143
2144         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2145
2146         /*
2147          * For big endian systems turn on swapping for descriptors
2148          */
2149         if (AR_SREV_9100(ah)) {
2150                 u32 mask;
2151                 mask = REG_READ(ah, AR_CFG);
2152                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2153                         ath_print(common, ATH_DBG_RESET,
2154                                 "CFG Byte Swap Set 0x%x\n", mask);
2155                 } else {
2156                         mask =
2157                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2158                         REG_WRITE(ah, AR_CFG, mask);
2159                         ath_print(common, ATH_DBG_RESET,
2160                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2161                 }
2162         } else {
2163                 /* Configure AR9271 target WLAN */
2164                 if (AR_SREV_9271(ah))
2165                         REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2166 #ifdef __BIG_ENDIAN
2167                 else
2168                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2169 #endif
2170         }
2171
2172         if (ah->btcoex_hw.enabled)
2173                 ath9k_hw_btcoex_enable(ah);
2174
2175         return 0;
2176 }
2177 EXPORT_SYMBOL(ath9k_hw_reset);
2178
2179 /************************/
2180 /* Key Cache Management */
2181 /************************/
2182
2183 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2184 {
2185         u32 keyType;
2186
2187         if (entry >= ah->caps.keycache_size) {
2188                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2189                           "keychache entry %u out of range\n", entry);
2190                 return false;
2191         }
2192
2193         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2194
2195         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2196         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2197         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2198         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2199         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2200         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2201         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2202         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2203
2204         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2205                 u16 micentry = entry + 64;
2206
2207                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2208                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2209                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2210                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2211
2212         }
2213
2214         return true;
2215 }
2216 EXPORT_SYMBOL(ath9k_hw_keyreset);
2217
2218 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2219 {
2220         u32 macHi, macLo;
2221
2222         if (entry >= ah->caps.keycache_size) {
2223                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2224                           "keychache entry %u out of range\n", entry);
2225                 return false;
2226         }
2227
2228         if (mac != NULL) {
2229                 macHi = (mac[5] << 8) | mac[4];
2230                 macLo = (mac[3] << 24) |
2231                         (mac[2] << 16) |
2232                         (mac[1] << 8) |
2233                         mac[0];
2234                 macLo >>= 1;
2235                 macLo |= (macHi & 1) << 31;
2236                 macHi >>= 1;
2237         } else {
2238                 macLo = macHi = 0;
2239         }
2240         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2241         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2242
2243         return true;
2244 }
2245 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2246
2247 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2248                                  const struct ath9k_keyval *k,
2249                                  const u8 *mac)
2250 {
2251         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2252         struct ath_common *common = ath9k_hw_common(ah);
2253         u32 key0, key1, key2, key3, key4;
2254         u32 keyType;
2255
2256         if (entry >= pCap->keycache_size) {
2257                 ath_print(common, ATH_DBG_FATAL,
2258                           "keycache entry %u out of range\n", entry);
2259                 return false;
2260         }
2261
2262         switch (k->kv_type) {
2263         case ATH9K_CIPHER_AES_OCB:
2264                 keyType = AR_KEYTABLE_TYPE_AES;
2265                 break;
2266         case ATH9K_CIPHER_AES_CCM:
2267                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2268                         ath_print(common, ATH_DBG_ANY,
2269                                   "AES-CCM not supported by mac rev 0x%x\n",
2270                                   ah->hw_version.macRev);
2271                         return false;
2272                 }
2273                 keyType = AR_KEYTABLE_TYPE_CCM;
2274                 break;
2275         case ATH9K_CIPHER_TKIP:
2276                 keyType = AR_KEYTABLE_TYPE_TKIP;
2277                 if (ATH9K_IS_MIC_ENABLED(ah)
2278                     && entry + 64 >= pCap->keycache_size) {
2279                         ath_print(common, ATH_DBG_ANY,
2280                                   "entry %u inappropriate for TKIP\n", entry);
2281                         return false;
2282                 }
2283                 break;
2284         case ATH9K_CIPHER_WEP:
2285                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2286                         ath_print(common, ATH_DBG_ANY,
2287                                   "WEP key length %u too small\n", k->kv_len);
2288                         return false;
2289                 }
2290                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2291                         keyType = AR_KEYTABLE_TYPE_40;
2292                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2293                         keyType = AR_KEYTABLE_TYPE_104;
2294                 else
2295                         keyType = AR_KEYTABLE_TYPE_128;
2296                 break;
2297         case ATH9K_CIPHER_CLR:
2298                 keyType = AR_KEYTABLE_TYPE_CLR;
2299                 break;
2300         default:
2301                 ath_print(common, ATH_DBG_FATAL,
2302                           "cipher %u not supported\n", k->kv_type);
2303                 return false;
2304         }
2305
2306         key0 = get_unaligned_le32(k->kv_val + 0);
2307         key1 = get_unaligned_le16(k->kv_val + 4);
2308         key2 = get_unaligned_le32(k->kv_val + 6);
2309         key3 = get_unaligned_le16(k->kv_val + 10);
2310         key4 = get_unaligned_le32(k->kv_val + 12);
2311         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2312                 key4 &= 0xff;
2313
2314         /*
2315          * Note: Key cache registers access special memory area that requires
2316          * two 32-bit writes to actually update the values in the internal
2317          * memory. Consequently, the exact order and pairs used here must be
2318          * maintained.
2319          */
2320
2321         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2322                 u16 micentry = entry + 64;
2323
2324                 /*
2325                  * Write inverted key[47:0] first to avoid Michael MIC errors
2326                  * on frames that could be sent or received at the same time.
2327                  * The correct key will be written in the end once everything
2328                  * else is ready.
