ca7694caf36425bf278d786af0bdd95c3713b99e
[linux-2.6.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19 #include <linux/pci.h>
20
21 #include "ath9k.h"
22 #include "initvals.h"
23
24 #define ATH9K_CLOCK_RATE_CCK            22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
27
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
30                               enum ath9k_ht_macmode macmode);
31 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
32                               struct ar5416_eeprom_def *pEepData,
33                               u32 reg, u32 value);
34 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
35 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
36
37 /********************/
38 /* Helper Functions */
39 /********************/
40
41 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
42 {
43         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
44
45         if (!ah->curchan) /* should really check for CCK instead */
46                 return clks / ATH9K_CLOCK_RATE_CCK;
47         if (conf->channel->band == IEEE80211_BAND_2GHZ)
48                 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
49
50         return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
51 }
52
53 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
54 {
55         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
56
57         if (conf_is_ht40(conf))
58                 return ath9k_hw_mac_usec(ah, clks) / 2;
59         else
60                 return ath9k_hw_mac_usec(ah, clks);
61 }
62
63 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
64 {
65         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
66
67         if (!ah->curchan) /* should really check for CCK instead */
68                 return usecs *ATH9K_CLOCK_RATE_CCK;
69         if (conf->channel->band == IEEE80211_BAND_2GHZ)
70                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
71         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
72 }
73
74 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
75 {
76         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
77
78         if (conf_is_ht40(conf))
79                 return ath9k_hw_mac_clks(ah, usecs) * 2;
80         else
81                 return ath9k_hw_mac_clks(ah, usecs);
82 }
83
84 /*
85  * Read and write, they both share the same lock. We do this to serialize
86  * reads and writes on Atheros 802.11n PCI devices only. This is required
87  * as the FIFO on these devices can only accept sanely 2 requests. After
88  * that the device goes bananas. Serializing the reads/writes prevents this
89  * from happening.
90  */
91
92 void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val)
93 {
94         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
95                 unsigned long flags;
96                 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
97                 iowrite32(val, ah->ah_sc->mem + reg_offset);
98                 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
99         } else
100                 iowrite32(val, ah->ah_sc->mem + reg_offset);
101 }
102
103 unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset)
104 {
105         u32 val;
106         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
107                 unsigned long flags;
108                 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
109                 val = ioread32(ah->ah_sc->mem + reg_offset);
110                 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
111         } else
112                 val = ioread32(ah->ah_sc->mem + reg_offset);
113         return val;
114 }
115
116 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
117 {
118         int i;
119
120         BUG_ON(timeout < AH_TIME_QUANTUM);
121
122         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
123                 if ((REG_READ(ah, reg) & mask) == val)
124                         return true;
125
126                 udelay(AH_TIME_QUANTUM);
127         }
128
129         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
130                 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
131                 timeout, reg, REG_READ(ah, reg), mask, val);
132
133         return false;
134 }
135
136 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
137 {
138         u32 retval;
139         int i;
140
141         for (i = 0, retval = 0; i < n; i++) {
142                 retval = (retval << 1) | (val & 1);
143                 val >>= 1;
144         }
145         return retval;
146 }
147
148 bool ath9k_get_channel_edges(struct ath_hw *ah,
149                              u16 flags, u16 *low,
150                              u16 *high)
151 {
152         struct ath9k_hw_capabilities *pCap = &ah->caps;
153
154         if (flags & CHANNEL_5GHZ) {
155                 *low = pCap->low_5ghz_chan;
156                 *high = pCap->high_5ghz_chan;
157                 return true;
158         }
159         if ((flags & CHANNEL_2GHZ)) {
160                 *low = pCap->low_2ghz_chan;
161                 *high = pCap->high_2ghz_chan;
162                 return true;
163         }
164         return false;
165 }
166
167 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
168                            const struct ath_rate_table *rates,
169                            u32 frameLen, u16 rateix,
170                            bool shortPreamble)
171 {
172         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
173         u32 kbps;
174
175         kbps = rates->info[rateix].ratekbps;
176
177         if (kbps == 0)
178                 return 0;
179
180         switch (rates->info[rateix].phy) {
181         case WLAN_RC_PHY_CCK:
182                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
183                 if (shortPreamble && rates->info[rateix].short_preamble)
184                         phyTime >>= 1;
185                 numBits = frameLen << 3;
186                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
187                 break;
188         case WLAN_RC_PHY_OFDM:
189                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
190                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
191                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
192                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
193                         txTime = OFDM_SIFS_TIME_QUARTER
194                                 + OFDM_PREAMBLE_TIME_QUARTER
195                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
196                 } else if (ah->curchan &&
197                            IS_CHAN_HALF_RATE(ah->curchan)) {
198                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
199                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
200                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
201                         txTime = OFDM_SIFS_TIME_HALF +
202                                 OFDM_PREAMBLE_TIME_HALF
203                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
204                 } else {
205                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
206                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
207                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
208                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
209                                 + (numSymbols * OFDM_SYMBOL_TIME);
210                 }
211                 break;
212         default:
213                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
214                         "Unknown phy %u (rate ix %u)\n",
215                         rates->info[rateix].phy, rateix);
216                 txTime = 0;
217                 break;
218         }
219
220         return txTime;
221 }
222
223 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
224                                   struct ath9k_channel *chan,
225                                   struct chan_centers *centers)
226 {
227         int8_t extoff;
228
229         if (!IS_CHAN_HT40(chan)) {
230                 centers->ctl_center = centers->ext_center =
231                         centers->synth_center = chan->channel;
232                 return;
233         }
234
235         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
236             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
237                 centers->synth_center =
238                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
239                 extoff = 1;
240         } else {
241                 centers->synth_center =
242                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
243                 extoff = -1;
244         }
245
246         centers->ctl_center =
247                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
248         centers->ext_center =
249                 centers->synth_center + (extoff *
250                          ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
251                           HT40_CHANNEL_CENTER_SHIFT : 15));
252 }
253
254 /******************/
255 /* Chip Revisions */
256 /******************/
257
258 static void ath9k_hw_read_revisions(struct ath_hw *ah)
259 {
260         u32 val;
261
262         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
263
264         if (val == 0xFF) {
265                 val = REG_READ(ah, AR_SREV);
266                 ah->hw_version.macVersion =
267                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
268                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
269                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
270         } else {
271                 if (!AR_SREV_9100(ah))
272                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
273
274                 ah->hw_version.macRev = val & AR_SREV_REVISION;
275
276                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
277                         ah->is_pciexpress = true;
278         }
279 }
280
281 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
282 {
283         u32 val;
284         int i;
285
286         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
287
288         for (i = 0; i < 8; i++)
289                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
290         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
291         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
292
293         return ath9k_hw_reverse_bits(val, 8);
294 }
295
296 /************************************/
297 /* HW Attach, Detach, Init Routines */
298 /************************************/
299
300 static void ath9k_hw_disablepcie(struct ath_hw *ah)
301 {
302         if (AR_SREV_9100(ah))
303                 return;
304
305         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
306         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
307         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
308         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
309         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
310         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
311         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
312         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
313         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
314
315         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
316 }
317
318 static bool ath9k_hw_chip_test(struct ath_hw *ah)
319 {
320         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
321         u32 regHold[2];
322         u32 patternData[4] = { 0x55555555,
323                                0xaaaaaaaa,
324                                0x66666666,
325                                0x99999999 };
326         int i, j;
327
328         for (i = 0; i < 2; i++) {
329                 u32 addr = regAddr[i];
330                 u32 wrData, rdData;
331
332                 regHold[i] = REG_READ(ah, addr);
333                 for (j = 0; j < 0x100; j++) {
334                         wrData = (j << 16) | j;
335                         REG_WRITE(ah, addr, wrData);
336                         rdData = REG_READ(ah, addr);
337                         if (rdData != wrData) {
338                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
339                                         "address test failed "
340                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
341                                         addr, wrData, rdData);
342                                 return false;
343                         }
344                 }
345                 for (j = 0; j < 4; j++) {
346                         wrData = patternData[j];
347                         REG_WRITE(ah, addr, wrData);
348                         rdData = REG_READ(ah, addr);
349                         if (wrData != rdData) {
350                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
351                                         "address test failed "
352                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
353                                         addr, wrData, rdData);
354                                 return false;
355                         }
356                 }
357                 REG_WRITE(ah, regAddr[i], regHold[i]);
358         }
359         udelay(100);
360
361         return true;
362 }
363
364 static const char *ath9k_hw_devname(u16 devid)
365 {
366         switch (devid) {
367         case AR5416_DEVID_PCI:
368                 return "Atheros 5416";
369         case AR5416_DEVID_PCIE:
370                 return "Atheros 5418";
371         case AR9160_DEVID_PCI:
372                 return "Atheros 9160";
373         case AR5416_AR9100_DEVID:
374                 return "Atheros 9100";
375         case AR9280_DEVID_PCI:
376         case AR9280_DEVID_PCIE:
377                 return "Atheros 9280";
378         case AR9285_DEVID_PCIE:
379                 return "Atheros 9285";
380         case AR5416_DEVID_AR9287_PCI:
381         case AR5416_DEVID_AR9287_PCIE:
382                 return "Atheros 9287";
383         }
384
385         return NULL;
386 }
387
388 static void ath9k_hw_init_config(struct ath_hw *ah)
389 {
390         int i;
391
392         ah->config.dma_beacon_response_time = 2;
393         ah->config.sw_beacon_response_time = 10;
394         ah->config.additional_swba_backoff = 0;
395         ah->config.ack_6mb = 0x0;
396         ah->config.cwm_ignore_extcca = 0;
397         ah->config.pcie_powersave_enable = 0;
398         ah->config.pcie_clock_req = 0;
399         ah->config.pcie_waen = 0;
400         ah->config.analog_shiftreg = 1;
401         ah->config.ht_enable = 1;
402         ah->config.ofdm_trig_low = 200;
403         ah->config.ofdm_trig_high = 500;
404         ah->config.cck_trig_high = 200;
405         ah->config.cck_trig_low = 100;
406         ah->config.enable_ani = 1;
407         ah->config.diversity_control = ATH9K_ANT_VARIABLE;
408         ah->config.antenna_switch_swap = 0;
409
410         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
411                 ah->config.spurchans[i][0] = AR_NO_SPUR;
412                 ah->config.spurchans[i][1] = AR_NO_SPUR;
413         }
414
415         ah->config.intr_mitigation = true;
416
417         /*
418          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
419          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
420          * This means we use it for all AR5416 devices, and the few
421          * minor PCI AR9280 devices out there.
422          *
423          * Serialization is required because these devices do not handle
424          * well the case of two concurrent reads/writes due to the latency
425          * involved. During one read/write another read/write can be issued
426          * on another CPU while the previous read/write may still be working
427          * on our hardware, if we hit this case the hardware poops in a loop.
428          * We prevent this by serializing reads and writes.
429          *
430          * This issue is not present on PCI-Express devices or pre-AR5416
431          * devices (legacy, 802.11abg).
