f00f5c744f48c2c43e67be8e1d5ad840f1b37ac2
[linux-2.6.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "rc.h"
22 #include "initvals.h"
23
24 #define ATH9K_CLOCK_RATE_CCK            22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
27
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31                               struct ar5416_eeprom_def *pEepData,
32                               u32 reg, u32 value);
33
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38
39 static int __init ath9k_init(void)
40 {
41         return 0;
42 }
43 module_init(ath9k_init);
44
45 static void __exit ath9k_exit(void)
46 {
47         return;
48 }
49 module_exit(ath9k_exit);
50
51 /********************/
52 /* Helper Functions */
53 /********************/
54
55 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
56 {
57         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
58
59         if (!ah->curchan) /* should really check for CCK instead */
60                 return usecs *ATH9K_CLOCK_RATE_CCK;
61         if (conf->channel->band == IEEE80211_BAND_2GHZ)
62                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
63         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
64 }
65
66 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
67 {
68         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
69
70         if (conf_is_ht40(conf))
71                 return ath9k_hw_mac_clks(ah, usecs) * 2;
72         else
73                 return ath9k_hw_mac_clks(ah, usecs);
74 }
75
76 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77 {
78         int i;
79
80         BUG_ON(timeout < AH_TIME_QUANTUM);
81
82         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83                 if ((REG_READ(ah, reg) & mask) == val)
84                         return true;
85
86                 udelay(AH_TIME_QUANTUM);
87         }
88
89         ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
90                   "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91                   timeout, reg, REG_READ(ah, reg), mask, val);
92
93         return false;
94 }
95 EXPORT_SYMBOL(ath9k_hw_wait);
96
97 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
98 {
99         u32 retval;
100         int i;
101
102         for (i = 0, retval = 0; i < n; i++) {
103                 retval = (retval << 1) | (val & 1);
104                 val >>= 1;
105         }
106         return retval;
107 }
108
109 bool ath9k_get_channel_edges(struct ath_hw *ah,
110                              u16 flags, u16 *low,
111                              u16 *high)
112 {
113         struct ath9k_hw_capabilities *pCap = &ah->caps;
114
115         if (flags & CHANNEL_5GHZ) {
116                 *low = pCap->low_5ghz_chan;
117                 *high = pCap->high_5ghz_chan;
118                 return true;
119         }
120         if ((flags & CHANNEL_2GHZ)) {
121                 *low = pCap->low_2ghz_chan;
122                 *high = pCap->high_2ghz_chan;
123                 return true;
124         }
125         return false;
126 }
127
128 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
129                            u8 phy, int kbps,
130                            u32 frameLen, u16 rateix,
131                            bool shortPreamble)
132 {
133         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
134
135         if (kbps == 0)
136                 return 0;
137
138         switch (phy) {
139         case WLAN_RC_PHY_CCK:
140                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
141                 if (shortPreamble)
142                         phyTime >>= 1;
143                 numBits = frameLen << 3;
144                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
145                 break;
146         case WLAN_RC_PHY_OFDM:
147                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
148                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
149                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
150                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
151                         txTime = OFDM_SIFS_TIME_QUARTER
152                                 + OFDM_PREAMBLE_TIME_QUARTER
153                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
154                 } else if (ah->curchan &&
155                            IS_CHAN_HALF_RATE(ah->curchan)) {
156                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
157                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
158                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
159                         txTime = OFDM_SIFS_TIME_HALF +
160                                 OFDM_PREAMBLE_TIME_HALF
161                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
162                 } else {
163                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
164                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
165                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
166                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
167                                 + (numSymbols * OFDM_SYMBOL_TIME);
168                 }
169                 break;
170         default:
171                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
172                           "Unknown phy %u (rate ix %u)\n", phy, rateix);
173                 txTime = 0;
174                 break;
175         }
176
177         return txTime;
178 }
179 EXPORT_SYMBOL(ath9k_hw_computetxtime);
180
181 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
182                                   struct ath9k_channel *chan,
183                                   struct chan_centers *centers)
184 {
185         int8_t extoff;
186
187         if (!IS_CHAN_HT40(chan)) {
188                 centers->ctl_center = centers->ext_center =
189                         centers->synth_center = chan->channel;
190                 return;
191         }
192
193         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
194             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
195                 centers->synth_center =
196                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
197                 extoff = 1;
198         } else {
199                 centers->synth_center =
200                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
201                 extoff = -1;
202         }
203
204         centers->ctl_center =
205                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
206         /* 25 MHz spacing is supported by hw but not on upper layers */
207         centers->ext_center =
208                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
209 }
210
211 /******************/
212 /* Chip Revisions */
213 /******************/
214
215 static void ath9k_hw_read_revisions(struct ath_hw *ah)
216 {
217         u32 val;
218
219         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
220
221         if (val == 0xFF) {
222                 val = REG_READ(ah, AR_SREV);
223                 ah->hw_version.macVersion =
224                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
225                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
226                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
227         } else {
228                 if (!AR_SREV_9100(ah))
229                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
230
231                 ah->hw_version.macRev = val & AR_SREV_REVISION;
232
233                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
234                         ah->is_pciexpress = true;
235         }
236 }
237
238 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
239 {
240         u32 val;
241         int i;
242
243         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
244
245         for (i = 0; i < 8; i++)
246                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
247         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
248         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
249
250         return ath9k_hw_reverse_bits(val, 8);
251 }
252
253 /************************************/
254 /* HW Attach, Detach, Init Routines */
255 /************************************/
256
257 static void ath9k_hw_disablepcie(struct ath_hw *ah)
258 {
259         if (AR_SREV_9100(ah))
260                 return;
261
262         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
263         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
264         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
265         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
266         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
267         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
268         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
269         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
270         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
271
272         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
273 }
274
275 static bool ath9k_hw_chip_test(struct ath_hw *ah)
276 {
277         struct ath_common *common = ath9k_hw_common(ah);
278         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
279         u32 regHold[2];
280         u32 patternData[4] = { 0x55555555,
281                                0xaaaaaaaa,
282                                0x66666666,
283                                0x99999999 };
284         int i, j;
285
286         for (i = 0; i < 2; i++) {
287                 u32 addr = regAddr[i];
288                 u32 wrData, rdData;
289
290                 regHold[i] = REG_READ(ah, addr);
291                 for (j = 0; j < 0x100; j++) {
292                         wrData = (j << 16) | j;
293                         REG_WRITE(ah, addr, wrData);
294                         rdData = REG_READ(ah, addr);
295                         if (rdData != wrData) {
296                                 ath_print(common, ATH_DBG_FATAL,
297                                           "address test failed "
298                                           "addr: 0x%08x - wr:0x%08x != "
299                                           "rd:0x%08x\n",
300                                           addr, wrData, rdData);
301                                 return false;
302                         }
303                 }
304                 for (j = 0; j < 4; j++) {
305                         wrData = patternData[j];
306                         REG_WRITE(ah, addr, wrData);
307                         rdData = REG_READ(ah, addr);
308                         if (wrData != rdData) {
309                                 ath_print(common, ATH_DBG_FATAL,
310                                           "address test failed "
311                                           "addr: 0x%08x - wr:0x%08x != "
312                                           "rd:0x%08x\n",
313                                           addr, wrData, rdData);
314                                 return false;
315                         }
316                 }
317                 REG_WRITE(ah, regAddr[i], regHold[i]);
318         }
319         udelay(100);
320
321         return true;
322 }
323
324 static void ath9k_hw_init_config(struct ath_hw *ah)
325 {
326         int i;
327
328         ah->config.dma_beacon_response_time = 2;
329         ah->config.sw_beacon_response_time = 10;
330         ah->config.additional_swba_backoff = 0;
331         ah->config.ack_6mb = 0x0;
332         ah->config.cwm_ignore_extcca = 0;
333         ah->config.pcie_powersave_enable = 0;
334         ah->config.pcie_clock_req = 0;
335         ah->config.pcie_waen = 0;
336         ah->config.analog_shiftreg = 1;
337         ah->config.ofdm_trig_low = 200;
338         ah->config.ofdm_trig_high = 500;
339         ah->config.cck_trig_high = 200;
340         ah->config.cck_trig_low = 100;
341         ah->config.enable_ani = 1;
342
343         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
344                 ah->config.spurchans[i][0] = AR_NO_SPUR;
345                 ah->config.spurchans[i][1] = AR_NO_SPUR;
346         }
347
348         if (ah->hw_version.devid != AR2427_DEVID_PCIE)
349                 ah->config.ht_enable = 1;
350         else
351                 ah->config.ht_enable = 0;
352
353         ah->config.rx_intr_mitigation = true;
354
355         /*
356          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
357          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
358          * This means we use it for all AR5416 devices, and the few
359          * minor PCI AR9280 devices out there.
360          *
361          * Serialization is required because these devices do not handle
362          * well the case of two concurrent reads/writes due to the latency
363          * involved. During one read/write another read/write can be issued
364          * on another CPU while the previous read/write may still be working
365          * on our hardware, if we hit this case the hardware poops in a loop.
366          * We prevent this by serializing reads and writes.
367          *
368          * This issue is not present on PCI-Express devices or pre-AR5416
369          * devices (legacy, 802.11abg).
370          */
371         if (num_possible_cpus() > 1)
372                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
373 }
374 EXPORT_SYMBOL(ath9k_hw_init);
375
376 static void ath9k_hw_init_defaults(struct ath_hw *ah)
377 {
378         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
379
380         regulatory->country_code = CTRY_DEFAULT;
381         regulatory->power_limit = MAX_RATE_POWER;
382         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
383
384         ah->hw_version.magic = AR5416_MAGIC;
385         ah->hw_version.subvendorid = 0;
386
387         ah->ah_flags = 0;
388         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
389                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
390         if (!AR_SREV_9100(ah))
391                 ah->ah_flags = AH_USE_EEPROM;
392
393         ah->atim_window = 0;
394         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
395         ah->beacon_interval = 100;
396         ah->enable_32kHz_clock = DONT_USE_32KHZ;
397         ah->slottime = (u32) -1;
398         ah->globaltxtimeout = (u32) -1;
399         ah->power_mode = ATH9K_PM_UNDEFINED;
400 }
401
402 static int ath9k_hw_rf_claim(struct ath_hw *ah)
403 {
404         u32 val;
405
406         REG_WRITE(ah, AR_PHY(0), 0x00000007);
407
408         val = ath9k_hw_get_radiorev(ah);
409         switch (val & AR_RADIO_SREV_MAJOR) {
410         case 0:
411                 val = AR_RAD5133_SREV_MAJOR;
412                 break;
413         case AR_RAD5133_SREV_MAJOR:
414         case AR_RAD5122_SREV_MAJOR:
415         case AR_RAD2133_SREV_MAJOR:
416         case AR_RAD2122_SREV_MAJOR:
417                 break;
418         default:
419                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
420                           "Radio Chip Rev 0x%02X not supported\n",
421                           val & AR_RADIO_SREV_MAJOR);
422                 return -EOPNOTSUPP;
423         }
424
425         ah->hw_version.analog5GhzRev = val;
426
427         return 0;
428 }
429
430 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
431 {
432         struct ath_common *common = ath9k_hw_common(ah);
433         u32 sum;
434         int i;
435         u16 eeval;
436
437         sum = 0;
438         for (i = 0; i < 3; i++) {
439                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
440                 sum += eeval;
441                 common->macaddr[2 * i] = eeval >> 8;
442                 common->macaddr[2 * i + 1] = eeval & 0xff;
443         }
444         if (sum == 0 || sum == 0xffff * 3)
445                 return -EADDRNOTAVAIL;
446
447         return 0;
448 }
449
450 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
451 {
452         u32 rxgain_type;
453
454         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
455                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
456
457                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
458                         INIT_INI_ARRAY(&ah->iniModesRxGain,
459                         ar9280Modes_backoff_13db_rxgain_9280_2,
460                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
461                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
462                         INIT_INI_ARRAY(&ah->iniModesRxGain,
463                         ar9280Modes_backoff_23db_rxgain_9280_2,
464                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
465                 else
466                         INIT_INI_ARRAY(&ah->iniModesRxGain,
467                         ar9280Modes_original_rxgain_9280_2,
468                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
469         } else {
470                 INIT_INI_ARRAY(&ah->iniModesRxGain,
471                         ar9280Modes_original_rxgain_9280_2,
472                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
473         }
474 }
475
476 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
477 {
478         u32 txgain_type;
479
480         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
481                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
482
483                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
484                         INIT_INI_ARRAY(&ah->iniModesTxGain,
485                         ar9280Modes_high_power_tx_gain_9280_2,
486                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
487                 else
488                         INIT_INI_ARRAY(&ah->iniModesTxGain,
489                         ar9280Modes_original_tx_gain_9280_2,
490                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
491         } else {
492                 INIT_INI_ARRAY(&ah->iniModesTxGain,
493                 ar9280Modes_original_tx_gain_9280_2,
494                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
495         }
496 }
497
498 static int ath9k_hw_post_init(struct ath_hw *ah)
499 {
500         int ecode;
501
502         if (!ath9k_hw_chip_test(ah))
503                 return -ENODEV;
504
505         ecode = ath9k_hw_rf_claim(ah);
506         if (ecode != 0)
507                 return ecode;
508
509         ecode = ath9k_hw_eeprom_init(ah);
510         if (ecode != 0)
511                 return ecode;
512
513         ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
514                   "Eeprom VER: %d, REV: %d\n",
515                   ah->eep_ops->get_eeprom_ver(ah),
516                   ah->eep_ops->get_eeprom_rev(ah));
517
518         if (!AR_SREV_9280_10_OR_LATER(ah)) {
519                 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
520                 if (ecode) {
521                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
522                                   "Failed allocating banks for "
523                                   "external radio\n");
524                         return ecode;
525                 }
526         }
527
528         if (!AR_SREV_9100(ah)) {
529                 ath9k_hw_ani_setup(ah);
530                 ath9k_hw_ani_init(ah);
531         }
532
533         return 0;
534 }
535
536 static bool ath9k_hw_devid_supported(u16 devid)
537 {
538         switch (devid) {
539         case AR5416_DEVID_PCI:
540         case AR5416_DEVID_PCIE:
541         case AR5416_AR9100_DEVID:
542         case AR9160_DEVID_PCI:
543         case AR9280_DEVID_PCI:
544         case AR9280_DEVID_PCIE:
545         case AR9285_DEVID_PCIE:
546         case AR5416_DEVID_AR9287_PCI:
547         case AR5416_DEVID_AR9287_PCIE:
548         case AR9271_USB:
549         case AR2427_DEVID_PCIE:
550                 return true;
551         default:
552                 break;
553         }
554         return false;
555 }
556
557 static bool ath9k_hw_macversion_supported(u32 macversion)
558 {
559         switch (macversion) {
560         case AR_SREV_VERSION_5416_PCI:
561         case AR_SREV_VERSION_5416_PCIE:
562         case AR_SREV_VERSION_9160:
563         case AR_SREV_VERSION_9100:
564         case AR_SREV_VERSION_9280:
565         case AR_SREV_VERSION_9285:
566         case AR_SREV_VERSION_9287:
567         case AR_SREV_VERSION_9271:
568                 return true;
569         default:
570                 break;
571         }
572         return false;
573 }
574
575 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
576 {
577         if (AR_SREV_9160_10_OR_LATER(ah)) {
578                 if (AR_SREV_9280_10_OR_LATER(ah)) {
579                         ah->iq_caldata.calData = &iq_cal_single_sample;
580                         ah->adcgain_caldata.calData =
581                                 &adc_gain_cal_single_sample;
582                         ah->adcdc_caldata.calData =
583                                 &adc_dc_cal_single_sample;
584                         ah->adcdc_calinitdata.calData =
585                                 &adc_init_dc_cal;
586                 } else {
587                         ah->iq_caldata.calData = &iq_cal_multi_sample;
588                         ah->adcgain_caldata.calData =
589                                 &adc_gain_cal_multi_sample;
590                         ah->adcdc_caldata.calData =
591                                 &adc_dc_cal_multi_sample;
592                         ah->adcdc_calinitdata.calData =
593                                 &adc_init_dc_cal;
594                 }
595                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
596         }
597 }
598
599 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
600 {
601         if (AR_SREV_9271(ah)) {
602                 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
603                                ARRAY_SIZE(ar9271Modes_9271), 6);
604                 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
605                                ARRAY_SIZE(ar9271Common_9271), 2);
606                 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
607                                ar9271Modes_9271_1_0_only,
608                                ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
609                 return;
610         }
611
612         if (AR_SREV_9287_11_OR_LATER(ah)) {
613                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
614                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
615                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
616                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