2329                  */
2330                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2331                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2332
2333                 /* Write key[95:48] */
2334                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2335                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2336
2337                 /* Write key[127:96] and key type */
2338                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2339                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2340
2341                 /* Write MAC address for the entry */
2342                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2343
2344                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2345                         /*
2346                          * TKIP uses two key cache entries:
2347                          * Michael MIC TX/RX keys in the same key cache entry
2348                          * (idx = main index + 64):
2349                          * key0 [31:0] = RX key [31:0]
2350                          * key1 [15:0] = TX key [31:16]
2351                          * key1 [31:16] = reserved
2352                          * key2 [31:0] = RX key [63:32]
2353                          * key3 [15:0] = TX key [15:0]
2354                          * key3 [31:16] = reserved
2355                          * key4 [31:0] = TX key [63:32]
2356                          */
2357                         u32 mic0, mic1, mic2, mic3, mic4;
2358
2359                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2360                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2361                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2362                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2363                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2364
2365                         /* Write RX[31:0] and TX[31:16] */
2366                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2367                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2368
2369                         /* Write RX[63:32] and TX[15:0] */
2370                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2371                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2372
2373                         /* Write TX[63:32] and keyType(reserved) */
2374                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2375                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2376                                   AR_KEYTABLE_TYPE_CLR);
2377
2378                 } else {
2379                         /*
2380                          * TKIP uses four key cache entries (two for group
2381                          * keys):
2382                          * Michael MIC TX/RX keys are in different key cache
2383                          * entries (idx = main index + 64 for TX and
2384                          * main index + 32 + 96 for RX):
2385                          * key0 [31:0] = TX/RX MIC key [31:0]
2386                          * key1 [31:0] = reserved
2387                          * key2 [31:0] = TX/RX MIC key [63:32]
2388                          * key3 [31:0] = reserved
2389                          * key4 [31:0] = reserved
2390                          *
2391                          * Upper layer code will call this function separately
2392                          * for TX and RX keys when these registers offsets are
2393                          * used.
2394                          */
2395                         u32 mic0, mic2;
2396
2397                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2398                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2399
2400                         /* Write MIC key[31:0] */
2401                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2402                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2403
2404                         /* Write MIC key[63:32] */
2405                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2406                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2407
2408                         /* Write TX[63:32] and keyType(reserved) */
2409                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2410                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2411                                   AR_KEYTABLE_TYPE_CLR);
2412                 }
2413
2414                 /* MAC address registers are reserved for the MIC entry */
2415                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2416                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2417
2418                 /*
2419                  * Write the correct (un-inverted) key[47:0] last to enable
2420                  * TKIP now that all other registers are set with correct
2421                  * values.
2422                  */
2423                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2424                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2425         } else {
2426                 /* Write key[47:0] */
2427                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2428                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2429
2430                 /* Write key[95:48] */
2431                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2432                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2433
2434                 /* Write key[127:96] and key type */
2435                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2436                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2437
2438                 /* Write MAC address for the entry */
2439                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2440         }
2441
2442         return true;
2443 }
2444 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2445
2446 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2447 {
2448         if (entry < ah->caps.keycache_size) {
2449                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2450                 if (val & AR_KEYTABLE_VALID)
2451                         return true;
2452         }
2453         return false;
2454 }
2455 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2456
2457 /******************************/
2458 /* Power Management (Chipset) */
2459 /******************************/
2460
2461 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2462 {
2463         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2464         if (setChip) {
2465                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2466                             AR_RTC_FORCE_WAKE_EN);
2467                 if (!AR_SREV_9100(ah))
2468                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2469
2470                 if(!AR_SREV_5416(ah))
2471                         REG_CLR_BIT(ah, (AR_RTC_RESET),
2472                                     AR_RTC_RESET_EN);
2473         }
2474 }
2475
2476 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2477 {
2478         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2479         if (setChip) {
2480                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2481
2482                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2483                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2484                                   AR_RTC_FORCE_WAKE_ON_INT);
2485                 } else {
2486                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2487                                     AR_RTC_FORCE_WAKE_EN);
2488                 }
2489         }
2490 }
2491
2492 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2493 {
2494         u32 val;
2495         int i;
2496
2497         if (setChip) {
2498                 if ((REG_READ(ah, AR_RTC_STATUS) &
2499                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2500                         if (ath9k_hw_set_reset_reg(ah,
2501                                            ATH9K_RESET_POWER_ON) != true) {
2502                                 return false;
2503                         }
2504                         ath9k_hw_init_pll(ah, NULL);
2505                 }
2506                 if (AR_SREV_9100(ah))
2507                         REG_SET_BIT(ah, AR_RTC_RESET,
2508                                     AR_RTC_RESET_EN);
2509
2510                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2511                             AR_RTC_FORCE_WAKE_EN);
2512                 udelay(50);
2513
2514                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2515                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2516                         if (val == AR_RTC_STATUS_ON)
2517                                 break;
2518                         udelay(50);
2519                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2520                                     AR_RTC_FORCE_WAKE_EN);
2521                 }
2522                 if (i == 0) {
2523                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2524                                   "Failed to wakeup in %uus\n",
2525                                   POWER_UP_TIME / 20);
2526                         return false;
2527                 }
2528         }
2529
2530         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2531
2532         return true;
2533 }
2534
2535 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2536 {
2537         struct ath_common *common = ath9k_hw_common(ah);
2538         int status = true, setChip = true;
2539         static const char *modes[] = {
2540                 "AWAKE",
2541                 "FULL-SLEEP",
2542                 "NETWORK SLEEP",
2543                 "UNDEFINED"
2544         };
2545
2546         if (ah->power_mode == mode)
2547                 return status;
2548
2549         ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2550                   modes[ah->power_mode], modes[mode]);
2551
2552         switch (mode) {
2553         case ATH9K_PM_AWAKE:
2554                 status = ath9k_hw_set_power_awake(ah, setChip);
2555                 break;
2556         case ATH9K_PM_FULL_SLEEP:
2557                 ath9k_set_power_sleep(ah, setChip);
2558                 ah->chip_fullsleep = true;
2559                 break;
2560         case ATH9K_PM_NETWORK_SLEEP:
2561                 ath9k_set_power_network_sleep(ah, setChip);
2562                 break;
2563         default:
2564                 ath_print(common, ATH_DBG_FATAL,
2565                           "Unknown power mode %u\n", mode);
2566                 return false;
2567         }
2568         ah->power_mode = mode;
2569
2570         return status;
2571 }
2572 EXPORT_SYMBOL(ath9k_hw_setpower);
2573
2574 /*
2575  * Helper for ASPM support.
2576  *
2577  * Disable PLL when in L0s as well as receiver clock when in L1.
2578  * This power saving option must be enabled through the SerDes.
2579  *
2580  * Programming the SerDes must go through the same 288 bit serial shift
2581  * register as the other analog registers.  Hence the 9 writes.