432          */
433         if (num_possible_cpus() > 1)
434                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
435 }
436
437 static void ath9k_hw_init_defaults(struct ath_hw *ah)
438 {
439         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
440
441         regulatory->country_code = CTRY_DEFAULT;
442         regulatory->power_limit = MAX_RATE_POWER;
443         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
444
445         ah->hw_version.magic = AR5416_MAGIC;
446         ah->hw_version.subvendorid = 0;
447
448         ah->ah_flags = 0;
449         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
450                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
451         if (!AR_SREV_9100(ah))
452                 ah->ah_flags = AH_USE_EEPROM;
453
454         ah->atim_window = 0;
455         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
456         ah->beacon_interval = 100;
457         ah->enable_32kHz_clock = DONT_USE_32KHZ;
458         ah->slottime = (u32) -1;
459         ah->acktimeout = (u32) -1;
460         ah->ctstimeout = (u32) -1;
461         ah->globaltxtimeout = (u32) -1;
462
463         ah->gbeacon_rate = 0;
464
465         ah->power_mode = ATH9K_PM_UNDEFINED;
466 }
467
468 static int ath9k_hw_rfattach(struct ath_hw *ah)
469 {
470         bool rfStatus = false;
471         int ecode = 0;
472
473         rfStatus = ath9k_hw_init_rf(ah, &ecode);
474         if (!rfStatus) {
475                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
476                         "RF setup failed, status: %u\n", ecode);
477                 return ecode;
478         }
479
480         return 0;
481 }
482
483 static int ath9k_hw_rf_claim(struct ath_hw *ah)
484 {
485         u32 val;
486
487         REG_WRITE(ah, AR_PHY(0), 0x00000007);
488
489         val = ath9k_hw_get_radiorev(ah);
490         switch (val & AR_RADIO_SREV_MAJOR) {
491         case 0:
492                 val = AR_RAD5133_SREV_MAJOR;
493                 break;
494         case AR_RAD5133_SREV_MAJOR:
495         case AR_RAD5122_SREV_MAJOR:
496         case AR_RAD2133_SREV_MAJOR:
497         case AR_RAD2122_SREV_MAJOR:
498                 break;
499         default:
500                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
501                         "Radio Chip Rev 0x%02X not supported\n",
502                         val & AR_RADIO_SREV_MAJOR);
503                 return -EOPNOTSUPP;
504         }
505
506         ah->hw_version.analog5GhzRev = val;
507
508         return 0;
509 }
510
511 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
512 {
513         u32 sum;
514         int i;
515         u16 eeval;
516
517         sum = 0;
518         for (i = 0; i < 3; i++) {
519                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
520                 sum += eeval;
521                 ah->macaddr[2 * i] = eeval >> 8;
522                 ah->macaddr[2 * i + 1] = eeval & 0xff;
523         }
524         if (sum == 0 || sum == 0xffff * 3)
525                 return -EADDRNOTAVAIL;
526
527         return 0;
528 }
529
530 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
531 {
532         u32 rxgain_type;
533
534         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
535                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
536
537                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
538                         INIT_INI_ARRAY(&ah->iniModesRxGain,
539                         ar9280Modes_backoff_13db_rxgain_9280_2,
540                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
541                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
542                         INIT_INI_ARRAY(&ah->iniModesRxGain,
543                         ar9280Modes_backoff_23db_rxgain_9280_2,
544                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
545                 else
546                         INIT_INI_ARRAY(&ah->iniModesRxGain,
547                         ar9280Modes_original_rxgain_9280_2,
548                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
549         } else {
550                 INIT_INI_ARRAY(&ah->iniModesRxGain,
551                         ar9280Modes_original_rxgain_9280_2,
552                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
553         }
554 }
555
556 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
557 {
558         u32 txgain_type;
559
560         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
561                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
562
563                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
564                         INIT_INI_ARRAY(&ah->iniModesTxGain,
565                         ar9280Modes_high_power_tx_gain_9280_2,
566                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
567                 else
568                         INIT_INI_ARRAY(&ah->iniModesTxGain,
569                         ar9280Modes_original_tx_gain_9280_2,
570                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
571         } else {
572                 INIT_INI_ARRAY(&ah->iniModesTxGain,
573                 ar9280Modes_original_tx_gain_9280_2,
574                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
575         }
576 }
577
578 static int ath9k_hw_post_init(struct ath_hw *ah)
579 {
580         int ecode;
581
582         if (!ath9k_hw_chip_test(ah))
583                 return -ENODEV;
584
585         ecode = ath9k_hw_rf_claim(ah);
586         if (ecode != 0)
587                 return ecode;
588
589         ecode = ath9k_hw_eeprom_init(ah);
590         if (ecode != 0)
591                 return ecode;
592
593         DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
594                 ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
595
596         ecode = ath9k_hw_rfattach(ah);
597         if (ecode != 0)
598                 return ecode;
599
600         if (!AR_SREV_9100(ah)) {
601                 ath9k_hw_ani_setup(ah);
602                 ath9k_hw_ani_init(ah);
603         }
604
605         return 0;
606 }
607
608 static bool ath9k_hw_devid_supported(u16 devid)
609 {
610         switch (devid) {
611         case AR5416_DEVID_PCI:
612         case AR5416_DEVID_PCIE:
613         case AR5416_AR9100_DEVID:
614         case AR9160_DEVID_PCI:
615         case AR9280_DEVID_PCI:
616         case AR9280_DEVID_PCIE:
617         case AR9285_DEVID_PCIE:
618         case AR5416_DEVID_AR9287_PCI:
619         case AR5416_DEVID_AR9287_PCIE:
620                 return true;
621         default:
622                 break;
623         }
624         return false;
625 }
626
627 static bool ath9k_hw_macversion_supported(u32 macversion)
628 {
629         switch (macversion) {
630         case AR_SREV_VERSION_5416_PCI:
631         case AR_SREV_VERSION_5416_PCIE:
632         case AR_SREV_VERSION_9160:
633         case AR_SREV_VERSION_9100:
634         case AR_SREV_VERSION_9280:
635         case AR_SREV_VERSION_9285:
636         case AR_SREV_VERSION_9287:
637                 return true;
638         /* Not yet */
639         case AR_SREV_VERSION_9271:
640         default:
641                 break;
642         }
643         return false;
644 }
645
646 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
647 {
648         if (AR_SREV_9160_10_OR_LATER(ah)) {
649                 if (AR_SREV_9280_10_OR_LATER(ah)) {
650                         ah->iq_caldata.calData = &iq_cal_single_sample;
651                         ah->adcgain_caldata.calData =
652                                 &adc_gain_cal_single_sample;
653                         ah->adcdc_caldata.calData =
654                                 &adc_dc_cal_single_sample;
655                         ah->adcdc_calinitdata.calData =
656                                 &adc_init_dc_cal;
657                 } else {
658                         ah->iq_caldata.calData = &iq_cal_multi_sample;
659                         ah->adcgain_caldata.calData =
660                                 &adc_gain_cal_multi_sample;
661                         ah->adcdc_caldata.calData =
662                                 &adc_dc_cal_multi_sample;
663                         ah->adcdc_calinitdata.calData =
664                                 &adc_init_dc_cal;
665                 }
666                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
667         }
668 }
669
670 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
671 {
672         if (AR_SREV_9271(ah)) {
673                 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271_1_0,
674                                ARRAY_SIZE(ar9271Modes_9271_1_0), 6);
675                 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271_1_0,
676                                ARRAY_SIZE(ar9271Common_9271_1_0), 2);
677                 return;
678         }
679
680         if (AR_SREV_9287_11_OR_LATER(ah)) {
681                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
682                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
683                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
684                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
685                 if (ah->config.pcie_clock_req)
686                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
687                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
688                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
689                 else
690                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
691                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
692                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
693                                         2);
694         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
695                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
696                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
697                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
698                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
699
700                 if (ah->config.pcie_clock_req)
701                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
702                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
703                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
704                 else
705                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
706                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
707                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
708                                   2);
709         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
710
711
712                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
713                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
714                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
715                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
716
717                 if (ah->config.pcie_clock_req) {
718                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
719                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
720                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
721                 } else {
722                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
723                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
724                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
725                                   2);
726                 }
727         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
728                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
729                                ARRAY_SIZE(ar9285Modes_9285), 6);
730                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
731                                ARRAY_SIZE(ar9285Common_9285), 2);
732
733                 if (ah->config.pcie_clock_req) {
734                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
735                         ar9285PciePhy_clkreq_off_L1_9285,
736                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
737                 } else {
738                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
739                         ar9285PciePhy_clkreq_always_on_L1_9285,
740                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
741                 }
742         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
743                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
744                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
745                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
746                                ARRAY_SIZE(ar9280Common_9280_2), 2);
747
748                 if (ah->config.pcie_clock_req) {
749                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
750                                ar9280PciePhy_clkreq_off_L1_9280,
751                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
752                 } else {
753                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
754                                ar9280PciePhy_clkreq_always_on_L1_9280,
755                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
756                 }
757                 INIT_INI_ARRAY(&ah->iniModesAdditional,
758                                ar9280Modes_fast_clock_9280_2,
759                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
760         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
761                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
762                                ARRAY_SIZE(ar9280Modes_9280), 6);
763                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
764                                ARRAY_SIZE(ar9280Common_9280), 2);
765         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
766                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
767                                ARRAY_SIZE(ar5416Modes_9160), 6);
768                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
769                                ARRAY_SIZE(ar5416Common_9160), 2);
770                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
771                                ARRAY_SIZE(ar5416Bank0_9160), 2);
772                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
773                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
774                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
775                                ARRAY_SIZE(ar5416Bank1_9160), 2);
776                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
777                                ARRAY_SIZE(ar5416Bank2_9160), 2);
778                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
779                                ARRAY_SIZE(ar5416Bank3_9160), 3);
780                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
781                                ARRAY_SIZE(ar5416Bank6_9160), 3);
782                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
783                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
784                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
785                                ARRAY_SIZE(ar5416Bank7_9160), 2);
786                 if (AR_SREV_9160_11(ah)) {
787                         INIT_INI_ARRAY(&ah->iniAddac,
788                                        ar5416Addac_91601_1,
789                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
790                 } else {
791                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
792                                        ARRAY_SIZE(ar5416Addac_9160), 2);
793                 }
794         } else if (AR_SREV_9100_OR_LATER(ah)) {
795                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
796                                ARRAY_SIZE(ar5416Modes_9100), 6);
797                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
798                                ARRAY_SIZE(ar5416Common_9100), 2);
799                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
800                                ARRAY_SIZE(ar5416Bank0_9100), 2);
801                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
802                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
803                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
804                                ARRAY_SIZE(ar5416Bank1_9100), 2);
805                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
806                                ARRAY_SIZE(ar5416Bank2_9100), 2);
807                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
808                                ARRAY_SIZE(ar5416Bank3_9100), 3);
809                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
810                                ARRAY_SIZE(ar5416Bank6_9100), 3);
811                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
812                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
813                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
814                                ARRAY_SIZE(ar5416Bank7_9100), 2);
815                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
816                                ARRAY_SIZE(ar5416Addac_9100), 2);
817         } else {
818                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
819                                ARRAY_SIZE(ar5416Modes), 6);
820                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
821                                ARRAY_SIZE(ar5416Common), 2);
822                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
823                                ARRAY_SIZE(ar5416Bank0), 2);
824                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
825                                ARRAY_SIZE(ar5416BB_RfGain), 3);
826                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
827                                ARRAY_SIZE(ar5416Bank1), 2);
828                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
829                                ARRAY_SIZE(ar5416Bank2), 2);
830                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
831                                ARRAY_SIZE(ar5416Bank3), 3);
832                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
833                                ARRAY_SIZE(ar5416Bank6), 3);
834                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
835                                ARRAY_SIZE(ar5416Bank6TPC), 3);
836                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
837                                ARRAY_SIZE(ar5416Bank7), 2);
838                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
839                                ARRAY_SIZE(ar5416Addac), 2);
840         }
841 }
842
843 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
844 {
845         if (AR_SREV_9287_11_OR_LATER(ah))
846                 INIT_INI_ARRAY(&ah->iniModesRxGain,
847                 ar9287Modes_rx_gain_9287_1_1,
848                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
849         else if (AR_SREV_9287_10(ah))
850                 INIT_INI_ARRAY(&ah->iniModesRxGain,
851                 ar9287Modes_rx_gain_9287_1_0,
852                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
853         else if (AR_SREV_9280_20(ah))
854                 ath9k_hw_init_rxgain_ini(ah);
855
856         if (AR_SREV_9287_11_OR_LATER(ah)) {
857                 INIT_INI_ARRAY(&ah->iniModesTxGain,
858                 ar9287Modes_tx_gain_9287_1_1,
859                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
860         } else if (AR_SREV_9287_10(ah)) {
861                 INIT_INI_ARRAY(&ah->iniModesTxGain,
862                 ar9287Modes_tx_gain_9287_1_0,
863                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
864         } else if (AR_SREV_9280_20(ah)) {
865                 ath9k_hw_init_txgain_ini(ah);
866         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
867                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
868
869                 /* txgain table */
870                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
871                         INIT_INI_ARRAY(&ah->iniModesTxGain,
872                         ar9285Modes_high_power_tx_gain_9285_1_2,
873                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
874                 } else {
875                         INIT_INI_ARRAY(&ah->iniModesTxGain,
876                         ar9285Modes_original_tx_gain_9285_1_2,
877                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
878                 }
879
880         }
881 }
882
883 static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah)
884 {
885         u32 i, j;
886
887         if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
888             test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
889
890                 /* EEPROM Fixup */
891                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
892                         u32 reg = INI_RA(&ah->iniModes, i, 0);
893
894                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
895                                 u32 val = INI_RA(&ah->iniModes, i, j);
896
897                                 INI_RA(&ah->iniModes, i, j) =
898                                         ath9k_hw_ini_fixup(ah,
899                                                            &ah->eeprom.def,
900                                                            reg, val);
901                         }
902                 }
903         }
904 }
905
906 int ath9k_hw_init(struct ath_hw *ah)
907 {
908         int r = 0;
909
910         if (!ath9k_hw_devid_supported(ah->hw_version.devid))
911                 return -EOPNOTSUPP;
912
913         ath9k_hw_init_defaults(ah);
914         ath9k_hw_init_config(ah);
915
916         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
917                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Couldn't reset chip\n");
918                 return -EIO;
919         }
920
921         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
922                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
923                 return -EIO;
924         }
925
926         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
927                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
928                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
929                         ah->config.serialize_regmode =
930                                 SER_REG_MODE_ON;
931                 } else {
932                         ah->config.serialize_regmode =
933                                 SER_REG_MODE_OFF;
934                 }
935         }
936
937         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
938                 ah->config.serialize_regmode);
939
940         if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
941                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
942                         "Mac Chip Rev 0x%02x.%x is not supported by "
943                         "this driver\n", ah->hw_version.macVersion,
944                         ah->hw_version.macRev);
945                 return -EOPNOTSUPP;
946         }
947
948         if (AR_SREV_9100(ah)) {
949                 ah->iq_caldata.calData = &iq_cal_multi_sample;
950                 ah->supp_cals = IQ_MISMATCH_CAL;
951                 ah->is_pciexpress = false;
952         }
953
954         if (AR_SREV_9271(ah))
955                 ah->is_pciexpress = false;
956
957         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
958
959         ath9k_hw_init_cal_settings(ah);
960
961         ah->ani_function = ATH9K_ANI_ALL;
962         if (AR_SREV_9280_10_OR_LATER(ah))
963                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
964
965         ath9k_hw_init_mode_regs(ah);
966
967         if (ah->is_pciexpress)
968                 ath9k_hw_configpcipowersave(ah, 0, 0);
969         else
970                 ath9k_hw_disablepcie(ah);
971
972         r = ath9k_hw_post_init(ah);
973         if (r)
974                 return r;
975
976         ath9k_hw_init_mode_gain_regs(ah);
977         ath9k_hw_fill_cap_info(ah);
978         ath9k_hw_init_11a_eeprom_fix(ah);
979
980         r = ath9k_hw_init_macaddr(ah);
981         if (r) {
982                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
983                         "Failed to initialize MAC address\n");
984                 return r;
985         }
986
987         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
988                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
989         else
990                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
991
992         ath9k_init_nfcal_hist_buffer(ah);
993
994         return 0;
995 }
996
997 static void ath9k_hw_init_bb(struct ath_hw *ah,
998                              struct ath9k_channel *chan)
999 {
1000         u32 synthDelay;
1001
1002         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1003         if (IS_CHAN_B(chan))
1004                 synthDelay = (4 * synthDelay) / 22;
1005         else
1006                 synthDelay /= 10;
1007
1008         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1009
1010         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1011 }
1012
1013 static void ath9k_hw_init_qos(struct ath_hw *ah)
1014 {
1015         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1016         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1017
1018         REG_WRITE(ah, AR_QOS_NO_ACK,
1019                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1020                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1021                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1022
1023         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1024         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1025         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1026         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1027         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1028 }
1029
1030 static void ath9k_hw_init_pll(struct ath_hw *ah,
1031                               struct ath9k_channel *chan)
1032 {
1033         u32 pll;
1034
1035         if (AR_SREV_9100(ah)) {
1036                 if (chan && IS_CHAN_5GHZ(chan))
1037                         pll = 0x1450;
1038                 else
1039                         pll = 0x1458;
1040         } else {
1041                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1042                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1043
1044                         if (chan && IS_CHAN_HALF_RATE(chan))
1045                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1046                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1047                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1048
1049                         if (chan && IS_CHAN_5GHZ(chan)) {
1050                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1051
1052
1053                                 if (AR_SREV_9280_20(ah)) {
1054                                         if (((chan->channel % 20) == 0)
1055                                             || ((chan->channel % 10) == 0))
1056                                                 pll = 0x2850;
1057                                         else
1058                                                 pll = 0x142c;
1059                                 }
1060                         } else {
1061                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1062                         }
1063
1064                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1065
1066                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1067
1068                         if (chan && IS_CHAN_HALF_RATE(chan))
1069                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1070                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1071                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1072
1073                         if (chan && IS_CHAN_5GHZ(chan))
1074                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1075                         else
1076                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1077                 } else {
1078                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1079
1080                         if (chan && IS_CHAN_HALF_RATE(chan))
1081                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1082                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1083                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1084
1085                         if (chan && IS_CHAN_5GHZ(chan))
1086                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1087                         else
1088                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1089                 }
1090         }
1091         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1092
1093         udelay(RTC_PLL_SETTLE_DELAY);
1094
1095         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1096 }
1097
1098 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1099 {
1100         int rx_chainmask, tx_chainmask;
1101
1102         rx_chainmask = ah->rxchainmask;
1103         tx_chainmask = ah->txchainmask;
1104
1105         switch (rx_chainmask) {
1106         case 0x5:
1107                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1108                             AR_PHY_SWAP_ALT_CHAIN);
1109         case 0x3:
1110                 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1111                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1112                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1113                         break;
1114                 }
1115         case 0x1:
1116         case 0x2:
1117         case 0x7:
1118                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1119                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1120                 break;
1121         default:
1122                 break;
1123         }
1124
1125         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1126         if (tx_chainmask == 0x5) {
1127                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1128                             AR_PHY_SWAP_ALT_CHAIN);
1129         }
1130         if (AR_SREV_9100(ah))
1131                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1132                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1133 }
1134
1135 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1136                                           enum nl80211_iftype opmode)
1137 {
1138         ah->mask_reg = AR_IMR_TXERR |
1139                 AR_IMR_TXURN |
1140                 AR_IMR_RXERR |
1141                 AR_IMR_RXORN |
1142                 AR_IMR_BCNMISC;
1143
1144         if (ah->config.intr_mitigation)
1145                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1146         else
1147                 ah->mask_reg |= AR_IMR_RXOK;
1148
1149         ah->mask_reg |= AR_IMR_TXOK;
1150
1151         if (opmode == NL80211_IFTYPE_AP)
1152                 ah->mask_reg |= AR_IMR_MIB;
1153
1154         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1155         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1156
1157         if (!AR_SREV_9100(ah)) {
1158                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1159                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1160                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1161         }
1162 }
1163
1164 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1165 {
1166         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1167                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1168                 ah->acktimeout = (u32) -1;
1169                 return false;
1170         } else {
1171                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1172                               AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1173                 ah->acktimeout = us;
1174                 return true;
1175         }
1176 }
1177
1178 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1179 {
1180         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1181                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1182                 ah->ctstimeout = (u32) -1;
1183                 return false;
1184         } else {
1185                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1186                               AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1187                 ah->ctstimeout = us;
1188                 return true;
1189         }
1190 }
1191
1192 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1193 {
1194         if (tu > 0xFFFF) {
1195                 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
1196                         "bad global tx timeout %u\n", tu);
1197                 ah->globaltxtimeout = (u32) -1;
1198                 return false;
1199         } else {
1200                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1201                 ah->globaltxtimeout = tu;
1202                 return true;
1203         }
1204 }
1205
1206 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1207 {
1208         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1209                 ah->misc_mode);
1210
1211         if (ah->misc_mode != 0)
1212                 REG_WRITE(ah, AR_PCU_MISC,
1213                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1214         if (ah->slottime != (u32) -1)
1215                 ath9k_hw_setslottime(ah, ah->slottime);
1216         if (ah->acktimeout != (u32) -1)
1217                 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1218         if (ah->ctstimeout != (u32) -1)
1219                 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1220         if (ah->globaltxtimeout != (u32) -1)
1221                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1222 }
1223
1224 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1225 {
1226         return vendorid == ATHEROS_VENDOR_ID ?