617                 if (ah->config.pcie_clock_req)
618                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
619                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
620                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
621                 else
622                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
623                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
624                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
625                                         2);
626         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
627                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
628                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
629                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
630                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
631
632                 if (ah->config.pcie_clock_req)
633                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
634                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
635                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
636                 else
637                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
638                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
639                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
640                                   2);
641         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
642
643
644                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
645                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
646                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
647                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
648
649                 if (ah->config.pcie_clock_req) {
650                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
651                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
652                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
653                 } else {
654                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
655                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
656                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
657                                   2);
658                 }
659         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
660                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
661                                ARRAY_SIZE(ar9285Modes_9285), 6);
662                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
663                                ARRAY_SIZE(ar9285Common_9285), 2);
664
665                 if (ah->config.pcie_clock_req) {
666                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
667                         ar9285PciePhy_clkreq_off_L1_9285,
668                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
669                 } else {
670                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
671                         ar9285PciePhy_clkreq_always_on_L1_9285,
672                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
673                 }
674         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
675                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
676                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
677                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
678                                ARRAY_SIZE(ar9280Common_9280_2), 2);
679
680                 if (ah->config.pcie_clock_req) {
681                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
682                                ar9280PciePhy_clkreq_off_L1_9280,
683                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
684                 } else {
685                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
686                                ar9280PciePhy_clkreq_always_on_L1_9280,
687                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
688                 }
689                 INIT_INI_ARRAY(&ah->iniModesAdditional,
690                                ar9280Modes_fast_clock_9280_2,
691                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
692         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
693                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
694                                ARRAY_SIZE(ar9280Modes_9280), 6);
695                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
696                                ARRAY_SIZE(ar9280Common_9280), 2);
697         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
698                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
699                                ARRAY_SIZE(ar5416Modes_9160), 6);
700                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
701                                ARRAY_SIZE(ar5416Common_9160), 2);
702                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
703                                ARRAY_SIZE(ar5416Bank0_9160), 2);
704                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
705                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
706                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
707                                ARRAY_SIZE(ar5416Bank1_9160), 2);
708                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
709                                ARRAY_SIZE(ar5416Bank2_9160), 2);
710                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
711                                ARRAY_SIZE(ar5416Bank3_9160), 3);
712                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
713                                ARRAY_SIZE(ar5416Bank6_9160), 3);
714                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
715                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
716                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
717                                ARRAY_SIZE(ar5416Bank7_9160), 2);
718                 if (AR_SREV_9160_11(ah)) {
719                         INIT_INI_ARRAY(&ah->iniAddac,
720                                        ar5416Addac_91601_1,
721                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
722                 } else {
723                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
724                                        ARRAY_SIZE(ar5416Addac_9160), 2);
725                 }
726         } else if (AR_SREV_9100_OR_LATER(ah)) {
727                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
728                                ARRAY_SIZE(ar5416Modes_9100), 6);
729                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
730                                ARRAY_SIZE(ar5416Common_9100), 2);
731                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
732                                ARRAY_SIZE(ar5416Bank0_9100), 2);
733                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
734                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
735                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
736                                ARRAY_SIZE(ar5416Bank1_9100), 2);
737                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
738                                ARRAY_SIZE(ar5416Bank2_9100), 2);
739                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
740                                ARRAY_SIZE(ar5416Bank3_9100), 3);
741                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
742                                ARRAY_SIZE(ar5416Bank6_9100), 3);
743                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
744                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
745                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
746                                ARRAY_SIZE(ar5416Bank7_9100), 2);
747                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
748                                ARRAY_SIZE(ar5416Addac_9100), 2);
749         } else {
750                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
751                                ARRAY_SIZE(ar5416Modes), 6);
752                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
753                                ARRAY_SIZE(ar5416Common), 2);
754                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
755                                ARRAY_SIZE(ar5416Bank0), 2);
756                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
757                                ARRAY_SIZE(ar5416BB_RfGain), 3);
758                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
759                                ARRAY_SIZE(ar5416Bank1), 2);
760                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
761                                ARRAY_SIZE(ar5416Bank2), 2);
762                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
763                                ARRAY_SIZE(ar5416Bank3), 3);
764                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
765                                ARRAY_SIZE(ar5416Bank6), 3);
766                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
767                                ARRAY_SIZE(ar5416Bank6TPC), 3);
768                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
769                                ARRAY_SIZE(ar5416Bank7), 2);
770                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
771                                ARRAY_SIZE(ar5416Addac), 2);
772         }
773 }
774
775 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
776 {
777         if (AR_SREV_9287_11_OR_LATER(ah))
778                 INIT_INI_ARRAY(&ah->iniModesRxGain,
779                 ar9287Modes_rx_gain_9287_1_1,
780                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
781         else if (AR_SREV_9287_10(ah))
782                 INIT_INI_ARRAY(&ah->iniModesRxGain,
783                 ar9287Modes_rx_gain_9287_1_0,
784                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
785         else if (AR_SREV_9280_20(ah))
786                 ath9k_hw_init_rxgain_ini(ah);
787
788         if (AR_SREV_9287_11_OR_LATER(ah)) {
789                 INIT_INI_ARRAY(&ah->iniModesTxGain,
790                 ar9287Modes_tx_gain_9287_1_1,
791                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
792         } else if (AR_SREV_9287_10(ah)) {
793                 INIT_INI_ARRAY(&ah->iniModesTxGain,
794                 ar9287Modes_tx_gain_9287_1_0,
795                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
796         } else if (AR_SREV_9280_20(ah)) {
797                 ath9k_hw_init_txgain_ini(ah);
798         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
799                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
800
801                 /* txgain table */
802                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
803                         INIT_INI_ARRAY(&ah->iniModesTxGain,
804                         ar9285Modes_high_power_tx_gain_9285_1_2,
805                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
806                 } else {
807                         INIT_INI_ARRAY(&ah->iniModesTxGain,
808                         ar9285Modes_original_tx_gain_9285_1_2,
809                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
810                 }
811
812         }
813 }
814
815 static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
816 {
817         u32 i, j;
818
819         if (ah->hw_version.devid == AR9280_DEVID_PCI) {
820
821                 /* EEPROM Fixup */
822                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
823                         u32 reg = INI_RA(&ah->iniModes, i, 0);
824
825                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
826                                 u32 val = INI_RA(&ah->iniModes, i, j);
827
828                                 INI_RA(&ah->iniModes, i, j) =
829                                         ath9k_hw_ini_fixup(ah,
830                                                            &ah->eeprom.def,
831                                                            reg, val);
832                         }
833                 }
834         }
835 }
836
837 int ath9k_hw_init(struct ath_hw *ah)
838 {
839         struct ath_common *common = ath9k_hw_common(ah);
840         int r = 0;
841
842         if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
843                 ath_print(common, ATH_DBG_FATAL,
844                           "Unsupported device ID: 0x%0x\n",
845                           ah->hw_version.devid);
846                 return -EOPNOTSUPP;
847         }
848
849         ath9k_hw_init_defaults(ah);
850         ath9k_hw_init_config(ah);
851
852         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
853                 ath_print(common, ATH_DBG_FATAL,
854                           "Couldn't reset chip\n");
855                 return -EIO;
856         }
857
858         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
859                 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
860                 return -EIO;
861         }
862
863         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
864                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
865                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
866                         ah->config.serialize_regmode =
867                                 SER_REG_MODE_ON;
868                 } else {
869                         ah->config.serialize_regmode =
870                                 SER_REG_MODE_OFF;
871                 }
872         }
873
874         ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
875                 ah->config.serialize_regmode);
876
877         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
878                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
879         else
880                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
881
882         if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
883                 ath_print(common, ATH_DBG_FATAL,
884                           "Mac Chip Rev 0x%02x.%x is not supported by "
885                           "this driver\n", ah->hw_version.macVersion,
886                           ah->hw_version.macRev);
887                 return -EOPNOTSUPP;
888         }
889
890         if (AR_SREV_9100(ah)) {
891                 ah->iq_caldata.calData = &iq_cal_multi_sample;
892                 ah->supp_cals = IQ_MISMATCH_CAL;
893                 ah->is_pciexpress = false;
894         }
895
896         if (AR_SREV_9271(ah))
897                 ah->is_pciexpress = false;
898
899         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
900
901         ath9k_hw_init_cal_settings(ah);
902
903         ah->ani_function = ATH9K_ANI_ALL;
904         if (AR_SREV_9280_10_OR_LATER(ah)) {
905                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
906                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
907                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
908         } else {
909                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
910                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
911         }
912
913         ath9k_hw_init_mode_regs(ah);
914
915         if (ah->is_pciexpress)
916                 ath9k_hw_configpcipowersave(ah, 0, 0);
917         else
918                 ath9k_hw_disablepcie(ah);
919
920         /* Support for Japan ch.14 (2484) spread */
921         if (AR_SREV_9287_11_OR_LATER(ah)) {
922                 INIT_INI_ARRAY(&ah->iniCckfirNormal,
923                        ar9287Common_normal_cck_fir_coeff_92871_1,
924                        ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
925                 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
926                        ar9287Common_japan_2484_cck_fir_coeff_92871_1,
927                        ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
928         }
929
930         r = ath9k_hw_post_init(ah);
931         if (r)
932                 return r;
933
934         ath9k_hw_init_mode_gain_regs(ah);
935         r = ath9k_hw_fill_cap_info(ah);
936         if (r)
937                 return r;
938
939         ath9k_hw_init_eeprom_fix(ah);
940
941         r = ath9k_hw_init_macaddr(ah);
942         if (r) {
943                 ath_print(common, ATH_DBG_FATAL,
944                           "Failed to initialize MAC address\n");
945                 return r;
946         }
947
948         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
949                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
950         else
951                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
952
953         ath9k_init_nfcal_hist_buffer(ah);
954
955         common->state = ATH_HW_INITIALIZED;
956
957         return 0;
958 }
959
960 static void ath9k_hw_init_bb(struct ath_hw *ah,
961                              struct ath9k_channel *chan)
962 {
963         u32 synthDelay;
964
965         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
966         if (IS_CHAN_B(chan))
967                 synthDelay = (4 * synthDelay) / 22;
968         else
969                 synthDelay /= 10;
970
971         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
972
973         udelay(synthDelay + BASE_ACTIVATE_DELAY);
974 }
975
976 static void ath9k_hw_init_qos(struct ath_hw *ah)
977 {
978         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
979         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
980
981         REG_WRITE(ah, AR_QOS_NO_ACK,
982                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
983                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
984                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
985
986         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
987         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
988         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
989         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
990         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
991 }
992
993 static void ath9k_hw_change_target_baud(struct ath_hw *ah, u32 freq, u32 baud)
994 {
995         u32 lcr;
996         u32 baud_divider = freq * 1000 * 1000 / 16 / baud;
997
998         lcr = REG_READ(ah , 0x5100c);
999         lcr |= 0x80;
1000
1001         REG_WRITE(ah, 0x5100c, lcr);
1002         REG_WRITE(ah, 0x51004, (baud_divider >> 8));
1003         REG_WRITE(ah, 0x51000, (baud_divider & 0xff));
1004
1005         lcr &= ~0x80;
1006         REG_WRITE(ah, 0x5100c, lcr);
1007 }
1008
1009 static void ath9k_hw_init_pll(struct ath_hw *ah,
1010                               struct ath9k_channel *chan)
1011 {
1012         u32 pll;
1013
1014         if (AR_SREV_9100(ah)) {
1015                 if (chan && IS_CHAN_5GHZ(chan))
1016                         pll = 0x1450;
1017                 else
1018                         pll = 0x1458;
1019         } else {
1020                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1021                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1022
1023                         if (chan && IS_CHAN_HALF_RATE(chan))
1024                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1025                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1026                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1027
1028                         if (chan && IS_CHAN_5GHZ(chan)) {
1029                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1030
1031
1032                                 if (AR_SREV_9280_20(ah)) {
1033                                         if (((chan->channel % 20) == 0)
1034                                             || ((chan->channel % 10) == 0))
1035                                                 pll = 0x2850;
1036                                         else
1037                                                 pll = 0x142c;
1038                                 }
1039                         } else {
1040                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1041                         }
1042
1043                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1044
1045                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1046
1047                         if (chan && IS_CHAN_HALF_RATE(chan))
1048                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1049                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1050                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1051
1052                         if (chan && IS_CHAN_5GHZ(chan))
1053                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1054                         else
1055                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1056                 } else {
1057                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1058
1059                         if (chan && IS_CHAN_HALF_RATE(chan))
1060                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1061                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1062                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1063
1064                         if (chan && IS_CHAN_5GHZ(chan))
1065                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1066                         else
1067                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1068                 }
1069         }
1070         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1071
1072         /* Switch the core clock for ar9271 to 117Mhz */
1073         if (AR_SREV_9271(ah)) {
1074                 if ((pll == 0x142c) || (pll == 0x2850) ) {
1075                         udelay(500);
1076                         /* set CLKOBS to output AHB clock */
1077                         REG_WRITE(ah, 0x7020, 0xe);
1078                         /*
1079                          * 0x304: 117Mhz, ahb_ratio: 1x1
1080                          * 0x306: 40Mhz, ahb_ratio: 1x1
1081                          */
1082                         REG_WRITE(ah, 0x50040, 0x304);
1083                         /*
1084                          * makes adjustments for the baud dividor to keep the
1085                          * targetted baud rate based on the used core clock.