2582  */
2583 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2584 {
2585         u8 i;
2586         u32 val;
2587
2588         if (ah->is_pciexpress != true)
2589                 return;
2590
2591         /* Do not touch SerDes registers */
2592         if (ah->config.pcie_powersave_enable == 2)
2593                 return;
2594
2595         /* Nothing to do on restore for 11N */
2596         if (!restore) {
2597                 if (AR_SREV_9280_20_OR_LATER(ah)) {
2598                         /*
2599                          * AR9280 2.0 or later chips use SerDes values from the
2600                          * initvals.h initialized depending on chipset during
2601                          * ath9k_hw_init()
2602                          */
2603                         for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2604                                 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2605                                           INI_RA(&ah->iniPcieSerdes, i, 1));
2606                         }
2607                 } else if (AR_SREV_9280(ah) &&
2608                            (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2609                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2610                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2611
2612                         /* RX shut off when elecidle is asserted */
2613                         REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2614                         REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2615                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2616
2617                         /* Shut off CLKREQ active in L1 */
2618                         if (ah->config.pcie_clock_req)
2619                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2620                         else
2621                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2622
2623                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2624                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2625                         REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2626
2627                         /* Load the new settings */
2628                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2629
2630                 } else {
2631                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2632                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2633
2634                         /* RX shut off when elecidle is asserted */
2635                         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2636                         REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2637                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2638
2639                         /*
2640                          * Ignore ah->ah_config.pcie_clock_req setting for
2641                          * pre-AR9280 11n
2642                          */
2643                         REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2644
2645                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2646                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2647                         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2648
2649                         /* Load the new settings */
2650                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2651                 }
2652
2653                 udelay(1000);
2654
2655                 /* set bit 19 to allow forcing of pcie core into L1 state */
2656                 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2657
2658                 /* Several PCIe massages to ensure proper behaviour */
2659                 if (ah->config.pcie_waen) {
2660                         val = ah->config.pcie_waen;
2661                         if (!power_off)
2662                                 val &= (~AR_WA_D3_L1_DISABLE);
2663                 } else {
2664                         if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2665                             AR_SREV_9287(ah)) {
2666                                 val = AR9285_WA_DEFAULT;
2667                                 if (!power_off)
2668                                         val &= (~AR_WA_D3_L1_DISABLE);
2669                         } else if (AR_SREV_9280(ah)) {
2670                                 /*
2671                                  * On AR9280 chips bit 22 of 0x4004 needs to be
2672                                  * set otherwise card may disappear.
2673                                  */
2674                                 val = AR9280_WA_DEFAULT;
2675                                 if (!power_off)
2676                                         val &= (~AR_WA_D3_L1_DISABLE);
2677                         } else
2678                                 val = AR_WA_DEFAULT;
2679                 }
2680
2681                 REG_WRITE(ah, AR_WA, val);
2682         }
2683
2684         if (power_off) {
2685                 /*
2686                  * Set PCIe workaround bits
2687                  * bit 14 in WA register (disable L1) should only
2688                  * be set when device enters D3 and be cleared
2689                  * when device comes back to D0.
2690                  */
2691                 if (ah->config.pcie_waen) {
2692                         if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2693                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2694                 } else {
2695                         if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2696                               AR_SREV_9287(ah)) &&
2697                              (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2698                             (AR_SREV_9280(ah) &&
2699                              (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2700                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2701                         }
2702                 }
2703         }
2704 }
2705 EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2706
2707 /**********************/
2708 /* Interrupt Handling */
2709 /**********************/
2710
2711 bool ath9k_hw_intrpend(struct ath_hw *ah)
2712 {
2713         u32 host_isr;
2714
2715         if (AR_SREV_9100(ah))
2716                 return true;
2717
2718         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2719         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2720                 return true;
2721
2722         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2723         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2724             && (host_isr != AR_INTR_SPURIOUS))
2725                 return true;
2726
2727         return false;
2728 }
2729 EXPORT_SYMBOL(ath9k_hw_intrpend);
2730
2731 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2732 {
2733         u32 isr = 0;
2734         u32 mask2 = 0;
2735         struct ath9k_hw_capabilities *pCap = &ah->caps;
2736         u32 sync_cause = 0;
2737         bool fatal_int = false;
2738         struct ath_common *common = ath9k_hw_common(ah);
2739
2740         if (!AR_SREV_9100(ah)) {
2741                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2742                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2743                             == AR_RTC_STATUS_ON) {
2744                                 isr = REG_READ(ah, AR_ISR);
2745                         }
2746                 }
2747
2748                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2749                         AR_INTR_SYNC_DEFAULT;
2750
2751                 *masked = 0;
2752
2753                 if (!isr && !sync_cause)
2754                         return false;
2755         } else {
2756                 *masked = 0;
2757                 isr = REG_READ(ah, AR_ISR);
2758         }
2759
2760         if (isr) {
2761                 if (isr & AR_ISR_BCNMISC) {
2762                         u32 isr2;
2763                         isr2 = REG_READ(ah, AR_ISR_S2);
2764                         if (isr2 & AR_ISR_S2_TIM)
2765                                 mask2 |= ATH9K_INT_TIM;
2766                         if (isr2 & AR_ISR_S2_DTIM)
2767                                 mask2 |= ATH9K_INT_DTIM;
2768                         if (isr2 & AR_ISR_S2_DTIMSYNC)
2769                                 mask2 |= ATH9K_INT_DTIMSYNC;
2770                         if (isr2 & (AR_ISR_S2_CABEND))
2771                                 mask2 |= ATH9K_INT_CABEND;
2772                         if (isr2 & AR_ISR_S2_GTT)
2773                                 mask2 |= ATH9K_INT_GTT;
2774                         if (isr2 & AR_ISR_S2_CST)
2775                                 mask2 |= ATH9K_INT_CST;
2776                         if (isr2 & AR_ISR_S2_TSFOOR)
2777                                 mask2 |= ATH9K_INT_TSFOOR;
2778                 }
2779
2780                 isr = REG_READ(ah, AR_ISR_RAC);
2781                 if (isr == 0xffffffff) {
2782                         *masked = 0;
2783                         return false;
2784                 }
2785
2786                 *masked = isr & ATH9K_INT_COMMON;
2787
2788                 if (ah->config.intr_mitigation) {
2789                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2790                                 *masked |= ATH9K_INT_RX;
2791                 }
2792
2793                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2794                         *masked |= ATH9K_INT_RX;
2795                 if (isr &
2796                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2797                      AR_ISR_TXEOL)) {
2798                         u32 s0_s, s1_s;
2799
2800                         *masked |= ATH9K_INT_TX;
2801
2802                         s0_s = REG_READ(ah, AR_ISR_S0_S);
2803                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2804                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2805