1227                 ath9k_hw_devname(devid) : NULL;
1228 }
1229
1230 void ath9k_hw_detach(struct ath_hw *ah)
1231 {
1232         if (!AR_SREV_9100(ah))
1233                 ath9k_hw_ani_disable(ah);
1234
1235         ath9k_hw_rf_free(ah);
1236         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1237         kfree(ah);
1238         ah = NULL;
1239 }
1240
1241 /*******/
1242 /* INI */
1243 /*******/
1244
1245 static void ath9k_hw_override_ini(struct ath_hw *ah,
1246                                   struct ath9k_channel *chan)
1247 {
1248         u32 val;
1249
1250         if (AR_SREV_9271(ah)) {
1251                 /*
1252                  * Enable spectral scan to solution for issues with stuck
1253                  * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1254                  * AR9271 1.1
1255                  */
1256                 if (AR_SREV_9271_10(ah)) {
1257                         val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) | AR_PHY_SPECTRAL_SCAN_ENABLE;
1258                         REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1259                 }
1260                 else if (AR_SREV_9271_11(ah))
1261                         /*
1262                          * change AR_PHY_RF_CTL3 setting to fix MAC issue
1263                          * present on AR9271 1.1
1264                          */
1265                         REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1266                 return;
1267         }
1268
1269         /*
1270          * Set the RX_ABORT and RX_DIS and clear if off only after
1271          * RXE is set for MAC. This prevents frames with corrupted
1272          * descriptor status.
1273          */
1274         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1275
1276         if (AR_SREV_9280_10_OR_LATER(ah)) {
1277                 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1278                                (~AR_PCU_MISC_MODE2_HWWAR1);
1279
1280                 if (AR_SREV_9287_10_OR_LATER(ah))
1281                         val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1282
1283                 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1284         }
1285
1286         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1287             AR_SREV_9280_10_OR_LATER(ah))
1288                 return;
1289         /*
1290          * Disable BB clock gating
1291          * Necessary to avoid issues on AR5416 2.0
1292          */
1293         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1294 }
1295
1296 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1297                               struct ar5416_eeprom_def *pEepData,
1298                               u32 reg, u32 value)
1299 {
1300         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1301
1302         switch (ah->hw_version.devid) {
1303         case AR9280_DEVID_PCI:
1304                 if (reg == 0x7894) {
1305                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1306                                 "ini VAL: %x  EEPROM: %x\n", value,
1307                                 (pBase->version & 0xff));
1308
1309                         if ((pBase->version & 0xff) > 0x0a) {
1310                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1311                                         "PWDCLKIND: %d\n",
1312                                         pBase->pwdclkind);
1313                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1314                                 value |= AR_AN_TOP2_PWDCLKIND &
1315                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1316                         } else {
1317                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1318                                         "PWDCLKIND Earlier Rev\n");
1319                         }
1320
1321                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1322                                 "final ini VAL: %x\n", value);
1323                 }
1324                 break;
1325         }
1326
1327         return value;
1328 }
1329
1330 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1331                               struct ar5416_eeprom_def *pEepData,
1332                               u32 reg, u32 value)
1333 {
1334         if (ah->eep_map == EEP_MAP_4KBITS)
1335                 return value;
1336         else
1337                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1338 }
1339
1340 static void ath9k_olc_init(struct ath_hw *ah)
1341 {
1342         u32 i;
1343
1344         if (OLC_FOR_AR9287_10_LATER) {
1345                 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1346                                 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1347                 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1348                                 AR9287_AN_TXPC0_TXPCMODE,
1349                                 AR9287_AN_TXPC0_TXPCMODE_S,
1350                                 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1351                 udelay(100);
1352         } else {
1353                 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1354                         ah->originalGain[i] =
1355                                 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1356                                                 AR_PHY_TX_GAIN);
1357                 ah->PDADCdelta = 0;
1358         }
1359 }
1360
1361 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1362                               struct ath9k_channel *chan)
1363 {
1364         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1365
1366         if (IS_CHAN_B(chan))
1367                 ctl |= CTL_11B;
1368         else if (IS_CHAN_G(chan))
1369                 ctl |= CTL_11G;
1370         else
1371                 ctl |= CTL_11A;
1372
1373         return ctl;
1374 }
1375
1376 static int ath9k_hw_process_ini(struct ath_hw *ah,
1377                                 struct ath9k_channel *chan,
1378                                 enum ath9k_ht_macmode macmode)
1379 {
1380         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1381         int i, regWrites = 0;
1382         struct ieee80211_channel *channel = chan->chan;
1383         u32 modesIndex, freqIndex;
1384
1385         switch (chan->chanmode) {
1386         case CHANNEL_A:
1387         case CHANNEL_A_HT20:
1388                 modesIndex = 1;
1389                 freqIndex = 1;
1390                 break;
1391         case CHANNEL_A_HT40PLUS:
1392         case CHANNEL_A_HT40MINUS:
1393                 modesIndex = 2;
1394                 freqIndex = 1;
1395                 break;
1396         case CHANNEL_G:
1397         case CHANNEL_G_HT20:
1398         case CHANNEL_B:
1399                 modesIndex = 4;
1400                 freqIndex = 2;
1401                 break;
1402         case CHANNEL_G_HT40PLUS:
1403         case CHANNEL_G_HT40MINUS:
1404                 modesIndex = 3;
1405                 freqIndex = 2;
1406                 break;
1407
1408         default:
1409                 return -EINVAL;
1410         }
1411
1412         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1413         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1414         ah->eep_ops->set_addac(ah, chan);
1415
1416         if (AR_SREV_5416_22_OR_LATER(ah)) {
1417                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1418         } else {
1419                 struct ar5416IniArray temp;
1420                 u32 addacSize =
1421                         sizeof(u32) * ah->iniAddac.ia_rows *
1422                         ah->iniAddac.ia_columns;
1423
1424                 memcpy(ah->addac5416_21,
1425                        ah->iniAddac.ia_array, addacSize);
1426
1427                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1428
1429                 temp.ia_array = ah->addac5416_21;
1430                 temp.ia_columns = ah->iniAddac.ia_columns;
1431                 temp.ia_rows = ah->iniAddac.ia_rows;
1432                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1433         }
1434
1435         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1436
1437         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1438                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1439                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1440
1441                 REG_WRITE(ah, reg, val);
1442
1443                 if (reg >= 0x7800 && reg < 0x78a0
1444                     && ah->config.analog_shiftreg) {
1445                         udelay(100);
1446                 }
1447
1448                 DO_DELAY(regWrites);
1449         }
1450
1451         if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1452                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1453
1454         if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1455             AR_SREV_9287_10_OR_LATER(ah))
1456                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1457
1458         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1459                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1460                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1461
1462                 REG_WRITE(ah, reg, val);
1463
1464                 if (reg >= 0x7800 && reg < 0x78a0
1465                     && ah->config.analog_shiftreg) {
1466                         udelay(100);
1467                 }
1468
1469                 DO_DELAY(regWrites);
1470         }
1471
1472         ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1473
1474         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1475                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1476                                 regWrites);
1477         }
1478
1479         ath9k_hw_override_ini(ah, chan);
1480         ath9k_hw_set_regs(ah, chan, macmode);
1481         ath9k_hw_init_chain_masks(ah);
1482
1483         if (OLC_FOR_AR9280_20_LATER)
1484                 ath9k_olc_init(ah);
1485
1486         ah->eep_ops->set_txpower(ah, chan,
1487                                  ath9k_regd_get_ctl(regulatory, chan),
1488                                  channel->max_antenna_gain * 2,
1489                                  channel->max_power * 2,
1490                                  min((u32) MAX_RATE_POWER,
1491                                  (u32) regulatory->power_limit));
1492
1493         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1494                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1495                         "ar5416SetRfRegs failed\n");
1496                 return -EIO;
1497         }
1498
1499         return 0;
1500 }
1501
1502 /****************************************/
1503 /* Reset and Channel Switching Routines */
1504 /****************************************/
1505
1506 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1507 {
1508         u32 rfMode = 0;
1509
1510         if (chan == NULL)
1511                 return;
1512
1513         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1514                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1515
1516         if (!AR_SREV_9280_10_OR_LATER(ah))
1517                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1518                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1519
1520         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1521                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1522
1523         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1524 }
1525
1526 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1527 {
1528         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1529 }
1530
1531 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1532 {
1533         u32 regval;
1534
1535         /*
1536          * set AHB_MODE not to do cacheline prefetches
1537         */
1538         regval = REG_READ(ah, AR_AHB_MODE);
1539         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1540
1541         /*
1542          * let mac dma reads be in 128 byte chunks
1543          */
1544         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1545         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1546
1547         /*
1548          * Restore TX Trigger Level to its pre-reset value.
1549          * The initial value depends on whether aggregation is enabled, and is
1550          * adjusted whenever underruns are detected.
1551          */
1552         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1553
1554         /*
1555          * let mac dma writes be in 128 byte chunks
1556          */
1557         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1558         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1559
1560         /*
1561          * Setup receive FIFO threshold to hold off TX activities
1562          */
1563         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1564
1565         /*
1566          * reduce the number of usable entries in PCU TXBUF to avoid
1567          * wrap around issues.
1568          */
1569         if (AR_SREV_9285(ah)) {
1570                 /* For AR9285 the number of Fifos are reduced to half.