1086                          */
1087                         ath9k_hw_change_target_baud(ah, AR9271_CORE_CLOCK,
1088                                                     AR9271_TARGET_BAUD_RATE);
1089                 }
1090         }
1091
1092         udelay(RTC_PLL_SETTLE_DELAY);
1093
1094         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1095 }
1096
1097 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1098 {
1099         int rx_chainmask, tx_chainmask;
1100
1101         rx_chainmask = ah->rxchainmask;
1102         tx_chainmask = ah->txchainmask;
1103
1104         switch (rx_chainmask) {
1105         case 0x5:
1106                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1107                             AR_PHY_SWAP_ALT_CHAIN);
1108         case 0x3:
1109                 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
1110                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1111                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1112                         break;
1113                 }
1114         case 0x1:
1115         case 0x2:
1116         case 0x7:
1117                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1118                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1119                 break;
1120         default:
1121                 break;
1122         }
1123
1124         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1125         if (tx_chainmask == 0x5) {
1126                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1127                             AR_PHY_SWAP_ALT_CHAIN);
1128         }
1129         if (AR_SREV_9100(ah))
1130                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1131                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1132 }
1133
1134 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1135                                           enum nl80211_iftype opmode)
1136 {
1137         ah->mask_reg = AR_IMR_TXERR |
1138                 AR_IMR_TXURN |
1139                 AR_IMR_RXERR |
1140                 AR_IMR_RXORN |
1141                 AR_IMR_BCNMISC;
1142
1143         if (ah->config.rx_intr_mitigation)
1144                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1145         else
1146                 ah->mask_reg |= AR_IMR_RXOK;
1147
1148         ah->mask_reg |= AR_IMR_TXOK;
1149
1150         if (opmode == NL80211_IFTYPE_AP)
1151                 ah->mask_reg |= AR_IMR_MIB;
1152
1153         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1154         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1155
1156         if (!AR_SREV_9100(ah)) {
1157                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1158                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1159                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1160         }
1161 }
1162
1163 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1164 {
1165         u32 val = ath9k_hw_mac_to_clks(ah, us);
1166         val = min(val, (u32) 0xFFFF);
1167         REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1168 }
1169
1170 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1171 {
1172         u32 val = ath9k_hw_mac_to_clks(ah, us);
1173         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1174         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1175 }
1176
1177 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1178 {
1179         u32 val = ath9k_hw_mac_to_clks(ah, us);
1180         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1181         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1182 }
1183
1184 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1185 {
1186         if (tu > 0xFFFF) {
1187                 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1188                           "bad global tx timeout %u\n", tu);
1189                 ah->globaltxtimeout = (u32) -1;
1190                 return false;
1191         } else {
1192                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1193                 ah->globaltxtimeout = tu;
1194                 return true;
1195         }
1196 }
1197
1198 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1199 {
1200         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
1201         int acktimeout;
1202         int slottime;
1203         int sifstime;
1204
1205         ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1206                   ah->misc_mode);
1207
1208         if (ah->misc_mode != 0)
1209                 REG_WRITE(ah, AR_PCU_MISC,
1210                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1211
1212         if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
1213                 sifstime = 16;
1214         else
1215                 sifstime = 10;
1216
1217         /* As defined by IEEE 802.11-2007 17.3.8.6 */
1218         slottime = ah->slottime + 3 * ah->coverage_class;
1219         acktimeout = slottime + sifstime;
1220
1221         /*
1222          * Workaround for early ACK timeouts, add an offset to match the
1223          * initval's 64us ack timeout value.
1224          * This was initially only meant to work around an issue with delayed
1225          * BA frames in some implementations, but it has been found to fix ACK
1226          * timeout issues in other cases as well.
1227          */
1228         if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1229                 acktimeout += 64 - sifstime - ah->slottime;
1230
1231         ath9k_hw_setslottime(ah, slottime);
1232         ath9k_hw_set_ack_timeout(ah, acktimeout);
1233         ath9k_hw_set_cts_timeout(ah, acktimeout);
1234         if (ah->globaltxtimeout != (u32) -1)
1235                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1236 }
1237 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1238
1239 void ath9k_hw_deinit(struct ath_hw *ah)
1240 {
1241         struct ath_common *common = ath9k_hw_common(ah);
1242
1243         if (common->state <= ATH_HW_INITIALIZED)
1244                 goto free_hw;
1245
1246         if (!AR_SREV_9100(ah))
1247                 ath9k_hw_ani_disable(ah);
1248
1249         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1250
1251 free_hw:
1252         if (!AR_SREV_9280_10_OR_LATER(ah))
1253                 ath9k_hw_rf_free_ext_banks(ah);
1254         kfree(ah);
1255         ah = NULL;
1256 }
1257 EXPORT_SYMBOL(ath9k_hw_deinit);
1258
1259 /*******/
1260 /* INI */
1261 /*******/
1262
1263 static void ath9k_hw_override_ini(struct ath_hw *ah,
1264                                   struct ath9k_channel *chan)
1265 {
1266         u32 val;
1267
1268         if (AR_SREV_9271(ah)) {
1269                 /*
1270                  * Enable spectral scan to solution for issues with stuck
1271                  * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1272                  * AR9271 1.1
1273                  */
1274                 if (AR_SREV_9271_10(ah)) {
1275                         val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) |
1276                               AR_PHY_SPECTRAL_SCAN_ENABLE;
1277                         REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1278                 }
1279                 else if (AR_SREV_9271_11(ah))
1280                         /*
1281                          * change AR_PHY_RF_CTL3 setting to fix MAC issue
1282                          * present on AR9271 1.1
1283                          */
1284                         REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1285                 return;
1286         }
1287
1288         /*
1289          * Set the RX_ABORT and RX_DIS and clear if off only after
1290          * RXE is set for MAC. This prevents frames with corrupted
1291          * descriptor status.
1292          */
1293         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1294
1295         if (AR_SREV_9280_10_OR_LATER(ah)) {
1296                 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1297                                (~AR_PCU_MISC_MODE2_HWWAR1);
1298
1299                 if (AR_SREV_9287_10_OR_LATER(ah))
1300                         val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1301
1302                 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1303         }
1304
1305         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1306             AR_SREV_9280_10_OR_LATER(ah))
1307                 return;
1308         /*
1309          * Disable BB clock gating
1310          * Necessary to avoid issues on AR5416 2.0
1311          */
1312         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1313 }
1314
1315 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1316                               struct ar5416_eeprom_def *pEepData,
1317                               u32 reg, u32 value)
1318 {
1319         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1320         struct ath_common *common = ath9k_hw_common(ah);
1321
1322         switch (ah->hw_version.devid) {
1323         case AR9280_DEVID_PCI:
1324                 if (reg == 0x7894) {
1325                         ath_print(common, ATH_DBG_EEPROM,
1326                                 "ini VAL: %x  EEPROM: %x\n", value,
1327                                 (pBase->version & 0xff));
1328
1329                         if ((pBase->version & 0xff) > 0x0a) {
1330                                 ath_print(common, ATH_DBG_EEPROM,
1331                                           "PWDCLKIND: %d\n",
1332                                           pBase->pwdclkind);
1333                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1334                                 value |= AR_AN_TOP2_PWDCLKIND &
1335                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1336                         } else {
1337                                 ath_print(common, ATH_DBG_EEPROM,
1338                                           "PWDCLKIND Earlier Rev\n");
1339                         }
1340
1341                         ath_print(common, ATH_DBG_EEPROM,
1342                                   "final ini VAL: %x\n", value);
1343                 }
1344                 break;
1345         }
1346
1347         return value;
1348 }
1349
1350 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1351                               struct ar5416_eeprom_def *pEepData,
1352                               u32 reg, u32 value)
1353 {
1354         if (ah->eep_map == EEP_MAP_4KBITS)
1355                 return value;
1356         else
1357                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1358 }
1359
1360 static void ath9k_olc_init(struct ath_hw *ah)
1361 {
1362         u32 i;
1363
1364         if (OLC_FOR_AR9287_10_LATER) {
1365                 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1366                                 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1367                 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1368                                 AR9287_AN_TXPC0_TXPCMODE,
1369                                 AR9287_AN_TXPC0_TXPCMODE_S,
1370                                 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1371                 udelay(100);
1372         } else {
1373                 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1374                         ah->originalGain[i] =
1375                                 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1376                                                 AR_PHY_TX_GAIN);
1377                 ah->PDADCdelta = 0;
1378         }
1379 }
1380
1381 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1382                               struct ath9k_channel *chan)
1383 {
1384         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1385
1386         if (IS_CHAN_B(chan))
1387                 ctl |= CTL_11B;
1388         else if (IS_CHAN_G(chan))
1389                 ctl |= CTL_11G;
1390         else
1391                 ctl |= CTL_11A;
1392
1393         return ctl;
1394 }
1395
1396 static int ath9k_hw_process_ini(struct ath_hw *ah,
1397                                 struct ath9k_channel *chan)
1398 {
1399         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1400         int i, regWrites = 0;
1401         struct ieee80211_channel *channel = chan->chan;
1402         u32 modesIndex, freqIndex;
1403
1404         switch (chan->chanmode) {
1405         case CHANNEL_A:
1406         case CHANNEL_A_HT20:
1407                 modesIndex = 1;
1408                 freqIndex = 1;
1409                 break;
1410         case CHANNEL_A_HT40PLUS:
1411         case CHANNEL_A_HT40MINUS:
1412                 modesIndex = 2;
1413                 freqIndex = 1;
1414                 break;
1415         case CHANNEL_G:
1416         case CHANNEL_G_HT20:
1417         case CHANNEL_B:
1418                 modesIndex = 4;
1419                 freqIndex = 2;
1420                 break;
1421         case CHANNEL_G_HT40PLUS:
1422         case CHANNEL_G_HT40MINUS:
1423                 modesIndex = 3;
1424                 freqIndex = 2;
1425                 break;
1426
1427         default:
1428                 return -EINVAL;
1429         }
1430
1431         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1432         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1433         ah->eep_ops->set_addac(ah, chan);
1434
1435         if (AR_SREV_5416_22_OR_LATER(ah)) {
1436                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1437         } else {
1438                 struct ar5416IniArray temp;
1439                 u32 addacSize =
1440                         sizeof(u32) * ah->iniAddac.ia_rows *
1441                         ah->iniAddac.ia_columns;
1442
1443                 memcpy(ah->addac5416_21,
1444                        ah->iniAddac.ia_array, addacSize);
1445
1446                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1447
1448                 temp.ia_array = ah->addac5416_21;
1449                 temp.ia_columns = ah->iniAddac.ia_columns;
1450                 temp.ia_rows = ah->iniAddac.ia_rows;
1451                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1452         }
1453
1454         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1455
1456         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1457                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1458                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1459
1460                 REG_WRITE(ah, reg, val);
1461
1462                 if (reg >= 0x7800 && reg < 0x78a0
1463                     && ah->config.analog_shiftreg) {
1464                         udelay(100);
1465                 }
1466
1467                 DO_DELAY(regWrites);
1468         }
1469
1470         if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1471                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1472
1473         if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1474             AR_SREV_9287_10_OR_LATER(ah))
1475                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1476
1477         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1478                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1479                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1480
1481                 REG_WRITE(ah, reg, val);
1482
1483                 if (reg >= 0x7800 && reg < 0x78a0
1484                     && ah->config.analog_shiftreg) {
1485                         udelay(100);
1486                 }
1487
1488                 DO_DELAY(regWrites);
1489         }
1490
1491         ath9k_hw_write_regs(ah, freqIndex, regWrites);
1492
1493         if (AR_SREV_9271_10(ah))
1494                 REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1495                                 modesIndex, regWrites);
1496
1497         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1498                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1499                                 regWrites);
1500         }
1501
1502         ath9k_hw_override_ini(ah, chan);
1503         ath9k_hw_set_regs(ah, chan);
1504         ath9k_hw_init_chain_masks(ah);
1505
1506         if (OLC_FOR_AR9280_20_LATER)
1507                 ath9k_olc_init(ah);
1508
1509         ah->eep_ops->set_txpower(ah, chan,
1510                                  ath9k_regd_get_ctl(regulatory, chan),
1511                                  channel->max_antenna_gain * 2,
1512                                  channel->max_power * 2,
1513                                  min((u32) MAX_RATE_POWER,
1514                                  (u32) regulatory->power_limit));
1515
1516         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1517                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1518                           "ar5416SetRfRegs failed\n");
1519                 return -EIO;
1520         }
1521
1522         return 0;
1523 }
1524
1525 /****************************************/
1526 /* Reset and Channel Switching Routines */
1527 /****************************************/
1528
1529 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1530 {
1531         u32 rfMode = 0;
1532
1533         if (chan == NULL)
1534                 return;
1535
1536         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1537                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1538
1539         if (!AR_SREV_9280_10_OR_LATER(ah))
1540                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1541                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1542
1543         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1544                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1545
1546         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1547 }
1548
1549 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1550 {
1551         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1552 }
1553
1554 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1555 {
1556         u32 regval;
1557
1558         /*
1559          * set AHB_MODE not to do cacheline prefetches
1560         */
1561         regval = REG_READ(ah, AR_AHB_MODE);
1562         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1563
1564         /*
1565          * let mac dma reads be in 128 byte chunks
1566          */
1567         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1568         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1569
1570         /*
1571          * Restore TX Trigger Level to its pre-reset value.