2806                         s1_s = REG_READ(ah, AR_ISR_S1_S);
2807                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2808                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2809                 }
2810
2811                 if (isr & AR_ISR_RXORN) {
2812                         ath_print(common, ATH_DBG_INTERRUPT,
2813                                   "receive FIFO overrun interrupt\n");
2814                 }
2815
2816                 if (!AR_SREV_9100(ah)) {
2817                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2818                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2819                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
2820                                         *masked |= ATH9K_INT_TIM_TIMER;
2821                         }
2822                 }
2823
2824                 *masked |= mask2;
2825         }
2826
2827         if (AR_SREV_9100(ah))
2828                 return true;
2829
2830         if (isr & AR_ISR_GENTMR) {
2831                 u32 s5_s;
2832
2833                 s5_s = REG_READ(ah, AR_ISR_S5_S);
2834                 if (isr & AR_ISR_GENTMR) {
2835                         ah->intr_gen_timer_trigger =
2836                                 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2837
2838                         ah->intr_gen_timer_thresh =
2839                                 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2840
2841                         if (ah->intr_gen_timer_trigger)
2842                                 *masked |= ATH9K_INT_GENTIMER;
2843
2844                 }
2845         }
2846
2847         if (sync_cause) {
2848                 fatal_int =
2849                         (sync_cause &
2850                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2851                         ? true : false;
2852
2853                 if (fatal_int) {
2854                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2855                                 ath_print(common, ATH_DBG_ANY,
2856                                           "received PCI FATAL interrupt\n");
2857                         }
2858                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2859                                 ath_print(common, ATH_DBG_ANY,
2860                                           "received PCI PERR interrupt\n");
2861                         }
2862                         *masked |= ATH9K_INT_FATAL;
2863                 }
2864                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2865                         ath_print(common, ATH_DBG_INTERRUPT,
2866                                   "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2867                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2868                         REG_WRITE(ah, AR_RC, 0);
2869                         *masked |= ATH9K_INT_FATAL;
2870                 }
2871                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2872                         ath_print(common, ATH_DBG_INTERRUPT,
2873                                   "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2874                 }
2875
2876                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2877                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2878         }
2879
2880         return true;
2881 }
2882 EXPORT_SYMBOL(ath9k_hw_getisr);
2883
2884 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2885 {
2886         u32 omask = ah->mask_reg;
2887         u32 mask, mask2;
2888         struct ath9k_hw_capabilities *pCap = &ah->caps;
2889         struct ath_common *common = ath9k_hw_common(ah);
2890
2891         ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2892
2893         if (omask & ATH9K_INT_GLOBAL) {
2894                 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2895                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2896                 (void) REG_READ(ah, AR_IER);
2897                 if (!AR_SREV_9100(ah)) {
2898                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2899                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2900
2901                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2902                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2903                 }
2904         }
2905
2906         mask = ints & ATH9K_INT_COMMON;
2907         mask2 = 0;
2908
2909         if (ints & ATH9K_INT_TX) {
2910                 if (ah->txok_interrupt_mask)
2911                         mask |= AR_IMR_TXOK;
2912                 if (ah->txdesc_interrupt_mask)
2913                         mask |= AR_IMR_TXDESC;
2914                 if (ah->txerr_interrupt_mask)
2915                         mask |= AR_IMR_TXERR;
2916                 if (ah->txeol_interrupt_mask)
2917                         mask |= AR_IMR_TXEOL;
2918         }
2919         if (ints & ATH9K_INT_RX) {
2920                 mask |= AR_IMR_RXERR;
2921                 if (ah->config.intr_mitigation)
2922                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2923                 else
2924                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2925                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2926                         mask |= AR_IMR_GENTMR;
2927         }
2928
2929         if (ints & (ATH9K_INT_BMISC)) {
2930                 mask |= AR_IMR_BCNMISC;
2931                 if (ints & ATH9K_INT_TIM)
2932                         mask2 |= AR_IMR_S2_TIM;
2933                 if (ints & ATH9K_INT_DTIM)
2934                         mask2 |= AR_IMR_S2_DTIM;
2935                 if (ints & ATH9K_INT_DTIMSYNC)
2936                         mask2 |= AR_IMR_S2_DTIMSYNC;
2937                 if (ints & ATH9K_INT_CABEND)
2938                         mask2 |= AR_IMR_S2_CABEND;
2939                 if (ints & ATH9K_INT_TSFOOR)
2940                         mask2 |= AR_IMR_S2_TSFOOR;
2941         }
2942
2943         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2944                 mask |= AR_IMR_BCNMISC;
2945                 if (ints & ATH9K_INT_GTT)
2946                         mask2 |= AR_IMR_S2_GTT;
2947                 if (ints & ATH9K_INT_CST)
2948                         mask2 |= AR_IMR_S2_CST;
2949         }
2950
2951         ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2952         REG_WRITE(ah, AR_IMR, mask);
2953         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
2954                                            AR_IMR_S2_DTIM |
2955                                            AR_IMR_S2_DTIMSYNC |
2956                                            AR_IMR_S2_CABEND |
2957                                            AR_IMR_S2_CABTO |
2958                                            AR_IMR_S2_TSFOOR |
2959                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
2960         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
2961         ah->mask_reg = ints;
2962
2963         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2964                 if (ints & ATH9K_INT_TIM_TIMER)
2965                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2966                 else
2967                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2968         }
2969
2970         if (ints & ATH9K_INT_GLOBAL) {
2971                 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2972                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2973                 if (!AR_SREV_9100(ah)) {
2974                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2975                                   AR_INTR_MAC_IRQ);
2976                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2977
2978
2979                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2980                                   AR_INTR_SYNC_DEFAULT);
2981                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
2982                                   AR_INTR_SYNC_DEFAULT);
2983                 }
2984                 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2985                           REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2986         }
2987
2988         return omask;
2989 }
2990 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2991
2992 /*******************/
2993 /* Beacon Handling */
2994 /*******************/
2995
2996 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2997 {
2998         int flags = 0;
2999
3000         ah->beacon_interval = beacon_period;
3001
3002         switch (ah->opmode) {
3003         case NL80211_IFTYPE_STATION:
3004         case NL80211_IFTYPE_MONITOR:
3005                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3006                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3007                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3008                 flags |= AR_TBTT_TIMER_EN;
3009                 break;
3010         case NL80211_IFTYPE_ADHOC:
3011         case NL80211_IFTYPE_MESH_POINT:
3012                 REG_SET_BIT(ah, AR_TXCFG,
3013                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3014                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3015                           TU_TO_USEC(next_beacon +
3016                                      (ah->atim_window ? ah->
3017                                       atim_window : 1)));
3018                 flags |= AR_NDP_TIMER_EN;
3019         case NL80211_IFTYPE_AP:
3020                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3021                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3022                           TU_TO_USEC(next_beacon -
3023                                      ah->config.
3024                                      dma_beacon_response_time));
3025                 REG_WRITE(ah, AR_NEXT_SWBA,
3026                           TU_TO_USEC(next_beacon -
3027                                      ah->config.