1571                  * So set the usable tx buf size also to half to
1572                  * avoid data/delimiter underruns
1573                  */
1574                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1575                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1576         } else if (!AR_SREV_9271(ah)) {
1577                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1578                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1579         }
1580 }
1581
1582 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1583 {
1584         u32 val;
1585
1586         val = REG_READ(ah, AR_STA_ID1);
1587         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1588         switch (opmode) {
1589         case NL80211_IFTYPE_AP:
1590                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1591                           | AR_STA_ID1_KSRCH_MODE);
1592                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1593                 break;
1594         case NL80211_IFTYPE_ADHOC:
1595         case NL80211_IFTYPE_MESH_POINT:
1596                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1597                           | AR_STA_ID1_KSRCH_MODE);
1598                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1599                 break;
1600         case NL80211_IFTYPE_STATION:
1601         case NL80211_IFTYPE_MONITOR:
1602                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1603                 break;
1604         }
1605 }
1606
1607 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1608                                                  u32 coef_scaled,
1609                                                  u32 *coef_mantissa,
1610                                                  u32 *coef_exponent)
1611 {
1612         u32 coef_exp, coef_man;
1613
1614         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1615                 if ((coef_scaled >> coef_exp) & 0x1)
1616                         break;
1617
1618         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1619
1620         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1621
1622         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1623         *coef_exponent = coef_exp - 16;
1624 }
1625
1626 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1627                                      struct ath9k_channel *chan)
1628 {
1629         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1630         u32 clockMhzScaled = 0x64000000;
1631         struct chan_centers centers;
1632
1633         if (IS_CHAN_HALF_RATE(chan))
1634                 clockMhzScaled = clockMhzScaled >> 1;
1635         else if (IS_CHAN_QUARTER_RATE(chan))
1636                 clockMhzScaled = clockMhzScaled >> 2;
1637
1638         ath9k_hw_get_channel_centers(ah, chan, &centers);
1639         coef_scaled = clockMhzScaled / centers.synth_center;
1640
1641         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1642                                       &ds_coef_exp);
1643
1644         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1645                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1646         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1647                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1648
1649         coef_scaled = (9 * coef_scaled) / 10;
1650
1651         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1652                                       &ds_coef_exp);
1653
1654         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1655                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1656         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1657                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1658 }
1659
1660 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1661 {
1662         u32 rst_flags;
1663         u32 tmpReg;
1664
1665         if (AR_SREV_9100(ah)) {
1666                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1667                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1668                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1669                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1670                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1671         }
1672
1673         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1674                   AR_RTC_FORCE_WAKE_ON_INT);
1675
1676         if (AR_SREV_9100(ah)) {
1677                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1678                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1679         } else {
1680                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1681                 if (tmpReg &
1682                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1683                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1684                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1685                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1686                 } else {
1687                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1688                 }
1689
1690                 rst_flags = AR_RTC_RC_MAC_WARM;
1691                 if (type == ATH9K_RESET_COLD)
1692                         rst_flags |= AR_RTC_RC_MAC_COLD;
1693         }
1694
1695         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1696         udelay(50);
1697
1698         REG_WRITE(ah, AR_RTC_RC, 0);
1699         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1700                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1701                         "RTC stuck in MAC reset\n");
1702                 return false;
1703         }
1704
1705         if (!AR_SREV_9100(ah))
1706                 REG_WRITE(ah, AR_RC, 0);
1707
1708         ath9k_hw_init_pll(ah, NULL);
1709
1710         if (AR_SREV_9100(ah))
1711                 udelay(50);
1712
1713         return true;
1714 }
1715
1716 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1717 {
1718         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1719                   AR_RTC_FORCE_WAKE_ON_INT);
1720
1721         if (!AR_SREV_9100(ah))
1722                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1723
1724         REG_WRITE(ah, AR_RTC_RESET, 0);
1725         udelay(2);
1726
1727         if (!AR_SREV_9100(ah))
1728                 REG_WRITE(ah, AR_RC, 0);
1729
1730         REG_WRITE(ah, AR_RTC_RESET, 1);
1731
1732         if (!ath9k_hw_wait(ah,
1733                            AR_RTC_STATUS,
1734                            AR_RTC_STATUS_M,
1735                            AR_RTC_STATUS_ON,
1736                            AH_WAIT_TIMEOUT)) {
1737                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
1738                 return false;
1739         }
1740
1741         ath9k_hw_read_revisions(ah);
1742
1743         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1744 }
1745
1746 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1747 {
1748         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1749                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1750
1751         switch (type) {
1752         case ATH9K_RESET_POWER_ON:
1753                 return ath9k_hw_set_reset_power_on(ah);
1754         case ATH9K_RESET_WARM:
1755         case ATH9K_RESET_COLD:
1756                 return ath9k_hw_set_reset(ah, type);
1757         default:
1758                 return false;
1759         }
1760 }
1761
1762 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1763                               enum ath9k_ht_macmode macmode)
1764 {
1765         u32 phymode;
1766         u32 enableDacFifo = 0;
1767
1768         if (AR_SREV_9285_10_OR_LATER(ah))
1769                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1770                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1771
1772         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1773                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1774
1775         if (IS_CHAN_HT40(chan)) {
1776                 phymode |= AR_PHY_FC_DYN2040_EN;
1777
1778                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1779                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1780                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1781
1782                 if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1783                         phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1784         }
1785         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1786
1787         ath9k_hw_set11nmac2040(ah, macmode);
1788
1789         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1790         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1791 }
1792
1793 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1794                                 struct ath9k_channel *chan)
1795 {
1796         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1797                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1798                         return false;
1799         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1800                 return false;
1801
1802         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1803                 return false;
1804
1805         ah->chip_fullsleep = false;
1806         ath9k_hw_init_pll(ah, chan);
1807         ath9k_hw_set_rfmode(ah, chan);
1808
1809         return true;
1810 }
1811
1812 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1813                                     struct ath9k_channel *chan,
1814                                     enum ath9k_ht_macmode macmode)
1815 {
1816         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1817         struct ieee80211_channel *channel = chan->chan;
1818         u32 synthDelay, qnum;
1819
1820         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1821                 if (ath9k_hw_numtxpending(ah, qnum)) {
1822                         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
1823                                 "Transmit frames pending on queue %d\n", qnum);
1824                         return false;
1825                 }
1826         }
1827
1828         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1829         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1830                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1831                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1832                         "Could not kill baseband RX\n");
1833                 return false;
1834         }
1835
1836         ath9k_hw_set_regs(ah, chan, macmode);
1837
1838         if (AR_SREV_9280_10_OR_LATER(ah)) {
1839                 ath9k_hw_ar9280_set_channel(ah, chan);
1840         } else {
1841                 if (!(ath9k_hw_set_channel(ah, chan))) {
1842                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1843                                 "Failed to set channel\n");
1844                         return false;
1845                 }
1846         }
1847
1848         ah->eep_ops->set_txpower(ah, chan,
1849                              ath9k_regd_get_ctl(regulatory, chan),
1850                              channel->max_antenna_gain * 2,
1851                              channel->max_power * 2,
1852                              min((u32) MAX_RATE_POWER,
1853                              (u32) regulatory->power_limit));
1854
1855         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1856         if (IS_CHAN_B(chan))
1857                 synthDelay = (4 * synthDelay) / 22;
1858         else
1859                 synthDelay /= 10;
1860
1861         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1862
1863         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1864
1865         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1866                 ath9k_hw_set_delta_slope(ah, chan);
1867
1868         if (AR_SREV_9280_10_OR_LATER(ah))
1869                 ath9k_hw_9280_spur_mitigate(ah, chan);
1870         else
1871                 ath9k_hw_spur_mitigate(ah, chan);
1872
1873         if (!chan->oneTimeCalsDone)
1874                 chan->oneTimeCalsDone = true;
1875
1876         return true;
1877 }
1878
1879 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1880 {
1881         int bb_spur = AR_NO_SPUR;
1882         int freq;
1883         int bin, cur_bin;
1884         int bb_spur_off, spur_subchannel_sd;
1885         int spur_freq_sd;
1886         int spur_delta_phase;
1887         int denominator;
1888         int upper, lower, cur_vit_mask;
1889         int tmp, newVal;
1890         int i;
1891         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1892                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1893         };
1894         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1895                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1896         };
1897         int inc[4] = { 0, 100, 0, 0 };
1898         struct chan_centers centers;
1899
1900         int8_t mask_m[123];
1901         int8_t mask_p[123];
1902         int8_t mask_amt;
1903         int tmp_mask;
1904         int cur_bb_spur;
1905         bool is2GHz = IS_CHAN_2GHZ(chan);
1906
1907         memset(&mask_m, 0, sizeof(int8_t) * 123);
1908         memset(&mask_p, 0, sizeof(int8_t) * 123);
1909
1910         ath9k_hw_get_channel_centers(ah, chan, &centers);
1911         freq = centers.synth_center;
1912
1913         ah->config.spurmode = SPUR_ENABLE_EEPROM;
1914         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1915                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1916
1917                 if (is2GHz)
1918                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1919                 else
1920                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1921
1922                 if (AR_NO_SPUR == cur_bb_spur)
1923                         break;
1924                 cur_bb_spur = cur_bb_spur - freq;
1925
1926                 if (IS_CHAN_HT40(chan)) {
1927                         if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1928                             (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1929                                 bb_spur = cur_bb_spur;
1930                                 break;
1931                         }
1932                 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1933                            (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1934                         bb_spur = cur_bb_spur;
1935                         break;
1936                 }
1937         }
1938
1939         if (AR_NO_SPUR == bb_spur) {
1940                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1941                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1942                 return;
1943         } else {
1944                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1945                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1946         }
1947
1948         bin = bb_spur * 320;
1949
1950         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1951
1952         newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1953                         AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1954                         AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1955                         AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1956         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1957
1958         newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1959                   AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1960                   AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1961                   AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1962                   SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1963         REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1964
1965         if (IS_CHAN_HT40(chan)) {
1966                 if (bb_spur < 0) {
1967                         spur_subchannel_sd = 1;
1968                         bb_spur_off = bb_spur + 10;
1969                 } else {
1970                         spur_subchannel_sd = 0;
1971                         bb_spur_off = bb_spur - 10;
1972                 }
1973         } else {
1974                 spur_subchannel_sd = 0;
1975                 bb_spur_off = bb_spur;
1976         }
1977
1978         if (IS_CHAN_HT40(chan))
1979                 spur_delta_phase =
1980                         ((bb_spur * 262144) /
1981                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1982         else
1983                 spur_delta_phase =
1984                         ((bb_spur * 524288) /
1985                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1986
1987         denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1988         spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1989
1990         newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1991                   SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1992                   SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1993         REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1994
1995         newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1996         REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1997
1998         cur_bin = -6000;
1999         upper = bin + 100;
2000         lower = bin - 100;
2001
2002         for (i = 0; i < 4; i++) {
2003                 int pilot_mask = 0;
2004                 int chan_mask = 0;
2005                 int bp = 0;
2006                 for (bp = 0; bp < 30; bp++) {
2007                         if ((cur_bin > lower) && (cur_bin < upper)) {
2008                                 pilot_mask = pilot_mask | 0x1 << bp;
2009                                 chan_mask = chan_mask | 0x1 << bp;
2010                         }
2011                         cur_bin += 100;
2012                 }
2013                 cur_bin += inc[i];
2014                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2015                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2016         }
2017
2018         cur_vit_mask = 6100;
2019         upper = bin + 120;
2020         lower = bin - 120;
2021
2022         for (i = 0; i < 123; i++) {
2023                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2024
2025                         /* workaround for gcc bug #37014 */
2026                         volatile int tmp_v = abs(cur_vit_mask - bin);
2027
2028                         if (tmp_v < 75)
2029                                 mask_amt = 1;
2030                         else
2031                                 mask_amt = 0;
2032                         if (cur_vit_mask < 0)
2033                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2034                         else
2035                                 mask_p[cur_vit_mask / 100] = mask_amt;
2036                 }
2037                 cur_vit_mask -= 100;
2038         }
2039
2040         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2041                 | (mask_m[48] << 26) | (mask_m[49] << 24)
2042                 | (mask_m[50] << 22) | (mask_m[51] << 20)
2043                 | (mask_m[52] << 18) | (mask_m[53] << 16)
2044                 | (mask_m[54] << 14) | (mask_m[55] << 12)
2045                 | (mask_m[56] << 10) | (mask_m[57] << 8)
2046                 | (mask_m[58] << 6) | (mask_m[59] << 4)
2047                 | (mask_m[60] << 2) | (mask_m[61] << 0);
2048         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2049         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2050
2051         tmp_mask = (mask_m[31] << 28)
2052                 | (mask_m[32] << 26) | (mask_m[33] << 24)
2053                 | (mask_m[34] << 22) | (mask_m[35] << 20)
2054                 | (mask_m[36] << 18) | (mask_m[37] << 16)
2055                 | (mask_m[48] << 14) | (mask_m[39] << 12)
2056                 | (mask_m[40] << 10) | (mask_m[41] << 8)
2057                 | (mask_m[42] << 6) | (mask_m[43] << 4)
2058                 | (mask_m[44] << 2) | (mask_m[45] << 0);
2059         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2060         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2061
2062         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2063                 | (mask_m[18] << 26) | (mask_m[18] << 24)
2064                 | (mask_m[20] << 22) | (mask_m[20] << 20)
2065                 | (mask_m[22] << 18) | (mask_m[22] << 16)
2066                 | (mask_m[24] << 14) | (mask_m[24] << 12)
2067                 | (mask_m[25] << 10) | (mask_m[26] << 8)
2068                 | (mask_m[27] << 6) | (mask_m[28] << 4)
2069                 | (mask_m[29] << 2) | (mask_m[30] << 0);
2070         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2071         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2072
2073         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2074                 | (mask_m[2] << 26) | (mask_m[3] << 24)
2075                 | (mask_m[4] << 22) | (mask_m[5] << 20)
2076                 | (mask_m[6] << 18) | (mask_m[7] << 16)
2077                 | (mask_m[8] << 14) | (mask_m[9] << 12)
2078                 | (mask_m[10] << 10) | (mask_m[11] << 8)
2079                 | (mask_m[12] << 6) | (mask_m[13] << 4)
2080                 | (mask_m[14] << 2) | (mask_m[15] << 0);
2081         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2082         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2083
2084         tmp_mask = (mask_p[15] << 28)
2085                 | (mask_p[14] << 26) | (mask_p[13] << 24)
2086                 | (mask_p[12] << 22) | (mask_p[11] << 20)
2087                 | (mask_p[10] << 18) | (mask_p[9] << 16)
2088                 | (mask_p[8] << 14) | (mask_p[7] << 12)
2089                 | (mask_p[6] << 10) | (mask_p[5] << 8)
2090                 | (mask_p[4] << 6) | (mask_p[3] << 4)
2091                 | (mask_p[2] << 2) | (mask_p[1] << 0);
2092         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2093         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2094
2095         tmp_mask = (mask_p[30] << 28)
2096                 | (mask_p[29] << 26) | (mask_p[28] << 24)
2097                 | (mask_p[27] << 22) | (mask_p[26] << 20)
2098                 | (mask_p[25] << 18) | (mask_p[24] << 16)
2099                 | (mask_p[23] << 14) | (mask_p[22] << 12)
2100                 | (mask_p[21] << 10) | (mask_p[20] << 8)
2101                 | (mask_p[19] << 6) | (mask_p[18] << 4)
2102                 | (mask_p[17] << 2) | (mask_p[16] << 0);
2103         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2104         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2105
2106         tmp_mask = (mask_p[45] << 28)
2107                 | (mask_p[44] << 26) | (mask_p[43] << 24)
2108                 | (mask_p[42] << 22) | (mask_p[41] << 20)
2109                 | (mask_p[40] << 18) | (mask_p[39] << 16)
2110                 | (mask_p[38] << 14) | (mask_p[37] << 12)
2111                 | (mask_p[36] << 10) | (mask_p[35] << 8)
2112                 | (mask_p[34] << 6) | (mask_p[33] << 4)
2113                 | (mask_p[32] << 2) | (mask_p[31] << 0);
2114         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2115         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2116
2117         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2118                 | (mask_p[59] << 26) | (mask_p[58] << 24)
2119                 | (mask_p[57] << 22) | (mask_p[56] << 20)
2120                 | (mask_p[55] << 18) | (mask_p[54] << 16)
2121                 | (mask_p[53] << 14) | (mask_p[52] << 12)
2122                 | (mask_p[51] << 10) | (mask_p[50] << 8)
2123                 | (mask_p[49] << 6) | (mask_p[48] << 4)
2124                 | (mask_p[47] << 2) | (mask_p[46] << 0);
2125         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2126         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2127 }
2128
2129 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
2130 {
2131         int bb_spur = AR_NO_SPUR;
2132         int bin, cur_bin;
2133         int spur_freq_sd;
2134         int spur_delta_phase;
2135         int denominator;
2136         int upper, lower, cur_vit_mask;
2137         int tmp, new;
2138         int i;
2139         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
2140                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2141         };
2142         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2143                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2144         };
2145         int inc[4] = { 0, 100, 0, 0 };
2146
2147         int8_t mask_m[123];
2148         int8_t mask_p[123];
2149         int8_t mask_amt;
2150         int tmp_mask;
2151         int cur_bb_spur;
2152         bool is2GHz = IS_CHAN_2GHZ(chan);
2153
2154         memset(&mask_m, 0, sizeof(int8_t) * 123);
2155         memset(&mask_p, 0, sizeof(int8_t) * 123);
2156
2157         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2158                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2159                 if (AR_NO_SPUR == cur_bb_spur)