1572          * The initial value depends on whether aggregation is enabled, and is
1573          * adjusted whenever underruns are detected.
1574          */
1575         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1576
1577         /*
1578          * let mac dma writes be in 128 byte chunks
1579          */
1580         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1581         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1582
1583         /*
1584          * Setup receive FIFO threshold to hold off TX activities
1585          */
1586         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1587
1588         /*
1589          * reduce the number of usable entries in PCU TXBUF to avoid
1590          * wrap around issues.
1591          */
1592         if (AR_SREV_9285(ah)) {
1593                 /* For AR9285 the number of Fifos are reduced to half.
1594                  * So set the usable tx buf size also to half to
1595                  * avoid data/delimiter underruns
1596                  */
1597                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1598                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1599         } else if (!AR_SREV_9271(ah)) {
1600                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1601                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1602         }
1603 }
1604
1605 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1606 {
1607         u32 val;
1608
1609         val = REG_READ(ah, AR_STA_ID1);
1610         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1611         switch (opmode) {
1612         case NL80211_IFTYPE_AP:
1613                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1614                           | AR_STA_ID1_KSRCH_MODE);
1615                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1616                 break;
1617         case NL80211_IFTYPE_ADHOC:
1618         case NL80211_IFTYPE_MESH_POINT:
1619                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1620                           | AR_STA_ID1_KSRCH_MODE);
1621                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1622                 break;
1623         case NL80211_IFTYPE_STATION:
1624         case NL80211_IFTYPE_MONITOR:
1625                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1626                 break;
1627         }
1628 }
1629
1630 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1631                                                  u32 coef_scaled,
1632                                                  u32 *coef_mantissa,
1633                                                  u32 *coef_exponent)
1634 {
1635         u32 coef_exp, coef_man;
1636
1637         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1638                 if ((coef_scaled >> coef_exp) & 0x1)
1639                         break;
1640
1641         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1642
1643         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1644
1645         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1646         *coef_exponent = coef_exp - 16;
1647 }
1648
1649 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1650                                      struct ath9k_channel *chan)
1651 {
1652         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1653         u32 clockMhzScaled = 0x64000000;
1654         struct chan_centers centers;
1655
1656         if (IS_CHAN_HALF_RATE(chan))
1657                 clockMhzScaled = clockMhzScaled >> 1;
1658         else if (IS_CHAN_QUARTER_RATE(chan))
1659                 clockMhzScaled = clockMhzScaled >> 2;
1660
1661         ath9k_hw_get_channel_centers(ah, chan, &centers);
1662         coef_scaled = clockMhzScaled / centers.synth_center;
1663
1664         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1665                                       &ds_coef_exp);
1666
1667         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1668                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1669         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1670                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1671
1672         coef_scaled = (9 * coef_scaled) / 10;
1673
1674         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1675                                       &ds_coef_exp);
1676
1677         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1678                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1679         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1680                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1681 }
1682
1683 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1684 {
1685         u32 rst_flags;
1686         u32 tmpReg;
1687
1688         if (AR_SREV_9100(ah)) {
1689                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1690                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1691                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1692                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1693                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1694         }
1695
1696         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1697                   AR_RTC_FORCE_WAKE_ON_INT);
1698
1699         if (AR_SREV_9100(ah)) {
1700                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1701                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1702         } else {
1703                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1704                 if (tmpReg &
1705                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1706                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1707                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1708                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1709                 } else {
1710                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1711                 }
1712
1713                 rst_flags = AR_RTC_RC_MAC_WARM;
1714                 if (type == ATH9K_RESET_COLD)
1715                         rst_flags |= AR_RTC_RC_MAC_COLD;
1716         }
1717
1718         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1719         udelay(50);
1720
1721         REG_WRITE(ah, AR_RTC_RC, 0);
1722         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1723                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1724                           "RTC stuck in MAC reset\n");
1725                 return false;
1726         }
1727
1728         if (!AR_SREV_9100(ah))
1729                 REG_WRITE(ah, AR_RC, 0);
1730
1731         if (AR_SREV_9100(ah))
1732                 udelay(50);
1733
1734         return true;
1735 }
1736
1737 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1738 {
1739         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1740                   AR_RTC_FORCE_WAKE_ON_INT);
1741
1742         if (!AR_SREV_9100(ah))
1743                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1744
1745         REG_WRITE(ah, AR_RTC_RESET, 0);
1746         udelay(2);
1747
1748         if (!AR_SREV_9100(ah))
1749                 REG_WRITE(ah, AR_RC, 0);
1750
1751         REG_WRITE(ah, AR_RTC_RESET, 1);
1752
1753         if (!ath9k_hw_wait(ah,
1754                            AR_RTC_STATUS,
1755                            AR_RTC_STATUS_M,
1756                            AR_RTC_STATUS_ON,
1757                            AH_WAIT_TIMEOUT)) {
1758                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1759                           "RTC not waking up\n");
1760                 return false;
1761         }
1762
1763         ath9k_hw_read_revisions(ah);
1764
1765         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1766 }
1767
1768 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1769 {
1770         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1771                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1772
1773         switch (type) {
1774         case ATH9K_RESET_POWER_ON:
1775                 return ath9k_hw_set_reset_power_on(ah);
1776         case ATH9K_RESET_WARM:
1777         case ATH9K_RESET_COLD:
1778                 return ath9k_hw_set_reset(ah, type);
1779         default:
1780                 return false;
1781         }
1782 }
1783
1784 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1785 {
1786         u32 phymode;
1787         u32 enableDacFifo = 0;
1788
1789         if (AR_SREV_9285_10_OR_LATER(ah))
1790                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1791                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1792
1793         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1794                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1795
1796         if (IS_CHAN_HT40(chan)) {
1797                 phymode |= AR_PHY_FC_DYN2040_EN;
1798
1799                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1800                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1801                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1802
1803         }
1804         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1805
1806         ath9k_hw_set11nmac2040(ah);
1807
1808         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1809         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1810 }
1811
1812 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1813                                 struct ath9k_channel *chan)
1814 {
1815         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1816                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1817                         return false;
1818         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1819                 return false;
1820
1821         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1822                 return false;
1823
1824         ah->chip_fullsleep = false;
1825         ath9k_hw_init_pll(ah, chan);
1826         ath9k_hw_set_rfmode(ah, chan);
1827
1828         return true;
1829 }
1830
1831 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1832                                     struct ath9k_channel *chan)
1833 {
1834         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1835         struct ath_common *common = ath9k_hw_common(ah);
1836         struct ieee80211_channel *channel = chan->chan;
1837         u32 synthDelay, qnum;
1838         int r;
1839
1840         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1841                 if (ath9k_hw_numtxpending(ah, qnum)) {
1842                         ath_print(common, ATH_DBG_QUEUE,
1843                                   "Transmit frames pending on "
1844                                   "queue %d\n", qnum);
1845                         return false;
1846                 }
1847         }
1848
1849         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1850         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1851                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1852                 ath_print(common, ATH_DBG_FATAL,
1853                           "Could not kill baseband RX\n");
1854                 return false;
1855         }
1856
1857         ath9k_hw_set_regs(ah, chan);
1858
1859         r = ah->ath9k_hw_rf_set_freq(ah, chan);
1860         if (r) {
1861                 ath_print(common, ATH_DBG_FATAL,
1862                           "Failed to set channel\n");
1863                 return false;
1864         }
1865
1866         ah->eep_ops->set_txpower(ah, chan,
1867                              ath9k_regd_get_ctl(regulatory, chan),
1868                              channel->max_antenna_gain * 2,
1869                              channel->max_power * 2,
1870                              min((u32) MAX_RATE_POWER,
1871                              (u32) regulatory->power_limit));
1872
1873         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1874         if (IS_CHAN_B(chan))
1875                 synthDelay = (4 * synthDelay) / 22;
1876         else
1877                 synthDelay /= 10;
1878
1879         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1880
1881         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1882
1883         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1884                 ath9k_hw_set_delta_slope(ah, chan);
1885
1886         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1887
1888         if (!chan->oneTimeCalsDone)
1889                 chan->oneTimeCalsDone = true;
1890
1891         return true;
1892 }
1893
1894 static void ath9k_enable_rfkill(struct ath_hw *ah)
1895 {
1896         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1897                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1898
1899         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1900                     AR_GPIO_INPUT_MUX2_RFSILENT);
1901
1902         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1903         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1904 }
1905
1906 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1907                     bool bChannelChange)
1908 {
1909         struct ath_common *common = ath9k_hw_common(ah);
1910         u32 saveLedState;
1911         struct ath9k_channel *curchan = ah->curchan;
1912         u32 saveDefAntenna;
1913         u32 macStaId1;
1914         u64 tsf = 0;
1915         int i, rx_chainmask, r;
1916
1917         ah->txchainmask = common->tx_chainmask;
1918         ah->rxchainmask = common->rx_chainmask;
1919
1920         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1921                 return -EIO;
1922
1923         if (curchan && !ah->chip_fullsleep)
1924                 ath9k_hw_getnf(ah, curchan);
1925
1926         if (bChannelChange &&
1927             (ah->chip_fullsleep != true) &&
1928             (ah->curchan != NULL) &&
1929             (chan->channel != ah->curchan->channel) &&
1930             ((chan->channelFlags & CHANNEL_ALL) ==
1931              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1932              !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1933              IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1934
1935                 if (ath9k_hw_channel_change(ah, chan)) {
1936                         ath9k_hw_loadnf(ah, ah->curchan);
1937                         ath9k_hw_start_nfcal(ah);
1938                         return 0;
1939                 }
1940         }
1941
1942         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1943         if (saveDefAntenna == 0)
1944                 saveDefAntenna = 1;
1945
1946         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1947
1948         /* For chips on which RTC reset is done, save TSF before it gets cleared */
1949         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1950                 tsf = ath9k_hw_gettsf64(ah);
1951
1952         saveLedState = REG_READ(ah, AR_CFG_LED) &
1953                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1954                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1955
1956         ath9k_hw_mark_phy_inactive(ah);
1957
1958         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1959                 REG_WRITE(ah,
1960                           AR9271_RESET_POWER_DOWN_CONTROL,
1961                           AR9271_RADIO_RF_RST);
1962                 udelay(50);
1963         }
1964
1965         if (!ath9k_hw_chip_reset(ah, chan)) {
1966                 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1967                 return -EINVAL;
1968         }
1969
1970         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1971                 ah->htc_reset_init = false;
1972                 REG_WRITE(ah,
1973                           AR9271_RESET_POWER_DOWN_CONTROL,
1974                           AR9271_GATE_MAC_CTL);
1975                 udelay(50);
1976         }
1977
1978         /* Restore TSF */
1979         if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1980                 ath9k_hw_settsf64(ah, tsf);
1981
1982         if (AR_SREV_9280_10_OR_LATER(ah))
1983                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1984
1985         if (AR_SREV_9287_12_OR_LATER(ah)) {
1986                 /* Enable ASYNC FIFO */
1987                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1988                                 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
1989                 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
1990                 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1991                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
1992                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1993                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
1994         }
1995         r = ath9k_hw_process_ini(ah, chan);
1996         if (r)
1997                 return r;
1998
1999         /* Setup MFP options for CCMP */
2000         if (AR_SREV_9280_20_OR_LATER(ah)) {
2001                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2002                  * frames when constructing CCMP AAD. */
2003                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2004                               0xc7ff);
2005                 ah->sw_mgmt_crypto = false;
2006         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2007                 /* Disable hardware crypto for management frames */
2008                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2009                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2010                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2011                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2012                 ah->sw_mgmt_crypto = true;
2013         } else
2014                 ah->sw_mgmt_crypto = true;
2015
2016         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2017                 ath9k_hw_set_delta_slope(ah, chan);
2018
2019         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2020         ah->eep_ops->set_board_values(ah, chan);
2021
2022         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2023         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2024                   | macStaId1
2025                   | AR_STA_ID1_RTS_USE_DEF
2026                   | (ah->config.