3028                                      sw_beacon_response_time));
3029                 flags |=
3030                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3031                 break;
3032         default:
3033                 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3034                           "%s: unsupported opmode: %d\n",
3035                           __func__, ah->opmode);
3036                 return;
3037                 break;
3038         }
3039
3040         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3041         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3042         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3043         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3044
3045         beacon_period &= ~ATH9K_BEACON_ENA;
3046         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3047                 ath9k_hw_reset_tsf(ah);
3048         }
3049
3050         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3051 }
3052 EXPORT_SYMBOL(ath9k_hw_beaconinit);
3053
3054 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3055                                     const struct ath9k_beacon_state *bs)
3056 {
3057         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3058         struct ath9k_hw_capabilities *pCap = &ah->caps;
3059         struct ath_common *common = ath9k_hw_common(ah);
3060
3061         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3062
3063         REG_WRITE(ah, AR_BEACON_PERIOD,
3064                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3065         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3066                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3067
3068         REG_RMW_FIELD(ah, AR_RSSI_THR,
3069                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3070
3071         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3072
3073         if (bs->bs_sleepduration > beaconintval)
3074                 beaconintval = bs->bs_sleepduration;
3075
3076         dtimperiod = bs->bs_dtimperiod;
3077         if (bs->bs_sleepduration > dtimperiod)
3078                 dtimperiod = bs->bs_sleepduration;
3079
3080         if (beaconintval == dtimperiod)
3081                 nextTbtt = bs->bs_nextdtim;
3082         else
3083                 nextTbtt = bs->bs_nexttbtt;
3084
3085         ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3086         ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3087         ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3088         ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3089
3090         REG_WRITE(ah, AR_NEXT_DTIM,
3091                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3092         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3093
3094         REG_WRITE(ah, AR_SLEEP1,
3095                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3096                   | AR_SLEEP1_ASSUME_DTIM);
3097
3098         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3099                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3100         else
3101                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3102
3103         REG_WRITE(ah, AR_SLEEP2,
3104                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3105
3106         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3107         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3108
3109         REG_SET_BIT(ah, AR_TIMER_MODE,
3110                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3111                     AR_DTIM_TIMER_EN);
3112
3113         /* TSF Out of Range Threshold */
3114         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3115 }
3116 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3117
3118 /*******************/
3119 /* HW Capabilities */
3120 /*******************/
3121
3122 void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3123 {
3124         struct ath9k_hw_capabilities *pCap = &ah->caps;
3125         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3126         struct ath_common *common = ath9k_hw_common(ah);
3127         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3128
3129         u16 capField = 0, eeval;
3130
3131         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3132         regulatory->current_rd = eeval;
3133
3134         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3135         if (AR_SREV_9285_10_OR_LATER(ah))
3136                 eeval |= AR9285_RDEXT_DEFAULT;
3137         regulatory->current_rd_ext = eeval;
3138
3139         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3140
3141         if (ah->opmode != NL80211_IFTYPE_AP &&
3142             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3143                 if (regulatory->current_rd == 0x64 ||
3144                     regulatory->current_rd == 0x65)
3145                         regulatory->current_rd += 5;
3146                 else if (regulatory->current_rd == 0x41)
3147                         regulatory->current_rd = 0x43;
3148                 ath_print(common, ATH_DBG_REGULATORY,
3149                           "regdomain mapped to 0x%x\n", regulatory->current_rd);
3150         }
3151
3152         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3153         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3154
3155         if (eeval & AR5416_OPFLAGS_11A) {
3156                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3157                 if (ah->config.ht_enable) {
3158                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3159                                 set_bit(ATH9K_MODE_11NA_HT20,
3160                                         pCap->wireless_modes);
3161                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3162                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3163                                         pCap->wireless_modes);
3164                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3165                                         pCap->wireless_modes);
3166                         }
3167                 }
3168         }
3169
3170         if (eeval & AR5416_OPFLAGS_11G) {
3171                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3172                 if (ah->config.ht_enable) {
3173                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3174                                 set_bit(ATH9K_MODE_11NG_HT20,
3175                                         pCap->wireless_modes);
3176                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3177                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3178                                         pCap->wireless_modes);
3179                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3180                                         pCap->wireless_modes);
3181                         }
3182                 }
3183         }
3184
3185         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3186         /*
3187          * For AR9271 we will temporarilly uses the rx chainmax as read from
3188          * the EEPROM.
3189          */
3190         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3191             !(eeval & AR5416_OPFLAGS_11A) &&
3192             !(AR_SREV_9271(ah)))
3193                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3194                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3195         else
3196                 /* Use rx_chainmask from EEPROM. */
3197                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3198
3199         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3200                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3201
3202         pCap->low_2ghz_chan = 2312;
3203         pCap->high_2ghz_chan = 2732;
3204
3205         pCap->low_5ghz_chan = 4920;
3206         pCap->high_5ghz_chan = 6100;
3207
3208         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3209         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3210         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3211
3212         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3213         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3214         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3215
3216         if (ah->config.ht_enable)
3217                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3218         else
3219                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3220
3221         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3222         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3223         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3224         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3225
3226         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3227                 pCap->total_queues =
3228                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3229         else
3230                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3231
3232         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3233                 pCap->keycache_size =
3234                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3235         else
3236                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3237
3238         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3239         pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3240
3241         if (AR_SREV_9285_10_OR_LATER(ah))
3242                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3243         else if (AR_SREV_9280_10_OR_LATER(ah))
3244                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3245         else
3246                 pCap->num_gpio_pins = AR_NUM_GPIO;
3247
3248         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3249                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3250                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3251         } else {