2160                         break;
2161                 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2162                 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2163                         bb_spur = cur_bb_spur;
2164                         break;
2165                 }
2166         }
2167
2168         if (AR_NO_SPUR == bb_spur)
2169                 return;
2170
2171         bin = bb_spur * 32;
2172
2173         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2174         new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2175                      AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2176                      AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2177                      AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2178
2179         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2180
2181         new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2182                AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2183                AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2184                AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2185                SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2186         REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2187
2188         spur_delta_phase = ((bb_spur * 524288) / 100) &
2189                 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2190
2191         denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2192         spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2193
2194         new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2195                SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2196                SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2197         REG_WRITE(ah, AR_PHY_TIMING11, new);
2198
2199         cur_bin = -6000;
2200         upper = bin + 100;
2201         lower = bin - 100;
2202
2203         for (i = 0; i < 4; i++) {
2204                 int pilot_mask = 0;
2205                 int chan_mask = 0;
2206                 int bp = 0;
2207                 for (bp = 0; bp < 30; bp++) {
2208                         if ((cur_bin > lower) && (cur_bin < upper)) {
2209                                 pilot_mask = pilot_mask | 0x1 << bp;
2210                                 chan_mask = chan_mask | 0x1 << bp;
2211                         }
2212                         cur_bin += 100;
2213                 }
2214                 cur_bin += inc[i];
2215                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2216                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2217         }
2218
2219         cur_vit_mask = 6100;
2220         upper = bin + 120;
2221         lower = bin - 120;
2222
2223         for (i = 0; i < 123; i++) {
2224                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2225
2226                         /* workaround for gcc bug #37014 */
2227                         volatile int tmp_v = abs(cur_vit_mask - bin);
2228
2229                         if (tmp_v < 75)
2230                                 mask_amt = 1;
2231                         else
2232                                 mask_amt = 0;
2233                         if (cur_vit_mask < 0)
2234                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2235                         else
2236                                 mask_p[cur_vit_mask / 100] = mask_amt;
2237                 }
2238                 cur_vit_mask -= 100;
2239         }
2240
2241         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2242                 | (mask_m[48] << 26) | (mask_m[49] << 24)
2243                 | (mask_m[50] << 22) | (mask_m[51] << 20)
2244                 | (mask_m[52] << 18) | (mask_m[53] << 16)
2245                 | (mask_m[54] << 14) | (mask_m[55] << 12)
2246                 | (mask_m[56] << 10) | (mask_m[57] << 8)
2247                 | (mask_m[58] << 6) | (mask_m[59] << 4)
2248                 | (mask_m[60] << 2) | (mask_m[61] << 0);
2249         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2250         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2251
2252         tmp_mask = (mask_m[31] << 28)
2253                 | (mask_m[32] << 26) | (mask_m[33] << 24)
2254                 | (mask_m[34] << 22) | (mask_m[35] << 20)
2255                 | (mask_m[36] << 18) | (mask_m[37] << 16)
2256                 | (mask_m[48] << 14) | (mask_m[39] << 12)
2257                 | (mask_m[40] << 10) | (mask_m[41] << 8)
2258                 | (mask_m[42] << 6) | (mask_m[43] << 4)
2259                 | (mask_m[44] << 2) | (mask_m[45] << 0);
2260         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2261         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2262
2263         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2264                 | (mask_m[18] << 26) | (mask_m[18] << 24)
2265                 | (mask_m[20] << 22) | (mask_m[20] << 20)
2266                 | (mask_m[22] << 18) | (mask_m[22] << 16)
2267                 | (mask_m[24] << 14) | (mask_m[24] << 12)
2268                 | (mask_m[25] << 10) | (mask_m[26] << 8)
2269                 | (mask_m[27] << 6) | (mask_m[28] << 4)
2270                 | (mask_m[29] << 2) | (mask_m[30] << 0);
2271         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2272         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2273
2274         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2275                 | (mask_m[2] << 26) | (mask_m[3] << 24)
2276                 | (mask_m[4] << 22) | (mask_m[5] << 20)
2277                 | (mask_m[6] << 18) | (mask_m[7] << 16)
2278                 | (mask_m[8] << 14) | (mask_m[9] << 12)
2279                 | (mask_m[10] << 10) | (mask_m[11] << 8)
2280                 | (mask_m[12] << 6) | (mask_m[13] << 4)
2281                 | (mask_m[14] << 2) | (mask_m[15] << 0);
2282         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2283         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2284
2285         tmp_mask = (mask_p[15] << 28)
2286                 | (mask_p[14] << 26) | (mask_p[13] << 24)
2287                 | (mask_p[12] << 22) | (mask_p[11] << 20)
2288                 | (mask_p[10] << 18) | (mask_p[9] << 16)
2289                 | (mask_p[8] << 14) | (mask_p[7] << 12)
2290                 | (mask_p[6] << 10) | (mask_p[5] << 8)
2291                 | (mask_p[4] << 6) | (mask_p[3] << 4)
2292                 | (mask_p[2] << 2) | (mask_p[1] << 0);
2293         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2294         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2295
2296         tmp_mask = (mask_p[30] << 28)
2297                 | (mask_p[29] << 26) | (mask_p[28] << 24)
2298                 | (mask_p[27] << 22) | (mask_p[26] << 20)
2299                 | (mask_p[25] << 18) | (mask_p[24] << 16)
2300                 | (mask_p[23] << 14) | (mask_p[22] << 12)
2301                 | (mask_p[21] << 10) | (mask_p[20] << 8)
2302                 | (mask_p[19] << 6) | (mask_p[18] << 4)
2303                 | (mask_p[17] << 2) | (mask_p[16] << 0);
2304         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2305         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2306
2307         tmp_mask = (mask_p[45] << 28)
2308                 | (mask_p[44] << 26) | (mask_p[43] << 24)
2309                 | (mask_p[42] << 22) | (mask_p[41] << 20)
2310                 | (mask_p[40] << 18) | (mask_p[39] << 16)
2311                 | (mask_p[38] << 14) | (mask_p[37] << 12)
2312                 | (mask_p[36] << 10) | (mask_p[35] << 8)
2313                 | (mask_p[34] << 6) | (mask_p[33] << 4)
2314                 | (mask_p[32] << 2) | (mask_p[31] << 0);
2315         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2316         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2317
2318         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2319                 | (mask_p[59] << 26) | (mask_p[58] << 24)
2320                 | (mask_p[57] << 22) | (mask_p[56] << 20)
2321                 | (mask_p[55] << 18) | (mask_p[54] << 16)
2322                 | (mask_p[53] << 14) | (mask_p[52] << 12)
2323                 | (mask_p[51] << 10) | (mask_p[50] << 8)
2324                 | (mask_p[49] << 6) | (mask_p[48] << 4)
2325                 | (mask_p[47] << 2) | (mask_p[46] << 0);
2326         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2327         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2328 }
2329
2330 static void ath9k_enable_rfkill(struct ath_hw *ah)
2331 {
2332         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
2333                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
2334
2335         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
2336                     AR_GPIO_INPUT_MUX2_RFSILENT);
2337
2338         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
2339         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
2340 }
2341
2342 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2343                     bool bChannelChange)
2344 {
2345         u32 saveLedState;
2346         struct ath_softc *sc = ah->ah_sc;
2347         struct ath9k_channel *curchan = ah->curchan;
2348         u32 saveDefAntenna;
2349         u32 macStaId1;
2350         u64 tsf = 0;
2351         int i, rx_chainmask, r;
2352
2353         ah->extprotspacing = sc->ht_extprotspacing;
2354         ah->txchainmask = sc->tx_chainmask;
2355         ah->rxchainmask = sc->rx_chainmask;
2356
2357         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2358                 return -EIO;
2359
2360         if (curchan && !ah->chip_fullsleep)
2361                 ath9k_hw_getnf(ah, curchan);
2362
2363         if (bChannelChange &&
2364             (ah->chip_fullsleep != true) &&
2365             (ah->curchan != NULL) &&
2366             (chan->channel != ah->curchan->channel) &&
2367             ((chan->channelFlags & CHANNEL_ALL) ==
2368              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2369              !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
2370              IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
2371
2372                 if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2373                         ath9k_hw_loadnf(ah, ah->curchan);
2374                         ath9k_hw_start_nfcal(ah);
2375                         return 0;
2376                 }
2377         }
2378
2379         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2380         if (saveDefAntenna == 0)
2381                 saveDefAntenna = 1;
2382
2383         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2384
2385         /* For chips on which RTC reset is done, save TSF before it gets cleared */
2386         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2387                 tsf = ath9k_hw_gettsf64(ah);
2388
2389         saveLedState = REG_READ(ah, AR_CFG_LED) &
2390                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2391                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2392
2393         ath9k_hw_mark_phy_inactive(ah);
2394
2395         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2396                 REG_WRITE(ah,
2397                           AR9271_RESET_POWER_DOWN_CONTROL,
2398                           AR9271_RADIO_RF_RST);
2399                 udelay(50);
2400         }
2401
2402         if (!ath9k_hw_chip_reset(ah, chan)) {
2403                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n");
2404                 return -EINVAL;
2405         }
2406
2407         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2408                 ah->htc_reset_init = false;
2409                 REG_WRITE(ah,
2410                           AR9271_RESET_POWER_DOWN_CONTROL,
2411                           AR9271_GATE_MAC_CTL);
2412                 udelay(50);
2413         }
2414
2415         /* Restore TSF */
2416         if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2417                 ath9k_hw_settsf64(ah, tsf);
2418
2419         if (AR_SREV_9280_10_OR_LATER(ah))
2420                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2421
2422         if (AR_SREV_9287_12_OR_LATER(ah)) {
2423                 /* Enable ASYNC FIFO */
2424                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2425                                 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2426                 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2427                 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2428                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2429                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2430                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2431         }
2432         r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2433         if (r)
2434                 return r;
2435
2436         /* Setup MFP options for CCMP */
2437         if (AR_SREV_9280_20_OR_LATER(ah)) {
2438                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2439                  * frames when constructing CCMP AAD. */
2440                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2441                               0xc7ff);
2442                 ah->sw_mgmt_crypto = false;
2443         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2444                 /* Disable hardware crypto for management frames */
2445                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2446                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2447                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2448                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2449                 ah->sw_mgmt_crypto = true;
2450         } else
2451                 ah->sw_mgmt_crypto = true;
2452
2453         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2454                 ath9k_hw_set_delta_slope(ah, chan);
2455
2456         if (AR_SREV_9280_10_OR_LATER(ah))
2457                 ath9k_hw_9280_spur_mitigate(ah, chan);
2458         else
2459                 ath9k_hw_spur_mitigate(ah, chan);
2460
2461         ah->eep_ops->set_board_values(ah, chan);
2462
2463         ath9k_hw_decrease_chain_power(ah, chan);
2464
2465         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
2466         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
2467                   | macStaId1
2468                   | AR_STA_ID1_RTS_USE_DEF
2469                   | (ah->config.
2470                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2471                   | ah->sta_id1_defaults);
2472         ath9k_hw_set_operating_mode(ah, ah->opmode);
2473
2474         REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
2475         REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
2476
2477         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2478
2479         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
2480         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
2481                   ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2482
2483         REG_WRITE(ah, AR_ISR, ~0);
2484
2485         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2486
2487         if (AR_SREV_9280_10_OR_LATER(ah))
2488                 ath9k_hw_ar9280_set_channel(ah, chan);
2489         else
2490                 if (!(ath9k_hw_set_channel(ah, chan)))
2491                         return -EIO;
2492
2493         for (i = 0; i < AR_NUM_DCU; i++)
2494                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2495
2496         ah->intr_txqs = 0;
2497         for (i = 0; i < ah->caps.total_queues; i++)
2498                 ath9k_hw_resettxqueue(ah, i);
2499
2500         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2501         ath9k_hw_init_qos(ah);
2502
2503         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2504                 ath9k_enable_rfkill(ah);
2505
2506         ath9k_hw_init_user_settings(ah);
2507
2508         if (AR_SREV_9287_12_OR_LATER(ah)) {
2509                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2510                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2511                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2512                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2513                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2514                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2515
2516                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2517                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2518
2519                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2520                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2521                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2522                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2523         }
2524         if (AR_SREV_9287_12_OR_LATER(ah)) {
2525                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2526                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2527         }
2528
2529         REG_WRITE(ah, AR_STA_ID1,
2530                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2531
2532         ath9k_hw_set_dma(ah);
2533
2534         REG_WRITE(ah, AR_OBS, 8);
2535
2536         if (ah->config.intr_mitigation) {
2537                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2538                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2539         }
2540
2541         ath9k_hw_init_bb(ah, chan);
2542
2543         if (!ath9k_hw_init_cal(ah, chan))
2544                 return -EIO;
2545
2546         rx_chainmask = ah->rxchainmask;
2547         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2548                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2549                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2550         }
2551
2552         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2553
2554         /*
2555          * For big endian systems turn on swapping for descriptors
2556          */
2557         if (AR_SREV_9100(ah)) {
2558                 u32 mask;
2559                 mask = REG_READ(ah, AR_CFG);
2560                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2561                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2562                                 "CFG Byte Swap Set 0x%x\n", mask);
2563                 } else {
2564                         mask =
2565                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2566                         REG_WRITE(ah, AR_CFG, mask);
2567                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2568                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2569                 }
2570         } else {
2571                 /* Configure AR9271 target WLAN */
2572                 if (AR_SREV_9271(ah))
2573                         REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2574 #ifdef __BIG_ENDIAN
2575                 else
2576                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2577 #endif
2578         }
2579
2580         if (ah->ah_sc->sc_flags & SC_OP_BTCOEX_ENABLED)
2581                 ath9k_hw_btcoex_enable(ah);
2582
2583         return 0;
2584 }
2585
2586 /************************/
2587 /* Key Cache Management */
2588 /************************/
2589
2590 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2591 {
2592         u32 keyType;
2593
2594         if (entry >= ah->caps.keycache_size) {
2595                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2596                         "keychache entry %u out of range\n", entry);
2597                 return false;
2598         }
2599
2600         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2601
2602         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2603         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2604         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2605         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2606         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2607         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2608         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2609         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2610
2611         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2612                 u16 micentry = entry + 64;
2613
2614                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2615                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2616                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2617                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2618
2619         }
2620
2621         return true;
2622 }
2623
2624 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2625 {
2626         u32 macHi, macLo;
2627
2628         if (entry >= ah->caps.keycache_size) {
2629                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2630                         "keychache entry %u out of range\n", entry);
2631                 return false;
2632         }
2633
2634         if (mac != NULL) {
2635                 macHi = (mac[5] << 8) | mac[4];
2636                 macLo = (mac[3] << 24) |
2637                         (mac[2] << 16) |
2638                         (mac[1] << 8) |
2639                         mac[0];
2640                 macLo >>= 1;
2641                 macLo |= (macHi & 1) << 31;
2642                 macHi >>= 1;
2643         } else {
2644                 macLo = macHi = 0;
2645         }
2646         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2647         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2648
2649         return true;
2650 }
2651
2652 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2653                                  const struct ath9k_keyval *k,
2654                                  const u8 *mac)
2655 {
2656         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2657         u32 key0, key1, key2, key3, key4;
2658         u32 keyType;
2659
2660         if (entry >= pCap->keycache_size) {
2661                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2662                         "keycache entry %u out of range\n", entry);
2663                 return false;
2664         }
2665
2666         switch (k->kv_type) {
2667         case ATH9K_CIPHER_AES_OCB:
2668                 keyType = AR_KEYTABLE_TYPE_AES;
2669                 break;
2670         case ATH9K_CIPHER_AES_CCM:
2671                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2672                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2673                                 "AES-CCM not supported by mac rev 0x%x\n",
2674                                 ah->hw_version.macRev);
2675                         return false;
2676                 }
2677                 keyType = AR_KEYTABLE_TYPE_CCM;
2678                 break;
2679         case ATH9K_CIPHER_TKIP:
2680                 keyType = AR_KEYTABLE_TYPE_TKIP;
2681                 if (ATH9K_IS_MIC_ENABLED(ah)
2682                     && entry + 64 >= pCap->keycache_size) {
2683                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2684                                 "entry %u inappropriate for TKIP\n", entry);
2685                         return false;
2686                 }
2687                 break;
2688         case ATH9K_CIPHER_WEP:
2689                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2690                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2691                                 "WEP key length %u too small\n", k->kv_len);
2692                         return false;
2693                 }
2694                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2695                         keyType = AR_KEYTABLE_TYPE_40;
2696                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2697                         keyType = AR_KEYTABLE_TYPE_104;
2698                 else
2699                         keyType = AR_KEYTABLE_TYPE_128;
2700                 break;
2701         case ATH9K_CIPHER_CLR:
2702                 keyType = AR_KEYTABLE_TYPE_CLR;
2703                 break;
2704         default:
2705                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2706                         "cipher %u not supported\n", k->kv_type);
2707                 return false;
2708         }
2709
2710         key0 = get_unaligned_le32(k->kv_val + 0);
2711         key1 = get_unaligned_le16(k->kv_val + 4);
2712         key2 = get_unaligned_le32(k->kv_val + 6);
2713         key3 = get_unaligned_le16(k->kv_val + 10);
2714         key4 = get_unaligned_le32(k->kv_val + 12);
2715         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2716                 key4 &= 0xff;
2717
2718         /*
2719          * Note: Key cache registers access special memory area that requires
2720          * two 32-bit writes to actually update the values in the internal
2721          * memory. Consequently, the exact order and pairs used here must be
2722          * maintained.