2027                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2028                   | ah->sta_id1_defaults);
2029         ath9k_hw_set_operating_mode(ah, ah->opmode);
2030
2031         ath_hw_setbssidmask(common);
2032
2033         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2034
2035         ath9k_hw_write_associd(ah);
2036
2037         REG_WRITE(ah, AR_ISR, ~0);
2038
2039         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2040
2041         r = ah->ath9k_hw_rf_set_freq(ah, chan);
2042         if (r)
2043                 return r;
2044
2045         for (i = 0; i < AR_NUM_DCU; i++)
2046                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2047
2048         ah->intr_txqs = 0;
2049         for (i = 0; i < ah->caps.total_queues; i++)
2050                 ath9k_hw_resettxqueue(ah, i);
2051
2052         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2053         ath9k_hw_init_qos(ah);
2054
2055         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2056                 ath9k_enable_rfkill(ah);
2057
2058         ath9k_hw_init_global_settings(ah);
2059
2060         if (AR_SREV_9287_12_OR_LATER(ah)) {
2061                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2062                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2063                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2064                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2065                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2066                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2067
2068                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2069                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2070
2071                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2072                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2073                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2074                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2075         }
2076         if (AR_SREV_9287_12_OR_LATER(ah)) {
2077                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2078                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2079         }
2080
2081         REG_WRITE(ah, AR_STA_ID1,
2082                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2083
2084         ath9k_hw_set_dma(ah);
2085
2086         REG_WRITE(ah, AR_OBS, 8);
2087
2088         if (ah->config.rx_intr_mitigation) {
2089                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2090                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2091         }
2092
2093         ath9k_hw_init_bb(ah, chan);
2094
2095         if (!ath9k_hw_init_cal(ah, chan))
2096                 return -EIO;
2097
2098         rx_chainmask = ah->rxchainmask;
2099         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2100                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2101                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2102         }
2103
2104         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2105
2106         /*
2107          * For big endian systems turn on swapping for descriptors
2108          */
2109         if (AR_SREV_9100(ah)) {
2110                 u32 mask;
2111                 mask = REG_READ(ah, AR_CFG);
2112                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2113                         ath_print(common, ATH_DBG_RESET,
2114                                 "CFG Byte Swap Set 0x%x\n", mask);
2115                 } else {
2116                         mask =
2117                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2118                         REG_WRITE(ah, AR_CFG, mask);
2119                         ath_print(common, ATH_DBG_RESET,
2120                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2121                 }
2122         } else {
2123                 /* Configure AR9271 target WLAN */
2124                 if (AR_SREV_9271(ah))
2125                         REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2126 #ifdef __BIG_ENDIAN
2127                 else
2128                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2129 #endif
2130         }
2131
2132         if (ah->btcoex_hw.enabled)
2133                 ath9k_hw_btcoex_enable(ah);
2134
2135         return 0;
2136 }
2137 EXPORT_SYMBOL(ath9k_hw_reset);
2138
2139 /************************/
2140 /* Key Cache Management */
2141 /************************/
2142
2143 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2144 {
2145         u32 keyType;
2146
2147         if (entry >= ah->caps.keycache_size) {
2148                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2149                           "keychache entry %u out of range\n", entry);
2150                 return false;
2151         }
2152
2153         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2154
2155         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2156         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2157         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2158         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2159         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2160         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2161         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2162         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2163
2164         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2165                 u16 micentry = entry + 64;
2166
2167                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2168                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2169                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2170                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2171
2172         }
2173
2174         return true;
2175 }
2176 EXPORT_SYMBOL(ath9k_hw_keyreset);
2177
2178 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2179 {
2180         u32 macHi, macLo;
2181
2182         if (entry >= ah->caps.keycache_size) {
2183                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2184                           "keychache entry %u out of range\n", entry);
2185                 return false;
2186         }
2187
2188         if (mac != NULL) {
2189                 macHi = (mac[5] << 8) | mac[4];
2190                 macLo = (mac[3] << 24) |
2191                         (mac[2] << 16) |
2192                         (mac[1] << 8) |
2193                         mac[0];
2194                 macLo >>= 1;
2195                 macLo |= (macHi & 1) << 31;
2196                 macHi >>= 1;
2197         } else {
2198                 macLo = macHi = 0;
2199         }
2200         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2201         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2202
2203         return true;
2204 }
2205 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2206
2207 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2208                                  const struct ath9k_keyval *k,
2209                                  const u8 *mac)
2210 {
2211         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2212         struct ath_common *common = ath9k_hw_common(ah);
2213         u32 key0, key1, key2, key3, key4;
2214         u32 keyType;
2215
2216         if (entry >= pCap->keycache_size) {
2217                 ath_print(common, ATH_DBG_FATAL,
2218                           "keycache entry %u out of range\n", entry);
2219                 return false;
2220         }
2221
2222         switch (k->kv_type) {
2223         case ATH9K_CIPHER_AES_OCB:
2224                 keyType = AR_KEYTABLE_TYPE_AES;
2225                 break;
2226         case ATH9K_CIPHER_AES_CCM:
2227                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2228                         ath_print(common, ATH_DBG_ANY,
2229                                   "AES-CCM not supported by mac rev 0x%x\n",
2230                                   ah->hw_version.macRev);
2231                         return false;
2232                 }
2233                 keyType = AR_KEYTABLE_TYPE_CCM;
2234                 break;
2235         case ATH9K_CIPHER_TKIP:
2236                 keyType = AR_KEYTABLE_TYPE_TKIP;
2237                 if (ATH9K_IS_MIC_ENABLED(ah)
2238                     && entry + 64 >= pCap->keycache_size) {
2239                         ath_print(common, ATH_DBG_ANY,
2240                                   "entry %u inappropriate for TKIP\n", entry);
2241                         return false;
2242                 }
2243                 break;
2244         case ATH9K_CIPHER_WEP:
2245                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2246                         ath_print(common, ATH_DBG_ANY,
2247                                   "WEP key length %u too small\n", k->kv_len);
2248                         return false;
2249                 }
2250                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2251                         keyType = AR_KEYTABLE_TYPE_40;
2252                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2253                         keyType = AR_KEYTABLE_TYPE_104;
2254                 else
2255                         keyType = AR_KEYTABLE_TYPE_128;
2256                 break;
2257         case ATH9K_CIPHER_CLR:
2258                 keyType = AR_KEYTABLE_TYPE_CLR;
2259                 break;
2260         default:
2261                 ath_print(common, ATH_DBG_FATAL,
2262                           "cipher %u not supported\n", k->kv_type);
2263                 return false;
2264         }
2265
2266         key0 = get_unaligned_le32(k->kv_val + 0);
2267         key1 = get_unaligned_le16(k->kv_val + 4);
2268         key2 = get_unaligned_le32(k->kv_val + 6);
2269         key3 = get_unaligned_le16(k->kv_val + 10);
2270         key4 = get_unaligned_le32(k->kv_val + 12);
2271         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2272                 key4 &= 0xff;
2273
2274         /*
2275          * Note: Key cache registers access special memory area that requires
2276          * two 32-bit writes to actually update the values in the internal
2277          * memory. Consequently, the exact order and pairs used here must be
2278          * maintained.
2279          */
2280
2281         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2282                 u16 micentry = entry + 64;
2283
2284                 /*
2285                  * Write inverted key[47:0] first to avoid Michael MIC errors
2286                  * on frames that could be sent or received at the same time.
2287                  * The correct key will be written in the end once everything
2288                  * else is ready.
2289                  */
2290                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2291                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2292
2293                 /* Write key[95:48] */
2294                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2295                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2296
2297                 /* Write key[127:96] and key type */
2298                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2299                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2300
2301                 /* Write MAC address for the entry */
2302                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2303
2304                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2305                         /*
2306                          * TKIP uses two key cache entries:
2307                          * Michael MIC TX/RX keys in the same key cache entry
2308                          * (idx = main index + 64):
2309                          * key0 [31:0] = RX key [31:0]
2310                          * key1 [15:0] = TX key [31:16]
2311                          * key1 [31:16] = reserved
2312                          * key2 [31:0] = RX key [63:32]
2313                          * key3 [15:0] = TX key [15:0]
2314                          * key3 [31:16] = reserved
2315                          * key4 [31:0] = TX key [63:32]
2316                          */
2317                         u32 mic0, mic1, mic2, mic3, mic4;
2318
2319                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2320                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2321                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2322                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2323                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2324
2325                         /* Write RX[31:0] and TX[31:16] */
2326                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2327                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2328
2329                         /* Write RX[63:32] and TX[15:0] */
2330                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2331                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2332
2333                         /* Write TX[63:32] and keyType(reserved) */
2334                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2335                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2336                                   AR_KEYTABLE_TYPE_CLR);
2337
2338                 } else {
2339                         /*
2340                          * TKIP uses four key cache entries (two for group
2341                          * keys):
2342                          * Michael MIC TX/RX keys are in different key cache
2343                          * entries (idx = main index + 64 for TX and
2344                          * main index + 32 + 96 for RX):
2345                          * key0 [31:0] = TX/RX MIC key [31:0]
2346                          * key1 [31:0] = reserved
2347                          * key2 [31:0] = TX/RX MIC key [63:32]
2348                          * key3 [31:0] = reserved
2349                          * key4 [31:0] = reserved
2350                          *
2351                          * Upper layer code will call this function separately
2352                          * for TX and RX keys when these registers offsets are
2353                          * used.
2354                          */
2355                         u32 mic0, mic2;
2356
2357                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2358                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2359
2360                         /* Write MIC key[31:0] */
2361                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2362                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2363
2364                         /* Write MIC key[63:32] */
2365                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2366                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2367
2368                         /* Write TX[63:32] and keyType(reserved) */
2369                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2370                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2371                                   AR_KEYTABLE_TYPE_CLR);
2372                 }
2373
2374                 /* MAC address registers are reserved for the MIC entry */
2375                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2376                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2377
2378                 /*
2379                  * Write the correct (un-inverted) key[47:0] last to enable
2380                  * TKIP now that all other registers are set with correct
2381                  * values.
2382                  */
2383                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2384                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2385         } else {
2386                 /* Write key[47:0] */
2387                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2388                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2389
2390                 /* Write key[95:48] */
2391                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2392                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2393
2394                 /* Write key[127:96] and key type */
2395                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2396                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2397
2398                 /* Write MAC address for the entry */
2399                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2400         }
2401
2402         return true;
2403 }
2404 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2405
2406 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2407 {
2408         if (entry < ah->caps.keycache_size) {
2409                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2410                 if (val & AR_KEYTABLE_VALID)
2411                         return true;
2412         }
2413         return false;
2414 }
2415 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2416
2417 /******************************/
2418 /* Power Management (Chipset) */
2419 /******************************/
2420
2421 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2422 {
2423         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2424         if (setChip) {
2425                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2426                             AR_RTC_FORCE_WAKE_EN);
2427                 if (!AR_SREV_9100(ah))
2428                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2429
2430                 if(!AR_SREV_5416(ah))
2431                         REG_CLR_BIT(ah, (AR_RTC_RESET),
2432                                     AR_RTC_RESET_EN);
2433         }
2434 }
2435
2436 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2437 {
2438         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2439         if (setChip) {
2440                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2441
2442                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2443                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2444                                   AR_RTC_FORCE_WAKE_ON_INT);
2445                 } else {
2446                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2447                                     AR_RTC_FORCE_WAKE_EN);
2448                 }
2449         }
2450 }
2451
2452 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2453 {
2454         u32 val;
2455         int i;
2456
2457         if (setChip) {
2458                 if ((REG_READ(ah, AR_RTC_STATUS) &
2459                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2460                         if (ath9k_hw_set_reset_reg(ah,
2461                                            ATH9K_RESET_POWER_ON) != true) {
2462                                 return false;
2463                         }
2464                         ath9k_hw_init_pll(ah, NULL);
2465                 }
2466                 if (AR_SREV_9100(ah))
2467                         REG_SET_BIT(ah, AR_RTC_RESET,
2468                                     AR_RTC_RESET_EN);
2469
2470                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2471                             AR_RTC_FORCE_WAKE_EN);
2472                 udelay(50);
2473
2474                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2475                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2476                         if (val == AR_RTC_STATUS_ON)
2477                                 break;
2478                         udelay(50);
2479                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2480                                     AR_RTC_FORCE_WAKE_EN);
2481                 }
2482                 if (i == 0) {
2483                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2484                                   "Failed to wakeup in %uus\n",
2485                                   POWER_UP_TIME / 20);
2486                         return false;
2487                 }
2488         }
2489
2490         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2491
2492         return true;
2493 }
2494
2495 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2496 {
2497         struct ath_common *common = ath9k_hw_common(ah);
2498         int status = true, setChip = true;
2499         static const char *modes[] = {
2500                 "AWAKE",
2501                 "FULL-SLEEP",
2502                 "NETWORK SLEEP",
2503                 "UNDEFINED"
2504         };
2505
2506         if (ah->power_mode == mode)
2507                 return status;
2508
2509         ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2510                   modes[ah->power_mode], modes[mode]);
2511
2512         switch (mode) {
2513         case ATH9K_PM_AWAKE:
2514                 status = ath9k_hw_set_power_awake(ah, setChip);
2515                 break;
2516         case ATH9K_PM_FULL_SLEEP:
2517                 ath9k_set_power_sleep(ah, setChip);
2518                 ah->chip_fullsleep = true;
2519                 break;
2520         case ATH9K_PM_NETWORK_SLEEP:
2521                 ath9k_set_power_network_sleep(ah, setChip);
2522                 break;
2523         default:
2524                 ath_print(common, ATH_DBG_FATAL,
2525                           "Unknown power mode %u\n", mode);
2526                 return false;
2527         }
2528         ah->power_mode = mode;
2529
2530         return status;
2531 }
2532 EXPORT_SYMBOL(ath9k_hw_setpower);
2533
2534 /*
2535  * Helper for ASPM support.