3252                 pCap->rts_aggr_limit = (8 * 1024);
3253         }
3254
3255         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3256
3257 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3258         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3259         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3260                 ah->rfkill_gpio =
3261                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3262                 ah->rfkill_polarity =
3263                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3264
3265                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3266         }
3267 #endif
3268
3269         pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3270
3271         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3272                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3273         else
3274                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3275
3276         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3277                 pCap->reg_cap =
3278                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3279                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3280                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3281                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3282         } else {
3283                 pCap->reg_cap =
3284                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3285                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3286         }
3287
3288         /* Advertise midband for AR5416 with FCC midband set in eeprom */
3289         if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3290             AR_SREV_5416(ah))
3291                 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3292
3293         pCap->num_antcfg_5ghz =
3294                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3295         pCap->num_antcfg_2ghz =
3296                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3297
3298         if (AR_SREV_9280_10_OR_LATER(ah) &&
3299             ath9k_hw_btcoex_supported(ah)) {
3300                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3301                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3302
3303                 if (AR_SREV_9285(ah)) {
3304                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3305                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3306                 } else {
3307                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3308                 }
3309         } else {
3310                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3311         }
3312 }
3313
3314 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3315                             u32 capability, u32 *result)
3316 {
3317         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3318         switch (type) {
3319         case ATH9K_CAP_CIPHER:
3320                 switch (capability) {
3321                 case ATH9K_CIPHER_AES_CCM:
3322                 case ATH9K_CIPHER_AES_OCB:
3323                 case ATH9K_CIPHER_TKIP:
3324                 case ATH9K_CIPHER_WEP:
3325                 case ATH9K_CIPHER_MIC:
3326                 case ATH9K_CIPHER_CLR:
3327                         return true;
3328                 default:
3329                         return false;
3330                 }
3331         case ATH9K_CAP_TKIP_MIC:
3332                 switch (capability) {
3333                 case 0:
3334                         return true;
3335                 case 1:
3336                         return (ah->sta_id1_defaults &
3337                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3338                         false;
3339                 }
3340         case ATH9K_CAP_TKIP_SPLIT:
3341                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3342                         false : true;
3343         case ATH9K_CAP_DIVERSITY:
3344                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3345                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3346                         true : false;
3347         case ATH9K_CAP_MCAST_KEYSRCH:
3348                 switch (capability) {
3349                 case 0:
3350                         return true;
3351                 case 1:
3352                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3353                                 return false;
3354                         } else {
3355                                 return (ah->sta_id1_defaults &
3356                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3357                                         false;
3358                         }
3359                 }
3360                 return false;
3361         case ATH9K_CAP_TXPOW:
3362                 switch (capability) {
3363                 case 0:
3364                         return 0;
3365                 case 1:
3366                         *result = regulatory->power_limit;
3367                         return 0;
3368                 case 2:
3369                         *result = regulatory->max_power_level;
3370                         return 0;
3371                 case 3:
3372                         *result = regulatory->tp_scale;
3373                         return 0;
3374                 }
3375                 return false;
3376         case ATH9K_CAP_DS:
3377                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3378                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3379                         ? false : true;
3380         default:
3381                 return false;
3382         }
3383 }
3384 EXPORT_SYMBOL(ath9k_hw_getcapability);
3385
3386 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3387                             u32 capability, u32 setting, int *status)
3388 {
3389         u32 v;
3390
3391         switch (type) {
3392         case ATH9K_CAP_TKIP_MIC:
3393                 if (setting)
3394                         ah->sta_id1_defaults |=
3395                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3396                 else
3397                         ah->sta_id1_defaults &=
3398                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3399                 return true;
3400         case ATH9K_CAP_DIVERSITY:
3401                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3402                 if (setting)
3403                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3404                 else
3405                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3406                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3407                 return true;
3408         case ATH9K_CAP_MCAST_KEYSRCH:
3409                 if (setting)
3410                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3411                 else
3412                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3413                 return true;
3414         default:
3415                 return false;
3416         }
3417 }
3418 EXPORT_SYMBOL(ath9k_hw_setcapability);
3419
3420 /****************************/
3421 /* GPIO / RFKILL / Antennae */
3422 /****************************/
3423
3424 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3425                                          u32 gpio, u32 type)
3426 {
3427         int addr;
3428         u32 gpio_shift, tmp;
3429
3430         if (gpio > 11)
3431                 addr = AR_GPIO_OUTPUT_MUX3;
3432         else if (gpio > 5)
3433                 addr = AR_GPIO_OUTPUT_MUX2;
3434         else
3435                 addr = AR_GPIO_OUTPUT_MUX1;
3436
3437         gpio_shift = (gpio % 6) * 5;
3438
3439         if (AR_SREV_9280_20_OR_LATER(ah)
3440             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3441                 REG_RMW(ah, addr, (type << gpio_shift),
3442                         (0x1f << gpio_shift));
3443         } else {
3444                 tmp = REG_READ(ah, addr);
3445                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3446                 tmp &= ~(0x1f << gpio_shift);
3447                 tmp |= (type << gpio_shift);
3448                 REG_WRITE(ah, addr, tmp);
3449         }
3450 }
3451
3452 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3453 {
3454         u32 gpio_shift;
3455
3456         BUG_ON(gpio >= ah->caps.num_gpio_pins);
3457
3458         gpio_shift = gpio << 1;
3459
3460         REG_RMW(ah,
3461                 AR_GPIO_OE_OUT,
3462                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3463                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3464 }
3465 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3466
3467 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3468 {
3469 #define MS_REG_READ(x, y) \
3470         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3471
3472         if (gpio >= ah->caps.num_gpio_pins)
3473                 return 0xffffffff;
3474
3475         if (AR_SREV_9287_10_OR_LATER(ah))
3476                 return MS_REG_READ(AR9287, gpio) != 0;
3477         else if (AR_SREV_9285_10_OR_LATER(ah))
3478                 return MS_REG_READ(AR9285, gpio) != 0;
3479         else if (AR_SREV_9280_10_OR_LATER(ah))
3480                 return MS_REG_READ(AR928X, gpio) != 0;
3481         else
3482                 return MS_REG_READ(AR, gpio) != 0;
3483 }
3484 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3485
3486 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3487                          u32 ah_signal_type)
3488 {
3489         u32 gpio_shift;
3490
3491         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3492
3493         gpio_shift = 2 * gpio;
3494
3495         REG_RMW(ah,
3496                 AR_GPIO_OE_OUT,
3497                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3498                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3499 }
3500 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3501