2723          */
2724
2725         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2726                 u16 micentry = entry + 64;
2727
2728                 /*
2729                  * Write inverted key[47:0] first to avoid Michael MIC errors
2730                  * on frames that could be sent or received at the same time.
2731                  * The correct key will be written in the end once everything
2732                  * else is ready.
2733                  */
2734                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2735                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2736
2737                 /* Write key[95:48] */
2738                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2739                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2740
2741                 /* Write key[127:96] and key type */
2742                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2743                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2744
2745                 /* Write MAC address for the entry */
2746                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2747
2748                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2749                         /*
2750                          * TKIP uses two key cache entries:
2751                          * Michael MIC TX/RX keys in the same key cache entry
2752                          * (idx = main index + 64):
2753                          * key0 [31:0] = RX key [31:0]
2754                          * key1 [15:0] = TX key [31:16]
2755                          * key1 [31:16] = reserved
2756                          * key2 [31:0] = RX key [63:32]
2757                          * key3 [15:0] = TX key [15:0]
2758                          * key3 [31:16] = reserved
2759                          * key4 [31:0] = TX key [63:32]
2760                          */
2761                         u32 mic0, mic1, mic2, mic3, mic4;
2762
2763                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2764                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2765                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2766                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2767                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2768
2769                         /* Write RX[31:0] and TX[31:16] */
2770                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2771                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2772
2773                         /* Write RX[63:32] and TX[15:0] */
2774                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2775                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2776
2777                         /* Write TX[63:32] and keyType(reserved) */
2778                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2779                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2780                                   AR_KEYTABLE_TYPE_CLR);
2781
2782                 } else {
2783                         /*
2784                          * TKIP uses four key cache entries (two for group
2785                          * keys):
2786                          * Michael MIC TX/RX keys are in different key cache
2787                          * entries (idx = main index + 64 for TX and
2788                          * main index + 32 + 96 for RX):
2789                          * key0 [31:0] = TX/RX MIC key [31:0]
2790                          * key1 [31:0] = reserved
2791                          * key2 [31:0] = TX/RX MIC key [63:32]
2792                          * key3 [31:0] = reserved
2793                          * key4 [31:0] = reserved
2794                          *
2795                          * Upper layer code will call this function separately
2796                          * for TX and RX keys when these registers offsets are
2797                          * used.
2798                          */
2799                         u32 mic0, mic2;
2800
2801                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2802                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2803
2804                         /* Write MIC key[31:0] */
2805                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2806                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2807
2808                         /* Write MIC key[63:32] */
2809                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2810                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2811
2812                         /* Write TX[63:32] and keyType(reserved) */
2813                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2814                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2815                                   AR_KEYTABLE_TYPE_CLR);
2816                 }
2817
2818                 /* MAC address registers are reserved for the MIC entry */
2819                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2820                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2821
2822                 /*
2823                  * Write the correct (un-inverted) key[47:0] last to enable
2824                  * TKIP now that all other registers are set with correct
2825                  * values.
2826                  */
2827                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2828                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2829         } else {
2830                 /* Write key[47:0] */
2831                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2832                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2833
2834                 /* Write key[95:48] */
2835                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2836                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2837
2838                 /* Write key[127:96] and key type */
2839                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2840                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2841
2842                 /* Write MAC address for the entry */
2843                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2844         }
2845
2846         return true;
2847 }
2848
2849 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2850 {
2851         if (entry < ah->caps.keycache_size) {
2852                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2853                 if (val & AR_KEYTABLE_VALID)
2854                         return true;
2855         }
2856         return false;
2857 }
2858
2859 /******************************/
2860 /* Power Management (Chipset) */
2861 /******************************/
2862
2863 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2864 {
2865         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2866         if (setChip) {
2867                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2868                             AR_RTC_FORCE_WAKE_EN);
2869                 if (!AR_SREV_9100(ah))
2870                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2871
2872                 REG_CLR_BIT(ah, (AR_RTC_RESET),
2873                             AR_RTC_RESET_EN);
2874         }
2875 }
2876
2877 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2878 {
2879         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2880         if (setChip) {
2881                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2882
2883                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2884                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2885                                   AR_RTC_FORCE_WAKE_ON_INT);
2886                 } else {
2887                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2888                                     AR_RTC_FORCE_WAKE_EN);
2889                 }
2890         }
2891 }
2892
2893 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2894 {
2895         u32 val;
2896         int i;
2897
2898         if (setChip) {
2899                 if ((REG_READ(ah, AR_RTC_STATUS) &
2900                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2901                         if (ath9k_hw_set_reset_reg(ah,
2902                                            ATH9K_RESET_POWER_ON) != true) {
2903                                 return false;
2904                         }
2905                 }
2906                 if (AR_SREV_9100(ah))
2907                         REG_SET_BIT(ah, AR_RTC_RESET,
2908                                     AR_RTC_RESET_EN);
2909
2910                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2911                             AR_RTC_FORCE_WAKE_EN);
2912                 udelay(50);
2913
2914                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2915                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2916                         if (val == AR_RTC_STATUS_ON)
2917                                 break;
2918                         udelay(50);
2919                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2920                                     AR_RTC_FORCE_WAKE_EN);
2921                 }
2922                 if (i == 0) {
2923                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2924                                 "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2925                         return false;
2926                 }
2927         }
2928
2929         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2930
2931         return true;
2932 }
2933
2934 static bool ath9k_hw_setpower_nolock(struct ath_hw *ah,
2935                                      enum ath9k_power_mode mode)
2936 {
2937         int status = true, setChip = true;
2938         static const char *modes[] = {
2939                 "AWAKE",
2940                 "FULL-SLEEP",
2941                 "NETWORK SLEEP",
2942                 "UNDEFINED"
2943         };
2944
2945         if (ah->power_mode == mode)
2946                 return status;
2947
2948         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n",
2949                 modes[ah->power_mode], modes[mode]);
2950
2951         switch (mode) {
2952         case ATH9K_PM_AWAKE:
2953                 status = ath9k_hw_set_power_awake(ah, setChip);
2954                 break;
2955         case ATH9K_PM_FULL_SLEEP:
2956                 ath9k_set_power_sleep(ah, setChip);
2957                 ah->chip_fullsleep = true;
2958                 break;
2959         case ATH9K_PM_NETWORK_SLEEP:
2960                 ath9k_set_power_network_sleep(ah, setChip);
2961                 break;
2962         default:
2963                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2964                         "Unknown power mode %u\n", mode);
2965                 return false;
2966         }
2967         ah->power_mode = mode;
2968
2969         return status;
2970 }
2971
2972 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2973 {
2974         unsigned long flags;
2975         bool ret;
2976
2977         spin_lock_irqsave(&ah->ah_sc->sc_pm_lock, flags);
2978         ret = ath9k_hw_setpower_nolock(ah, mode);
2979         spin_unlock_irqrestore(&ah->ah_sc->sc_pm_lock, flags);
2980
2981         return ret;
2982 }
2983
2984 void ath9k_ps_wakeup(struct ath_softc *sc)
2985 {
2986         unsigned long flags;
2987
2988         spin_lock_irqsave(&sc->sc_pm_lock, flags);
2989         if (++sc->ps_usecount != 1)
2990                 goto unlock;
2991
2992         ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_AWAKE);
2993
2994  unlock:
2995         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2996 }
2997
2998 void ath9k_ps_restore(struct ath_softc *sc)
2999 {
3000         unsigned long flags;
3001
3002         spin_lock_irqsave(&sc->sc_pm_lock, flags);
3003         if (--sc->ps_usecount != 0)
3004                 goto unlock;
3005
3006         if (sc->ps_enabled &&
3007             !(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
3008                               SC_OP_WAIT_FOR_CAB |
3009                               SC_OP_WAIT_FOR_PSPOLL_DATA |
3010                               SC_OP_WAIT_FOR_TX_ACK)))
3011                 ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
3012
3013  unlock:
3014         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
3015 }
3016
3017 /*
3018  * Helper for ASPM support.
3019  *
3020  * Disable PLL when in L0s as well as receiver clock when in L1.
3021  * This power saving option must be enabled through the SerDes.
3022  *
3023  * Programming the SerDes must go through the same 288 bit serial shift
3024  * register as the other analog registers.  Hence the 9 writes.
3025  */
3026 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
3027 {
3028         u8 i;
3029         u32 val;
3030
3031         if (ah->is_pciexpress != true)
3032                 return;
3033
3034         /* Do not touch SerDes registers */
3035         if (ah->config.pcie_powersave_enable == 2)
3036                 return;
3037
3038         /* Nothing to do on restore for 11N */
3039         if (!restore) {
3040                 if (AR_SREV_9280_20_OR_LATER(ah)) {
3041                         /*
3042                          * AR9280 2.0 or later chips use SerDes values from the
3043                          * initvals.h initialized depending on chipset during
3044                          * ath9k_hw_init()
3045                          */
3046                         for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
3047                                 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
3048                                           INI_RA(&ah->iniPcieSerdes, i, 1));
3049                         }
3050                 } else if (AR_SREV_9280(ah) &&
3051                            (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
3052                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
3053                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3054
3055                         /* RX shut off when elecidle is asserted */
3056                         REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
3057                         REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
3058                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
3059
3060                         /* Shut off CLKREQ active in L1 */
3061                         if (ah->config.pcie_clock_req)
3062                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
3063                         else
3064                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
3065
3066                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3067                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3068                         REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
3069
3070                         /* Load the new settings */
3071                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3072
3073                 } else {
3074                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
3075                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3076
3077                         /* RX shut off when elecidle is asserted */
3078                         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
3079                         REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
3080                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
3081
3082                         /*
3083                          * Ignore ah->ah_config.pcie_clock_req setting for
3084                          * pre-AR9280 11n
3085                          */
3086                         REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
3087
3088                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3089                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3090                         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
3091
3092                         /* Load the new settings */
3093                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3094                 }
3095
3096                 udelay(1000);
3097
3098                 /* set bit 19 to allow forcing of pcie core into L1 state */
3099                 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
3100
3101                 /* Several PCIe massages to ensure proper behaviour */
3102                 if (ah->config.pcie_waen) {
3103                         val = ah->config.pcie_waen;
3104                         if (!power_off)
3105                                 val &= (~AR_WA_D3_L1_DISABLE);
3106                 } else {
3107                         if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
3108                             AR_SREV_9287(ah)) {
3109                                 val = AR9285_WA_DEFAULT;
3110                                 if (!power_off)
3111                                         val &= (~AR_WA_D3_L1_DISABLE);
3112                         } else if (AR_SREV_9280(ah)) {
3113                                 /*
3114                                  * On AR9280 chips bit 22 of 0x4004 needs to be
3115                                  * set otherwise card may disappear.
3116                                  */
3117                                 val = AR9280_WA_DEFAULT;
3118                                 if (!power_off)
3119                                         val &= (~AR_WA_D3_L1_DISABLE);
3120                         } else
3121                                 val = AR_WA_DEFAULT;
3122                 }
3123
3124                 REG_WRITE(ah, AR_WA, val);
3125         }
3126
3127         if (power_off) {
3128                 /*
3129                  * Set PCIe workaround bits
3130                  * bit 14 in WA register (disable L1) should only
3131                  * be set when device enters D3 and be cleared
3132                  * when device comes back to D0.