2536  *
2537  * Disable PLL when in L0s as well as receiver clock when in L1.
2538  * This power saving option must be enabled through the SerDes.
2539  *
2540  * Programming the SerDes must go through the same 288 bit serial shift
2541  * register as the other analog registers.  Hence the 9 writes.
2542  */
2543 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2544 {
2545         u8 i;
2546         u32 val;
2547
2548         if (ah->is_pciexpress != true)
2549                 return;
2550
2551         /* Do not touch SerDes registers */
2552         if (ah->config.pcie_powersave_enable == 2)
2553                 return;
2554
2555         /* Nothing to do on restore for 11N */
2556         if (!restore) {
2557                 if (AR_SREV_9280_20_OR_LATER(ah)) {
2558                         /*
2559                          * AR9280 2.0 or later chips use SerDes values from the
2560                          * initvals.h initialized depending on chipset during
2561                          * ath9k_hw_init()
2562                          */
2563                         for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2564                                 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2565                                           INI_RA(&ah->iniPcieSerdes, i, 1));
2566                         }
2567                 } else if (AR_SREV_9280(ah) &&
2568                            (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2569                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2570                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2571
2572                         /* RX shut off when elecidle is asserted */
2573                         REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2574                         REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2575                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2576
2577                         /* Shut off CLKREQ active in L1 */
2578                         if (ah->config.pcie_clock_req)
2579                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2580                         else
2581                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2582
2583                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2584                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2585                         REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2586
2587                         /* Load the new settings */
2588                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2589
2590                 } else {
2591                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2592                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2593
2594                         /* RX shut off when elecidle is asserted */
2595                         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2596                         REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2597                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2598
2599                         /*
2600                          * Ignore ah->ah_config.pcie_clock_req setting for
2601                          * pre-AR9280 11n
2602                          */
2603                         REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2604
2605                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2606                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2607                         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2608
2609                         /* Load the new settings */
2610                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2611                 }
2612
2613                 udelay(1000);
2614
2615                 /* set bit 19 to allow forcing of pcie core into L1 state */
2616                 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2617
2618                 /* Several PCIe massages to ensure proper behaviour */
2619                 if (ah->config.pcie_waen) {
2620                         val = ah->config.pcie_waen;
2621                         if (!power_off)
2622                                 val &= (~AR_WA_D3_L1_DISABLE);
2623                 } else {
2624                         if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2625                             AR_SREV_9287(ah)) {
2626                                 val = AR9285_WA_DEFAULT;
2627                                 if (!power_off)
2628                                         val &= (~AR_WA_D3_L1_DISABLE);
2629                         } else if (AR_SREV_9280(ah)) {
2630                                 /*
2631                                  * On AR9280 chips bit 22 of 0x4004 needs to be
2632                                  * set otherwise card may disappear.
2633                                  */
2634                                 val = AR9280_WA_DEFAULT;
2635                                 if (!power_off)
2636                                         val &= (~AR_WA_D3_L1_DISABLE);
2637                         } else
2638                                 val = AR_WA_DEFAULT;
2639                 }
2640
2641                 REG_WRITE(ah, AR_WA, val);
2642         }
2643
2644         if (power_off) {
2645                 /*
2646                  * Set PCIe workaround bits
2647                  * bit 14 in WA register (disable L1) should only
2648                  * be set when device enters D3 and be cleared
2649                  * when device comes back to D0.
2650                  */
2651                 if (ah->config.pcie_waen) {
2652                         if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2653                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2654                 } else {
2655                         if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2656                               AR_SREV_9287(ah)) &&
2657                              (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2658                             (AR_SREV_9280(ah) &&
2659                              (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2660                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2661                         }
2662                 }
2663         }
2664 }
2665 EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2666
2667 /**********************/
2668 /* Interrupt Handling */
2669 /**********************/
2670
2671 bool ath9k_hw_intrpend(struct ath_hw *ah)
2672 {
2673         u32 host_isr;
2674
2675         if (AR_SREV_9100(ah))
2676                 return true;
2677
2678         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2679         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2680                 return true;
2681
2682         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2683         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2684             && (host_isr != AR_INTR_SPURIOUS))
2685                 return true;
2686
2687         return false;
2688 }
2689 EXPORT_SYMBOL(ath9k_hw_intrpend);
2690
2691 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2692 {
2693         u32 isr = 0;
2694         u32 mask2 = 0;
2695         struct ath9k_hw_capabilities *pCap = &ah->caps;
2696         u32 sync_cause = 0;
2697         bool fatal_int = false;
2698         struct ath_common *common = ath9k_hw_common(ah);
2699
2700         if (!AR_SREV_9100(ah)) {
2701                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2702                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2703                             == AR_RTC_STATUS_ON) {
2704                                 isr = REG_READ(ah, AR_ISR);
2705                         }
2706                 }
2707
2708                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2709                         AR_INTR_SYNC_DEFAULT;
2710
2711                 *masked = 0;
2712
2713                 if (!isr && !sync_cause)
2714                         return false;
2715         } else {
2716                 *masked = 0;
2717                 isr = REG_READ(ah, AR_ISR);
2718         }
2719
2720         if (isr) {
2721                 if (isr & AR_ISR_BCNMISC) {
2722                         u32 isr2;
2723                         isr2 = REG_READ(ah, AR_ISR_S2);
2724                         if (isr2 & AR_ISR_S2_TIM)
2725                                 mask2 |= ATH9K_INT_TIM;
2726                         if (isr2 & AR_ISR_S2_DTIM)
2727                                 mask2 |= ATH9K_INT_DTIM;
2728                         if (isr2 & AR_ISR_S2_DTIMSYNC)
2729                                 mask2 |= ATH9K_INT_DTIMSYNC;
2730                         if (isr2 & (AR_ISR_S2_CABEND))
2731                                 mask2 |= ATH9K_INT_CABEND;
2732                         if (isr2 & AR_ISR_S2_GTT)
2733                                 mask2 |= ATH9K_INT_GTT;
2734                         if (isr2 & AR_ISR_S2_CST)
2735                                 mask2 |= ATH9K_INT_CST;
2736                         if (isr2 & AR_ISR_S2_TSFOOR)
2737                                 mask2 |= ATH9K_INT_TSFOOR;
2738                 }
2739
2740                 isr = REG_READ(ah, AR_ISR_RAC);
2741                 if (isr == 0xffffffff) {
2742                         *masked = 0;
2743                         return false;
2744                 }
2745
2746                 *masked = isr & ATH9K_INT_COMMON;
2747
2748                 if (ah->config.rx_intr_mitigation) {
2749                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2750                                 *masked |= ATH9K_INT_RX;
2751                 }
2752
2753                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2754                         *masked |= ATH9K_INT_RX;
2755                 if (isr &
2756                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2757                      AR_ISR_TXEOL)) {
2758                         u32 s0_s, s1_s;
2759
2760                         *masked |= ATH9K_INT_TX;
2761
2762                         s0_s = REG_READ(ah, AR_ISR_S0_S);
2763                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2764                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2765
2766                         s1_s = REG_READ(ah, AR_ISR_S1_S);
2767                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2768                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2769                 }
2770
2771                 if (isr & AR_ISR_RXORN) {
2772                         ath_print(common, ATH_DBG_INTERRUPT,
2773                                   "receive FIFO overrun interrupt\n");
2774                 }
2775
2776                 if (!AR_SREV_9100(ah)) {
2777                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2778                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2779                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
2780                                         *masked |= ATH9K_INT_TIM_TIMER;
2781                         }
2782                 }
2783
2784                 *masked |= mask2;
2785         }
2786
2787         if (AR_SREV_9100(ah))
2788                 return true;
2789
2790         if (isr & AR_ISR_GENTMR) {
2791                 u32 s5_s;
2792
2793                 s5_s = REG_READ(ah, AR_ISR_S5_S);
2794                 if (isr & AR_ISR_GENTMR) {
2795                         ah->intr_gen_timer_trigger =
2796                                 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2797
2798                         ah->intr_gen_timer_thresh =
2799                                 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2800
2801                         if (ah->intr_gen_timer_trigger)
2802                                 *masked |= ATH9K_INT_GENTIMER;
2803
2804                 }
2805         }
2806
2807         if (sync_cause) {
2808                 fatal_int =
2809                         (sync_cause &
2810                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2811                         ? true : false;
2812
2813                 if (fatal_int) {
2814                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2815                                 ath_print(common, ATH_DBG_ANY,
2816                                           "received PCI FATAL interrupt\n");
2817                         }
2818                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2819                                 ath_print(common, ATH_DBG_ANY,
2820                                           "received PCI PERR interrupt\n");
2821                         }
2822                         *masked |= ATH9K_INT_FATAL;
2823                 }
2824                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2825                         ath_print(common, ATH_DBG_INTERRUPT,
2826                                   "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2827                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2828                         REG_WRITE(ah, AR_RC, 0);
2829                         *masked |= ATH9K_INT_FATAL;
2830                 }
2831                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2832                         ath_print(common, ATH_DBG_INTERRUPT,
2833                                   "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2834                 }
2835
2836                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2837                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2838         }
2839
2840         return true;
2841 }
2842 EXPORT_SYMBOL(ath9k_hw_getisr);
2843
2844 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2845 {
2846         u32 omask = ah->mask_reg;
2847         u32 mask, mask2;
2848         struct ath9k_hw_capabilities *pCap = &ah->caps;
2849         struct ath_common *common = ath9k_hw_common(ah);
2850
2851         ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2852
2853         if (omask & ATH9K_INT_GLOBAL) {
2854                 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2855                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2856                 (void) REG_READ(ah, AR_IER);
2857                 if (!AR_SREV_9100(ah)) {
2858                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2859                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2860
2861                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2862                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2863                 }
2864         }
2865
2866         mask = ints & ATH9K_INT_COMMON;
2867         mask2 = 0;
2868
2869         if (ints & ATH9K_INT_TX) {
2870                 if (ah->txok_interrupt_mask)
2871                         mask |= AR_IMR_TXOK;
2872                 if (ah->txdesc_interrupt_mask)
2873                         mask |= AR_IMR_TXDESC;
2874                 if (ah->txerr_interrupt_mask)
2875                         mask |= AR_IMR_TXERR;
2876                 if (ah->txeol_interrupt_mask)
2877                         mask |= AR_IMR_TXEOL;
2878         }
2879         if (ints & ATH9K_INT_RX) {
2880                 mask |= AR_IMR_RXERR;
2881                 if (ah->config.rx_intr_mitigation)
2882                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2883                 else
2884                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2885                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2886                         mask |= AR_IMR_GENTMR;
2887         }
2888
2889         if (ints & (ATH9K_INT_BMISC)) {
2890                 mask |= AR_IMR_BCNMISC;
2891                 if (ints & ATH9K_INT_TIM)
2892                         mask2 |= AR_IMR_S2_TIM;
2893                 if (ints & ATH9K_INT_DTIM)
2894                         mask2 |= AR_IMR_S2_DTIM;
2895                 if (ints & ATH9K_INT_DTIMSYNC)
2896                         mask2 |= AR_IMR_S2_DTIMSYNC;
2897                 if (ints & ATH9K_INT_CABEND)
2898                         mask2 |= AR_IMR_S2_CABEND;
2899                 if (ints & ATH9K_INT_TSFOOR)
2900                         mask2 |= AR_IMR_S2_TSFOOR;
2901         }
2902
2903         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2904                 mask |= AR_IMR_BCNMISC;
2905                 if (ints & ATH9K_INT_GTT)
2906                         mask2 |= AR_IMR_S2_GTT;
2907                 if (ints & ATH9K_INT_CST)
2908                         mask2 |= AR_IMR_S2_CST;
2909         }
2910
2911         ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2912         REG_WRITE(ah, AR_IMR, mask);
2913         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
2914                                            AR_IMR_S2_DTIM |
2915                                            AR_IMR_S2_DTIMSYNC |
2916                                            AR_IMR_S2_CABEND |
2917                                            AR_IMR_S2_CABTO |
2918                                            AR_IMR_S2_TSFOOR |
2919                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
2920         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
2921         ah->mask_reg = ints;
2922
2923         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2924                 if (ints & ATH9K_INT_TIM_TIMER)
2925                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2926                 else
2927                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2928         }
2929
2930         if (ints & ATH9K_INT_GLOBAL) {
2931                 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2932                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2933                 if (!AR_SREV_9100(ah)) {
2934                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2935                                   AR_INTR_MAC_IRQ);
2936                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2937
2938
2939                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2940                                   AR_INTR_SYNC_DEFAULT);
2941                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
2942                                   AR_INTR_SYNC_DEFAULT);
2943                 }
2944                 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2945                           REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2946         }
2947
2948         return omask;
2949 }
2950 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2951
2952 /*******************/
2953 /* Beacon Handling */
2954 /*******************/
2955
2956 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2957 {
2958         int flags = 0;
2959
2960         ah->beacon_interval = beacon_period;
2961
2962         switch (ah->opmode) {
2963         case NL80211_IFTYPE_STATION:
2964         case NL80211_IFTYPE_MONITOR:
2965                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2966                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
2967                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
2968                 flags |= AR_TBTT_TIMER_EN;
2969                 break;
2970         case NL80211_IFTYPE_ADHOC:
2971         case NL80211_IFTYPE_MESH_POINT:
2972                 REG_SET_BIT(ah, AR_TXCFG,
2973                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2974                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
2975                           TU_TO_USEC(next_beacon +
2976                                      (ah->atim_window ? ah->
2977                                       atim_window : 1)));
2978                 flags |= AR_NDP_TIMER_EN;
2979         case NL80211_IFTYPE_AP:
2980                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2981                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
2982                           TU_TO_USEC(next_beacon -
2983                                      ah->config.