3502 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3503 {
3504         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3505                 AR_GPIO_BIT(gpio));
3506 }
3507 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3508
3509 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3510 {
3511         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3512 }
3513 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3514
3515 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3516 {
3517         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3518 }
3519 EXPORT_SYMBOL(ath9k_hw_setantenna);
3520
3521 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3522                                enum ath9k_ant_setting settings,
3523                                struct ath9k_channel *chan,
3524                                u8 *tx_chainmask,
3525                                u8 *rx_chainmask,
3526                                u8 *antenna_cfgd)
3527 {
3528         static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3529
3530         if (AR_SREV_9280(ah)) {
3531                 if (!tx_chainmask_cfg) {
3532
3533                         tx_chainmask_cfg = *tx_chainmask;
3534                         rx_chainmask_cfg = *rx_chainmask;
3535                 }
3536
3537                 switch (settings) {
3538                 case ATH9K_ANT_FIXED_A:
3539                         *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3540                         *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3541                         *antenna_cfgd = true;
3542                         break;
3543                 case ATH9K_ANT_FIXED_B:
3544                         if (ah->caps.tx_chainmask >
3545                             ATH9K_ANTENNA1_CHAINMASK) {
3546                                 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3547                         }
3548                         *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3549                         *antenna_cfgd = true;
3550                         break;
3551                 case ATH9K_ANT_VARIABLE:
3552                         *tx_chainmask = tx_chainmask_cfg;
3553                         *rx_chainmask = rx_chainmask_cfg;
3554                         *antenna_cfgd = true;
3555                         break;
3556                 default:
3557                         break;
3558                 }
3559         } else {
3560                 ah->config.diversity_control = settings;
3561         }
3562
3563         return true;
3564 }
3565
3566 /*********************/
3567 /* General Operation */
3568 /*********************/
3569
3570 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3571 {
3572         u32 bits = REG_READ(ah, AR_RX_FILTER);
3573         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3574
3575         if (phybits & AR_PHY_ERR_RADAR)
3576                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3577         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3578                 bits |= ATH9K_RX_FILTER_PHYERR;
3579
3580         return bits;
3581 }
3582 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3583
3584 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3585 {
3586         u32 phybits;
3587
3588         REG_WRITE(ah, AR_RX_FILTER, bits);
3589
3590         phybits = 0;
3591         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3592                 phybits |= AR_PHY_ERR_RADAR;
3593         if (bits & ATH9K_RX_FILTER_PHYERR)
3594                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3595         REG_WRITE(ah, AR_PHY_ERR, phybits);
3596
3597         if (phybits)
3598                 REG_WRITE(ah, AR_RXCFG,
3599                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3600         else
3601                 REG_WRITE(ah, AR_RXCFG,
3602                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3603 }
3604 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3605
3606 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3607 {
3608         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3609                 return false;
3610
3611         ath9k_hw_init_pll(ah, NULL);
3612         return true;
3613 }
3614 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3615
3616 bool ath9k_hw_disable(struct ath_hw *ah)
3617 {
3618         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3619                 return false;
3620
3621         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3622                 return false;
3623
3624         ath9k_hw_init_pll(ah, NULL);
3625         return true;
3626 }
3627 EXPORT_SYMBOL(ath9k_hw_disable);
3628
3629 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3630 {
3631         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3632         struct ath9k_channel *chan = ah->curchan;
3633         struct ieee80211_channel *channel = chan->chan;
3634
3635         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3636
3637         ah->eep_ops->set_txpower(ah, chan,
3638                                  ath9k_regd_get_ctl(regulatory, chan),
3639                                  channel->max_antenna_gain * 2,
3640                                  channel->max_power * 2,
3641                                  min((u32) MAX_RATE_POWER,
3642                                  (u32) regulatory->power_limit));
3643 }
3644 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3645
3646 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3647 {
3648         memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3649 }
3650 EXPORT_SYMBOL(ath9k_hw_setmac);
3651
3652 void ath9k_hw_setopmode(struct ath_hw *ah)
3653 {
3654         ath9k_hw_set_operating_mode(ah, ah->opmode);
3655 }
3656 EXPORT_SYMBOL(ath9k_hw_setopmode);
3657
3658 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3659 {
3660         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3661         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3662 }
3663 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3664
3665 void ath9k_hw_write_associd(struct ath_hw *ah)
3666 {
3667         struct ath_common *common = ath9k_hw_common(ah);
3668
3669         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3670         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3671                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3672 }
3673 EXPORT_SYMBOL(ath9k_hw_write_associd);
3674
3675 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3676 {
3677         u64 tsf;
3678
3679         tsf = REG_READ(ah, AR_TSF_U32);
3680         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3681
3682         return tsf;
3683 }
3684 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3685
3686 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3687 {
3688         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3689         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3690 }
3691 EXPORT_SYMBOL(ath9k_hw_settsf64);
3692
3693 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3694 {
3695         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3696                            AH_TSF_WRITE_TIMEOUT))
3697                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3698                           "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3699
3700         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3701 }
3702 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3703
3704 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3705 {
3706         if (setting)
3707                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3708         else
3709                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3710 }
3711 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3712
3713 /*
3714  *  Extend 15-bit time stamp from rx descriptor to
3715  *  a full 64-bit TSF using the current h/w TSF.
3716 */
3717 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3718 {
3719         u64 tsf;
3720
3721         tsf = ath9k_hw_gettsf64(ah);
3722         if ((tsf & 0x7fff) < rstamp)
3723                 tsf -= 0x8000;
3724         return (tsf & ~0x7fff) | rstamp;
3725 }
3726 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3727
3728 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3729 {
3730         if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3731                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3732                           "bad slot time %u\n", us);
3733                 ah->slottime = (u32) -1;
3734                 return false;
3735         } else {
3736                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3737                 ah->slottime = us;
3738                 return true;
3739         }
3740 }
3741 EXPORT_SYMBOL(ath9k_hw_setslottime);
3742
3743 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3744 {
3745         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3746         u32 macmode;
3747
3748         if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3749                 macmode = AR_2040_JOINED_RX_CLEAR;
3750         else
3751                 macmode = 0;
3752
3753         REG_WRITE(ah, AR_2040_MODE, macmode);
3754 }
3755
3756 /* HW Generic timers configuration */
3757
3758 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3759 {
3760         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3761         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3762         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3763         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3764         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3765         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3766         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3767         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3768         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3769         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3770                                 AR_NDP2_TIMER_MODE, 0x0002},