3133                  */
3134                 if (ah->config.pcie_waen) {
3135                         if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
3136                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
3137                 } else {
3138                         if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
3139                               AR_SREV_9287(ah)) &&
3140                              (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
3141                             (AR_SREV_9280(ah) &&
3142                              (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
3143                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
3144                         }
3145                 }
3146         }
3147 }
3148
3149 /**********************/
3150 /* Interrupt Handling */
3151 /**********************/
3152
3153 bool ath9k_hw_intrpend(struct ath_hw *ah)
3154 {
3155         u32 host_isr;
3156
3157         if (AR_SREV_9100(ah))
3158                 return true;
3159
3160         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
3161         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
3162                 return true;
3163
3164         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
3165         if ((host_isr & AR_INTR_SYNC_DEFAULT)
3166             && (host_isr != AR_INTR_SPURIOUS))
3167                 return true;
3168
3169         return false;
3170 }
3171
3172 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
3173 {
3174         u32 isr = 0;
3175         u32 mask2 = 0;
3176         struct ath9k_hw_capabilities *pCap = &ah->caps;
3177         u32 sync_cause = 0;
3178         bool fatal_int = false;
3179
3180         if (!AR_SREV_9100(ah)) {
3181                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
3182                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
3183                             == AR_RTC_STATUS_ON) {
3184                                 isr = REG_READ(ah, AR_ISR);
3185                         }
3186                 }
3187
3188                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
3189                         AR_INTR_SYNC_DEFAULT;
3190
3191                 *masked = 0;
3192
3193                 if (!isr && !sync_cause)
3194                         return false;
3195         } else {
3196                 *masked = 0;
3197                 isr = REG_READ(ah, AR_ISR);
3198         }
3199
3200         if (isr) {
3201                 if (isr & AR_ISR_BCNMISC) {
3202                         u32 isr2;
3203                         isr2 = REG_READ(ah, AR_ISR_S2);
3204                         if (isr2 & AR_ISR_S2_TIM)
3205                                 mask2 |= ATH9K_INT_TIM;
3206                         if (isr2 & AR_ISR_S2_DTIM)
3207                                 mask2 |= ATH9K_INT_DTIM;
3208                         if (isr2 & AR_ISR_S2_DTIMSYNC)
3209                                 mask2 |= ATH9K_INT_DTIMSYNC;
3210                         if (isr2 & (AR_ISR_S2_CABEND))
3211                                 mask2 |= ATH9K_INT_CABEND;
3212                         if (isr2 & AR_ISR_S2_GTT)
3213                                 mask2 |= ATH9K_INT_GTT;
3214                         if (isr2 & AR_ISR_S2_CST)
3215                                 mask2 |= ATH9K_INT_CST;
3216                         if (isr2 & AR_ISR_S2_TSFOOR)
3217                                 mask2 |= ATH9K_INT_TSFOOR;
3218                 }
3219
3220                 isr = REG_READ(ah, AR_ISR_RAC);
3221                 if (isr == 0xffffffff) {
3222                         *masked = 0;
3223                         return false;
3224                 }
3225
3226                 *masked = isr & ATH9K_INT_COMMON;
3227
3228                 if (ah->config.intr_mitigation) {
3229                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
3230                                 *masked |= ATH9K_INT_RX;
3231                 }
3232
3233                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
3234                         *masked |= ATH9K_INT_RX;
3235                 if (isr &
3236                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
3237                      AR_ISR_TXEOL)) {
3238                         u32 s0_s, s1_s;
3239
3240                         *masked |= ATH9K_INT_TX;
3241
3242                         s0_s = REG_READ(ah, AR_ISR_S0_S);
3243                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
3244                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
3245
3246                         s1_s = REG_READ(ah, AR_ISR_S1_S);
3247                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
3248                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
3249                 }
3250
3251                 if (isr & AR_ISR_RXORN) {
3252                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3253                                 "receive FIFO overrun interrupt\n");
3254                 }
3255
3256                 if (!AR_SREV_9100(ah)) {
3257                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3258                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
3259                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
3260                                         *masked |= ATH9K_INT_TIM_TIMER;
3261                         }
3262                 }
3263
3264                 *masked |= mask2;
3265         }
3266
3267         if (AR_SREV_9100(ah))
3268                 return true;
3269
3270         if (isr & AR_ISR_GENTMR) {
3271                 u32 s5_s;
3272
3273                 s5_s = REG_READ(ah, AR_ISR_S5_S);
3274                 if (isr & AR_ISR_GENTMR) {
3275                         ah->intr_gen_timer_trigger =
3276                                 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
3277
3278                         ah->intr_gen_timer_thresh =
3279                                 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
3280
3281                         if (ah->intr_gen_timer_trigger)
3282                                 *masked |= ATH9K_INT_GENTIMER;
3283
3284                 }
3285         }
3286
3287         if (sync_cause) {
3288                 fatal_int =
3289                         (sync_cause &
3290                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
3291                         ? true : false;
3292
3293                 if (fatal_int) {
3294                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
3295                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3296                                         "received PCI FATAL interrupt\n");
3297                         }
3298                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3299                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3300                                         "received PCI PERR interrupt\n");
3301                         }
3302                         *masked |= ATH9K_INT_FATAL;
3303                 }
3304                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3305                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3306                                 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3307                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3308                         REG_WRITE(ah, AR_RC, 0);
3309                         *masked |= ATH9K_INT_FATAL;
3310                 }
3311                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3312                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3313                                 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3314                 }
3315
3316                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3317                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3318         }
3319
3320         return true;
3321 }
3322
3323 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3324 {
3325         u32 omask = ah->mask_reg;
3326         u32 mask, mask2;
3327         struct ath9k_hw_capabilities *pCap = &ah->caps;
3328
3329         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3330
3331         if (omask & ATH9K_INT_GLOBAL) {
3332                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
3333                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3334                 (void) REG_READ(ah, AR_IER);
3335                 if (!AR_SREV_9100(ah)) {
3336                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3337                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3338
3339                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3340                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3341                 }
3342         }
3343
3344         mask = ints & ATH9K_INT_COMMON;
3345         mask2 = 0;
3346
3347         if (ints & ATH9K_INT_TX) {
3348                 if (ah->txok_interrupt_mask)
3349                         mask |= AR_IMR_TXOK;
3350                 if (ah->txdesc_interrupt_mask)
3351                         mask |= AR_IMR_TXDESC;
3352                 if (ah->txerr_interrupt_mask)
3353                         mask |= AR_IMR_TXERR;
3354                 if (ah->txeol_interrupt_mask)
3355                         mask |= AR_IMR_TXEOL;
3356         }
3357         if (ints & ATH9K_INT_RX) {
3358                 mask |= AR_IMR_RXERR;
3359                 if (ah->config.intr_mitigation)
3360                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3361                 else
3362                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3363                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3364                         mask |= AR_IMR_GENTMR;
3365         }
3366
3367         if (ints & (ATH9K_INT_BMISC)) {
3368                 mask |= AR_IMR_BCNMISC;
3369                 if (ints & ATH9K_INT_TIM)
3370                         mask2 |= AR_IMR_S2_TIM;
3371                 if (ints & ATH9K_INT_DTIM)
3372                         mask2 |= AR_IMR_S2_DTIM;
3373                 if (ints & ATH9K_INT_DTIMSYNC)
3374                         mask2 |= AR_IMR_S2_DTIMSYNC;
3375                 if (ints & ATH9K_INT_CABEND)
3376                         mask2 |= AR_IMR_S2_CABEND;
3377                 if (ints & ATH9K_INT_TSFOOR)
3378                         mask2 |= AR_IMR_S2_TSFOOR;
3379         }
3380
3381         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3382                 mask |= AR_IMR_BCNMISC;
3383                 if (ints & ATH9K_INT_GTT)
3384                         mask2 |= AR_IMR_S2_GTT;
3385                 if (ints & ATH9K_INT_CST)
3386                         mask2 |= AR_IMR_S2_CST;
3387         }
3388
3389         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3390         REG_WRITE(ah, AR_IMR, mask);
3391         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3392                                            AR_IMR_S2_DTIM |
3393                                            AR_IMR_S2_DTIMSYNC |
3394                                            AR_IMR_S2_CABEND |
3395                                            AR_IMR_S2_CABTO |
3396                                            AR_IMR_S2_TSFOOR |
3397                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
3398         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3399         ah->mask_reg = ints;
3400
3401         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3402                 if (ints & ATH9K_INT_TIM_TIMER)
3403                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3404                 else
3405                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3406         }
3407
3408         if (ints & ATH9K_INT_GLOBAL) {
3409                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
3410                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3411                 if (!AR_SREV_9100(ah)) {
3412                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3413                                   AR_INTR_MAC_IRQ);
3414                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3415
3416
3417                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3418                                   AR_INTR_SYNC_DEFAULT);
3419                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
3420                                   AR_INTR_SYNC_DEFAULT);
3421                 }
3422                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3423                          REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3424         }
3425
3426         return omask;
3427 }
3428
3429 /*******************/
3430 /* Beacon Handling */
3431 /*******************/
3432
3433 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3434 {
3435         int flags = 0;
3436
3437         ah->beacon_interval = beacon_period;
3438
3439         switch (ah->opmode) {
3440         case NL80211_IFTYPE_STATION:
3441         case NL80211_IFTYPE_MONITOR:
3442                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3443                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3444                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3445                 flags |= AR_TBTT_TIMER_EN;
3446                 break;
3447         case NL80211_IFTYPE_ADHOC:
3448         case NL80211_IFTYPE_MESH_POINT:
3449                 REG_SET_BIT(ah, AR_TXCFG,
3450                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3451                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3452                           TU_TO_USEC(next_beacon +
3453                                      (ah->atim_window ? ah->
3454                                       atim_window : 1)));
3455                 flags |= AR_NDP_TIMER_EN;
3456         case NL80211_IFTYPE_AP:
3457                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3458                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3459                           TU_TO_USEC(next_beacon -
3460                                      ah->config.
3461                                      dma_beacon_response_time));
3462                 REG_WRITE(ah, AR_NEXT_SWBA,
3463                           TU_TO_USEC(next_beacon -
3464                                      ah->config.
3465                                      sw_beacon_response_time));
3466                 flags |=
3467                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3468                 break;
3469         default:
3470                 DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
3471                         "%s: unsupported opmode: %d\n",
3472                         __func__, ah->opmode);
3473                 return;
3474                 break;
3475         }
3476
3477         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3478         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3479         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3480         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3481
3482         beacon_period &= ~ATH9K_BEACON_ENA;
3483         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3484                 beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3485                 ath9k_hw_reset_tsf(ah);
3486         }
3487
3488         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3489 }
3490
3491 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3492                                     const struct ath9k_beacon_state *bs)
3493 {
3494         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3495         struct ath9k_hw_capabilities *pCap = &ah->caps;
3496
3497         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3498
3499         REG_WRITE(ah, AR_BEACON_PERIOD,
3500                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3501         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3502                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3503
3504         REG_RMW_FIELD(ah, AR_RSSI_THR,
3505                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3506
3507         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3508
3509         if (bs->bs_sleepduration > beaconintval)
3510                 beaconintval = bs->bs_sleepduration;
3511
3512         dtimperiod = bs->bs_dtimperiod;
3513         if (bs->bs_sleepduration > dtimperiod)
3514                 dtimperiod = bs->bs_sleepduration;
3515
3516         if (beaconintval == dtimperiod)
3517                 nextTbtt = bs->bs_nextdtim;
3518         else
3519                 nextTbtt = bs->bs_nexttbtt;
3520
3521         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3522         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3523         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3524         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3525
3526         REG_WRITE(ah, AR_NEXT_DTIM,
3527                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3528         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3529
3530         REG_WRITE(ah, AR_SLEEP1,
3531                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3532                   | AR_SLEEP1_ASSUME_DTIM);
3533
3534         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3535                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3536         else
3537                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3538
3539         REG_WRITE(ah, AR_SLEEP2,
3540                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3541
3542         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3543         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3544
3545         REG_SET_BIT(ah, AR_TIMER_MODE,
3546                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3547                     AR_DTIM_TIMER_EN);
3548
3549         /* TSF Out of Range Threshold */
3550         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3551 }
3552
3553 /*******************/
3554 /* HW Capabilities */
3555 /*******************/
3556
3557 void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3558 {
3559         struct ath9k_hw_capabilities *pCap = &ah->caps;
3560         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3561         struct ath_btcoex_info *btcoex_info = &ah->ah_sc->btcoex_info;
3562
3563         u16 capField = 0, eeval;
3564
3565         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3566         regulatory->current_rd = eeval;
3567
3568         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3569         if (AR_SREV_9285_10_OR_LATER(ah))
3570                 eeval |= AR9285_RDEXT_DEFAULT;
3571         regulatory->current_rd_ext = eeval;
3572
3573         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3574
3575         if (ah->opmode != NL80211_IFTYPE_AP &&
3576             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3577                 if (regulatory->current_rd == 0x64 ||
3578                     regulatory->current_rd == 0x65)
3579                         regulatory->current_rd += 5;
3580                 else if (regulatory->current_rd == 0x41)
3581                         regulatory->current_rd = 0x43;
3582                 DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
3583                         "regdomain mapped to 0x%x\n", regulatory->current_rd);
3584         }
3585
3586         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3587         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3588
3589         if (eeval & AR5416_OPFLAGS_11A) {
3590                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3591                 if (ah->config.ht_enable) {
3592                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3593                                 set_bit(ATH9K_MODE_11NA_HT20,
3594                                         pCap->wireless_modes);
3595                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3596                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3597                                         pCap->wireless_modes);
3598                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3599                                         pCap->wireless_modes);
3600                         }
3601                 }
3602         }
3603
3604         if (eeval & AR5416_OPFLAGS_11G) {
3605                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3606                 if (ah->config.ht_enable) {
3607                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3608                                 set_bit(ATH9K_MODE_11NG_HT20,
3609                                         pCap->wireless_modes);
3610                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3611                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3612                                         pCap->wireless_modes);
3613                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3614                                         pCap->wireless_modes);
3615                         }
3616                 }
3617         }
3618
3619         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3620         /*
3621          * For AR9271 we will temporarilly uses the rx chainmax as read from
3622          * the EEPROM.