2984                                      dma_beacon_response_time));
2985                 REG_WRITE(ah, AR_NEXT_SWBA,
2986                           TU_TO_USEC(next_beacon -
2987                                      ah->config.
2988                                      sw_beacon_response_time));
2989                 flags |=
2990                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2991                 break;
2992         default:
2993                 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
2994                           "%s: unsupported opmode: %d\n",
2995                           __func__, ah->opmode);
2996                 return;
2997                 break;
2998         }
2999
3000         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3001         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3002         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3003         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3004
3005         beacon_period &= ~ATH9K_BEACON_ENA;
3006         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3007                 ath9k_hw_reset_tsf(ah);
3008         }
3009
3010         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3011 }
3012 EXPORT_SYMBOL(ath9k_hw_beaconinit);
3013
3014 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3015                                     const struct ath9k_beacon_state *bs)
3016 {
3017         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3018         struct ath9k_hw_capabilities *pCap = &ah->caps;
3019         struct ath_common *common = ath9k_hw_common(ah);
3020
3021         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3022
3023         REG_WRITE(ah, AR_BEACON_PERIOD,
3024                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3025         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3026                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3027
3028         REG_RMW_FIELD(ah, AR_RSSI_THR,
3029                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3030
3031         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3032
3033         if (bs->bs_sleepduration > beaconintval)
3034                 beaconintval = bs->bs_sleepduration;
3035
3036         dtimperiod = bs->bs_dtimperiod;
3037         if (bs->bs_sleepduration > dtimperiod)
3038                 dtimperiod = bs->bs_sleepduration;
3039
3040         if (beaconintval == dtimperiod)
3041                 nextTbtt = bs->bs_nextdtim;
3042         else
3043                 nextTbtt = bs->bs_nexttbtt;
3044
3045         ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3046         ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3047         ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3048         ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3049
3050         REG_WRITE(ah, AR_NEXT_DTIM,
3051                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3052         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3053
3054         REG_WRITE(ah, AR_SLEEP1,
3055                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3056                   | AR_SLEEP1_ASSUME_DTIM);
3057
3058         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3059                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3060         else
3061                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3062
3063         REG_WRITE(ah, AR_SLEEP2,
3064                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3065
3066         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3067         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3068
3069         REG_SET_BIT(ah, AR_TIMER_MODE,
3070                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3071                     AR_DTIM_TIMER_EN);
3072
3073         /* TSF Out of Range Threshold */
3074         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3075 }
3076 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3077
3078 /*******************/
3079 /* HW Capabilities */
3080 /*******************/
3081
3082 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
3083 {
3084         struct ath9k_hw_capabilities *pCap = &ah->caps;
3085         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3086         struct ath_common *common = ath9k_hw_common(ah);
3087         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3088
3089         u16 capField = 0, eeval;
3090
3091         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3092         regulatory->current_rd = eeval;
3093
3094         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3095         if (AR_SREV_9285_10_OR_LATER(ah))
3096                 eeval |= AR9285_RDEXT_DEFAULT;
3097         regulatory->current_rd_ext = eeval;
3098
3099         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3100
3101         if (ah->opmode != NL80211_IFTYPE_AP &&
3102             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3103                 if (regulatory->current_rd == 0x64 ||
3104                     regulatory->current_rd == 0x65)
3105                         regulatory->current_rd += 5;
3106                 else if (regulatory->current_rd == 0x41)
3107                         regulatory->current_rd = 0x43;
3108                 ath_print(common, ATH_DBG_REGULATORY,
3109                           "regdomain mapped to 0x%x\n", regulatory->current_rd);
3110         }
3111
3112         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3113         if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
3114                 ath_print(common, ATH_DBG_FATAL,
3115                           "no band has been marked as supported in EEPROM.\n");
3116                 return -EINVAL;
3117         }
3118
3119         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3120
3121         if (eeval & AR5416_OPFLAGS_11A) {
3122                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3123                 if (ah->config.ht_enable) {
3124                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3125                                 set_bit(ATH9K_MODE_11NA_HT20,
3126                                         pCap->wireless_modes);
3127                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3128                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3129                                         pCap->wireless_modes);
3130                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3131                                         pCap->wireless_modes);
3132                         }
3133                 }
3134         }
3135
3136         if (eeval & AR5416_OPFLAGS_11G) {
3137                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3138                 if (ah->config.ht_enable) {
3139                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3140                                 set_bit(ATH9K_MODE_11NG_HT20,
3141                                         pCap->wireless_modes);
3142                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3143                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3144                                         pCap->wireless_modes);
3145                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3146                                         pCap->wireless_modes);
3147                         }
3148                 }
3149         }
3150
3151         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3152         /*
3153          * For AR9271 we will temporarilly uses the rx chainmax as read from
3154          * the EEPROM.
3155          */
3156         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3157             !(eeval & AR5416_OPFLAGS_11A) &&
3158             !(AR_SREV_9271(ah)))
3159                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3160                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3161         else
3162                 /* Use rx_chainmask from EEPROM. */
3163                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3164
3165         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3166                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3167
3168         pCap->low_2ghz_chan = 2312;
3169         pCap->high_2ghz_chan = 2732;
3170
3171         pCap->low_5ghz_chan = 4920;
3172         pCap->high_5ghz_chan = 6100;
3173
3174         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3175         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3176         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3177
3178         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3179         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3180         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3181
3182         if (ah->config.ht_enable)
3183                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3184         else
3185                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3186
3187         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3188         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3189         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3190         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3191
3192         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3193                 pCap->total_queues =
3194                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3195         else
3196                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3197
3198         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3199                 pCap->keycache_size =
3200                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3201         else
3202                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3203
3204         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3205
3206         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
3207                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
3208         else
3209                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3210
3211         if (AR_SREV_9285_10_OR_LATER(ah))
3212                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3213         else if (AR_SREV_9280_10_OR_LATER(ah))
3214                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3215         else
3216                 pCap->num_gpio_pins = AR_NUM_GPIO;
3217
3218         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3219                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3220                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3221         } else {
3222                 pCap->rts_aggr_limit = (8 * 1024);
3223         }
3224
3225         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3226
3227 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3228         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3229         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3230                 ah->rfkill_gpio =
3231                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3232                 ah->rfkill_polarity =
3233                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3234
3235                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3236         }
3237 #endif
3238
3239         pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3240
3241         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3242                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3243         else
3244                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3245
3246         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3247                 pCap->reg_cap =
3248                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3249                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3250                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3251                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3252         } else {
3253                 pCap->reg_cap =
3254                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3255                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3256         }
3257
3258         /* Advertise midband for AR5416 with FCC midband set in eeprom */
3259         if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3260             AR_SREV_5416(ah))
3261                 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3262
3263         pCap->num_antcfg_5ghz =
3264                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3265         pCap->num_antcfg_2ghz =
3266                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3267
3268         if (AR_SREV_9280_10_OR_LATER(ah) &&
3269             ath9k_hw_btcoex_supported(ah)) {
3270                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3271                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3272
3273                 if (AR_SREV_9285(ah)) {
3274                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3275                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3276                 } else {
3277                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3278                 }
3279         } else {
3280                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3281         }
3282
3283         return 0;
3284 }
3285
3286 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3287                             u32 capability, u32 *result)
3288 {
3289         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3290         switch (type) {
3291         case ATH9K_CAP_CIPHER:
3292                 switch (capability) {
3293                 case ATH9K_CIPHER_AES_CCM:
3294                 case ATH9K_CIPHER_AES_OCB:
3295                 case ATH9K_CIPHER_TKIP:
3296                 case ATH9K_CIPHER_WEP:
3297                 case ATH9K_CIPHER_MIC:
3298                 case ATH9K_CIPHER_CLR:
3299                         return true;
3300                 default:
3301                         return false;
3302                 }
3303         case ATH9K_CAP_TKIP_MIC:
3304                 switch (capability) {
3305                 case 0:
3306                         return true;
3307                 case 1:
3308                         return (ah->sta_id1_defaults &
3309                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3310                         false;
3311                 }
3312         case ATH9K_CAP_TKIP_SPLIT:
3313                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3314                         false : true;
3315         case ATH9K_CAP_DIVERSITY:
3316                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3317                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3318                         true : false;
3319         case ATH9K_CAP_MCAST_KEYSRCH:
3320                 switch (capability) {
3321                 case 0:
3322                         return true;
3323                 case 1:
3324                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3325                                 return false;
3326                         } else {
3327                                 return (ah->sta_id1_defaults &
3328                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3329                                         false;
3330                         }
3331                 }
3332                 return false;
3333         case ATH9K_CAP_TXPOW:
3334                 switch (capability) {
3335                 case 0:
3336                         return 0;
3337                 case 1:
3338                         *result = regulatory->power_limit;
3339                         return 0;
3340                 case 2:
3341                         *result = regulatory->max_power_level;
3342                         return 0;
3343                 case 3:
3344                         *result = regulatory->tp_scale;
3345                         return 0;
3346                 }
3347                 return false;
3348         case ATH9K_CAP_DS:
3349                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3350                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3351                         ? false : true;
3352         default:
3353                 return false;
3354         }
3355 }
3356 EXPORT_SYMBOL(ath9k_hw_getcapability);
3357
3358 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3359                             u32 capability, u32 setting, int *status)
3360 {
3361         u32 v;
3362
3363         switch (type) {
3364         case ATH9K_CAP_TKIP_MIC:
3365                 if (setting)
3366                         ah->sta_id1_defaults |=
3367                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3368                 else
3369                         ah->sta_id1_defaults &=
3370                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3371                 return true;
3372         case ATH9K_CAP_DIVERSITY:
3373                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3374                 if (setting)
3375                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3376                 else
3377                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3378                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3379                 return true;
3380         case ATH9K_CAP_MCAST_KEYSRCH:
3381                 if (setting)
3382                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3383                 else
3384                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3385                 return true;
3386         default:
3387                 return false;
3388         }
3389 }
3390 EXPORT_SYMBOL(ath9k_hw_setcapability);
3391
3392 /****************************/
3393 /* GPIO / RFKILL / Antennae */
3394 /****************************/
3395
3396 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3397                                          u32 gpio, u32 type)
3398 {
3399         int addr;
3400         u32 gpio_shift, tmp;
3401
3402         if (gpio > 11)
3403                 addr = AR_GPIO_OUTPUT_MUX3;
3404         else if (gpio > 5)
3405                 addr = AR_GPIO_OUTPUT_MUX2;
3406         else
3407                 addr = AR_GPIO_OUTPUT_MUX1;
3408
3409         gpio_shift = (gpio % 6) * 5;
3410
3411         if (AR_SREV_9280_20_OR_LATER(ah)
3412             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3413                 REG_RMW(ah, addr, (type << gpio_shift),
3414                         (0x1f << gpio_shift));
3415         } else {
3416                 tmp = REG_READ(ah, addr);
3417                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3418                 tmp &= ~(0x1f << gpio_shift);
3419                 tmp |= (type << gpio_shift);
3420                 REG_WRITE(ah, addr, tmp);
3421         }
3422 }
3423
3424 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3425 {
3426         u32 gpio_shift;
3427