3771         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3772                                 AR_NDP2_TIMER_MODE, 0x0004},
3773         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3774                                 AR_NDP2_TIMER_MODE, 0x0008},
3775         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3776                                 AR_NDP2_TIMER_MODE, 0x0010},
3777         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3778                                 AR_NDP2_TIMER_MODE, 0x0020},
3779         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3780                                 AR_NDP2_TIMER_MODE, 0x0040},
3781         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3782                                 AR_NDP2_TIMER_MODE, 0x0080}
3783 };
3784
3785 /* HW generic timer primitives */
3786
3787 /* compute and clear index of rightmost 1 */
3788 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3789 {
3790         u32 b;
3791
3792         b = *mask;
3793         b &= (0-b);
3794         *mask &= ~b;
3795         b *= debruijn32;
3796         b >>= 27;
3797
3798         return timer_table->gen_timer_index[b];
3799 }
3800
3801 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3802 {
3803         return REG_READ(ah, AR_TSF_L32);
3804 }
3805 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3806
3807 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3808                                           void (*trigger)(void *),
3809                                           void (*overflow)(void *),
3810                                           void *arg,
3811                                           u8 timer_index)
3812 {
3813         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3814         struct ath_gen_timer *timer;
3815
3816         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3817
3818         if (timer == NULL) {
3819                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3820                           "Failed to allocate memory"
3821                           "for hw timer[%d]\n", timer_index);
3822                 return NULL;
3823         }
3824
3825         /* allocate a hardware generic timer slot */
3826         timer_table->timers[timer_index] = timer;
3827         timer->index = timer_index;
3828         timer->trigger = trigger;
3829         timer->overflow = overflow;
3830         timer->arg = arg;
3831
3832         return timer;
3833 }
3834 EXPORT_SYMBOL(ath_gen_timer_alloc);
3835
3836 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3837                               struct ath_gen_timer *timer,
3838                               u32 timer_next,
3839                               u32 timer_period)
3840 {
3841         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3842         u32 tsf;
3843
3844         BUG_ON(!timer_period);
3845
3846         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3847
3848         tsf = ath9k_hw_gettsf32(ah);
3849
3850         ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3851                   "curent tsf %x period %x"
3852                   "timer_next %x\n", tsf, timer_period, timer_next);
3853
3854         /*
3855          * Pull timer_next forward if the current TSF already passed it
3856          * because of software latency
3857          */
3858         if (timer_next < tsf)
3859                 timer_next = tsf + timer_period;
3860
3861         /*
3862          * Program generic timer registers
3863          */
3864         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3865                  timer_next);
3866         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3867                   timer_period);
3868         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3869                     gen_tmr_configuration[timer->index].mode_mask);
3870
3871         /* Enable both trigger and thresh interrupt masks */
3872         REG_SET_BIT(ah, AR_IMR_S5,
3873                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3874                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3875 }
3876 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3877
3878 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3879 {
3880         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3881
3882         if ((timer->index < AR_FIRST_NDP_TIMER) ||
3883                 (timer->index >= ATH_MAX_GEN_TIMER)) {
3884                 return;
3885         }
3886
3887         /* Clear generic timer enable bits. */
3888         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3889                         gen_tmr_configuration[timer->index].mode_mask);
3890
3891         /* Disable both trigger and thresh interrupt masks */
3892         REG_CLR_BIT(ah, AR_IMR_S5,
3893                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3894                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3895
3896         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3897 }
3898 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3899
3900 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3901 {
3902         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3903
3904         /* free the hardware generic timer slot */
3905         timer_table->timers[timer->index] = NULL;
3906         kfree(timer);
3907 }
3908 EXPORT_SYMBOL(ath_gen_timer_free);
3909
3910 /*
3911  * Generic Timer Interrupts handling
3912  */
3913 void ath_gen_timer_isr(struct ath_hw *ah)
3914 {
3915         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3916         struct ath_gen_timer *timer;
3917         struct ath_common *common = ath9k_hw_common(ah);
3918         u32 trigger_mask, thresh_mask, index;
3919
3920         /* get hardware generic timer interrupt status */
3921         trigger_mask = ah->intr_gen_timer_trigger;
3922         thresh_mask = ah->intr_gen_timer_thresh;
3923         trigger_mask &= timer_table->timer_mask.val;
3924         thresh_mask &= timer_table->timer_mask.val;
3925
3926         trigger_mask &= ~thresh_mask;
3927
3928         while (thresh_mask) {
3929                 index = rightmost_index(timer_table, &thresh_mask);
3930                 timer = timer_table->timers[index];
3931                 BUG_ON(!timer);
3932                 ath_print(common, ATH_DBG_HWTIMER,
3933                           "TSF overflow for Gen timer %d\n", index);
3934                 timer->overflow(timer->arg);
3935         }
3936
3937         while (trigger_mask) {
3938                 index = rightmost_index(timer_table, &trigger_mask);
3939                 timer = timer_table->timers[index];
3940                 BUG_ON(!timer);
3941                 ath_print(common, ATH_DBG_HWTIMER,
3942                           "Gen timer[%d] trigger\n", index);
3943                 timer->trigger(timer->arg);
3944         }
3945 }
3946 EXPORT_SYMBOL(ath_gen_timer_isr);
3947
3948 static struct {
3949         u32 version;
3950         const char * name;
3951 } ath_mac_bb_names[] = {
3952         /* Devices with external radios */
3953         { AR_SREV_VERSION_5416_PCI,     "5416" },
3954         { AR_SREV_VERSION_5416_PCIE,    "5418" },
3955         { AR_SREV_VERSION_9100,         "9100" },
3956         { AR_SREV_VERSION_9160,         "9160" },
3957         /* Single-chip solutions */
3958         { AR_SREV_VERSION_9280,         "9280" },
3959         { AR_SREV_VERSION_9285,         "9285" },
3960         { AR_SREV_VERSION_9287,         "9287" },
3961         { AR_SREV_VERSION_9271,         "9271" },
3962 };
3963
3964 /* For devices with external radios */
3965 static struct {
3966         u16 version;
3967         const char * name;
3968 } ath_rf_names[] = {
3969         { 0,                            "5133" },
3970         { AR_RAD5133_SREV_MAJOR,        "5133" },
3971         { AR_RAD5122_SREV_MAJOR,        "5122" },
3972         { AR_RAD2133_SREV_MAJOR,        "2133" },
3973         { AR_RAD2122_SREV_MAJOR,        "2122" }
3974 };
3975
3976 /*
3977  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3978  */
3979 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3980 {
3981         int i;
3982
3983         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3984                 if (ath_mac_bb_names[i].version == mac_bb_version) {
3985                         return ath_mac_bb_names[i].name;
3986                 }
3987         }
3988
3989         return "????";
3990 }
3991
3992 /*
3993  * Return the RF name. "????" is returned if the RF is unknown.
3994  * Used for devices with external radios.
3995  */
3996 static const char *ath9k_hw_rf_name(u16 rf_version)
3997 {
3998         int i;
3999
4000         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
4001                 if (ath_rf_names[i].version == rf_version) {
4002                         return ath_rf_names[i].name;
4003                 }
4004         }
4005
4006         return "????";
4007 }
4008
4009 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
4010 {
4011         int used;
4012
4013         /* chipsets >= AR9280 are single-chip */
4014         if (AR_SREV_9280_10_OR_LATER(ah)) {
4015                 used = snprintf(hw_name, len,
4016                                "Atheros AR%s Rev:%x",
4017                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
4018                                ah->hw_version.macRev);
4019         }
4020         else {
4021                 used = snprintf(hw_name, len,
4022                                "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
4023                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
4024                                ah->hw_version.macRev,
4025                                ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
4026                                                 AR_RADIO_SREV_MAJOR)),
4027                                ah->hw_version.phyRev);
4028         }
4029
4030         hw_name[used] = '\0';
4031 }
4032 EXPORT_SYMBOL(ath9k_hw_name);