3623          */
3624         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3625             !(eeval & AR5416_OPFLAGS_11A) &&
3626             !(AR_SREV_9271(ah)))
3627                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3628                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3629         else
3630                 /* Use rx_chainmask from EEPROM. */
3631                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3632
3633         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3634                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3635
3636         pCap->low_2ghz_chan = 2312;
3637         pCap->high_2ghz_chan = 2732;
3638
3639         pCap->low_5ghz_chan = 4920;
3640         pCap->high_5ghz_chan = 6100;
3641
3642         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3643         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3644         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3645
3646         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3647         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3648         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3649
3650         if (ah->config.ht_enable)
3651                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3652         else
3653                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3654
3655         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3656         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3657         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3658         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3659
3660         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3661                 pCap->total_queues =
3662                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3663         else
3664                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3665
3666         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3667                 pCap->keycache_size =
3668                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3669         else
3670                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3671
3672         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3673         pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3674
3675         if (AR_SREV_9285_10_OR_LATER(ah))
3676                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3677         else if (AR_SREV_9280_10_OR_LATER(ah))
3678                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3679         else
3680                 pCap->num_gpio_pins = AR_NUM_GPIO;
3681
3682         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3683                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3684                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3685         } else {
3686                 pCap->rts_aggr_limit = (8 * 1024);
3687         }
3688
3689         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3690
3691 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3692         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3693         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3694                 ah->rfkill_gpio =
3695                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3696                 ah->rfkill_polarity =
3697                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3698
3699                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3700         }
3701 #endif
3702
3703         pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3704
3705         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3706                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3707         else
3708                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3709
3710         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3711                 pCap->reg_cap =
3712                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3713                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3714                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3715                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3716         } else {
3717                 pCap->reg_cap =
3718                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3719                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3720         }
3721
3722         pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3723
3724         pCap->num_antcfg_5ghz =
3725                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3726         pCap->num_antcfg_2ghz =
3727                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3728
3729         if (AR_SREV_9280_10_OR_LATER(ah) &&
3730             ath_btcoex_supported(ah->hw_version.subsysid)) {
3731                 btcoex_info->btactive_gpio = ATH_BTACTIVE_GPIO;
3732                 btcoex_info->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3733
3734                 if (AR_SREV_9285(ah)) {
3735                         btcoex_info->btcoex_scheme = ATH_BTCOEX_CFG_3WIRE;
3736                         btcoex_info->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3737                 } else {
3738                         btcoex_info->btcoex_scheme = ATH_BTCOEX_CFG_2WIRE;
3739                 }
3740         } else {
3741                 btcoex_info->btcoex_scheme = ATH_BTCOEX_CFG_NONE;
3742         }
3743 }
3744
3745 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3746                             u32 capability, u32 *result)
3747 {
3748         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3749         switch (type) {
3750         case ATH9K_CAP_CIPHER:
3751                 switch (capability) {
3752                 case ATH9K_CIPHER_AES_CCM:
3753                 case ATH9K_CIPHER_AES_OCB:
3754                 case ATH9K_CIPHER_TKIP:
3755                 case ATH9K_CIPHER_WEP:
3756                 case ATH9K_CIPHER_MIC:
3757                 case ATH9K_CIPHER_CLR:
3758                         return true;
3759                 default:
3760                         return false;
3761                 }
3762         case ATH9K_CAP_TKIP_MIC:
3763                 switch (capability) {
3764                 case 0:
3765                         return true;
3766                 case 1:
3767                         return (ah->sta_id1_defaults &
3768                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3769                         false;
3770                 }
3771         case ATH9K_CAP_TKIP_SPLIT:
3772                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3773                         false : true;
3774         case ATH9K_CAP_DIVERSITY:
3775                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3776                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3777                         true : false;
3778         case ATH9K_CAP_MCAST_KEYSRCH:
3779                 switch (capability) {
3780                 case 0:
3781                         return true;
3782                 case 1:
3783                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3784                                 return false;
3785                         } else {
3786                                 return (ah->sta_id1_defaults &
3787                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3788                                         false;
3789                         }
3790                 }
3791                 return false;
3792         case ATH9K_CAP_TXPOW:
3793                 switch (capability) {
3794                 case 0:
3795                         return 0;
3796                 case 1:
3797                         *result = regulatory->power_limit;
3798                         return 0;
3799                 case 2:
3800                         *result = regulatory->max_power_level;
3801                         return 0;
3802                 case 3:
3803                         *result = regulatory->tp_scale;
3804                         return 0;
3805                 }
3806                 return false;
3807         case ATH9K_CAP_DS:
3808                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3809                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3810                         ? false : true;
3811         default:
3812                 return false;
3813         }
3814 }
3815
3816 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3817                             u32 capability, u32 setting, int *status)
3818 {
3819         u32 v;
3820
3821         switch (type) {
3822         case ATH9K_CAP_TKIP_MIC:
3823                 if (setting)
3824                         ah->sta_id1_defaults |=
3825                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3826                 else
3827                         ah->sta_id1_defaults &=
3828                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3829                 return true;
3830         case ATH9K_CAP_DIVERSITY:
3831                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3832                 if (setting)
3833                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3834                 else
3835                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3836                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3837                 return true;
3838         case ATH9K_CAP_MCAST_KEYSRCH:
3839                 if (setting)
3840                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3841                 else
3842                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3843                 return true;
3844         default:
3845                 return false;
3846         }
3847 }
3848
3849 /****************************/
3850 /* GPIO / RFKILL / Antennae */
3851 /****************************/
3852
3853 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3854                                          u32 gpio, u32 type)
3855 {
3856         int addr;
3857         u32 gpio_shift, tmp;
3858
3859         if (gpio > 11)
3860                 addr = AR_GPIO_OUTPUT_MUX3;
3861         else if (gpio > 5)
3862                 addr = AR_GPIO_OUTPUT_MUX2;
3863         else
3864                 addr = AR_GPIO_OUTPUT_MUX1;
3865
3866         gpio_shift = (gpio % 6) * 5;
3867
3868         if (AR_SREV_9280_20_OR_LATER(ah)
3869             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3870                 REG_RMW(ah, addr, (type << gpio_shift),
3871                         (0x1f << gpio_shift));
3872         } else {
3873                 tmp = REG_READ(ah, addr);
3874                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3875                 tmp &= ~(0x1f << gpio_shift);
3876                 tmp |= (type << gpio_shift);
3877                 REG_WRITE(ah, addr, tmp);
3878         }
3879 }
3880
3881 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3882 {
3883         u32 gpio_shift;
3884
3885         ASSERT(gpio < ah->caps.num_gpio_pins);
3886
3887         gpio_shift = gpio << 1;
3888
3889         REG_RMW(ah,
3890                 AR_GPIO_OE_OUT,
3891                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3892                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3893 }
3894
3895 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3896 {
3897 #define MS_REG_READ(x, y) \
3898         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3899
3900         if (gpio >= ah->caps.num_gpio_pins)
3901                 return 0xffffffff;
3902
3903         if (AR_SREV_9287_10_OR_LATER(ah))
3904                 return MS_REG_READ(AR9287, gpio) != 0;
3905         else if (AR_SREV_9285_10_OR_LATER(ah))
3906                 return MS_REG_READ(AR9285, gpio) != 0;
3907         else if (AR_SREV_9280_10_OR_LATER(ah))
3908                 return MS_REG_READ(AR928X, gpio) != 0;
3909         else
3910                 return MS_REG_READ(AR, gpio) != 0;
3911 }
3912
3913 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3914                          u32 ah_signal_type)
3915 {
3916         u32 gpio_shift;
3917
3918         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3919
3920         gpio_shift = 2 * gpio;
3921
3922         REG_RMW(ah,
3923                 AR_GPIO_OE_OUT,
3924                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3925                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3926 }
3927
3928 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3929 {
3930         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3931                 AR_GPIO_BIT(gpio));
3932 }
3933
3934 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3935 {
3936         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3937 }
3938
3939 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3940 {
3941         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3942 }
3943
3944 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3945                                enum ath9k_ant_setting settings,
3946                                struct ath9k_channel *chan,
3947                                u8 *tx_chainmask,
3948                                u8 *rx_chainmask,
3949                                u8 *antenna_cfgd)
3950 {
3951         static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3952
3953         if (AR_SREV_9280(ah)) {
3954                 if (!tx_chainmask_cfg) {
3955
3956                         tx_chainmask_cfg = *tx_chainmask;
3957                         rx_chainmask_cfg = *rx_chainmask;
3958                 }
3959
3960                 switch (settings) {
3961                 case ATH9K_ANT_FIXED_A:
3962                         *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3963                         *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3964                         *antenna_cfgd = true;
3965                         break;
3966                 case ATH9K_ANT_FIXED_B:
3967                         if (ah->caps.tx_chainmask >
3968                             ATH9K_ANTENNA1_CHAINMASK) {
3969                                 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3970                         }
3971                         *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3972                         *antenna_cfgd = true;
3973                         break;
3974                 case ATH9K_ANT_VARIABLE:
3975                         *tx_chainmask = tx_chainmask_cfg;
3976                         *rx_chainmask = rx_chainmask_cfg;
3977                         *antenna_cfgd = true;
3978                         break;
3979                 default:
3980                         break;
3981                 }
3982         } else {
3983                 ah->config.diversity_control = settings;
3984         }
3985
3986         return true;
3987 }
3988
3989 /*********************/
3990 /* General Operation */
3991 /*********************/
3992
3993 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3994 {
3995         u32 bits = REG_READ(ah, AR_RX_FILTER);
3996         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3997
3998         if (phybits & AR_PHY_ERR_RADAR)
3999                 bits |= ATH9K_RX_FILTER_PHYRADAR;
4000         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
4001                 bits |= ATH9K_RX_FILTER_PHYERR;
4002
4003         return bits;
4004 }
4005
4006 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
4007 {
4008         u32 phybits;
4009
4010         REG_WRITE(ah, AR_RX_FILTER, bits);
4011
4012         phybits = 0;
4013         if (bits & ATH9K_RX_FILTER_PHYRADAR)
4014                 phybits |= AR_PHY_ERR_RADAR;
4015         if (bits & ATH9K_RX_FILTER_PHYERR)
4016                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
4017         REG_WRITE(ah, AR_PHY_ERR, phybits);
4018
4019         if (phybits)
4020                 REG_WRITE(ah, AR_RXCFG,
4021                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
4022         else
4023                 REG_WRITE(ah, AR_RXCFG,
4024                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
4025 }
4026
4027 bool ath9k_hw_phy_disable(struct ath_hw *ah)
4028 {
4029         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
4030 }
4031
4032 bool ath9k_hw_disable(struct ath_hw *ah)
4033 {
4034         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
4035                 return false;
4036
4037         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
4038 }
4039
4040 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
4041 {
4042         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4043         struct ath9k_channel *chan = ah->curchan;
4044         struct ieee80211_channel *channel = chan->chan;
4045
4046         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
4047
4048         ah->eep_ops->set_txpower(ah, chan,
4049                                  ath9k_regd_get_ctl(regulatory, chan),
4050                                  channel->max_antenna_gain * 2,
4051                                  channel->max_power * 2,
4052                                  min((u32) MAX_RATE_POWER,
4053                                  (u32) regulatory->power_limit));
4054 }
4055
4056 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
4057 {
4058         memcpy(ah->macaddr, mac, ETH_ALEN);
4059 }
4060
4061 void ath9k_hw_setopmode(struct ath_hw *ah)
4062 {
4063         ath9k_hw_set_operating_mode(ah, ah->opmode);
4064 }
4065
4066 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
4067 {
4068         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
4069         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
4070 }
4071
4072 void ath9k_hw_setbssidmask(struct ath_softc *sc)
4073 {
4074         REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
4075         REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
4076 }
4077
4078 void ath9k_hw_write_associd(struct ath_softc *sc)
4079 {
4080         REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
4081         REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
4082                   ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
4083 }
4084
4085 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
4086 {
4087         u64 tsf;
4088
4089         tsf = REG_READ(ah, AR_TSF_U32);
4090         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
4091
4092         return tsf;
4093 }
4094
4095 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
4096 {
4097         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
4098         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
4099 }
4100
4101 void ath9k_hw_reset_tsf(struct ath_hw *ah)
4102 {
4103         ath9k_ps_wakeup(ah->ah_sc);
4104         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
4105                            AH_TSF_WRITE_TIMEOUT))
4106                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
4107                         "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
4108
4109         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
4110         ath9k_ps_restore(ah->ah_sc);
4111 }
4112
4113 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
4114 {
4115         if (setting)
4116                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
4117         else
4118                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
4119 }
4120
4121 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
4122 {
4123         if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
4124                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
4125                 ah->slottime = (u32) -1;
4126                 return false;
4127         } else {
4128                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
4129                 ah->slottime = us;
4130                 return true;
4131         }
4132 }
4133
4134 void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
4135 {
4136         u32 macmode;
4137
4138         if (mode == ATH9K_HT_MACMODE_2040 &&
4139             !ah->config.cwm_ignore_extcca)
4140                 macmode = AR_2040_JOINED_RX_CLEAR;
4141         else
4142                 macmode = 0;
4143
4144         REG_WRITE(ah, AR_2040_MODE, macmode);
4145 }
4146
4147 /* HW Generic timers configuration */
4148
4149 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
4150 {
4151         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4152         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4153         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4154         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4155         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4156         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4157         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4158         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
4159         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
4160         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
4161                                 AR_NDP2_TIMER_MODE, 0x0002},
4162         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
4163                                 AR_NDP2_TIMER_MODE, 0x0004},
4164         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
4165                                 AR_NDP2_TIMER_MODE, 0x0008},
4166         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
4167                                 AR_NDP2_TIMER_MODE, 0x0010},
4168         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
4169                                 AR_NDP2_TIMER_MODE, 0x0020},
4170         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
4171                                 AR_NDP2_TIMER_MODE, 0x0040},
4172         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
4173                                 AR_NDP2_TIMER_MODE, 0x0080}
4174 };
4175
4176 /* HW generic timer primitives */
4177
4178 /* compute and clear index of rightmost 1 */
4179 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
4180 {
4181         u32 b;
4182
4183         b = *mask;
4184         b &= (0-b);
4185         *mask &= ~b;
4186         b *= debruijn32;
4187         b >>= 27;
4188
4189         return timer_table->gen_timer_index[b];
4190 }
4191
4192 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
4193 {
4194         return REG_READ(ah, AR_TSF_L32);
4195 }
4196
4197 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
4198                                           void (*trigger)(void *),
4199                                           void (*overflow)(void *),
4200                                           void *arg,
4201                                           u8 timer_index)
4202 {
4203         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4204         struct ath_gen_timer *timer;
4205
4206         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
4207
4208         if (timer == NULL) {
4209                 printk(KERN_DEBUG "Failed to allocate memory"
4210                        "for hw timer[%d]\n", timer_index);
4211                 return NULL;
4212         }
4213
4214         /* allocate a hardware generic timer slot */
4215         timer_table->timers[timer_index] = timer;
4216         timer->index = timer_index;
4217         timer->trigger = trigger;
4218         timer->overflow = overflow;
4219         timer->arg = arg;
4220
4221         return timer;
4222 }
4223
4224 void ath_gen_timer_start(struct ath_hw *ah,
4225                          struct ath_gen_timer *timer,
4226                          u32 timer_next, u32 timer_period)
4227 {
4228         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4229         u32 tsf;
4230
4231         BUG_ON(!timer_period);
4232
4233         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
4234
4235         tsf = ath9k_hw_gettsf32(ah);
4236
4237         DPRINTF(ah->ah_sc, ATH_DBG_HWTIMER, "curent tsf %x period %x"
4238                 "timer_next %x\n", tsf, timer_period, timer_next);
4239
4240         /*
4241          * Pull timer_next forward if the current TSF already passed it
4242          * because of software latency
4243          */
4244         if (timer_next < tsf)
4245                 timer_next = tsf + timer_period;
4246
4247         /*
4248          * Program generic timer registers
4249          */
4250         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
4251                  timer_next);
4252         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
4253                   timer_period);
4254         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
4255                     gen_tmr_configuration[timer->index].mode_mask);
4256
4257         /* Enable both trigger and thresh interrupt masks */
4258         REG_SET_BIT(ah, AR_IMR_S5,
4259                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
4260                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
4261
4262         if ((ah->ah_sc->imask & ATH9K_INT_GENTIMER) == 0) {
4263                 ath9k_hw_set_interrupts(ah, 0);
4264                 ah->ah_sc->imask |= ATH9K_INT_GENTIMER;
4265                 ath9k_hw_set_interrupts(ah, ah->ah_sc->imask);
4266         }
4267 }
4268
4269 void ath_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
4270 {
4271         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4272
4273         if ((timer->index < AR_FIRST_NDP_TIMER) ||
4274                 (timer->index >= ATH_MAX_GEN_TIMER)) {
4275                 return;
4276         }
4277
4278         /* Clear generic timer enable bits. */
4279         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
4280                         gen_tmr_configuration[timer->index].mode_mask);
4281
4282         /* Disable both trigger and thresh interrupt masks */
4283         REG_CLR_BIT(ah, AR_IMR_S5,
4284                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
4285                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
4286
4287         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
4288
4289         /* if no timer is enabled, turn off interrupt mask */
4290         if (timer_table->timer_mask.val == 0) {
4291                 ath9k_hw_set_interrupts(ah, 0);
4292                 ah->ah_sc->imask &= ~ATH9K_INT_GENTIMER;
4293                 ath9k_hw_set_interrupts(ah, ah->ah_sc->imask);
4294         }
4295 }
4296
4297 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
4298 {
4299         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4300
4301         /* free the hardware generic timer slot */
4302         timer_table->timers[timer->index] = NULL;
4303         kfree(timer);
4304 }
4305
4306 /*
4307  * Generic Timer Interrupts handling
4308  */
4309 void ath_gen_timer_isr(struct ath_hw *ah)
4310 {
4311         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
4312         struct ath_gen_timer *timer;
4313         u32 trigger_mask, thresh_mask, index;
4314
4315         /* get hardware generic timer interrupt status */
4316         trigger_mask = ah->intr_gen_timer_trigger;
4317         thresh_mask = ah->intr_gen_timer_thresh;
4318         trigger_mask &= timer_table->timer_mask.val;
4319         thresh_mask &= timer_table->timer_mask.val;
4320
4321         trigger_mask &= ~thresh_mask;
4322
4323         while (thresh_mask) {
4324                 index = rightmost_index(timer_table, &thresh_mask);
4325                 timer = timer_table->timers[index];
4326                 BUG_ON(!timer);
4327                 DPRINTF(ah->ah_sc, ATH_DBG_HWTIMER,
4328                         "TSF overflow for Gen timer %d\n", index);
4329                 timer->overflow(timer->arg);
4330         }
4331
4332         while (trigger_mask) {
4333                 index = rightmost_index(timer_table, &trigger_mask);
4334                 timer = timer_table->timers[index];
4335                 BUG_ON(!timer);
4336                 DPRINTF(ah->ah_sc, ATH_DBG_HWTIMER,
4337                         "Gen timer[%d] trigger\n", index);
4338                 timer->trigger(timer->arg);
4339         }
4340 }
4341
4342 /*
4343  * Primitive to disable ASPM
4344  */
4345 void ath_pcie_aspm_disable(struct ath_softc *sc)
4346 {
4347         struct pci_dev *pdev = to_pci_dev(sc->dev);
4348         u8 aspm;
4349
4350         pci_read_config_byte(pdev, ATH_PCIE_CAP_LINK_CTRL, &aspm);
4351         aspm &= ~(ATH_PCIE_CAP_LINK_L0S | ATH_PCIE_CAP_LINK_L1);
4352         pci_write_config_byte(pdev, ATH_PCIE_CAP_LINK_CTRL, aspm);
4353 }