3428         BUG_ON(gpio >= ah->caps.num_gpio_pins);
3429
3430         gpio_shift = gpio << 1;
3431
3432         REG_RMW(ah,
3433                 AR_GPIO_OE_OUT,
3434                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3435                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3436 }
3437 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3438
3439 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3440 {
3441 #define MS_REG_READ(x, y) \
3442         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3443
3444         if (gpio >= ah->caps.num_gpio_pins)
3445                 return 0xffffffff;
3446
3447         if (AR_SREV_9287_10_OR_LATER(ah))
3448                 return MS_REG_READ(AR9287, gpio) != 0;
3449         else if (AR_SREV_9285_10_OR_LATER(ah))
3450                 return MS_REG_READ(AR9285, gpio) != 0;
3451         else if (AR_SREV_9280_10_OR_LATER(ah))
3452                 return MS_REG_READ(AR928X, gpio) != 0;
3453         else
3454                 return MS_REG_READ(AR, gpio) != 0;
3455 }
3456 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3457
3458 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3459                          u32 ah_signal_type)
3460 {
3461         u32 gpio_shift;
3462
3463         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3464
3465         gpio_shift = 2 * gpio;
3466
3467         REG_RMW(ah,
3468                 AR_GPIO_OE_OUT,
3469                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3470                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3471 }
3472 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3473
3474 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3475 {
3476         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3477                 AR_GPIO_BIT(gpio));
3478 }
3479 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3480
3481 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3482 {
3483         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3484 }
3485 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3486
3487 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3488 {
3489         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3490 }
3491 EXPORT_SYMBOL(ath9k_hw_setantenna);
3492
3493 /*********************/
3494 /* General Operation */
3495 /*********************/
3496
3497 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3498 {
3499         u32 bits = REG_READ(ah, AR_RX_FILTER);
3500         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3501
3502         if (phybits & AR_PHY_ERR_RADAR)
3503                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3504         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3505                 bits |= ATH9K_RX_FILTER_PHYERR;
3506
3507         return bits;
3508 }
3509 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3510
3511 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3512 {
3513         u32 phybits;
3514
3515         REG_WRITE(ah, AR_RX_FILTER, bits);
3516
3517         phybits = 0;
3518         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3519                 phybits |= AR_PHY_ERR_RADAR;
3520         if (bits & ATH9K_RX_FILTER_PHYERR)
3521                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3522         REG_WRITE(ah, AR_PHY_ERR, phybits);
3523
3524         if (phybits)
3525                 REG_WRITE(ah, AR_RXCFG,
3526                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3527         else
3528                 REG_WRITE(ah, AR_RXCFG,
3529                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3530 }
3531 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3532
3533 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3534 {
3535         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3536                 return false;
3537
3538         ath9k_hw_init_pll(ah, NULL);
3539         return true;
3540 }
3541 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3542
3543 bool ath9k_hw_disable(struct ath_hw *ah)
3544 {
3545         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3546                 return false;
3547
3548         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3549                 return false;
3550
3551         ath9k_hw_init_pll(ah, NULL);
3552         return true;
3553 }
3554 EXPORT_SYMBOL(ath9k_hw_disable);
3555
3556 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3557 {
3558         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3559         struct ath9k_channel *chan = ah->curchan;
3560         struct ieee80211_channel *channel = chan->chan;
3561
3562         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3563
3564         ah->eep_ops->set_txpower(ah, chan,
3565                                  ath9k_regd_get_ctl(regulatory, chan),
3566                                  channel->max_antenna_gain * 2,
3567                                  channel->max_power * 2,
3568                                  min((u32) MAX_RATE_POWER,
3569                                  (u32) regulatory->power_limit));
3570 }
3571 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3572
3573 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3574 {
3575         memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3576 }
3577 EXPORT_SYMBOL(ath9k_hw_setmac);
3578
3579 void ath9k_hw_setopmode(struct ath_hw *ah)
3580 {
3581         ath9k_hw_set_operating_mode(ah, ah->opmode);
3582 }
3583 EXPORT_SYMBOL(ath9k_hw_setopmode);
3584
3585 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3586 {
3587         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3588         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3589 }
3590 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3591
3592 void ath9k_hw_write_associd(struct ath_hw *ah)
3593 {
3594         struct ath_common *common = ath9k_hw_common(ah);
3595
3596         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3597         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3598                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3599 }
3600 EXPORT_SYMBOL(ath9k_hw_write_associd);
3601
3602 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3603 {
3604         u64 tsf;
3605
3606         tsf = REG_READ(ah, AR_TSF_U32);
3607         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3608
3609         return tsf;
3610 }
3611 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3612
3613 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3614 {
3615         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3616         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3617 }
3618 EXPORT_SYMBOL(ath9k_hw_settsf64);
3619
3620 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3621 {
3622         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3623                            AH_TSF_WRITE_TIMEOUT))
3624                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3625                           "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3626
3627         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3628 }
3629 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3630
3631 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3632 {
3633         if (setting)
3634                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3635         else
3636                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3637 }
3638 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3639
3640 /*
3641  *  Extend 15-bit time stamp from rx descriptor to
3642  *  a full 64-bit TSF using the current h/w TSF.
3643 */
3644 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3645 {
3646         u64 tsf;
3647
3648         tsf = ath9k_hw_gettsf64(ah);
3649         if ((tsf & 0x7fff) < rstamp)
3650                 tsf -= 0x8000;
3651         return (tsf & ~0x7fff) | rstamp;
3652 }
3653 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3654
3655 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3656 {
3657         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3658         u32 macmode;
3659
3660         if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3661                 macmode = AR_2040_JOINED_RX_CLEAR;
3662         else
3663                 macmode = 0;
3664
3665         REG_WRITE(ah, AR_2040_MODE, macmode);
3666 }
3667
3668 /* HW Generic timers configuration */
3669
3670 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3671 {
3672         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3673         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3674         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3675         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3676         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3677         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3678         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3679         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3680         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3681         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3682                                 AR_NDP2_TIMER_MODE, 0x0002},
3683         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3684                                 AR_NDP2_TIMER_MODE, 0x0004},
3685         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3686                                 AR_NDP2_TIMER_MODE, 0x0008},
3687         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3688                                 AR_NDP2_TIMER_MODE, 0x0010},
3689         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3690                                 AR_NDP2_TIMER_MODE, 0x0020},
3691         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3692                                 AR_NDP2_TIMER_MODE, 0x0040},
3693         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3694                                 AR_NDP2_TIMER_MODE, 0x0080}
3695 };
3696
3697 /* HW generic timer primitives */
3698
3699 /* compute and clear index of rightmost 1 */
3700 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3701 {
3702         u32 b;
3703
3704         b = *mask;
3705         b &= (0-b);
3706         *mask &= ~b;
3707         b *= debruijn32;
3708         b >>= 27;
3709
3710         return timer_table->gen_timer_index[b];
3711 }
3712
3713 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3714 {
3715         return REG_READ(ah, AR_TSF_L32);
3716 }
3717 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3718
3719 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3720                                           void (*trigger)(void *),
3721                                           void (*overflow)(void *),
3722                                           void *arg,
3723                                           u8 timer_index)
3724 {
3725         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3726         struct ath_gen_timer *timer;
3727
3728         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3729
3730         if (timer == NULL) {
3731                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3732                           "Failed to allocate memory"
3733                           "for hw timer[%d]\n", timer_index);
3734                 return NULL;
3735         }
3736
3737         /* allocate a hardware generic timer slot */
3738         timer_table->timers[timer_index] = timer;
3739         timer->index = timer_index;
3740         timer->trigger = trigger;
3741         timer->overflow = overflow;
3742         timer->arg = arg;
3743
3744         return timer;
3745 }
3746 EXPORT_SYMBOL(ath_gen_timer_alloc);
3747
3748 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3749                               struct ath_gen_timer *timer,
3750                               u32 timer_next,
3751                               u32 timer_period)
3752 {
3753         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3754         u32 tsf;
3755
3756         BUG_ON(!timer_period);
3757
3758         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3759
3760         tsf = ath9k_hw_gettsf32(ah);
3761
3762         ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3763                   "curent tsf %x period %x"
3764                   "timer_next %x\n", tsf, timer_period, timer_next);
3765
3766         /*
3767          * Pull timer_next forward if the current TSF already passed it
3768          * because of software latency
3769          */
3770         if (timer_next < tsf)
3771                 timer_next = tsf + timer_period;
3772
3773         /*
3774          * Program generic timer registers
3775          */
3776         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3777                  timer_next);
3778         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3779                   timer_period);
3780         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3781                     gen_tmr_configuration[timer->index].mode_mask);
3782
3783         /* Enable both trigger and thresh interrupt masks */
3784         REG_SET_BIT(ah, AR_IMR_S5,
3785                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3786                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3787 }
3788 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3789
3790 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3791 {
3792         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3793
3794         if ((timer->index < AR_FIRST_NDP_TIMER) ||
3795                 (timer->index >= ATH_MAX_GEN_TIMER)) {
3796                 return;
3797         }
3798
3799         /* Clear generic timer enable bits. */
3800         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3801                         gen_tmr_configuration[timer->index].mode_mask);
3802
3803         /* Disable both trigger and thresh interrupt masks */
3804         REG_CLR_BIT(ah, AR_IMR_S5,
3805                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3806                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3807
3808         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3809 }
3810 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3811
3812 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3813 {
3814         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3815
3816         /* free the hardware generic timer slot */
3817         timer_table->timers[timer->index] = NULL;
3818         kfree(timer);
3819 }
3820 EXPORT_SYMBOL(ath_gen_timer_free);
3821
3822 /*
3823  * Generic Timer Interrupts handling
3824  */
3825 void ath_gen_timer_isr(struct ath_hw *ah)
3826 {
3827         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3828         struct ath_gen_timer *timer;
3829         struct ath_common *common = ath9k_hw_common(ah);
3830         u32 trigger_mask, thresh_mask, index;
3831
3832         /* get hardware generic timer interrupt status */
3833         trigger_mask = ah->intr_gen_timer_trigger;
3834         thresh_mask = ah->intr_gen_timer_thresh;
3835         trigger_mask &= timer_table->timer_mask.val;
3836         thresh_mask &= timer_table->timer_mask.val;
3837
3838         trigger_mask &= ~thresh_mask;
3839
3840         while (thresh_mask) {
3841                 index = rightmost_index(timer_table, &thresh_mask);
3842                 timer = timer_table->timers[index];
3843                 BUG_ON(!timer);
3844                 ath_print(common, ATH_DBG_HWTIMER,
3845                           "TSF overflow for Gen timer %d\n", index);
3846                 timer->overflow(timer->arg);
3847         }
3848
3849         while (trigger_mask) {
3850                 index = rightmost_index(timer_table, &trigger_mask);
3851                 timer = timer_table->timers[index];
3852                 BUG_ON(!timer);
3853                 ath_print(common, ATH_DBG_HWTIMER,
3854                           "Gen timer[%d] trigger\n", index);
3855                 timer->trigger(timer->arg);
3856         }
3857 }
3858 EXPORT_SYMBOL(ath_gen_timer_isr);
3859
3860 static struct {
3861         u32 version;
3862         const char * name;
3863 } ath_mac_bb_names[] = {
3864         /* Devices with external radios */
3865         { AR_SREV_VERSION_5416_PCI,     "5416" },
3866         { AR_SREV_VERSION_5416_PCIE,    "5418" },
3867         { AR_SREV_VERSION_9100,         "9100" },
3868         { AR_SREV_VERSION_9160,         "9160" },
3869         /* Single-chip solutions */
3870         { AR_SREV_VERSION_9280,         "9280" },
3871         { AR_SREV_VERSION_9285,         "9285" },
3872         { AR_SREV_VERSION_9287,         "9287" },
3873         { AR_SREV_VERSION_9271,         "9271" },
3874 };
3875
3876 /* For devices with external radios */
3877 static struct {
3878         u16 version;
3879         const char * name;
3880 } ath_rf_names[] = {
3881         { 0,                            "5133" },
3882         { AR_RAD5133_SREV_MAJOR,        "5133" },
3883         { AR_RAD5122_SREV_MAJOR,        "5122" },
3884         { AR_RAD2133_SREV_MAJOR,        "2133" },
3885         { AR_RAD2122_SREV_MAJOR,        "2122" }
3886 };
3887
3888 /*
3889  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3890  */
3891 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3892 {
3893         int i;
3894
3895         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3896                 if (ath_mac_bb_names[i].version == mac_bb_version) {
3897                         return ath_mac_bb_names[i].name;
3898                 }
3899         }
3900
3901         return "????";
3902 }
3903
3904 /*
3905  * Return the RF name. "????" is returned if the RF is unknown.
3906  * Used for devices with external radios.
3907  */
3908 static const char *ath9k_hw_rf_name(u16 rf_version)
3909 {
3910         int i;
3911
3912         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3913                 if (ath_rf_names[i].version == rf_version) {
3914                         return ath_rf_names[i].name;
3915                 }
3916         }
3917
3918         return "????";
3919 }
3920
3921 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3922 {
3923         int used;
3924
3925         /* chipsets >= AR9280 are single-chip */
3926         if (AR_SREV_9280_10_OR_LATER(ah)) {
3927                 used = snprintf(hw_name, len,
3928                                "Atheros AR%s Rev:%x",
3929                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3930                                ah->hw_version.macRev);
3931         }
3932         else {
3933                 used = snprintf(hw_name, len,
3934                                "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3935                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3936                                ah->hw_version.macRev,
3937                                ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3938                                                 AR_RADIO_SREV_MAJOR)),
3939                                ah->hw_version.phyRev);
3940         }
3941
3942         hw_name[used] = '\0';
3943 }
3944 EXPORT_SYMBOL(ath9k_hw_name);